1 /* $NetBSD: wi.c,v 1.188 2004/10/30 18:08:41 thorpej Exp $ */ 2 3 /*- 4 * Copyright (c) 2004 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Charles M. Hannum. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the NetBSD 21 * Foundation, Inc. and its contributors. 22 * 4. Neither the name of The NetBSD Foundation nor the names of its 23 * contributors may be used to endorse or promote products derived 24 * from this software without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 36 * POSSIBILITY OF SUCH DAMAGE. 37 */ 38 39 /* 40 * Copyright (c) 1997, 1998, 1999 41 * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved. 42 * 43 * Redistribution and use in source and binary forms, with or without 44 * modification, are permitted provided that the following conditions 45 * are met: 46 * 1. Redistributions of source code must retain the above copyright 47 * notice, this list of conditions and the following disclaimer. 48 * 2. Redistributions in binary form must reproduce the above copyright 49 * notice, this list of conditions and the following disclaimer in the 50 * documentation and/or other materials provided with the distribution. 51 * 3. All advertising materials mentioning features or use of this software 52 * must display the following acknowledgement: 53 * This product includes software developed by Bill Paul. 54 * 4. Neither the name of the author nor the names of any co-contributors 55 * may be used to endorse or promote products derived from this software 56 * without specific prior written permission. 57 * 58 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND 59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 61 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD 62 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 63 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 64 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 65 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 66 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 67 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 68 * THE POSSIBILITY OF SUCH DAMAGE. 69 */ 70 71 /* 72 * Lucent WaveLAN/IEEE 802.11 PCMCIA driver for NetBSD. 73 * 74 * Original FreeBSD driver written by Bill Paul <wpaul@ctr.columbia.edu> 75 * Electrical Engineering Department 76 * Columbia University, New York City 77 */ 78 79 /* 80 * The WaveLAN/IEEE adapter is the second generation of the WaveLAN 81 * from Lucent. Unlike the older cards, the new ones are programmed 82 * entirely via a firmware-driven controller called the Hermes. 83 * Unfortunately, Lucent will not release the Hermes programming manual 84 * without an NDA (if at all). What they do release is an API library 85 * called the HCF (Hardware Control Functions) which is supposed to 86 * do the device-specific operations of a device driver for you. The 87 * publically available version of the HCF library (the 'HCF Light') is 88 * a) extremely gross, b) lacks certain features, particularly support 89 * for 802.11 frames, and c) is contaminated by the GNU Public License. 90 * 91 * This driver does not use the HCF or HCF Light at all. Instead, it 92 * programs the Hermes controller directly, using information gleaned 93 * from the HCF Light code and corresponding documentation. 94 * 95 * This driver supports both the PCMCIA and ISA versions of the 96 * WaveLAN/IEEE cards. Note however that the ISA card isn't really 97 * anything of the sort: it's actually a PCMCIA bridge adapter 98 * that fits into an ISA slot, into which a PCMCIA WaveLAN card is 99 * inserted. Consequently, you need to use the pccard support for 100 * both the ISA and PCMCIA adapters. 101 */ 102 103 /* 104 * FreeBSD driver ported to NetBSD by Bill Sommerfeld in the back of the 105 * Oslo IETF plenary meeting. 106 */ 107 108 #include <sys/cdefs.h> 109 __KERNEL_RCSID(0, "$NetBSD: wi.c,v 1.188 2004/10/30 18:08:41 thorpej Exp $"); 110 111 #define WI_HERMES_AUTOINC_WAR /* Work around data write autoinc bug. */ 112 #define WI_HERMES_STATS_WAR /* Work around stats counter bug. */ 113 #undef WI_HISTOGRAM 114 #undef WI_RING_DEBUG 115 #define STATIC static 116 117 #include "bpfilter.h" 118 119 #include <sys/param.h> 120 #include <sys/systm.h> 121 #include <sys/callout.h> 122 #include <sys/device.h> 123 #include <sys/socket.h> 124 #include <sys/mbuf.h> 125 #include <sys/ioctl.h> 126 #include <sys/kernel.h> /* for hz */ 127 #include <sys/proc.h> 128 129 #include <net/if.h> 130 #include <net/if_dl.h> 131 #include <net/if_llc.h> 132 #include <net/if_media.h> 133 #include <net/if_ether.h> 134 #include <net/route.h> 135 136 #include <net80211/ieee80211_var.h> 137 #include <net80211/ieee80211_compat.h> 138 #include <net80211/ieee80211_ioctl.h> 139 #include <net80211/ieee80211_radiotap.h> 140 #include <net80211/ieee80211_rssadapt.h> 141 142 #if NBPFILTER > 0 143 #include <net/bpf.h> 144 #include <net/bpfdesc.h> 145 #endif 146 147 #include <machine/bus.h> 148 149 #include <dev/ic/wi_ieee.h> 150 #include <dev/ic/wireg.h> 151 #include <dev/ic/wivar.h> 152 153 STATIC int wi_init(struct ifnet *); 154 STATIC void wi_stop(struct ifnet *, int); 155 STATIC void wi_start(struct ifnet *); 156 STATIC int wi_reset(struct wi_softc *); 157 STATIC void wi_watchdog(struct ifnet *); 158 STATIC int wi_ioctl(struct ifnet *, u_long, caddr_t); 159 STATIC int wi_media_change(struct ifnet *); 160 STATIC void wi_media_status(struct ifnet *, struct ifmediareq *); 161 162 STATIC struct ieee80211_node *wi_node_alloc(struct ieee80211com *); 163 STATIC void wi_node_copy(struct ieee80211com *, struct ieee80211_node *, 164 const struct ieee80211_node *); 165 STATIC void wi_node_free(struct ieee80211com *, struct ieee80211_node *); 166 167 STATIC void wi_raise_rate(struct ieee80211com *, struct ieee80211_rssdesc *); 168 STATIC void wi_lower_rate(struct ieee80211com *, struct ieee80211_rssdesc *); 169 STATIC int wi_choose_rate(struct ieee80211com *, struct ieee80211_node *, 170 struct ieee80211_frame *, u_int); 171 STATIC void wi_rssadapt_updatestats_cb(void *, struct ieee80211_node *); 172 STATIC void wi_rssadapt_updatestats(void *); 173 STATIC void wi_rssdescs_init(struct wi_rssdesc (*)[], wi_rssdescq_t *); 174 STATIC void wi_rssdescs_reset(struct ieee80211com *, struct wi_rssdesc (*)[], 175 wi_rssdescq_t *, u_int8_t (*)[]); 176 STATIC void wi_sync_bssid(struct wi_softc *, u_int8_t new_bssid[]); 177 178 STATIC void wi_rx_intr(struct wi_softc *); 179 STATIC void wi_txalloc_intr(struct wi_softc *); 180 STATIC void wi_cmd_intr(struct wi_softc *); 181 STATIC void wi_tx_intr(struct wi_softc *); 182 STATIC void wi_tx_ex_intr(struct wi_softc *); 183 STATIC void wi_info_intr(struct wi_softc *); 184 185 STATIC void wi_push_packet(struct wi_softc *); 186 STATIC int wi_get_cfg(struct ifnet *, u_long, caddr_t); 187 STATIC int wi_set_cfg(struct ifnet *, u_long, caddr_t); 188 STATIC int wi_cfg_txrate(struct wi_softc *); 189 STATIC int wi_write_txrate(struct wi_softc *, int); 190 STATIC int wi_write_wep(struct wi_softc *); 191 STATIC int wi_write_multi(struct wi_softc *); 192 STATIC int wi_alloc_fid(struct wi_softc *, int, int *); 193 STATIC void wi_read_nicid(struct wi_softc *); 194 STATIC int wi_write_ssid(struct wi_softc *, int, u_int8_t *, int); 195 196 STATIC int wi_sendcmd(struct wi_softc *, int, int); 197 STATIC int wi_cmd(struct wi_softc *, int, int, int, int); 198 STATIC int wi_seek_bap(struct wi_softc *, int, int); 199 STATIC int wi_read_bap(struct wi_softc *, int, int, void *, int); 200 STATIC int wi_write_bap(struct wi_softc *, int, int, void *, int); 201 STATIC int wi_mwrite_bap(struct wi_softc *, int, int, struct mbuf *, int); 202 STATIC int wi_read_rid(struct wi_softc *, int, void *, int *); 203 STATIC int wi_write_rid(struct wi_softc *, int, void *, int); 204 205 STATIC int wi_newstate(struct ieee80211com *, enum ieee80211_state, int); 206 STATIC int wi_set_tim(struct ieee80211com *, int, int); 207 208 STATIC int wi_scan_ap(struct wi_softc *, u_int16_t, u_int16_t); 209 STATIC void wi_scan_result(struct wi_softc *, int, int); 210 211 STATIC void wi_dump_pkt(struct wi_frame *, struct ieee80211_node *, int rssi); 212 213 static inline int 214 wi_write_val(struct wi_softc *sc, int rid, u_int16_t val) 215 { 216 217 val = htole16(val); 218 return wi_write_rid(sc, rid, &val, sizeof(val)); 219 } 220 221 static struct timeval lasttxerror; /* time of last tx error msg */ 222 static int curtxeps = 0; /* current tx error msgs/sec */ 223 static int wi_txerate = 0; /* tx error rate: max msgs/sec */ 224 225 #ifdef WI_DEBUG 226 int wi_debug = 0; 227 228 #define DPRINTF(X) if (wi_debug) printf X 229 #define DPRINTF2(X) if (wi_debug > 1) printf X 230 #define IFF_DUMPPKTS(_ifp) \ 231 (((_ifp)->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2)) 232 #else 233 #define DPRINTF(X) 234 #define DPRINTF2(X) 235 #define IFF_DUMPPKTS(_ifp) 0 236 #endif 237 238 #define WI_INTRS (WI_EV_RX | WI_EV_ALLOC | WI_EV_INFO | \ 239 WI_EV_TX | WI_EV_TX_EXC | WI_EV_CMD) 240 241 struct wi_card_ident 242 wi_card_ident[] = { 243 /* CARD_ID CARD_NAME FIRM_TYPE */ 244 { WI_NIC_LUCENT_ID, WI_NIC_LUCENT_STR, WI_LUCENT }, 245 { WI_NIC_SONY_ID, WI_NIC_SONY_STR, WI_LUCENT }, 246 { WI_NIC_LUCENT_EMB_ID, WI_NIC_LUCENT_EMB_STR, WI_LUCENT }, 247 { WI_NIC_EVB2_ID, WI_NIC_EVB2_STR, WI_INTERSIL }, 248 { WI_NIC_HWB3763_ID, WI_NIC_HWB3763_STR, WI_INTERSIL }, 249 { WI_NIC_HWB3163_ID, WI_NIC_HWB3163_STR, WI_INTERSIL }, 250 { WI_NIC_HWB3163B_ID, WI_NIC_HWB3163B_STR, WI_INTERSIL }, 251 { WI_NIC_EVB3_ID, WI_NIC_EVB3_STR, WI_INTERSIL }, 252 { WI_NIC_HWB1153_ID, WI_NIC_HWB1153_STR, WI_INTERSIL }, 253 { WI_NIC_P2_SST_ID, WI_NIC_P2_SST_STR, WI_INTERSIL }, 254 { WI_NIC_EVB2_SST_ID, WI_NIC_EVB2_SST_STR, WI_INTERSIL }, 255 { WI_NIC_3842_EVA_ID, WI_NIC_3842_EVA_STR, WI_INTERSIL }, 256 { WI_NIC_3842_PCMCIA_AMD_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL }, 257 { WI_NIC_3842_PCMCIA_SST_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL }, 258 { WI_NIC_3842_PCMCIA_ATM_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL }, 259 { WI_NIC_3842_MINI_AMD_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL }, 260 { WI_NIC_3842_MINI_SST_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL }, 261 { WI_NIC_3842_MINI_ATM_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL }, 262 { WI_NIC_3842_PCI_AMD_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL }, 263 { WI_NIC_3842_PCI_SST_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL }, 264 { WI_NIC_3842_PCI_ATM_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL }, 265 { WI_NIC_P3_PCMCIA_AMD_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL }, 266 { WI_NIC_P3_PCMCIA_SST_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL }, 267 { WI_NIC_P3_MINI_AMD_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL }, 268 { WI_NIC_P3_MINI_SST_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL }, 269 { 0, NULL, 0 }, 270 }; 271 272 int 273 wi_attach(struct wi_softc *sc, const u_int8_t *macaddr) 274 { 275 struct ieee80211com *ic = &sc->sc_ic; 276 struct ifnet *ifp = &ic->ic_if; 277 int chan, nrate, buflen; 278 u_int16_t val, chanavail; 279 struct { 280 u_int16_t nrates; 281 char rates[IEEE80211_RATE_SIZE]; 282 } ratebuf; 283 static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = { 284 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 285 }; 286 int s; 287 288 s = splnet(); 289 290 /* Make sure interrupts are disabled. */ 291 CSR_WRITE_2(sc, WI_INT_EN, 0); 292 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0); 293 294 sc->sc_invalid = 0; 295 296 /* Reset the NIC. */ 297 if (wi_reset(sc) != 0) { 298 sc->sc_invalid = 1; 299 splx(s); 300 return 1; 301 } 302 303 buflen = IEEE80211_ADDR_LEN; 304 if (!macaddr) { 305 if (wi_read_rid(sc, WI_RID_MAC_NODE, ic->ic_myaddr, &buflen) != 0 || 306 buflen < IEEE80211_ADDR_LEN || 307 IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) { 308 printf(" could not get mac address, attach failed\n"); 309 splx(s); 310 return 1; 311 } 312 } else 313 memcpy(ic->ic_myaddr, macaddr, IEEE80211_ADDR_LEN); 314 315 printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr)); 316 317 /* Read NIC identification */ 318 wi_read_nicid(sc); 319 320 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ); 321 ifp->if_softc = sc; 322 ifp->if_start = wi_start; 323 ifp->if_ioctl = wi_ioctl; 324 ifp->if_watchdog = wi_watchdog; 325 ifp->if_init = wi_init; 326 ifp->if_stop = wi_stop; 327 ifp->if_flags = 328 IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST | IFF_NOTRAILERS; 329 IFQ_SET_READY(&ifp->if_snd); 330 331 ic->ic_phytype = IEEE80211_T_DS; 332 ic->ic_opmode = IEEE80211_M_STA; 333 ic->ic_caps = IEEE80211_C_AHDEMO; 334 ic->ic_state = IEEE80211_S_INIT; 335 ic->ic_max_aid = WI_MAX_AID; 336 337 /* Find available channel */ 338 buflen = sizeof(chanavail); 339 if (wi_read_rid(sc, WI_RID_CHANNEL_LIST, &chanavail, &buflen) != 0 && 340 buflen == sizeof(chanavail)) { 341 aprint_normal("%s: using default channel list\n", sc->sc_dev.dv_xname); 342 chanavail = htole16(0x1fff); /* assume 1-13 */ 343 } 344 for (chan = 16; chan > 0; chan--) { 345 if (!isset((u_int8_t*)&chanavail, chan - 1)) 346 continue; 347 ic->ic_ibss_chan = &ic->ic_channels[chan]; 348 ic->ic_channels[chan].ic_freq = 349 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ); 350 ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_B; 351 } 352 353 /* Find default IBSS channel */ 354 buflen = sizeof(val); 355 if (wi_read_rid(sc, WI_RID_OWN_CHNL, &val, &buflen) == 0 && 356 buflen == sizeof(val)) { 357 chan = le16toh(val); 358 if (isset((u_int8_t*)&chanavail, chan - 1)) 359 ic->ic_ibss_chan = &ic->ic_channels[chan]; 360 } 361 if (ic->ic_ibss_chan == NULL) { 362 aprint_error("%s: no available channel\n", sc->sc_dev.dv_xname); 363 return 1; 364 } 365 366 if (sc->sc_firmware_type == WI_LUCENT) { 367 sc->sc_dbm_offset = WI_LUCENT_DBM_OFFSET; 368 } else { 369 buflen = sizeof(val); 370 if ((sc->sc_flags & WI_FLAGS_HAS_DBMADJUST) && 371 wi_read_rid(sc, WI_RID_DBM_ADJUST, &val, &buflen) == 0 && 372 buflen == sizeof(val)) 373 sc->sc_dbm_offset = le16toh(val); 374 else 375 sc->sc_dbm_offset = WI_PRISM_DBM_OFFSET; 376 } 377 378 sc->sc_flags |= WI_FLAGS_RSSADAPTSTA; 379 380 /* 381 * Set flags based on firmware version. 382 */ 383 switch (sc->sc_firmware_type) { 384 case WI_LUCENT: 385 sc->sc_flags |= WI_FLAGS_HAS_SYSSCALE; 386 #ifdef WI_HERMES_AUTOINC_WAR 387 /* XXX: not confirmed, but never seen for recent firmware */ 388 if (sc->sc_sta_firmware_ver < 40000) { 389 sc->sc_flags |= WI_FLAGS_BUG_AUTOINC; 390 } 391 #endif 392 if (sc->sc_sta_firmware_ver >= 60000) 393 sc->sc_flags |= WI_FLAGS_HAS_MOR; 394 if (sc->sc_sta_firmware_ver >= 60006) { 395 ic->ic_caps |= IEEE80211_C_IBSS; 396 ic->ic_caps |= IEEE80211_C_MONITOR; 397 } 398 ic->ic_caps |= IEEE80211_C_PMGT; 399 sc->sc_ibss_port = 1; 400 break; 401 402 case WI_INTERSIL: 403 sc->sc_flags |= WI_FLAGS_HAS_FRAGTHR; 404 sc->sc_flags |= WI_FLAGS_HAS_ROAMING; 405 sc->sc_flags |= WI_FLAGS_HAS_SYSSCALE; 406 if (sc->sc_sta_firmware_ver > 10101) 407 sc->sc_flags |= WI_FLAGS_HAS_DBMADJUST; 408 if (sc->sc_sta_firmware_ver >= 800) { 409 if (sc->sc_sta_firmware_ver != 10402) 410 ic->ic_caps |= IEEE80211_C_HOSTAP; 411 ic->ic_caps |= IEEE80211_C_IBSS; 412 ic->ic_caps |= IEEE80211_C_MONITOR; 413 } 414 ic->ic_caps |= IEEE80211_C_PMGT; 415 sc->sc_ibss_port = 0; 416 sc->sc_alt_retry = 2; 417 break; 418 419 case WI_SYMBOL: 420 sc->sc_flags |= WI_FLAGS_HAS_DIVERSITY; 421 if (sc->sc_sta_firmware_ver >= 20000) 422 ic->ic_caps |= IEEE80211_C_IBSS; 423 sc->sc_ibss_port = 4; 424 break; 425 } 426 427 /* 428 * Find out if we support WEP on this card. 429 */ 430 buflen = sizeof(val); 431 if (wi_read_rid(sc, WI_RID_WEP_AVAIL, &val, &buflen) == 0 && 432 buflen == sizeof(val) && val != htole16(0)) 433 ic->ic_caps |= IEEE80211_C_WEP; 434 435 /* Find supported rates. */ 436 buflen = sizeof(ratebuf); 437 if (wi_read_rid(sc, WI_RID_DATA_RATES, &ratebuf, &buflen) == 0 && 438 buflen > 2) { 439 nrate = le16toh(ratebuf.nrates); 440 if (nrate > IEEE80211_RATE_SIZE) 441 nrate = IEEE80211_RATE_SIZE; 442 memcpy(ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates, 443 &ratebuf.rates[0], nrate); 444 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate; 445 } else { 446 aprint_error("%s: no supported rate list\n", sc->sc_dev.dv_xname); 447 return 1; 448 } 449 450 sc->sc_max_datalen = 2304; 451 sc->sc_rts_thresh = 2347; 452 sc->sc_frag_thresh = 2346; 453 sc->sc_system_scale = 1; 454 sc->sc_cnfauthmode = IEEE80211_AUTH_OPEN; 455 sc->sc_roaming_mode = 1; 456 457 callout_init(&sc->sc_rssadapt_ch); 458 459 /* 460 * Call MI attach routines. 461 */ 462 if_attach(ifp); 463 ieee80211_ifattach(ifp); 464 465 sc->sc_newstate = ic->ic_newstate; 466 ic->ic_newstate = wi_newstate; 467 ic->ic_node_alloc = wi_node_alloc; 468 ic->ic_node_free = wi_node_free; 469 ic->ic_node_copy = wi_node_copy; 470 ic->ic_set_tim = wi_set_tim; 471 472 ieee80211_media_init(ifp, wi_media_change, wi_media_status); 473 474 #if NBPFILTER > 0 475 bpfattach2(ifp, DLT_IEEE802_11_RADIO, 476 sizeof(struct ieee80211_frame) + 64, &sc->sc_drvbpf); 477 #endif 478 479 memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu)); 480 sc->sc_rxtap.wr_ihdr.it_len = sizeof(sc->sc_rxtapu); 481 sc->sc_rxtap.wr_ihdr.it_present = WI_RX_RADIOTAP_PRESENT; 482 483 memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu)); 484 sc->sc_txtap.wt_ihdr.it_len = sizeof(sc->sc_txtapu); 485 sc->sc_txtap.wt_ihdr.it_present = WI_TX_RADIOTAP_PRESENT; 486 487 /* Attach is successful. */ 488 sc->sc_attached = 1; 489 490 splx(s); 491 return 0; 492 } 493 494 int 495 wi_detach(struct wi_softc *sc) 496 { 497 struct ifnet *ifp = &sc->sc_ic.ic_if; 498 int s; 499 500 if (!sc->sc_attached) 501 return 0; 502 503 s = splnet(); 504 505 sc->sc_invalid = 1; 506 wi_stop(ifp, 1); 507 508 /* Delete all remaining media. */ 509 ifmedia_delete_instance(&sc->sc_ic.ic_media, IFM_INST_ANY); 510 511 ieee80211_ifdetach(ifp); 512 if_detach(ifp); 513 splx(s); 514 return 0; 515 } 516 517 #ifdef __NetBSD__ 518 int 519 wi_activate(struct device *self, enum devact act) 520 { 521 struct wi_softc *sc = (struct wi_softc *)self; 522 int rv = 0, s; 523 524 s = splnet(); 525 switch (act) { 526 case DVACT_ACTIVATE: 527 rv = EOPNOTSUPP; 528 break; 529 530 case DVACT_DEACTIVATE: 531 if_deactivate(&sc->sc_ic.ic_if); 532 break; 533 } 534 splx(s); 535 return rv; 536 } 537 538 void 539 wi_power(struct wi_softc *sc, int why) 540 { 541 struct ifnet *ifp = &sc->sc_ic.ic_if; 542 int s; 543 544 s = splnet(); 545 switch (why) { 546 case PWR_SUSPEND: 547 case PWR_STANDBY: 548 wi_stop(ifp, 1); 549 break; 550 case PWR_RESUME: 551 if (ifp->if_flags & IFF_UP) { 552 wi_init(ifp); 553 (void)wi_intr(sc); 554 } 555 break; 556 case PWR_SOFTSUSPEND: 557 case PWR_SOFTSTANDBY: 558 case PWR_SOFTRESUME: 559 break; 560 } 561 splx(s); 562 } 563 #endif /* __NetBSD__ */ 564 565 void 566 wi_shutdown(struct wi_softc *sc) 567 { 568 struct ifnet *ifp = &sc->sc_ic.ic_if; 569 570 if (sc->sc_attached) 571 wi_stop(ifp, 1); 572 } 573 574 int 575 wi_intr(void *arg) 576 { 577 int i; 578 struct wi_softc *sc = arg; 579 struct ifnet *ifp = &sc->sc_ic.ic_if; 580 u_int16_t status; 581 582 if (sc->sc_enabled == 0 || 583 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0 || 584 (ifp->if_flags & IFF_RUNNING) == 0) 585 return 0; 586 587 if ((ifp->if_flags & IFF_UP) == 0) { 588 CSR_WRITE_2(sc, WI_INT_EN, 0); 589 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0); 590 return 1; 591 } 592 593 /* This is superfluous on Prism, but Lucent breaks if we 594 * do not disable interrupts. 595 */ 596 CSR_WRITE_2(sc, WI_INT_EN, 0); 597 598 /* maximum 10 loops per interrupt */ 599 for (i = 0; i < 10; i++) { 600 /* 601 * Only believe a status bit when we enter wi_intr, or when 602 * the bit was "off" the last time through the loop. This is 603 * my strategy to avoid racing the hardware/firmware if I 604 * can re-read the event status register more quickly than 605 * it is updated. 606 */ 607 status = CSR_READ_2(sc, WI_EVENT_STAT); 608 if ((status & WI_INTRS) == 0) 609 break; 610 611 if (status & WI_EV_RX) 612 wi_rx_intr(sc); 613 614 if (status & WI_EV_ALLOC) 615 wi_txalloc_intr(sc); 616 617 if (status & WI_EV_TX) 618 wi_tx_intr(sc); 619 620 if (status & WI_EV_TX_EXC) 621 wi_tx_ex_intr(sc); 622 623 if (status & WI_EV_INFO) 624 wi_info_intr(sc); 625 626 CSR_WRITE_2(sc, WI_EVENT_ACK, status); 627 628 if (status & WI_EV_CMD) 629 wi_cmd_intr(sc); 630 631 if ((ifp->if_flags & IFF_OACTIVE) == 0 && 632 (sc->sc_flags & WI_FLAGS_OUTRANGE) == 0 && 633 !IFQ_IS_EMPTY(&ifp->if_snd)) 634 wi_start(ifp); 635 } 636 637 /* re-enable interrupts */ 638 CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS); 639 640 return 1; 641 } 642 643 #define arraylen(a) (sizeof(a) / sizeof((a)[0])) 644 645 STATIC void 646 wi_rssdescs_init(struct wi_rssdesc (*rssd)[WI_NTXRSS], wi_rssdescq_t *rssdfree) 647 { 648 int i; 649 SLIST_INIT(rssdfree); 650 for (i = 0; i < arraylen(*rssd); i++) { 651 SLIST_INSERT_HEAD(rssdfree, &(*rssd)[i], rd_next); 652 } 653 } 654 655 STATIC void 656 wi_rssdescs_reset(struct ieee80211com *ic, struct wi_rssdesc (*rssd)[WI_NTXRSS], 657 wi_rssdescq_t *rssdfree, u_int8_t (*txpending)[IEEE80211_RATE_MAXSIZE]) 658 { 659 struct ieee80211_node *ni; 660 int i; 661 for (i = 0; i < arraylen(*rssd); i++) { 662 ni = (*rssd)[i].rd_desc.id_node; 663 (*rssd)[i].rd_desc.id_node = NULL; 664 if (ni != NULL && (ic->ic_if.if_flags & IFF_DEBUG) != 0) 665 printf("%s: cleaning outstanding rssadapt " 666 "descriptor for %s\n", 667 ic->ic_if.if_xname, ether_sprintf(ni->ni_macaddr)); 668 if (ni != NULL) 669 ieee80211_release_node(ic, ni); 670 } 671 memset(*txpending, 0, sizeof(*txpending)); 672 wi_rssdescs_init(rssd, rssdfree); 673 } 674 675 STATIC int 676 wi_init(struct ifnet *ifp) 677 { 678 struct wi_softc *sc = ifp->if_softc; 679 struct ieee80211com *ic = &sc->sc_ic; 680 struct wi_joinreq join; 681 int i; 682 int error = 0, wasenabled; 683 684 DPRINTF(("wi_init: enabled %d\n", sc->sc_enabled)); 685 wasenabled = sc->sc_enabled; 686 if (!sc->sc_enabled) { 687 if ((error = (*sc->sc_enable)(sc)) != 0) 688 goto out; 689 sc->sc_enabled = 1; 690 } else 691 wi_stop(ifp, 0); 692 693 /* Symbol firmware cannot be initialized more than once */ 694 if (sc->sc_firmware_type != WI_SYMBOL || !wasenabled) 695 if ((error = wi_reset(sc)) != 0) 696 goto out; 697 698 /* common 802.11 configuration */ 699 ic->ic_flags &= ~IEEE80211_F_IBSSON; 700 sc->sc_flags &= ~WI_FLAGS_OUTRANGE; 701 switch (ic->ic_opmode) { 702 case IEEE80211_M_STA: 703 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_BSS); 704 break; 705 case IEEE80211_M_IBSS: 706 wi_write_val(sc, WI_RID_PORTTYPE, sc->sc_ibss_port); 707 ic->ic_flags |= IEEE80211_F_IBSSON; 708 break; 709 case IEEE80211_M_AHDEMO: 710 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_ADHOC); 711 break; 712 case IEEE80211_M_HOSTAP: 713 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_HOSTAP); 714 break; 715 case IEEE80211_M_MONITOR: 716 if (sc->sc_firmware_type == WI_LUCENT) 717 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_ADHOC); 718 wi_cmd(sc, WI_CMD_TEST | (WI_TEST_MONITOR << 8), 0, 0, 0); 719 break; 720 } 721 722 /* Intersil interprets this RID as joining ESS even in IBSS mode */ 723 if (sc->sc_firmware_type == WI_LUCENT && 724 (ic->ic_flags & IEEE80211_F_IBSSON) && ic->ic_des_esslen > 0) 725 wi_write_val(sc, WI_RID_CREATE_IBSS, 1); 726 else 727 wi_write_val(sc, WI_RID_CREATE_IBSS, 0); 728 wi_write_val(sc, WI_RID_MAX_SLEEP, ic->ic_lintval); 729 wi_write_ssid(sc, WI_RID_DESIRED_SSID, ic->ic_des_essid, 730 ic->ic_des_esslen); 731 wi_write_val(sc, WI_RID_OWN_CHNL, 732 ieee80211_chan2ieee(ic, ic->ic_ibss_chan)); 733 wi_write_ssid(sc, WI_RID_OWN_SSID, ic->ic_des_essid, ic->ic_des_esslen); 734 IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl)); 735 wi_write_rid(sc, WI_RID_MAC_NODE, ic->ic_myaddr, IEEE80211_ADDR_LEN); 736 if (ic->ic_caps & IEEE80211_C_PMGT) 737 wi_write_val(sc, WI_RID_PM_ENABLED, 738 (ic->ic_flags & IEEE80211_F_PMGTON) ? 1 : 0); 739 740 /* not yet common 802.11 configuration */ 741 wi_write_val(sc, WI_RID_MAX_DATALEN, sc->sc_max_datalen); 742 wi_write_val(sc, WI_RID_RTS_THRESH, sc->sc_rts_thresh); 743 if (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR) 744 wi_write_val(sc, WI_RID_FRAG_THRESH, sc->sc_frag_thresh); 745 746 /* driver specific 802.11 configuration */ 747 if (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE) 748 wi_write_val(sc, WI_RID_SYSTEM_SCALE, sc->sc_system_scale); 749 if (sc->sc_flags & WI_FLAGS_HAS_ROAMING) 750 wi_write_val(sc, WI_RID_ROAMING_MODE, sc->sc_roaming_mode); 751 if (sc->sc_flags & WI_FLAGS_HAS_MOR) 752 wi_write_val(sc, WI_RID_MICROWAVE_OVEN, sc->sc_microwave_oven); 753 wi_cfg_txrate(sc); 754 wi_write_ssid(sc, WI_RID_NODENAME, sc->sc_nodename, sc->sc_nodelen); 755 756 if (ic->ic_opmode == IEEE80211_M_HOSTAP && 757 sc->sc_firmware_type == WI_INTERSIL) { 758 wi_write_val(sc, WI_RID_OWN_BEACON_INT, ic->ic_lintval); 759 wi_write_val(sc, WI_RID_DTIM_PERIOD, 1); 760 } 761 762 if (sc->sc_firmware_type == WI_INTERSIL) { 763 struct ieee80211_rateset *rs = 764 &ic->ic_sup_rates[IEEE80211_MODE_11B]; 765 u_int16_t basic = 0, supported = 0, rate; 766 767 for (i = 0; i < rs->rs_nrates; i++) { 768 switch (rs->rs_rates[i] & IEEE80211_RATE_VAL) { 769 case 2: 770 rate = 1; 771 break; 772 case 4: 773 rate = 2; 774 break; 775 case 11: 776 rate = 4; 777 break; 778 case 22: 779 rate = 8; 780 break; 781 default: 782 rate = 0; 783 break; 784 } 785 if (rs->rs_rates[i] & IEEE80211_RATE_BASIC) 786 basic |= rate; 787 supported |= rate; 788 } 789 wi_write_val(sc, WI_RID_BASIC_RATE, basic); 790 wi_write_val(sc, WI_RID_SUPPORT_RATE, supported); 791 wi_write_val(sc, WI_RID_ALT_RETRY_COUNT, sc->sc_alt_retry); 792 } 793 794 /* 795 * Initialize promisc mode. 796 * Being in Host-AP mode causes a great 797 * deal of pain if promiscuous mode is set. 798 * Therefore we avoid confusing the firmware 799 * and always reset promisc mode in Host-AP 800 * mode. Host-AP sees all the packets anyway. 801 */ 802 if (ic->ic_opmode != IEEE80211_M_HOSTAP && 803 (ifp->if_flags & IFF_PROMISC) != 0) { 804 wi_write_val(sc, WI_RID_PROMISC, 1); 805 } else { 806 wi_write_val(sc, WI_RID_PROMISC, 0); 807 } 808 809 /* Configure WEP. */ 810 if (ic->ic_caps & IEEE80211_C_WEP) 811 wi_write_wep(sc); 812 813 /* Set multicast filter. */ 814 wi_write_multi(sc); 815 816 sc->sc_txalloc = 0; 817 sc->sc_txalloced = 0; 818 sc->sc_txqueue = 0; 819 sc->sc_txqueued = 0; 820 sc->sc_txstart = 0; 821 sc->sc_txstarted = 0; 822 823 if (sc->sc_firmware_type != WI_SYMBOL || !wasenabled) { 824 sc->sc_buflen = IEEE80211_MAX_LEN + sizeof(struct wi_frame); 825 if (sc->sc_firmware_type == WI_SYMBOL) 826 sc->sc_buflen = 1585; /* XXX */ 827 for (i = 0; i < WI_NTXBUF; i++) { 828 error = wi_alloc_fid(sc, sc->sc_buflen, 829 &sc->sc_txd[i].d_fid); 830 if (error) { 831 printf("%s: tx buffer allocation failed\n", 832 sc->sc_dev.dv_xname); 833 goto out; 834 } 835 DPRINTF2(("wi_init: txbuf %d allocated %x\n", i, 836 sc->sc_txd[i].d_fid)); 837 ++sc->sc_txalloced; 838 } 839 } 840 841 wi_rssdescs_init(&sc->sc_rssd, &sc->sc_rssdfree); 842 843 /* Enable desired port */ 844 wi_cmd(sc, WI_CMD_ENABLE | sc->sc_portnum, 0, 0, 0); 845 ifp->if_flags |= IFF_RUNNING; 846 ifp->if_flags &= ~IFF_OACTIVE; 847 ic->ic_state = IEEE80211_S_INIT; 848 849 if (ic->ic_opmode == IEEE80211_M_AHDEMO || 850 ic->ic_opmode == IEEE80211_M_MONITOR || 851 ic->ic_opmode == IEEE80211_M_HOSTAP) 852 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 853 854 /* Enable interrupts */ 855 CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS); 856 857 if (!wasenabled && 858 ic->ic_opmode == IEEE80211_M_HOSTAP && 859 sc->sc_firmware_type == WI_INTERSIL) { 860 /* XXX: some card need to be re-enabled for hostap */ 861 wi_cmd(sc, WI_CMD_DISABLE | WI_PORT0, 0, 0, 0); 862 wi_cmd(sc, WI_CMD_ENABLE | WI_PORT0, 0, 0, 0); 863 } 864 865 if (ic->ic_opmode == IEEE80211_M_STA && 866 ((ic->ic_flags & IEEE80211_F_DESBSSID) || 867 ic->ic_des_chan != IEEE80211_CHAN_ANYC)) { 868 memset(&join, 0, sizeof(join)); 869 if (ic->ic_flags & IEEE80211_F_DESBSSID) 870 IEEE80211_ADDR_COPY(&join.wi_bssid, ic->ic_des_bssid); 871 if (ic->ic_des_chan != IEEE80211_CHAN_ANYC) 872 join.wi_chan = 873 htole16(ieee80211_chan2ieee(ic, ic->ic_des_chan)); 874 /* Lucent firmware does not support the JOIN RID. */ 875 if (sc->sc_firmware_type != WI_LUCENT) 876 wi_write_rid(sc, WI_RID_JOIN_REQ, &join, sizeof(join)); 877 } 878 879 out: 880 if (error) { 881 printf("%s: interface not running\n", sc->sc_dev.dv_xname); 882 wi_stop(ifp, 0); 883 } 884 DPRINTF(("wi_init: return %d\n", error)); 885 return error; 886 } 887 888 STATIC void 889 wi_stop(struct ifnet *ifp, int disable) 890 { 891 struct wi_softc *sc = ifp->if_softc; 892 struct ieee80211com *ic = &sc->sc_ic; 893 int s; 894 895 if (!sc->sc_enabled) 896 return; 897 898 s = splnet(); 899 900 DPRINTF(("wi_stop: disable %d\n", disable)); 901 902 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 903 if (!sc->sc_invalid) { 904 CSR_WRITE_2(sc, WI_INT_EN, 0); 905 wi_cmd(sc, WI_CMD_DISABLE | sc->sc_portnum, 0, 0, 0); 906 } 907 908 wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree, 909 &sc->sc_txpending); 910 911 sc->sc_tx_timer = 0; 912 sc->sc_scan_timer = 0; 913 sc->sc_false_syns = 0; 914 sc->sc_naps = 0; 915 ifp->if_flags &= ~(IFF_OACTIVE | IFF_RUNNING); 916 ifp->if_timer = 0; 917 918 if (disable) { 919 if (sc->sc_disable) 920 (*sc->sc_disable)(sc); 921 sc->sc_enabled = 0; 922 } 923 splx(s); 924 } 925 926 /* 927 * Choose a data rate for a packet len bytes long that suits the packet 928 * type and the wireless conditions. 929 * 930 * TBD Adapt fragmentation threshold. 931 */ 932 STATIC int 933 wi_choose_rate(struct ieee80211com *ic, struct ieee80211_node *ni, 934 struct ieee80211_frame *wh, u_int len) 935 { 936 struct wi_softc *sc = ic->ic_if.if_softc; 937 struct wi_node *wn = (void*)ni; 938 struct ieee80211_rssadapt *ra = &wn->wn_rssadapt; 939 int do_not_adapt, i, rateidx, s; 940 941 do_not_adapt = (ic->ic_opmode != IEEE80211_M_HOSTAP) && 942 (sc->sc_flags & WI_FLAGS_RSSADAPTSTA) == 0; 943 944 s = splnet(); 945 946 rateidx = ieee80211_rssadapt_choose(ra, &ni->ni_rates, wh, len, 947 ic->ic_fixed_rate, 948 ((ic->ic_if.if_flags & IFF_DEBUG) == 0) ? NULL : ic->ic_if.if_xname, 949 do_not_adapt); 950 951 ni->ni_txrate = rateidx; 952 953 if (ic->ic_opmode != IEEE80211_M_HOSTAP) { 954 /* choose the slowest pending rate so that we don't 955 * accidentally send a packet on the MAC's queue 956 * too fast. TBD find out if the MAC labels Tx 957 * packets w/ rate when enqueued or dequeued. 958 */ 959 for (i = 0; i < rateidx && sc->sc_txpending[i] == 0; i++); 960 rateidx = i; 961 } 962 963 splx(s); 964 return (rateidx); 965 } 966 967 STATIC void 968 wi_raise_rate(struct ieee80211com *ic, struct ieee80211_rssdesc *id) 969 { 970 struct wi_node *wn; 971 if (id->id_node == NULL) 972 return; 973 974 wn = (void*)id->id_node; 975 ieee80211_rssadapt_raise_rate(ic, &wn->wn_rssadapt, id); 976 } 977 978 STATIC void 979 wi_lower_rate(struct ieee80211com *ic, struct ieee80211_rssdesc *id) 980 { 981 struct ieee80211_node *ni; 982 struct wi_node *wn; 983 int s; 984 985 s = splnet(); 986 987 if ((ni = id->id_node) == NULL) { 988 DPRINTF(("wi_lower_rate: missing node\n")); 989 goto out; 990 } 991 992 wn = (void *)ni; 993 994 ieee80211_rssadapt_lower_rate(ic, ni, &wn->wn_rssadapt, id); 995 out: 996 splx(s); 997 return; 998 } 999 1000 STATIC void 1001 wi_start(struct ifnet *ifp) 1002 { 1003 struct wi_softc *sc = ifp->if_softc; 1004 struct ieee80211com *ic = &sc->sc_ic; 1005 struct ieee80211_node *ni; 1006 struct ieee80211_frame *wh; 1007 struct ieee80211_rateset *rs; 1008 struct wi_rssdesc *rd; 1009 struct ieee80211_rssdesc *id; 1010 struct mbuf *m0; 1011 struct wi_frame frmhdr; 1012 int cur, fid, off, rateidx; 1013 1014 if (!sc->sc_enabled || sc->sc_invalid) 1015 return; 1016 if (sc->sc_flags & WI_FLAGS_OUTRANGE) 1017 return; 1018 1019 memset(&frmhdr, 0, sizeof(frmhdr)); 1020 cur = sc->sc_txqueue; 1021 for (;;) { 1022 ni = ic->ic_bss; 1023 if (sc->sc_txalloced == 0 || SLIST_EMPTY(&sc->sc_rssdfree)) { 1024 ifp->if_flags |= IFF_OACTIVE; 1025 break; 1026 } 1027 if (!IF_IS_EMPTY(&ic->ic_mgtq)) { 1028 IF_DEQUEUE(&ic->ic_mgtq, m0); 1029 m_copydata(m0, 4, ETHER_ADDR_LEN * 2, 1030 (caddr_t)&frmhdr.wi_ehdr); 1031 frmhdr.wi_ehdr.ether_type = 0; 1032 wh = mtod(m0, struct ieee80211_frame *); 1033 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif; 1034 m0->m_pkthdr.rcvif = NULL; 1035 } else if (ic->ic_state != IEEE80211_S_RUN) 1036 break; 1037 else if (!IF_IS_EMPTY(&ic->ic_pwrsaveq)) { 1038 struct llc *llc; 1039 1040 /* 1041 * Should these packets be processed after the 1042 * regular packets or before? Since they are being 1043 * probed for, they are probably less time critical 1044 * than other packets, but, on the other hand, 1045 * we want the power saving nodes to go back to 1046 * sleep as quickly as possible to save power... 1047 */ 1048 1049 IF_DEQUEUE(&ic->ic_pwrsaveq, m0); 1050 wh = mtod(m0, struct ieee80211_frame *); 1051 llc = (struct llc *) (wh + 1); 1052 m_copydata(m0, 4, ETHER_ADDR_LEN * 2, 1053 (caddr_t)&frmhdr.wi_ehdr); 1054 frmhdr.wi_ehdr.ether_type = llc->llc_snap.ether_type; 1055 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif; 1056 m0->m_pkthdr.rcvif = NULL; 1057 } else { 1058 IFQ_POLL(&ifp->if_snd, m0); 1059 if (m0 == NULL) { 1060 break; 1061 } 1062 IFQ_DEQUEUE(&ifp->if_snd, m0); 1063 ifp->if_opackets++; 1064 m_copydata(m0, 0, ETHER_HDR_LEN, 1065 (caddr_t)&frmhdr.wi_ehdr); 1066 #if NBPFILTER > 0 1067 if (ifp->if_bpf) 1068 bpf_mtap(ifp->if_bpf, m0); 1069 #endif 1070 1071 if ((m0 = ieee80211_encap(ifp, m0, &ni)) == NULL) { 1072 ifp->if_oerrors++; 1073 continue; 1074 } 1075 wh = mtod(m0, struct ieee80211_frame *); 1076 if (ic->ic_opmode == IEEE80211_M_HOSTAP && 1077 !IEEE80211_IS_MULTICAST(wh->i_addr1) && 1078 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == 1079 IEEE80211_FC0_TYPE_DATA) { 1080 if (ni->ni_associd == 0) { 1081 m_freem(m0); 1082 ifp->if_oerrors++; 1083 goto next; 1084 } 1085 if (ni->ni_pwrsave & IEEE80211_PS_SLEEP) { 1086 ieee80211_pwrsave(ic, ni, m0); 1087 continue; /* don't free node. */ 1088 } 1089 } 1090 } 1091 #if NBPFILTER > 0 1092 if (ic->ic_rawbpf) 1093 bpf_mtap(ic->ic_rawbpf, m0); 1094 #endif 1095 frmhdr.wi_tx_ctl = 1096 htole16(WI_ENC_TX_802_11|WI_TXCNTL_TX_EX|WI_TXCNTL_TX_OK); 1097 if (ic->ic_opmode == IEEE80211_M_HOSTAP) 1098 frmhdr.wi_tx_ctl |= htole16(WI_TXCNTL_ALTRTRY); 1099 if (ic->ic_opmode == IEEE80211_M_HOSTAP && 1100 (wh->i_fc[1] & IEEE80211_FC1_WEP)) { 1101 if ((m0 = ieee80211_wep_crypt(ifp, m0, 1)) == NULL) { 1102 ifp->if_oerrors++; 1103 goto next; 1104 } 1105 frmhdr.wi_tx_ctl |= htole16(WI_TXCNTL_NOCRYPT); 1106 } 1107 1108 rateidx = wi_choose_rate(ic, ni, wh, m0->m_pkthdr.len); 1109 rs = &ni->ni_rates; 1110 1111 #if NBPFILTER > 0 1112 if (sc->sc_drvbpf) { 1113 struct wi_tx_radiotap_header *tap = &sc->sc_txtap; 1114 1115 tap->wt_rate = rs->rs_rates[rateidx]; 1116 tap->wt_chan_freq = 1117 htole16(ic->ic_bss->ni_chan->ic_freq); 1118 tap->wt_chan_flags = 1119 htole16(ic->ic_bss->ni_chan->ic_flags); 1120 /* TBD tap->wt_flags */ 1121 1122 bpf_mtap2(sc->sc_drvbpf, tap, tap->wt_ihdr.it_len, m0); 1123 } 1124 #endif 1125 1126 rd = SLIST_FIRST(&sc->sc_rssdfree); 1127 id = &rd->rd_desc; 1128 id->id_len = m0->m_pkthdr.len; 1129 id->id_rateidx = ni->ni_txrate; 1130 id->id_rssi = ni->ni_rssi; 1131 1132 frmhdr.wi_tx_idx = rd - sc->sc_rssd; 1133 1134 if (ic->ic_opmode == IEEE80211_M_HOSTAP) 1135 frmhdr.wi_tx_rate = 5 * (rs->rs_rates[rateidx] & 1136 IEEE80211_RATE_VAL); 1137 else if (sc->sc_flags & WI_FLAGS_RSSADAPTSTA) 1138 (void)wi_write_txrate(sc, rs->rs_rates[rateidx]); 1139 1140 m_copydata(m0, 0, sizeof(struct ieee80211_frame), 1141 (caddr_t)&frmhdr.wi_whdr); 1142 m_adj(m0, sizeof(struct ieee80211_frame)); 1143 frmhdr.wi_dat_len = htole16(m0->m_pkthdr.len); 1144 if (IFF_DUMPPKTS(ifp)) 1145 wi_dump_pkt(&frmhdr, ni, -1); 1146 fid = sc->sc_txd[cur].d_fid; 1147 off = sizeof(frmhdr); 1148 if (wi_write_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr)) != 0 || 1149 wi_mwrite_bap(sc, fid, off, m0, m0->m_pkthdr.len) != 0) { 1150 printf("%s: %s write fid %x failed\n", 1151 sc->sc_dev.dv_xname, __func__, fid); 1152 ifp->if_oerrors++; 1153 m_freem(m0); 1154 goto next; 1155 } 1156 m_freem(m0); 1157 sc->sc_txpending[ni->ni_txrate]++; 1158 --sc->sc_txalloced; 1159 if (sc->sc_txqueued++ == 0) { 1160 #ifdef DIAGNOSTIC 1161 if (cur != sc->sc_txstart) 1162 printf("%s: ring is desynchronized\n", 1163 sc->sc_dev.dv_xname); 1164 #endif 1165 wi_push_packet(sc); 1166 } else { 1167 #ifdef WI_RING_DEBUG 1168 printf("%s: queue %04x, alloc %d queue %d start %d alloced %d queued %d started %d\n", 1169 sc->sc_dev.dv_xname, fid, 1170 sc->sc_txalloc, sc->sc_txqueue, sc->sc_txstart, 1171 sc->sc_txalloced, sc->sc_txqueued, sc->sc_txstarted); 1172 #endif 1173 } 1174 sc->sc_txqueue = cur = (cur + 1) % WI_NTXBUF; 1175 SLIST_REMOVE_HEAD(&sc->sc_rssdfree, rd_next); 1176 id->id_node = ni; 1177 continue; 1178 next: 1179 if (ni != NULL) 1180 ieee80211_release_node(ic, ni); 1181 } 1182 } 1183 1184 1185 STATIC int 1186 wi_reset(struct wi_softc *sc) 1187 { 1188 int i, error; 1189 1190 DPRINTF(("wi_reset\n")); 1191 1192 if (sc->sc_reset) 1193 (*sc->sc_reset)(sc); 1194 1195 error = 0; 1196 for (i = 0; i < 5; i++) { 1197 DELAY(20*1000); /* XXX: way too long! */ 1198 if ((error = wi_cmd(sc, WI_CMD_INI, 0, 0, 0)) == 0) 1199 break; 1200 } 1201 if (error) { 1202 printf("%s: init failed\n", sc->sc_dev.dv_xname); 1203 return error; 1204 } 1205 CSR_WRITE_2(sc, WI_INT_EN, 0); 1206 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0); 1207 1208 /* Calibrate timer. */ 1209 wi_write_val(sc, WI_RID_TICK_TIME, 0); 1210 return 0; 1211 } 1212 1213 STATIC void 1214 wi_watchdog(struct ifnet *ifp) 1215 { 1216 struct wi_softc *sc = ifp->if_softc; 1217 1218 ifp->if_timer = 0; 1219 if (!sc->sc_enabled) 1220 return; 1221 1222 if (sc->sc_tx_timer) { 1223 if (--sc->sc_tx_timer == 0) { 1224 printf("%s: device timeout\n", ifp->if_xname); 1225 ifp->if_oerrors++; 1226 wi_init(ifp); 1227 return; 1228 } 1229 ifp->if_timer = 1; 1230 } 1231 1232 if (sc->sc_scan_timer) { 1233 if (--sc->sc_scan_timer <= WI_SCAN_WAIT - WI_SCAN_INQWAIT && 1234 sc->sc_firmware_type == WI_INTERSIL) { 1235 DPRINTF(("wi_watchdog: inquire scan\n")); 1236 wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS, 0, 0); 1237 } 1238 if (sc->sc_scan_timer) 1239 ifp->if_timer = 1; 1240 } 1241 1242 /* TODO: rate control */ 1243 ieee80211_watchdog(ifp); 1244 } 1245 1246 STATIC int 1247 wi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 1248 { 1249 struct wi_softc *sc = ifp->if_softc; 1250 struct ieee80211com *ic = &sc->sc_ic; 1251 struct ifreq *ifr = (struct ifreq *)data; 1252 int s, error = 0; 1253 1254 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0) 1255 return ENXIO; 1256 1257 s = splnet(); 1258 1259 switch (cmd) { 1260 case SIOCSIFFLAGS: 1261 /* 1262 * Can't do promisc and hostap at the same time. If all that's 1263 * changing is the promisc flag, try to short-circuit a call to 1264 * wi_init() by just setting PROMISC in the hardware. 1265 */ 1266 if (ifp->if_flags & IFF_UP) { 1267 if (sc->sc_enabled) { 1268 if (ic->ic_opmode != IEEE80211_M_HOSTAP && 1269 (ifp->if_flags & IFF_PROMISC) != 0) 1270 wi_write_val(sc, WI_RID_PROMISC, 1); 1271 else 1272 wi_write_val(sc, WI_RID_PROMISC, 0); 1273 } else 1274 error = wi_init(ifp); 1275 } else if (sc->sc_enabled) 1276 wi_stop(ifp, 1); 1277 break; 1278 case SIOCSIFMEDIA: 1279 case SIOCGIFMEDIA: 1280 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 1281 break; 1282 case SIOCADDMULTI: 1283 case SIOCDELMULTI: 1284 error = (cmd == SIOCADDMULTI) ? 1285 ether_addmulti(ifr, &sc->sc_ic.ic_ec) : 1286 ether_delmulti(ifr, &sc->sc_ic.ic_ec); 1287 if (error == ENETRESET) { 1288 if (ifp->if_flags & IFF_RUNNING) { 1289 /* do not rescan */ 1290 error = wi_write_multi(sc); 1291 } else 1292 error = 0; 1293 } 1294 break; 1295 case SIOCGIFGENERIC: 1296 error = wi_get_cfg(ifp, cmd, data); 1297 break; 1298 case SIOCSIFGENERIC: 1299 error = suser(curproc->p_ucred, &curproc->p_acflag); 1300 if (error) 1301 break; 1302 error = wi_set_cfg(ifp, cmd, data); 1303 if (error == ENETRESET) { 1304 if (ifp->if_flags & IFF_RUNNING) 1305 error = wi_init(ifp); 1306 else 1307 error = 0; 1308 } 1309 break; 1310 case SIOCS80211BSSID: 1311 if (sc->sc_firmware_type == WI_LUCENT) { 1312 error = ENODEV; 1313 break; 1314 } 1315 /* fall through */ 1316 default: 1317 error = ieee80211_ioctl(ifp, cmd, data); 1318 if (error == ENETRESET) { 1319 if (sc->sc_enabled) 1320 error = wi_init(ifp); 1321 else 1322 error = 0; 1323 } 1324 break; 1325 } 1326 splx(s); 1327 return error; 1328 } 1329 1330 STATIC int 1331 wi_media_change(struct ifnet *ifp) 1332 { 1333 struct wi_softc *sc = ifp->if_softc; 1334 struct ieee80211com *ic = &sc->sc_ic; 1335 int error; 1336 1337 error = ieee80211_media_change(ifp); 1338 if (error == ENETRESET) { 1339 if (sc->sc_enabled) 1340 error = wi_init(ifp); 1341 else 1342 error = 0; 1343 } 1344 ifp->if_baudrate = ifmedia_baudrate(ic->ic_media.ifm_cur->ifm_media); 1345 1346 return error; 1347 } 1348 1349 STATIC void 1350 wi_media_status(struct ifnet *ifp, struct ifmediareq *imr) 1351 { 1352 struct wi_softc *sc = ifp->if_softc; 1353 struct ieee80211com *ic = &sc->sc_ic; 1354 u_int16_t val; 1355 int rate, len; 1356 1357 if (sc->sc_enabled == 0) { 1358 imr->ifm_active = IFM_IEEE80211 | IFM_NONE; 1359 imr->ifm_status = 0; 1360 return; 1361 } 1362 1363 imr->ifm_status = IFM_AVALID; 1364 imr->ifm_active = IFM_IEEE80211; 1365 if (ic->ic_state == IEEE80211_S_RUN && 1366 (sc->sc_flags & WI_FLAGS_OUTRANGE) == 0) 1367 imr->ifm_status |= IFM_ACTIVE; 1368 len = sizeof(val); 1369 if (wi_read_rid(sc, WI_RID_CUR_TX_RATE, &val, &len) == 0 && 1370 len == sizeof(val)) { 1371 /* convert to 802.11 rate */ 1372 val = le16toh(val); 1373 rate = val * 2; 1374 if (sc->sc_firmware_type == WI_LUCENT) { 1375 if (rate == 10) 1376 rate = 11; /* 5.5Mbps */ 1377 } else { 1378 if (rate == 4*2) 1379 rate = 11; /* 5.5Mbps */ 1380 else if (rate == 8*2) 1381 rate = 22; /* 11Mbps */ 1382 } 1383 } else 1384 rate = 0; 1385 imr->ifm_active |= ieee80211_rate2media(ic, rate, IEEE80211_MODE_11B); 1386 switch (ic->ic_opmode) { 1387 case IEEE80211_M_STA: 1388 break; 1389 case IEEE80211_M_IBSS: 1390 imr->ifm_active |= IFM_IEEE80211_ADHOC; 1391 break; 1392 case IEEE80211_M_AHDEMO: 1393 imr->ifm_active |= IFM_IEEE80211_ADHOC | IFM_FLAG0; 1394 break; 1395 case IEEE80211_M_HOSTAP: 1396 imr->ifm_active |= IFM_IEEE80211_HOSTAP; 1397 break; 1398 case IEEE80211_M_MONITOR: 1399 imr->ifm_active |= IFM_IEEE80211_MONITOR; 1400 break; 1401 } 1402 } 1403 1404 STATIC struct ieee80211_node * 1405 wi_node_alloc(struct ieee80211com *ic) 1406 { 1407 struct wi_node *wn = 1408 malloc(sizeof(struct wi_node), M_DEVBUF, M_NOWAIT | M_ZERO); 1409 return wn ? &wn->wn_node : NULL; 1410 } 1411 1412 STATIC void 1413 wi_node_free(struct ieee80211com *ic, struct ieee80211_node *ni) 1414 { 1415 struct wi_softc *sc = ic->ic_if.if_softc; 1416 int i; 1417 1418 for (i = 0; i < WI_NTXRSS; i++) { 1419 if (sc->sc_rssd[i].rd_desc.id_node == ni) 1420 sc->sc_rssd[i].rd_desc.id_node = NULL; 1421 } 1422 free(ni, M_DEVBUF); 1423 } 1424 1425 STATIC void 1426 wi_node_copy(struct ieee80211com *ic, struct ieee80211_node *dst, 1427 const struct ieee80211_node *src) 1428 { 1429 *(struct wi_node *)dst = *(const struct wi_node *)src; 1430 } 1431 1432 STATIC void 1433 wi_sync_bssid(struct wi_softc *sc, u_int8_t new_bssid[IEEE80211_ADDR_LEN]) 1434 { 1435 struct ieee80211com *ic = &sc->sc_ic; 1436 struct ieee80211_node *ni = ic->ic_bss; 1437 struct ifnet *ifp = &ic->ic_if; 1438 1439 if (IEEE80211_ADDR_EQ(new_bssid, ni->ni_bssid)) 1440 return; 1441 1442 DPRINTF(("wi_sync_bssid: bssid %s -> ", ether_sprintf(ni->ni_bssid))); 1443 DPRINTF(("%s ?\n", ether_sprintf(new_bssid))); 1444 1445 /* In promiscuous mode, the BSSID field is not a reliable 1446 * indicator of the firmware's BSSID. Damp spurious 1447 * change-of-BSSID indications. 1448 */ 1449 if ((ifp->if_flags & IFF_PROMISC) != 0 && 1450 !ppsratecheck(&sc->sc_last_syn, &sc->sc_false_syns, 1451 WI_MAX_FALSE_SYNS)) 1452 return; 1453 1454 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 1455 } 1456 1457 static __inline void 1458 wi_rssadapt_input(struct ieee80211com *ic, struct ieee80211_node *ni, 1459 struct ieee80211_frame *wh, int rssi) 1460 { 1461 struct wi_node *wn; 1462 1463 if (ni == NULL) { 1464 printf("%s: null node", __func__); 1465 return; 1466 } 1467 1468 wn = (void*)ni; 1469 ieee80211_rssadapt_input(ic, ni, &wn->wn_rssadapt, rssi); 1470 } 1471 1472 STATIC void 1473 wi_rx_intr(struct wi_softc *sc) 1474 { 1475 struct ieee80211com *ic = &sc->sc_ic; 1476 struct ifnet *ifp = &ic->ic_if; 1477 struct ieee80211_node *ni; 1478 struct wi_frame frmhdr; 1479 struct mbuf *m; 1480 struct ieee80211_frame *wh; 1481 int fid, len, off, rssi; 1482 u_int8_t dir; 1483 u_int16_t status; 1484 u_int32_t rstamp; 1485 1486 fid = CSR_READ_2(sc, WI_RX_FID); 1487 1488 /* First read in the frame header */ 1489 if (wi_read_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr))) { 1490 printf("%s: %s read fid %x failed\n", sc->sc_dev.dv_xname, 1491 __func__, fid); 1492 ifp->if_ierrors++; 1493 return; 1494 } 1495 1496 if (IFF_DUMPPKTS(ifp)) 1497 wi_dump_pkt(&frmhdr, NULL, frmhdr.wi_rx_signal); 1498 1499 /* 1500 * Drop undecryptable or packets with receive errors here 1501 */ 1502 status = le16toh(frmhdr.wi_status); 1503 if ((status & WI_STAT_ERRSTAT) != 0 && 1504 ic->ic_opmode != IEEE80211_M_MONITOR) { 1505 ifp->if_ierrors++; 1506 DPRINTF(("wi_rx_intr: fid %x error status %x\n", fid, status)); 1507 return; 1508 } 1509 rssi = frmhdr.wi_rx_signal; 1510 rstamp = (le16toh(frmhdr.wi_rx_tstamp0) << 16) | 1511 le16toh(frmhdr.wi_rx_tstamp1); 1512 1513 len = le16toh(frmhdr.wi_dat_len); 1514 off = ALIGN(sizeof(struct ieee80211_frame)); 1515 1516 /* Sometimes the PRISM2.x returns bogusly large frames. Except 1517 * in monitor mode, just throw them away. 1518 */ 1519 if (off + len > MCLBYTES) { 1520 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 1521 ifp->if_ierrors++; 1522 DPRINTF(("wi_rx_intr: oversized packet\n")); 1523 return; 1524 } else 1525 len = 0; 1526 } 1527 1528 MGETHDR(m, M_DONTWAIT, MT_DATA); 1529 if (m == NULL) { 1530 ifp->if_ierrors++; 1531 DPRINTF(("wi_rx_intr: MGET failed\n")); 1532 return; 1533 } 1534 if (off + len > MHLEN) { 1535 MCLGET(m, M_DONTWAIT); 1536 if ((m->m_flags & M_EXT) == 0) { 1537 m_freem(m); 1538 ifp->if_ierrors++; 1539 DPRINTF(("wi_rx_intr: MCLGET failed\n")); 1540 return; 1541 } 1542 } 1543 1544 m->m_data += off - sizeof(struct ieee80211_frame); 1545 memcpy(m->m_data, &frmhdr.wi_whdr, sizeof(struct ieee80211_frame)); 1546 wi_read_bap(sc, fid, sizeof(frmhdr), 1547 m->m_data + sizeof(struct ieee80211_frame), len); 1548 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame) + len; 1549 m->m_pkthdr.rcvif = ifp; 1550 1551 #if NBPFILTER > 0 1552 if (sc->sc_drvbpf) { 1553 struct wi_rx_radiotap_header *tap = &sc->sc_rxtap; 1554 1555 tap->wr_rate = frmhdr.wi_rx_rate / 5; 1556 tap->wr_antsignal = frmhdr.wi_rx_signal; 1557 tap->wr_antnoise = frmhdr.wi_rx_silence; 1558 tap->wr_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq); 1559 tap->wr_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags); 1560 if (frmhdr.wi_status & WI_STAT_PCF) 1561 tap->wr_flags |= IEEE80211_RADIOTAP_F_CFP; 1562 1563 bpf_mtap2(sc->sc_drvbpf, tap, tap->wr_ihdr.it_len, m); 1564 } 1565 #endif 1566 wh = mtod(m, struct ieee80211_frame *); 1567 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1568 /* 1569 * WEP is decrypted by hardware. Clear WEP bit 1570 * header for ieee80211_input(). 1571 */ 1572 wh->i_fc[1] &= ~IEEE80211_FC1_WEP; 1573 } 1574 1575 /* synchronize driver's BSSID with firmware's BSSID */ 1576 dir = wh->i_fc[1] & IEEE80211_FC1_DIR_MASK; 1577 if (ic->ic_opmode == IEEE80211_M_IBSS && dir == IEEE80211_FC1_DIR_NODS) 1578 wi_sync_bssid(sc, wh->i_addr3); 1579 1580 ni = ieee80211_find_rxnode(ic, wh); 1581 1582 ieee80211_input(ifp, m, ni, rssi, rstamp); 1583 1584 wi_rssadapt_input(ic, ni, wh, rssi); 1585 1586 /* 1587 * The frame may have caused the node to be marked for 1588 * reclamation (e.g. in response to a DEAUTH message) 1589 * so use release_node here instead of unref_node. 1590 */ 1591 ieee80211_release_node(ic, ni); 1592 } 1593 1594 STATIC void 1595 wi_tx_ex_intr(struct wi_softc *sc) 1596 { 1597 struct ieee80211com *ic = &sc->sc_ic; 1598 struct ifnet *ifp = &ic->ic_if; 1599 struct ieee80211_node *ni; 1600 struct ieee80211_rssdesc *id; 1601 struct wi_rssdesc *rssd; 1602 struct wi_frame frmhdr; 1603 int fid; 1604 u_int16_t status; 1605 1606 fid = CSR_READ_2(sc, WI_TX_CMP_FID); 1607 /* Read in the frame header */ 1608 if (wi_read_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr)) != 0) { 1609 printf("%s: %s read fid %x failed\n", sc->sc_dev.dv_xname, 1610 __func__, fid); 1611 wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree, 1612 &sc->sc_txpending); 1613 goto out; 1614 } 1615 1616 if (frmhdr.wi_tx_idx >= WI_NTXRSS) { 1617 printf("%s: %s bad idx %02x\n", 1618 sc->sc_dev.dv_xname, __func__, frmhdr.wi_tx_idx); 1619 wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree, 1620 &sc->sc_txpending); 1621 goto out; 1622 } 1623 1624 status = le16toh(frmhdr.wi_status); 1625 1626 /* 1627 * Spontaneous station disconnects appear as xmit 1628 * errors. Don't announce them and/or count them 1629 * as an output error. 1630 */ 1631 if (ppsratecheck(&lasttxerror, &curtxeps, wi_txerate)) { 1632 printf("%s: tx failed", sc->sc_dev.dv_xname); 1633 if (status & WI_TXSTAT_RET_ERR) 1634 printf(", retry limit exceeded"); 1635 if (status & WI_TXSTAT_AGED_ERR) 1636 printf(", max transmit lifetime exceeded"); 1637 if (status & WI_TXSTAT_DISCONNECT) 1638 printf(", port disconnected"); 1639 if (status & WI_TXSTAT_FORM_ERR) 1640 printf(", invalid format (data len %u src %s)", 1641 le16toh(frmhdr.wi_dat_len), 1642 ether_sprintf(frmhdr.wi_ehdr.ether_shost)); 1643 if (status & ~0xf) 1644 printf(", status=0x%x", status); 1645 printf("\n"); 1646 } 1647 ifp->if_oerrors++; 1648 rssd = &sc->sc_rssd[frmhdr.wi_tx_idx]; 1649 id = &rssd->rd_desc; 1650 if ((status & WI_TXSTAT_RET_ERR) != 0) 1651 wi_lower_rate(ic, id); 1652 1653 ni = id->id_node; 1654 id->id_node = NULL; 1655 1656 if (ni == NULL) { 1657 printf("%s: %s null node, rssdesc %02x\n", 1658 sc->sc_dev.dv_xname, __func__, frmhdr.wi_tx_idx); 1659 goto out; 1660 } 1661 1662 if (sc->sc_txpending[id->id_rateidx]-- == 0) { 1663 printf("%s: %s txpending[%i] wraparound", sc->sc_dev.dv_xname, 1664 __func__, id->id_rateidx); 1665 sc->sc_txpending[id->id_rateidx] = 0; 1666 } 1667 if (ni != NULL) 1668 ieee80211_release_node(ic, ni); 1669 SLIST_INSERT_HEAD(&sc->sc_rssdfree, rssd, rd_next); 1670 out: 1671 ifp->if_flags &= ~IFF_OACTIVE; 1672 } 1673 1674 STATIC void 1675 wi_txalloc_intr(struct wi_softc *sc) 1676 { 1677 int fid, cur; 1678 1679 fid = CSR_READ_2(sc, WI_ALLOC_FID); 1680 1681 cur = sc->sc_txalloc; 1682 #ifdef DIAGNOSTIC 1683 if (sc->sc_txstarted == 0) { 1684 printf("%s: spurious alloc %x != %x, alloc %d queue %d start %d alloced %d queued %d started %d\n", 1685 sc->sc_dev.dv_xname, fid, sc->sc_txd[cur].d_fid, cur, 1686 sc->sc_txqueue, sc->sc_txstart, sc->sc_txalloced, sc->sc_txqueued, sc->sc_txstarted); 1687 return; 1688 } 1689 #endif 1690 --sc->sc_txstarted; 1691 ++sc->sc_txalloced; 1692 sc->sc_txd[cur].d_fid = fid; 1693 sc->sc_txalloc = (cur + 1) % WI_NTXBUF; 1694 #ifdef WI_RING_DEBUG 1695 printf("%s: alloc %04x, alloc %d queue %d start %d alloced %d queued %d started %d\n", 1696 sc->sc_dev.dv_xname, fid, 1697 sc->sc_txalloc, sc->sc_txqueue, sc->sc_txstart, 1698 sc->sc_txalloced, sc->sc_txqueued, sc->sc_txstarted); 1699 #endif 1700 } 1701 1702 STATIC void 1703 wi_cmd_intr(struct wi_softc *sc) 1704 { 1705 struct ieee80211com *ic = &sc->sc_ic; 1706 struct ifnet *ifp = &ic->ic_if; 1707 1708 if (--sc->sc_txqueued == 0) { 1709 sc->sc_tx_timer = 0; 1710 ifp->if_flags &= ~IFF_OACTIVE; 1711 #ifdef WI_RING_DEBUG 1712 printf("%s: cmd , alloc %d queue %d start %d alloced %d queued %d started %d\n", 1713 sc->sc_dev.dv_xname, 1714 sc->sc_txalloc, sc->sc_txqueue, sc->sc_txstart, 1715 sc->sc_txalloced, sc->sc_txqueued, sc->sc_txstarted); 1716 #endif 1717 } else 1718 wi_push_packet(sc); 1719 } 1720 1721 STATIC void 1722 wi_push_packet(struct wi_softc *sc) 1723 { 1724 struct ieee80211com *ic = &sc->sc_ic; 1725 struct ifnet *ifp = &ic->ic_if; 1726 int cur, fid; 1727 1728 cur = sc->sc_txstart; 1729 fid = sc->sc_txd[cur].d_fid; 1730 if (wi_sendcmd(sc, WI_CMD_TX | WI_RECLAIM, fid)) { 1731 printf("%s: xmit failed\n", sc->sc_dev.dv_xname); 1732 /* XXX ring might have a hole */ 1733 } 1734 ++sc->sc_txstarted; 1735 #ifdef DIAGNOSTIC 1736 if (sc->sc_txstarted > WI_NTXBUF) 1737 printf("%s: too many buffers started\n", sc->sc_dev.dv_xname); 1738 #endif 1739 sc->sc_txstart = (cur + 1) % WI_NTXBUF; 1740 sc->sc_tx_timer = 5; 1741 ifp->if_timer = 1; 1742 #ifdef WI_RING_DEBUG 1743 printf("%s: push %04x, alloc %d queue %d start %d alloced %d queued %d started %d\n", 1744 sc->sc_dev.dv_xname, fid, 1745 sc->sc_txalloc, sc->sc_txqueue, sc->sc_txstart, 1746 sc->sc_txalloced, sc->sc_txqueued, sc->sc_txstarted); 1747 #endif 1748 } 1749 1750 STATIC void 1751 wi_tx_intr(struct wi_softc *sc) 1752 { 1753 struct ieee80211com *ic = &sc->sc_ic; 1754 struct ifnet *ifp = &ic->ic_if; 1755 struct ieee80211_node *ni; 1756 struct ieee80211_rssdesc *id; 1757 struct wi_rssdesc *rssd; 1758 struct wi_frame frmhdr; 1759 int fid; 1760 1761 fid = CSR_READ_2(sc, WI_TX_CMP_FID); 1762 /* Read in the frame header */ 1763 if (wi_read_bap(sc, fid, 8, &frmhdr.wi_rx_rate, 2) != 0) { 1764 printf("%s: %s read fid %x failed\n", sc->sc_dev.dv_xname, 1765 __func__, fid); 1766 wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree, 1767 &sc->sc_txpending); 1768 goto out; 1769 } 1770 1771 if (frmhdr.wi_tx_idx >= WI_NTXRSS) { 1772 printf("%s: %s bad idx %02x\n", 1773 sc->sc_dev.dv_xname, __func__, frmhdr.wi_tx_idx); 1774 wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree, 1775 &sc->sc_txpending); 1776 goto out; 1777 } 1778 1779 rssd = &sc->sc_rssd[frmhdr.wi_tx_idx]; 1780 id = &rssd->rd_desc; 1781 wi_raise_rate(ic, id); 1782 1783 ni = id->id_node; 1784 id->id_node = NULL; 1785 1786 if (ni == NULL) { 1787 printf("%s: %s null node, rssdesc %02x\n", 1788 sc->sc_dev.dv_xname, __func__, frmhdr.wi_tx_idx); 1789 goto out; 1790 } 1791 1792 if (sc->sc_txpending[id->id_rateidx]-- == 0) { 1793 printf("%s: %s txpending[%i] wraparound", sc->sc_dev.dv_xname, 1794 __func__, id->id_rateidx); 1795 sc->sc_txpending[id->id_rateidx] = 0; 1796 } 1797 if (ni != NULL) 1798 ieee80211_release_node(ic, ni); 1799 SLIST_INSERT_HEAD(&sc->sc_rssdfree, rssd, rd_next); 1800 out: 1801 ifp->if_flags &= ~IFF_OACTIVE; 1802 } 1803 1804 STATIC void 1805 wi_info_intr(struct wi_softc *sc) 1806 { 1807 struct ieee80211com *ic = &sc->sc_ic; 1808 struct ifnet *ifp = &ic->ic_if; 1809 int i, fid, len, off; 1810 u_int16_t ltbuf[2]; 1811 u_int16_t stat; 1812 u_int32_t *ptr; 1813 1814 fid = CSR_READ_2(sc, WI_INFO_FID); 1815 wi_read_bap(sc, fid, 0, ltbuf, sizeof(ltbuf)); 1816 1817 switch (le16toh(ltbuf[1])) { 1818 1819 case WI_INFO_LINK_STAT: 1820 wi_read_bap(sc, fid, sizeof(ltbuf), &stat, sizeof(stat)); 1821 DPRINTF(("wi_info_intr: LINK_STAT 0x%x\n", le16toh(stat))); 1822 switch (le16toh(stat)) { 1823 case CONNECTED: 1824 sc->sc_flags &= ~WI_FLAGS_OUTRANGE; 1825 if (ic->ic_state == IEEE80211_S_RUN && 1826 ic->ic_opmode != IEEE80211_M_IBSS) 1827 break; 1828 /* FALLTHROUGH */ 1829 case AP_CHANGE: 1830 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 1831 break; 1832 case AP_IN_RANGE: 1833 sc->sc_flags &= ~WI_FLAGS_OUTRANGE; 1834 break; 1835 case AP_OUT_OF_RANGE: 1836 if (sc->sc_firmware_type == WI_SYMBOL && 1837 sc->sc_scan_timer > 0) { 1838 if (wi_cmd(sc, WI_CMD_INQUIRE, 1839 WI_INFO_HOST_SCAN_RESULTS, 0, 0) != 0) 1840 sc->sc_scan_timer = 0; 1841 break; 1842 } 1843 if (ic->ic_opmode == IEEE80211_M_STA) 1844 sc->sc_flags |= WI_FLAGS_OUTRANGE; 1845 break; 1846 case DISCONNECTED: 1847 case ASSOC_FAILED: 1848 if (ic->ic_opmode == IEEE80211_M_STA) 1849 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 1850 break; 1851 } 1852 break; 1853 1854 case WI_INFO_COUNTERS: 1855 /* some card versions have a larger stats structure */ 1856 len = min(le16toh(ltbuf[0]) - 1, sizeof(sc->sc_stats) / 4); 1857 ptr = (u_int32_t *)&sc->sc_stats; 1858 off = sizeof(ltbuf); 1859 for (i = 0; i < len; i++, off += 2, ptr++) { 1860 wi_read_bap(sc, fid, off, &stat, sizeof(stat)); 1861 stat = le16toh(stat); 1862 #ifdef WI_HERMES_STATS_WAR 1863 if (stat & 0xf000) 1864 stat = ~stat; 1865 #endif 1866 *ptr += stat; 1867 } 1868 ifp->if_collisions = sc->sc_stats.wi_tx_single_retries + 1869 sc->sc_stats.wi_tx_multi_retries + 1870 sc->sc_stats.wi_tx_retry_limit; 1871 break; 1872 1873 case WI_INFO_SCAN_RESULTS: 1874 case WI_INFO_HOST_SCAN_RESULTS: 1875 wi_scan_result(sc, fid, le16toh(ltbuf[0])); 1876 break; 1877 1878 default: 1879 DPRINTF(("wi_info_intr: got fid %x type %x len %d\n", fid, 1880 le16toh(ltbuf[1]), le16toh(ltbuf[0]))); 1881 break; 1882 } 1883 } 1884 1885 STATIC int 1886 wi_write_multi(struct wi_softc *sc) 1887 { 1888 struct ifnet *ifp = &sc->sc_ic.ic_if; 1889 int n; 1890 struct wi_mcast mlist; 1891 struct ether_multi *enm; 1892 struct ether_multistep estep; 1893 1894 if ((ifp->if_flags & IFF_PROMISC) != 0) { 1895 allmulti: 1896 ifp->if_flags |= IFF_ALLMULTI; 1897 memset(&mlist, 0, sizeof(mlist)); 1898 return wi_write_rid(sc, WI_RID_MCAST_LIST, &mlist, 1899 sizeof(mlist)); 1900 } 1901 1902 n = 0; 1903 ETHER_FIRST_MULTI(estep, &sc->sc_ic.ic_ec, enm); 1904 while (enm != NULL) { 1905 /* Punt on ranges or too many multicast addresses. */ 1906 if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi) || 1907 n >= sizeof(mlist) / sizeof(mlist.wi_mcast[0])) 1908 goto allmulti; 1909 1910 IEEE80211_ADDR_COPY(&mlist.wi_mcast[n], enm->enm_addrlo); 1911 n++; 1912 ETHER_NEXT_MULTI(estep, enm); 1913 } 1914 ifp->if_flags &= ~IFF_ALLMULTI; 1915 return wi_write_rid(sc, WI_RID_MCAST_LIST, &mlist, 1916 IEEE80211_ADDR_LEN * n); 1917 } 1918 1919 1920 STATIC void 1921 wi_read_nicid(struct wi_softc *sc) 1922 { 1923 struct wi_card_ident *id; 1924 char *p; 1925 int len; 1926 u_int16_t ver[4]; 1927 1928 /* getting chip identity */ 1929 memset(ver, 0, sizeof(ver)); 1930 len = sizeof(ver); 1931 wi_read_rid(sc, WI_RID_CARD_ID, ver, &len); 1932 printf("%s: using ", sc->sc_dev.dv_xname); 1933 DPRINTF2(("wi_read_nicid: CARD_ID: %x %x %x %x\n", le16toh(ver[0]), le16toh(ver[1]), le16toh(ver[2]), le16toh(ver[3]))); 1934 1935 sc->sc_firmware_type = WI_NOTYPE; 1936 for (id = wi_card_ident; id->card_name != NULL; id++) { 1937 if (le16toh(ver[0]) == id->card_id) { 1938 printf("%s", id->card_name); 1939 sc->sc_firmware_type = id->firm_type; 1940 break; 1941 } 1942 } 1943 if (sc->sc_firmware_type == WI_NOTYPE) { 1944 if (le16toh(ver[0]) & 0x8000) { 1945 printf("Unknown PRISM2 chip"); 1946 sc->sc_firmware_type = WI_INTERSIL; 1947 } else { 1948 printf("Unknown Lucent chip"); 1949 sc->sc_firmware_type = WI_LUCENT; 1950 } 1951 } 1952 1953 /* get primary firmware version (Only Prism chips) */ 1954 if (sc->sc_firmware_type != WI_LUCENT) { 1955 memset(ver, 0, sizeof(ver)); 1956 len = sizeof(ver); 1957 wi_read_rid(sc, WI_RID_PRI_IDENTITY, ver, &len); 1958 sc->sc_pri_firmware_ver = le16toh(ver[2]) * 10000 + 1959 le16toh(ver[3]) * 100 + le16toh(ver[1]); 1960 } 1961 1962 /* get station firmware version */ 1963 memset(ver, 0, sizeof(ver)); 1964 len = sizeof(ver); 1965 wi_read_rid(sc, WI_RID_STA_IDENTITY, ver, &len); 1966 sc->sc_sta_firmware_ver = le16toh(ver[2]) * 10000 + 1967 le16toh(ver[3]) * 100 + le16toh(ver[1]); 1968 if (sc->sc_firmware_type == WI_INTERSIL && 1969 (sc->sc_sta_firmware_ver == 10102 || 1970 sc->sc_sta_firmware_ver == 20102)) { 1971 char ident[12]; 1972 memset(ident, 0, sizeof(ident)); 1973 len = sizeof(ident); 1974 /* value should be the format like "V2.00-11" */ 1975 if (wi_read_rid(sc, WI_RID_SYMBOL_IDENTITY, ident, &len) == 0 && 1976 *(p = (char *)ident) >= 'A' && 1977 p[2] == '.' && p[5] == '-' && p[8] == '\0') { 1978 sc->sc_firmware_type = WI_SYMBOL; 1979 sc->sc_sta_firmware_ver = (p[1] - '0') * 10000 + 1980 (p[3] - '0') * 1000 + (p[4] - '0') * 100 + 1981 (p[6] - '0') * 10 + (p[7] - '0'); 1982 } 1983 } 1984 1985 printf("\n%s: %s Firmware: ", sc->sc_dev.dv_xname, 1986 sc->sc_firmware_type == WI_LUCENT ? "Lucent" : 1987 (sc->sc_firmware_type == WI_SYMBOL ? "Symbol" : "Intersil")); 1988 if (sc->sc_firmware_type != WI_LUCENT) /* XXX */ 1989 printf("Primary (%u.%u.%u), ", 1990 sc->sc_pri_firmware_ver / 10000, 1991 (sc->sc_pri_firmware_ver % 10000) / 100, 1992 sc->sc_pri_firmware_ver % 100); 1993 printf("Station (%u.%u.%u)\n", 1994 sc->sc_sta_firmware_ver / 10000, 1995 (sc->sc_sta_firmware_ver % 10000) / 100, 1996 sc->sc_sta_firmware_ver % 100); 1997 } 1998 1999 STATIC int 2000 wi_write_ssid(struct wi_softc *sc, int rid, u_int8_t *buf, int buflen) 2001 { 2002 struct wi_ssid ssid; 2003 2004 if (buflen > IEEE80211_NWID_LEN) 2005 return ENOBUFS; 2006 memset(&ssid, 0, sizeof(ssid)); 2007 ssid.wi_len = htole16(buflen); 2008 memcpy(ssid.wi_ssid, buf, buflen); 2009 return wi_write_rid(sc, rid, &ssid, sizeof(ssid)); 2010 } 2011 2012 STATIC int 2013 wi_get_cfg(struct ifnet *ifp, u_long cmd, caddr_t data) 2014 { 2015 struct wi_softc *sc = ifp->if_softc; 2016 struct ieee80211com *ic = &sc->sc_ic; 2017 struct ifreq *ifr = (struct ifreq *)data; 2018 struct wi_req wreq; 2019 int len, n, error; 2020 2021 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq)); 2022 if (error) 2023 return error; 2024 len = (wreq.wi_len - 1) * 2; 2025 if (len < sizeof(u_int16_t)) 2026 return ENOSPC; 2027 if (len > sizeof(wreq.wi_val)) 2028 len = sizeof(wreq.wi_val); 2029 2030 switch (wreq.wi_type) { 2031 2032 case WI_RID_IFACE_STATS: 2033 memcpy(wreq.wi_val, &sc->sc_stats, sizeof(sc->sc_stats)); 2034 if (len < sizeof(sc->sc_stats)) 2035 error = ENOSPC; 2036 else 2037 len = sizeof(sc->sc_stats); 2038 break; 2039 2040 case WI_RID_ENCRYPTION: 2041 case WI_RID_TX_CRYPT_KEY: 2042 case WI_RID_DEFLT_CRYPT_KEYS: 2043 case WI_RID_TX_RATE: 2044 return ieee80211_cfgget(ifp, cmd, data); 2045 2046 case WI_RID_MICROWAVE_OVEN: 2047 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_MOR)) { 2048 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val, 2049 &len); 2050 break; 2051 } 2052 wreq.wi_val[0] = htole16(sc->sc_microwave_oven); 2053 len = sizeof(u_int16_t); 2054 break; 2055 2056 case WI_RID_DBM_ADJUST: 2057 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_DBMADJUST)) { 2058 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val, 2059 &len); 2060 break; 2061 } 2062 wreq.wi_val[0] = htole16(sc->sc_dbm_offset); 2063 len = sizeof(u_int16_t); 2064 break; 2065 2066 case WI_RID_ROAMING_MODE: 2067 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_ROAMING)) { 2068 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val, 2069 &len); 2070 break; 2071 } 2072 wreq.wi_val[0] = htole16(sc->sc_roaming_mode); 2073 len = sizeof(u_int16_t); 2074 break; 2075 2076 case WI_RID_SYSTEM_SCALE: 2077 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE)) { 2078 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val, 2079 &len); 2080 break; 2081 } 2082 wreq.wi_val[0] = htole16(sc->sc_system_scale); 2083 len = sizeof(u_int16_t); 2084 break; 2085 2086 case WI_RID_FRAG_THRESH: 2087 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR)) { 2088 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val, 2089 &len); 2090 break; 2091 } 2092 wreq.wi_val[0] = htole16(sc->sc_frag_thresh); 2093 len = sizeof(u_int16_t); 2094 break; 2095 2096 case WI_RID_READ_APS: 2097 if (ic->ic_opmode == IEEE80211_M_HOSTAP) 2098 return ieee80211_cfgget(ifp, cmd, data); 2099 if (sc->sc_scan_timer > 0) { 2100 error = EINPROGRESS; 2101 break; 2102 } 2103 n = sc->sc_naps; 2104 if (len < sizeof(n)) { 2105 error = ENOSPC; 2106 break; 2107 } 2108 if (len < sizeof(n) + sizeof(struct wi_apinfo) * n) 2109 n = (len - sizeof(n)) / sizeof(struct wi_apinfo); 2110 len = sizeof(n) + sizeof(struct wi_apinfo) * n; 2111 memcpy(wreq.wi_val, &n, sizeof(n)); 2112 memcpy((caddr_t)wreq.wi_val + sizeof(n), sc->sc_aps, 2113 sizeof(struct wi_apinfo) * n); 2114 break; 2115 2116 default: 2117 if (sc->sc_enabled) { 2118 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val, 2119 &len); 2120 break; 2121 } 2122 switch (wreq.wi_type) { 2123 case WI_RID_MAX_DATALEN: 2124 wreq.wi_val[0] = htole16(sc->sc_max_datalen); 2125 len = sizeof(u_int16_t); 2126 break; 2127 case WI_RID_FRAG_THRESH: 2128 wreq.wi_val[0] = htole16(sc->sc_frag_thresh); 2129 len = sizeof(u_int16_t); 2130 break; 2131 case WI_RID_RTS_THRESH: 2132 wreq.wi_val[0] = htole16(sc->sc_rts_thresh); 2133 len = sizeof(u_int16_t); 2134 break; 2135 case WI_RID_CNFAUTHMODE: 2136 wreq.wi_val[0] = htole16(sc->sc_cnfauthmode); 2137 len = sizeof(u_int16_t); 2138 break; 2139 case WI_RID_NODENAME: 2140 if (len < sc->sc_nodelen + sizeof(u_int16_t)) { 2141 error = ENOSPC; 2142 break; 2143 } 2144 len = sc->sc_nodelen + sizeof(u_int16_t); 2145 wreq.wi_val[0] = htole16((sc->sc_nodelen + 1) / 2); 2146 memcpy(&wreq.wi_val[1], sc->sc_nodename, 2147 sc->sc_nodelen); 2148 break; 2149 default: 2150 return ieee80211_cfgget(ifp, cmd, data); 2151 } 2152 break; 2153 } 2154 if (error) 2155 return error; 2156 wreq.wi_len = (len + 1) / 2 + 1; 2157 return copyout(&wreq, ifr->ifr_data, (wreq.wi_len + 1) * 2); 2158 } 2159 2160 STATIC int 2161 wi_set_cfg(struct ifnet *ifp, u_long cmd, caddr_t data) 2162 { 2163 struct wi_softc *sc = ifp->if_softc; 2164 struct ieee80211com *ic = &sc->sc_ic; 2165 struct ifreq *ifr = (struct ifreq *)data; 2166 struct ieee80211_rateset *rs = &ic->ic_sup_rates[IEEE80211_MODE_11B]; 2167 struct wi_req wreq; 2168 struct mbuf *m; 2169 int i, len, error; 2170 2171 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq)); 2172 if (error) 2173 return error; 2174 len = (wreq.wi_len - 1) * 2; 2175 switch (wreq.wi_type) { 2176 case WI_RID_DBM_ADJUST: 2177 return ENODEV; 2178 2179 case WI_RID_NODENAME: 2180 if (le16toh(wreq.wi_val[0]) * 2 > len || 2181 le16toh(wreq.wi_val[0]) > sizeof(sc->sc_nodename)) { 2182 error = ENOSPC; 2183 break; 2184 } 2185 if (sc->sc_enabled) { 2186 error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val, 2187 len); 2188 if (error) 2189 break; 2190 } 2191 sc->sc_nodelen = le16toh(wreq.wi_val[0]) * 2; 2192 memcpy(sc->sc_nodename, &wreq.wi_val[1], sc->sc_nodelen); 2193 break; 2194 2195 case WI_RID_MICROWAVE_OVEN: 2196 case WI_RID_ROAMING_MODE: 2197 case WI_RID_SYSTEM_SCALE: 2198 case WI_RID_FRAG_THRESH: 2199 if (wreq.wi_type == WI_RID_MICROWAVE_OVEN && 2200 (sc->sc_flags & WI_FLAGS_HAS_MOR) == 0) 2201 break; 2202 if (wreq.wi_type == WI_RID_ROAMING_MODE && 2203 (sc->sc_flags & WI_FLAGS_HAS_ROAMING) == 0) 2204 break; 2205 if (wreq.wi_type == WI_RID_SYSTEM_SCALE && 2206 (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE) == 0) 2207 break; 2208 if (wreq.wi_type == WI_RID_FRAG_THRESH && 2209 (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR) == 0) 2210 break; 2211 /* FALLTHROUGH */ 2212 case WI_RID_RTS_THRESH: 2213 case WI_RID_CNFAUTHMODE: 2214 case WI_RID_MAX_DATALEN: 2215 if (sc->sc_enabled) { 2216 error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val, 2217 sizeof(u_int16_t)); 2218 if (error) 2219 break; 2220 } 2221 switch (wreq.wi_type) { 2222 case WI_RID_FRAG_THRESH: 2223 sc->sc_frag_thresh = le16toh(wreq.wi_val[0]); 2224 break; 2225 case WI_RID_RTS_THRESH: 2226 sc->sc_rts_thresh = le16toh(wreq.wi_val[0]); 2227 break; 2228 case WI_RID_MICROWAVE_OVEN: 2229 sc->sc_microwave_oven = le16toh(wreq.wi_val[0]); 2230 break; 2231 case WI_RID_ROAMING_MODE: 2232 sc->sc_roaming_mode = le16toh(wreq.wi_val[0]); 2233 break; 2234 case WI_RID_SYSTEM_SCALE: 2235 sc->sc_system_scale = le16toh(wreq.wi_val[0]); 2236 break; 2237 case WI_RID_CNFAUTHMODE: 2238 sc->sc_cnfauthmode = le16toh(wreq.wi_val[0]); 2239 break; 2240 case WI_RID_MAX_DATALEN: 2241 sc->sc_max_datalen = le16toh(wreq.wi_val[0]); 2242 break; 2243 } 2244 break; 2245 2246 case WI_RID_TX_RATE: 2247 switch (le16toh(wreq.wi_val[0])) { 2248 case 3: 2249 ic->ic_fixed_rate = -1; 2250 break; 2251 default: 2252 for (i = 0; i < IEEE80211_RATE_SIZE; i++) { 2253 if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) 2254 / 2 == le16toh(wreq.wi_val[0])) 2255 break; 2256 } 2257 if (i == IEEE80211_RATE_SIZE) 2258 return EINVAL; 2259 ic->ic_fixed_rate = i; 2260 } 2261 if (sc->sc_enabled) 2262 error = wi_cfg_txrate(sc); 2263 break; 2264 2265 case WI_RID_SCAN_APS: 2266 if (sc->sc_enabled && ic->ic_opmode != IEEE80211_M_HOSTAP) 2267 error = wi_scan_ap(sc, 0x3fff, 0x000f); 2268 break; 2269 2270 case WI_RID_MGMT_XMIT: 2271 if (!sc->sc_enabled) { 2272 error = ENETDOWN; 2273 break; 2274 } 2275 if (ic->ic_mgtq.ifq_len > 5) { 2276 error = EAGAIN; 2277 break; 2278 } 2279 /* XXX wi_len looks in u_int8_t, not in u_int16_t */ 2280 m = m_devget((char *)&wreq.wi_val, wreq.wi_len, 0, ifp, NULL); 2281 if (m == NULL) { 2282 error = ENOMEM; 2283 break; 2284 } 2285 IF_ENQUEUE(&ic->ic_mgtq, m); 2286 break; 2287 2288 default: 2289 if (sc->sc_enabled) { 2290 error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val, 2291 len); 2292 if (error) 2293 break; 2294 } 2295 error = ieee80211_cfgset(ifp, cmd, data); 2296 break; 2297 } 2298 return error; 2299 } 2300 2301 /* Rate is 0 for hardware auto-select, otherwise rate is 2302 * 2, 4, 11, or 22 (units of 500Kbps). 2303 */ 2304 STATIC int 2305 wi_write_txrate(struct wi_softc *sc, int rate) 2306 { 2307 u_int16_t hwrate; 2308 2309 /* rate: 0, 2, 4, 11, 22 */ 2310 switch (sc->sc_firmware_type) { 2311 case WI_LUCENT: 2312 switch (rate & IEEE80211_RATE_VAL) { 2313 case 2: 2314 hwrate = 1; 2315 break; 2316 case 4: 2317 hwrate = 2; 2318 break; 2319 default: 2320 hwrate = 3; /* auto */ 2321 break; 2322 case 11: 2323 hwrate = 4; 2324 break; 2325 case 22: 2326 hwrate = 5; 2327 break; 2328 } 2329 break; 2330 default: 2331 switch (rate & IEEE80211_RATE_VAL) { 2332 case 2: 2333 hwrate = 1; 2334 break; 2335 case 4: 2336 hwrate = 2; 2337 break; 2338 case 11: 2339 hwrate = 4; 2340 break; 2341 case 22: 2342 hwrate = 8; 2343 break; 2344 default: 2345 hwrate = 15; /* auto */ 2346 break; 2347 } 2348 break; 2349 } 2350 2351 if (sc->sc_tx_rate == hwrate) 2352 return 0; 2353 2354 if (sc->sc_if.if_flags & IFF_DEBUG) 2355 printf("%s: tx rate %d -> %d (%d)\n", __func__, sc->sc_tx_rate, 2356 hwrate, rate); 2357 2358 sc->sc_tx_rate = hwrate; 2359 2360 return wi_write_val(sc, WI_RID_TX_RATE, sc->sc_tx_rate); 2361 } 2362 2363 STATIC int 2364 wi_cfg_txrate(struct wi_softc *sc) 2365 { 2366 struct ieee80211com *ic = &sc->sc_ic; 2367 struct ieee80211_rateset *rs; 2368 int rate; 2369 2370 rs = &ic->ic_sup_rates[IEEE80211_MODE_11B]; 2371 2372 sc->sc_tx_rate = 0; /* force write to RID */ 2373 2374 if (ic->ic_fixed_rate < 0) 2375 rate = 0; /* auto */ 2376 else 2377 rate = rs->rs_rates[ic->ic_fixed_rate]; 2378 2379 return wi_write_txrate(sc, rate); 2380 } 2381 2382 STATIC int 2383 wi_write_wep(struct wi_softc *sc) 2384 { 2385 struct ieee80211com *ic = &sc->sc_ic; 2386 int error = 0; 2387 int i, keylen; 2388 u_int16_t val; 2389 struct wi_key wkey[IEEE80211_WEP_NKID]; 2390 2391 switch (sc->sc_firmware_type) { 2392 case WI_LUCENT: 2393 val = (ic->ic_flags & IEEE80211_F_PRIVACY) ? 1 : 0; 2394 error = wi_write_val(sc, WI_RID_ENCRYPTION, val); 2395 if (error) 2396 break; 2397 error = wi_write_val(sc, WI_RID_TX_CRYPT_KEY, ic->ic_wep_txkey); 2398 if (error) 2399 break; 2400 memset(wkey, 0, sizeof(wkey)); 2401 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 2402 keylen = ic->ic_nw_keys[i].wk_len; 2403 wkey[i].wi_keylen = htole16(keylen); 2404 memcpy(wkey[i].wi_keydat, ic->ic_nw_keys[i].wk_key, 2405 keylen); 2406 } 2407 error = wi_write_rid(sc, WI_RID_DEFLT_CRYPT_KEYS, 2408 wkey, sizeof(wkey)); 2409 break; 2410 2411 case WI_INTERSIL: 2412 case WI_SYMBOL: 2413 if (ic->ic_flags & IEEE80211_F_PRIVACY) { 2414 /* 2415 * ONLY HWB3163 EVAL-CARD Firmware version 2416 * less than 0.8 variant2 2417 * 2418 * If promiscuous mode disable, Prism2 chip 2419 * does not work with WEP . 2420 * It is under investigation for details. 2421 * (ichiro@NetBSD.org) 2422 */ 2423 if (sc->sc_firmware_type == WI_INTERSIL && 2424 sc->sc_sta_firmware_ver < 802 ) { 2425 /* firm ver < 0.8 variant 2 */ 2426 wi_write_val(sc, WI_RID_PROMISC, 1); 2427 } 2428 wi_write_val(sc, WI_RID_CNFAUTHMODE, 2429 sc->sc_cnfauthmode); 2430 val = PRIVACY_INVOKED | EXCLUDE_UNENCRYPTED; 2431 /* 2432 * Encryption firmware has a bug for HostAP mode. 2433 */ 2434 if (sc->sc_firmware_type == WI_INTERSIL && 2435 ic->ic_opmode == IEEE80211_M_HOSTAP) 2436 val |= HOST_ENCRYPT; 2437 } else { 2438 wi_write_val(sc, WI_RID_CNFAUTHMODE, 2439 IEEE80211_AUTH_OPEN); 2440 val = HOST_ENCRYPT | HOST_DECRYPT; 2441 } 2442 error = wi_write_val(sc, WI_RID_P2_ENCRYPTION, val); 2443 if (error) 2444 break; 2445 error = wi_write_val(sc, WI_RID_P2_TX_CRYPT_KEY, 2446 ic->ic_wep_txkey); 2447 if (error) 2448 break; 2449 /* 2450 * It seems that the firmware accept 104bit key only if 2451 * all the keys have 104bit length. We get the length of 2452 * the transmit key and use it for all other keys. 2453 * Perhaps we should use software WEP for such situation. 2454 */ 2455 keylen = ic->ic_nw_keys[ic->ic_wep_txkey].wk_len; 2456 if (keylen > IEEE80211_WEP_KEYLEN) 2457 keylen = 13; /* 104bit keys */ 2458 else 2459 keylen = IEEE80211_WEP_KEYLEN; 2460 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 2461 error = wi_write_rid(sc, WI_RID_P2_CRYPT_KEY0 + i, 2462 ic->ic_nw_keys[i].wk_key, keylen); 2463 if (error) 2464 break; 2465 } 2466 break; 2467 } 2468 return error; 2469 } 2470 2471 /* Must be called at proper protection level! */ 2472 STATIC int 2473 wi_sendcmd(struct wi_softc *sc, int cmd, int val0) 2474 { 2475 #ifdef WI_HISTOGRAM 2476 static int hist3[11]; 2477 static int hist3count; 2478 #endif 2479 int i; 2480 2481 /* wait for the busy bit to clear */ 2482 for (i = 500; i > 0; i--) { /* 5s */ 2483 if ((CSR_READ_2(sc, WI_COMMAND) & WI_CMD_BUSY) == 0) 2484 break; 2485 DELAY(1000); /* 1 m sec */ 2486 } 2487 if (i == 0) { 2488 printf("%s: wi_sendcmd: busy bit won't clear.\n", 2489 sc->sc_dev.dv_xname); 2490 return(ETIMEDOUT); 2491 } 2492 #ifdef WI_HISTOGRAM 2493 if (i > 490) 2494 hist3[500 - i]++; 2495 else 2496 hist3[10]++; 2497 if (++hist3count == 1000) { 2498 hist3count = 0; 2499 printf("%s: hist3: %d %d %d %d %d %d %d %d %d %d %d\n", 2500 sc->sc_dev.dv_xname, 2501 hist3[0], hist3[1], hist3[2], hist3[3], hist3[4], 2502 hist3[5], hist3[6], hist3[7], hist3[8], hist3[9], 2503 hist3[10]); 2504 } 2505 #endif 2506 CSR_WRITE_2(sc, WI_PARAM0, val0); 2507 CSR_WRITE_2(sc, WI_PARAM1, 0); 2508 CSR_WRITE_2(sc, WI_PARAM2, 0); 2509 CSR_WRITE_2(sc, WI_COMMAND, cmd); 2510 2511 return 0; 2512 } 2513 2514 STATIC int 2515 wi_cmd(struct wi_softc *sc, int cmd, int val0, int val1, int val2) 2516 { 2517 #ifdef WI_HISTOGRAM 2518 static int hist1[11]; 2519 static int hist1count; 2520 static int hist2[11]; 2521 static int hist2count; 2522 #endif 2523 int i, status; 2524 2525 /* wait for the busy bit to clear */ 2526 for (i = 500; i > 0; i--) { /* 5s */ 2527 if ((CSR_READ_2(sc, WI_COMMAND) & WI_CMD_BUSY) == 0) 2528 break; 2529 DELAY(1000); /* 1 m sec */ 2530 } 2531 if (i == 0) { 2532 printf("%s: wi_cmd: busy bit won't clear.\n", 2533 sc->sc_dev.dv_xname); 2534 return(ETIMEDOUT); 2535 } 2536 #ifdef WI_HISTOGRAM 2537 if (i > 490) 2538 hist1[500 - i]++; 2539 else 2540 hist1[10]++; 2541 if (++hist1count == 1000) { 2542 hist1count = 0; 2543 printf("%s: hist1: %d %d %d %d %d %d %d %d %d %d %d\n", 2544 sc->sc_dev.dv_xname, 2545 hist1[0], hist1[1], hist1[2], hist1[3], hist1[4], 2546 hist1[5], hist1[6], hist1[7], hist1[8], hist1[9], 2547 hist1[10]); 2548 } 2549 #endif 2550 CSR_WRITE_2(sc, WI_PARAM0, val0); 2551 CSR_WRITE_2(sc, WI_PARAM1, val1); 2552 CSR_WRITE_2(sc, WI_PARAM2, val2); 2553 CSR_WRITE_2(sc, WI_COMMAND, cmd); 2554 2555 if (cmd == WI_CMD_INI) { 2556 /* XXX: should sleep here. */ 2557 DELAY(100*1000); 2558 } 2559 /* wait for the cmd completed bit */ 2560 for (i = 0; i < WI_TIMEOUT; i++) { 2561 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_CMD) 2562 break; 2563 DELAY(WI_DELAY); 2564 } 2565 #ifdef WI_HISTOGRAM 2566 if (i < 100) 2567 hist2[i/10]++; 2568 else 2569 hist2[10]++; 2570 if (++hist2count == 1000) { 2571 hist2count = 0; 2572 printf("%s: hist2: %d %d %d %d %d %d %d %d %d %d %d\n", 2573 sc->sc_dev.dv_xname, 2574 hist2[0], hist2[1], hist2[2], hist2[3], hist2[4], 2575 hist2[5], hist2[6], hist2[7], hist2[8], hist2[9], 2576 hist2[10]); 2577 } 2578 #endif 2579 2580 status = CSR_READ_2(sc, WI_STATUS); 2581 2582 /* Ack the command */ 2583 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD); 2584 2585 if (i == WI_TIMEOUT) { 2586 printf("%s: command timed out, cmd=0x%x, arg=0x%x\n", 2587 sc->sc_dev.dv_xname, cmd, val0); 2588 return ETIMEDOUT; 2589 } 2590 2591 if (status & WI_STAT_CMD_RESULT) { 2592 printf("%s: command failed, cmd=0x%x, arg=0x%x\n", 2593 sc->sc_dev.dv_xname, cmd, val0); 2594 return EIO; 2595 } 2596 return 0; 2597 } 2598 2599 STATIC int 2600 wi_seek_bap(struct wi_softc *sc, int id, int off) 2601 { 2602 #ifdef WI_HISTOGRAM 2603 static int hist4[11]; 2604 static int hist4count; 2605 #endif 2606 int i, status; 2607 2608 CSR_WRITE_2(sc, WI_SEL0, id); 2609 CSR_WRITE_2(sc, WI_OFF0, off); 2610 2611 for (i = 0; ; i++) { 2612 status = CSR_READ_2(sc, WI_OFF0); 2613 if ((status & WI_OFF_BUSY) == 0) 2614 break; 2615 if (i == WI_TIMEOUT) { 2616 printf("%s: timeout in wi_seek to %x/%x\n", 2617 sc->sc_dev.dv_xname, id, off); 2618 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */ 2619 return ETIMEDOUT; 2620 } 2621 DELAY(2); 2622 } 2623 #ifdef WI_HISTOGRAM 2624 if (i < 100) 2625 hist4[i/10]++; 2626 else 2627 hist4[10]++; 2628 if (++hist4count == 2500) { 2629 hist4count = 0; 2630 printf("%s: hist4: %d %d %d %d %d %d %d %d %d %d %d\n", 2631 sc->sc_dev.dv_xname, 2632 hist4[0], hist4[1], hist4[2], hist4[3], hist4[4], 2633 hist4[5], hist4[6], hist4[7], hist4[8], hist4[9], 2634 hist4[10]); 2635 } 2636 #endif 2637 if (status & WI_OFF_ERR) { 2638 printf("%s: failed in wi_seek to %x/%x\n", 2639 sc->sc_dev.dv_xname, id, off); 2640 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */ 2641 return EIO; 2642 } 2643 sc->sc_bap_id = id; 2644 sc->sc_bap_off = off; 2645 return 0; 2646 } 2647 2648 STATIC int 2649 wi_read_bap(struct wi_softc *sc, int id, int off, void *buf, int buflen) 2650 { 2651 int error, cnt; 2652 2653 if (buflen == 0) 2654 return 0; 2655 if (id != sc->sc_bap_id || off != sc->sc_bap_off) { 2656 if ((error = wi_seek_bap(sc, id, off)) != 0) 2657 return error; 2658 } 2659 cnt = (buflen + 1) / 2; 2660 CSR_READ_MULTI_STREAM_2(sc, WI_DATA0, (u_int16_t *)buf, cnt); 2661 sc->sc_bap_off += cnt * 2; 2662 return 0; 2663 } 2664 2665 STATIC int 2666 wi_write_bap(struct wi_softc *sc, int id, int off, void *buf, int buflen) 2667 { 2668 int error, cnt; 2669 2670 if (buflen == 0) 2671 return 0; 2672 2673 #ifdef WI_HERMES_AUTOINC_WAR 2674 again: 2675 #endif 2676 if (id != sc->sc_bap_id || off != sc->sc_bap_off) { 2677 if ((error = wi_seek_bap(sc, id, off)) != 0) 2678 return error; 2679 } 2680 cnt = (buflen + 1) / 2; 2681 CSR_WRITE_MULTI_STREAM_2(sc, WI_DATA0, (u_int16_t *)buf, cnt); 2682 sc->sc_bap_off += cnt * 2; 2683 2684 #ifdef WI_HERMES_AUTOINC_WAR 2685 /* 2686 * According to the comments in the HCF Light code, there is a bug 2687 * in the Hermes (or possibly in certain Hermes firmware revisions) 2688 * where the chip's internal autoincrement counter gets thrown off 2689 * during data writes: the autoincrement is missed, causing one 2690 * data word to be overwritten and subsequent words to be written to 2691 * the wrong memory locations. The end result is that we could end 2692 * up transmitting bogus frames without realizing it. The workaround 2693 * for this is to write a couple of extra guard words after the end 2694 * of the transfer, then attempt to read then back. If we fail to 2695 * locate the guard words where we expect them, we preform the 2696 * transfer over again. 2697 */ 2698 if ((sc->sc_flags & WI_FLAGS_BUG_AUTOINC) && (id & 0xf000) == 0) { 2699 CSR_WRITE_2(sc, WI_DATA0, 0x1234); 2700 CSR_WRITE_2(sc, WI_DATA0, 0x5678); 2701 wi_seek_bap(sc, id, sc->sc_bap_off); 2702 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */ 2703 if (CSR_READ_2(sc, WI_DATA0) != 0x1234 || 2704 CSR_READ_2(sc, WI_DATA0) != 0x5678) { 2705 printf("%s: detect auto increment bug, try again\n", 2706 sc->sc_dev.dv_xname); 2707 goto again; 2708 } 2709 } 2710 #endif 2711 return 0; 2712 } 2713 2714 STATIC int 2715 wi_mwrite_bap(struct wi_softc *sc, int id, int off, struct mbuf *m0, int totlen) 2716 { 2717 int error, len; 2718 struct mbuf *m; 2719 2720 for (m = m0; m != NULL && totlen > 0; m = m->m_next) { 2721 if (m->m_len == 0) 2722 continue; 2723 2724 len = min(m->m_len, totlen); 2725 2726 if (((u_long)m->m_data) % 2 != 0 || len % 2 != 0) { 2727 m_copydata(m, 0, totlen, (caddr_t)&sc->sc_txbuf); 2728 return wi_write_bap(sc, id, off, (caddr_t)&sc->sc_txbuf, 2729 totlen); 2730 } 2731 2732 if ((error = wi_write_bap(sc, id, off, m->m_data, len)) != 0) 2733 return error; 2734 2735 off += m->m_len; 2736 totlen -= len; 2737 } 2738 return 0; 2739 } 2740 2741 STATIC int 2742 wi_alloc_fid(struct wi_softc *sc, int len, int *idp) 2743 { 2744 int i; 2745 2746 if (wi_cmd(sc, WI_CMD_ALLOC_MEM, len, 0, 0)) { 2747 printf("%s: failed to allocate %d bytes on NIC\n", 2748 sc->sc_dev.dv_xname, len); 2749 return ENOMEM; 2750 } 2751 2752 for (i = 0; i < WI_TIMEOUT; i++) { 2753 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_ALLOC) 2754 break; 2755 if (i == WI_TIMEOUT) { 2756 printf("%s: timeout in alloc\n", sc->sc_dev.dv_xname); 2757 return ETIMEDOUT; 2758 } 2759 DELAY(1); 2760 } 2761 *idp = CSR_READ_2(sc, WI_ALLOC_FID); 2762 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC); 2763 return 0; 2764 } 2765 2766 STATIC int 2767 wi_read_rid(struct wi_softc *sc, int rid, void *buf, int *buflenp) 2768 { 2769 int error, len; 2770 u_int16_t ltbuf[2]; 2771 2772 /* Tell the NIC to enter record read mode. */ 2773 error = wi_cmd(sc, WI_CMD_ACCESS | WI_ACCESS_READ, rid, 0, 0); 2774 if (error) 2775 return error; 2776 2777 error = wi_read_bap(sc, rid, 0, ltbuf, sizeof(ltbuf)); 2778 if (error) 2779 return error; 2780 2781 if (le16toh(ltbuf[0]) == 0) 2782 return EOPNOTSUPP; 2783 if (le16toh(ltbuf[1]) != rid) { 2784 printf("%s: record read mismatch, rid=%x, got=%x\n", 2785 sc->sc_dev.dv_xname, rid, le16toh(ltbuf[1])); 2786 return EIO; 2787 } 2788 len = (le16toh(ltbuf[0]) - 1) * 2; /* already got rid */ 2789 if (*buflenp < len) { 2790 printf("%s: record buffer is too small, " 2791 "rid=%x, size=%d, len=%d\n", 2792 sc->sc_dev.dv_xname, rid, *buflenp, len); 2793 return ENOSPC; 2794 } 2795 *buflenp = len; 2796 return wi_read_bap(sc, rid, sizeof(ltbuf), buf, len); 2797 } 2798 2799 STATIC int 2800 wi_write_rid(struct wi_softc *sc, int rid, void *buf, int buflen) 2801 { 2802 int error; 2803 u_int16_t ltbuf[2]; 2804 2805 ltbuf[0] = htole16((buflen + 1) / 2 + 1); /* includes rid */ 2806 ltbuf[1] = htole16(rid); 2807 2808 error = wi_write_bap(sc, rid, 0, ltbuf, sizeof(ltbuf)); 2809 if (error) 2810 return error; 2811 error = wi_write_bap(sc, rid, sizeof(ltbuf), buf, buflen); 2812 if (error) 2813 return error; 2814 2815 return wi_cmd(sc, WI_CMD_ACCESS | WI_ACCESS_WRITE, rid, 0, 0); 2816 } 2817 2818 STATIC void 2819 wi_rssadapt_updatestats_cb(void *arg, struct ieee80211_node *ni) 2820 { 2821 struct wi_node *wn = (void*)ni; 2822 ieee80211_rssadapt_updatestats(&wn->wn_rssadapt); 2823 } 2824 2825 STATIC void 2826 wi_rssadapt_updatestats(void *arg) 2827 { 2828 struct wi_softc *sc = arg; 2829 struct ieee80211com *ic = &sc->sc_ic; 2830 ieee80211_iterate_nodes(ic, wi_rssadapt_updatestats_cb, arg); 2831 if (ic->ic_opmode != IEEE80211_M_MONITOR && 2832 ic->ic_state == IEEE80211_S_RUN) 2833 callout_reset(&sc->sc_rssadapt_ch, hz / 10, 2834 wi_rssadapt_updatestats, arg); 2835 } 2836 2837 STATIC int 2838 wi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 2839 { 2840 struct ifnet *ifp = &ic->ic_if; 2841 struct wi_softc *sc = ic->ic_softc; 2842 struct ieee80211_node *ni = ic->ic_bss; 2843 int buflen, linkstate = LINK_STATE_DOWN, s; 2844 u_int16_t val; 2845 struct wi_ssid ssid; 2846 struct wi_macaddr bssid, old_bssid; 2847 enum ieee80211_state ostate; 2848 #ifdef WI_DEBUG 2849 static const char *stname[] = 2850 { "INIT", "SCAN", "AUTH", "ASSOC", "RUN" }; 2851 #endif /* WI_DEBUG */ 2852 2853 ostate = ic->ic_state; 2854 DPRINTF(("wi_newstate: %s -> %s\n", stname[ostate], stname[nstate])); 2855 2856 switch (nstate) { 2857 case IEEE80211_S_INIT: 2858 if (ic->ic_opmode != IEEE80211_M_MONITOR) 2859 callout_stop(&sc->sc_rssadapt_ch); 2860 ic->ic_flags &= ~IEEE80211_F_SIBSS; 2861 sc->sc_flags &= ~WI_FLAGS_OUTRANGE; 2862 return (*sc->sc_newstate)(ic, nstate, arg); 2863 2864 case IEEE80211_S_RUN: 2865 linkstate = LINK_STATE_UP; 2866 sc->sc_flags &= ~WI_FLAGS_OUTRANGE; 2867 buflen = IEEE80211_ADDR_LEN; 2868 IEEE80211_ADDR_COPY(old_bssid.wi_mac_addr, ni->ni_bssid); 2869 wi_read_rid(sc, WI_RID_CURRENT_BSSID, &bssid, &buflen); 2870 IEEE80211_ADDR_COPY(ni->ni_bssid, &bssid); 2871 IEEE80211_ADDR_COPY(ni->ni_macaddr, &bssid); 2872 buflen = sizeof(val); 2873 wi_read_rid(sc, WI_RID_CURRENT_CHAN, &val, &buflen); 2874 if (!isset(ic->ic_chan_avail, le16toh(val))) 2875 panic("%s: invalid channel %d\n", sc->sc_dev.dv_xname, 2876 le16toh(val)); 2877 ni->ni_chan = &ic->ic_channels[le16toh(val)]; 2878 2879 /* If not equal, then discount a false synchronization. */ 2880 if (!IEEE80211_ADDR_EQ(old_bssid.wi_mac_addr, ni->ni_bssid)) 2881 sc->sc_false_syns = MAX(0, sc->sc_false_syns - 1); 2882 2883 if (ic->ic_opmode == IEEE80211_M_HOSTAP) { 2884 ni->ni_esslen = ic->ic_des_esslen; 2885 memcpy(ni->ni_essid, ic->ic_des_essid, ni->ni_esslen); 2886 ni->ni_rates = ic->ic_sup_rates[ 2887 ieee80211_chan2mode(ic, ni->ni_chan)]; 2888 ni->ni_intval = ic->ic_lintval; 2889 ni->ni_capinfo = IEEE80211_CAPINFO_ESS; 2890 if (ic->ic_flags & IEEE80211_F_PRIVACY) 2891 ni->ni_capinfo |= IEEE80211_CAPINFO_PRIVACY; 2892 } else { 2893 buflen = sizeof(ssid); 2894 wi_read_rid(sc, WI_RID_CURRENT_SSID, &ssid, &buflen); 2895 ni->ni_esslen = le16toh(ssid.wi_len); 2896 if (ni->ni_esslen > IEEE80211_NWID_LEN) 2897 ni->ni_esslen = IEEE80211_NWID_LEN; /*XXX*/ 2898 memcpy(ni->ni_essid, ssid.wi_ssid, ni->ni_esslen); 2899 ni->ni_rates = ic->ic_sup_rates[ 2900 ieee80211_chan2mode(ic, ni->ni_chan)]; /*XXX*/ 2901 } 2902 if (ic->ic_opmode != IEEE80211_M_MONITOR) 2903 callout_reset(&sc->sc_rssadapt_ch, hz / 10, 2904 wi_rssadapt_updatestats, sc); 2905 break; 2906 2907 case IEEE80211_S_SCAN: 2908 case IEEE80211_S_AUTH: 2909 case IEEE80211_S_ASSOC: 2910 break; 2911 } 2912 2913 if (ifp->if_link_state != linkstate) { 2914 ifp->if_link_state = linkstate; 2915 s = splnet(); 2916 rt_ifmsg(ifp); 2917 splx(s); 2918 } 2919 ic->ic_state = nstate; 2920 /* skip standard ieee80211 handling */ 2921 return 0; 2922 } 2923 2924 STATIC int 2925 wi_set_tim(struct ieee80211com *ic, int aid, int which) 2926 { 2927 struct wi_softc *sc = ic->ic_softc; 2928 2929 aid &= ~0xc000; 2930 if (which) 2931 aid |= 0x8000; 2932 2933 return wi_write_val(sc, WI_RID_SET_TIM, aid); 2934 } 2935 2936 STATIC int 2937 wi_scan_ap(struct wi_softc *sc, u_int16_t chanmask, u_int16_t txrate) 2938 { 2939 int error = 0; 2940 u_int16_t val[2]; 2941 2942 if (!sc->sc_enabled) 2943 return ENXIO; 2944 switch (sc->sc_firmware_type) { 2945 case WI_LUCENT: 2946 (void)wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS, 0, 0); 2947 break; 2948 case WI_INTERSIL: 2949 val[0] = htole16(chanmask); /* channel */ 2950 val[1] = htole16(txrate); /* tx rate */ 2951 error = wi_write_rid(sc, WI_RID_SCAN_REQ, val, sizeof(val)); 2952 break; 2953 case WI_SYMBOL: 2954 /* 2955 * XXX only supported on 3.x ? 2956 */ 2957 val[0] = BSCAN_BCAST | BSCAN_ONETIME; 2958 error = wi_write_rid(sc, WI_RID_BCAST_SCAN_REQ, 2959 val, sizeof(val[0])); 2960 break; 2961 } 2962 if (error == 0) { 2963 sc->sc_scan_timer = WI_SCAN_WAIT; 2964 sc->sc_ic.ic_if.if_timer = 1; 2965 DPRINTF(("wi_scan_ap: start scanning, " 2966 "chanmask 0x%x txrate 0x%x\n", chanmask, txrate)); 2967 } 2968 return error; 2969 } 2970 2971 STATIC void 2972 wi_scan_result(struct wi_softc *sc, int fid, int cnt) 2973 { 2974 #define N(a) (sizeof (a) / sizeof (a[0])) 2975 int i, naps, off, szbuf; 2976 struct wi_scan_header ws_hdr; /* Prism2 header */ 2977 struct wi_scan_data_p2 ws_dat; /* Prism2 scantable*/ 2978 struct wi_apinfo *ap; 2979 2980 off = sizeof(u_int16_t) * 2; 2981 memset(&ws_hdr, 0, sizeof(ws_hdr)); 2982 switch (sc->sc_firmware_type) { 2983 case WI_INTERSIL: 2984 wi_read_bap(sc, fid, off, &ws_hdr, sizeof(ws_hdr)); 2985 off += sizeof(ws_hdr); 2986 szbuf = sizeof(struct wi_scan_data_p2); 2987 break; 2988 case WI_SYMBOL: 2989 szbuf = sizeof(struct wi_scan_data_p2) + 6; 2990 break; 2991 case WI_LUCENT: 2992 szbuf = sizeof(struct wi_scan_data); 2993 break; 2994 default: 2995 printf("%s: wi_scan_result: unknown firmware type %u\n", 2996 sc->sc_dev.dv_xname, sc->sc_firmware_type); 2997 naps = 0; 2998 goto done; 2999 } 3000 naps = (cnt * 2 + 2 - off) / szbuf; 3001 if (naps > N(sc->sc_aps)) 3002 naps = N(sc->sc_aps); 3003 sc->sc_naps = naps; 3004 /* Read Data */ 3005 ap = sc->sc_aps; 3006 memset(&ws_dat, 0, sizeof(ws_dat)); 3007 for (i = 0; i < naps; i++, ap++) { 3008 wi_read_bap(sc, fid, off, &ws_dat, 3009 (sizeof(ws_dat) < szbuf ? sizeof(ws_dat) : szbuf)); 3010 DPRINTF2(("wi_scan_result: #%d: off %d bssid %s\n", i, off, 3011 ether_sprintf(ws_dat.wi_bssid))); 3012 off += szbuf; 3013 ap->scanreason = le16toh(ws_hdr.wi_reason); 3014 memcpy(ap->bssid, ws_dat.wi_bssid, sizeof(ap->bssid)); 3015 ap->channel = le16toh(ws_dat.wi_chid); 3016 ap->signal = le16toh(ws_dat.wi_signal); 3017 ap->noise = le16toh(ws_dat.wi_noise); 3018 ap->quality = ap->signal - ap->noise; 3019 ap->capinfo = le16toh(ws_dat.wi_capinfo); 3020 ap->interval = le16toh(ws_dat.wi_interval); 3021 ap->rate = le16toh(ws_dat.wi_rate); 3022 ap->namelen = le16toh(ws_dat.wi_namelen); 3023 if (ap->namelen > sizeof(ap->name)) 3024 ap->namelen = sizeof(ap->name); 3025 memcpy(ap->name, ws_dat.wi_name, ap->namelen); 3026 } 3027 done: 3028 /* Done scanning */ 3029 sc->sc_scan_timer = 0; 3030 DPRINTF(("wi_scan_result: scan complete: ap %d\n", naps)); 3031 #undef N 3032 } 3033 3034 STATIC void 3035 wi_dump_pkt(struct wi_frame *wh, struct ieee80211_node *ni, int rssi) 3036 { 3037 ieee80211_dump_pkt((u_int8_t *) &wh->wi_whdr, sizeof(wh->wi_whdr), 3038 ni ? ni->ni_rates.rs_rates[ni->ni_txrate] & IEEE80211_RATE_VAL 3039 : -1, 3040 rssi); 3041 printf(" status 0x%x rx_tstamp1 %u rx_tstamp0 0x%u rx_silence %u\n", 3042 le16toh(wh->wi_status), le16toh(wh->wi_rx_tstamp1), 3043 le16toh(wh->wi_rx_tstamp0), wh->wi_rx_silence); 3044 printf(" rx_signal %u rx_rate %u rx_flow %u\n", 3045 wh->wi_rx_signal, wh->wi_rx_rate, wh->wi_rx_flow); 3046 printf(" tx_rtry %u tx_rate %u tx_ctl 0x%x dat_len %u\n", 3047 wh->wi_tx_rtry, wh->wi_tx_rate, 3048 le16toh(wh->wi_tx_ctl), le16toh(wh->wi_dat_len)); 3049 printf(" ehdr dst %s src %s type 0x%x\n", 3050 ether_sprintf(wh->wi_ehdr.ether_dhost), 3051 ether_sprintf(wh->wi_ehdr.ether_shost), 3052 wh->wi_ehdr.ether_type); 3053 } 3054