xref: /netbsd-src/sys/dev/ic/wi.c (revision 21a3d2f02241c56556f4b2305ef1b8036f268f70)
1 /*	$NetBSD: wi.c,v 1.27 2001/10/14 12:33:18 ichiro Exp $	*/
2 
3 /*
4  * Copyright (c) 1997, 1998, 1999
5  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 /*
36  * Lucent WaveLAN/IEEE 802.11 PCMCIA driver for NetBSD.
37  *
38  * Original FreeBSD driver written by Bill Paul <wpaul@ctr.columbia.edu>
39  * Electrical Engineering Department
40  * Columbia University, New York City
41  */
42 
43 /*
44  * The WaveLAN/IEEE adapter is the second generation of the WaveLAN
45  * from Lucent. Unlike the older cards, the new ones are programmed
46  * entirely via a firmware-driven controller called the Hermes.
47  * Unfortunately, Lucent will not release the Hermes programming manual
48  * without an NDA (if at all). What they do release is an API library
49  * called the HCF (Hardware Control Functions) which is supposed to
50  * do the device-specific operations of a device driver for you. The
51  * publically available version of the HCF library (the 'HCF Light') is
52  * a) extremely gross, b) lacks certain features, particularly support
53  * for 802.11 frames, and c) is contaminated by the GNU Public License.
54  *
55  * This driver does not use the HCF or HCF Light at all. Instead, it
56  * programs the Hermes controller directly, using information gleaned
57  * from the HCF Light code and corresponding documentation.
58  *
59  * This driver supports both the PCMCIA and ISA versions of the
60  * WaveLAN/IEEE cards. Note however that the ISA card isn't really
61  * anything of the sort: it's actually a PCMCIA bridge adapter
62  * that fits into an ISA slot, into which a PCMCIA WaveLAN card is
63  * inserted. Consequently, you need to use the pccard support for
64  * both the ISA and PCMCIA adapters.
65  */
66 
67 /*
68  * FreeBSD driver ported to NetBSD by Bill Sommerfeld in the back of the
69  * Oslo IETF plenary meeting.
70  */
71 
72 #define WI_HERMES_AUTOINC_WAR	/* Work around data write autoinc bug. */
73 #define WI_HERMES_STATS_WAR	/* Work around stats counter bug. */
74 
75 #include "bpfilter.h"
76 
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/callout.h>
80 #include <sys/device.h>
81 #include <sys/socket.h>
82 #include <sys/mbuf.h>
83 #include <sys/ioctl.h>
84 #include <sys/kernel.h>		/* for hz */
85 #include <sys/proc.h>
86 
87 #include <net/if.h>
88 #include <net/if_dl.h>
89 #include <net/if_media.h>
90 #include <net/if_ether.h>
91 #include <net/if_ieee80211.h>
92 
93 #if NBPFILTER > 0
94 #include <net/bpf.h>
95 #include <net/bpfdesc.h>
96 #endif
97 
98 #include <machine/bus.h>
99 
100 #include <dev/ic/wi_ieee.h>
101 #include <dev/ic/wireg.h>
102 #include <dev/ic/wivar.h>
103 
104 #define STATS_FREQUENCY   (60 * hz) /* collect stats every 60 seconds */
105 
106 static void wi_reset		__P((struct wi_softc *));
107 static int wi_ioctl		__P((struct ifnet *, u_long, caddr_t));
108 static void wi_start		__P((struct ifnet *));
109 static void wi_watchdog		__P((struct ifnet *));
110 static int wi_init		__P((struct ifnet *));
111 static void wi_stop		__P((struct ifnet *, int));
112 static void wi_rxeof		__P((struct wi_softc *));
113 static void wi_txeof		__P((struct wi_softc *, int));
114 static void wi_update_stats	__P((struct wi_softc *));
115 static void wi_setmulti		__P((struct wi_softc *));
116 
117 static int wi_cmd		__P((struct wi_softc *, int, int));
118 static int wi_read_record	__P((struct wi_softc *, struct wi_ltv_gen *));
119 static int wi_write_record	__P((struct wi_softc *, struct wi_ltv_gen *));
120 static int wi_read_data		__P((struct wi_softc *, int,
121 					int, caddr_t, int));
122 static int wi_write_data	__P((struct wi_softc *, int,
123 					int, caddr_t, int));
124 static int wi_seek		__P((struct wi_softc *, int, int, int));
125 static int wi_alloc_nicmem	__P((struct wi_softc *, int, int *));
126 static void wi_inquire_stats	__P((void *));
127 static void wi_inquire_scan	__P((void *));
128 static int wi_setdef		__P((struct wi_softc *, struct wi_req *));
129 static int wi_getdef		__P((struct wi_softc *, struct wi_req *));
130 static int wi_mgmt_xmit		__P((struct wi_softc *, caddr_t, int));
131 
132 static int wi_media_change __P((struct ifnet *));
133 static void wi_media_status __P((struct ifnet *, struct ifmediareq *));
134 
135 static void wi_get_id		__P((struct wi_softc *));
136 
137 static int wi_set_ssid __P((struct ieee80211_nwid *, u_int8_t *, int));
138 static void wi_request_fill_ssid __P((struct wi_req *,
139     struct ieee80211_nwid *));
140 static int wi_write_ssid __P((struct wi_softc *, int, struct wi_req *,
141     struct ieee80211_nwid *));
142 static int wi_set_nwkey __P((struct wi_softc *, struct ieee80211_nwkey *));
143 static int wi_get_nwkey __P((struct wi_softc *, struct ieee80211_nwkey *));
144 static int wi_sync_media __P((struct wi_softc *, int, int));
145 static int wi_set_pm(struct wi_softc *, struct ieee80211_power *);
146 static int wi_get_pm(struct wi_softc *, struct ieee80211_power *);
147 
148 int
149 wi_attach(sc)
150 	struct wi_softc *sc;
151 {
152 	struct ifnet *ifp = sc->sc_ifp;
153 	struct wi_ltv_macaddr   mac;
154 	struct wi_ltv_gen       gen;
155 	static const u_int8_t empty_macaddr[ETHER_ADDR_LEN] = {
156 		0x00, 0x00, 0x00, 0x00, 0x00, 0x00
157 	};
158 	int s;
159 
160 	s = splnet();
161 
162 	callout_init(&sc->wi_stats_ch);
163 	callout_init(&sc->wi_scan_ch);
164 
165 	/* Make sure interrupts are disabled. */
166 	CSR_WRITE_2(sc, WI_INT_EN, 0);
167 	CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF);
168 
169 	/* Reset the NIC. */
170 	wi_reset(sc);
171 
172 	memset(&mac, 0, sizeof(mac));
173 	/* Read the station address. */
174 	mac.wi_type = WI_RID_MAC_NODE;
175 	mac.wi_len = 4;
176 	wi_read_record(sc, (struct wi_ltv_gen *)&mac);
177 	memcpy(sc->sc_macaddr, mac.wi_mac_addr, ETHER_ADDR_LEN);
178 
179 	/*
180 	 * Check if we got anything meaningful.
181 	 *
182 	 * Is it really enough just checking against null ethernet address?
183 	 * Or, check against possible vendor?  XXX.
184 	 */
185 	if (memcmp(sc->sc_macaddr, empty_macaddr, ETHER_ADDR_LEN) == 0) {
186 		printf("%s: could not get mac address, attach failed\n",
187 		    sc->sc_dev.dv_xname);
188 			return 1;
189 	}
190 
191 	printf(" 802.11 address %s\n", ether_sprintf(sc->sc_macaddr));
192 
193 	/* Read NIC identification */
194 	wi_get_id(sc);
195 
196 	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
197 	ifp->if_softc = sc;
198 	ifp->if_start = wi_start;
199 	ifp->if_ioctl = wi_ioctl;
200 	ifp->if_watchdog = wi_watchdog;
201 	ifp->if_init = wi_init;
202 	ifp->if_stop = wi_stop;
203 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
204 #ifdef IFF_NOTRAILERS
205 	ifp->if_flags |= IFF_NOTRAILERS;
206 #endif
207 	IFQ_SET_READY(&ifp->if_snd);
208 
209 	(void)wi_set_ssid(&sc->wi_nodeid, WI_DEFAULT_NODENAME,
210 	    sizeof(WI_DEFAULT_NODENAME) - 1);
211 	(void)wi_set_ssid(&sc->wi_netid, WI_DEFAULT_NETNAME,
212 	    sizeof(WI_DEFAULT_NETNAME) - 1);
213 	(void)wi_set_ssid(&sc->wi_ibssid, WI_DEFAULT_IBSS,
214 	    sizeof(WI_DEFAULT_IBSS) - 1);
215 
216 	sc->wi_portnum = WI_DEFAULT_PORT;
217 	sc->wi_ptype = WI_PORTTYPE_BSS;
218 	sc->wi_ap_density = WI_DEFAULT_AP_DENSITY;
219 	sc->wi_rts_thresh = WI_DEFAULT_RTS_THRESH;
220 	sc->wi_tx_rate = WI_DEFAULT_TX_RATE;
221 	sc->wi_max_data_len = WI_DEFAULT_DATALEN;
222 	sc->wi_create_ibss = WI_DEFAULT_CREATE_IBSS;
223 	sc->wi_pm_enabled = WI_DEFAULT_PM_ENABLED;
224 	sc->wi_max_sleep = WI_DEFAULT_MAX_SLEEP;
225 	sc->wi_roaming = WI_DEFAULT_ROAMING;
226 	sc->wi_authtype = WI_DEFAULT_AUTHTYPE;
227 
228 	memset(&sc->wi_results, 0, sizeof (sc->wi_results));
229 
230 	/*
231 	 * Read the default channel from the NIC. This may vary
232 	 * depending on the country where the NIC was purchased, so
233 	 * we can't hard-code a default and expect it to work for
234 	 * everyone.
235 	 */
236 	gen.wi_type = WI_RID_OWN_CHNL;
237 	gen.wi_len = 2;
238 	wi_read_record(sc, &gen);
239 	sc->wi_channel = le16toh(gen.wi_val);
240 
241 	memset((char *)&sc->wi_stats, 0, sizeof(sc->wi_stats));
242 
243 	/*
244 	 * Find out if we support WEP on this card.
245 	 */
246 	gen.wi_type = WI_RID_WEP_AVAIL;
247 	gen.wi_len = 2;
248 	wi_read_record(sc, &gen);
249 	sc->wi_has_wep = le16toh(gen.wi_val);
250 
251 	ifmedia_init(&sc->sc_media, 0, wi_media_change, wi_media_status);
252 #define	IFM_AUTOADHOC \
253 	IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, IFM_IEEE80211_ADHOC, 0)
254 #define	ADD(m, c)	ifmedia_add(&sc->sc_media, (m), (c), NULL)
255 	ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, 0, 0), 0);
256 	ADD(IFM_AUTOADHOC, 0);
257 	ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1, 0, 0), 0);
258 	ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1,
259 	    IFM_IEEE80211_ADHOC, 0), 0);
260 	ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2, 0, 0), 0);
261 	ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2,
262 	    IFM_IEEE80211_ADHOC, 0), 0);
263 	ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11, 0, 0), 0);
264 	ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11,
265 	    IFM_IEEE80211_ADHOC, 0), 0);
266 	ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_MANUAL, 0, 0), 0);
267 #undef ADD
268 	ifmedia_set(&sc->sc_media, IFM_AUTOADHOC);
269 
270 	/*
271 	 * Call MI attach routines.
272 	 */
273 	if_attach(ifp);
274 	ether_ifattach(ifp, mac.wi_mac_addr);
275 
276 	ifp->if_baudrate = IF_Mbps(2);
277 
278 	/* Attach is successful. */
279 	sc->sc_attached = 1;
280 
281 	splx(s);
282 	return 0;
283 }
284 
285 static void wi_rxeof(sc)
286 	struct wi_softc		*sc;
287 {
288 	struct ifnet		*ifp;
289 	struct ether_header	*eh;
290 	struct wi_frame		rx_frame;
291 	struct mbuf		*m;
292 	int			id;
293 	u_int16_t		msg_type;
294 	u_int16_t		status;
295 	u_int16_t		frame_ctl;
296 	u_int16_t		port;
297 
298 	ifp = sc->sc_ifp;
299 
300 	id = CSR_READ_2(sc, WI_RX_FID);
301 
302 	/* First read in the frame header */
303 	if (wi_read_data(sc, id, 0, (caddr_t)&rx_frame, sizeof(rx_frame))) {
304 		ifp->if_ierrors++;
305 		return;
306 	}
307 
308 	status = le16toh(rx_frame.wi_status);
309 	frame_ctl = le16toh(rx_frame.wi_frame_ctl);
310 	port = (status >> 8) & 0x07;
311 	msg_type = status & WI_RXSTAT_MSG_TYPE;
312 
313 	/*
314 	 * Drop packets with CRC errors here.  We may want the others,
315 	 * since we may be doing interesting things with undecryptable
316 	 * packets, like analyzing them in userland.
317 	 */
318 	if (status & WI_STAT_BADCRC) {
319 		ifp->if_ierrors++;
320 		return;
321 	}
322 
323 	if (port == 7) {
324 		if ((le16toh(rx_frame.wi_dat_len) + 60) > MCLBYTES)
325 			return;
326 
327 		MGETHDR(m, M_DONTWAIT, MT_DATA);
328 		if (m == NULL) {
329 			ifp->if_ierrors++;
330 			return;
331 		}
332 		MCLGET(m, M_DONTWAIT);
333 		if (!(m->m_flags & M_EXT)) {
334 			m_freem(m);
335 			ifp->if_ierrors++;
336 			return;
337 		}
338 
339 		memcpy(mtod(m, caddr_t), &rx_frame, 60);
340 		m->m_pkthdr.rcvif = ifp;
341 
342 		m->m_pkthdr.len = m->m_len =
343 			le16toh(rx_frame.wi_dat_len) + 60;
344 
345 		if (wi_read_data(sc, id, 60, mtod(m, caddr_t) + 60,
346 				 m->m_len - 60)) {
347 			m_freem(m);
348 			ifp->if_ierrors++;
349 			return;
350 		}
351 
352 #if NBPFILTER > 0
353 		if (ifp->if_bpf)
354 			bpf_mtap(ifp->if_bpf, m);
355 #endif
356 		m_freem(m);
357 		return;
358 	}
359 
360 	/*
361 	 * Drop undecryptable or packets with receive errors here
362 	 */
363 	if (status & WI_STAT_ERRSTAT) {
364 		ifp->if_ierrors++;
365 		return;
366 	}
367 
368 	MGETHDR(m, M_DONTWAIT, MT_DATA);
369 	if (m == NULL) {
370 		ifp->if_ierrors++;
371 		return;
372 	}
373 	MCLGET(m, M_DONTWAIT);
374 	if (!(m->m_flags & M_EXT)) {
375 		m_freem(m);
376 		ifp->if_ierrors++;
377 		return;
378 	}
379 
380 	/* Align the data after the ethernet header */
381 	m->m_data = (caddr_t) ALIGN(m->m_data + sizeof(struct ether_header))
382 	    - sizeof(struct ether_header);
383 
384 	eh = mtod(m, struct ether_header *);
385 	m->m_pkthdr.rcvif = ifp;
386 
387 	if (le16toh(rx_frame.wi_status) == WI_STAT_1042 ||
388 	    le16toh(rx_frame.wi_status) == WI_STAT_TUNNEL ||
389 	    le16toh(rx_frame.wi_status) == WI_STAT_WMP_MSG) {
390 		if ((le16toh(rx_frame.wi_dat_len) + WI_SNAPHDR_LEN) > MCLBYTES) {
391 			printf("%s: oversized packet received "
392 			    "(wi_dat_len=%d, wi_status=0x%x)\n",
393 			    sc->sc_dev.dv_xname,
394 			    le16toh(rx_frame.wi_dat_len), le16toh(rx_frame.wi_status));
395 			m_freem(m);
396 			ifp->if_ierrors++;
397 			return;
398 		}
399 		m->m_pkthdr.len = m->m_len =
400 		    le16toh(rx_frame.wi_dat_len) + WI_SNAPHDR_LEN;
401 
402 		memcpy((char *)&eh->ether_dhost, (char *)&rx_frame.wi_dst_addr,
403 		    ETHER_ADDR_LEN);
404 		memcpy((char *)&eh->ether_shost, (char *)&rx_frame.wi_src_addr,
405 		    ETHER_ADDR_LEN);
406 		memcpy((char *)&eh->ether_type, (char *)&rx_frame.wi_type,
407 		    sizeof(u_int16_t));
408 
409 		if (wi_read_data(sc, id, WI_802_11_OFFSET,
410 		    mtod(m, caddr_t) + sizeof(struct ether_header),
411 		    m->m_len + 2)) {
412 			m_freem(m);
413 			ifp->if_ierrors++;
414 			return;
415 		}
416 	} else {
417 		if ((le16toh(rx_frame.wi_dat_len) +
418 		    sizeof(struct ether_header)) > MCLBYTES) {
419 			printf("%s: oversized packet received "
420 			    "(wi_dat_len=%d, wi_status=0x%x)\n",
421 			    sc->sc_dev.dv_xname,
422 			    le16toh(rx_frame.wi_dat_len), le16toh(rx_frame.wi_status));
423 			m_freem(m);
424 			ifp->if_ierrors++;
425 			return;
426 		}
427 		m->m_pkthdr.len = m->m_len =
428 		    le16toh(rx_frame.wi_dat_len) + sizeof(struct ether_header);
429 
430 		if (wi_read_data(sc, id, WI_802_3_OFFSET,
431 		    mtod(m, caddr_t), m->m_len + 2)) {
432 			m_freem(m);
433 			ifp->if_ierrors++;
434 			return;
435 		}
436 	}
437 
438 	ifp->if_ipackets++;
439 
440 #if NBPFILTER > 0
441 	/* Handle BPF listeners. */
442 	if (ifp->if_bpf)
443 		bpf_mtap(ifp->if_bpf, m);
444 #endif
445 
446 	/*
447 	 * Discard packets which are not data packets
448 	 */
449 	if (WLAN_FC_GET_TYPE(frame_ctl) != WLAN_FC_TYPE_DATA) {
450 		m_freem(m);
451 		return;
452 	}
453 
454 	/* Receive packet. */
455 	(*ifp->if_input)(ifp, m);
456 }
457 
458 static void wi_txeof(sc, status)
459 	struct wi_softc	*sc;
460 	int		status;
461 {
462 	struct ifnet	*ifp = sc->sc_ifp;
463 
464 	ifp->if_timer = 0;
465 	ifp->if_flags &= ~IFF_OACTIVE;
466 
467 	if (status & WI_EV_TX_EXC)
468 		ifp->if_oerrors++;
469 	else
470 		ifp->if_opackets++;
471 
472 	return;
473 }
474 
475 void wi_inquire_stats(xsc)
476 	void			*xsc;
477 {
478 	struct wi_softc		*sc;
479 	struct ifnet		*ifp;
480 
481 	sc = xsc;
482 	ifp = &sc->sc_ethercom.ec_if;
483 
484 	if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
485 		return;
486 
487 	callout_reset(&sc->wi_stats_ch, STATS_FREQUENCY, wi_inquire_stats, sc);
488 
489 	/* Don't do this while we're transmitting */
490 	if (ifp->if_flags & IFF_OACTIVE)
491 		return;
492 
493 	wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_COUNTERS);
494 }
495 
496 void wi_inquire_scan(xsc)
497 	void			*xsc;
498 {
499 	struct wi_softc		*sc;
500 	struct ifnet		*ifp;
501 
502 	sc = xsc;
503 	ifp = &sc->sc_ethercom.ec_if;
504 
505 	if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
506 		return;
507 
508 	if (sc->wi_results.scanning > 0)
509 		callout_reset(&sc->wi_scan_ch, sc->wi_results.scanning,
510 			      wi_inquire_scan, sc);
511 	else
512 		callout_stop(&sc->wi_scan_ch);
513 
514 	/* Don't do this while we're transmitting */
515 	if (ifp->if_flags & IFF_OACTIVE)
516 		return;
517 
518 	wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS);
519 }
520 
521 void wi_update_stats(sc)
522 	struct wi_softc		*sc;
523 {
524 	struct wi_ltv_gen	gen;
525 	u_int16_t		id;
526 	struct ifnet		*ifp;
527 	u_int32_t		*ptr;
528 	int			len, i;
529 	u_int16_t		t;
530 
531 	ifp = &sc->sc_ethercom.ec_if;
532 
533 	id = CSR_READ_2(sc, WI_INFO_FID);
534 
535 	wi_read_data(sc, id, 0, (char *)&gen, 4);
536 
537 	switch (gen.wi_type) {
538 	case WI_INFO_COUNTERS:
539 		/* some card versions have a larger stats structure */
540 		len = (gen.wi_len - 1 < sizeof(sc->wi_stats) / 4) ?
541 			gen.wi_len - 1 : sizeof(sc->wi_stats) / 4;
542 		ptr = (u_int32_t *)&sc->wi_stats;
543 
544 		for (i = 0; i < len; i++) {
545 			t = CSR_READ_2(sc, WI_DATA1);
546 #ifdef WI_HERMES_STATS_WAR
547 			if (t > 0xF000)
548 				t = ~t & 0xFFFF;
549 #endif
550 			ptr[i] += t;
551 		}
552 
553 		ifp->if_collisions = sc->wi_stats.wi_tx_single_retries +
554 			sc->wi_stats.wi_tx_multi_retries +
555 			sc->wi_stats.wi_tx_retry_limit;
556 		break;
557 
558 	case WI_INFO_SCAN_RESULTS:
559 		microtime(&sc->wi_results.lastscan);
560 		for (i = 0 ; i < gen.wi_len - 1 ; i++) {
561 			t = CSR_READ_2(sc, WI_DATA1);
562 			if (i < WI_SCAN_RESULTS_MAXLEN)
563 				sc->wi_results.scan_results[i] = t;
564 		}
565 		if (gen.wi_len - 1 <= WI_SCAN_RESULTS_MAXLEN) {
566 			sc->wi_results.len = gen.wi_len - 1;
567 			sc->wi_results.truncated = 0;
568 		} else {
569 			sc->wi_results.len = WI_SCAN_RESULTS_MAXLEN;
570 			sc->wi_results.truncated = 1;
571 		}
572 		break;
573 
574 	default:
575 #if 0
576 		printf("Got info type: %04x\n", gen.wi_type);
577 #endif
578 		for (i = 0; i < gen.wi_len; i++) {
579 			t = CSR_READ_2(sc, WI_DATA1);
580 #if 0
581 			printf("[0x%02x] = 0x%04x\n", i, t);
582 #endif
583 		}
584 		break;
585 	}
586 }
587 
588 int wi_intr(arg)
589 	void *arg;
590 {
591 	struct wi_softc		*sc = arg;
592 	struct ifnet		*ifp;
593 	u_int16_t		status;
594 
595 	if (sc->sc_enabled == 0 ||
596 	    (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0 ||
597 	    (sc->sc_ethercom.ec_if.if_flags & IFF_RUNNING) == 0)
598 		return (0);
599 
600 	ifp = &sc->sc_ethercom.ec_if;
601 
602 	if (!(ifp->if_flags & IFF_UP)) {
603 		CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF);
604 		CSR_WRITE_2(sc, WI_INT_EN, 0);
605 		return 1;
606 	}
607 
608 	/* Disable interrupts. */
609 	CSR_WRITE_2(sc, WI_INT_EN, 0);
610 
611 	status = CSR_READ_2(sc, WI_EVENT_STAT);
612 	CSR_WRITE_2(sc, WI_EVENT_ACK, ~WI_INTRS);
613 
614 	if (status & WI_EV_RX) {
615 		wi_rxeof(sc);
616 		CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
617 	}
618 
619 	if (status & WI_EV_TX) {
620 		wi_txeof(sc, status);
621 		CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_TX);
622 	}
623 
624 	if (status & WI_EV_ALLOC) {
625 		int			id;
626 		id = CSR_READ_2(sc, WI_ALLOC_FID);
627 		CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
628 		if (id == sc->wi_tx_data_id)
629 			wi_txeof(sc, status);
630 	}
631 
632 	if (status & WI_EV_INFO) {
633 		wi_update_stats(sc);
634 		CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_INFO);
635 	}
636 
637 	if (status & WI_EV_TX_EXC) {
638 		wi_txeof(sc, status);
639 		CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_TX_EXC);
640 	}
641 
642 	if (status & WI_EV_INFO_DROP) {
643 		CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_INFO_DROP);
644 	}
645 
646 	/* Re-enable interrupts. */
647 	CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
648 
649 	if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
650 		wi_start(ifp);
651 
652 	return 1;
653 }
654 
655 static int
656 wi_cmd(sc, cmd, val)
657 	struct wi_softc		*sc;
658 	int			cmd;
659 	int			val;
660 {
661 	int			i, s = 0;
662 
663 	/* wait for the busy bit to clear */
664 	for (i = 0; i < WI_TIMEOUT; i++) {
665 		if (!(CSR_READ_2(sc, WI_COMMAND) & WI_CMD_BUSY))
666 			break;
667 	}
668 
669 	CSR_WRITE_2(sc, WI_PARAM0, val);
670 	CSR_WRITE_2(sc, WI_PARAM1, 0);
671 	CSR_WRITE_2(sc, WI_PARAM2, 0);
672 	CSR_WRITE_2(sc, WI_COMMAND, cmd);
673 
674 	/* wait for the cmd completed bit */
675 	for (i = 0; i < WI_TIMEOUT; i++) {
676 		if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_CMD)
677 			break;
678 		DELAY(1);
679 	}
680 
681 	/* Ack the command */
682 	CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD);
683 
684 	s = CSR_READ_2(sc, WI_STATUS);
685 	if (s & WI_STAT_CMD_RESULT)
686 		return(EIO);
687 
688 	if (i == WI_TIMEOUT)
689 		return(ETIMEDOUT);
690 
691 	return(0);
692 }
693 
694 static void
695 wi_reset(sc)
696 	struct wi_softc		*sc;
697 {
698 	DELAY(100*1000); /* 100 m sec */
699 	if (wi_cmd(sc, WI_CMD_INI, 0))
700 		printf("%s: init failed\n", sc->sc_dev.dv_xname);
701 	CSR_WRITE_2(sc, WI_INT_EN, 0);
702 	CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF);
703 
704 	/* Calibrate timer. */
705 	WI_SETVAL(WI_RID_TICK_TIME, 8);
706 
707 	return;
708 }
709 
710 void
711 wi_pci_reset(sc)
712 	struct wi_softc		*sc;
713 {
714 	bus_space_write_2(sc->sc_iot, sc->sc_ioh,
715 			  WI_PCI_COR, WI_PCI_SOFT_RESET);
716 	DELAY(100*1000); /* 100 m sec */
717 
718 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, WI_PCI_COR, 0x0);
719 	DELAY(100*1000); /* 100 m sec */
720 
721 	return;
722 }
723 
724 /*
725  * Read an LTV record from the NIC.
726  */
727 static int wi_read_record(sc, ltv)
728 	struct wi_softc		*sc;
729 	struct wi_ltv_gen	*ltv;
730 {
731 	u_int16_t		*ptr;
732 	int			len, code;
733 	struct wi_ltv_gen	*oltv, p2ltv;
734 
735 	if (sc->sc_prism2) {
736 		oltv = ltv;
737 		switch (ltv->wi_type) {
738 		case WI_RID_ENCRYPTION:
739 			p2ltv.wi_type = WI_RID_P2_ENCRYPTION;
740 			p2ltv.wi_len = 2;
741 			ltv = &p2ltv;
742 			break;
743 		case WI_RID_TX_CRYPT_KEY:
744 			p2ltv.wi_type = WI_RID_P2_TX_CRYPT_KEY;
745 			p2ltv.wi_len = 2;
746 			ltv = &p2ltv;
747 			break;
748 		}
749 	}
750 
751 	/* Tell the NIC to enter record read mode. */
752 	if (wi_cmd(sc, WI_CMD_ACCESS|WI_ACCESS_READ, ltv->wi_type))
753 		return(EIO);
754 
755 	/* Seek to the record. */
756 	if (wi_seek(sc, ltv->wi_type, 0, WI_BAP1))
757 		return(EIO);
758 
759 	/*
760 	 * Read the length and record type and make sure they
761 	 * match what we expect (this verifies that we have enough
762 	 * room to hold all of the returned data).
763 	 */
764 	len = CSR_READ_2(sc, WI_DATA1);
765 	if (len > ltv->wi_len)
766 		return(ENOSPC);
767 	code = CSR_READ_2(sc, WI_DATA1);
768 	if (code != ltv->wi_type)
769 		return(EIO);
770 
771 	ltv->wi_len = len;
772 	ltv->wi_type = code;
773 
774 	/* Now read the data. */
775 	ptr = &ltv->wi_val;
776 	if (ltv->wi_len > 1)
777 		CSR_READ_MULTI_STREAM_2(sc, WI_DATA1, ptr, ltv->wi_len - 1);
778 
779 	if (sc->sc_prism2) {
780 		int v;
781 
782 		switch (oltv->wi_type) {
783 		case WI_RID_TX_RATE:
784 		case WI_RID_CUR_TX_RATE:
785 			switch (le16toh(ltv->wi_val)) {
786 			case 1: v = 1; break;
787 			case 2: v = 2; break;
788 			case 3:	v = 6; break;
789 			case 4: v = 5; break;
790 			case 7: v = 7; break;
791 			case 8: v = 11; break;
792 			case 15: v = 3; break;
793 			default: v = 0x100 + le16toh(ltv->wi_val); break;
794 			}
795 			oltv->wi_val = htole16(v);
796 			break;
797 		case WI_RID_ENCRYPTION:
798 			oltv->wi_len = 2;
799 			if (le16toh(ltv->wi_val) & 0x01)
800 				oltv->wi_val = htole16(1);
801 			else
802 				oltv->wi_val = htole16(0);
803 			break;
804 		case WI_RID_TX_CRYPT_KEY:
805 			oltv->wi_len = 2;
806 			oltv->wi_val = ltv->wi_val;
807 			break;
808 		case WI_RID_AUTH_CNTL:
809 			oltv->wi_len = 2;
810 			if (le16toh(ltv->wi_val) & 0x01)
811 				oltv->wi_val = htole16(1);
812 			else if (le16toh(ltv->wi_val) & 0x02)
813 				oltv->wi_val = htole16(2);
814 			break;
815 		}
816 	}
817 
818 	return(0);
819 }
820 
821 /*
822  * Same as read, except we inject data instead of reading it.
823  */
824 static int wi_write_record(sc, ltv)
825 	struct wi_softc		*sc;
826 	struct wi_ltv_gen	*ltv;
827 {
828 	u_int16_t		*ptr;
829 	int			i;
830 	struct wi_ltv_gen	p2ltv;
831 
832 	if (sc->sc_prism2) {
833 		int v;
834 
835 		switch (ltv->wi_type) {
836 		case WI_RID_TX_RATE:
837 			p2ltv.wi_type = WI_RID_TX_RATE;
838 			p2ltv.wi_len = 2;
839 			switch (le16toh(ltv->wi_val)) {
840 			case 1: v = 1; break;
841 			case 2: v = 2; break;
842 			case 3:	v = 15; break;
843 			case 5: v = 4; break;
844 			case 6: v = 3; break;
845 			case 7: v = 7; break;
846 			case 11: v = 8; break;
847 			default: return EINVAL;
848 			}
849 			p2ltv.wi_val = htole16(v);
850 			ltv = &p2ltv;
851 			break;
852 		case WI_RID_ENCRYPTION:
853 			p2ltv.wi_type = WI_RID_P2_ENCRYPTION;
854 			p2ltv.wi_len = 2;
855 			if (le16toh(ltv->wi_val))
856 				p2ltv.wi_val = htole16(0x03);
857 			else
858 				p2ltv.wi_val = htole16(0x90);
859 			ltv = &p2ltv;
860 			break;
861 		case WI_RID_TX_CRYPT_KEY:
862 			p2ltv.wi_type = WI_RID_P2_TX_CRYPT_KEY;
863 			p2ltv.wi_len = 2;
864 			p2ltv.wi_val = ltv->wi_val;
865 			ltv = &p2ltv;
866 			break;
867 		case WI_RID_DEFLT_CRYPT_KEYS:
868 		    {
869 			int error;
870 			struct wi_ltv_str	ws;
871 			struct wi_ltv_keys	*wk = (struct wi_ltv_keys *)ltv;
872 			for (i = 0; i < 4; i++) {
873 				ws.wi_len = 4;
874 				ws.wi_type = WI_RID_P2_CRYPT_KEY0 + i;
875 				memcpy(ws.wi_str, &wk->wi_keys[i].wi_keydat, 5);
876 				ws.wi_str[5] = '\0';
877 				error = wi_write_record(sc,
878 				    (struct wi_ltv_gen *)&ws);
879 				if (error)
880 					return error;
881 			}
882 			return 0;
883 		    }
884 		case WI_RID_AUTH_CNTL:
885 			p2ltv.wi_type = WI_RID_AUTH_CNTL;
886 			p2ltv.wi_len = 2;
887 			if (le16toh(ltv->wi_val) == 1)
888 				p2ltv.wi_val = htole16(0x01);
889 			else if (le16toh(ltv->wi_val) == 2)
890 				p2ltv.wi_val = htole16(0x02);
891 			ltv = &p2ltv;
892 			break;
893 		}
894 	}
895 
896 	if (wi_seek(sc, ltv->wi_type, 0, WI_BAP1))
897 		return(EIO);
898 
899 	CSR_WRITE_2(sc, WI_DATA1, ltv->wi_len);
900 	CSR_WRITE_2(sc, WI_DATA1, ltv->wi_type);
901 
902 	/* Write data */
903 	ptr = &ltv->wi_val;
904 	if (ltv->wi_len > 1)
905 		CSR_WRITE_MULTI_STREAM_2(sc, WI_DATA1, ptr, ltv->wi_len - 1);
906 
907 	if (wi_cmd(sc, WI_CMD_ACCESS|WI_ACCESS_WRITE, ltv->wi_type))
908 		return(EIO);
909 
910 	return(0);
911 }
912 
913 static int wi_seek(sc, id, off, chan)
914 	struct wi_softc		*sc;
915 	int			id, off, chan;
916 {
917 	int			i;
918 	int			selreg, offreg;
919 	int 			status;
920 
921 	switch (chan) {
922 	case WI_BAP0:
923 		selreg = WI_SEL0;
924 		offreg = WI_OFF0;
925 		break;
926 	case WI_BAP1:
927 		selreg = WI_SEL1;
928 		offreg = WI_OFF1;
929 		break;
930 	default:
931 		printf("%s: invalid data path: %x\n",
932 		    sc->sc_dev.dv_xname, chan);
933 		return(EIO);
934 	}
935 
936 	CSR_WRITE_2(sc, selreg, id);
937 	CSR_WRITE_2(sc, offreg, off);
938 
939 	for (i = 0; i < WI_TIMEOUT; i++) {
940 	  	status = CSR_READ_2(sc, offreg);
941 		if (!(status & (WI_OFF_BUSY|WI_OFF_ERR)))
942 			break;
943 	}
944 
945 	if (i == WI_TIMEOUT) {
946 		printf("%s: timeout in wi_seek to %x/%x; last status %x\n",
947 		       sc->sc_dev.dv_xname, id, off, status);
948 		return(ETIMEDOUT);
949 	}
950 	return(0);
951 }
952 
953 static int wi_read_data(sc, id, off, buf, len)
954 	struct wi_softc		*sc;
955 	int			id, off;
956 	caddr_t			buf;
957 	int			len;
958 {
959 	u_int16_t		*ptr;
960 
961 	if (wi_seek(sc, id, off, WI_BAP1))
962 		return(EIO);
963 
964 	ptr = (u_int16_t *)buf;
965 	CSR_READ_MULTI_STREAM_2(sc, WI_DATA1, ptr, len / 2);
966 
967 	return(0);
968 }
969 
970 /*
971  * According to the comments in the HCF Light code, there is a bug in
972  * the Hermes (or possibly in certain Hermes firmware revisions) where
973  * the chip's internal autoincrement counter gets thrown off during
974  * data writes: the autoincrement is missed, causing one data word to
975  * be overwritten and subsequent words to be written to the wrong memory
976  * locations. The end result is that we could end up transmitting bogus
977  * frames without realizing it. The workaround for this is to write a
978  * couple of extra guard words after the end of the transfer, then
979  * attempt to read then back. If we fail to locate the guard words where
980  * we expect them, we preform the transfer over again.
981  */
982 static int wi_write_data(sc, id, off, buf, len)
983 	struct wi_softc		*sc;
984 	int			id, off;
985 	caddr_t			buf;
986 	int			len;
987 {
988 	u_int16_t		*ptr;
989 
990 #ifdef WI_HERMES_AUTOINC_WAR
991 again:
992 #endif
993 
994 	if (wi_seek(sc, id, off, WI_BAP0))
995 		return(EIO);
996 
997 	ptr = (u_int16_t *)buf;
998 	CSR_WRITE_MULTI_STREAM_2(sc, WI_DATA0, ptr, len / 2);
999 
1000 #ifdef WI_HERMES_AUTOINC_WAR
1001 	CSR_WRITE_2(sc, WI_DATA0, 0x1234);
1002 	CSR_WRITE_2(sc, WI_DATA0, 0x5678);
1003 
1004 	if (wi_seek(sc, id, off + len, WI_BAP0))
1005 		return(EIO);
1006 
1007 	if (CSR_READ_2(sc, WI_DATA0) != 0x1234 ||
1008 	    CSR_READ_2(sc, WI_DATA0) != 0x5678)
1009 		goto again;
1010 #endif
1011 
1012 	return(0);
1013 }
1014 
1015 /*
1016  * Allocate a region of memory inside the NIC and zero
1017  * it out.
1018  */
1019 static int wi_alloc_nicmem(sc, len, id)
1020 	struct wi_softc		*sc;
1021 	int			len;
1022 	int			*id;
1023 {
1024 	int			i;
1025 
1026 	if (wi_cmd(sc, WI_CMD_ALLOC_MEM, len)) {
1027 		printf("%s: failed to allocate %d bytes on NIC\n",
1028 		    sc->sc_dev.dv_xname, len);
1029 		return(ENOMEM);
1030 	}
1031 
1032 	for (i = 0; i < WI_TIMEOUT; i++) {
1033 		if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_ALLOC)
1034 			break;
1035 	}
1036 
1037 	if (i == WI_TIMEOUT) {
1038 		printf("%s: TIMED OUT in alloc\n", sc->sc_dev.dv_xname);
1039 		return(ETIMEDOUT);
1040 	}
1041 
1042 	CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
1043 	*id = CSR_READ_2(sc, WI_ALLOC_FID);
1044 
1045 	if (wi_seek(sc, *id, 0, WI_BAP0)) {
1046 		printf("%s: seek failed in alloc\n", sc->sc_dev.dv_xname);
1047 		return(EIO);
1048 	}
1049 
1050 	for (i = 0; i < len / 2; i++)
1051 		CSR_WRITE_2(sc, WI_DATA0, 0);
1052 
1053 	return(0);
1054 }
1055 
1056 static void wi_setmulti(sc)
1057 	struct wi_softc		*sc;
1058 {
1059 	struct ifnet		*ifp;
1060 	int			i = 0;
1061 	struct wi_ltv_mcast	mcast;
1062 	struct ether_multi *enm;
1063 	struct ether_multistep estep;
1064 	struct ethercom *ec = &sc->sc_ethercom;
1065 
1066 	ifp = &sc->sc_ethercom.ec_if;
1067 
1068 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
1069 allmulti:
1070 		ifp->if_flags |= IFF_ALLMULTI;
1071 		memset((char *)&mcast, 0, sizeof(mcast));
1072 		mcast.wi_type = WI_RID_MCAST;
1073 		mcast.wi_len = ((ETHER_ADDR_LEN / 2) * 16) + 1;
1074 
1075 		wi_write_record(sc, (struct wi_ltv_gen *)&mcast);
1076 		return;
1077 	}
1078 
1079 	i = 0;
1080 	ETHER_FIRST_MULTI(estep, ec, enm);
1081 	while (enm != NULL) {
1082 		/* Punt on ranges or too many multicast addresses. */
1083 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1084 		    ETHER_ADDR_LEN) != 0 ||
1085 		    i >= 16)
1086 			goto allmulti;
1087 
1088 		memcpy((char *)&mcast.wi_mcast[i], enm->enm_addrlo,
1089 		    ETHER_ADDR_LEN);
1090 		i++;
1091 		ETHER_NEXT_MULTI(estep, enm);
1092 	}
1093 
1094 	ifp->if_flags &= ~IFF_ALLMULTI;
1095 	mcast.wi_type = WI_RID_MCAST;
1096 	mcast.wi_len = ((ETHER_ADDR_LEN / 2) * i) + 1;
1097 	wi_write_record(sc, (struct wi_ltv_gen *)&mcast);
1098 }
1099 
1100 static int
1101 wi_setdef(sc, wreq)
1102 	struct wi_softc		*sc;
1103 	struct wi_req		*wreq;
1104 {
1105 	struct sockaddr_dl	*sdl;
1106 	struct ifnet		*ifp;
1107 	int error = 0;
1108 
1109 	ifp = &sc->sc_ethercom.ec_if;
1110 
1111 	switch(wreq->wi_type) {
1112 	case WI_RID_MAC_NODE:
1113 		sdl = (struct sockaddr_dl *)ifp->if_sadl;
1114 		memcpy((char *)&sc->sc_macaddr, (char *)&wreq->wi_val,
1115 		    ETHER_ADDR_LEN);
1116 		memcpy(LLADDR(sdl), (char *)&wreq->wi_val, ETHER_ADDR_LEN);
1117 		break;
1118 	case WI_RID_PORTTYPE:
1119 		error = wi_sync_media(sc, le16toh(wreq->wi_val[0]), sc->wi_tx_rate);
1120 		break;
1121 	case WI_RID_TX_RATE:
1122 		error = wi_sync_media(sc, sc->wi_ptype, le16toh(wreq->wi_val[0]));
1123 		break;
1124 	case WI_RID_MAX_DATALEN:
1125 		sc->wi_max_data_len = le16toh(wreq->wi_val[0]);
1126 		break;
1127 	case WI_RID_RTS_THRESH:
1128 		sc->wi_rts_thresh = le16toh(wreq->wi_val[0]);
1129 		break;
1130 	case WI_RID_SYSTEM_SCALE:
1131 		sc->wi_ap_density = le16toh(wreq->wi_val[0]);
1132 		break;
1133 	case WI_RID_CREATE_IBSS:
1134 		sc->wi_create_ibss = le16toh(wreq->wi_val[0]);
1135 		break;
1136 	case WI_RID_OWN_CHNL:
1137 		sc->wi_channel = le16toh(wreq->wi_val[0]);
1138 		break;
1139 	case WI_RID_NODENAME:
1140 		error = wi_set_ssid(&sc->wi_nodeid,
1141 		    (u_int8_t *)&wreq->wi_val[1], le16toh(wreq->wi_val[0]));
1142 		break;
1143 	case WI_RID_DESIRED_SSID:
1144 		error = wi_set_ssid(&sc->wi_netid,
1145 		    (u_int8_t *)&wreq->wi_val[1], le16toh(wreq->wi_val[0]));
1146 		break;
1147 	case WI_RID_OWN_SSID:
1148 		error = wi_set_ssid(&sc->wi_ibssid,
1149 		    (u_int8_t *)&wreq->wi_val[1], le16toh(wreq->wi_val[0]));
1150 		break;
1151 	case WI_RID_PM_ENABLED:
1152 		sc->wi_pm_enabled = le16toh(wreq->wi_val[0]);
1153 		break;
1154 	case WI_RID_MICROWAVE_OVEN:
1155 		sc->wi_mor_enabled = le16toh(wreq->wi_val[0]);
1156 		break;
1157 	case WI_RID_MAX_SLEEP:
1158 		sc->wi_max_sleep = le16toh(wreq->wi_val[0]);
1159 		break;
1160 	case WI_RID_AUTH_CNTL:
1161 		sc->wi_authtype = le16toh(wreq->wi_val[0]);
1162 		break;
1163 	case WI_RID_ROAMING_MODE:
1164 		sc->wi_roaming = le16toh(wreq->wi_val[0]);
1165 		break;
1166 	case WI_RID_ENCRYPTION:
1167 		sc->wi_use_wep = le16toh(wreq->wi_val[0]);
1168 		break;
1169 	case WI_RID_TX_CRYPT_KEY:
1170 		sc->wi_tx_key = le16toh(wreq->wi_val[0]);
1171 		break;
1172 	case WI_RID_DEFLT_CRYPT_KEYS:
1173 		memcpy((char *)&sc->wi_keys, (char *)wreq,
1174 		    sizeof(struct wi_ltv_keys));
1175 		break;
1176 	default:
1177 		error = EINVAL;
1178 		break;
1179 	}
1180 
1181 	return (error);
1182 }
1183 
1184 static int
1185 wi_getdef(sc, wreq)
1186 	struct wi_softc		*sc;
1187 	struct wi_req		*wreq;
1188 {
1189 	struct sockaddr_dl	*sdl;
1190 	struct ifnet		*ifp;
1191 	int error = 0;
1192 
1193 	ifp = &sc->sc_ethercom.ec_if;
1194 
1195 	wreq->wi_len = 2;			/* XXX */
1196 	switch (wreq->wi_type) {
1197 	case WI_RID_MAC_NODE:
1198 		wreq->wi_len += ETHER_ADDR_LEN / 2 - 1;
1199 		sdl = (struct sockaddr_dl *)ifp->if_sadl;
1200 		memcpy(&wreq->wi_val, &sc->sc_macaddr, ETHER_ADDR_LEN);
1201 		memcpy(&wreq->wi_val, LLADDR(sdl), ETHER_ADDR_LEN);
1202 		break;
1203 	case WI_RID_PORTTYPE:
1204 		wreq->wi_val[0] = htole16(sc->wi_ptype);
1205 		break;
1206 	case WI_RID_TX_RATE:
1207 		wreq->wi_val[0] = htole16(sc->wi_tx_rate);
1208 		break;
1209 	case WI_RID_MAX_DATALEN:
1210 		wreq->wi_val[0] = htole16(sc->wi_max_data_len);
1211 		break;
1212 	case WI_RID_RTS_THRESH:
1213 		wreq->wi_val[0] = htole16(sc->wi_rts_thresh);
1214 		break;
1215 	case WI_RID_SYSTEM_SCALE:
1216 		wreq->wi_val[0] = htole16(sc->wi_ap_density);
1217 		break;
1218 	case WI_RID_CREATE_IBSS:
1219 		wreq->wi_val[0] = htole16(sc->wi_create_ibss);
1220 		break;
1221 	case WI_RID_OWN_CHNL:
1222 		wreq->wi_val[0] = htole16(sc->wi_channel);
1223 		break;
1224 	case WI_RID_NODENAME:
1225 		wi_request_fill_ssid(wreq, &sc->wi_nodeid);
1226 		break;
1227 	case WI_RID_DESIRED_SSID:
1228 		wi_request_fill_ssid(wreq, &sc->wi_netid);
1229 		break;
1230 	case WI_RID_OWN_SSID:
1231 		wi_request_fill_ssid(wreq, &sc->wi_ibssid);
1232 		break;
1233 	case WI_RID_PM_ENABLED:
1234 		wreq->wi_val[0] = htole16(sc->wi_pm_enabled);
1235 		break;
1236 	case WI_RID_MICROWAVE_OVEN:
1237 		wreq->wi_val[0] = htole16(sc->wi_mor_enabled);
1238 		break;
1239 	case WI_RID_MAX_SLEEP:
1240 		wreq->wi_val[0] = htole16(sc->wi_max_sleep);
1241 		break;
1242 	case WI_RID_AUTH_CNTL:
1243 		wreq->wi_val[0] = htole16(sc->wi_authtype);
1244 		break;
1245 	case WI_RID_ROAMING_MODE:
1246 		wreq->wi_val[0] = htole16(sc->wi_roaming);
1247 		break;
1248 	case WI_RID_WEP_AVAIL:
1249 		wreq->wi_val[0] = htole16(sc->wi_has_wep);
1250 		break;
1251 	case WI_RID_ENCRYPTION:
1252 		wreq->wi_val[0] = htole16(sc->wi_use_wep);
1253 		break;
1254 	case WI_RID_TX_CRYPT_KEY:
1255 		wreq->wi_val[0] = htole16(sc->wi_tx_key);
1256 		break;
1257 	case WI_RID_DEFLT_CRYPT_KEYS:
1258 		wreq->wi_len += sizeof(struct wi_ltv_keys) / 2 - 1;
1259 		memcpy(wreq, &sc->wi_keys, sizeof(struct wi_ltv_keys));
1260 		break;
1261 	default:
1262 #if 0
1263 		error = EIO;
1264 #else
1265 #ifdef WI_DEBUG
1266 		printf("%s: wi_getdef: unknown request %d\n",
1267 		    sc->sc_dev.dv_xname, wreq->wi_type);
1268 #endif
1269 #endif
1270 		break;
1271 	}
1272 
1273 	return (error);
1274 }
1275 
1276 static int
1277 wi_ioctl(ifp, command, data)
1278 	struct ifnet		*ifp;
1279 	u_long			command;
1280 	caddr_t			data;
1281 {
1282 	int			i, s, error = 0;
1283 	struct wi_softc		*sc = ifp->if_softc;
1284 	struct wi_req		wreq;
1285 	struct ifreq		*ifr;
1286 	struct ifdrv		*ifd;
1287 	struct proc *p = curproc;
1288 	struct ieee80211_nwid nwid;
1289 
1290 	if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
1291 		return (ENXIO);
1292 
1293 	s = splnet();
1294 
1295 	ifr = (struct ifreq *)data;
1296 	switch (command) {
1297 	case SIOCSIFADDR:
1298 	case SIOCGIFADDR:
1299 	case SIOCSIFMTU:
1300 		error = ether_ioctl(ifp, command, data);
1301 		break;
1302 	case SIOCSIFFLAGS:
1303 		if (ifp->if_flags & IFF_UP) {
1304 			if (ifp->if_flags & IFF_RUNNING &&
1305 			    ifp->if_flags & IFF_PROMISC &&
1306 			    !(sc->wi_if_flags & IFF_PROMISC)) {
1307 				WI_SETVAL(WI_RID_PROMISC, 1);
1308 			} else if (ifp->if_flags & IFF_RUNNING &&
1309 			    !(ifp->if_flags & IFF_PROMISC) &&
1310 			    sc->wi_if_flags & IFF_PROMISC) {
1311 				WI_SETVAL(WI_RID_PROMISC, 0);
1312 			}
1313 			wi_init(ifp);
1314 		} else {
1315 			if (ifp->if_flags & IFF_RUNNING) {
1316 				wi_stop(ifp, 0);
1317 			}
1318 		}
1319 		sc->wi_if_flags = ifp->if_flags;
1320 
1321 		if (!(ifp->if_flags & IFF_UP)) {
1322 			if (sc->sc_enabled) {
1323 				if (sc->sc_disable)
1324 					(*sc->sc_disable)(sc);
1325 				sc->sc_enabled = 0;
1326 				ifp->if_flags &= ~IFF_RUNNING;
1327 			}
1328 		}
1329 		error = 0;
1330 		break;
1331 	case SIOCADDMULTI:
1332 	case SIOCDELMULTI:
1333 		error = (command == SIOCADDMULTI) ?
1334 			ether_addmulti(ifr, &sc->sc_ethercom) :
1335 			ether_delmulti(ifr, &sc->sc_ethercom);
1336 		if (error == ENETRESET) {
1337 			if (sc->sc_enabled != 0) {
1338 				/*
1339 				 * Multicast list has changed.  Set the
1340 				 * hardware filter accordingly.
1341 				 */
1342 				wi_setmulti(sc);
1343 			}
1344 			error = 0;
1345 		}
1346 		break;
1347 	case SIOCSIFMEDIA:
1348 	case SIOCGIFMEDIA:
1349 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
1350 		break;
1351 	case SIOCGWAVELAN:
1352 		error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
1353 		if (error)
1354 			break;
1355 		switch (wreq.wi_type) {
1356 		case WI_RID_IFACE_STATS:
1357 			/* XXX native byte order */
1358 			memcpy((char *)&wreq.wi_val, (char *)&sc->wi_stats,
1359 			       sizeof(sc->wi_stats));
1360 			wreq.wi_len = (sizeof(sc->wi_stats) / 2) + 1;
1361 			break;
1362 		case WI_RID_DEFLT_CRYPT_KEYS:
1363 			/* For non-root user, return all-zeroes keys */
1364 			if (suser(p->p_ucred, &p->p_acflag))
1365 				memset((char *)&wreq, 0,
1366 				       sizeof(struct wi_ltv_keys));
1367 			else
1368 				memcpy((char *)&wreq, (char *)&sc->wi_keys,
1369 				       sizeof(struct wi_ltv_keys));
1370 			break;
1371 		default:
1372 			if (sc->sc_enabled == 0)
1373 				error = wi_getdef(sc, &wreq);
1374 			else if (wi_read_record(sc,
1375 						(struct wi_ltv_gen *)&wreq))
1376 				error = EINVAL;
1377 			break;
1378 		}
1379 		if (error == 0)
1380 			error = copyout(&wreq, ifr->ifr_data, sizeof(wreq));
1381 		break;
1382 
1383 	case SIOCSWAVELAN:
1384 		error = suser(p->p_ucred, &p->p_acflag);
1385 		if (error)
1386 			break;
1387 		error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
1388 		if (error)
1389 			break;
1390 		switch (wreq.wi_type) {
1391 		case WI_RID_IFACE_STATS:
1392 			error = EINVAL;
1393 			break;
1394 		case WI_RID_MGMT_XMIT:
1395 			error = wi_mgmt_xmit(sc, (caddr_t)&wreq.wi_val,
1396 					     wreq.wi_len);
1397 			break;
1398 
1399 		default:
1400 			if (sc->sc_enabled != 0)
1401 				error = wi_write_record(sc,
1402 				    (struct wi_ltv_gen *)&wreq);
1403 			if (error == 0)
1404 				error = wi_setdef(sc, &wreq);
1405 			if (error == 0 && sc->sc_enabled != 0)
1406 				/* Reinitialize WaveLAN. */
1407 				wi_init(ifp);
1408 			break;
1409 		}
1410 		break;
1411 
1412 	case SIOCSDRVSPEC:
1413 		error = suser(p->p_ucred, &p->p_acflag);
1414 		if (error)
1415 			break;
1416 		ifd = (struct ifdrv *)data;
1417 		switch (ifd->ifd_cmd) {
1418 		case WI_IOCTL_SET_SCAN:
1419 			error = copyin(ifd->ifd_data, &i, sizeof (i));
1420 			if (error)
1421 				break;
1422 
1423 			sc->wi_results.scanning = i;
1424 			if (sc->wi_results.scanning > 0)
1425 				callout_reset(&sc->wi_scan_ch,
1426 					      sc->wi_results.scanning,
1427 					      wi_inquire_scan, sc);
1428 			else
1429 				callout_stop(&sc->wi_scan_ch);
1430 			break;
1431 
1432 		/*
1433 		 * Experimental XXXMLG
1434 		 */
1435 		case WI_IOCTL_SET_TESTMODE:
1436 			error = copyin(ifd->ifd_data, &i, sizeof (i));
1437 			if (error)
1438 				break;
1439 			if (i) {
1440 				wi_cmd(sc, WI_CMD_TEST | WI_TEST_MONITOR << 8,
1441 				       0);
1442 				printf("wi test mode enabled\n");
1443 			} else {
1444 				wi_cmd(sc, WI_CMD_TEST | WI_TEST_STOP << 8, 0);
1445 				printf("wi test mode disabled\n");
1446 			}
1447 			break;
1448 
1449 		default:
1450 			error = EINVAL;
1451 			break;
1452 		}
1453 		break;
1454 
1455 	case SIOCGDRVSPEC:
1456 		ifd = (struct ifdrv *)data;
1457 		switch (ifd->ifd_cmd) {
1458 		case WI_IOCTL_GET_SCAN_RESULTS:
1459 			error = copyout(&sc->wi_results, ifd->ifd_data,
1460 					sizeof(struct wi_scan_results));
1461 			break;
1462 
1463 		default:
1464 			error = EINVAL;
1465 			break;
1466 		}
1467 		break;
1468 
1469 	case SIOCG80211NWID:
1470 		if (sc->sc_enabled == 0) {
1471 			/* Return the desired ID */
1472 			error = copyout(&sc->wi_netid, ifr->ifr_data,
1473 			    sizeof(sc->wi_netid));
1474 		} else {
1475 			wreq.wi_type = WI_RID_CURRENT_SSID;
1476 			wreq.wi_len = WI_MAX_DATALEN;
1477 			if (wi_read_record(sc, (struct wi_ltv_gen *)&wreq) ||
1478 			    le16toh(wreq.wi_val[0]) > IEEE80211_NWID_LEN)
1479 				error = EINVAL;
1480 			else {
1481 				wi_set_ssid(&nwid, (u_int8_t *)&wreq.wi_val[1],
1482 				    le16toh(wreq.wi_val[0]));
1483 				error = copyout(&nwid, ifr->ifr_data,
1484 				    sizeof(nwid));
1485 			}
1486 		}
1487 		break;
1488 	case SIOCS80211NWID:
1489 		error = copyin(ifr->ifr_data, &nwid, sizeof(nwid));
1490 		if (error != 0)
1491 			break;
1492 		if (nwid.i_len > IEEE80211_NWID_LEN) {
1493 			error = EINVAL;
1494 			break;
1495 		}
1496 		if (sc->wi_netid.i_len == nwid.i_len &&
1497 		    memcmp(sc->wi_netid.i_nwid, nwid.i_nwid, nwid.i_len) == 0)
1498 			break;
1499 		wi_set_ssid(&sc->wi_netid, nwid.i_nwid, nwid.i_len);
1500 		if (sc->sc_enabled != 0)
1501 			/* Reinitialize WaveLAN. */
1502 			wi_init(ifp);
1503 		break;
1504 	case SIOCS80211NWKEY:
1505 		error = wi_set_nwkey(sc, (struct ieee80211_nwkey *)data);
1506 		break;
1507 	case SIOCG80211NWKEY:
1508 		error = wi_get_nwkey(sc, (struct ieee80211_nwkey *)data);
1509 		break;
1510 	case SIOCS80211POWER:
1511 		error = wi_set_pm(sc, (struct ieee80211_power *)data);
1512 		break;
1513 	case SIOCG80211POWER:
1514 		error = wi_get_pm(sc, (struct ieee80211_power *)data);
1515 		break;
1516 
1517 	default:
1518 		error = EINVAL;
1519 		break;
1520 	}
1521 
1522 	splx(s);
1523 	return (error);
1524 }
1525 
1526 static int
1527 wi_init(ifp)
1528 	struct ifnet *ifp;
1529 {
1530 	struct wi_softc *sc = ifp->if_softc;
1531 	struct wi_req wreq;
1532 	struct wi_ltv_macaddr mac;
1533 	int error, id = 0;
1534 
1535 	if (!sc->sc_enabled) {
1536 		if ((error = (*sc->sc_enable)(sc)) != 0)
1537 			goto out;
1538 		sc->sc_enabled = 1;
1539 	}
1540 
1541 	wi_stop(ifp, 0);
1542 	wi_reset(sc);
1543 
1544 	/* Program max data length. */
1545 	WI_SETVAL(WI_RID_MAX_DATALEN, sc->wi_max_data_len);
1546 
1547 	/* Enable/disable IBSS creation. */
1548 	WI_SETVAL(WI_RID_CREATE_IBSS, sc->wi_create_ibss);
1549 
1550 	/* Set the port type. */
1551 	WI_SETVAL(WI_RID_PORTTYPE, sc->wi_ptype);
1552 
1553 	/* Program the RTS/CTS threshold. */
1554 	WI_SETVAL(WI_RID_RTS_THRESH, sc->wi_rts_thresh);
1555 
1556 	/* Program the TX rate */
1557 	WI_SETVAL(WI_RID_TX_RATE, sc->wi_tx_rate);
1558 
1559 	/* Access point density */
1560 	WI_SETVAL(WI_RID_SYSTEM_SCALE, sc->wi_ap_density);
1561 
1562 	/* Power Management Enabled */
1563 	WI_SETVAL(WI_RID_PM_ENABLED, sc->wi_pm_enabled);
1564 
1565 	/* Power Managment Max Sleep */
1566 	WI_SETVAL(WI_RID_MAX_SLEEP, sc->wi_max_sleep);
1567 
1568 	/* Roaming type */
1569 	WI_SETVAL(WI_RID_ROAMING_MODE, sc->wi_roaming);
1570 
1571 	/* Specify the IBSS name */
1572 	wi_write_ssid(sc, WI_RID_OWN_SSID, &wreq, &sc->wi_ibssid);
1573 
1574 	/* Specify the network name */
1575 	wi_write_ssid(sc, WI_RID_DESIRED_SSID, &wreq, &sc->wi_netid);
1576 
1577 	/* Specify the frequency to use */
1578 	WI_SETVAL(WI_RID_OWN_CHNL, sc->wi_channel);
1579 
1580 	/* Program the nodename. */
1581 	wi_write_ssid(sc, WI_RID_NODENAME, &wreq, &sc->wi_nodeid);
1582 
1583 	/* Set our MAC address. */
1584 	mac.wi_len = 4;
1585 	mac.wi_type = WI_RID_MAC_NODE;
1586 	memcpy(&mac.wi_mac_addr, sc->sc_macaddr, ETHER_ADDR_LEN);
1587 	wi_write_record(sc, (struct wi_ltv_gen *)&mac);
1588 
1589 	/* Initialize promisc mode. */
1590 	if (ifp->if_flags & IFF_PROMISC) {
1591 		WI_SETVAL(WI_RID_PROMISC, 1);
1592 	} else {
1593 		WI_SETVAL(WI_RID_PROMISC, 0);
1594 	}
1595 
1596 	/* Configure WEP. */
1597 	if (sc->wi_has_wep) {
1598 		WI_SETVAL(WI_RID_ENCRYPTION, sc->wi_use_wep);
1599 		WI_SETVAL(WI_RID_TX_CRYPT_KEY, sc->wi_tx_key);
1600 		sc->wi_keys.wi_len = (sizeof(struct wi_ltv_keys) / 2) + 1;
1601 		sc->wi_keys.wi_type = WI_RID_DEFLT_CRYPT_KEYS;
1602 		wi_write_record(sc, (struct wi_ltv_gen *)&sc->wi_keys);
1603 		if (sc->sc_prism2 && sc->wi_use_wep) {
1604 			/*
1605 			 * ONLY HWB3163 EVAL-CARD Firmware version
1606 			 * less than 0.8 variant3
1607 			 *
1608 			 *   If promiscuous mode disable, Prism2 chip
1609 			 *  does not work with WEP .
1610 			 * It is under investigation for details.
1611 			 * (ichiro@netbsd.org)
1612 			 */
1613 			if (sc->sc_prism2_ver < 83 ) {
1614 				/* firm ver < 0.8 variant 3 */
1615 				WI_SETVAL(WI_RID_PROMISC, 1);
1616 			}
1617 			WI_SETVAL(WI_RID_AUTH_CNTL, sc->wi_authtype);
1618 		}
1619 	}
1620 
1621 	/* Set multicast filter. */
1622 	wi_setmulti(sc);
1623 
1624 	/* Enable desired port */
1625 	wi_cmd(sc, WI_CMD_ENABLE | sc->wi_portnum, 0);
1626 
1627 	if ((error = wi_alloc_nicmem(sc,
1628 	    1518 + sizeof(struct wi_frame) + 8, &id)) != 0) {
1629 		printf("%s: tx buffer allocation failed\n",
1630 		    sc->sc_dev.dv_xname);
1631 		goto out;
1632 	}
1633 	sc->wi_tx_data_id = id;
1634 
1635 	if ((error = wi_alloc_nicmem(sc,
1636 	    1518 + sizeof(struct wi_frame) + 8, &id)) != 0) {
1637 		printf("%s: mgmt. buffer allocation failed\n",
1638 		    sc->sc_dev.dv_xname);
1639 		goto out;
1640 	}
1641 	sc->wi_tx_mgmt_id = id;
1642 
1643 	/* Enable interrupts */
1644 	CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
1645 
1646 	ifp->if_flags |= IFF_RUNNING;
1647 	ifp->if_flags &= ~IFF_OACTIVE;
1648 
1649 	callout_reset(&sc->wi_stats_ch, STATS_FREQUENCY, wi_inquire_stats, sc);
1650 
1651  out:
1652 	if (error) {
1653 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1654 		ifp->if_timer = 0;
1655 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1656 	}
1657 	return (error);
1658 }
1659 
1660 static void
1661 wi_start(ifp)
1662 	struct ifnet		*ifp;
1663 {
1664 	struct wi_softc		*sc;
1665 	struct mbuf		*m0;
1666 	struct wi_frame		tx_frame;
1667 	struct ether_header	*eh;
1668 	int			id;
1669 
1670 	sc = ifp->if_softc;
1671 
1672 	if (ifp->if_flags & IFF_OACTIVE)
1673 		return;
1674 
1675 	IFQ_DEQUEUE(&ifp->if_snd, m0);
1676 	if (m0 == NULL)
1677 		return;
1678 
1679 	memset((char *)&tx_frame, 0, sizeof(tx_frame));
1680 	id = sc->wi_tx_data_id;
1681 	eh = mtod(m0, struct ether_header *);
1682 
1683 	/*
1684 	 * Use RFC1042 encoding for IP and ARP datagrams,
1685 	 * 802.3 for anything else.
1686 	 */
1687 	if (ntohs(eh->ether_type) == ETHERTYPE_IP ||
1688 	    ntohs(eh->ether_type) == ETHERTYPE_ARP ||
1689 	    ntohs(eh->ether_type) == ETHERTYPE_REVARP ||
1690 	    ntohs(eh->ether_type) == ETHERTYPE_IPV6) {
1691 		memcpy((char *)&tx_frame.wi_addr1, (char *)&eh->ether_dhost,
1692 		    ETHER_ADDR_LEN);
1693 		memcpy((char *)&tx_frame.wi_addr2, (char *)&eh->ether_shost,
1694 		    ETHER_ADDR_LEN);
1695 		memcpy((char *)&tx_frame.wi_dst_addr, (char *)&eh->ether_dhost,
1696 		    ETHER_ADDR_LEN);
1697 		memcpy((char *)&tx_frame.wi_src_addr, (char *)&eh->ether_shost,
1698 		    ETHER_ADDR_LEN);
1699 
1700 		tx_frame.wi_dat_len = htole16(m0->m_pkthdr.len - WI_SNAPHDR_LEN);
1701 		tx_frame.wi_frame_ctl = htole16(WI_FTYPE_DATA);
1702 		tx_frame.wi_dat[0] = htons(WI_SNAP_WORD0);
1703 		tx_frame.wi_dat[1] = htons(WI_SNAP_WORD1);
1704 		tx_frame.wi_len = htons(m0->m_pkthdr.len - WI_SNAPHDR_LEN);
1705 		tx_frame.wi_type = eh->ether_type;
1706 
1707 		m_copydata(m0, sizeof(struct ether_header),
1708 		    m0->m_pkthdr.len - sizeof(struct ether_header),
1709 		    (caddr_t)&sc->wi_txbuf);
1710 
1711 		wi_write_data(sc, id, 0, (caddr_t)&tx_frame,
1712 		    sizeof(struct wi_frame));
1713 		wi_write_data(sc, id, WI_802_11_OFFSET, (caddr_t)&sc->wi_txbuf,
1714 		    (m0->m_pkthdr.len - sizeof(struct ether_header)) + 2);
1715 	} else {
1716 		tx_frame.wi_dat_len = htole16(m0->m_pkthdr.len);
1717 
1718 		m_copydata(m0, 0, m0->m_pkthdr.len, (caddr_t)&sc->wi_txbuf);
1719 
1720 		wi_write_data(sc, id, 0, (caddr_t)&tx_frame,
1721 		    sizeof(struct wi_frame));
1722 		wi_write_data(sc, id, WI_802_3_OFFSET, (caddr_t)&sc->wi_txbuf,
1723 		    m0->m_pkthdr.len + 2);
1724 	}
1725 
1726 #if NBPFILTER > 0
1727 	/*
1728 	 * If there's a BPF listener, bounce a copy of
1729 	 * this frame to him.
1730 	 */
1731 	if (ifp->if_bpf)
1732 		bpf_mtap(ifp->if_bpf, m0);
1733 #endif
1734 
1735 	m_freem(m0);
1736 
1737 	if (wi_cmd(sc, WI_CMD_TX|WI_RECLAIM, id))
1738 		printf("%s: xmit failed\n", sc->sc_dev.dv_xname);
1739 
1740 	ifp->if_flags |= IFF_OACTIVE;
1741 
1742 	/*
1743 	 * Set a timeout in case the chip goes out to lunch.
1744 	 */
1745 	ifp->if_timer = 5;
1746 
1747 	return;
1748 }
1749 
1750 static int
1751 wi_mgmt_xmit(sc, data, len)
1752 	struct wi_softc		*sc;
1753 	caddr_t			data;
1754 	int			len;
1755 {
1756 	struct wi_frame		tx_frame;
1757 	int			id;
1758 	struct wi_80211_hdr	*hdr;
1759 	caddr_t			dptr;
1760 
1761 	hdr = (struct wi_80211_hdr *)data;
1762 	dptr = data + sizeof(struct wi_80211_hdr);
1763 
1764 	memset((char *)&tx_frame, 0, sizeof(tx_frame));
1765 	id = sc->wi_tx_mgmt_id;
1766 
1767 	memcpy((char *)&tx_frame.wi_frame_ctl, (char *)hdr,
1768 	   sizeof(struct wi_80211_hdr));
1769 
1770 	tx_frame.wi_dat_len = htole16(len - WI_SNAPHDR_LEN);
1771 	tx_frame.wi_len = htons(len - WI_SNAPHDR_LEN);
1772 
1773 	wi_write_data(sc, id, 0, (caddr_t)&tx_frame, sizeof(struct wi_frame));
1774 	wi_write_data(sc, id, WI_802_11_OFFSET_RAW, dptr,
1775 	    (len - sizeof(struct wi_80211_hdr)) + 2);
1776 
1777 	if (wi_cmd(sc, WI_CMD_TX|WI_RECLAIM, id)) {
1778 		printf("%s: xmit failed\n", sc->sc_dev.dv_xname);
1779 		return(EIO);
1780 	}
1781 
1782 	return(0);
1783 }
1784 
1785 static void
1786 wi_stop(ifp, disable)
1787 	struct ifnet *ifp;
1788 {
1789 	struct wi_softc	*sc = ifp->if_softc;
1790 
1791 	CSR_WRITE_2(sc, WI_INT_EN, 0);
1792 	wi_cmd(sc, WI_CMD_DISABLE|sc->wi_portnum, 0);
1793 
1794 	callout_stop(&sc->wi_stats_ch);
1795 	callout_stop(&sc->wi_scan_ch);
1796 
1797 	if (disable) {
1798 		if (sc->sc_enabled) {
1799 			if (sc->sc_disable)
1800 				(*sc->sc_disable)(sc);
1801 			sc->sc_enabled = 0;
1802 		}
1803 	}
1804 
1805 	ifp->if_flags &= ~(IFF_OACTIVE | IFF_RUNNING);
1806 	ifp->if_timer = 0;
1807 }
1808 
1809 static void
1810 wi_watchdog(ifp)
1811 	struct ifnet		*ifp;
1812 {
1813 	struct wi_softc		*sc;
1814 
1815 	sc = ifp->if_softc;
1816 
1817 	printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1818 
1819 	wi_init(ifp);
1820 
1821 	ifp->if_oerrors++;
1822 
1823 	return;
1824 }
1825 
1826 void
1827 wi_shutdown(sc)
1828 	struct wi_softc *sc;
1829 {
1830 	int s;
1831 
1832 	s = splnet();
1833 	if (sc->sc_enabled) {
1834 		if (sc->sc_disable)
1835 			(*sc->sc_disable)(sc);
1836 		sc->sc_enabled = 0;
1837 	}
1838 	splx(s);
1839 }
1840 
1841 int
1842 wi_activate(self, act)
1843 	struct device *self;
1844 	enum devact act;
1845 {
1846 	struct wi_softc *sc = (struct wi_softc *)self;
1847 	int rv = 0, s;
1848 
1849 	s = splnet();
1850 	switch (act) {
1851 	case DVACT_ACTIVATE:
1852 		rv = EOPNOTSUPP;
1853 		break;
1854 
1855 	case DVACT_DEACTIVATE:
1856 		if_deactivate(&sc->sc_ethercom.ec_if);
1857 		break;
1858 	}
1859 	splx(s);
1860 	return (rv);
1861 }
1862 
1863 static void
1864 wi_get_id(sc)
1865 	struct wi_softc *sc;
1866 {
1867 	struct wi_ltv_ver       ver;
1868 
1869 	/* getting chip identity */
1870 	memset(&ver, 0, sizeof(ver));
1871 	ver.wi_type = WI_RID_CARDID;
1872 	ver.wi_len = 5;
1873 	wi_read_record(sc, (struct wi_ltv_gen *)&ver);
1874 	printf("%s: using ", sc->sc_dev.dv_xname);
1875 	switch (le16toh(ver.wi_ver[0])) {
1876 	case WI_NIC_EVB2:
1877 		printf("RF:PRISM2 MAC:HFA3841");
1878 		sc->sc_prism2 = 1;
1879 		break;
1880 	case WI_NIC_HWB3763:
1881 		printf("RF:PRISM2 MAC:HFA3841 CARD:HWB3763 rev.B");
1882 		sc->sc_prism2 = 1;
1883 		break;
1884 	case WI_NIC_HWB3163:
1885 		printf("RF:PRISM2 MAC:HFA3841 CARD:HWB3163 rev.A");
1886 		sc->sc_prism2 = 1;
1887 		break;
1888 	case WI_NIC_HWB3163B:
1889 		printf("RF:PRISM2 MAC:HFA3841 CARD:HWB3163 rev.B");
1890 		sc->sc_prism2 = 1;
1891 		break;
1892 	case WI_NIC_EVB3:
1893 		printf("RF:PRISM2 MAC:HFA3842");
1894 		sc->sc_prism2 = 1;
1895 		break;
1896 	case WI_NIC_HWB1153:
1897 		printf("RF:PRISM1 MAC:HFA3841 CARD:HWB1153");
1898 		sc->sc_prism2 = 1;
1899 		break;
1900 	case WI_NIC_P2_SST:
1901 		printf("RF:PRISM2 MAC:HFA3841 CARD:HWB3163-SST-flash");
1902 		sc->sc_prism2 = 1;
1903 		break;
1904 	case WI_NIC_PRISM2_5:
1905 		printf("RF:PRISM2.5 MAC:ISL3873");
1906 		sc->sc_prism2 = 1;
1907 		break;
1908 	case WI_NIC_3874A:
1909 		printf("RF:PRISM2.5 MAC:ISL3874A(PCI)");
1910 		sc->sc_prism2 = 1;
1911 		break;
1912 	default:
1913 		printf("Lucent chip or unknown chip\n");
1914 		sc->sc_prism2 = 0;
1915 		break;
1916 	}
1917 
1918 	if (sc->sc_prism2) {
1919 		/* try to get prism2 firm version */
1920 		memset(&ver, 0, sizeof(ver));
1921 		ver.wi_type = WI_RID_IDENT;
1922 		ver.wi_len = 5;
1923 		wi_read_record(sc, (struct wi_ltv_gen *)&ver);
1924 		LE16TOH(ver.wi_ver[1]);
1925 		LE16TOH(ver.wi_ver[2]);
1926 		LE16TOH(ver.wi_ver[3]);
1927 		printf(", Firmware: %i.%i variant %i\n", ver.wi_ver[2],
1928 		       ver.wi_ver[3], ver.wi_ver[1]);
1929 		sc->sc_prism2_ver = ver.wi_ver[2] * 100 +
1930 				    ver.wi_ver[3] *  10 + ver.wi_ver[1];
1931 	}
1932 
1933 	return;
1934 }
1935 
1936 int
1937 wi_detach(sc)
1938 	struct wi_softc *sc;
1939 {
1940 	struct ifnet *ifp = sc->sc_ifp;
1941 	int s;
1942 
1943 	if (!sc->sc_attached)
1944 		return (0);
1945 
1946 	s = splnet();
1947 	callout_stop(&sc->wi_stats_ch);
1948 	callout_stop(&sc->wi_scan_ch);
1949 
1950 	/* Delete all remaining media. */
1951 	ifmedia_delete_instance(&sc->sc_media, IFM_INST_ANY);
1952 
1953 	ether_ifdetach(ifp);
1954 	if_detach(ifp);
1955 	if (sc->sc_enabled) {
1956 		if (sc->sc_disable)
1957 			(*sc->sc_disable)(sc);
1958 		sc->sc_enabled = 0;
1959 	}
1960 	splx(s);
1961 	return (0);
1962 }
1963 
1964 void
1965 wi_power(sc, why)
1966 	struct wi_softc *sc;
1967 	int why;
1968 {
1969 	int s;
1970 
1971 	if (!sc->sc_enabled)
1972 		return;
1973 
1974 	s = splnet();
1975 	switch (why) {
1976 	case PWR_SUSPEND:
1977 	case PWR_STANDBY:
1978 		wi_stop(sc->sc_ifp, 0);
1979 		if (sc->sc_enabled) {
1980 			if (sc->sc_disable)
1981 				(*sc->sc_disable)(sc);
1982 		}
1983 		break;
1984 	case PWR_RESUME:
1985 		sc->sc_enabled = 0;
1986 		wi_init(sc->sc_ifp);
1987 		(void)wi_intr(sc);
1988 		break;
1989 	case PWR_SOFTSUSPEND:
1990 	case PWR_SOFTSTANDBY:
1991 	case PWR_SOFTRESUME:
1992 		break;
1993 	}
1994 	splx(s);
1995 }
1996 
1997 static int
1998 wi_set_ssid(ws, id, len)
1999 	struct ieee80211_nwid *ws;
2000 	u_int8_t *id;
2001 	int len;
2002 {
2003 
2004 	if (len > IEEE80211_NWID_LEN)
2005 		return (EINVAL);
2006 	ws->i_len = len;
2007 	memcpy(ws->i_nwid, id, len);
2008 	return (0);
2009 }
2010 
2011 static void
2012 wi_request_fill_ssid(wreq, ws)
2013 	struct wi_req *wreq;
2014 	struct ieee80211_nwid *ws;
2015 {
2016 	int len = ws->i_len;
2017 
2018 	memset(&wreq->wi_val[0], 0, sizeof(wreq->wi_val));
2019 	wreq->wi_val[0] = htole16(len);
2020 	wreq->wi_len = roundup(len, 2) / 2 + 2;
2021 	memcpy(&wreq->wi_val[1], ws->i_nwid, len);
2022 }
2023 
2024 static int
2025 wi_write_ssid(sc, type, wreq, ws)
2026 	struct wi_softc *sc;
2027 	int type;
2028 	struct wi_req *wreq;
2029 	struct ieee80211_nwid *ws;
2030 {
2031 
2032 	wreq->wi_type = type;
2033 	wi_request_fill_ssid(wreq, ws);
2034 	return (wi_write_record(sc, (struct wi_ltv_gen *)wreq));
2035 }
2036 
2037 static int
2038 wi_sync_media(sc, ptype, txrate)
2039 	struct wi_softc *sc;
2040 	int ptype;
2041 	int txrate;
2042 {
2043 	int media = sc->sc_media.ifm_cur->ifm_media;
2044 	int options = IFM_OPTIONS(media);
2045 	int subtype;
2046 
2047 	switch (txrate) {
2048 	case 1:
2049 		subtype = IFM_IEEE80211_DS1;
2050 		break;
2051 	case 2:
2052 		subtype = IFM_IEEE80211_DS2;
2053 		break;
2054 	case 3:
2055 		subtype = IFM_AUTO;
2056 		break;
2057 	case 11:
2058 		subtype = IFM_IEEE80211_DS11;
2059 		break;
2060 	default:
2061 		subtype = IFM_MANUAL;		/* Unable to represent */
2062 		break;
2063 	}
2064 	switch (ptype) {
2065 	case WI_PORTTYPE_ADHOC:
2066 		options |= IFM_IEEE80211_ADHOC;
2067 		break;
2068 	case WI_PORTTYPE_BSS:
2069 		options &= ~IFM_IEEE80211_ADHOC;
2070 		break;
2071 	default:
2072 		subtype = IFM_MANUAL;		/* Unable to represent */
2073 		break;
2074 	}
2075 	media = IFM_MAKEWORD(IFM_TYPE(media), subtype, options,
2076 	    IFM_INST(media));
2077 	if (ifmedia_match(&sc->sc_media, media, sc->sc_media.ifm_mask) == NULL)
2078 		return (EINVAL);
2079 	ifmedia_set(&sc->sc_media, media);
2080 	sc->wi_ptype = ptype;
2081 	sc->wi_tx_rate = txrate;
2082 	return (0);
2083 }
2084 
2085 static int
2086 wi_media_change(ifp)
2087 	struct ifnet *ifp;
2088 {
2089 	struct wi_softc *sc = ifp->if_softc;
2090 	int otype = sc->wi_ptype;
2091 	int orate = sc->wi_tx_rate;
2092 
2093 	if ((sc->sc_media.ifm_cur->ifm_media & IFM_IEEE80211_ADHOC) != 0)
2094 		sc->wi_ptype = WI_PORTTYPE_ADHOC;
2095 	else
2096 		sc->wi_ptype = WI_PORTTYPE_BSS;
2097 
2098 	switch (IFM_SUBTYPE(sc->sc_media.ifm_cur->ifm_media)) {
2099 	case IFM_IEEE80211_DS1:
2100 		sc->wi_tx_rate = 1;
2101 		break;
2102 	case IFM_IEEE80211_DS2:
2103 		sc->wi_tx_rate = 2;
2104 		break;
2105 	case IFM_AUTO:
2106 		sc->wi_tx_rate = 3;
2107 		break;
2108 	case IFM_IEEE80211_DS11:
2109 		sc->wi_tx_rate = 11;
2110 		break;
2111 	}
2112 
2113 	if (sc->sc_enabled != 0) {
2114 		if (otype != sc->wi_ptype ||
2115 		    orate != sc->wi_tx_rate)
2116 			wi_init(ifp);
2117 	}
2118 
2119 	ifp->if_baudrate = ifmedia_baudrate(sc->sc_media.ifm_cur->ifm_media);
2120 
2121 	return (0);
2122 }
2123 
2124 static void
2125 wi_media_status(ifp, imr)
2126 	struct ifnet *ifp;
2127 	struct ifmediareq *imr;
2128 {
2129 	struct wi_softc *sc = ifp->if_softc;
2130 
2131 	if (sc->sc_enabled == 0) {
2132 		imr->ifm_active = IFM_IEEE80211|IFM_NONE;
2133 		imr->ifm_status = 0;
2134 		return;
2135 	}
2136 
2137 	imr->ifm_active = sc->sc_media.ifm_cur->ifm_media;
2138 	imr->ifm_status = IFM_AVALID|IFM_ACTIVE;
2139 }
2140 
2141 static int
2142 wi_set_nwkey(sc, nwkey)
2143 	struct wi_softc *sc;
2144 	struct ieee80211_nwkey *nwkey;
2145 {
2146 	int i, error;
2147 	size_t len;
2148 	struct wi_req wreq;
2149 	struct wi_ltv_keys *wk = (struct wi_ltv_keys *)&wreq;
2150 
2151 	if (!sc->wi_has_wep)
2152 		return ENODEV;
2153 	if (nwkey->i_defkid <= 0 ||
2154 	    nwkey->i_defkid > IEEE80211_WEP_NKID)
2155 		return EINVAL;
2156 	memcpy(wk, &sc->wi_keys, sizeof(*wk));
2157 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2158 		if (nwkey->i_key[i].i_keydat == NULL)
2159 			continue;
2160 		len = nwkey->i_key[i].i_keylen;
2161 		if (len > sizeof(wk->wi_keys[i].wi_keydat))
2162 			return EINVAL;
2163 		error = copyin(nwkey->i_key[i].i_keydat,
2164 		    wk->wi_keys[i].wi_keydat, len);
2165 		if (error)
2166 			return error;
2167 		wk->wi_keys[i].wi_keylen = htole16(len);
2168 	}
2169 
2170 	wk->wi_len = (sizeof(*wk) / 2) + 1;
2171 	wk->wi_type = WI_RID_DEFLT_CRYPT_KEYS;
2172 	if (sc->sc_enabled != 0) {
2173 		error = wi_write_record(sc, (struct wi_ltv_gen *)&wreq);
2174 		if (error)
2175 			return error;
2176 	}
2177 	error = wi_setdef(sc, &wreq);
2178 	if (error)
2179 		return error;
2180 
2181 	wreq.wi_len = 2;
2182 	wreq.wi_type = WI_RID_TX_CRYPT_KEY;
2183 	wreq.wi_val[0] = htole16(nwkey->i_defkid - 1);
2184 	if (sc->sc_enabled != 0) {
2185 		error = wi_write_record(sc, (struct wi_ltv_gen *)&wreq);
2186 		if (error)
2187 			return error;
2188 	}
2189 	error = wi_setdef(sc, &wreq);
2190 	if (error)
2191 		return error;
2192 
2193 	wreq.wi_type = WI_RID_ENCRYPTION;
2194 	wreq.wi_val[0] = htole16(nwkey->i_wepon);
2195 	if (sc->sc_enabled != 0) {
2196 		error = wi_write_record(sc, (struct wi_ltv_gen *)&wreq);
2197 		if (error)
2198 			return error;
2199 	}
2200 	error = wi_setdef(sc, &wreq);
2201 	if (error)
2202 		return error;
2203 
2204 	if (sc->sc_enabled != 0)
2205 		wi_init(&sc->sc_ethercom.ec_if);
2206 	return 0;
2207 }
2208 
2209 static int
2210 wi_get_nwkey(sc, nwkey)
2211 	struct wi_softc *sc;
2212 	struct ieee80211_nwkey *nwkey;
2213 {
2214 	int i, len, error;
2215 	struct wi_ltv_keys *wk = &sc->wi_keys;
2216 
2217 	if (!sc->wi_has_wep)
2218 		return ENODEV;
2219 	nwkey->i_wepon = sc->wi_use_wep;
2220 	nwkey->i_defkid = sc->wi_tx_key + 1;
2221 
2222 	/* do not show any keys to non-root user */
2223 	error = suser(curproc->p_ucred, &curproc->p_acflag);
2224 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2225 		if (nwkey->i_key[i].i_keydat == NULL)
2226 			continue;
2227 		/* error holds results of suser() for the first time */
2228 		if (error)
2229 			return error;
2230 		len = le16toh(wk->wi_keys[i].wi_keylen);
2231 		if (nwkey->i_key[i].i_keylen < len)
2232 			return ENOSPC;
2233 		nwkey->i_key[i].i_keylen = len;
2234 		error = copyout(wk->wi_keys[i].wi_keydat,
2235 		    nwkey->i_key[i].i_keydat, len);
2236 		if (error)
2237 			return error;
2238 	}
2239 	return 0;
2240 }
2241 
2242 static int
2243 wi_set_pm(struct wi_softc *sc, struct ieee80211_power *power)
2244 {
2245 
2246 	sc->wi_pm_enabled = power->i_enabled;
2247 	sc->wi_max_sleep = power->i_maxsleep;
2248 
2249 	if (sc->sc_enabled)
2250 		return (wi_init(&sc->sc_ethercom.ec_if));
2251 
2252 	return (0);
2253 }
2254 
2255 static int
2256 wi_get_pm(struct wi_softc *sc, struct ieee80211_power *power)
2257 {
2258 
2259 	power->i_enabled = sc->wi_pm_enabled;
2260 	power->i_maxsleep = sc->wi_max_sleep;
2261 
2262 	return (0);
2263 }
2264