1 /* $NetBSD: wi.c,v 1.36 2002/01/21 11:29:22 ichiro Exp $ */ 2 3 /* 4 * Copyright (c) 1997, 1998, 1999 5 * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. All advertising materials mentioning features or use of this software 16 * must display the following acknowledgement: 17 * This product includes software developed by Bill Paul. 18 * 4. Neither the name of the author nor the names of any co-contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD 26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 32 * THE POSSIBILITY OF SUCH DAMAGE. 33 */ 34 35 /* 36 * Lucent WaveLAN/IEEE 802.11 PCMCIA driver for NetBSD. 37 * 38 * Original FreeBSD driver written by Bill Paul <wpaul@ctr.columbia.edu> 39 * Electrical Engineering Department 40 * Columbia University, New York City 41 */ 42 43 /* 44 * The WaveLAN/IEEE adapter is the second generation of the WaveLAN 45 * from Lucent. Unlike the older cards, the new ones are programmed 46 * entirely via a firmware-driven controller called the Hermes. 47 * Unfortunately, Lucent will not release the Hermes programming manual 48 * without an NDA (if at all). What they do release is an API library 49 * called the HCF (Hardware Control Functions) which is supposed to 50 * do the device-specific operations of a device driver for you. The 51 * publically available version of the HCF library (the 'HCF Light') is 52 * a) extremely gross, b) lacks certain features, particularly support 53 * for 802.11 frames, and c) is contaminated by the GNU Public License. 54 * 55 * This driver does not use the HCF or HCF Light at all. Instead, it 56 * programs the Hermes controller directly, using information gleaned 57 * from the HCF Light code and corresponding documentation. 58 * 59 * This driver supports both the PCMCIA and ISA versions of the 60 * WaveLAN/IEEE cards. Note however that the ISA card isn't really 61 * anything of the sort: it's actually a PCMCIA bridge adapter 62 * that fits into an ISA slot, into which a PCMCIA WaveLAN card is 63 * inserted. Consequently, you need to use the pccard support for 64 * both the ISA and PCMCIA adapters. 65 */ 66 67 /* 68 * FreeBSD driver ported to NetBSD by Bill Sommerfeld in the back of the 69 * Oslo IETF plenary meeting. 70 */ 71 72 #include <sys/cdefs.h> 73 __KERNEL_RCSID(0, "$NetBSD: wi.c,v 1.36 2002/01/21 11:29:22 ichiro Exp $"); 74 75 #define WI_HERMES_AUTOINC_WAR /* Work around data write autoinc bug. */ 76 #define WI_HERMES_STATS_WAR /* Work around stats counter bug. */ 77 78 #include "bpfilter.h" 79 80 #include <sys/param.h> 81 #include <sys/systm.h> 82 #include <sys/callout.h> 83 #include <sys/device.h> 84 #include <sys/socket.h> 85 #include <sys/mbuf.h> 86 #include <sys/ioctl.h> 87 #include <sys/kernel.h> /* for hz */ 88 #include <sys/proc.h> 89 90 #include <net/if.h> 91 #include <net/if_dl.h> 92 #include <net/if_media.h> 93 #include <net/if_ether.h> 94 #include <net/if_ieee80211.h> 95 96 #if NBPFILTER > 0 97 #include <net/bpf.h> 98 #include <net/bpfdesc.h> 99 #endif 100 101 #include <machine/bus.h> 102 103 #include <dev/ic/wi_ieee.h> 104 #include <dev/ic/wireg.h> 105 #include <dev/ic/wivar.h> 106 107 static void wi_reset __P((struct wi_softc *)); 108 static int wi_ioctl __P((struct ifnet *, u_long, caddr_t)); 109 static void wi_start __P((struct ifnet *)); 110 static void wi_watchdog __P((struct ifnet *)); 111 static int wi_init __P((struct ifnet *)); 112 static void wi_stop __P((struct ifnet *, int)); 113 static void wi_rxeof __P((struct wi_softc *)); 114 static void wi_txeof __P((struct wi_softc *, int)); 115 static void wi_update_stats __P((struct wi_softc *)); 116 static void wi_setmulti __P((struct wi_softc *)); 117 118 static int wi_cmd __P((struct wi_softc *, int, int)); 119 static int wi_read_record __P((struct wi_softc *, struct wi_ltv_gen *)); 120 static int wi_write_record __P((struct wi_softc *, struct wi_ltv_gen *)); 121 static int wi_read_data __P((struct wi_softc *, int, 122 int, caddr_t, int)); 123 static int wi_write_data __P((struct wi_softc *, int, 124 int, caddr_t, int)); 125 static int wi_seek __P((struct wi_softc *, int, int, int)); 126 static int wi_alloc_nicmem __P((struct wi_softc *, int, int *)); 127 static void wi_inquire __P((void *)); 128 static void wi_wait_scan __P((void *)); 129 static int wi_setdef __P((struct wi_softc *, struct wi_req *)); 130 static int wi_getdef __P((struct wi_softc *, struct wi_req *)); 131 static int wi_mgmt_xmit __P((struct wi_softc *, caddr_t, int)); 132 133 static int wi_media_change __P((struct ifnet *)); 134 static void wi_media_status __P((struct ifnet *, struct ifmediareq *)); 135 136 static void wi_get_id __P((struct wi_softc *)); 137 138 static int wi_set_ssid __P((struct ieee80211_nwid *, u_int8_t *, int)); 139 static void wi_request_fill_ssid __P((struct wi_req *, 140 struct ieee80211_nwid *)); 141 static int wi_write_ssid __P((struct wi_softc *, int, struct wi_req *, 142 struct ieee80211_nwid *)); 143 static int wi_set_nwkey __P((struct wi_softc *, struct ieee80211_nwkey *)); 144 static int wi_get_nwkey __P((struct wi_softc *, struct ieee80211_nwkey *)); 145 static int wi_sync_media __P((struct wi_softc *, int, int)); 146 static int wi_set_pm(struct wi_softc *, struct ieee80211_power *); 147 static int wi_get_pm(struct wi_softc *, struct ieee80211_power *); 148 149 int 150 wi_attach(sc) 151 struct wi_softc *sc; 152 { 153 struct ifnet *ifp = sc->sc_ifp; 154 struct wi_ltv_macaddr mac; 155 struct wi_ltv_gen gen; 156 static const u_int8_t empty_macaddr[ETHER_ADDR_LEN] = { 157 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 158 }; 159 int s; 160 161 s = splnet(); 162 163 callout_init(&sc->wi_inquire_ch); 164 callout_init(&sc->wi_scan_sh); 165 166 /* Make sure interrupts are disabled. */ 167 CSR_WRITE_2(sc, WI_INT_EN, 0); 168 CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF); 169 170 /* Reset the NIC. */ 171 wi_reset(sc); 172 173 memset(&mac, 0, sizeof(mac)); 174 /* Read the station address. */ 175 mac.wi_type = WI_RID_MAC_NODE; 176 mac.wi_len = 4; 177 wi_read_record(sc, (struct wi_ltv_gen *)&mac); 178 memcpy(sc->sc_macaddr, mac.wi_mac_addr, ETHER_ADDR_LEN); 179 180 /* 181 * Check if we got anything meaningful. 182 * 183 * Is it really enough just checking against null ethernet address? 184 * Or, check against possible vendor? XXX. 185 */ 186 if (memcmp(sc->sc_macaddr, empty_macaddr, ETHER_ADDR_LEN) == 0) { 187 printf("%s: could not get mac address, attach failed\n", 188 sc->sc_dev.dv_xname); 189 return 1; 190 } 191 192 printf(" 802.11 address %s\n", ether_sprintf(sc->sc_macaddr)); 193 194 /* Read NIC identification */ 195 wi_get_id(sc); 196 197 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ); 198 ifp->if_softc = sc; 199 ifp->if_start = wi_start; 200 ifp->if_ioctl = wi_ioctl; 201 ifp->if_watchdog = wi_watchdog; 202 ifp->if_init = wi_init; 203 ifp->if_stop = wi_stop; 204 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 205 #ifdef IFF_NOTRAILERS 206 ifp->if_flags |= IFF_NOTRAILERS; 207 #endif 208 IFQ_SET_READY(&ifp->if_snd); 209 210 (void)wi_set_ssid(&sc->wi_nodeid, WI_DEFAULT_NODENAME, 211 sizeof(WI_DEFAULT_NODENAME) - 1); 212 (void)wi_set_ssid(&sc->wi_netid, WI_DEFAULT_NETNAME, 213 sizeof(WI_DEFAULT_NETNAME) - 1); 214 (void)wi_set_ssid(&sc->wi_ibssid, WI_DEFAULT_IBSS, 215 sizeof(WI_DEFAULT_IBSS) - 1); 216 217 sc->wi_portnum = WI_DEFAULT_PORT; 218 sc->wi_ptype = WI_PORTTYPE_BSS; 219 sc->wi_ap_density = WI_DEFAULT_AP_DENSITY; 220 sc->wi_rts_thresh = WI_DEFAULT_RTS_THRESH; 221 sc->wi_tx_rate = WI_DEFAULT_TX_RATE; 222 sc->wi_max_data_len = WI_DEFAULT_DATALEN; 223 sc->wi_create_ibss = WI_DEFAULT_CREATE_IBSS; 224 sc->wi_pm_enabled = WI_DEFAULT_PM_ENABLED; 225 sc->wi_max_sleep = WI_DEFAULT_MAX_SLEEP; 226 sc->wi_roaming = WI_DEFAULT_ROAMING; 227 sc->wi_authtype = WI_DEFAULT_AUTHTYPE; 228 229 /* 230 * Read the default channel from the NIC. This may vary 231 * depending on the country where the NIC was purchased, so 232 * we can't hard-code a default and expect it to work for 233 * everyone. 234 */ 235 gen.wi_type = WI_RID_OWN_CHNL; 236 gen.wi_len = 2; 237 wi_read_record(sc, &gen); 238 sc->wi_channel = le16toh(gen.wi_val); 239 240 memset((char *)&sc->wi_stats, 0, sizeof(sc->wi_stats)); 241 242 /* AP info was filled with 0 */ 243 memset((char *)&sc->wi_aps, 0, sizeof(sc->wi_aps)); 244 sc->wi_scanning=0; 245 sc->wi_naps=0; 246 247 /* 248 * Find out if we support WEP on this card. 249 */ 250 gen.wi_type = WI_RID_WEP_AVAIL; 251 gen.wi_len = 2; 252 wi_read_record(sc, &gen); 253 sc->wi_has_wep = le16toh(gen.wi_val); 254 255 ifmedia_init(&sc->sc_media, 0, wi_media_change, wi_media_status); 256 #define IFM_AUTOADHOC \ 257 IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, IFM_IEEE80211_ADHOC, 0) 258 #define ADD(m, c) ifmedia_add(&sc->sc_media, (m), (c), NULL) 259 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, 0, 0), 0); 260 ADD(IFM_AUTOADHOC, 0); 261 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1, 0, 0), 0); 262 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1, 263 IFM_IEEE80211_ADHOC, 0), 0); 264 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2, 0, 0), 0); 265 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2, 266 IFM_IEEE80211_ADHOC, 0), 0); 267 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5, 0, 0), 0); 268 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5, 269 IFM_IEEE80211_ADHOC, 0), 0); 270 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11, 0, 0), 0); 271 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11, 272 IFM_IEEE80211_ADHOC, 0), 0); 273 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_MANUAL, 0, 0), 0); 274 #undef ADD 275 ifmedia_set(&sc->sc_media, IFM_AUTOADHOC); 276 277 /* 278 * Call MI attach routines. 279 */ 280 if_attach(ifp); 281 ether_ifattach(ifp, mac.wi_mac_addr); 282 283 ifp->if_baudrate = IF_Mbps(2); 284 285 /* Attach is successful. */ 286 sc->sc_attached = 1; 287 288 splx(s); 289 return 0; 290 } 291 292 static void wi_rxeof(sc) 293 struct wi_softc *sc; 294 { 295 struct ifnet *ifp; 296 struct ether_header *eh; 297 struct wi_frame rx_frame; 298 struct mbuf *m; 299 int id; 300 301 ifp = sc->sc_ifp; 302 303 id = CSR_READ_2(sc, WI_RX_FID); 304 305 /* First read in the frame header */ 306 if (wi_read_data(sc, id, 0, (caddr_t)&rx_frame, sizeof(rx_frame))) { 307 ifp->if_ierrors++; 308 return; 309 } 310 311 /* 312 * Drop undecryptable or packets with receive errors here 313 */ 314 if (le16toh(rx_frame.wi_status) & WI_STAT_ERRSTAT) { 315 ifp->if_ierrors++; 316 return; 317 } 318 319 MGETHDR(m, M_DONTWAIT, MT_DATA); 320 if (m == NULL) { 321 ifp->if_ierrors++; 322 return; 323 } 324 MCLGET(m, M_DONTWAIT); 325 if (!(m->m_flags & M_EXT)) { 326 m_freem(m); 327 ifp->if_ierrors++; 328 return; 329 } 330 331 /* Align the data after the ethernet header */ 332 m->m_data = (caddr_t) ALIGN(m->m_data + sizeof(struct ether_header)) 333 - sizeof(struct ether_header); 334 335 eh = mtod(m, struct ether_header *); 336 m->m_pkthdr.rcvif = ifp; 337 338 if (le16toh(rx_frame.wi_status) == WI_STAT_1042 || 339 le16toh(rx_frame.wi_status) == WI_STAT_TUNNEL || 340 le16toh(rx_frame.wi_status) == WI_STAT_WMP_MSG) { 341 if ((le16toh(rx_frame.wi_dat_len) + WI_SNAPHDR_LEN) > MCLBYTES) { 342 printf("%s: oversized packet received " 343 "(wi_dat_len=%d, wi_status=0x%x)\n", 344 sc->sc_dev.dv_xname, 345 le16toh(rx_frame.wi_dat_len), le16toh(rx_frame.wi_status)); 346 m_freem(m); 347 ifp->if_ierrors++; 348 return; 349 } 350 m->m_pkthdr.len = m->m_len = 351 le16toh(rx_frame.wi_dat_len) + WI_SNAPHDR_LEN; 352 353 memcpy((char *)&eh->ether_dhost, (char *)&rx_frame.wi_dst_addr, 354 ETHER_ADDR_LEN); 355 memcpy((char *)&eh->ether_shost, (char *)&rx_frame.wi_src_addr, 356 ETHER_ADDR_LEN); 357 memcpy((char *)&eh->ether_type, (char *)&rx_frame.wi_type, 358 sizeof(u_int16_t)); 359 360 if (wi_read_data(sc, id, WI_802_11_OFFSET, 361 mtod(m, caddr_t) + sizeof(struct ether_header), 362 m->m_len + 2)) { 363 m_freem(m); 364 ifp->if_ierrors++; 365 return; 366 } 367 } else { 368 if ((le16toh(rx_frame.wi_dat_len) + 369 sizeof(struct ether_header)) > MCLBYTES) { 370 printf("%s: oversized packet received " 371 "(wi_dat_len=%d, wi_status=0x%x)\n", 372 sc->sc_dev.dv_xname, 373 le16toh(rx_frame.wi_dat_len), le16toh(rx_frame.wi_status)); 374 m_freem(m); 375 ifp->if_ierrors++; 376 return; 377 } 378 m->m_pkthdr.len = m->m_len = 379 le16toh(rx_frame.wi_dat_len) + sizeof(struct ether_header); 380 381 if (wi_read_data(sc, id, WI_802_3_OFFSET, 382 mtod(m, caddr_t), m->m_len + 2)) { 383 m_freem(m); 384 ifp->if_ierrors++; 385 return; 386 } 387 } 388 389 ifp->if_ipackets++; 390 391 #if NBPFILTER > 0 392 /* Handle BPF listeners. */ 393 if (ifp->if_bpf) 394 bpf_mtap(ifp->if_bpf, m); 395 #endif 396 397 /* Receive packet. */ 398 (*ifp->if_input)(ifp, m); 399 } 400 401 static void wi_txeof(sc, status) 402 struct wi_softc *sc; 403 int status; 404 { 405 struct ifnet *ifp = sc->sc_ifp; 406 407 ifp->if_timer = 0; 408 ifp->if_flags &= ~IFF_OACTIVE; 409 410 if (status & WI_EV_TX_EXC) 411 ifp->if_oerrors++; 412 else 413 ifp->if_opackets++; 414 415 return; 416 } 417 418 void wi_inquire(xsc) 419 void *xsc; 420 { 421 struct wi_softc *sc; 422 struct ifnet *ifp; 423 424 sc = xsc; 425 ifp = &sc->sc_ethercom.ec_if; 426 427 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0) 428 return; 429 430 callout_reset(&sc->wi_inquire_ch, hz * 60, wi_inquire, sc); 431 432 /* Don't do this while we're transmitting */ 433 if (ifp->if_flags & IFF_OACTIVE) 434 return; 435 436 wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_COUNTERS); 437 } 438 439 void wi_wait_scan(xsc) 440 void *xsc; 441 { 442 struct wi_softc *sc; 443 struct ifnet *ifp; 444 445 sc = xsc; 446 ifp = &sc->sc_ethercom.ec_if; 447 448 /* If not scanning, ignore */ 449 if (!sc->wi_scanning) 450 return; 451 452 /* Wait for to make INQUIRE */ 453 if (ifp->if_flags & IFF_OACTIVE) { 454 callout_reset(&sc->wi_scan_sh, hz * 1, wi_wait_scan, sc); 455 return; 456 } 457 458 /* try INQUIRE */ 459 if (wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS) == ETIMEDOUT) { 460 callout_reset(&sc->wi_scan_sh, hz * 1, wi_wait_scan, sc); 461 return; 462 } 463 } 464 465 void wi_update_stats(sc) 466 struct wi_softc *sc; 467 { 468 struct wi_ltv_gen gen; 469 struct wi_scan_header ap2_header; /* Prism2 header */ 470 struct wi_scan_data_p2 ap2; /* Prism2 scantable*/ 471 struct wi_scan_data ap; /* Lucent scantable */ 472 struct wi_assoc assoc; /* Association Status */ 473 u_int16_t id; 474 struct ifnet *ifp; 475 u_int32_t *ptr; 476 int len, naps, i, j; 477 u_int16_t t; 478 479 ifp = &sc->sc_ethercom.ec_if; 480 481 id = CSR_READ_2(sc, WI_INFO_FID); 482 483 wi_read_data(sc, id, 0, (char *)&gen, 4); 484 485 switch (gen.wi_type) { 486 case WI_INFO_SCAN_RESULTS: 487 if (gen.wi_len < 3) 488 break; 489 if (sc->sc_prism2) { /* Prism2 chip */ 490 naps = 2 * (gen.wi_len - 3) / sizeof(ap2); 491 naps = naps > MAXAPINFO ? MAXAPINFO : naps; 492 sc->wi_naps = naps; 493 /* Read Header */ 494 for(j=0; j < sizeof(ap2_header) / 2; j++) 495 ((u_int16_t *)&ap2_header)[j] = 496 CSR_READ_2(sc, WI_DATA1); 497 /* Read Data */ 498 for (i=0; i < naps; i++) { 499 for(j=0; j < sizeof(ap2) / 2; j++) 500 ((u_int16_t *)&ap2)[j] = 501 CSR_READ_2(sc, WI_DATA1); 502 sc->wi_aps[i].scanreason = ap2_header.wi_reason; 503 memcpy(sc->wi_aps[i].bssid, ap2.wi_bssid, 6); 504 sc->wi_aps[i].channel = ap2.wi_chid; 505 sc->wi_aps[i].signal = ap2.wi_signal; 506 sc->wi_aps[i].noise = ap2.wi_noise; 507 sc->wi_aps[i].quality = ap2.wi_signal - ap2.wi_noise; 508 sc->wi_aps[i].capinfo = ap2.wi_capinfo; 509 sc->wi_aps[i].interval = ap2.wi_interval; 510 sc->wi_aps[i].rate = ap2.wi_rate; 511 if (ap2.wi_namelen > 32) 512 ap2.wi_namelen = 32; 513 sc->wi_aps[i].namelen = ap2.wi_namelen; 514 memcpy(sc->wi_aps[i].name, ap2.wi_name, 515 ap2.wi_namelen); 516 } 517 } else { /* Lucent chip */ 518 naps = 2 * gen.wi_len / sizeof(ap); 519 naps = naps > MAXAPINFO ? MAXAPINFO : naps; 520 sc->wi_naps = naps; 521 /* Read Data*/ 522 for (i=0; i < naps; i++) { 523 for(j=0; j < sizeof(ap) / 2; j++) 524 ((u_int16_t *)&ap)[j] = 525 CSR_READ_2(sc, WI_DATA1); 526 memcpy(sc->wi_aps[i].bssid, ap.wi_bssid, 6); 527 sc->wi_aps[i].channel = ap.wi_chid; 528 sc->wi_aps[i].signal = ap.wi_signal; 529 sc->wi_aps[i].noise = ap.wi_noise; 530 sc->wi_aps[i].quality = ap.wi_signal - ap.wi_noise; 531 sc->wi_aps[i].capinfo = ap.wi_capinfo; 532 sc->wi_aps[i].interval = ap.wi_interval; 533 if (ap.wi_namelen > 32) 534 ap.wi_namelen = 32; 535 sc->wi_aps[i].namelen = ap.wi_namelen; 536 memcpy(sc->wi_aps[i].name, ap.wi_name, 537 ap.wi_namelen); 538 } 539 } 540 /* Done scanning */ 541 sc->wi_scanning = 0; 542 break; 543 544 case WI_INFO_COUNTERS: 545 /* some card versions have a larger stats structure */ 546 len = (gen.wi_len - 1 < sizeof(sc->wi_stats) / 4) ? 547 gen.wi_len - 1 : sizeof(sc->wi_stats) / 4; 548 ptr = (u_int32_t *)&sc->wi_stats; 549 550 for (i = 0; i < len; i++) { 551 t = CSR_READ_2(sc, WI_DATA1); 552 #ifdef WI_HERMES_STATS_WAR 553 if (t > 0xF000) 554 t = ~t & 0xFFFF; 555 #endif 556 ptr[i] += t; 557 } 558 559 ifp->if_collisions = sc->wi_stats.wi_tx_single_retries + 560 sc->wi_stats.wi_tx_multi_retries + 561 sc->wi_stats.wi_tx_retry_limit; 562 break; 563 564 case WI_INFO_LINK_STAT: { 565 static char *msg[] = { 566 "connected", 567 "disconnected", 568 "AP change", 569 "AP out of range", 570 "AP in range", 571 "Association Faild" 572 }; 573 574 if (gen.wi_len != 2) { 575 #ifdef WI_DEBUG 576 printf("WI_INFO_LINK_STAT: len=%d\n", gen.wi_len); 577 #endif 578 break; 579 } 580 t = CSR_READ_2(sc, WI_DATA1); 581 if ((t < 1) || (t > 6)) { 582 #ifdef WI_DEBUG 583 printf("WI_INFO_LINK_STAT: status %d\n", t); 584 #endif 585 break; 586 } 587 printf("%s: %s\n", sc->sc_dev.dv_xname, msg[t - 1]); 588 break; 589 } 590 591 case WI_INFO_ASSOC_STAT: { 592 static char *msg[] = { 593 "STA Associated", 594 "STA Reassociated", 595 "STA Disassociated", 596 "Association Failure", 597 "Authentication Faild" 598 }; 599 if (gen.wi_len != 10) 600 break; 601 for (i=0; i < gen.wi_len - 1; i++) 602 ((u_int16_t *)&assoc)[i] = CSR_READ_2(sc, WI_DATA1); 603 switch (assoc.wi_assoc_stat) { 604 case ASSOC: 605 case DISASSOC: 606 case ASSOCFAIL: 607 case AUTHFAIL: 608 printf("%s: %s, AP = %x:%x:%x:%x:%x:%x\n", 609 sc->sc_dev.dv_xname, 610 msg[assoc.wi_assoc_stat - 1], 611 assoc.wi_assoc_sta[0]&0xff, assoc.wi_assoc_sta[1]&0xff, 612 assoc.wi_assoc_sta[2]&0xff, assoc.wi_assoc_sta[3]&0xff, 613 assoc.wi_assoc_sta[4]&0xff, assoc.wi_assoc_sta[5]&0xff); 614 break; 615 case REASSOC: 616 printf("%s: %s, AP = %x:%x:%x:%x:%x:%x, OldAP = %x:%x:%x:%x:%x:%x\n", 617 sc->sc_dev.dv_xname, msg[assoc.wi_assoc_stat - 1], 618 assoc.wi_assoc_sta[0]&0xff, assoc.wi_assoc_sta[1]&0xff, 619 assoc.wi_assoc_sta[2]&0xff, assoc.wi_assoc_sta[3]&0xff, 620 assoc.wi_assoc_sta[4]&0xff, assoc.wi_assoc_sta[5]&0xff, 621 assoc.wi_assoc_osta[0]&0xff, assoc.wi_assoc_osta[1]&0xff, 622 assoc.wi_assoc_osta[2]&0xff, assoc.wi_assoc_osta[3]&0xff, 623 assoc.wi_assoc_osta[4]&0xff, assoc.wi_assoc_osta[5]&0xff); 624 break; 625 } 626 } 627 default: 628 #if 0 629 printf("Got info type: %04x\n", gen.wi_type); 630 #endif 631 for (i = 0; i < gen.wi_len; i++) { 632 t = CSR_READ_2(sc, WI_DATA1); 633 #if 0 634 printf("[0x%02x] = 0x%04x\n", i, t); 635 #endif 636 } 637 break; 638 } 639 } 640 641 int wi_intr(arg) 642 void *arg; 643 { 644 struct wi_softc *sc = arg; 645 struct ifnet *ifp; 646 u_int16_t status; 647 648 if (sc->sc_enabled == 0 || 649 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0 || 650 (sc->sc_ethercom.ec_if.if_flags & IFF_RUNNING) == 0) 651 return (0); 652 653 ifp = &sc->sc_ethercom.ec_if; 654 655 if (!(ifp->if_flags & IFF_UP)) { 656 CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF); 657 CSR_WRITE_2(sc, WI_INT_EN, 0); 658 return 1; 659 } 660 661 /* Disable interrupts. */ 662 CSR_WRITE_2(sc, WI_INT_EN, 0); 663 664 status = CSR_READ_2(sc, WI_EVENT_STAT); 665 CSR_WRITE_2(sc, WI_EVENT_ACK, ~WI_INTRS); 666 667 if (status & WI_EV_RX) { 668 wi_rxeof(sc); 669 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX); 670 } 671 672 if (status & WI_EV_TX) { 673 wi_txeof(sc, status); 674 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_TX); 675 } 676 677 if (status & WI_EV_ALLOC) { 678 int id; 679 id = CSR_READ_2(sc, WI_ALLOC_FID); 680 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC); 681 if (id == sc->wi_tx_data_id) 682 wi_txeof(sc, status); 683 } 684 685 if (status & WI_EV_INFO) { 686 wi_update_stats(sc); 687 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_INFO); 688 } 689 690 if (status & WI_EV_TX_EXC) { 691 wi_txeof(sc, status); 692 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_TX_EXC); 693 } 694 695 if (status & WI_EV_INFO_DROP) { 696 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_INFO_DROP); 697 } 698 699 /* Re-enable interrupts. */ 700 CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS); 701 702 if (IFQ_IS_EMPTY(&ifp->if_snd) == 0) 703 wi_start(ifp); 704 705 return 1; 706 } 707 708 static int 709 wi_cmd(sc, cmd, val) 710 struct wi_softc *sc; 711 int cmd; 712 int val; 713 { 714 int i, s = 0; 715 716 /* wait for the busy bit to clear */ 717 for (i = 0; i < WI_TIMEOUT; i++) { 718 if (!(CSR_READ_2(sc, WI_COMMAND) & WI_CMD_BUSY)) 719 break; 720 } 721 722 CSR_WRITE_2(sc, WI_PARAM0, val); 723 CSR_WRITE_2(sc, WI_PARAM1, 0); 724 CSR_WRITE_2(sc, WI_PARAM2, 0); 725 CSR_WRITE_2(sc, WI_COMMAND, cmd); 726 727 /* wait for the cmd completed bit */ 728 for (i = 0; i < WI_TIMEOUT; i++) { 729 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_CMD) 730 break; 731 DELAY(1); 732 } 733 734 /* Ack the command */ 735 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD); 736 737 s = CSR_READ_2(sc, WI_STATUS); 738 if (s & WI_STAT_CMD_RESULT) 739 return(EIO); 740 741 if (i == WI_TIMEOUT) 742 return(ETIMEDOUT); 743 744 return(0); 745 } 746 747 static void 748 wi_reset(sc) 749 struct wi_softc *sc; 750 { 751 DELAY(100*1000); /* 100 m sec */ 752 if (wi_cmd(sc, WI_CMD_INI, 0)) 753 printf("%s: init failed\n", sc->sc_dev.dv_xname); 754 CSR_WRITE_2(sc, WI_INT_EN, 0); 755 CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF); 756 757 /* Calibrate timer. */ 758 WI_SETVAL(WI_RID_TICK_TIME, 8); 759 760 return; 761 } 762 763 void 764 wi_pci_reset(sc) 765 struct wi_softc *sc; 766 { 767 bus_space_write_2(sc->sc_iot, sc->sc_ioh, 768 WI_PCI_COR, WI_PCI_SOFT_RESET); 769 DELAY(100*1000); /* 100 m sec */ 770 771 bus_space_write_2(sc->sc_iot, sc->sc_ioh, WI_PCI_COR, 0x0); 772 DELAY(100*1000); /* 100 m sec */ 773 774 return; 775 } 776 777 /* 778 * Read an LTV record from the NIC. 779 */ 780 static int wi_read_record(sc, ltv) 781 struct wi_softc *sc; 782 struct wi_ltv_gen *ltv; 783 { 784 u_int16_t *ptr; 785 int len, code; 786 struct wi_ltv_gen *oltv, p2ltv; 787 788 if (sc->sc_prism2) { 789 oltv = ltv; 790 switch (ltv->wi_type) { 791 case WI_RID_ENCRYPTION: 792 p2ltv.wi_type = WI_RID_P2_ENCRYPTION; 793 p2ltv.wi_len = 2; 794 ltv = &p2ltv; 795 break; 796 case WI_RID_TX_CRYPT_KEY: 797 p2ltv.wi_type = WI_RID_P2_TX_CRYPT_KEY; 798 p2ltv.wi_len = 2; 799 ltv = &p2ltv; 800 break; 801 } 802 } 803 804 /* Tell the NIC to enter record read mode. */ 805 if (wi_cmd(sc, WI_CMD_ACCESS|WI_ACCESS_READ, ltv->wi_type)) 806 return(EIO); 807 808 /* Seek to the record. */ 809 if (wi_seek(sc, ltv->wi_type, 0, WI_BAP1)) 810 return(EIO); 811 812 /* 813 * Read the length and record type and make sure they 814 * match what we expect (this verifies that we have enough 815 * room to hold all of the returned data). 816 */ 817 len = CSR_READ_2(sc, WI_DATA1); 818 if (len > ltv->wi_len) 819 return(ENOSPC); 820 code = CSR_READ_2(sc, WI_DATA1); 821 if (code != ltv->wi_type) 822 return(EIO); 823 824 ltv->wi_len = len; 825 ltv->wi_type = code; 826 827 /* Now read the data. */ 828 ptr = <v->wi_val; 829 if (ltv->wi_len > 1) 830 CSR_READ_MULTI_STREAM_2(sc, WI_DATA1, ptr, ltv->wi_len - 1); 831 832 if (sc->sc_prism2) { 833 int v; 834 835 switch (oltv->wi_type) { 836 case WI_RID_TX_RATE: 837 case WI_RID_CUR_TX_RATE: 838 switch (le16toh(ltv->wi_val)) { 839 case 1: v = 1; break; 840 case 2: v = 2; break; 841 case 3: v = 6; break; 842 case 4: v = 5; break; 843 case 7: v = 7; break; 844 case 8: v = 11; break; 845 case 15: v = 3; break; 846 default: v = 0x100 + le16toh(ltv->wi_val); break; 847 } 848 oltv->wi_val = htole16(v); 849 break; 850 case WI_RID_ENCRYPTION: 851 oltv->wi_len = 2; 852 if (le16toh(ltv->wi_val) & 0x01) 853 oltv->wi_val = htole16(1); 854 else 855 oltv->wi_val = htole16(0); 856 break; 857 case WI_RID_TX_CRYPT_KEY: 858 oltv->wi_len = 2; 859 oltv->wi_val = ltv->wi_val; 860 break; 861 case WI_RID_AUTH_CNTL: 862 oltv->wi_len = 2; 863 if (le16toh(ltv->wi_val) & 0x01) 864 oltv->wi_val = htole16(1); 865 else if (le16toh(ltv->wi_val) & 0x02) 866 oltv->wi_val = htole16(2); 867 break; 868 } 869 } 870 871 return(0); 872 } 873 874 /* 875 * Same as read, except we inject data instead of reading it. 876 */ 877 static int wi_write_record(sc, ltv) 878 struct wi_softc *sc; 879 struct wi_ltv_gen *ltv; 880 { 881 u_int16_t *ptr; 882 int i; 883 struct wi_ltv_gen p2ltv; 884 885 if (sc->sc_prism2) { 886 int v; 887 888 switch (ltv->wi_type) { 889 case WI_RID_TX_RATE: 890 p2ltv.wi_type = WI_RID_TX_RATE; 891 p2ltv.wi_len = 2; 892 switch (le16toh(ltv->wi_val)) { 893 case 1: v = 1; break; 894 case 2: v = 2; break; 895 case 3: v = 15; break; 896 case 5: v = 4; break; 897 case 6: v = 3; break; 898 case 7: v = 7; break; 899 case 11: v = 8; break; 900 default: return EINVAL; 901 } 902 p2ltv.wi_val = htole16(v); 903 ltv = &p2ltv; 904 break; 905 case WI_RID_ENCRYPTION: 906 p2ltv.wi_type = WI_RID_P2_ENCRYPTION; 907 p2ltv.wi_len = 2; 908 if (le16toh(ltv->wi_val)) 909 p2ltv.wi_val = htole16(0x03); 910 else 911 p2ltv.wi_val = htole16(0x90); 912 ltv = &p2ltv; 913 break; 914 case WI_RID_TX_CRYPT_KEY: 915 p2ltv.wi_type = WI_RID_P2_TX_CRYPT_KEY; 916 p2ltv.wi_len = 2; 917 p2ltv.wi_val = ltv->wi_val; 918 ltv = &p2ltv; 919 break; 920 case WI_RID_DEFLT_CRYPT_KEYS: 921 { 922 int error; 923 struct wi_ltv_str ws; 924 struct wi_ltv_keys *wk = (struct wi_ltv_keys *)ltv; 925 for (i = 0; i < 4; i++) { 926 memset(&ws, 0, sizeof(ws)); 927 if(wk->wi_keys[i].wi_keylen <= 5) { 928 /* 5 Octets WEP Keys */ 929 ws.wi_len = 4; 930 memcpy(ws.wi_str, &wk->wi_keys[i].wi_keydat, 5); 931 ws.wi_str[5] = '\0'; 932 } else { 933 /* 13 Octets WEP Keys */ 934 ws.wi_len = 8; 935 memcpy(ws.wi_str, &wk->wi_keys[i].wi_keydat, 13); 936 ws.wi_str[13] = '\0'; 937 } 938 ws.wi_type = WI_RID_P2_CRYPT_KEY0 + i; 939 940 if(wi_write_record(sc, (struct wi_ltv_gen *)&ws)) 941 return error; 942 } 943 return 0; 944 } 945 case WI_RID_AUTH_CNTL: 946 p2ltv.wi_type = WI_RID_AUTH_CNTL; 947 p2ltv.wi_len = 2; 948 if (le16toh(ltv->wi_val) == 1) 949 p2ltv.wi_val = htole16(0x01); 950 else if (le16toh(ltv->wi_val) == 2) 951 p2ltv.wi_val = htole16(0x02); 952 ltv = &p2ltv; 953 break; 954 } 955 } 956 957 if (wi_seek(sc, ltv->wi_type, 0, WI_BAP1)) 958 return(EIO); 959 960 CSR_WRITE_2(sc, WI_DATA1, ltv->wi_len); 961 CSR_WRITE_2(sc, WI_DATA1, ltv->wi_type); 962 963 /* Write data */ 964 ptr = <v->wi_val; 965 if (ltv->wi_len > 1) 966 CSR_WRITE_MULTI_STREAM_2(sc, WI_DATA1, ptr, ltv->wi_len - 1); 967 968 if (wi_cmd(sc, WI_CMD_ACCESS|WI_ACCESS_WRITE, ltv->wi_type)) 969 return(EIO); 970 971 return(0); 972 } 973 974 static int wi_seek(sc, id, off, chan) 975 struct wi_softc *sc; 976 int id, off, chan; 977 { 978 int i; 979 int selreg, offreg; 980 int status; 981 982 switch (chan) { 983 case WI_BAP0: 984 selreg = WI_SEL0; 985 offreg = WI_OFF0; 986 break; 987 case WI_BAP1: 988 selreg = WI_SEL1; 989 offreg = WI_OFF1; 990 break; 991 default: 992 printf("%s: invalid data path: %x\n", 993 sc->sc_dev.dv_xname, chan); 994 return(EIO); 995 } 996 997 CSR_WRITE_2(sc, selreg, id); 998 CSR_WRITE_2(sc, offreg, off); 999 1000 for (i = 0; i < WI_TIMEOUT; i++) { 1001 status = CSR_READ_2(sc, offreg); 1002 if (!(status & (WI_OFF_BUSY|WI_OFF_ERR))) 1003 break; 1004 } 1005 1006 if (i == WI_TIMEOUT) { 1007 printf("%s: timeout in wi_seek to %x/%x; last status %x\n", 1008 sc->sc_dev.dv_xname, id, off, status); 1009 return(ETIMEDOUT); 1010 } 1011 return(0); 1012 } 1013 1014 static int wi_read_data(sc, id, off, buf, len) 1015 struct wi_softc *sc; 1016 int id, off; 1017 caddr_t buf; 1018 int len; 1019 { 1020 u_int16_t *ptr; 1021 1022 if (wi_seek(sc, id, off, WI_BAP1)) 1023 return(EIO); 1024 1025 ptr = (u_int16_t *)buf; 1026 CSR_READ_MULTI_STREAM_2(sc, WI_DATA1, ptr, len / 2); 1027 1028 return(0); 1029 } 1030 1031 /* 1032 * According to the comments in the HCF Light code, there is a bug in 1033 * the Hermes (or possibly in certain Hermes firmware revisions) where 1034 * the chip's internal autoincrement counter gets thrown off during 1035 * data writes: the autoincrement is missed, causing one data word to 1036 * be overwritten and subsequent words to be written to the wrong memory 1037 * locations. The end result is that we could end up transmitting bogus 1038 * frames without realizing it. The workaround for this is to write a 1039 * couple of extra guard words after the end of the transfer, then 1040 * attempt to read then back. If we fail to locate the guard words where 1041 * we expect them, we preform the transfer over again. 1042 */ 1043 static int wi_write_data(sc, id, off, buf, len) 1044 struct wi_softc *sc; 1045 int id, off; 1046 caddr_t buf; 1047 int len; 1048 { 1049 u_int16_t *ptr; 1050 1051 #ifdef WI_HERMES_AUTOINC_WAR 1052 again: 1053 #endif 1054 1055 if (wi_seek(sc, id, off, WI_BAP0)) 1056 return(EIO); 1057 1058 ptr = (u_int16_t *)buf; 1059 CSR_WRITE_MULTI_STREAM_2(sc, WI_DATA0, ptr, len / 2); 1060 1061 #ifdef WI_HERMES_AUTOINC_WAR 1062 CSR_WRITE_2(sc, WI_DATA0, 0x1234); 1063 CSR_WRITE_2(sc, WI_DATA0, 0x5678); 1064 1065 if (wi_seek(sc, id, off + len, WI_BAP0)) 1066 return(EIO); 1067 1068 if (CSR_READ_2(sc, WI_DATA0) != 0x1234 || 1069 CSR_READ_2(sc, WI_DATA0) != 0x5678) 1070 goto again; 1071 #endif 1072 1073 return(0); 1074 } 1075 1076 /* 1077 * Allocate a region of memory inside the NIC and zero 1078 * it out. 1079 */ 1080 static int wi_alloc_nicmem(sc, len, id) 1081 struct wi_softc *sc; 1082 int len; 1083 int *id; 1084 { 1085 int i; 1086 1087 if (wi_cmd(sc, WI_CMD_ALLOC_MEM, len)) { 1088 printf("%s: failed to allocate %d bytes on NIC\n", 1089 sc->sc_dev.dv_xname, len); 1090 return(ENOMEM); 1091 } 1092 1093 for (i = 0; i < WI_TIMEOUT; i++) { 1094 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_ALLOC) 1095 break; 1096 } 1097 1098 if (i == WI_TIMEOUT) { 1099 printf("%s: TIMED OUT in alloc\n", sc->sc_dev.dv_xname); 1100 return(ETIMEDOUT); 1101 } 1102 1103 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC); 1104 *id = CSR_READ_2(sc, WI_ALLOC_FID); 1105 1106 if (wi_seek(sc, *id, 0, WI_BAP0)) { 1107 printf("%s: seek failed in alloc\n", sc->sc_dev.dv_xname); 1108 return(EIO); 1109 } 1110 1111 for (i = 0; i < len / 2; i++) 1112 CSR_WRITE_2(sc, WI_DATA0, 0); 1113 1114 return(0); 1115 } 1116 1117 static void wi_setmulti(sc) 1118 struct wi_softc *sc; 1119 { 1120 struct ifnet *ifp; 1121 int i = 0; 1122 struct wi_ltv_mcast mcast; 1123 struct ether_multi *enm; 1124 struct ether_multistep estep; 1125 struct ethercom *ec = &sc->sc_ethercom; 1126 1127 ifp = &sc->sc_ethercom.ec_if; 1128 1129 if ((ifp->if_flags & IFF_PROMISC) != 0) { 1130 allmulti: 1131 ifp->if_flags |= IFF_ALLMULTI; 1132 memset((char *)&mcast, 0, sizeof(mcast)); 1133 mcast.wi_type = WI_RID_MCAST_LIST; 1134 mcast.wi_len = ((ETHER_ADDR_LEN / 2) * 16) + 1; 1135 1136 wi_write_record(sc, (struct wi_ltv_gen *)&mcast); 1137 return; 1138 } 1139 1140 i = 0; 1141 ETHER_FIRST_MULTI(estep, ec, enm); 1142 while (enm != NULL) { 1143 /* Punt on ranges or too many multicast addresses. */ 1144 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, 1145 ETHER_ADDR_LEN) != 0 || 1146 i >= 16) 1147 goto allmulti; 1148 1149 memcpy((char *)&mcast.wi_mcast[i], enm->enm_addrlo, 1150 ETHER_ADDR_LEN); 1151 i++; 1152 ETHER_NEXT_MULTI(estep, enm); 1153 } 1154 1155 ifp->if_flags &= ~IFF_ALLMULTI; 1156 mcast.wi_type = WI_RID_MCAST_LIST; 1157 mcast.wi_len = ((ETHER_ADDR_LEN / 2) * i) + 1; 1158 wi_write_record(sc, (struct wi_ltv_gen *)&mcast); 1159 } 1160 1161 static int 1162 wi_setdef(sc, wreq) 1163 struct wi_softc *sc; 1164 struct wi_req *wreq; 1165 { 1166 struct sockaddr_dl *sdl; 1167 struct ifnet *ifp; 1168 int error = 0; 1169 1170 ifp = &sc->sc_ethercom.ec_if; 1171 1172 switch(wreq->wi_type) { 1173 case WI_RID_MAC_NODE: 1174 sdl = (struct sockaddr_dl *)ifp->if_sadl; 1175 memcpy((char *)&sc->sc_macaddr, (char *)&wreq->wi_val, 1176 ETHER_ADDR_LEN); 1177 memcpy(LLADDR(sdl), (char *)&wreq->wi_val, ETHER_ADDR_LEN); 1178 break; 1179 case WI_RID_PORTTYPE: 1180 error = wi_sync_media(sc, le16toh(wreq->wi_val[0]), sc->wi_tx_rate); 1181 break; 1182 case WI_RID_TX_RATE: 1183 error = wi_sync_media(sc, sc->wi_ptype, le16toh(wreq->wi_val[0])); 1184 break; 1185 case WI_RID_MAX_DATALEN: 1186 sc->wi_max_data_len = le16toh(wreq->wi_val[0]); 1187 break; 1188 case WI_RID_RTS_THRESH: 1189 sc->wi_rts_thresh = le16toh(wreq->wi_val[0]); 1190 break; 1191 case WI_RID_SYSTEM_SCALE: 1192 sc->wi_ap_density = le16toh(wreq->wi_val[0]); 1193 break; 1194 case WI_RID_CREATE_IBSS: 1195 sc->wi_create_ibss = le16toh(wreq->wi_val[0]); 1196 break; 1197 case WI_RID_OWN_CHNL: 1198 sc->wi_channel = le16toh(wreq->wi_val[0]); 1199 break; 1200 case WI_RID_NODENAME: 1201 error = wi_set_ssid(&sc->wi_nodeid, 1202 (u_int8_t *)&wreq->wi_val[1], le16toh(wreq->wi_val[0])); 1203 break; 1204 case WI_RID_DESIRED_SSID: 1205 error = wi_set_ssid(&sc->wi_netid, 1206 (u_int8_t *)&wreq->wi_val[1], le16toh(wreq->wi_val[0])); 1207 break; 1208 case WI_RID_OWN_SSID: 1209 error = wi_set_ssid(&sc->wi_ibssid, 1210 (u_int8_t *)&wreq->wi_val[1], le16toh(wreq->wi_val[0])); 1211 break; 1212 case WI_RID_PM_ENABLED: 1213 sc->wi_pm_enabled = le16toh(wreq->wi_val[0]); 1214 break; 1215 case WI_RID_MICROWAVE_OVEN: 1216 sc->wi_mor_enabled = le16toh(wreq->wi_val[0]); 1217 break; 1218 case WI_RID_MAX_SLEEP: 1219 sc->wi_max_sleep = le16toh(wreq->wi_val[0]); 1220 break; 1221 case WI_RID_AUTH_CNTL: 1222 sc->wi_authtype = le16toh(wreq->wi_val[0]); 1223 break; 1224 case WI_RID_ROAMING_MODE: 1225 sc->wi_roaming = le16toh(wreq->wi_val[0]); 1226 break; 1227 case WI_RID_ENCRYPTION: 1228 sc->wi_use_wep = le16toh(wreq->wi_val[0]); 1229 break; 1230 case WI_RID_TX_CRYPT_KEY: 1231 sc->wi_tx_key = le16toh(wreq->wi_val[0]); 1232 break; 1233 case WI_RID_DEFLT_CRYPT_KEYS: 1234 memcpy((char *)&sc->wi_keys, (char *)wreq, 1235 sizeof(struct wi_ltv_keys)); 1236 break; 1237 default: 1238 error = EINVAL; 1239 break; 1240 } 1241 1242 return (error); 1243 } 1244 1245 static int 1246 wi_getdef(sc, wreq) 1247 struct wi_softc *sc; 1248 struct wi_req *wreq; 1249 { 1250 struct sockaddr_dl *sdl; 1251 struct ifnet *ifp; 1252 int error = 0; 1253 1254 ifp = &sc->sc_ethercom.ec_if; 1255 1256 wreq->wi_len = 2; /* XXX */ 1257 switch (wreq->wi_type) { 1258 case WI_RID_MAC_NODE: 1259 wreq->wi_len += ETHER_ADDR_LEN / 2 - 1; 1260 sdl = (struct sockaddr_dl *)ifp->if_sadl; 1261 memcpy(&wreq->wi_val, &sc->sc_macaddr, ETHER_ADDR_LEN); 1262 memcpy(&wreq->wi_val, LLADDR(sdl), ETHER_ADDR_LEN); 1263 break; 1264 case WI_RID_PORTTYPE: 1265 wreq->wi_val[0] = htole16(sc->wi_ptype); 1266 break; 1267 case WI_RID_TX_RATE: 1268 wreq->wi_val[0] = htole16(sc->wi_tx_rate); 1269 break; 1270 case WI_RID_MAX_DATALEN: 1271 wreq->wi_val[0] = htole16(sc->wi_max_data_len); 1272 break; 1273 case WI_RID_RTS_THRESH: 1274 wreq->wi_val[0] = htole16(sc->wi_rts_thresh); 1275 break; 1276 case WI_RID_SYSTEM_SCALE: 1277 wreq->wi_val[0] = htole16(sc->wi_ap_density); 1278 break; 1279 case WI_RID_CREATE_IBSS: 1280 wreq->wi_val[0] = htole16(sc->wi_create_ibss); 1281 break; 1282 case WI_RID_OWN_CHNL: 1283 wreq->wi_val[0] = htole16(sc->wi_channel); 1284 break; 1285 case WI_RID_NODENAME: 1286 wi_request_fill_ssid(wreq, &sc->wi_nodeid); 1287 break; 1288 case WI_RID_DESIRED_SSID: 1289 wi_request_fill_ssid(wreq, &sc->wi_netid); 1290 break; 1291 case WI_RID_OWN_SSID: 1292 wi_request_fill_ssid(wreq, &sc->wi_ibssid); 1293 break; 1294 case WI_RID_PM_ENABLED: 1295 wreq->wi_val[0] = htole16(sc->wi_pm_enabled); 1296 break; 1297 case WI_RID_MICROWAVE_OVEN: 1298 wreq->wi_val[0] = htole16(sc->wi_mor_enabled); 1299 break; 1300 case WI_RID_MAX_SLEEP: 1301 wreq->wi_val[0] = htole16(sc->wi_max_sleep); 1302 break; 1303 case WI_RID_AUTH_CNTL: 1304 wreq->wi_val[0] = htole16(sc->wi_authtype); 1305 break; 1306 case WI_RID_ROAMING_MODE: 1307 wreq->wi_val[0] = htole16(sc->wi_roaming); 1308 break; 1309 case WI_RID_WEP_AVAIL: 1310 wreq->wi_val[0] = htole16(sc->wi_has_wep); 1311 break; 1312 case WI_RID_ENCRYPTION: 1313 wreq->wi_val[0] = htole16(sc->wi_use_wep); 1314 break; 1315 case WI_RID_TX_CRYPT_KEY: 1316 wreq->wi_val[0] = htole16(sc->wi_tx_key); 1317 break; 1318 case WI_RID_DEFLT_CRYPT_KEYS: 1319 wreq->wi_len += sizeof(struct wi_ltv_keys) / 2 - 1; 1320 memcpy(wreq, &sc->wi_keys, sizeof(struct wi_ltv_keys)); 1321 break; 1322 default: 1323 #if 0 1324 error = EIO; 1325 #else 1326 #ifdef WI_DEBUG 1327 printf("%s: wi_getdef: unknown request %d\n", 1328 sc->sc_dev.dv_xname, wreq->wi_type); 1329 #endif 1330 #endif 1331 break; 1332 } 1333 1334 return (error); 1335 } 1336 1337 static int 1338 wi_ioctl(ifp, command, data) 1339 struct ifnet *ifp; 1340 u_long command; 1341 caddr_t data; 1342 { 1343 int s, error = 0; 1344 int len; 1345 struct wi_softc *sc = ifp->if_softc; 1346 struct wi_req wreq; 1347 struct ifreq *ifr; 1348 struct proc *p = curproc; 1349 struct ieee80211_nwid nwid; 1350 1351 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0) 1352 return (ENXIO); 1353 1354 s = splnet(); 1355 1356 ifr = (struct ifreq *)data; 1357 switch (command) { 1358 case SIOCSIFADDR: 1359 case SIOCGIFADDR: 1360 case SIOCSIFMTU: 1361 error = ether_ioctl(ifp, command, data); 1362 break; 1363 case SIOCSIFFLAGS: 1364 if (ifp->if_flags & IFF_UP) { 1365 if (ifp->if_flags & IFF_RUNNING && 1366 ifp->if_flags & IFF_PROMISC && 1367 !(sc->wi_if_flags & IFF_PROMISC)) { 1368 WI_SETVAL(WI_RID_PROMISC, 1); 1369 } else if (ifp->if_flags & IFF_RUNNING && 1370 !(ifp->if_flags & IFF_PROMISC) && 1371 sc->wi_if_flags & IFF_PROMISC) { 1372 WI_SETVAL(WI_RID_PROMISC, 0); 1373 } 1374 wi_init(ifp); 1375 } else { 1376 if (ifp->if_flags & IFF_RUNNING) { 1377 wi_stop(ifp, 0); 1378 } 1379 } 1380 sc->wi_if_flags = ifp->if_flags; 1381 1382 if (!(ifp->if_flags & IFF_UP)) { 1383 if (sc->sc_enabled) { 1384 if (sc->sc_disable) 1385 (*sc->sc_disable)(sc); 1386 sc->sc_enabled = 0; 1387 ifp->if_flags &= ~IFF_RUNNING; 1388 } 1389 } 1390 error = 0; 1391 break; 1392 case SIOCADDMULTI: 1393 case SIOCDELMULTI: 1394 error = (command == SIOCADDMULTI) ? 1395 ether_addmulti(ifr, &sc->sc_ethercom) : 1396 ether_delmulti(ifr, &sc->sc_ethercom); 1397 if (error == ENETRESET) { 1398 if (sc->sc_enabled != 0) { 1399 /* 1400 * Multicast list has changed. Set the 1401 * hardware filter accordingly. 1402 */ 1403 wi_setmulti(sc); 1404 } 1405 error = 0; 1406 } 1407 break; 1408 case SIOCSIFMEDIA: 1409 case SIOCGIFMEDIA: 1410 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command); 1411 break; 1412 case SIOCGWAVELAN: 1413 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq)); 1414 if (error) 1415 break; 1416 if (wreq.wi_type == WI_RID_IFACE_STATS) { 1417 wi_update_stats(sc); 1418 /* XXX native byte order */ 1419 memcpy((char *)&wreq.wi_val, (char *)&sc->wi_stats, 1420 sizeof(sc->wi_stats)); 1421 wreq.wi_len = (sizeof(sc->wi_stats) / 2) + 1; 1422 } else if (wreq.wi_type == WI_RID_READ_APS) { 1423 if (sc->wi_scanning) { 1424 error = EINVAL; 1425 break; 1426 } else { 1427 len = sc->wi_naps * sizeof(struct wi_apinfo); 1428 len = len > WI_MAX_DATALEN ? WI_MAX_DATALEN : len; 1429 len = len / sizeof(struct wi_apinfo); 1430 memcpy((char *)&wreq.wi_val, (char *)&len, sizeof(len)); 1431 memcpy((char *)&wreq.wi_val + sizeof(len), 1432 (char *)&sc->wi_aps, 1433 len * sizeof(struct wi_apinfo)); 1434 } 1435 } else if (wreq.wi_type == WI_RID_DEFLT_CRYPT_KEYS) { 1436 /* For non-root user, return all-zeroes keys */ 1437 if (suser(p->p_ucred, &p->p_acflag)) 1438 memset((char *)&wreq, 0, 1439 sizeof(struct wi_ltv_keys)); 1440 else 1441 memcpy((char *)&wreq, (char *)&sc->wi_keys, 1442 sizeof(struct wi_ltv_keys)); 1443 } else { 1444 if (sc->sc_enabled == 0) 1445 error = wi_getdef(sc, &wreq); 1446 else if (wi_read_record(sc, (struct wi_ltv_gen *)&wreq)) 1447 error = EINVAL; 1448 } 1449 if (error == 0) 1450 error = copyout(&wreq, ifr->ifr_data, sizeof(wreq)); 1451 break; 1452 case SIOCSWAVELAN: 1453 error = suser(p->p_ucred, &p->p_acflag); 1454 if (error) 1455 break; 1456 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq)); 1457 if (error) 1458 break; 1459 if (wreq.wi_type == WI_RID_IFACE_STATS) { 1460 error = EINVAL; 1461 break; 1462 } else if (wreq.wi_type == WI_RID_MGMT_XMIT) { 1463 error = wi_mgmt_xmit(sc, (caddr_t)&wreq.wi_val, 1464 wreq.wi_len); 1465 } else if (wreq.wi_type == WI_RID_SCAN_APS) { 1466 if (wreq.wi_len != 4) { 1467 error = EINVAL; 1468 break; 1469 } 1470 if (!sc->wi_scanning) { 1471 if (sc->sc_prism2) { 1472 wreq.wi_type = WI_RID_SCAN_REQ; 1473 error = wi_write_record(sc, 1474 (struct wi_ltv_gen *)&wreq); 1475 } 1476 if (!error) { 1477 sc->wi_scanning = 1; 1478 callout_reset(&sc->wi_scan_sh, hz * 1, 1479 wi_wait_scan, sc); 1480 } 1481 } 1482 } else { 1483 if (sc->sc_enabled != 0) 1484 error = wi_write_record(sc, 1485 (struct wi_ltv_gen *)&wreq); 1486 if (error == 0) 1487 error = wi_setdef(sc, &wreq); 1488 if (error == 0 && sc->sc_enabled != 0) 1489 /* Reinitialize WaveLAN. */ 1490 wi_init(ifp); 1491 } 1492 break; 1493 case SIOCG80211NWID: 1494 if (sc->sc_enabled == 0) { 1495 /* Return the desired ID */ 1496 error = copyout(&sc->wi_netid, ifr->ifr_data, 1497 sizeof(sc->wi_netid)); 1498 } else { 1499 wreq.wi_type = WI_RID_CURRENT_SSID; 1500 wreq.wi_len = WI_MAX_DATALEN; 1501 if (wi_read_record(sc, (struct wi_ltv_gen *)&wreq) || 1502 le16toh(wreq.wi_val[0]) > IEEE80211_NWID_LEN) 1503 error = EINVAL; 1504 else { 1505 wi_set_ssid(&nwid, (u_int8_t *)&wreq.wi_val[1], 1506 le16toh(wreq.wi_val[0])); 1507 error = copyout(&nwid, ifr->ifr_data, 1508 sizeof(nwid)); 1509 } 1510 } 1511 break; 1512 case SIOCS80211NWID: 1513 error = copyin(ifr->ifr_data, &nwid, sizeof(nwid)); 1514 if (error != 0) 1515 break; 1516 if (nwid.i_len > IEEE80211_NWID_LEN) { 1517 error = EINVAL; 1518 break; 1519 } 1520 if (sc->wi_netid.i_len == nwid.i_len && 1521 memcmp(sc->wi_netid.i_nwid, nwid.i_nwid, nwid.i_len) == 0) 1522 break; 1523 wi_set_ssid(&sc->wi_netid, nwid.i_nwid, nwid.i_len); 1524 if (sc->sc_enabled != 0) 1525 /* Reinitialize WaveLAN. */ 1526 wi_init(ifp); 1527 break; 1528 case SIOCS80211NWKEY: 1529 error = wi_set_nwkey(sc, (struct ieee80211_nwkey *)data); 1530 break; 1531 case SIOCG80211NWKEY: 1532 error = wi_get_nwkey(sc, (struct ieee80211_nwkey *)data); 1533 break; 1534 case SIOCS80211POWER: 1535 error = wi_set_pm(sc, (struct ieee80211_power *)data); 1536 break; 1537 case SIOCG80211POWER: 1538 error = wi_get_pm(sc, (struct ieee80211_power *)data); 1539 break; 1540 1541 default: 1542 error = EINVAL; 1543 break; 1544 } 1545 1546 splx(s); 1547 return (error); 1548 } 1549 1550 static int 1551 wi_init(ifp) 1552 struct ifnet *ifp; 1553 { 1554 struct wi_softc *sc = ifp->if_softc; 1555 struct wi_req wreq; 1556 struct wi_ltv_macaddr mac; 1557 int error, id = 0; 1558 1559 if (!sc->sc_enabled) { 1560 if ((error = (*sc->sc_enable)(sc)) != 0) 1561 goto out; 1562 sc->sc_enabled = 1; 1563 } 1564 1565 wi_stop(ifp, 0); 1566 wi_reset(sc); 1567 1568 /* Program max data length. */ 1569 WI_SETVAL(WI_RID_MAX_DATALEN, sc->wi_max_data_len); 1570 1571 /* Enable/disable IBSS creation. */ 1572 WI_SETVAL(WI_RID_CREATE_IBSS, sc->wi_create_ibss); 1573 1574 /* Set the port type. */ 1575 WI_SETVAL(WI_RID_PORTTYPE, sc->wi_ptype); 1576 1577 /* Program the RTS/CTS threshold. */ 1578 WI_SETVAL(WI_RID_RTS_THRESH, sc->wi_rts_thresh); 1579 1580 /* Program the TX rate */ 1581 WI_SETVAL(WI_RID_TX_RATE, sc->wi_tx_rate); 1582 1583 /* Access point density */ 1584 WI_SETVAL(WI_RID_SYSTEM_SCALE, sc->wi_ap_density); 1585 1586 /* Power Management Enabled */ 1587 WI_SETVAL(WI_RID_PM_ENABLED, sc->wi_pm_enabled); 1588 1589 /* Power Managment Max Sleep */ 1590 WI_SETVAL(WI_RID_MAX_SLEEP, sc->wi_max_sleep); 1591 1592 /* Roaming type */ 1593 WI_SETVAL(WI_RID_ROAMING_MODE, sc->wi_roaming); 1594 1595 /* Specify the IBSS name */ 1596 wi_write_ssid(sc, WI_RID_OWN_SSID, &wreq, &sc->wi_ibssid); 1597 1598 /* Specify the network name */ 1599 wi_write_ssid(sc, WI_RID_DESIRED_SSID, &wreq, &sc->wi_netid); 1600 1601 /* Specify the frequency to use */ 1602 WI_SETVAL(WI_RID_OWN_CHNL, sc->wi_channel); 1603 1604 /* Program the nodename. */ 1605 wi_write_ssid(sc, WI_RID_NODENAME, &wreq, &sc->wi_nodeid); 1606 1607 /* Set our MAC address. */ 1608 mac.wi_len = 4; 1609 mac.wi_type = WI_RID_MAC_NODE; 1610 memcpy(&mac.wi_mac_addr, sc->sc_macaddr, ETHER_ADDR_LEN); 1611 wi_write_record(sc, (struct wi_ltv_gen *)&mac); 1612 1613 /* Initialize promisc mode. */ 1614 if (ifp->if_flags & IFF_PROMISC) { 1615 WI_SETVAL(WI_RID_PROMISC, 1); 1616 } else { 1617 WI_SETVAL(WI_RID_PROMISC, 0); 1618 } 1619 1620 /* Configure WEP. */ 1621 if (sc->wi_has_wep) { 1622 WI_SETVAL(WI_RID_ENCRYPTION, sc->wi_use_wep); 1623 WI_SETVAL(WI_RID_TX_CRYPT_KEY, sc->wi_tx_key); 1624 sc->wi_keys.wi_len = (sizeof(struct wi_ltv_keys) / 2) + 1; 1625 sc->wi_keys.wi_type = WI_RID_DEFLT_CRYPT_KEYS; 1626 wi_write_record(sc, (struct wi_ltv_gen *)&sc->wi_keys); 1627 if (sc->sc_prism2 && sc->wi_use_wep) { 1628 /* 1629 * ONLY HWB3163 EVAL-CARD Firmware version 1630 * less than 0.8 variant3 1631 * 1632 * If promiscuous mode disable, Prism2 chip 1633 * does not work with WEP . 1634 * It is under investigation for details. 1635 * (ichiro@netbsd.org) 1636 */ 1637 if (sc->sc_prism2_ver < 83 ) { 1638 /* firm ver < 0.8 variant 3 */ 1639 WI_SETVAL(WI_RID_PROMISC, 1); 1640 } 1641 WI_SETVAL(WI_RID_AUTH_CNTL, sc->wi_authtype); 1642 } 1643 } 1644 1645 /* Set multicast filter. */ 1646 wi_setmulti(sc); 1647 1648 /* Enable desired port */ 1649 wi_cmd(sc, WI_CMD_ENABLE | sc->wi_portnum, 0); 1650 1651 /* scanning variable is modal, therefore reinit to OFF, in case it was on. */ 1652 sc->wi_scanning=0; 1653 sc->wi_naps=0; 1654 1655 if ((error = wi_alloc_nicmem(sc, 1656 1518 + sizeof(struct wi_frame) + 8, &id)) != 0) { 1657 printf("%s: tx buffer allocation failed\n", 1658 sc->sc_dev.dv_xname); 1659 goto out; 1660 } 1661 sc->wi_tx_data_id = id; 1662 1663 if ((error = wi_alloc_nicmem(sc, 1664 1518 + sizeof(struct wi_frame) + 8, &id)) != 0) { 1665 printf("%s: mgmt. buffer allocation failed\n", 1666 sc->sc_dev.dv_xname); 1667 goto out; 1668 } 1669 sc->wi_tx_mgmt_id = id; 1670 1671 /* Enable interrupts */ 1672 CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS); 1673 1674 ifp->if_flags |= IFF_RUNNING; 1675 ifp->if_flags &= ~IFF_OACTIVE; 1676 1677 callout_reset(&sc->wi_inquire_ch, hz * 60, wi_inquire, sc); 1678 1679 out: 1680 if (error) { 1681 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 1682 ifp->if_timer = 0; 1683 printf("%s: interface not running\n", sc->sc_dev.dv_xname); 1684 } 1685 return (error); 1686 } 1687 1688 static void 1689 wi_start(ifp) 1690 struct ifnet *ifp; 1691 { 1692 struct wi_softc *sc; 1693 struct mbuf *m0; 1694 struct wi_frame tx_frame; 1695 struct ether_header *eh; 1696 int id; 1697 1698 sc = ifp->if_softc; 1699 1700 if (ifp->if_flags & IFF_OACTIVE) 1701 return; 1702 1703 IFQ_DEQUEUE(&ifp->if_snd, m0); 1704 if (m0 == NULL) 1705 return; 1706 1707 memset((char *)&tx_frame, 0, sizeof(tx_frame)); 1708 id = sc->wi_tx_data_id; 1709 eh = mtod(m0, struct ether_header *); 1710 1711 /* 1712 * Use RFC1042 encoding for IP and ARP datagrams, 1713 * 802.3 for anything else. 1714 */ 1715 if (ntohs(eh->ether_type) == ETHERTYPE_IP || 1716 ntohs(eh->ether_type) == ETHERTYPE_ARP || 1717 ntohs(eh->ether_type) == ETHERTYPE_REVARP || 1718 ntohs(eh->ether_type) == ETHERTYPE_IPV6) { 1719 memcpy((char *)&tx_frame.wi_addr1, (char *)&eh->ether_dhost, 1720 ETHER_ADDR_LEN); 1721 memcpy((char *)&tx_frame.wi_addr2, (char *)&eh->ether_shost, 1722 ETHER_ADDR_LEN); 1723 memcpy((char *)&tx_frame.wi_dst_addr, (char *)&eh->ether_dhost, 1724 ETHER_ADDR_LEN); 1725 memcpy((char *)&tx_frame.wi_src_addr, (char *)&eh->ether_shost, 1726 ETHER_ADDR_LEN); 1727 1728 tx_frame.wi_dat_len = htole16(m0->m_pkthdr.len - WI_SNAPHDR_LEN); 1729 tx_frame.wi_frame_ctl = htole16(WI_FTYPE_DATA); 1730 tx_frame.wi_dat[0] = htons(WI_SNAP_WORD0); 1731 tx_frame.wi_dat[1] = htons(WI_SNAP_WORD1); 1732 tx_frame.wi_len = htons(m0->m_pkthdr.len - WI_SNAPHDR_LEN); 1733 tx_frame.wi_type = eh->ether_type; 1734 1735 m_copydata(m0, sizeof(struct ether_header), 1736 m0->m_pkthdr.len - sizeof(struct ether_header), 1737 (caddr_t)&sc->wi_txbuf); 1738 1739 wi_write_data(sc, id, 0, (caddr_t)&tx_frame, 1740 sizeof(struct wi_frame)); 1741 wi_write_data(sc, id, WI_802_11_OFFSET, (caddr_t)&sc->wi_txbuf, 1742 (m0->m_pkthdr.len - sizeof(struct ether_header)) + 2); 1743 } else { 1744 tx_frame.wi_dat_len = htole16(m0->m_pkthdr.len); 1745 1746 m_copydata(m0, 0, m0->m_pkthdr.len, (caddr_t)&sc->wi_txbuf); 1747 1748 wi_write_data(sc, id, 0, (caddr_t)&tx_frame, 1749 sizeof(struct wi_frame)); 1750 wi_write_data(sc, id, WI_802_3_OFFSET, (caddr_t)&sc->wi_txbuf, 1751 m0->m_pkthdr.len + 2); 1752 } 1753 1754 #if NBPFILTER > 0 1755 /* 1756 * If there's a BPF listener, bounce a copy of 1757 * this frame to him. 1758 */ 1759 if (ifp->if_bpf) 1760 bpf_mtap(ifp->if_bpf, m0); 1761 #endif 1762 1763 m_freem(m0); 1764 1765 if (wi_cmd(sc, WI_CMD_TX|WI_RECLAIM, id)) 1766 printf("%s: xmit failed\n", sc->sc_dev.dv_xname); 1767 1768 ifp->if_flags |= IFF_OACTIVE; 1769 1770 /* 1771 * Set a timeout in case the chip goes out to lunch. 1772 */ 1773 ifp->if_timer = 5; 1774 1775 return; 1776 } 1777 1778 static int 1779 wi_mgmt_xmit(sc, data, len) 1780 struct wi_softc *sc; 1781 caddr_t data; 1782 int len; 1783 { 1784 struct wi_frame tx_frame; 1785 int id; 1786 struct wi_80211_hdr *hdr; 1787 caddr_t dptr; 1788 1789 hdr = (struct wi_80211_hdr *)data; 1790 dptr = data + sizeof(struct wi_80211_hdr); 1791 1792 memset((char *)&tx_frame, 0, sizeof(tx_frame)); 1793 id = sc->wi_tx_mgmt_id; 1794 1795 memcpy((char *)&tx_frame.wi_frame_ctl, (char *)hdr, 1796 sizeof(struct wi_80211_hdr)); 1797 1798 tx_frame.wi_dat_len = htole16(len - WI_SNAPHDR_LEN); 1799 tx_frame.wi_len = htons(len - WI_SNAPHDR_LEN); 1800 1801 wi_write_data(sc, id, 0, (caddr_t)&tx_frame, sizeof(struct wi_frame)); 1802 wi_write_data(sc, id, WI_802_11_OFFSET_RAW, dptr, 1803 (len - sizeof(struct wi_80211_hdr)) + 2); 1804 1805 if (wi_cmd(sc, WI_CMD_TX|WI_RECLAIM, id)) { 1806 printf("%s: xmit failed\n", sc->sc_dev.dv_xname); 1807 return(EIO); 1808 } 1809 1810 return(0); 1811 } 1812 1813 static void 1814 wi_stop(ifp, disable) 1815 struct ifnet *ifp; 1816 { 1817 struct wi_softc *sc = ifp->if_softc; 1818 1819 CSR_WRITE_2(sc, WI_INT_EN, 0); 1820 wi_cmd(sc, WI_CMD_DISABLE|sc->wi_portnum, 0); 1821 1822 callout_stop(&sc->wi_inquire_ch); 1823 callout_stop(&sc->wi_scan_sh); 1824 1825 if (disable) { 1826 if (sc->sc_enabled) { 1827 if (sc->sc_disable) 1828 (*sc->sc_disable)(sc); 1829 sc->sc_enabled = 0; 1830 } 1831 } 1832 1833 ifp->if_flags &= ~(IFF_OACTIVE | IFF_RUNNING); 1834 ifp->if_timer = 0; 1835 } 1836 1837 static void 1838 wi_watchdog(ifp) 1839 struct ifnet *ifp; 1840 { 1841 struct wi_softc *sc; 1842 1843 sc = ifp->if_softc; 1844 1845 printf("%s: device timeout\n", sc->sc_dev.dv_xname); 1846 1847 wi_init(ifp); 1848 1849 ifp->if_oerrors++; 1850 1851 return; 1852 } 1853 1854 void 1855 wi_shutdown(sc) 1856 struct wi_softc *sc; 1857 { 1858 int s; 1859 1860 s = splnet(); 1861 if (sc->sc_enabled) { 1862 if (sc->sc_disable) 1863 (*sc->sc_disable)(sc); 1864 sc->sc_enabled = 0; 1865 } 1866 splx(s); 1867 } 1868 1869 int 1870 wi_activate(self, act) 1871 struct device *self; 1872 enum devact act; 1873 { 1874 struct wi_softc *sc = (struct wi_softc *)self; 1875 int rv = 0, s; 1876 1877 s = splnet(); 1878 switch (act) { 1879 case DVACT_ACTIVATE: 1880 rv = EOPNOTSUPP; 1881 break; 1882 1883 case DVACT_DEACTIVATE: 1884 if_deactivate(&sc->sc_ethercom.ec_if); 1885 break; 1886 } 1887 splx(s); 1888 return (rv); 1889 } 1890 1891 static void 1892 wi_get_id(sc) 1893 struct wi_softc *sc; 1894 { 1895 struct wi_ltv_ver ver; 1896 1897 /* getting chip identity */ 1898 memset(&ver, 0, sizeof(ver)); 1899 ver.wi_type = WI_RID_CARD_ID; 1900 ver.wi_len = 5; 1901 wi_read_record(sc, (struct wi_ltv_gen *)&ver); 1902 printf("%s: using ", sc->sc_dev.dv_xname); 1903 switch (le16toh(ver.wi_ver[0])) { 1904 case WI_NIC_EVB2: 1905 printf("RF:PRISM2 MAC:HFA3841"); 1906 sc->sc_prism2 = 1; 1907 break; 1908 case WI_NIC_HWB3763: 1909 printf("RF:PRISM2 MAC:HFA3841 CARD:HWB3763 rev.B"); 1910 sc->sc_prism2 = 1; 1911 break; 1912 case WI_NIC_HWB3163: 1913 printf("RF:PRISM2 MAC:HFA3841 CARD:HWB3163 rev.A"); 1914 sc->sc_prism2 = 1; 1915 break; 1916 case WI_NIC_HWB3163B: 1917 printf("RF:PRISM2 MAC:HFA3841 CARD:HWB3163 rev.B"); 1918 sc->sc_prism2 = 1; 1919 break; 1920 case WI_NIC_EVB3: 1921 printf("RF:PRISM2 MAC:HFA3842"); 1922 sc->sc_prism2 = 1; 1923 break; 1924 case WI_NIC_HWB1153: 1925 printf("RF:PRISM1 MAC:HFA3841 CARD:HWB1153"); 1926 sc->sc_prism2 = 1; 1927 break; 1928 case WI_NIC_P2_SST: 1929 printf("RF:PRISM2 MAC:HFA3841 CARD:HWB3163-SST-flash"); 1930 sc->sc_prism2 = 1; 1931 break; 1932 case WI_NIC_PRISM2_5: 1933 printf("RF:PRISM2.5 MAC:ISL3873"); 1934 sc->sc_prism2 = 1; 1935 break; 1936 case WI_NIC_3874A: 1937 printf("RF:PRISM2.5 MAC:ISL3874A(PCI)"); 1938 sc->sc_prism2 = 1; 1939 break; 1940 default: 1941 printf("Lucent chip or unknown chip\n"); 1942 sc->sc_prism2 = 0; 1943 break; 1944 } 1945 1946 if (sc->sc_prism2) { 1947 /* try to get prism2 firm version */ 1948 memset(&ver, 0, sizeof(ver)); 1949 ver.wi_type = WI_RID_STA_IDENTITY; 1950 ver.wi_len = 5; 1951 wi_read_record(sc, (struct wi_ltv_gen *)&ver); 1952 LE16TOH(ver.wi_ver[1]); 1953 LE16TOH(ver.wi_ver[2]); 1954 LE16TOH(ver.wi_ver[3]); 1955 printf(", Firmware: %i.%i variant %i\n", ver.wi_ver[2], 1956 ver.wi_ver[3], ver.wi_ver[1]); 1957 sc->sc_prism2_ver = ver.wi_ver[2] * 100 + 1958 ver.wi_ver[3] * 10 + ver.wi_ver[1]; 1959 } 1960 1961 return; 1962 } 1963 1964 int 1965 wi_detach(sc) 1966 struct wi_softc *sc; 1967 { 1968 struct ifnet *ifp = sc->sc_ifp; 1969 int s; 1970 1971 if (!sc->sc_attached) 1972 return (0); 1973 1974 s = splnet(); 1975 callout_stop(&sc->wi_inquire_ch); 1976 1977 /* Delete all remaining media. */ 1978 ifmedia_delete_instance(&sc->sc_media, IFM_INST_ANY); 1979 1980 ether_ifdetach(ifp); 1981 if_detach(ifp); 1982 if (sc->sc_enabled) { 1983 if (sc->sc_disable) 1984 (*sc->sc_disable)(sc); 1985 sc->sc_enabled = 0; 1986 } 1987 splx(s); 1988 return (0); 1989 } 1990 1991 void 1992 wi_power(sc, why) 1993 struct wi_softc *sc; 1994 int why; 1995 { 1996 int s; 1997 1998 if (!sc->sc_enabled) 1999 return; 2000 2001 s = splnet(); 2002 switch (why) { 2003 case PWR_SUSPEND: 2004 case PWR_STANDBY: 2005 wi_stop(sc->sc_ifp, 0); 2006 if (sc->sc_enabled) { 2007 if (sc->sc_disable) 2008 (*sc->sc_disable)(sc); 2009 } 2010 break; 2011 case PWR_RESUME: 2012 sc->sc_enabled = 0; 2013 wi_init(sc->sc_ifp); 2014 (void)wi_intr(sc); 2015 break; 2016 case PWR_SOFTSUSPEND: 2017 case PWR_SOFTSTANDBY: 2018 case PWR_SOFTRESUME: 2019 break; 2020 } 2021 splx(s); 2022 } 2023 2024 static int 2025 wi_set_ssid(ws, id, len) 2026 struct ieee80211_nwid *ws; 2027 u_int8_t *id; 2028 int len; 2029 { 2030 2031 if (len > IEEE80211_NWID_LEN) 2032 return (EINVAL); 2033 ws->i_len = len; 2034 memcpy(ws->i_nwid, id, len); 2035 return (0); 2036 } 2037 2038 static void 2039 wi_request_fill_ssid(wreq, ws) 2040 struct wi_req *wreq; 2041 struct ieee80211_nwid *ws; 2042 { 2043 int len = ws->i_len; 2044 2045 memset(&wreq->wi_val[0], 0, sizeof(wreq->wi_val)); 2046 wreq->wi_val[0] = htole16(len); 2047 wreq->wi_len = roundup(len, 2) / 2 + 2; 2048 memcpy(&wreq->wi_val[1], ws->i_nwid, len); 2049 } 2050 2051 static int 2052 wi_write_ssid(sc, type, wreq, ws) 2053 struct wi_softc *sc; 2054 int type; 2055 struct wi_req *wreq; 2056 struct ieee80211_nwid *ws; 2057 { 2058 2059 wreq->wi_type = type; 2060 wi_request_fill_ssid(wreq, ws); 2061 return (wi_write_record(sc, (struct wi_ltv_gen *)wreq)); 2062 } 2063 2064 static int 2065 wi_sync_media(sc, ptype, txrate) 2066 struct wi_softc *sc; 2067 int ptype; 2068 int txrate; 2069 { 2070 int media = sc->sc_media.ifm_cur->ifm_media; 2071 int options = IFM_OPTIONS(media); 2072 int subtype; 2073 2074 switch (txrate) { 2075 case 1: 2076 subtype = IFM_IEEE80211_DS1; 2077 break; 2078 case 2: 2079 subtype = IFM_IEEE80211_DS2; 2080 break; 2081 case 3: 2082 subtype = IFM_AUTO; 2083 break; 2084 case 5: 2085 subtype = IFM_IEEE80211_DS5; 2086 break; 2087 case 11: 2088 subtype = IFM_IEEE80211_DS11; 2089 break; 2090 default: 2091 subtype = IFM_MANUAL; /* Unable to represent */ 2092 break; 2093 } 2094 switch (ptype) { 2095 case WI_PORTTYPE_ADHOC: 2096 options |= IFM_IEEE80211_ADHOC; 2097 break; 2098 case WI_PORTTYPE_BSS: 2099 options &= ~IFM_IEEE80211_ADHOC; 2100 break; 2101 default: 2102 subtype = IFM_MANUAL; /* Unable to represent */ 2103 break; 2104 } 2105 media = IFM_MAKEWORD(IFM_TYPE(media), subtype, options, 2106 IFM_INST(media)); 2107 if (ifmedia_match(&sc->sc_media, media, sc->sc_media.ifm_mask) == NULL) 2108 return (EINVAL); 2109 ifmedia_set(&sc->sc_media, media); 2110 sc->wi_ptype = ptype; 2111 sc->wi_tx_rate = txrate; 2112 return (0); 2113 } 2114 2115 static int 2116 wi_media_change(ifp) 2117 struct ifnet *ifp; 2118 { 2119 struct wi_softc *sc = ifp->if_softc; 2120 int otype = sc->wi_ptype; 2121 int orate = sc->wi_tx_rate; 2122 2123 if ((sc->sc_media.ifm_cur->ifm_media & IFM_IEEE80211_ADHOC) != 0) 2124 sc->wi_ptype = WI_PORTTYPE_ADHOC; 2125 else 2126 sc->wi_ptype = WI_PORTTYPE_BSS; 2127 2128 switch (IFM_SUBTYPE(sc->sc_media.ifm_cur->ifm_media)) { 2129 case IFM_IEEE80211_DS1: 2130 sc->wi_tx_rate = 1; 2131 break; 2132 case IFM_IEEE80211_DS2: 2133 sc->wi_tx_rate = 2; 2134 break; 2135 case IFM_AUTO: 2136 sc->wi_tx_rate = 3; 2137 break; 2138 case IFM_IEEE80211_DS5: 2139 sc->wi_tx_rate = 5; 2140 break; 2141 case IFM_IEEE80211_DS11: 2142 sc->wi_tx_rate = 11; 2143 break; 2144 } 2145 2146 if (sc->sc_enabled != 0) { 2147 if (otype != sc->wi_ptype || 2148 orate != sc->wi_tx_rate) 2149 wi_init(ifp); 2150 } 2151 2152 ifp->if_baudrate = ifmedia_baudrate(sc->sc_media.ifm_cur->ifm_media); 2153 2154 return (0); 2155 } 2156 2157 static void 2158 wi_media_status(ifp, imr) 2159 struct ifnet *ifp; 2160 struct ifmediareq *imr; 2161 { 2162 struct wi_softc *sc = ifp->if_softc; 2163 2164 if (sc->sc_enabled == 0) { 2165 imr->ifm_active = IFM_IEEE80211|IFM_NONE; 2166 imr->ifm_status = 0; 2167 return; 2168 } 2169 2170 imr->ifm_active = sc->sc_media.ifm_cur->ifm_media; 2171 imr->ifm_status = IFM_AVALID|IFM_ACTIVE; 2172 } 2173 2174 static int 2175 wi_set_nwkey(sc, nwkey) 2176 struct wi_softc *sc; 2177 struct ieee80211_nwkey *nwkey; 2178 { 2179 int i, error; 2180 size_t len; 2181 struct wi_req wreq; 2182 struct wi_ltv_keys *wk = (struct wi_ltv_keys *)&wreq; 2183 2184 if (!sc->wi_has_wep) 2185 return ENODEV; 2186 if (nwkey->i_defkid <= 0 || 2187 nwkey->i_defkid > IEEE80211_WEP_NKID) 2188 return EINVAL; 2189 memcpy(wk, &sc->wi_keys, sizeof(*wk)); 2190 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 2191 if (nwkey->i_key[i].i_keydat == NULL) 2192 continue; 2193 len = nwkey->i_key[i].i_keylen; 2194 if (len > sizeof(wk->wi_keys[i].wi_keydat)) 2195 return EINVAL; 2196 error = copyin(nwkey->i_key[i].i_keydat, 2197 wk->wi_keys[i].wi_keydat, len); 2198 if (error) 2199 return error; 2200 wk->wi_keys[i].wi_keylen = htole16(len); 2201 } 2202 2203 wk->wi_len = (sizeof(*wk) / 2) + 1; 2204 wk->wi_type = WI_RID_DEFLT_CRYPT_KEYS; 2205 if (sc->sc_enabled != 0) { 2206 error = wi_write_record(sc, (struct wi_ltv_gen *)&wreq); 2207 if (error) 2208 return error; 2209 } 2210 error = wi_setdef(sc, &wreq); 2211 if (error) 2212 return error; 2213 2214 wreq.wi_len = 2; 2215 wreq.wi_type = WI_RID_TX_CRYPT_KEY; 2216 wreq.wi_val[0] = htole16(nwkey->i_defkid - 1); 2217 if (sc->sc_enabled != 0) { 2218 error = wi_write_record(sc, (struct wi_ltv_gen *)&wreq); 2219 if (error) 2220 return error; 2221 } 2222 error = wi_setdef(sc, &wreq); 2223 if (error) 2224 return error; 2225 2226 wreq.wi_type = WI_RID_ENCRYPTION; 2227 wreq.wi_val[0] = htole16(nwkey->i_wepon); 2228 if (sc->sc_enabled != 0) { 2229 error = wi_write_record(sc, (struct wi_ltv_gen *)&wreq); 2230 if (error) 2231 return error; 2232 } 2233 error = wi_setdef(sc, &wreq); 2234 if (error) 2235 return error; 2236 2237 if (sc->sc_enabled != 0) 2238 wi_init(&sc->sc_ethercom.ec_if); 2239 return 0; 2240 } 2241 2242 static int 2243 wi_get_nwkey(sc, nwkey) 2244 struct wi_softc *sc; 2245 struct ieee80211_nwkey *nwkey; 2246 { 2247 int i, len, error; 2248 struct wi_ltv_keys *wk = &sc->wi_keys; 2249 2250 if (!sc->wi_has_wep) 2251 return ENODEV; 2252 nwkey->i_wepon = sc->wi_use_wep; 2253 nwkey->i_defkid = sc->wi_tx_key + 1; 2254 2255 /* do not show any keys to non-root user */ 2256 error = suser(curproc->p_ucred, &curproc->p_acflag); 2257 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 2258 if (nwkey->i_key[i].i_keydat == NULL) 2259 continue; 2260 /* error holds results of suser() for the first time */ 2261 if (error) 2262 return error; 2263 len = le16toh(wk->wi_keys[i].wi_keylen); 2264 if (nwkey->i_key[i].i_keylen < len) 2265 return ENOSPC; 2266 nwkey->i_key[i].i_keylen = len; 2267 error = copyout(wk->wi_keys[i].wi_keydat, 2268 nwkey->i_key[i].i_keydat, len); 2269 if (error) 2270 return error; 2271 } 2272 return 0; 2273 } 2274 2275 static int 2276 wi_set_pm(struct wi_softc *sc, struct ieee80211_power *power) 2277 { 2278 2279 sc->wi_pm_enabled = power->i_enabled; 2280 sc->wi_max_sleep = power->i_maxsleep; 2281 2282 if (sc->sc_enabled) 2283 return (wi_init(&sc->sc_ethercom.ec_if)); 2284 2285 return (0); 2286 } 2287 2288 static int 2289 wi_get_pm(struct wi_softc *sc, struct ieee80211_power *power) 2290 { 2291 2292 power->i_enabled = sc->wi_pm_enabled; 2293 power->i_maxsleep = sc->wi_max_sleep; 2294 2295 return (0); 2296 } 2297