xref: /netbsd-src/sys/dev/ic/wi.c (revision 0dd5877adce57db949b16ae963e5a6831cccdfb6)
1 /*	$NetBSD: wi.c,v 1.42 2002/02/18 14:45:56 yamt Exp $	*/
2 
3 /*
4  * Copyright (c) 1997, 1998, 1999
5  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 /*
36  * Lucent WaveLAN/IEEE 802.11 PCMCIA driver for NetBSD.
37  *
38  * Original FreeBSD driver written by Bill Paul <wpaul@ctr.columbia.edu>
39  * Electrical Engineering Department
40  * Columbia University, New York City
41  */
42 
43 /*
44  * The WaveLAN/IEEE adapter is the second generation of the WaveLAN
45  * from Lucent. Unlike the older cards, the new ones are programmed
46  * entirely via a firmware-driven controller called the Hermes.
47  * Unfortunately, Lucent will not release the Hermes programming manual
48  * without an NDA (if at all). What they do release is an API library
49  * called the HCF (Hardware Control Functions) which is supposed to
50  * do the device-specific operations of a device driver for you. The
51  * publically available version of the HCF library (the 'HCF Light') is
52  * a) extremely gross, b) lacks certain features, particularly support
53  * for 802.11 frames, and c) is contaminated by the GNU Public License.
54  *
55  * This driver does not use the HCF or HCF Light at all. Instead, it
56  * programs the Hermes controller directly, using information gleaned
57  * from the HCF Light code and corresponding documentation.
58  *
59  * This driver supports both the PCMCIA and ISA versions of the
60  * WaveLAN/IEEE cards. Note however that the ISA card isn't really
61  * anything of the sort: it's actually a PCMCIA bridge adapter
62  * that fits into an ISA slot, into which a PCMCIA WaveLAN card is
63  * inserted. Consequently, you need to use the pccard support for
64  * both the ISA and PCMCIA adapters.
65  */
66 
67 /*
68  * FreeBSD driver ported to NetBSD by Bill Sommerfeld in the back of the
69  * Oslo IETF plenary meeting.
70  */
71 
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: wi.c,v 1.42 2002/02/18 14:45:56 yamt Exp $");
74 
75 #define WI_HERMES_AUTOINC_WAR	/* Work around data write autoinc bug. */
76 #define WI_HERMES_STATS_WAR	/* Work around stats counter bug. */
77 
78 #include "bpfilter.h"
79 
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/callout.h>
83 #include <sys/device.h>
84 #include <sys/socket.h>
85 #include <sys/mbuf.h>
86 #include <sys/ioctl.h>
87 #include <sys/kernel.h>		/* for hz */
88 #include <sys/proc.h>
89 
90 #include <net/if.h>
91 #include <net/if_dl.h>
92 #include <net/if_media.h>
93 #include <net/if_ether.h>
94 #include <net/if_ieee80211.h>
95 
96 #if NBPFILTER > 0
97 #include <net/bpf.h>
98 #include <net/bpfdesc.h>
99 #endif
100 
101 #include <machine/bus.h>
102 
103 #include <dev/ic/wi_ieee.h>
104 #include <dev/ic/wireg.h>
105 #include <dev/ic/wivar.h>
106 
107 static void wi_reset		__P((struct wi_softc *));
108 static int wi_ioctl		__P((struct ifnet *, u_long, caddr_t));
109 static void wi_start		__P((struct ifnet *));
110 static void wi_watchdog		__P((struct ifnet *));
111 static int wi_init		__P((struct ifnet *));
112 static void wi_stop		__P((struct ifnet *, int));
113 static void wi_rxeof		__P((struct wi_softc *));
114 static void wi_txeof		__P((struct wi_softc *, int));
115 static void wi_update_stats	__P((struct wi_softc *));
116 static void wi_setmulti		__P((struct wi_softc *));
117 
118 static int wi_cmd		__P((struct wi_softc *, int, int));
119 static int wi_read_record	__P((struct wi_softc *, struct wi_ltv_gen *));
120 static int wi_write_record	__P((struct wi_softc *, struct wi_ltv_gen *));
121 static int wi_read_data		__P((struct wi_softc *, int,
122 					int, caddr_t, int));
123 static int wi_write_data	__P((struct wi_softc *, int,
124 					int, caddr_t, int));
125 static int wi_seek		__P((struct wi_softc *, int, int, int));
126 static int wi_alloc_nicmem	__P((struct wi_softc *, int, int *));
127 static void wi_inquire		__P((void *));
128 static void wi_wait_scan	__P((void *));
129 static int wi_setdef		__P((struct wi_softc *, struct wi_req *));
130 static int wi_getdef		__P((struct wi_softc *, struct wi_req *));
131 static int wi_mgmt_xmit		__P((struct wi_softc *, caddr_t, int));
132 
133 static int wi_media_change __P((struct ifnet *));
134 static void wi_media_status __P((struct ifnet *, struct ifmediareq *));
135 
136 static void wi_get_id		__P((struct wi_softc *));
137 
138 static int wi_set_ssid __P((struct ieee80211_nwid *, u_int8_t *, int));
139 static void wi_request_fill_ssid __P((struct wi_req *,
140     struct ieee80211_nwid *));
141 static int wi_write_ssid __P((struct wi_softc *, int, struct wi_req *,
142     struct ieee80211_nwid *));
143 static int wi_set_nwkey __P((struct wi_softc *, struct ieee80211_nwkey *));
144 static int wi_get_nwkey __P((struct wi_softc *, struct ieee80211_nwkey *));
145 static int wi_sync_media __P((struct wi_softc *, int, int));
146 static int wi_set_pm(struct wi_softc *, struct ieee80211_power *);
147 static int wi_get_pm(struct wi_softc *, struct ieee80211_power *);
148 
149 int
150 wi_attach(sc)
151 	struct wi_softc *sc;
152 {
153 	struct ifnet *ifp = sc->sc_ifp;
154 	struct wi_ltv_macaddr   mac;
155 	struct wi_ltv_gen       gen;
156 	static const u_int8_t empty_macaddr[ETHER_ADDR_LEN] = {
157 		0x00, 0x00, 0x00, 0x00, 0x00, 0x00
158 	};
159 	int s;
160 
161 	s = splnet();
162 
163 	callout_init(&sc->wi_inquire_ch);
164 	callout_init(&sc->wi_scan_sh);
165 
166 	/* Make sure interrupts are disabled. */
167 	CSR_WRITE_2(sc, WI_INT_EN, 0);
168 	CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF);
169 
170 	/* Reset the NIC. */
171 	wi_reset(sc);
172 
173 	memset(&mac, 0, sizeof(mac));
174 	/* Read the station address. */
175 	mac.wi_type = WI_RID_MAC_NODE;
176 	mac.wi_len = 4;
177 	wi_read_record(sc, (struct wi_ltv_gen *)&mac);
178 	memcpy(sc->sc_macaddr, mac.wi_mac_addr, ETHER_ADDR_LEN);
179 
180 	/*
181 	 * Check if we got anything meaningful.
182 	 *
183 	 * Is it really enough just checking against null ethernet address?
184 	 * Or, check against possible vendor?  XXX.
185 	 */
186 	if (memcmp(sc->sc_macaddr, empty_macaddr, ETHER_ADDR_LEN) == 0) {
187 		printf("%s: could not get mac address, attach failed\n",
188 		    sc->sc_dev.dv_xname);
189 		splx(s);
190 		return 1;
191 	}
192 
193 	printf(" 802.11 address %s\n", ether_sprintf(sc->sc_macaddr));
194 
195 	/* Read NIC identification */
196 	wi_get_id(sc);
197 
198 	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
199 	ifp->if_softc = sc;
200 	ifp->if_start = wi_start;
201 	ifp->if_ioctl = wi_ioctl;
202 	ifp->if_watchdog = wi_watchdog;
203 	ifp->if_init = wi_init;
204 	ifp->if_stop = wi_stop;
205 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
206 #ifdef IFF_NOTRAILERS
207 	ifp->if_flags |= IFF_NOTRAILERS;
208 #endif
209 	IFQ_SET_READY(&ifp->if_snd);
210 
211 	(void)wi_set_ssid(&sc->wi_nodeid, WI_DEFAULT_NODENAME,
212 	    sizeof(WI_DEFAULT_NODENAME) - 1);
213 	(void)wi_set_ssid(&sc->wi_netid, WI_DEFAULT_NETNAME,
214 	    sizeof(WI_DEFAULT_NETNAME) - 1);
215 	(void)wi_set_ssid(&sc->wi_ibssid, WI_DEFAULT_IBSS,
216 	    sizeof(WI_DEFAULT_IBSS) - 1);
217 
218 	sc->wi_portnum = WI_DEFAULT_PORT;
219 	sc->wi_ptype = WI_PORTTYPE_BSS;
220 	sc->wi_ap_density = WI_DEFAULT_AP_DENSITY;
221 	sc->wi_rts_thresh = WI_DEFAULT_RTS_THRESH;
222 	sc->wi_tx_rate = WI_DEFAULT_TX_RATE;
223 	sc->wi_max_data_len = WI_DEFAULT_DATALEN;
224 	sc->wi_create_ibss = WI_DEFAULT_CREATE_IBSS;
225 	sc->wi_pm_enabled = WI_DEFAULT_PM_ENABLED;
226 	sc->wi_max_sleep = WI_DEFAULT_MAX_SLEEP;
227 	sc->wi_roaming = WI_DEFAULT_ROAMING;
228 	sc->wi_authtype = WI_DEFAULT_AUTHTYPE;
229 
230 	/*
231 	 * Read the default channel from the NIC. This may vary
232 	 * depending on the country where the NIC was purchased, so
233 	 * we can't hard-code a default and expect it to work for
234 	 * everyone.
235 	 */
236 	gen.wi_type = WI_RID_OWN_CHNL;
237 	gen.wi_len = 2;
238 	wi_read_record(sc, &gen);
239 	sc->wi_channel = le16toh(gen.wi_val);
240 
241 	memset((char *)&sc->wi_stats, 0, sizeof(sc->wi_stats));
242 
243 	/* AP info was filled with 0 */
244 	memset((char *)&sc->wi_aps, 0, sizeof(sc->wi_aps));
245 	sc->wi_scanning=0;
246 	sc->wi_naps=0;
247 
248 	/*
249 	 * Find out if we support WEP on this card.
250 	 */
251 	gen.wi_type = WI_RID_WEP_AVAIL;
252 	gen.wi_len = 2;
253 	wi_read_record(sc, &gen);
254 	sc->wi_has_wep = le16toh(gen.wi_val);
255 
256 	ifmedia_init(&sc->sc_media, 0, wi_media_change, wi_media_status);
257 #define	IFM_AUTOADHOC \
258 	IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, IFM_IEEE80211_ADHOC, 0)
259 #define	ADD(m, c)	ifmedia_add(&sc->sc_media, (m), (c), NULL)
260 	ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, 0, 0), 0);
261 	ADD(IFM_AUTOADHOC, 0);
262 	ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1, 0, 0), 0);
263 	ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1,
264 	    IFM_IEEE80211_ADHOC, 0), 0);
265 	ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2, 0, 0), 0);
266 	ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2,
267 	    IFM_IEEE80211_ADHOC, 0), 0);
268 	ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5, 0, 0), 0);
269 	ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5,
270 	    IFM_IEEE80211_ADHOC, 0), 0);
271 	ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11, 0, 0), 0);
272 	ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11,
273 	    IFM_IEEE80211_ADHOC, 0), 0);
274 	ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_MANUAL, 0, 0), 0);
275 #undef ADD
276 	ifmedia_set(&sc->sc_media, IFM_AUTOADHOC);
277 
278 	/*
279 	 * Call MI attach routines.
280 	 */
281 	if_attach(ifp);
282 	ether_ifattach(ifp, mac.wi_mac_addr);
283 
284 	ifp->if_baudrate = IF_Mbps(2);
285 
286 	/* Attach is successful. */
287 	sc->sc_attached = 1;
288 
289 	splx(s);
290 	return 0;
291 }
292 
293 static void wi_rxeof(sc)
294 	struct wi_softc		*sc;
295 {
296 	struct ifnet		*ifp;
297 	struct ether_header	*eh;
298 	struct wi_frame		rx_frame;
299 	struct mbuf		*m;
300 	int			id;
301 
302 	ifp = sc->sc_ifp;
303 
304 	id = CSR_READ_2(sc, WI_RX_FID);
305 
306 	/* First read in the frame header */
307 	if (wi_read_data(sc, id, 0, (caddr_t)&rx_frame, sizeof(rx_frame))) {
308 		ifp->if_ierrors++;
309 		return;
310 	}
311 
312 	/*
313 	 * Drop undecryptable or packets with receive errors here
314 	 */
315 	if (le16toh(rx_frame.wi_status) & WI_STAT_ERRSTAT) {
316 		ifp->if_ierrors++;
317 		return;
318 	}
319 
320 	MGETHDR(m, M_DONTWAIT, MT_DATA);
321 	if (m == NULL) {
322 		ifp->if_ierrors++;
323 		return;
324 	}
325 	MCLGET(m, M_DONTWAIT);
326 	if (!(m->m_flags & M_EXT)) {
327 		m_freem(m);
328 		ifp->if_ierrors++;
329 		return;
330 	}
331 
332 	/* Align the data after the ethernet header */
333 	m->m_data = (caddr_t) ALIGN(m->m_data + sizeof(struct ether_header))
334 	    - sizeof(struct ether_header);
335 
336 	eh = mtod(m, struct ether_header *);
337 	m->m_pkthdr.rcvif = ifp;
338 
339 	if (le16toh(rx_frame.wi_status) == WI_STAT_1042 ||
340 	    le16toh(rx_frame.wi_status) == WI_STAT_TUNNEL ||
341 	    le16toh(rx_frame.wi_status) == WI_STAT_WMP_MSG) {
342 		if ((le16toh(rx_frame.wi_dat_len) + WI_SNAPHDR_LEN) > MCLBYTES) {
343 			printf("%s: oversized packet received "
344 			    "(wi_dat_len=%d, wi_status=0x%x)\n",
345 			    sc->sc_dev.dv_xname,
346 			    le16toh(rx_frame.wi_dat_len), le16toh(rx_frame.wi_status));
347 			m_freem(m);
348 			ifp->if_ierrors++;
349 			return;
350 		}
351 		m->m_pkthdr.len = m->m_len =
352 		    le16toh(rx_frame.wi_dat_len) + WI_SNAPHDR_LEN;
353 
354 		memcpy((char *)&eh->ether_dhost, (char *)&rx_frame.wi_dst_addr,
355 		    ETHER_ADDR_LEN);
356 		memcpy((char *)&eh->ether_shost, (char *)&rx_frame.wi_src_addr,
357 		    ETHER_ADDR_LEN);
358 		memcpy((char *)&eh->ether_type, (char *)&rx_frame.wi_type,
359 		    sizeof(u_int16_t));
360 
361 		if (wi_read_data(sc, id, WI_802_11_OFFSET,
362 		    mtod(m, caddr_t) + sizeof(struct ether_header),
363 		    m->m_len + 2)) {
364 			m_freem(m);
365 			ifp->if_ierrors++;
366 			return;
367 		}
368 	} else {
369 		if ((le16toh(rx_frame.wi_dat_len) +
370 		    sizeof(struct ether_header)) > MCLBYTES) {
371 			printf("%s: oversized packet received "
372 			    "(wi_dat_len=%d, wi_status=0x%x)\n",
373 			    sc->sc_dev.dv_xname,
374 			    le16toh(rx_frame.wi_dat_len), le16toh(rx_frame.wi_status));
375 			m_freem(m);
376 			ifp->if_ierrors++;
377 			return;
378 		}
379 		m->m_pkthdr.len = m->m_len =
380 		    le16toh(rx_frame.wi_dat_len) + sizeof(struct ether_header);
381 
382 		if (wi_read_data(sc, id, WI_802_3_OFFSET,
383 		    mtod(m, caddr_t), m->m_len + 2)) {
384 			m_freem(m);
385 			ifp->if_ierrors++;
386 			return;
387 		}
388 	}
389 
390 	ifp->if_ipackets++;
391 
392 #if NBPFILTER > 0
393 	/* Handle BPF listeners. */
394 	if (ifp->if_bpf)
395 		bpf_mtap(ifp->if_bpf, m);
396 #endif
397 
398 	/* Receive packet. */
399 	(*ifp->if_input)(ifp, m);
400 }
401 
402 static void wi_txeof(sc, status)
403 	struct wi_softc	*sc;
404 	int		status;
405 {
406 	struct ifnet	*ifp = sc->sc_ifp;
407 
408 	ifp->if_timer = 0;
409 	ifp->if_flags &= ~IFF_OACTIVE;
410 
411 	if (status & WI_EV_TX_EXC)
412 		ifp->if_oerrors++;
413 	else
414 		ifp->if_opackets++;
415 
416 	return;
417 }
418 
419 void wi_inquire(xsc)
420 	void			*xsc;
421 {
422 	struct wi_softc		*sc;
423 	struct ifnet		*ifp;
424 	int			s;
425 
426 	sc = xsc;
427 	ifp = &sc->sc_ethercom.ec_if;
428 
429 	if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
430 		return;
431 
432 	callout_reset(&sc->wi_inquire_ch, hz * 60, wi_inquire, sc);
433 
434 	/* Don't do this while we're transmitting */
435 	if (ifp->if_flags & IFF_OACTIVE)
436 		return;
437 
438 	s = splnet();
439 	wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_COUNTERS);
440 	splx(s);
441 }
442 
443 void wi_wait_scan(xsc)
444 	void			*xsc;
445 {
446 	struct wi_softc         *sc;
447 	struct ifnet            *ifp;
448 	int			s, result;
449 
450 	sc = xsc;
451 	ifp = &sc->sc_ethercom.ec_if;
452 
453 	/* If not scanning, ignore */
454 	if (!sc->wi_scanning)
455 		return;
456 
457 	s = splnet();
458 
459 	/* Wait for sending complete to make INQUIRE */
460 	if (ifp->if_flags & IFF_OACTIVE) {
461 		callout_reset(&sc->wi_scan_sh, hz * 1, wi_wait_scan, sc);
462 		splx(s);
463 		return;
464 	}
465 
466 	/* try INQUIRE */
467 	result = wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS);
468 	if (result == ETIMEDOUT)
469 		callout_reset(&sc->wi_scan_sh, hz * 1, wi_wait_scan, sc);
470 
471 	splx(s);
472 }
473 
474 void wi_update_stats(sc)
475 	struct wi_softc		*sc;
476 {
477 	struct wi_ltv_gen	gen;
478 	struct wi_scan_header	ap2_header;	/* Prism2 header */
479 	struct wi_scan_data_p2	ap2;		/* Prism2 scantable*/
480 	struct wi_scan_data	ap;		/* Lucent scantable */
481 	struct wi_assoc		assoc;		/* Association Status */
482 	u_int16_t		id;
483 	struct ifnet		*ifp;
484 	u_int32_t		*ptr;
485 	int			len, naps, i, j;
486 	u_int16_t		t;
487 
488 	ifp = &sc->sc_ethercom.ec_if;
489 
490 	id = CSR_READ_2(sc, WI_INFO_FID);
491 
492 	wi_read_data(sc, id, 0, (char *)&gen, 4);
493 
494 	switch (gen.wi_type) {
495 	case WI_INFO_SCAN_RESULTS:
496 		if (gen.wi_len <= 3)
497 			break;
498 		if (sc->sc_prism2) {	/* Prism2 chip */
499 			naps = 2 * (gen.wi_len - 3) / sizeof(ap2);
500 			naps = naps > MAXAPINFO ? MAXAPINFO : naps;
501 			sc->wi_naps = naps;
502 			/* Read Header */
503 			for(j=0; j < sizeof(ap2_header) / 2; j++)
504 				((u_int16_t *)&ap2_header)[j] =
505 						CSR_READ_2(sc, WI_DATA1);
506 			/* Read Data */
507 			for (i=0; i < naps; i++) {
508 				for(j=0; j < sizeof(ap2) / 2; j++)
509 					((u_int16_t *)&ap2)[j] =
510 						CSR_READ_2(sc, WI_DATA1);
511 				sc->wi_aps[i].scanreason = ap2_header.wi_reason;
512 				memcpy(sc->wi_aps[i].bssid, ap2.wi_bssid, 6);
513 				sc->wi_aps[i].channel = ap2.wi_chid;
514 				sc->wi_aps[i].signal  = ap2.wi_signal;
515 				sc->wi_aps[i].noise   = ap2.wi_noise;
516 				sc->wi_aps[i].quality = ap2.wi_signal - ap2.wi_noise;
517 				sc->wi_aps[i].capinfo = ap2.wi_capinfo;
518 				sc->wi_aps[i].interval = ap2.wi_interval;
519 				sc->wi_aps[i].rate    = ap2.wi_rate;
520 				if (ap2.wi_namelen > 32)
521 					ap2.wi_namelen = 32;
522 				sc->wi_aps[i].namelen = ap2.wi_namelen;
523 				memcpy(sc->wi_aps[i].name, ap2.wi_name,
524 				       ap2.wi_namelen);
525 			}
526 		} else {	/* Lucent chip */
527 			naps = 2 * gen.wi_len / sizeof(ap);
528 			naps = naps > MAXAPINFO ? MAXAPINFO : naps;
529 			sc->wi_naps = naps;
530 			/* Read Data*/
531 			for (i=0; i < naps; i++) {
532 				for(j=0; j < sizeof(ap) / 2; j++)
533 					((u_int16_t *)&ap)[j] =
534 						CSR_READ_2(sc, WI_DATA1);
535 				memcpy(sc->wi_aps[i].bssid, ap.wi_bssid, 6);
536 				sc->wi_aps[i].channel = ap.wi_chid;
537 				sc->wi_aps[i].signal  = ap.wi_signal;
538 				sc->wi_aps[i].noise   = ap.wi_noise;
539 				sc->wi_aps[i].quality = ap.wi_signal - ap.wi_noise;
540 				sc->wi_aps[i].capinfo = ap.wi_capinfo;
541 				sc->wi_aps[i].interval = ap.wi_interval;
542 				if (ap.wi_namelen > 32)
543 					ap.wi_namelen = 32;
544 				sc->wi_aps[i].namelen = ap.wi_namelen;
545 				memcpy(sc->wi_aps[i].name, ap.wi_name,
546 				       ap.wi_namelen);
547 			}
548 		}
549 		/* Done scanning */
550 		sc->wi_scanning = 0;
551 		break;
552 
553 	case WI_INFO_COUNTERS:
554 		/* some card versions have a larger stats structure */
555 		len = (gen.wi_len - 1 < sizeof(sc->wi_stats) / 4) ?
556 			gen.wi_len - 1 : sizeof(sc->wi_stats) / 4;
557 		ptr = (u_int32_t *)&sc->wi_stats;
558 
559 		for (i = 0; i < len; i++) {
560 			t = CSR_READ_2(sc, WI_DATA1);
561 #ifdef WI_HERMES_STATS_WAR
562 			if (t > 0xF000)
563 				t = ~t & 0xFFFF;
564 #endif
565 			ptr[i] += t;
566 		}
567 
568 		ifp->if_collisions = sc->wi_stats.wi_tx_single_retries +
569 			sc->wi_stats.wi_tx_multi_retries +
570 			sc->wi_stats.wi_tx_retry_limit;
571 		break;
572 
573 	case WI_INFO_LINK_STAT: {
574 		static char *msg[] = {
575 			"connected",
576 			"disconnected",
577 			"AP change",
578 			"AP out of range",
579 			"AP in range",
580 			"Association Faild"
581 		};
582 
583 		if (gen.wi_len != 2) {
584 #ifdef WI_DEBUG
585 			printf("WI_INFO_LINK_STAT: len=%d\n", gen.wi_len);
586 #endif
587 			break;
588 		}
589 		t = CSR_READ_2(sc, WI_DATA1);
590 		if ((t < 1) || (t > 6)) {
591 #ifdef WI_DEBUG
592 			printf("WI_INFO_LINK_STAT: status %d\n", t);
593 #endif
594 			break;
595 		}
596 		/*
597 		 * Some cards issue streams of "connected" messages while
598 		 * trying to find a peer. Don't bother the user with this
599 		 * unless he is debugging.
600 		 */
601 		if (ifp->if_flags & IFF_DEBUG)
602 			printf("%s: %s\n", sc->sc_dev.dv_xname, msg[t - 1]);
603 		break;
604 		}
605 
606 	case WI_INFO_ASSOC_STAT: {
607 		static char *msg[] = {
608 			"STA Associated",
609 			"STA Reassociated",
610 			"STA Disassociated",
611 			"Association Failure",
612 			"Authentication Faild"
613 		};
614 		if (gen.wi_len != 10)
615                         break;
616 		for (i=0; i < gen.wi_len - 1; i++)
617 			((u_int16_t *)&assoc)[i] = CSR_READ_2(sc, WI_DATA1);
618 		switch (assoc.wi_assoc_stat) {
619 		case ASSOC:
620 		case DISASSOC:
621 		case ASSOCFAIL:
622 		case AUTHFAIL:
623 			printf("%s: %s, AP = %x:%x:%x:%x:%x:%x\n",
624 				sc->sc_dev.dv_xname,
625 				msg[assoc.wi_assoc_stat - 1],
626 				assoc.wi_assoc_sta[0]&0xff, assoc.wi_assoc_sta[1]&0xff,
627 				assoc.wi_assoc_sta[2]&0xff, assoc.wi_assoc_sta[3]&0xff,
628 				assoc.wi_assoc_sta[4]&0xff, assoc.wi_assoc_sta[5]&0xff);
629 			break;
630 		case REASSOC:
631 			printf("%s: %s, AP = %x:%x:%x:%x:%x:%x, OldAP = %x:%x:%x:%x:%x:%x\n",
632 				sc->sc_dev.dv_xname, msg[assoc.wi_assoc_stat - 1],
633 				assoc.wi_assoc_sta[0]&0xff, assoc.wi_assoc_sta[1]&0xff,
634 				assoc.wi_assoc_sta[2]&0xff, assoc.wi_assoc_sta[3]&0xff,
635 				assoc.wi_assoc_sta[4]&0xff, assoc.wi_assoc_sta[5]&0xff,
636 				assoc.wi_assoc_osta[0]&0xff, assoc.wi_assoc_osta[1]&0xff,
637 				assoc.wi_assoc_osta[2]&0xff, assoc.wi_assoc_osta[3]&0xff,
638 				assoc.wi_assoc_osta[4]&0xff, assoc.wi_assoc_osta[5]&0xff);
639 			break;
640 		}
641 		}
642 	default:
643 #if 0
644 		printf("Got info type: %04x\n", gen.wi_type);
645 #endif
646 		for (i = 0; i < gen.wi_len; i++) {
647 			t = CSR_READ_2(sc, WI_DATA1);
648 #if 0
649 			printf("[0x%02x] = 0x%04x\n", i, t);
650 #endif
651 		}
652 		break;
653 	}
654 }
655 
656 int wi_intr(arg)
657 	void *arg;
658 {
659 	struct wi_softc		*sc = arg;
660 	struct ifnet		*ifp;
661 	u_int16_t		status;
662 
663 	if (sc->sc_enabled == 0 ||
664 	    (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0 ||
665 	    (sc->sc_ethercom.ec_if.if_flags & IFF_RUNNING) == 0)
666 		return (0);
667 
668 	ifp = &sc->sc_ethercom.ec_if;
669 
670 	if (!(ifp->if_flags & IFF_UP)) {
671 		CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF);
672 		CSR_WRITE_2(sc, WI_INT_EN, 0);
673 		return 1;
674 	}
675 
676 	/* Disable interrupts. */
677 	CSR_WRITE_2(sc, WI_INT_EN, 0);
678 
679 	status = CSR_READ_2(sc, WI_EVENT_STAT);
680 	CSR_WRITE_2(sc, WI_EVENT_ACK, ~WI_INTRS);
681 
682 	if (status & WI_EV_RX) {
683 		wi_rxeof(sc);
684 		CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
685 	}
686 
687 	if (status & WI_EV_TX) {
688 		wi_txeof(sc, status);
689 		CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_TX);
690 	}
691 
692 	if (status & WI_EV_ALLOC) {
693 		int			id;
694 		id = CSR_READ_2(sc, WI_ALLOC_FID);
695 		CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
696 		if (id == sc->wi_tx_data_id)
697 			wi_txeof(sc, status);
698 	}
699 
700 	if (status & WI_EV_INFO) {
701 		wi_update_stats(sc);
702 		CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_INFO);
703 	}
704 
705 	if (status & WI_EV_TX_EXC) {
706 		wi_txeof(sc, status);
707 		CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_TX_EXC);
708 	}
709 
710 	if (status & WI_EV_INFO_DROP) {
711 		CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_INFO_DROP);
712 	}
713 
714 	/* Re-enable interrupts. */
715 	CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
716 
717 	if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
718 		wi_start(ifp);
719 
720 	return 1;
721 }
722 
723 /* Must be called at proper protection level! */
724 static int
725 wi_cmd(sc, cmd, val)
726 	struct wi_softc		*sc;
727 	int			cmd;
728 	int			val;
729 {
730 	int			i, s = 0;
731 
732 	/* wait for the busy bit to clear */
733 	for (i = 0; i < WI_TIMEOUT; i++) {
734 		if (!(CSR_READ_2(sc, WI_COMMAND) & WI_CMD_BUSY))
735 			break;
736 	}
737 
738 	if (i == WI_TIMEOUT) {
739 		printf("%s: wi_cmd: BUSY did not clear, cmd=0x%x\n",
740 			sc->sc_dev.dv_xname, cmd);
741 		return EIO;
742 	}
743 
744 	CSR_WRITE_2(sc, WI_PARAM0, val);
745 	CSR_WRITE_2(sc, WI_PARAM1, 0);
746 	CSR_WRITE_2(sc, WI_PARAM2, 0);
747 	CSR_WRITE_2(sc, WI_COMMAND, cmd);
748 
749 	/* wait for the cmd completed bit */
750 	for (i = 0; i < WI_TIMEOUT; i++) {
751 		if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_CMD)
752 			break;
753 		DELAY(1);
754 	}
755 
756 	/* Ack the command */
757 	CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD);
758 
759 	s = CSR_READ_2(sc, WI_STATUS);
760 	if (s & WI_STAT_CMD_RESULT)
761 		return(EIO);
762 
763 	if (i == WI_TIMEOUT) {
764 		if (!sc->wi_scanning)
765 		    printf("%s: command timed out, cmd=0x%x\n",
766 			sc->sc_dev.dv_xname, cmd);
767 		return(ETIMEDOUT);
768 	}
769 
770 	return(0);
771 }
772 
773 static void
774 wi_reset(sc)
775 	struct wi_softc		*sc;
776 {
777 	DELAY(100*1000); /* 100 m sec */
778 	if (wi_cmd(sc, WI_CMD_INI, 0))
779 		printf("%s: init failed\n", sc->sc_dev.dv_xname);
780 	CSR_WRITE_2(sc, WI_INT_EN, 0);
781 	CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF);
782 
783 	/* Calibrate timer. */
784 	WI_SETVAL(WI_RID_TICK_TIME, 8);
785 
786 	return;
787 }
788 
789 void
790 wi_pci_reset(sc)
791 	struct wi_softc		*sc;
792 {
793 	bus_space_write_2(sc->sc_iot, sc->sc_ioh,
794 			  WI_PCI_COR, WI_PCI_SOFT_RESET);
795 	DELAY(100*1000); /* 100 m sec */
796 
797 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, WI_PCI_COR, 0x0);
798 	DELAY(100*1000); /* 100 m sec */
799 
800 	return;
801 }
802 
803 /*
804  * Read an LTV record from the NIC.
805  */
806 static int wi_read_record(sc, ltv)
807 	struct wi_softc		*sc;
808 	struct wi_ltv_gen	*ltv;
809 {
810 	u_int16_t		*ptr;
811 	int			len, code;
812 	struct wi_ltv_gen	*oltv, p2ltv;
813 
814 	if (sc->sc_prism2) {
815 		oltv = ltv;
816 		switch (ltv->wi_type) {
817 		case WI_RID_ENCRYPTION:
818 			p2ltv.wi_type = WI_RID_P2_ENCRYPTION;
819 			p2ltv.wi_len = 2;
820 			ltv = &p2ltv;
821 			break;
822 		case WI_RID_TX_CRYPT_KEY:
823 			p2ltv.wi_type = WI_RID_P2_TX_CRYPT_KEY;
824 			p2ltv.wi_len = 2;
825 			ltv = &p2ltv;
826 			break;
827 		}
828 	}
829 
830 	/* Tell the NIC to enter record read mode. */
831 	if (wi_cmd(sc, WI_CMD_ACCESS|WI_ACCESS_READ, ltv->wi_type))
832 		return(EIO);
833 
834 	/* Seek to the record. */
835 	if (wi_seek(sc, ltv->wi_type, 0, WI_BAP1))
836 		return(EIO);
837 
838 	/*
839 	 * Read the length and record type and make sure they
840 	 * match what we expect (this verifies that we have enough
841 	 * room to hold all of the returned data).
842 	 */
843 	len = CSR_READ_2(sc, WI_DATA1);
844 	if (len > ltv->wi_len)
845 		return(ENOSPC);
846 	code = CSR_READ_2(sc, WI_DATA1);
847 	if (code != ltv->wi_type)
848 		return(EIO);
849 
850 	ltv->wi_len = len;
851 	ltv->wi_type = code;
852 
853 	/* Now read the data. */
854 	ptr = &ltv->wi_val;
855 	if (ltv->wi_len > 1)
856 		CSR_READ_MULTI_STREAM_2(sc, WI_DATA1, ptr, ltv->wi_len - 1);
857 
858 	if (sc->sc_prism2) {
859 		int v;
860 
861 		switch (oltv->wi_type) {
862 		case WI_RID_TX_RATE:
863 		case WI_RID_CUR_TX_RATE:
864 			switch (le16toh(ltv->wi_val)) {
865 			case 1: v = 1; break;
866 			case 2: v = 2; break;
867 			case 3:	v = 6; break;
868 			case 4: v = 5; break;
869 			case 7: v = 7; break;
870 			case 8: v = 11; break;
871 			case 15: v = 3; break;
872 			default: v = 0x100 + le16toh(ltv->wi_val); break;
873 			}
874 			oltv->wi_val = htole16(v);
875 			break;
876 		case WI_RID_ENCRYPTION:
877 			oltv->wi_len = 2;
878 			if (le16toh(ltv->wi_val) & 0x01)
879 				oltv->wi_val = htole16(1);
880 			else
881 				oltv->wi_val = htole16(0);
882 			break;
883 		case WI_RID_TX_CRYPT_KEY:
884 			oltv->wi_len = 2;
885 			oltv->wi_val = ltv->wi_val;
886 			break;
887 		case WI_RID_AUTH_CNTL:
888 			oltv->wi_len = 2;
889 			if (le16toh(ltv->wi_val) & 0x01)
890 				oltv->wi_val = htole16(1);
891 			else if (le16toh(ltv->wi_val) & 0x02)
892 				oltv->wi_val = htole16(2);
893 			break;
894 		}
895 	}
896 
897 	return(0);
898 }
899 
900 /*
901  * Same as read, except we inject data instead of reading it.
902  */
903 static int wi_write_record(sc, ltv)
904 	struct wi_softc		*sc;
905 	struct wi_ltv_gen	*ltv;
906 {
907 	u_int16_t		*ptr;
908 	int			i;
909 	struct wi_ltv_gen	p2ltv;
910 
911 	if (sc->sc_prism2) {
912 		int v;
913 
914 		switch (ltv->wi_type) {
915 		case WI_RID_TX_RATE:
916 			p2ltv.wi_type = WI_RID_TX_RATE;
917 			p2ltv.wi_len = 2;
918 			switch (le16toh(ltv->wi_val)) {
919 			case 1: v = 1; break;
920 			case 2: v = 2; break;
921 			case 3:	v = 15; break;
922 			case 5: v = 4; break;
923 			case 6: v = 3; break;
924 			case 7: v = 7; break;
925 			case 11: v = 8; break;
926 			default: return EINVAL;
927 			}
928 			p2ltv.wi_val = htole16(v);
929 			ltv = &p2ltv;
930 			break;
931 		case WI_RID_ENCRYPTION:
932 			p2ltv.wi_type = WI_RID_P2_ENCRYPTION;
933 			p2ltv.wi_len = 2;
934 			if (le16toh(ltv->wi_val))
935 				p2ltv.wi_val = htole16(0x03);
936 			else
937 				p2ltv.wi_val = htole16(0x90);
938 			ltv = &p2ltv;
939 			break;
940 		case WI_RID_TX_CRYPT_KEY:
941 			p2ltv.wi_type = WI_RID_P2_TX_CRYPT_KEY;
942 			p2ltv.wi_len = 2;
943 			p2ltv.wi_val = ltv->wi_val;
944 			ltv = &p2ltv;
945 			break;
946 		case WI_RID_DEFLT_CRYPT_KEYS:
947 		    {
948 			int error;
949 			struct wi_ltv_str	ws;
950 			struct wi_ltv_keys	*wk = (struct wi_ltv_keys *)ltv;
951 			for (i = 0; i < 4; i++) {
952 				memset(&ws, 0, sizeof(ws));
953 				if(wk->wi_keys[i].wi_keylen <= 5) {
954 					/* 5 Octets WEP Keys */
955 					ws.wi_len = 4;
956 					memcpy(ws.wi_str, &wk->wi_keys[i].wi_keydat, 5);
957 					ws.wi_str[5] = '\0';
958 				} else {
959 					/* 13 Octets WEP Keys */
960 					ws.wi_len = 8;
961 					memcpy(ws.wi_str, &wk->wi_keys[i].wi_keydat, 13);
962 					ws.wi_str[13] = '\0';
963 				}
964 				ws.wi_type = WI_RID_P2_CRYPT_KEY0 + i;
965 
966 				if(wi_write_record(sc, (struct wi_ltv_gen *)&ws))
967 					return error;
968 			}
969 			return 0;
970 		    }
971 		case WI_RID_AUTH_CNTL:
972 			p2ltv.wi_type = WI_RID_AUTH_CNTL;
973 			p2ltv.wi_len = 2;
974 			if (le16toh(ltv->wi_val) == 1)
975 				p2ltv.wi_val = htole16(0x01);
976 			else if (le16toh(ltv->wi_val) == 2)
977 				p2ltv.wi_val = htole16(0x02);
978 			ltv = &p2ltv;
979 			break;
980 		}
981 	}
982 
983 	if (wi_seek(sc, ltv->wi_type, 0, WI_BAP1))
984 		return(EIO);
985 
986 	CSR_WRITE_2(sc, WI_DATA1, ltv->wi_len);
987 	CSR_WRITE_2(sc, WI_DATA1, ltv->wi_type);
988 
989 	/* Write data */
990 	ptr = &ltv->wi_val;
991 	if (ltv->wi_len > 1)
992 		CSR_WRITE_MULTI_STREAM_2(sc, WI_DATA1, ptr, ltv->wi_len - 1);
993 
994 	if (wi_cmd(sc, WI_CMD_ACCESS|WI_ACCESS_WRITE, ltv->wi_type))
995 		return(EIO);
996 
997 	return(0);
998 }
999 
1000 static int wi_seek(sc, id, off, chan)
1001 	struct wi_softc		*sc;
1002 	int			id, off, chan;
1003 {
1004 	int			i;
1005 	int			selreg, offreg;
1006 	int 			status;
1007 
1008 	switch (chan) {
1009 	case WI_BAP0:
1010 		selreg = WI_SEL0;
1011 		offreg = WI_OFF0;
1012 		break;
1013 	case WI_BAP1:
1014 		selreg = WI_SEL1;
1015 		offreg = WI_OFF1;
1016 		break;
1017 	default:
1018 		printf("%s: invalid data path: %x\n",
1019 		    sc->sc_dev.dv_xname, chan);
1020 		return(EIO);
1021 	}
1022 
1023 	CSR_WRITE_2(sc, selreg, id);
1024 	CSR_WRITE_2(sc, offreg, off);
1025 
1026 	for (i = 0; i < WI_TIMEOUT; i++) {
1027 	  	status = CSR_READ_2(sc, offreg);
1028 		if (!(status & (WI_OFF_BUSY|WI_OFF_ERR)))
1029 			break;
1030 	}
1031 
1032 	if (i == WI_TIMEOUT) {
1033 		printf("%s: timeout in wi_seek to %x/%x; last status %x\n",
1034 		       sc->sc_dev.dv_xname, id, off, status);
1035 		return(ETIMEDOUT);
1036 	}
1037 	return(0);
1038 }
1039 
1040 static int wi_read_data(sc, id, off, buf, len)
1041 	struct wi_softc		*sc;
1042 	int			id, off;
1043 	caddr_t			buf;
1044 	int			len;
1045 {
1046 	u_int16_t		*ptr;
1047 
1048 	if (wi_seek(sc, id, off, WI_BAP1))
1049 		return(EIO);
1050 
1051 	ptr = (u_int16_t *)buf;
1052 	CSR_READ_MULTI_STREAM_2(sc, WI_DATA1, ptr, len / 2);
1053 
1054 	return(0);
1055 }
1056 
1057 /*
1058  * According to the comments in the HCF Light code, there is a bug in
1059  * the Hermes (or possibly in certain Hermes firmware revisions) where
1060  * the chip's internal autoincrement counter gets thrown off during
1061  * data writes: the autoincrement is missed, causing one data word to
1062  * be overwritten and subsequent words to be written to the wrong memory
1063  * locations. The end result is that we could end up transmitting bogus
1064  * frames without realizing it. The workaround for this is to write a
1065  * couple of extra guard words after the end of the transfer, then
1066  * attempt to read then back. If we fail to locate the guard words where
1067  * we expect them, we preform the transfer over again.
1068  */
1069 static int wi_write_data(sc, id, off, buf, len)
1070 	struct wi_softc		*sc;
1071 	int			id, off;
1072 	caddr_t			buf;
1073 	int			len;
1074 {
1075 	u_int16_t		*ptr;
1076 
1077 #ifdef WI_HERMES_AUTOINC_WAR
1078 again:
1079 #endif
1080 
1081 	if (wi_seek(sc, id, off, WI_BAP0))
1082 		return(EIO);
1083 
1084 	ptr = (u_int16_t *)buf;
1085 	CSR_WRITE_MULTI_STREAM_2(sc, WI_DATA0, ptr, len / 2);
1086 
1087 #ifdef WI_HERMES_AUTOINC_WAR
1088 	CSR_WRITE_2(sc, WI_DATA0, 0x1234);
1089 	CSR_WRITE_2(sc, WI_DATA0, 0x5678);
1090 
1091 	if (wi_seek(sc, id, off + len, WI_BAP0))
1092 		return(EIO);
1093 
1094 	if (CSR_READ_2(sc, WI_DATA0) != 0x1234 ||
1095 	    CSR_READ_2(sc, WI_DATA0) != 0x5678)
1096 		goto again;
1097 #endif
1098 
1099 	return(0);
1100 }
1101 
1102 /*
1103  * Allocate a region of memory inside the NIC and zero
1104  * it out.
1105  */
1106 static int wi_alloc_nicmem(sc, len, id)
1107 	struct wi_softc		*sc;
1108 	int			len;
1109 	int			*id;
1110 {
1111 	int			i;
1112 
1113 	if (wi_cmd(sc, WI_CMD_ALLOC_MEM, len)) {
1114 		printf("%s: failed to allocate %d bytes on NIC\n",
1115 		    sc->sc_dev.dv_xname, len);
1116 		return(ENOMEM);
1117 	}
1118 
1119 	for (i = 0; i < WI_TIMEOUT; i++) {
1120 		if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_ALLOC)
1121 			break;
1122 	}
1123 
1124 	if (i == WI_TIMEOUT) {
1125 		printf("%s: TIMED OUT in alloc\n", sc->sc_dev.dv_xname);
1126 		return(ETIMEDOUT);
1127 	}
1128 
1129 	CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
1130 	*id = CSR_READ_2(sc, WI_ALLOC_FID);
1131 
1132 	if (wi_seek(sc, *id, 0, WI_BAP0)) {
1133 		printf("%s: seek failed in alloc\n", sc->sc_dev.dv_xname);
1134 		return(EIO);
1135 	}
1136 
1137 	for (i = 0; i < len / 2; i++)
1138 		CSR_WRITE_2(sc, WI_DATA0, 0);
1139 
1140 	return(0);
1141 }
1142 
1143 static void wi_setmulti(sc)
1144 	struct wi_softc		*sc;
1145 {
1146 	struct ifnet		*ifp;
1147 	int			i = 0;
1148 	struct wi_ltv_mcast	mcast;
1149 	struct ether_multi *enm;
1150 	struct ether_multistep estep;
1151 	struct ethercom *ec = &sc->sc_ethercom;
1152 
1153 	ifp = &sc->sc_ethercom.ec_if;
1154 
1155 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
1156 allmulti:
1157 		ifp->if_flags |= IFF_ALLMULTI;
1158 		memset((char *)&mcast, 0, sizeof(mcast));
1159 		mcast.wi_type = WI_RID_MCAST_LIST;
1160 		mcast.wi_len = ((ETHER_ADDR_LEN / 2) * 16) + 1;
1161 
1162 		wi_write_record(sc, (struct wi_ltv_gen *)&mcast);
1163 		return;
1164 	}
1165 
1166 	i = 0;
1167 	ETHER_FIRST_MULTI(estep, ec, enm);
1168 	while (enm != NULL) {
1169 		/* Punt on ranges or too many multicast addresses. */
1170 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1171 		    ETHER_ADDR_LEN) != 0 ||
1172 		    i >= 16)
1173 			goto allmulti;
1174 
1175 		memcpy((char *)&mcast.wi_mcast[i], enm->enm_addrlo,
1176 		    ETHER_ADDR_LEN);
1177 		i++;
1178 		ETHER_NEXT_MULTI(estep, enm);
1179 	}
1180 
1181 	ifp->if_flags &= ~IFF_ALLMULTI;
1182 	mcast.wi_type = WI_RID_MCAST_LIST;
1183 	mcast.wi_len = ((ETHER_ADDR_LEN / 2) * i) + 1;
1184 	wi_write_record(sc, (struct wi_ltv_gen *)&mcast);
1185 }
1186 
1187 static int
1188 wi_setdef(sc, wreq)
1189 	struct wi_softc		*sc;
1190 	struct wi_req		*wreq;
1191 {
1192 	struct sockaddr_dl	*sdl;
1193 	struct ifnet		*ifp;
1194 	int error = 0;
1195 
1196 	ifp = &sc->sc_ethercom.ec_if;
1197 
1198 	switch(wreq->wi_type) {
1199 	case WI_RID_MAC_NODE:
1200 		sdl = (struct sockaddr_dl *)ifp->if_sadl;
1201 		memcpy((char *)&sc->sc_macaddr, (char *)&wreq->wi_val,
1202 		    ETHER_ADDR_LEN);
1203 		memcpy(LLADDR(sdl), (char *)&wreq->wi_val, ETHER_ADDR_LEN);
1204 		break;
1205 	case WI_RID_PORTTYPE:
1206 		error = wi_sync_media(sc, le16toh(wreq->wi_val[0]), sc->wi_tx_rate);
1207 		break;
1208 	case WI_RID_TX_RATE:
1209 		error = wi_sync_media(sc, sc->wi_ptype, le16toh(wreq->wi_val[0]));
1210 		break;
1211 	case WI_RID_MAX_DATALEN:
1212 		sc->wi_max_data_len = le16toh(wreq->wi_val[0]);
1213 		break;
1214 	case WI_RID_RTS_THRESH:
1215 		sc->wi_rts_thresh = le16toh(wreq->wi_val[0]);
1216 		break;
1217 	case WI_RID_SYSTEM_SCALE:
1218 		sc->wi_ap_density = le16toh(wreq->wi_val[0]);
1219 		break;
1220 	case WI_RID_CREATE_IBSS:
1221 		sc->wi_create_ibss = le16toh(wreq->wi_val[0]);
1222 		break;
1223 	case WI_RID_OWN_CHNL:
1224 		sc->wi_channel = le16toh(wreq->wi_val[0]);
1225 		break;
1226 	case WI_RID_NODENAME:
1227 		error = wi_set_ssid(&sc->wi_nodeid,
1228 		    (u_int8_t *)&wreq->wi_val[1], le16toh(wreq->wi_val[0]));
1229 		break;
1230 	case WI_RID_DESIRED_SSID:
1231 		error = wi_set_ssid(&sc->wi_netid,
1232 		    (u_int8_t *)&wreq->wi_val[1], le16toh(wreq->wi_val[0]));
1233 		break;
1234 	case WI_RID_OWN_SSID:
1235 		error = wi_set_ssid(&sc->wi_ibssid,
1236 		    (u_int8_t *)&wreq->wi_val[1], le16toh(wreq->wi_val[0]));
1237 		break;
1238 	case WI_RID_PM_ENABLED:
1239 		sc->wi_pm_enabled = le16toh(wreq->wi_val[0]);
1240 		break;
1241 	case WI_RID_MICROWAVE_OVEN:
1242 		sc->wi_mor_enabled = le16toh(wreq->wi_val[0]);
1243 		break;
1244 	case WI_RID_MAX_SLEEP:
1245 		sc->wi_max_sleep = le16toh(wreq->wi_val[0]);
1246 		break;
1247 	case WI_RID_AUTH_CNTL:
1248 		sc->wi_authtype = le16toh(wreq->wi_val[0]);
1249 		break;
1250 	case WI_RID_ROAMING_MODE:
1251 		sc->wi_roaming = le16toh(wreq->wi_val[0]);
1252 		break;
1253 	case WI_RID_ENCRYPTION:
1254 		sc->wi_use_wep = le16toh(wreq->wi_val[0]);
1255 		break;
1256 	case WI_RID_TX_CRYPT_KEY:
1257 		sc->wi_tx_key = le16toh(wreq->wi_val[0]);
1258 		break;
1259 	case WI_RID_DEFLT_CRYPT_KEYS:
1260 		memcpy((char *)&sc->wi_keys, (char *)wreq,
1261 		    sizeof(struct wi_ltv_keys));
1262 		break;
1263 	default:
1264 		error = EINVAL;
1265 		break;
1266 	}
1267 
1268 	return (error);
1269 }
1270 
1271 static int
1272 wi_getdef(sc, wreq)
1273 	struct wi_softc		*sc;
1274 	struct wi_req		*wreq;
1275 {
1276 	struct sockaddr_dl	*sdl;
1277 	struct ifnet		*ifp;
1278 	int error = 0;
1279 
1280 	ifp = &sc->sc_ethercom.ec_if;
1281 
1282 	wreq->wi_len = 2;			/* XXX */
1283 	switch (wreq->wi_type) {
1284 	case WI_RID_MAC_NODE:
1285 		wreq->wi_len += ETHER_ADDR_LEN / 2 - 1;
1286 		sdl = (struct sockaddr_dl *)ifp->if_sadl;
1287 		memcpy(&wreq->wi_val, &sc->sc_macaddr, ETHER_ADDR_LEN);
1288 		memcpy(&wreq->wi_val, LLADDR(sdl), ETHER_ADDR_LEN);
1289 		break;
1290 	case WI_RID_PORTTYPE:
1291 		wreq->wi_val[0] = htole16(sc->wi_ptype);
1292 		break;
1293 	case WI_RID_TX_RATE:
1294 		wreq->wi_val[0] = htole16(sc->wi_tx_rate);
1295 		break;
1296 	case WI_RID_MAX_DATALEN:
1297 		wreq->wi_val[0] = htole16(sc->wi_max_data_len);
1298 		break;
1299 	case WI_RID_RTS_THRESH:
1300 		wreq->wi_val[0] = htole16(sc->wi_rts_thresh);
1301 		break;
1302 	case WI_RID_SYSTEM_SCALE:
1303 		wreq->wi_val[0] = htole16(sc->wi_ap_density);
1304 		break;
1305 	case WI_RID_CREATE_IBSS:
1306 		wreq->wi_val[0] = htole16(sc->wi_create_ibss);
1307 		break;
1308 	case WI_RID_OWN_CHNL:
1309 		wreq->wi_val[0] = htole16(sc->wi_channel);
1310 		break;
1311 	case WI_RID_NODENAME:
1312 		wi_request_fill_ssid(wreq, &sc->wi_nodeid);
1313 		break;
1314 	case WI_RID_DESIRED_SSID:
1315 		wi_request_fill_ssid(wreq, &sc->wi_netid);
1316 		break;
1317 	case WI_RID_OWN_SSID:
1318 		wi_request_fill_ssid(wreq, &sc->wi_ibssid);
1319 		break;
1320 	case WI_RID_PM_ENABLED:
1321 		wreq->wi_val[0] = htole16(sc->wi_pm_enabled);
1322 		break;
1323 	case WI_RID_MICROWAVE_OVEN:
1324 		wreq->wi_val[0] = htole16(sc->wi_mor_enabled);
1325 		break;
1326 	case WI_RID_MAX_SLEEP:
1327 		wreq->wi_val[0] = htole16(sc->wi_max_sleep);
1328 		break;
1329 	case WI_RID_AUTH_CNTL:
1330 		wreq->wi_val[0] = htole16(sc->wi_authtype);
1331 		break;
1332 	case WI_RID_ROAMING_MODE:
1333 		wreq->wi_val[0] = htole16(sc->wi_roaming);
1334 		break;
1335 	case WI_RID_WEP_AVAIL:
1336 		wreq->wi_val[0] = htole16(sc->wi_has_wep);
1337 		break;
1338 	case WI_RID_ENCRYPTION:
1339 		wreq->wi_val[0] = htole16(sc->wi_use_wep);
1340 		break;
1341 	case WI_RID_TX_CRYPT_KEY:
1342 		wreq->wi_val[0] = htole16(sc->wi_tx_key);
1343 		break;
1344 	case WI_RID_DEFLT_CRYPT_KEYS:
1345 		wreq->wi_len += sizeof(struct wi_ltv_keys) / 2 - 1;
1346 		memcpy(wreq, &sc->wi_keys, sizeof(struct wi_ltv_keys));
1347 		break;
1348 	default:
1349 #if 0
1350 		error = EIO;
1351 #else
1352 #ifdef WI_DEBUG
1353 		printf("%s: wi_getdef: unknown request %d\n",
1354 		    sc->sc_dev.dv_xname, wreq->wi_type);
1355 #endif
1356 #endif
1357 		break;
1358 	}
1359 
1360 	return (error);
1361 }
1362 
1363 static int
1364 wi_ioctl(ifp, command, data)
1365 	struct ifnet		*ifp;
1366 	u_long			command;
1367 	caddr_t			data;
1368 {
1369 	int			s, error = 0;
1370 	int			len;
1371 	struct wi_softc		*sc = ifp->if_softc;
1372 	struct wi_req		wreq;
1373 	struct ifreq		*ifr;
1374 	struct proc *p = curproc;
1375 	struct ieee80211_nwid nwid;
1376 
1377 	if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
1378 		return (ENXIO);
1379 
1380 	s = splnet();
1381 
1382 	ifr = (struct ifreq *)data;
1383 	switch (command) {
1384 	case SIOCSIFADDR:
1385 	case SIOCGIFADDR:
1386 	case SIOCSIFMTU:
1387 		error = ether_ioctl(ifp, command, data);
1388 		break;
1389 	case SIOCSIFFLAGS:
1390 		if (ifp->if_flags & IFF_UP) {
1391 			if (ifp->if_flags & IFF_RUNNING &&
1392 			    ifp->if_flags & IFF_PROMISC &&
1393 			    !(sc->wi_if_flags & IFF_PROMISC)) {
1394 				WI_SETVAL(WI_RID_PROMISC, 1);
1395 			} else if (ifp->if_flags & IFF_RUNNING &&
1396 			    !(ifp->if_flags & IFF_PROMISC) &&
1397 			    sc->wi_if_flags & IFF_PROMISC) {
1398 				WI_SETVAL(WI_RID_PROMISC, 0);
1399 			}
1400 			wi_init(ifp);
1401 		} else {
1402 			if (ifp->if_flags & IFF_RUNNING) {
1403 				wi_stop(ifp, 0);
1404 			}
1405 		}
1406 		sc->wi_if_flags = ifp->if_flags;
1407 
1408 		if (!(ifp->if_flags & IFF_UP)) {
1409 			if (sc->sc_enabled) {
1410 				if (sc->sc_disable)
1411 					(*sc->sc_disable)(sc);
1412 				sc->sc_enabled = 0;
1413 				ifp->if_flags &= ~IFF_RUNNING;
1414 			}
1415 		}
1416 		error = 0;
1417 		break;
1418 	case SIOCADDMULTI:
1419 	case SIOCDELMULTI:
1420 		error = (command == SIOCADDMULTI) ?
1421 			ether_addmulti(ifr, &sc->sc_ethercom) :
1422 			ether_delmulti(ifr, &sc->sc_ethercom);
1423 		if (error == ENETRESET) {
1424 			if (sc->sc_enabled != 0) {
1425 				/*
1426 				 * Multicast list has changed.  Set the
1427 				 * hardware filter accordingly.
1428 				 */
1429 				wi_setmulti(sc);
1430 			}
1431 			error = 0;
1432 		}
1433 		break;
1434 	case SIOCSIFMEDIA:
1435 	case SIOCGIFMEDIA:
1436 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
1437 		break;
1438 	case SIOCGWAVELAN:
1439 		error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
1440 		if (error)
1441 			break;
1442 		if (wreq.wi_type == WI_RID_IFACE_STATS) {
1443 			wi_update_stats(sc);
1444 			/* XXX native byte order */
1445 			memcpy((char *)&wreq.wi_val, (char *)&sc->wi_stats,
1446 			    sizeof(sc->wi_stats));
1447 			wreq.wi_len = (sizeof(sc->wi_stats) / 2) + 1;
1448 		} else if (wreq.wi_type == WI_RID_READ_APS) {
1449 			if (sc->wi_scanning) {
1450 				error = EINVAL;
1451 				break;
1452 			} else {
1453 				len = sc->wi_naps * sizeof(struct wi_apinfo);
1454 				len = len > WI_MAX_DATALEN ? WI_MAX_DATALEN : len;
1455 				len = len / sizeof(struct wi_apinfo);
1456 				memcpy((char *)&wreq.wi_val, (char *)&len, sizeof(len));
1457 				memcpy((char *)&wreq.wi_val + sizeof(len),
1458 					(char *)&sc->wi_aps,
1459 					len * sizeof(struct wi_apinfo));
1460 			}
1461 		} else if (wreq.wi_type == WI_RID_DEFLT_CRYPT_KEYS) {
1462 			/* For non-root user, return all-zeroes keys */
1463 			if (suser(p->p_ucred, &p->p_acflag))
1464 				memset((char *)&wreq, 0,
1465 				    sizeof(struct wi_ltv_keys));
1466 			else
1467 				memcpy((char *)&wreq, (char *)&sc->wi_keys,
1468 				    sizeof(struct wi_ltv_keys));
1469 		} else {
1470 			if (sc->sc_enabled == 0)
1471 				error = wi_getdef(sc, &wreq);
1472 			else if (wi_read_record(sc, (struct wi_ltv_gen *)&wreq))
1473 				error = EINVAL;
1474 		}
1475 		if (error == 0)
1476 			error = copyout(&wreq, ifr->ifr_data, sizeof(wreq));
1477 		break;
1478 	case SIOCSWAVELAN:
1479 		error = suser(p->p_ucred, &p->p_acflag);
1480 		if (error)
1481 			break;
1482 		error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
1483 		if (error)
1484 			break;
1485 		if (wreq.wi_type == WI_RID_IFACE_STATS) {
1486 			error = EINVAL;
1487 			break;
1488 		} else if (wreq.wi_type == WI_RID_MGMT_XMIT) {
1489 			error = wi_mgmt_xmit(sc, (caddr_t)&wreq.wi_val,
1490 			    wreq.wi_len);
1491 		} else if (wreq.wi_type == WI_RID_SCAN_APS) {
1492 			if (wreq.wi_len != 4) {
1493 				error = EINVAL;
1494 				break;
1495 			}
1496 			if (!sc->wi_scanning) {
1497 				if (sc->sc_prism2) {
1498 					wreq.wi_type = WI_RID_SCAN_REQ;
1499 					error = wi_write_record(sc,
1500 					    (struct wi_ltv_gen *)&wreq);
1501 				}
1502 				if (!error) {
1503 					sc->wi_scanning = 1;
1504 					callout_reset(&sc->wi_scan_sh, hz * 1,
1505 						wi_wait_scan, sc);
1506 				}
1507 			}
1508 		} else {
1509 			if (sc->sc_enabled != 0)
1510 				error = wi_write_record(sc,
1511 				    (struct wi_ltv_gen *)&wreq);
1512 			if (error == 0)
1513 				error = wi_setdef(sc, &wreq);
1514 			if (error == 0 && sc->sc_enabled != 0)
1515 				/* Reinitialize WaveLAN. */
1516 				wi_init(ifp);
1517 		}
1518 		break;
1519 	case SIOCG80211NWID:
1520 		if (sc->sc_enabled == 0) {
1521 			/* Return the desired ID */
1522 			error = copyout(&sc->wi_netid, ifr->ifr_data,
1523 			    sizeof(sc->wi_netid));
1524 		} else {
1525 			wreq.wi_type = WI_RID_CURRENT_SSID;
1526 			wreq.wi_len = WI_MAX_DATALEN;
1527 			if (wi_read_record(sc, (struct wi_ltv_gen *)&wreq) ||
1528 			    le16toh(wreq.wi_val[0]) > IEEE80211_NWID_LEN)
1529 				error = EINVAL;
1530 			else {
1531 				wi_set_ssid(&nwid, (u_int8_t *)&wreq.wi_val[1],
1532 				    le16toh(wreq.wi_val[0]));
1533 				error = copyout(&nwid, ifr->ifr_data,
1534 				    sizeof(nwid));
1535 			}
1536 		}
1537 		break;
1538 	case SIOCS80211NWID:
1539 		error = copyin(ifr->ifr_data, &nwid, sizeof(nwid));
1540 		if (error != 0)
1541 			break;
1542 		if (nwid.i_len > IEEE80211_NWID_LEN) {
1543 			error = EINVAL;
1544 			break;
1545 		}
1546 		if (sc->wi_netid.i_len == nwid.i_len &&
1547 		    memcmp(sc->wi_netid.i_nwid, nwid.i_nwid, nwid.i_len) == 0)
1548 			break;
1549 		wi_set_ssid(&sc->wi_netid, nwid.i_nwid, nwid.i_len);
1550 		if (sc->sc_enabled != 0)
1551 			/* Reinitialize WaveLAN. */
1552 			wi_init(ifp);
1553 		break;
1554 	case SIOCS80211NWKEY:
1555 		error = wi_set_nwkey(sc, (struct ieee80211_nwkey *)data);
1556 		break;
1557 	case SIOCG80211NWKEY:
1558 		error = wi_get_nwkey(sc, (struct ieee80211_nwkey *)data);
1559 		break;
1560 	case SIOCS80211POWER:
1561 		error = wi_set_pm(sc, (struct ieee80211_power *)data);
1562 		break;
1563 	case SIOCG80211POWER:
1564 		error = wi_get_pm(sc, (struct ieee80211_power *)data);
1565 		break;
1566 
1567 	default:
1568 		error = EINVAL;
1569 		break;
1570 	}
1571 
1572 	splx(s);
1573 	return (error);
1574 }
1575 
1576 static int
1577 wi_init(ifp)
1578 	struct ifnet *ifp;
1579 {
1580 	struct wi_softc *sc = ifp->if_softc;
1581 	struct wi_req wreq;
1582 	struct wi_ltv_macaddr mac;
1583 	int error, id = 0;
1584 
1585 	if (!sc->sc_enabled) {
1586 		if ((error = (*sc->sc_enable)(sc)) != 0)
1587 			goto out;
1588 		sc->sc_enabled = 1;
1589 	}
1590 
1591 	wi_stop(ifp, 0);
1592 	wi_reset(sc);
1593 
1594 	/* Program max data length. */
1595 	WI_SETVAL(WI_RID_MAX_DATALEN, sc->wi_max_data_len);
1596 
1597 	/* Enable/disable IBSS creation. */
1598 	WI_SETVAL(WI_RID_CREATE_IBSS, sc->wi_create_ibss);
1599 
1600 	/* Set the port type. */
1601 	WI_SETVAL(WI_RID_PORTTYPE, sc->wi_ptype);
1602 
1603 	/* Program the RTS/CTS threshold. */
1604 	WI_SETVAL(WI_RID_RTS_THRESH, sc->wi_rts_thresh);
1605 
1606 	/* Program the TX rate */
1607 	WI_SETVAL(WI_RID_TX_RATE, sc->wi_tx_rate);
1608 
1609 	/* Access point density */
1610 	WI_SETVAL(WI_RID_SYSTEM_SCALE, sc->wi_ap_density);
1611 
1612 	/* Power Management Enabled */
1613 	WI_SETVAL(WI_RID_PM_ENABLED, sc->wi_pm_enabled);
1614 
1615 	/* Power Managment Max Sleep */
1616 	WI_SETVAL(WI_RID_MAX_SLEEP, sc->wi_max_sleep);
1617 
1618 	/* Roaming type */
1619 	WI_SETVAL(WI_RID_ROAMING_MODE, sc->wi_roaming);
1620 
1621 	/* Specify the IBSS name */
1622 	wi_write_ssid(sc, WI_RID_OWN_SSID, &wreq, &sc->wi_ibssid);
1623 
1624 	/* Specify the network name */
1625 	wi_write_ssid(sc, WI_RID_DESIRED_SSID, &wreq, &sc->wi_netid);
1626 
1627 	/* Specify the frequency to use */
1628 	WI_SETVAL(WI_RID_OWN_CHNL, sc->wi_channel);
1629 
1630 	/* Program the nodename. */
1631 	wi_write_ssid(sc, WI_RID_NODENAME, &wreq, &sc->wi_nodeid);
1632 
1633 	/* Set our MAC address. */
1634 	mac.wi_len = 4;
1635 	mac.wi_type = WI_RID_MAC_NODE;
1636 	memcpy(&mac.wi_mac_addr, sc->sc_macaddr, ETHER_ADDR_LEN);
1637 	wi_write_record(sc, (struct wi_ltv_gen *)&mac);
1638 
1639 	/* Initialize promisc mode. */
1640 	if (ifp->if_flags & IFF_PROMISC) {
1641 		WI_SETVAL(WI_RID_PROMISC, 1);
1642 	} else {
1643 		WI_SETVAL(WI_RID_PROMISC, 0);
1644 	}
1645 
1646 	/* Configure WEP. */
1647 	if (sc->wi_has_wep) {
1648 		WI_SETVAL(WI_RID_ENCRYPTION, sc->wi_use_wep);
1649 		WI_SETVAL(WI_RID_TX_CRYPT_KEY, sc->wi_tx_key);
1650 		sc->wi_keys.wi_len = (sizeof(struct wi_ltv_keys) / 2) + 1;
1651 		sc->wi_keys.wi_type = WI_RID_DEFLT_CRYPT_KEYS;
1652 		wi_write_record(sc, (struct wi_ltv_gen *)&sc->wi_keys);
1653 		if (sc->sc_prism2 && sc->wi_use_wep) {
1654 			/*
1655 			 * ONLY HWB3163 EVAL-CARD Firmware version
1656 			 * less than 0.8 variant3
1657 			 *
1658 			 *   If promiscuous mode disable, Prism2 chip
1659 			 *  does not work with WEP .
1660 			 * It is under investigation for details.
1661 			 * (ichiro@netbsd.org)
1662 			 */
1663 			if (sc->sc_prism2_ver < 83 ) {
1664 				/* firm ver < 0.8 variant 3 */
1665 				WI_SETVAL(WI_RID_PROMISC, 1);
1666 			}
1667 			WI_SETVAL(WI_RID_AUTH_CNTL, sc->wi_authtype);
1668 		}
1669 	}
1670 
1671 	/* Set multicast filter. */
1672 	wi_setmulti(sc);
1673 
1674 	/* Enable desired port */
1675 	wi_cmd(sc, WI_CMD_ENABLE | sc->wi_portnum, 0);
1676 
1677 	/*  scanning variable is modal, therefore reinit to OFF, in case it was on. */
1678 	sc->wi_scanning=0;
1679 	sc->wi_naps=0;
1680 
1681 	if ((error = wi_alloc_nicmem(sc,
1682 	    1518 + sizeof(struct wi_frame) + 8, &id)) != 0) {
1683 		printf("%s: tx buffer allocation failed\n",
1684 		    sc->sc_dev.dv_xname);
1685 		goto out;
1686 	}
1687 	sc->wi_tx_data_id = id;
1688 
1689 	if ((error = wi_alloc_nicmem(sc,
1690 	    1518 + sizeof(struct wi_frame) + 8, &id)) != 0) {
1691 		printf("%s: mgmt. buffer allocation failed\n",
1692 		    sc->sc_dev.dv_xname);
1693 		goto out;
1694 	}
1695 	sc->wi_tx_mgmt_id = id;
1696 
1697 	/* Enable interrupts */
1698 	CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
1699 
1700 	ifp->if_flags |= IFF_RUNNING;
1701 	ifp->if_flags &= ~IFF_OACTIVE;
1702 
1703 	callout_reset(&sc->wi_inquire_ch, hz * 60, wi_inquire, sc);
1704 
1705  out:
1706 	if (error) {
1707 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1708 		ifp->if_timer = 0;
1709 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1710 	}
1711 	return (error);
1712 }
1713 
1714 static void
1715 wi_start(ifp)
1716 	struct ifnet		*ifp;
1717 {
1718 	struct wi_softc		*sc;
1719 	struct mbuf		*m0;
1720 	struct wi_frame		tx_frame;
1721 	struct ether_header	*eh;
1722 	int			id;
1723 
1724 	sc = ifp->if_softc;
1725 
1726 	if (ifp->if_flags & IFF_OACTIVE)
1727 		return;
1728 
1729 	IFQ_DEQUEUE(&ifp->if_snd, m0);
1730 	if (m0 == NULL)
1731 		return;
1732 
1733 	memset((char *)&tx_frame, 0, sizeof(tx_frame));
1734 	id = sc->wi_tx_data_id;
1735 	eh = mtod(m0, struct ether_header *);
1736 
1737 	/*
1738 	 * Use RFC1042 encoding for IP and ARP datagrams,
1739 	 * 802.3 for anything else.
1740 	 */
1741 	if (ntohs(eh->ether_type) == ETHERTYPE_IP ||
1742 	    ntohs(eh->ether_type) == ETHERTYPE_ARP ||
1743 	    ntohs(eh->ether_type) == ETHERTYPE_REVARP ||
1744 	    ntohs(eh->ether_type) == ETHERTYPE_IPV6) {
1745 		memcpy((char *)&tx_frame.wi_addr1, (char *)&eh->ether_dhost,
1746 		    ETHER_ADDR_LEN);
1747 		memcpy((char *)&tx_frame.wi_addr2, (char *)&eh->ether_shost,
1748 		    ETHER_ADDR_LEN);
1749 		memcpy((char *)&tx_frame.wi_dst_addr, (char *)&eh->ether_dhost,
1750 		    ETHER_ADDR_LEN);
1751 		memcpy((char *)&tx_frame.wi_src_addr, (char *)&eh->ether_shost,
1752 		    ETHER_ADDR_LEN);
1753 
1754 		tx_frame.wi_dat_len = htole16(m0->m_pkthdr.len - WI_SNAPHDR_LEN);
1755 		tx_frame.wi_frame_ctl = htole16(WI_FTYPE_DATA);
1756 		tx_frame.wi_dat[0] = htons(WI_SNAP_WORD0);
1757 		tx_frame.wi_dat[1] = htons(WI_SNAP_WORD1);
1758 		tx_frame.wi_len = htons(m0->m_pkthdr.len - WI_SNAPHDR_LEN);
1759 		tx_frame.wi_type = eh->ether_type;
1760 
1761 		m_copydata(m0, sizeof(struct ether_header),
1762 		    m0->m_pkthdr.len - sizeof(struct ether_header),
1763 		    (caddr_t)&sc->wi_txbuf);
1764 
1765 		wi_write_data(sc, id, 0, (caddr_t)&tx_frame,
1766 		    sizeof(struct wi_frame));
1767 		wi_write_data(sc, id, WI_802_11_OFFSET, (caddr_t)&sc->wi_txbuf,
1768 		    (m0->m_pkthdr.len - sizeof(struct ether_header)) + 2);
1769 	} else {
1770 		tx_frame.wi_dat_len = htole16(m0->m_pkthdr.len);
1771 
1772 		m_copydata(m0, 0, m0->m_pkthdr.len, (caddr_t)&sc->wi_txbuf);
1773 
1774 		wi_write_data(sc, id, 0, (caddr_t)&tx_frame,
1775 		    sizeof(struct wi_frame));
1776 		wi_write_data(sc, id, WI_802_3_OFFSET, (caddr_t)&sc->wi_txbuf,
1777 		    m0->m_pkthdr.len + 2);
1778 	}
1779 
1780 #if NBPFILTER > 0
1781 	/*
1782 	 * If there's a BPF listener, bounce a copy of
1783 	 * this frame to him.
1784 	 */
1785 	if (ifp->if_bpf)
1786 		bpf_mtap(ifp->if_bpf, m0);
1787 #endif
1788 
1789 	m_freem(m0);
1790 
1791 	if (wi_cmd(sc, WI_CMD_TX|WI_RECLAIM, id))
1792 		printf("%s: xmit failed\n", sc->sc_dev.dv_xname);
1793 
1794 	ifp->if_flags |= IFF_OACTIVE;
1795 
1796 	/*
1797 	 * Set a timeout in case the chip goes out to lunch.
1798 	 */
1799 	ifp->if_timer = 5;
1800 
1801 	return;
1802 }
1803 
1804 static int
1805 wi_mgmt_xmit(sc, data, len)
1806 	struct wi_softc		*sc;
1807 	caddr_t			data;
1808 	int			len;
1809 {
1810 	struct wi_frame		tx_frame;
1811 	int			id;
1812 	struct wi_80211_hdr	*hdr;
1813 	caddr_t			dptr;
1814 
1815 	hdr = (struct wi_80211_hdr *)data;
1816 	dptr = data + sizeof(struct wi_80211_hdr);
1817 
1818 	memset((char *)&tx_frame, 0, sizeof(tx_frame));
1819 	id = sc->wi_tx_mgmt_id;
1820 
1821 	memcpy((char *)&tx_frame.wi_frame_ctl, (char *)hdr,
1822 	   sizeof(struct wi_80211_hdr));
1823 
1824 	tx_frame.wi_dat_len = htole16(len - WI_SNAPHDR_LEN);
1825 	tx_frame.wi_len = htons(len - WI_SNAPHDR_LEN);
1826 
1827 	wi_write_data(sc, id, 0, (caddr_t)&tx_frame, sizeof(struct wi_frame));
1828 	wi_write_data(sc, id, WI_802_11_OFFSET_RAW, dptr,
1829 	    (len - sizeof(struct wi_80211_hdr)) + 2);
1830 
1831 	if (wi_cmd(sc, WI_CMD_TX|WI_RECLAIM, id)) {
1832 		printf("%s: xmit failed\n", sc->sc_dev.dv_xname);
1833 		return(EIO);
1834 	}
1835 
1836 	return(0);
1837 }
1838 
1839 static void
1840 wi_stop(ifp, disable)
1841 	struct ifnet *ifp;
1842 {
1843 	struct wi_softc	*sc = ifp->if_softc;
1844 
1845 	CSR_WRITE_2(sc, WI_INT_EN, 0);
1846 	wi_cmd(sc, WI_CMD_DISABLE|sc->wi_portnum, 0);
1847 
1848 	callout_stop(&sc->wi_inquire_ch);
1849 	callout_stop(&sc->wi_scan_sh);
1850 
1851 	if (disable) {
1852 		if (sc->sc_enabled) {
1853 			if (sc->sc_disable)
1854 				(*sc->sc_disable)(sc);
1855 			sc->sc_enabled = 0;
1856 		}
1857 	}
1858 
1859 	ifp->if_flags &= ~(IFF_OACTIVE | IFF_RUNNING);
1860 	ifp->if_timer = 0;
1861 }
1862 
1863 static void
1864 wi_watchdog(ifp)
1865 	struct ifnet		*ifp;
1866 {
1867 	struct wi_softc		*sc;
1868 
1869 	sc = ifp->if_softc;
1870 
1871 	printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1872 
1873 	wi_init(ifp);
1874 
1875 	ifp->if_oerrors++;
1876 
1877 	return;
1878 }
1879 
1880 void
1881 wi_shutdown(sc)
1882 	struct wi_softc *sc;
1883 {
1884 	int s;
1885 
1886 	s = splnet();
1887 	if (sc->sc_enabled) {
1888 		if (sc->sc_disable)
1889 			(*sc->sc_disable)(sc);
1890 		sc->sc_enabled = 0;
1891 	}
1892 	splx(s);
1893 }
1894 
1895 int
1896 wi_activate(self, act)
1897 	struct device *self;
1898 	enum devact act;
1899 {
1900 	struct wi_softc *sc = (struct wi_softc *)self;
1901 	int rv = 0, s;
1902 
1903 	s = splnet();
1904 	switch (act) {
1905 	case DVACT_ACTIVATE:
1906 		rv = EOPNOTSUPP;
1907 		break;
1908 
1909 	case DVACT_DEACTIVATE:
1910 		if_deactivate(&sc->sc_ethercom.ec_if);
1911 		break;
1912 	}
1913 	splx(s);
1914 	return (rv);
1915 }
1916 
1917 static void
1918 wi_get_id(sc)
1919 	struct wi_softc *sc;
1920 {
1921 	struct wi_ltv_ver       ver;
1922 
1923 	/* getting chip identity */
1924 	memset(&ver, 0, sizeof(ver));
1925 	ver.wi_type = WI_RID_CARD_ID;
1926 	ver.wi_len = 5;
1927 	wi_read_record(sc, (struct wi_ltv_gen *)&ver);
1928 	printf("%s: using ", sc->sc_dev.dv_xname);
1929 	switch (le16toh(ver.wi_ver[0])) {
1930 	case WI_NIC_EVB2:
1931 		printf("RF:PRISM2 MAC:HFA3841");
1932 		sc->sc_prism2 = 1;
1933 		break;
1934 	case WI_NIC_HWB3763:
1935 		printf("RF:PRISM2 MAC:HFA3841 CARD:HWB3763 rev.B");
1936 		sc->sc_prism2 = 1;
1937 		break;
1938 	case WI_NIC_HWB3163:
1939 		printf("RF:PRISM2 MAC:HFA3841 CARD:HWB3163 rev.A");
1940 		sc->sc_prism2 = 1;
1941 		break;
1942 	case WI_NIC_HWB3163B:
1943 		printf("RF:PRISM2 MAC:HFA3841 CARD:HWB3163 rev.B");
1944 		sc->sc_prism2 = 1;
1945 		break;
1946 	case WI_NIC_EVB3:
1947 		printf("RF:PRISM2 MAC:HFA3842");
1948 		sc->sc_prism2 = 1;
1949 		break;
1950 	case WI_NIC_HWB1153:
1951 		printf("RF:PRISM1 MAC:HFA3841 CARD:HWB1153");
1952 		sc->sc_prism2 = 1;
1953 		break;
1954 	case WI_NIC_P2_SST:
1955 		printf("RF:PRISM2 MAC:HFA3841 CARD:HWB3163-SST-flash");
1956 		sc->sc_prism2 = 1;
1957 		break;
1958 	case WI_NIC_PRISM2_5:
1959 		printf("RF:PRISM2.5 MAC:ISL3873");
1960 		sc->sc_prism2 = 1;
1961 		break;
1962 	case WI_NIC_3874A:
1963 		printf("RF:PRISM2.5 MAC:ISL3874A(PCI)");
1964 		sc->sc_prism2 = 1;
1965 		break;
1966 	default:
1967 		printf("Lucent chip or unknown chip\n");
1968 		sc->sc_prism2 = 0;
1969 		break;
1970 	}
1971 
1972 	if (sc->sc_prism2) {
1973 		/* try to get prism2 firm version */
1974 		memset(&ver, 0, sizeof(ver));
1975 		ver.wi_type = WI_RID_STA_IDENTITY;
1976 		ver.wi_len = 5;
1977 		wi_read_record(sc, (struct wi_ltv_gen *)&ver);
1978 		LE16TOH(ver.wi_ver[1]);
1979 		LE16TOH(ver.wi_ver[2]);
1980 		LE16TOH(ver.wi_ver[3]);
1981 		printf(", Firmware: %i.%i variant %i\n", ver.wi_ver[2],
1982 		       ver.wi_ver[3], ver.wi_ver[1]);
1983 		sc->sc_prism2_ver = ver.wi_ver[2] * 100 +
1984 				    ver.wi_ver[3] *  10 + ver.wi_ver[1];
1985 	}
1986 
1987 	return;
1988 }
1989 
1990 int
1991 wi_detach(sc)
1992 	struct wi_softc *sc;
1993 {
1994 	struct ifnet *ifp = sc->sc_ifp;
1995 	int s;
1996 
1997 	if (!sc->sc_attached)
1998 		return (0);
1999 
2000 	s = splnet();
2001 	callout_stop(&sc->wi_inquire_ch);
2002 
2003 	/* Delete all remaining media. */
2004 	ifmedia_delete_instance(&sc->sc_media, IFM_INST_ANY);
2005 
2006 	ether_ifdetach(ifp);
2007 	if_detach(ifp);
2008 	if (sc->sc_enabled) {
2009 		if (sc->sc_disable)
2010 			(*sc->sc_disable)(sc);
2011 		sc->sc_enabled = 0;
2012 	}
2013 	splx(s);
2014 	return (0);
2015 }
2016 
2017 void
2018 wi_power(sc, why)
2019 	struct wi_softc *sc;
2020 	int why;
2021 {
2022 	int s;
2023 
2024 	if (!sc->sc_enabled)
2025 		return;
2026 
2027 	s = splnet();
2028 	switch (why) {
2029 	case PWR_SUSPEND:
2030 	case PWR_STANDBY:
2031 		wi_stop(sc->sc_ifp, 0);
2032 		if (sc->sc_enabled) {
2033 			if (sc->sc_disable)
2034 				(*sc->sc_disable)(sc);
2035 		}
2036 		break;
2037 	case PWR_RESUME:
2038 		sc->sc_enabled = 0;
2039 		wi_init(sc->sc_ifp);
2040 		(void)wi_intr(sc);
2041 		break;
2042 	case PWR_SOFTSUSPEND:
2043 	case PWR_SOFTSTANDBY:
2044 	case PWR_SOFTRESUME:
2045 		break;
2046 	}
2047 	splx(s);
2048 }
2049 
2050 static int
2051 wi_set_ssid(ws, id, len)
2052 	struct ieee80211_nwid *ws;
2053 	u_int8_t *id;
2054 	int len;
2055 {
2056 
2057 	if (len > IEEE80211_NWID_LEN)
2058 		return (EINVAL);
2059 	ws->i_len = len;
2060 	memcpy(ws->i_nwid, id, len);
2061 	return (0);
2062 }
2063 
2064 static void
2065 wi_request_fill_ssid(wreq, ws)
2066 	struct wi_req *wreq;
2067 	struct ieee80211_nwid *ws;
2068 {
2069 	int len = ws->i_len;
2070 
2071 	memset(&wreq->wi_val[0], 0, sizeof(wreq->wi_val));
2072 	wreq->wi_val[0] = htole16(len);
2073 	wreq->wi_len = roundup(len, 2) / 2 + 2;
2074 	memcpy(&wreq->wi_val[1], ws->i_nwid, len);
2075 }
2076 
2077 static int
2078 wi_write_ssid(sc, type, wreq, ws)
2079 	struct wi_softc *sc;
2080 	int type;
2081 	struct wi_req *wreq;
2082 	struct ieee80211_nwid *ws;
2083 {
2084 
2085 	wreq->wi_type = type;
2086 	wi_request_fill_ssid(wreq, ws);
2087 	return (wi_write_record(sc, (struct wi_ltv_gen *)wreq));
2088 }
2089 
2090 static int
2091 wi_sync_media(sc, ptype, txrate)
2092 	struct wi_softc *sc;
2093 	int ptype;
2094 	int txrate;
2095 {
2096 	int media = sc->sc_media.ifm_cur->ifm_media;
2097 	int options = IFM_OPTIONS(media);
2098 	int subtype;
2099 
2100 	switch (txrate) {
2101 	case 1:
2102 		subtype = IFM_IEEE80211_DS1;
2103 		break;
2104 	case 2:
2105 		subtype = IFM_IEEE80211_DS2;
2106 		break;
2107 	case 3:
2108 		subtype = IFM_AUTO;
2109 		break;
2110 	case 5:
2111 		subtype = IFM_IEEE80211_DS5;
2112 		break;
2113 	case 11:
2114 		subtype = IFM_IEEE80211_DS11;
2115 		break;
2116 	default:
2117 		subtype = IFM_MANUAL;		/* Unable to represent */
2118 		break;
2119 	}
2120 	switch (ptype) {
2121 	case WI_PORTTYPE_ADHOC:
2122 		options |= IFM_IEEE80211_ADHOC;
2123 		break;
2124 	case WI_PORTTYPE_BSS:
2125 		options &= ~IFM_IEEE80211_ADHOC;
2126 		break;
2127 	default:
2128 		subtype = IFM_MANUAL;		/* Unable to represent */
2129 		break;
2130 	}
2131 	media = IFM_MAKEWORD(IFM_TYPE(media), subtype, options,
2132 	    IFM_INST(media));
2133 	if (ifmedia_match(&sc->sc_media, media, sc->sc_media.ifm_mask) == NULL)
2134 		return (EINVAL);
2135 	ifmedia_set(&sc->sc_media, media);
2136 	sc->wi_ptype = ptype;
2137 	sc->wi_tx_rate = txrate;
2138 	return (0);
2139 }
2140 
2141 static int
2142 wi_media_change(ifp)
2143 	struct ifnet *ifp;
2144 {
2145 	struct wi_softc *sc = ifp->if_softc;
2146 	int otype = sc->wi_ptype;
2147 	int orate = sc->wi_tx_rate;
2148 
2149 	if ((sc->sc_media.ifm_cur->ifm_media & IFM_IEEE80211_ADHOC) != 0)
2150 		sc->wi_ptype = WI_PORTTYPE_ADHOC;
2151 	else
2152 		sc->wi_ptype = WI_PORTTYPE_BSS;
2153 
2154 	switch (IFM_SUBTYPE(sc->sc_media.ifm_cur->ifm_media)) {
2155 	case IFM_IEEE80211_DS1:
2156 		sc->wi_tx_rate = 1;
2157 		break;
2158 	case IFM_IEEE80211_DS2:
2159 		sc->wi_tx_rate = 2;
2160 		break;
2161 	case IFM_AUTO:
2162 		sc->wi_tx_rate = 3;
2163 		break;
2164 	case IFM_IEEE80211_DS5:
2165 		sc->wi_tx_rate = 5;
2166 		break;
2167 	case IFM_IEEE80211_DS11:
2168 		sc->wi_tx_rate = 11;
2169 		break;
2170 	}
2171 
2172 	if (sc->sc_enabled != 0) {
2173 		if (otype != sc->wi_ptype ||
2174 		    orate != sc->wi_tx_rate)
2175 			wi_init(ifp);
2176 	}
2177 
2178 	ifp->if_baudrate = ifmedia_baudrate(sc->sc_media.ifm_cur->ifm_media);
2179 
2180 	return (0);
2181 }
2182 
2183 static void
2184 wi_media_status(ifp, imr)
2185 	struct ifnet *ifp;
2186 	struct ifmediareq *imr;
2187 {
2188 	struct wi_softc *sc = ifp->if_softc;
2189 
2190 	if (sc->sc_enabled == 0) {
2191 		imr->ifm_active = IFM_IEEE80211|IFM_NONE;
2192 		imr->ifm_status = 0;
2193 		return;
2194 	}
2195 
2196 	imr->ifm_active = sc->sc_media.ifm_cur->ifm_media;
2197 	imr->ifm_status = IFM_AVALID|IFM_ACTIVE;
2198 }
2199 
2200 static int
2201 wi_set_nwkey(sc, nwkey)
2202 	struct wi_softc *sc;
2203 	struct ieee80211_nwkey *nwkey;
2204 {
2205 	int i, error;
2206 	size_t len;
2207 	struct wi_req wreq;
2208 	struct wi_ltv_keys *wk = (struct wi_ltv_keys *)&wreq;
2209 
2210 	if (!sc->wi_has_wep)
2211 		return ENODEV;
2212 	if (nwkey->i_defkid <= 0 ||
2213 	    nwkey->i_defkid > IEEE80211_WEP_NKID)
2214 		return EINVAL;
2215 	memcpy(wk, &sc->wi_keys, sizeof(*wk));
2216 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2217 		if (nwkey->i_key[i].i_keydat == NULL)
2218 			continue;
2219 		len = nwkey->i_key[i].i_keylen;
2220 		if (len > sizeof(wk->wi_keys[i].wi_keydat))
2221 			return EINVAL;
2222 		error = copyin(nwkey->i_key[i].i_keydat,
2223 		    wk->wi_keys[i].wi_keydat, len);
2224 		if (error)
2225 			return error;
2226 		wk->wi_keys[i].wi_keylen = htole16(len);
2227 	}
2228 
2229 	wk->wi_len = (sizeof(*wk) / 2) + 1;
2230 	wk->wi_type = WI_RID_DEFLT_CRYPT_KEYS;
2231 	if (sc->sc_enabled != 0) {
2232 		error = wi_write_record(sc, (struct wi_ltv_gen *)&wreq);
2233 		if (error)
2234 			return error;
2235 	}
2236 	error = wi_setdef(sc, &wreq);
2237 	if (error)
2238 		return error;
2239 
2240 	wreq.wi_len = 2;
2241 	wreq.wi_type = WI_RID_TX_CRYPT_KEY;
2242 	wreq.wi_val[0] = htole16(nwkey->i_defkid - 1);
2243 	if (sc->sc_enabled != 0) {
2244 		error = wi_write_record(sc, (struct wi_ltv_gen *)&wreq);
2245 		if (error)
2246 			return error;
2247 	}
2248 	error = wi_setdef(sc, &wreq);
2249 	if (error)
2250 		return error;
2251 
2252 	wreq.wi_type = WI_RID_ENCRYPTION;
2253 	wreq.wi_val[0] = htole16(nwkey->i_wepon);
2254 	if (sc->sc_enabled != 0) {
2255 		error = wi_write_record(sc, (struct wi_ltv_gen *)&wreq);
2256 		if (error)
2257 			return error;
2258 	}
2259 	error = wi_setdef(sc, &wreq);
2260 	if (error)
2261 		return error;
2262 
2263 	if (sc->sc_enabled != 0)
2264 		wi_init(&sc->sc_ethercom.ec_if);
2265 	return 0;
2266 }
2267 
2268 static int
2269 wi_get_nwkey(sc, nwkey)
2270 	struct wi_softc *sc;
2271 	struct ieee80211_nwkey *nwkey;
2272 {
2273 	int i, len, error;
2274 	struct wi_ltv_keys *wk = &sc->wi_keys;
2275 
2276 	if (!sc->wi_has_wep)
2277 		return ENODEV;
2278 	nwkey->i_wepon = sc->wi_use_wep;
2279 	nwkey->i_defkid = sc->wi_tx_key + 1;
2280 
2281 	/* do not show any keys to non-root user */
2282 	error = suser(curproc->p_ucred, &curproc->p_acflag);
2283 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2284 		if (nwkey->i_key[i].i_keydat == NULL)
2285 			continue;
2286 		/* error holds results of suser() for the first time */
2287 		if (error)
2288 			return error;
2289 		len = le16toh(wk->wi_keys[i].wi_keylen);
2290 		if (nwkey->i_key[i].i_keylen < len)
2291 			return ENOSPC;
2292 		nwkey->i_key[i].i_keylen = len;
2293 		error = copyout(wk->wi_keys[i].wi_keydat,
2294 		    nwkey->i_key[i].i_keydat, len);
2295 		if (error)
2296 			return error;
2297 	}
2298 	return 0;
2299 }
2300 
2301 static int
2302 wi_set_pm(struct wi_softc *sc, struct ieee80211_power *power)
2303 {
2304 
2305 	sc->wi_pm_enabled = power->i_enabled;
2306 	sc->wi_max_sleep = power->i_maxsleep;
2307 
2308 	if (sc->sc_enabled)
2309 		return (wi_init(&sc->sc_ethercom.ec_if));
2310 
2311 	return (0);
2312 }
2313 
2314 static int
2315 wi_get_pm(struct wi_softc *sc, struct ieee80211_power *power)
2316 {
2317 
2318 	power->i_enabled = sc->wi_pm_enabled;
2319 	power->i_maxsleep = sc->wi_max_sleep;
2320 
2321 	return (0);
2322 }
2323