1 /* $NetBSD: tulip.c,v 1.213 2024/07/05 04:31:51 rin Exp $ */ 2 3 /*- 4 * Copyright (c) 1998, 1999, 2000, 2002 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, 9 * NASA Ames Research Center; and by Charles M. Hannum. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 30 * POSSIBILITY OF SUCH DAMAGE. 31 */ 32 33 /* 34 * Device driver for the Digital Semiconductor ``Tulip'' (21x4x) 35 * Ethernet controller family, and a variety of clone chips. 36 */ 37 38 #include <sys/cdefs.h> 39 __KERNEL_RCSID(0, "$NetBSD: tulip.c,v 1.213 2024/07/05 04:31:51 rin Exp $"); 40 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/callout.h> 45 #include <sys/mbuf.h> 46 #include <sys/kmem.h> 47 #include <sys/kernel.h> 48 #include <sys/socket.h> 49 #include <sys/ioctl.h> 50 #include <sys/errno.h> 51 #include <sys/device.h> 52 53 #include <machine/endian.h> 54 55 #include <net/if.h> 56 #include <net/if_dl.h> 57 #include <net/if_media.h> 58 #include <net/if_ether.h> 59 60 #include <net/bpf.h> 61 62 #include <sys/bus.h> 63 #include <sys/intr.h> 64 65 #include <dev/mii/mii.h> 66 #include <dev/mii/miivar.h> 67 #include <dev/mii/mii_bitbang.h> 68 69 #include <dev/ic/tulipreg.h> 70 #include <dev/ic/tulipvar.h> 71 72 static const char * const tlp_chip_names[] = TULIP_CHIP_NAMES; 73 74 static const struct tulip_txthresh_tab tlp_10_txthresh_tab[] = 75 TLP_TXTHRESH_TAB_10; 76 77 static const struct tulip_txthresh_tab tlp_10_100_txthresh_tab[] = 78 TLP_TXTHRESH_TAB_10_100; 79 80 static const struct tulip_txthresh_tab tlp_dm9102_txthresh_tab[] = 81 TLP_TXTHRESH_TAB_DM9102; 82 83 static void tlp_start(struct ifnet *); 84 static void tlp_watchdog(struct ifnet *); 85 static int tlp_ioctl(struct ifnet *, u_long, void *); 86 static int tlp_init(struct ifnet *); 87 static void tlp_stop(struct ifnet *, int); 88 static int tlp_ifflags_cb(struct ethercom *); 89 90 static void tlp_rxdrain(struct tulip_softc *); 91 static int tlp_add_rxbuf(struct tulip_softc *, int); 92 static void tlp_srom_idle(struct tulip_softc *); 93 static int tlp_srom_size(struct tulip_softc *); 94 95 static int tlp_enable(struct tulip_softc *); 96 static void tlp_disable(struct tulip_softc *); 97 98 static void tlp_filter_setup(struct tulip_softc *); 99 static void tlp_winb_filter_setup(struct tulip_softc *); 100 static void tlp_al981_filter_setup(struct tulip_softc *); 101 static void tlp_asix_filter_setup(struct tulip_softc *); 102 103 static void tlp_rxintr(struct tulip_softc *); 104 static void tlp_txintr(struct tulip_softc *); 105 106 static void tlp_mii_tick(void *); 107 static void tlp_mii_statchg(struct ifnet *); 108 static void tlp_winb_mii_statchg(struct ifnet *); 109 static void tlp_dm9102_mii_statchg(struct ifnet *); 110 111 static void tlp_mii_getmedia(struct tulip_softc *, struct ifmediareq *); 112 static int tlp_mii_setmedia(struct tulip_softc *); 113 114 static int tlp_bitbang_mii_readreg(device_t, int, int, uint16_t *); 115 static int tlp_bitbang_mii_writereg(device_t, int, int, uint16_t); 116 117 static int tlp_pnic_mii_readreg(device_t, int, int, uint16_t *); 118 static int tlp_pnic_mii_writereg(device_t, int, int, uint16_t); 119 120 static int tlp_al981_mii_readreg(device_t, int, int, uint16_t *); 121 static int tlp_al981_mii_writereg(device_t, int, int, uint16_t); 122 123 static void tlp_2114x_preinit(struct tulip_softc *); 124 static void tlp_2114x_mii_preinit(struct tulip_softc *); 125 static void tlp_pnic_preinit(struct tulip_softc *); 126 static void tlp_dm9102_preinit(struct tulip_softc *); 127 static void tlp_asix_preinit(struct tulip_softc *); 128 129 static void tlp_21140_reset(struct tulip_softc *); 130 static void tlp_21142_reset(struct tulip_softc *); 131 static void tlp_pmac_reset(struct tulip_softc *); 132 #if 0 133 static void tlp_dm9102_reset(struct tulip_softc *); 134 #endif 135 136 static void tlp_2114x_nway_tick(void *); 137 138 static void tlp_ifmedia_fini(struct tulip_softc *); 139 140 #define tlp_mchash(addr, sz) \ 141 (ether_crc32_le((addr), ETHER_ADDR_LEN) & ((sz) - 1)) 142 143 /* 144 * MII bit-bang glue. 145 */ 146 static uint32_t tlp_sio_mii_bitbang_read(device_t); 147 static void tlp_sio_mii_bitbang_write(device_t, uint32_t); 148 149 static const struct mii_bitbang_ops tlp_sio_mii_bitbang_ops = { 150 tlp_sio_mii_bitbang_read, 151 tlp_sio_mii_bitbang_write, 152 { 153 MIIROM_MDO, /* MII_BIT_MDO */ 154 MIIROM_MDI, /* MII_BIT_MDI */ 155 MIIROM_MDC, /* MII_BIT_MDC */ 156 0, /* MII_BIT_DIR_HOST_PHY */ 157 MIIROM_MIIDIR, /* MII_BIT_DIR_PHY_HOST */ 158 } 159 }; 160 161 #ifdef TLP_DEBUG 162 #define DPRINTF(sc, x) if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \ 163 printf x 164 #else 165 #define DPRINTF(sc, x) /* nothing */ 166 #endif 167 168 #ifdef TLP_STATS 169 static void tlp_print_stats(struct tulip_softc *); 170 #endif 171 172 /* 173 * Can be used to debug the SROM-related things, including contents. 174 * Initialized so that it's patchable. 175 */ 176 int tlp_srom_debug = 0; 177 178 /* 179 * tlp_attach: 180 * 181 * Attach a Tulip interface to the system. 182 */ 183 int 184 tlp_attach(struct tulip_softc *sc, const uint8_t *enaddr) 185 { 186 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 187 device_t self = sc->sc_dev; 188 int i, error; 189 190 callout_init(&sc->sc_nway_callout, 0); 191 callout_init(&sc->sc_tick_callout, 0); 192 193 /* 194 * NOTE: WE EXPECT THE FRONT-END TO INITIALIZE sc_regshift! 195 */ 196 197 /* 198 * Setup the transmit threshold table. 199 */ 200 switch (sc->sc_chip) { 201 case TULIP_CHIP_DE425: 202 case TULIP_CHIP_21040: 203 case TULIP_CHIP_21041: 204 sc->sc_txth = tlp_10_txthresh_tab; 205 break; 206 207 case TULIP_CHIP_DM9102: 208 case TULIP_CHIP_DM9102A: 209 sc->sc_txth = tlp_dm9102_txthresh_tab; 210 break; 211 212 default: 213 sc->sc_txth = tlp_10_100_txthresh_tab; 214 break; 215 } 216 217 /* 218 * Setup the filter setup function. 219 */ 220 switch (sc->sc_chip) { 221 case TULIP_CHIP_WB89C840F: 222 sc->sc_filter_setup = tlp_winb_filter_setup; 223 break; 224 225 case TULIP_CHIP_AL981: 226 case TULIP_CHIP_AN983: 227 case TULIP_CHIP_AN985: 228 sc->sc_filter_setup = tlp_al981_filter_setup; 229 break; 230 231 case TULIP_CHIP_AX88140: 232 case TULIP_CHIP_AX88141: 233 sc->sc_filter_setup = tlp_asix_filter_setup; 234 break; 235 236 default: 237 sc->sc_filter_setup = tlp_filter_setup; 238 break; 239 } 240 241 /* 242 * Set up the media status change function. 243 */ 244 switch (sc->sc_chip) { 245 case TULIP_CHIP_WB89C840F: 246 sc->sc_statchg = tlp_winb_mii_statchg; 247 break; 248 249 case TULIP_CHIP_DM9102: 250 case TULIP_CHIP_DM9102A: 251 sc->sc_statchg = tlp_dm9102_mii_statchg; 252 break; 253 254 default: 255 /* 256 * We may override this if we have special media 257 * handling requirements (e.g. flipping GPIO pins). 258 * 259 * The pure-MII statchg function covers the basics. 260 */ 261 sc->sc_statchg = tlp_mii_statchg; 262 break; 263 } 264 265 /* 266 * Default to no FS|LS in setup packet descriptors. They're 267 * supposed to be zero according to the 21040 and 21143 268 * manuals, and some chips fall over badly if they're 269 * included. Yet, other chips seem to require them. Sigh. 270 */ 271 switch (sc->sc_chip) { 272 case TULIP_CHIP_X3201_3: 273 sc->sc_setup_fsls = TDCTL_Tx_FS | TDCTL_Tx_LS; 274 break; 275 276 default: 277 sc->sc_setup_fsls = 0; 278 } 279 280 /* 281 * Set up various chip-specific quirks. 282 * 283 * Note that wherever we can, we use the "ring" option for 284 * transmit and receive descriptors. This is because some 285 * clone chips apparently have problems when using chaining, 286 * although some *only* support chaining. 287 * 288 * What we do is always program the "next" pointer, and then 289 * conditionally set the TDCTL_CH and TDCTL_ER bits in the 290 * appropriate places. 291 */ 292 switch (sc->sc_chip) { 293 case TULIP_CHIP_21140: 294 case TULIP_CHIP_21140A: 295 case TULIP_CHIP_21142: 296 case TULIP_CHIP_21143: 297 case TULIP_CHIP_82C115: /* 21143-like */ 298 case TULIP_CHIP_MX98713: /* 21140-like */ 299 case TULIP_CHIP_MX98713A: /* 21143-like */ 300 case TULIP_CHIP_MX98715: /* 21143-like */ 301 case TULIP_CHIP_MX98715A: /* 21143-like */ 302 case TULIP_CHIP_MX98715AEC_X: /* 21143-like */ 303 case TULIP_CHIP_MX98725: /* 21143-like */ 304 case TULIP_CHIP_RS7112: /* 21143-like */ 305 /* 306 * Run these chips in ring mode. 307 */ 308 sc->sc_tdctl_ch = 0; 309 sc->sc_tdctl_er = TDCTL_ER; 310 sc->sc_preinit = tlp_2114x_preinit; 311 break; 312 313 case TULIP_CHIP_82C168: 314 case TULIP_CHIP_82C169: 315 /* 316 * Run these chips in ring mode. 317 */ 318 sc->sc_tdctl_ch = 0; 319 sc->sc_tdctl_er = TDCTL_ER; 320 sc->sc_preinit = tlp_pnic_preinit; 321 322 /* 323 * These chips seem to have busted DMA engines; just put them 324 * in Store-and-Forward mode from the get-go. 325 */ 326 sc->sc_txthresh = TXTH_SF; 327 break; 328 329 case TULIP_CHIP_WB89C840F: 330 /* 331 * Run this chip in chained mode. 332 */ 333 sc->sc_tdctl_ch = TDCTL_CH; 334 sc->sc_tdctl_er = 0; 335 sc->sc_flags |= TULIPF_IC_FS; 336 break; 337 338 case TULIP_CHIP_DM9102: 339 case TULIP_CHIP_DM9102A: 340 /* 341 * Run these chips in chained mode. 342 */ 343 sc->sc_tdctl_ch = TDCTL_CH; 344 sc->sc_tdctl_er = 0; 345 sc->sc_preinit = tlp_dm9102_preinit; 346 347 /* 348 * These chips have a broken bus interface, so we 349 * can't use any optimized bus commands. For this 350 * reason, we tend to underrun pretty quickly, so 351 * just to Store-and-Forward mode from the get-go. 352 */ 353 sc->sc_txthresh = TXTH_DM9102_SF; 354 break; 355 356 case TULIP_CHIP_AX88140: 357 case TULIP_CHIP_AX88141: 358 /* 359 * Run these chips in ring mode. 360 */ 361 sc->sc_tdctl_ch = 0; 362 sc->sc_tdctl_er = TDCTL_ER; 363 sc->sc_preinit = tlp_asix_preinit; 364 break; 365 366 default: 367 /* 368 * Default to running in ring mode. 369 */ 370 sc->sc_tdctl_ch = 0; 371 sc->sc_tdctl_er = TDCTL_ER; 372 } 373 374 /* 375 * Set up the MII bit-bang operations. 376 */ 377 switch (sc->sc_chip) { 378 case TULIP_CHIP_WB89C840F: /* XXX direction bit different? */ 379 sc->sc_bitbang_ops = &tlp_sio_mii_bitbang_ops; 380 break; 381 382 default: 383 sc->sc_bitbang_ops = &tlp_sio_mii_bitbang_ops; 384 } 385 386 SIMPLEQ_INIT(&sc->sc_txfreeq); 387 SIMPLEQ_INIT(&sc->sc_txdirtyq); 388 389 /* 390 * Allocate the control data structures, and create and load the 391 * DMA map for it. 392 */ 393 if ((error = bus_dmamem_alloc(sc->sc_dmat, 394 sizeof(struct tulip_control_data), PAGE_SIZE, 0, &sc->sc_cdseg, 395 1, &sc->sc_cdnseg, 0)) != 0) { 396 aprint_error_dev(self, 397 "unable to allocate control data, error = %d\n", error); 398 goto fail_0; 399 } 400 401 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg, 402 sizeof(struct tulip_control_data), (void **)&sc->sc_control_data, 403 BUS_DMA_COHERENT)) != 0) { 404 aprint_error_dev(self, 405 "unable to map control data, error = %d\n", error); 406 goto fail_1; 407 } 408 409 if ((error = bus_dmamap_create(sc->sc_dmat, 410 sizeof(struct tulip_control_data), 1, 411 sizeof(struct tulip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) { 412 sc->sc_cddmamap = NULL; 413 aprint_error_dev(self, 414 "unable to create control data DMA map, error = %d\n", 415 error); 416 goto fail_2; 417 } 418 419 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap, 420 sc->sc_control_data, sizeof(struct tulip_control_data), NULL, 421 0)) != 0) { 422 aprint_error_dev(self, 423 "unable to load control data DMA map, error = %d\n", 424 error); 425 goto fail_3; 426 } 427 428 /* 429 * Create the transmit buffer DMA maps. 430 * 431 * Note that on the Xircom clone, transmit buffers must be 432 * 4-byte aligned. We're almost guaranteed to have to copy 433 * the packet in that case, so we just limit ourselves to 434 * one segment. 435 * 436 * On the DM9102, the transmit logic can only handle one 437 * DMA segment. 438 */ 439 switch (sc->sc_chip) { 440 case TULIP_CHIP_X3201_3: 441 case TULIP_CHIP_DM9102: 442 case TULIP_CHIP_DM9102A: 443 case TULIP_CHIP_AX88140: 444 case TULIP_CHIP_AX88141: 445 sc->sc_ntxsegs = 1; 446 break; 447 448 default: 449 sc->sc_ntxsegs = TULIP_NTXSEGS; 450 } 451 for (i = 0; i < TULIP_TXQUEUELEN; i++) { 452 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 453 sc->sc_ntxsegs, MCLBYTES, 0, 0, 454 &sc->sc_txsoft[i].txs_dmamap)) != 0) { 455 sc->sc_txsoft[i].txs_dmamap = NULL; 456 aprint_error_dev(self, 457 "unable to create tx DMA map %d, error = %d\n", i, 458 error); 459 goto fail_4; 460 } 461 } 462 463 /* 464 * Create the receive buffer DMA maps. 465 */ 466 for (i = 0; i < TULIP_NRXDESC; i++) { 467 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, 468 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) { 469 sc->sc_rxsoft[i].rxs_dmamap = NULL; 470 aprint_error_dev(self, 471 "unable to create rx DMA map %d, error = %d\n", i, 472 error); 473 goto fail_5; 474 } 475 sc->sc_rxsoft[i].rxs_mbuf = NULL; 476 } 477 478 /* 479 * From this point forward, the attachment cannot fail. A failure 480 * before this point releases all resources that may have been 481 * allocated. 482 */ 483 sc->sc_flags |= TULIPF_ATTACHED; 484 485 /* 486 * Reset the chip to a known state. 487 */ 488 tlp_reset(sc); 489 490 /* Announce ourselves. */ 491 aprint_normal_dev(self, "%s%sEthernet address %s\n", 492 sc->sc_name[0] != '\0' ? sc->sc_name : "", 493 sc->sc_name[0] != '\0' ? ", " : "", 494 ether_sprintf(enaddr)); 495 496 /* 497 * Check to see if we're the simulated Ethernet on Connectix 498 * Virtual PC. 499 */ 500 if (enaddr[0] == 0x00 && enaddr[1] == 0x03 && enaddr[2] == 0xff) 501 sc->sc_flags |= TULIPF_VPC; 502 503 /* 504 * Initialize our media structures. This may probe the MII, if 505 * present. 506 */ 507 (*sc->sc_mediasw->tmsw_init)(sc); 508 509 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ); 510 ifp->if_softc = sc; 511 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 512 sc->sc_if_flags = ifp->if_flags; 513 ifp->if_ioctl = tlp_ioctl; 514 ifp->if_start = tlp_start; 515 ifp->if_watchdog = tlp_watchdog; 516 ifp->if_init = tlp_init; 517 ifp->if_stop = tlp_stop; 518 IFQ_SET_READY(&ifp->if_snd); 519 520 /* 521 * We can support 802.1Q VLAN-sized frames. 522 */ 523 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU; 524 525 /* 526 * Attach the interface. 527 */ 528 if_attach(ifp); 529 if_deferred_start_init(ifp, NULL); 530 ether_ifattach(ifp, enaddr); 531 ether_set_ifflags_cb(&sc->sc_ethercom, tlp_ifflags_cb); 532 533 rnd_attach_source(&sc->sc_rnd_source, device_xname(self), 534 RND_TYPE_NET, RND_FLAG_DEFAULT); 535 536 if (pmf_device_register(self, NULL, NULL)) 537 pmf_class_network_register(self, ifp); 538 else 539 aprint_error_dev(self, "couldn't establish power handler\n"); 540 541 return 0; 542 543 /* 544 * Free any resources we've allocated during the failed attach 545 * attempt. Do this in reverse order and fall through. 546 */ 547 fail_5: 548 for (i = 0; i < TULIP_NRXDESC; i++) { 549 if (sc->sc_rxsoft[i].rxs_dmamap != NULL) 550 bus_dmamap_destroy(sc->sc_dmat, 551 sc->sc_rxsoft[i].rxs_dmamap); 552 } 553 fail_4: 554 for (i = 0; i < TULIP_TXQUEUELEN; i++) { 555 if (sc->sc_txsoft[i].txs_dmamap != NULL) 556 bus_dmamap_destroy(sc->sc_dmat, 557 sc->sc_txsoft[i].txs_dmamap); 558 } 559 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap); 560 fail_3: 561 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap); 562 fail_2: 563 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data, 564 sizeof(struct tulip_control_data)); 565 fail_1: 566 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg); 567 fail_0: 568 return error; 569 } 570 571 /* 572 * tlp_activate: 573 * 574 * Handle device activation/deactivation requests. 575 */ 576 int 577 tlp_activate(device_t self, enum devact act) 578 { 579 struct tulip_softc *sc = device_private(self); 580 581 switch (act) { 582 case DVACT_DEACTIVATE: 583 if_deactivate(&sc->sc_ethercom.ec_if); 584 return 0; 585 default: 586 return EOPNOTSUPP; 587 } 588 } 589 590 /* 591 * tlp_detach: 592 * 593 * Detach a Tulip interface. 594 */ 595 int 596 tlp_detach(struct tulip_softc *sc) 597 { 598 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 599 struct tulip_rxsoft *rxs; 600 struct tulip_txsoft *txs; 601 device_t self = sc->sc_dev; 602 int i, s; 603 604 /* 605 * Succeed now if there isn't any work to do. 606 */ 607 if ((sc->sc_flags & TULIPF_ATTACHED) == 0) 608 return 0; 609 610 s = splnet(); 611 /* Stop the interface. Callouts are stopped in it. */ 612 tlp_stop(ifp, 1); 613 splx(s); 614 615 /* Destroy our callouts. */ 616 callout_destroy(&sc->sc_nway_callout); 617 callout_destroy(&sc->sc_tick_callout); 618 619 if (sc->sc_flags & TULIPF_HAS_MII) { 620 /* Detach all PHYs */ 621 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY); 622 } 623 624 rnd_detach_source(&sc->sc_rnd_source); 625 626 ether_ifdetach(ifp); 627 if_detach(ifp); 628 629 /* Delete all remaining media. */ 630 tlp_ifmedia_fini(sc); 631 632 for (i = 0; i < TULIP_NRXDESC; i++) { 633 rxs = &sc->sc_rxsoft[i]; 634 if (rxs->rxs_mbuf != NULL) { 635 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap); 636 m_freem(rxs->rxs_mbuf); 637 rxs->rxs_mbuf = NULL; 638 } 639 bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap); 640 } 641 for (i = 0; i < TULIP_TXQUEUELEN; i++) { 642 txs = &sc->sc_txsoft[i]; 643 if (txs->txs_mbuf != NULL) { 644 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap); 645 m_freem(txs->txs_mbuf); 646 txs->txs_mbuf = NULL; 647 } 648 bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap); 649 } 650 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap); 651 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap); 652 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data, 653 sizeof(struct tulip_control_data)); 654 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg); 655 656 pmf_device_deregister(self); 657 658 if (sc->sc_srom) { 659 KASSERT(sc->sc_srom_addrbits != 0); 660 kmem_free(sc->sc_srom, TULIP_ROM_SIZE(sc->sc_srom_addrbits)); 661 } 662 663 return 0; 664 } 665 666 /* 667 * tlp_start: [ifnet interface function] 668 * 669 * Start packet transmission on the interface. 670 */ 671 static void 672 tlp_start(struct ifnet *ifp) 673 { 674 struct tulip_softc *sc = ifp->if_softc; 675 struct mbuf *m0, *m; 676 struct tulip_txsoft *txs, *last_txs = NULL; 677 bus_dmamap_t dmamap; 678 int error, firsttx, nexttx, lasttx = 1, ofree, seg; 679 struct tulip_desc *txd; 680 681 DPRINTF(sc, ("%s: tlp_start: sc_flags 0x%08x, if_flags 0x%08x\n", 682 device_xname(sc->sc_dev), sc->sc_flags, ifp->if_flags)); 683 684 /* 685 * If we want a filter setup, it means no more descriptors were 686 * available for the setup routine. Let it get a chance to wedge 687 * itself into the ring. 688 */ 689 if (sc->sc_flags & TULIPF_WANT_SETUP) 690 return; 691 692 if ((ifp->if_flags & IFF_RUNNING) != IFF_RUNNING) 693 return; 694 695 if (sc->sc_tick == tlp_2114x_nway_tick && 696 (sc->sc_flags & TULIPF_LINK_UP) == 0 && ifp->if_snd.ifq_len < 10) 697 return; 698 699 /* 700 * Remember the previous number of free descriptors and 701 * the first descriptor we'll use. 702 */ 703 ofree = sc->sc_txfree; 704 firsttx = sc->sc_txnext; 705 706 DPRINTF(sc, ("%s: tlp_start: txfree %d, txnext %d\n", 707 device_xname(sc->sc_dev), ofree, firsttx)); 708 709 /* 710 * Loop through the send queue, setting up transmit descriptors 711 * until we drain the queue, or use up all available transmit 712 * descriptors. 713 */ 714 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL && 715 sc->sc_txfree != 0) { 716 /* 717 * Grab a packet off the queue. 718 */ 719 IFQ_POLL(&ifp->if_snd, m0); 720 if (m0 == NULL) 721 break; 722 m = NULL; 723 724 dmamap = txs->txs_dmamap; 725 726 /* 727 * Load the DMA map. If this fails, the packet either 728 * didn't fit in the allotted number of segments, or we were 729 * short on resources. In this case, we'll copy and try 730 * again. 731 * 732 * Note that if we're only allowed 1 Tx segment, we 733 * have an alignment restriction. Do this test before 734 * attempting to load the DMA map, because it's more 735 * likely we'll trip the alignment test than the 736 * more-than-one-segment test. 737 */ 738 if ((sc->sc_ntxsegs == 1 && (mtod(m0, uintptr_t) & 3) != 0) || 739 bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0, 740 BUS_DMA_WRITE | BUS_DMA_NOWAIT) != 0) { 741 MGETHDR(m, M_DONTWAIT, MT_DATA); 742 if (m == NULL) { 743 aprint_error_dev(sc->sc_dev, "unable to allocate Tx mbuf\n"); 744 break; 745 } 746 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner); 747 if (m0->m_pkthdr.len > MHLEN) { 748 MCLGET(m, M_DONTWAIT); 749 if ((m->m_flags & M_EXT) == 0) { 750 aprint_error_dev(sc->sc_dev, 751 "unable to allocate Tx cluster\n"); 752 m_freem(m); 753 break; 754 } 755 } 756 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *)); 757 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len; 758 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, 759 m, BUS_DMA_WRITE | BUS_DMA_NOWAIT); 760 if (error) { 761 aprint_error_dev(sc->sc_dev, 762 "unable to load Tx buffer, error = %d", 763 error); 764 break; 765 } 766 } 767 768 /* 769 * Ensure we have enough descriptors free to describe 770 * the packet. 771 */ 772 if (dmamap->dm_nsegs > sc->sc_txfree) { 773 /* 774 * Not enough free descriptors to transmit this 775 * packet. 776 */ 777 bus_dmamap_unload(sc->sc_dmat, dmamap); 778 m_freem(m); 779 break; 780 } 781 782 IFQ_DEQUEUE(&ifp->if_snd, m0); 783 if (m != NULL) { 784 m_freem(m0); 785 m0 = m; 786 } 787 788 /* 789 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET. 790 */ 791 792 /* Sync the DMA map. */ 793 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize, 794 BUS_DMASYNC_PREWRITE); 795 796 /* 797 * Initialize the transmit descriptors. 798 */ 799 for (nexttx = sc->sc_txnext, seg = 0; 800 seg < dmamap->dm_nsegs; 801 seg++, nexttx = TULIP_NEXTTX(nexttx)) { 802 /* 803 * If this is the first descriptor we're 804 * enqueueing, don't set the OWN bit just 805 * yet. That could cause a race condition. 806 * We'll do it below. 807 */ 808 txd = &sc->sc_txdescs[nexttx]; 809 txd->td_status = 810 (nexttx == firsttx) ? 0 : htole32(TDSTAT_OWN); 811 txd->td_bufaddr1 = 812 htole32(dmamap->dm_segs[seg].ds_addr); 813 txd->td_ctl = 814 htole32((dmamap->dm_segs[seg].ds_len << 815 TDCTL_SIZE1_SHIFT) | sc->sc_tdctl_ch | 816 (nexttx == (TULIP_NTXDESC - 1) ? 817 sc->sc_tdctl_er : 0)); 818 lasttx = nexttx; 819 } 820 821 KASSERT(lasttx != -1); 822 823 /* Set `first segment' and `last segment' appropriately. */ 824 sc->sc_txdescs[sc->sc_txnext].td_ctl |= htole32(TDCTL_Tx_FS); 825 sc->sc_txdescs[lasttx].td_ctl |= htole32(TDCTL_Tx_LS); 826 827 #ifdef TLP_DEBUG 828 if (ifp->if_flags & IFF_DEBUG) { 829 printf(" txsoft %p transmit chain:\n", txs); 830 for (seg = sc->sc_txnext;; seg = TULIP_NEXTTX(seg)) { 831 txd = &sc->sc_txdescs[seg]; 832 printf(" descriptor %d:\n", seg); 833 printf(" td_status: 0x%08x\n", 834 le32toh(txd->td_status)); 835 printf(" td_ctl: 0x%08x\n", 836 le32toh(txd->td_ctl)); 837 printf(" td_bufaddr1: 0x%08x\n", 838 le32toh(txd->td_bufaddr1)); 839 printf(" td_bufaddr2: 0x%08x\n", 840 le32toh(txd->td_bufaddr2)); 841 if (seg == lasttx) 842 break; 843 } 844 } 845 #endif 846 847 /* Sync the descriptors we're using. */ 848 TULIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs, 849 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 850 851 /* 852 * Store a pointer to the packet so we can free it later, 853 * and remember what txdirty will be once the packet is 854 * done. 855 */ 856 txs->txs_mbuf = m0; 857 txs->txs_firstdesc = sc->sc_txnext; 858 txs->txs_lastdesc = lasttx; 859 txs->txs_ndescs = dmamap->dm_nsegs; 860 861 /* Advance the tx pointer. */ 862 sc->sc_txfree -= dmamap->dm_nsegs; 863 sc->sc_txnext = nexttx; 864 865 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q); 866 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q); 867 868 last_txs = txs; 869 870 /* 871 * Pass the packet to any BPF listeners. 872 */ 873 bpf_mtap(ifp, m0, BPF_D_OUT); 874 } 875 876 if (sc->sc_txfree != ofree) { 877 DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n", 878 device_xname(sc->sc_dev), lasttx, firsttx)); 879 /* 880 * Cause a transmit interrupt to happen on the 881 * last packet we enqueued. 882 */ 883 sc->sc_txdescs[lasttx].td_ctl |= htole32(TDCTL_Tx_IC); 884 TULIP_CDTXSYNC(sc, lasttx, 1, 885 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 886 887 /* 888 * Some clone chips want IC on the *first* segment in 889 * the packet. Appease them. 890 */ 891 KASSERT(last_txs != NULL); 892 if ((sc->sc_flags & TULIPF_IC_FS) != 0 && 893 last_txs->txs_firstdesc != lasttx) { 894 sc->sc_txdescs[last_txs->txs_firstdesc].td_ctl |= 895 htole32(TDCTL_Tx_IC); 896 TULIP_CDTXSYNC(sc, last_txs->txs_firstdesc, 1, 897 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 898 } 899 900 /* 901 * The entire packet chain is set up. Give the 902 * first descriptor to the chip now. 903 */ 904 sc->sc_txdescs[firsttx].td_status |= htole32(TDSTAT_OWN); 905 TULIP_CDTXSYNC(sc, firsttx, 1, 906 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 907 908 /* Wake up the transmitter. */ 909 /* XXX USE AUTOPOLLING? */ 910 TULIP_WRITE(sc, CSR_TXPOLL, TXPOLL_TPD); 911 912 /* Set a watchdog timer in case the chip flakes out. */ 913 ifp->if_timer = 5; 914 } 915 } 916 917 /* 918 * tlp_watchdog: [ifnet interface function] 919 * 920 * Watchdog timer handler. 921 */ 922 static void 923 tlp_watchdog(struct ifnet *ifp) 924 { 925 struct tulip_softc *sc = ifp->if_softc; 926 int doing_setup, doing_transmit; 927 928 doing_setup = (sc->sc_flags & TULIPF_DOING_SETUP); 929 doing_transmit = (! SIMPLEQ_EMPTY(&sc->sc_txdirtyq)); 930 931 if (doing_setup && doing_transmit) { 932 printf("%s: filter setup and transmit timeout\n", 933 device_xname(sc->sc_dev)); 934 if_statinc(ifp, if_oerrors); 935 } else if (doing_transmit) { 936 printf("%s: transmit timeout\n", device_xname(sc->sc_dev)); 937 if_statinc(ifp, if_oerrors); 938 } else if (doing_setup) 939 printf("%s: filter setup timeout\n", device_xname(sc->sc_dev)); 940 else 941 printf("%s: spurious watchdog timeout\n", 942 device_xname(sc->sc_dev)); 943 944 (void) tlp_init(ifp); 945 946 /* Try to get more packets going. */ 947 tlp_start(ifp); 948 } 949 950 /* If the interface is up and running, only modify the receive 951 * filter when setting promiscuous or debug mode. Otherwise fall 952 * through to ether_ioctl, which will reset the chip. 953 */ 954 static int 955 tlp_ifflags_cb(struct ethercom *ec) 956 { 957 struct ifnet *ifp = &ec->ec_if; 958 struct tulip_softc *sc = ifp->if_softc; 959 u_short change = ifp->if_flags ^ sc->sc_if_flags; 960 961 if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0) 962 return ENETRESET; 963 if ((change & IFF_PROMISC) != 0) 964 (*sc->sc_filter_setup)(sc); 965 return 0; 966 } 967 968 /* 969 * tlp_ioctl: [ifnet interface function] 970 * 971 * Handle control requests from the operator. 972 */ 973 static int 974 tlp_ioctl(struct ifnet *ifp, u_long cmd, void *data) 975 { 976 struct tulip_softc *sc = ifp->if_softc; 977 int s, error; 978 979 s = splnet(); 980 981 switch (cmd) { 982 default: 983 error = ether_ioctl(ifp, cmd, data); 984 if (error == ENETRESET) { 985 if (ifp->if_flags & IFF_RUNNING) { 986 /* 987 * Multicast list has changed. Set the 988 * hardware filter accordingly. 989 */ 990 (*sc->sc_filter_setup)(sc); 991 } 992 error = 0; 993 } 994 break; 995 } 996 997 /* Try to get more packets going. */ 998 if (TULIP_IS_ENABLED(sc)) 999 tlp_start(ifp); 1000 1001 sc->sc_if_flags = ifp->if_flags; 1002 splx(s); 1003 return error; 1004 } 1005 1006 /* 1007 * tlp_intr: 1008 * 1009 * Interrupt service routine. 1010 */ 1011 int 1012 tlp_intr(void *arg) 1013 { 1014 struct tulip_softc *sc = arg; 1015 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1016 uint32_t status, rxstatus, txstatus, rndstatus = 0; 1017 int handled = 0, txthresh; 1018 1019 DPRINTF(sc, ("%s: tlp_intr\n", device_xname(sc->sc_dev))); 1020 1021 #ifdef DEBUG 1022 if (TULIP_IS_ENABLED(sc) == 0) 1023 panic("%s: tlp_intr: not enabled", device_xname(sc->sc_dev)); 1024 #endif 1025 1026 /* 1027 * If the interface isn't running, the interrupt couldn't 1028 * possibly have come from us. 1029 */ 1030 if ((ifp->if_flags & IFF_RUNNING) == 0 || 1031 !device_is_active(sc->sc_dev)) 1032 return 0; 1033 1034 /* Disable interrupts on the DM9102 (interrupt edge bug). */ 1035 switch (sc->sc_chip) { 1036 case TULIP_CHIP_DM9102: 1037 case TULIP_CHIP_DM9102A: 1038 TULIP_WRITE(sc, CSR_INTEN, 0); 1039 break; 1040 1041 default: 1042 /* Nothing. */ 1043 break; 1044 } 1045 1046 for (;;) { 1047 status = TULIP_READ(sc, CSR_STATUS); 1048 if (status) { 1049 TULIP_WRITE(sc, CSR_STATUS, status); 1050 rndstatus = status; 1051 } 1052 1053 if ((status & sc->sc_inten) == 0) 1054 break; 1055 1056 handled = 1; 1057 1058 rxstatus = status & sc->sc_rxint_mask; 1059 txstatus = status & sc->sc_txint_mask; 1060 1061 if (rxstatus) { 1062 /* Grab new any new packets. */ 1063 tlp_rxintr(sc); 1064 1065 if (rxstatus & STATUS_RWT) 1066 printf("%s: receive watchdog timeout\n", 1067 device_xname(sc->sc_dev)); 1068 1069 if (rxstatus & STATUS_RU) { 1070 printf("%s: receive ring overrun\n", 1071 device_xname(sc->sc_dev)); 1072 /* Get the receive process going again. */ 1073 if (sc->sc_tdctl_er != TDCTL_ER) { 1074 tlp_idle(sc, OPMODE_SR); 1075 TULIP_WRITE(sc, CSR_RXLIST, 1076 TULIP_CDRXADDR(sc, sc->sc_rxptr)); 1077 TULIP_WRITE(sc, CSR_OPMODE, 1078 sc->sc_opmode); 1079 } 1080 TULIP_WRITE(sc, CSR_RXPOLL, RXPOLL_RPD); 1081 break; 1082 } 1083 } 1084 1085 if (txstatus) { 1086 /* Sweep up transmit descriptors. */ 1087 tlp_txintr(sc); 1088 1089 if (txstatus & STATUS_TJT) 1090 printf("%s: transmit jabber timeout\n", 1091 device_xname(sc->sc_dev)); 1092 1093 if (txstatus & STATUS_UNF) { 1094 /* 1095 * Increase our transmit threshold if 1096 * another is available. 1097 */ 1098 txthresh = sc->sc_txthresh + 1; 1099 if (sc->sc_txth[txthresh].txth_name != NULL) { 1100 /* Idle the transmit process. */ 1101 tlp_idle(sc, OPMODE_ST); 1102 1103 sc->sc_txthresh = txthresh; 1104 sc->sc_opmode &= ~(OPMODE_TR|OPMODE_SF); 1105 sc->sc_opmode |= 1106 sc->sc_txth[txthresh].txth_opmode; 1107 printf("%s: transmit underrun; new " 1108 "threshold: %s\n", 1109 device_xname(sc->sc_dev), 1110 sc->sc_txth[txthresh].txth_name); 1111 1112 /* 1113 * Set the new threshold and restart 1114 * the transmit process. 1115 */ 1116 TULIP_WRITE(sc, CSR_OPMODE, 1117 sc->sc_opmode); 1118 } 1119 /* 1120 * XXX Log every Nth underrun from 1121 * XXX now on? 1122 */ 1123 } 1124 } 1125 1126 if (status & (STATUS_TPS | STATUS_RPS)) { 1127 if (status & STATUS_TPS) 1128 printf("%s: transmit process stopped\n", 1129 device_xname(sc->sc_dev)); 1130 if (status & STATUS_RPS) 1131 printf("%s: receive process stopped\n", 1132 device_xname(sc->sc_dev)); 1133 (void) tlp_init(ifp); 1134 break; 1135 } 1136 1137 if (status & STATUS_SE) { 1138 const char *str; 1139 switch (status & STATUS_EB) { 1140 case STATUS_EB_PARITY: 1141 str = "parity error"; 1142 break; 1143 1144 case STATUS_EB_MABT: 1145 str = "master abort"; 1146 break; 1147 1148 case STATUS_EB_TABT: 1149 str = "target abort"; 1150 break; 1151 1152 default: 1153 str = "unknown error"; 1154 break; 1155 } 1156 aprint_error_dev(sc->sc_dev, 1157 "fatal system error: %s\n", str); 1158 (void) tlp_init(ifp); 1159 break; 1160 } 1161 1162 /* 1163 * Not handled: 1164 * 1165 * Transmit buffer unavailable -- normal 1166 * condition, nothing to do, really. 1167 * 1168 * General purpose timer experied -- we don't 1169 * use the general purpose timer. 1170 * 1171 * Early receive interrupt -- not available on 1172 * all chips, we just use RI. We also only 1173 * use single-segment receive DMA, so this 1174 * is mostly useless. 1175 */ 1176 } 1177 1178 /* Bring interrupts back up on the DM9102. */ 1179 switch (sc->sc_chip) { 1180 case TULIP_CHIP_DM9102: 1181 case TULIP_CHIP_DM9102A: 1182 TULIP_WRITE(sc, CSR_INTEN, sc->sc_inten); 1183 break; 1184 1185 default: 1186 /* Nothing. */ 1187 break; 1188 } 1189 1190 /* Try to get more packets going. */ 1191 if_schedule_deferred_start(ifp); 1192 1193 if (handled) 1194 rnd_add_uint32(&sc->sc_rnd_source, rndstatus); 1195 1196 return handled; 1197 } 1198 1199 /* 1200 * tlp_rxintr: 1201 * 1202 * Helper; handle receive interrupts. 1203 */ 1204 static void 1205 tlp_rxintr(struct tulip_softc *sc) 1206 { 1207 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1208 struct ether_header *eh; 1209 struct tulip_rxsoft *rxs; 1210 struct mbuf *m; 1211 uint32_t rxstat, errors; 1212 int i, len; 1213 1214 for (i = sc->sc_rxptr;; i = TULIP_NEXTRX(i)) { 1215 rxs = &sc->sc_rxsoft[i]; 1216 1217 TULIP_CDRXSYNC(sc, i, 1218 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1219 1220 rxstat = le32toh(sc->sc_rxdescs[i].td_status); 1221 1222 if (rxstat & TDSTAT_OWN) { 1223 /* 1224 * We have processed all of the receive buffers. 1225 */ 1226 break; 1227 } 1228 1229 /* 1230 * Make sure the packet fit in one buffer. This should 1231 * always be the case. But the Lite-On PNIC, rev 33 1232 * has an awful receive engine bug, which may require 1233 * a very icky work-around. 1234 */ 1235 if ((rxstat & (TDSTAT_Rx_FS | TDSTAT_Rx_LS)) != 1236 (TDSTAT_Rx_FS | TDSTAT_Rx_LS)) { 1237 printf("%s: incoming packet spilled, resetting\n", 1238 device_xname(sc->sc_dev)); 1239 (void) tlp_init(ifp); 1240 return; 1241 } 1242 1243 /* 1244 * If any collisions were seen on the wire, count one. 1245 */ 1246 if (rxstat & TDSTAT_Rx_CS) 1247 if_statinc(ifp, if_collisions); 1248 1249 /* 1250 * If an error occurred, update stats, clear the status 1251 * word, and leave the packet buffer in place. It will 1252 * simply be reused the next time the ring comes around. 1253 */ 1254 errors = TDSTAT_Rx_DE | TDSTAT_Rx_RF | TDSTAT_Rx_TL | 1255 TDSTAT_Rx_CS | TDSTAT_Rx_RE | TDSTAT_Rx_DB | TDSTAT_Rx_CE; 1256 /* 1257 * If 802.1Q VLAN MTU is enabled, ignore the Frame Too Long 1258 * error. 1259 */ 1260 if ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) != 0) 1261 errors &= ~TDSTAT_Rx_TL; 1262 /* 1263 * If chip doesn't have MII, ignore the MII error bit. 1264 */ 1265 if ((sc->sc_flags & TULIPF_HAS_MII) == 0) 1266 errors &= ~TDSTAT_Rx_RE; 1267 1268 if ((rxstat & TDSTAT_ES) != 0 && 1269 (rxstat & errors) != 0) { 1270 rxstat &= errors; 1271 #define PRINTERR(bit, str) \ 1272 if (rxstat & (bit)) \ 1273 aprint_error_dev(sc->sc_dev, \ 1274 "receive error: %s\n", str) 1275 if_statinc(ifp, if_ierrors); 1276 PRINTERR(TDSTAT_Rx_DE, "descriptor error"); 1277 PRINTERR(TDSTAT_Rx_RF, "runt frame"); 1278 PRINTERR(TDSTAT_Rx_TL, "frame too long"); 1279 PRINTERR(TDSTAT_Rx_RE, "MII error"); 1280 PRINTERR(TDSTAT_Rx_DB, "dribbling bit"); 1281 PRINTERR(TDSTAT_Rx_CE, "CRC error"); 1282 #undef PRINTERR 1283 TULIP_INIT_RXDESC(sc, i); 1284 continue; 1285 } 1286 1287 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 1288 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); 1289 1290 /* 1291 * No errors; receive the packet. Note the Tulip 1292 * includes the CRC with every packet. 1293 */ 1294 len = TDSTAT_Rx_LENGTH(rxstat) - ETHER_CRC_LEN; 1295 1296 #ifdef __NO_STRICT_ALIGNMENT 1297 /* 1298 * Allocate a new mbuf cluster. If that fails, we are 1299 * out of memory, and must drop the packet and recycle 1300 * the buffer that's already attached to this descriptor. 1301 */ 1302 m = rxs->rxs_mbuf; 1303 if (tlp_add_rxbuf(sc, i) != 0) { 1304 if_statinc(ifp, if_ierrors); 1305 TULIP_INIT_RXDESC(sc, i); 1306 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 1307 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); 1308 continue; 1309 } 1310 #else 1311 /* 1312 * The Tulip's receive buffers must be 4-byte aligned. 1313 * But this means that the data after the Ethernet header 1314 * is misaligned. We must allocate a new buffer and 1315 * copy the data, shifted forward 2 bytes. 1316 */ 1317 MGETHDR(m, M_DONTWAIT, MT_DATA); 1318 if (m == NULL) { 1319 dropit: 1320 if_statinc(ifp, if_ierrors); 1321 TULIP_INIT_RXDESC(sc, i); 1322 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 1323 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); 1324 continue; 1325 } 1326 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner); 1327 if (len > (MHLEN - 2)) { 1328 MCLGET(m, M_DONTWAIT); 1329 if ((m->m_flags & M_EXT) == 0) { 1330 m_freem(m); 1331 goto dropit; 1332 } 1333 } 1334 m->m_data += 2; 1335 1336 /* 1337 * Note that we use clusters for incoming frames, so the 1338 * buffer is virtually contiguous. 1339 */ 1340 memcpy(mtod(m, void *), mtod(rxs->rxs_mbuf, void *), len); 1341 1342 /* Allow the receive descriptor to continue using its mbuf. */ 1343 TULIP_INIT_RXDESC(sc, i); 1344 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 1345 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); 1346 #endif /* __NO_STRICT_ALIGNMENT */ 1347 1348 eh = mtod(m, struct ether_header *); 1349 m_set_rcvif(m, ifp); 1350 m->m_pkthdr.len = m->m_len = len; 1351 1352 /* 1353 * XXX Work-around for a weird problem with the emulated 1354 * 21041 on Connectix Virtual PC: 1355 * 1356 * When we receive a full-size TCP segment, we seem to get 1357 * a packet there the Rx status says 1522 bytes, yet we do 1358 * not get a frame-too-long error from the chip. The extra 1359 * bytes seem to always be zeros. Perhaps Virtual PC is 1360 * inserting 4 bytes of zeros after every packet. In any 1361 * case, let's try and detect this condition and truncate 1362 * the length so that it will pass up the stack. 1363 */ 1364 if (__predict_false((sc->sc_flags & TULIPF_VPC) != 0)) { 1365 uint16_t etype = ntohs(eh->ether_type); 1366 1367 if (len > ETHER_MAX_FRAME(ifp, etype, 0)) 1368 m->m_pkthdr.len = m->m_len = len = 1369 ETHER_MAX_FRAME(ifp, etype, 0); 1370 } 1371 1372 /* 1373 * We sometimes have to run the 21140 in Hash-Only 1374 * mode. If we're in that mode, and not in promiscuous 1375 * mode, and we have a unicast packet that isn't for 1376 * us, then drop it. 1377 */ 1378 if (sc->sc_filtmode == TDCTL_Tx_FT_HASHONLY && 1379 (ifp->if_flags & IFF_PROMISC) == 0 && 1380 ETHER_IS_MULTICAST(eh->ether_dhost) == 0 && 1381 memcmp(CLLADDR(ifp->if_sadl), eh->ether_dhost, 1382 ETHER_ADDR_LEN) != 0) { 1383 m_freem(m); 1384 continue; 1385 } 1386 1387 /* Pass it on. */ 1388 if_percpuq_enqueue(ifp->if_percpuq, m); 1389 } 1390 1391 /* Update the receive pointer. */ 1392 sc->sc_rxptr = i; 1393 } 1394 1395 /* 1396 * tlp_txintr: 1397 * 1398 * Helper; handle transmit interrupts. 1399 */ 1400 static void 1401 tlp_txintr(struct tulip_softc *sc) 1402 { 1403 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1404 struct tulip_txsoft *txs; 1405 uint32_t txstat; 1406 1407 DPRINTF(sc, ("%s: tlp_txintr: sc_flags 0x%08x\n", 1408 device_xname(sc->sc_dev), sc->sc_flags)); 1409 1410 /* 1411 * Go through our Tx list and free mbufs for those 1412 * frames that have been transmitted. 1413 */ 1414 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) { 1415 TULIP_CDTXSYNC(sc, txs->txs_lastdesc, txs->txs_ndescs, 1416 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1417 1418 #ifdef TLP_DEBUG 1419 if (ifp->if_flags & IFF_DEBUG) { 1420 int i; 1421 struct tulip_desc *txd; 1422 printf(" txsoft %p transmit chain:\n", txs); 1423 for (i = txs->txs_firstdesc;; i = TULIP_NEXTTX(i)) { 1424 txd = &sc->sc_txdescs[i]; 1425 printf(" descriptor %d:\n", i); 1426 printf(" td_status: 0x%08x\n", 1427 le32toh(txd->td_status)); 1428 printf(" td_ctl: 0x%08x\n", 1429 le32toh(txd->td_ctl)); 1430 printf(" td_bufaddr1: 0x%08x\n", 1431 le32toh(txd->td_bufaddr1)); 1432 printf(" td_bufaddr2: 0x%08x\n", 1433 le32toh(sc->sc_txdescs[i].td_bufaddr2)); 1434 if (i == txs->txs_lastdesc) 1435 break; 1436 } 1437 } 1438 #endif 1439 1440 txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].td_status); 1441 if (txstat & TDSTAT_OWN) 1442 break; 1443 1444 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q); 1445 1446 sc->sc_txfree += txs->txs_ndescs; 1447 1448 if (txs->txs_mbuf == NULL) { 1449 /* 1450 * If we didn't have an mbuf, it was the setup 1451 * packet. 1452 */ 1453 #ifdef DIAGNOSTIC 1454 if ((sc->sc_flags & TULIPF_DOING_SETUP) == 0) 1455 panic("tlp_txintr: null mbuf, not doing setup"); 1456 #endif 1457 TULIP_CDSPSYNC(sc, BUS_DMASYNC_POSTWRITE); 1458 sc->sc_flags &= ~TULIPF_DOING_SETUP; 1459 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q); 1460 continue; 1461 } 1462 1463 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap, 1464 0, txs->txs_dmamap->dm_mapsize, 1465 BUS_DMASYNC_POSTWRITE); 1466 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap); 1467 m_freem(txs->txs_mbuf); 1468 txs->txs_mbuf = NULL; 1469 1470 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q); 1471 1472 /* 1473 * Check for errors and collisions. 1474 */ 1475 #ifdef TLP_STATS 1476 if (txstat & TDSTAT_Tx_UF) 1477 sc->sc_stats.ts_tx_uf++; 1478 if (txstat & TDSTAT_Tx_TO) 1479 sc->sc_stats.ts_tx_to++; 1480 if (txstat & TDSTAT_Tx_EC) 1481 sc->sc_stats.ts_tx_ec++; 1482 if (txstat & TDSTAT_Tx_LC) 1483 sc->sc_stats.ts_tx_lc++; 1484 #endif 1485 net_stat_ref_t nsr = IF_STAT_GETREF(ifp); 1486 if (txstat & (TDSTAT_Tx_UF | TDSTAT_Tx_TO)) 1487 if_statinc_ref(ifp, nsr, if_oerrors); 1488 1489 if (txstat & TDSTAT_Tx_EC) 1490 if_statadd_ref(ifp, nsr, if_collisions, 16); 1491 else 1492 if_statadd_ref(ifp, nsr, if_collisions, 1493 TDSTAT_Tx_COLLISIONS(txstat)); 1494 if (txstat & TDSTAT_Tx_LC) 1495 if_statinc_ref(ifp, nsr, if_collisions); 1496 1497 if_statinc_ref(ifp, nsr, if_opackets); 1498 IF_STAT_PUTREF(ifp); 1499 } 1500 1501 /* 1502 * If there are no more pending transmissions, cancel the watchdog 1503 * timer. 1504 */ 1505 if (txs == NULL && (sc->sc_flags & TULIPF_DOING_SETUP) == 0) 1506 ifp->if_timer = 0; 1507 1508 /* 1509 * If we have a receive filter setup pending, do it now. 1510 */ 1511 if (sc->sc_flags & TULIPF_WANT_SETUP) 1512 (*sc->sc_filter_setup)(sc); 1513 } 1514 1515 #ifdef TLP_STATS 1516 void 1517 tlp_print_stats(struct tulip_softc *sc) 1518 { 1519 1520 printf("%s: tx_uf %lu, tx_to %lu, tx_ec %lu, tx_lc %lu\n", 1521 device_xname(sc->sc_dev), 1522 sc->sc_stats.ts_tx_uf, sc->sc_stats.ts_tx_to, 1523 sc->sc_stats.ts_tx_ec, sc->sc_stats.ts_tx_lc); 1524 } 1525 #endif 1526 1527 /* 1528 * tlp_reset: 1529 * 1530 * Perform a soft reset on the Tulip. 1531 */ 1532 void 1533 tlp_reset(struct tulip_softc *sc) 1534 { 1535 int i; 1536 1537 TULIP_WRITE(sc, CSR_BUSMODE, BUSMODE_SWR); 1538 1539 /* 1540 * Xircom, ASIX and Conexant clones don't bring themselves 1541 * out of reset automatically. 1542 * Instead, we have to wait at least 50 PCI cycles, and then 1543 * clear SWR. 1544 */ 1545 switch (sc->sc_chip) { 1546 case TULIP_CHIP_X3201_3: 1547 case TULIP_CHIP_AX88140: 1548 case TULIP_CHIP_AX88141: 1549 case TULIP_CHIP_RS7112: 1550 delay(10); 1551 TULIP_WRITE(sc, CSR_BUSMODE, 0); 1552 break; 1553 default: 1554 break; 1555 } 1556 1557 for (i = 0; i < 1000; i++) { 1558 /* 1559 * Wait at least 50 PCI cycles for the reset to 1560 * complete before peeking at the Tulip again. 1561 * 10 uSec is a bit longer than 50 PCI cycles 1562 * (at 33MHz), but it doesn't hurt have the extra 1563 * wait. 1564 */ 1565 delay(10); 1566 if (TULIP_ISSET(sc, CSR_BUSMODE, BUSMODE_SWR) == 0) 1567 break; 1568 } 1569 1570 if (TULIP_ISSET(sc, CSR_BUSMODE, BUSMODE_SWR)) 1571 aprint_error_dev(sc->sc_dev, "reset failed to complete\n"); 1572 1573 delay(1000); 1574 1575 /* 1576 * If the board has any GPIO reset sequences to issue, do them now. 1577 */ 1578 if (sc->sc_reset != NULL) 1579 (*sc->sc_reset)(sc); 1580 } 1581 1582 /* 1583 * tlp_init: [ ifnet interface function ] 1584 * 1585 * Initialize the interface. Must be called at splnet(). 1586 */ 1587 static int 1588 tlp_init(struct ifnet *ifp) 1589 { 1590 struct tulip_softc *sc = ifp->if_softc; 1591 struct tulip_txsoft *txs; 1592 struct tulip_rxsoft *rxs; 1593 int i, error = 0; 1594 1595 if ((error = tlp_enable(sc)) != 0) 1596 goto out; 1597 1598 /* 1599 * Cancel any pending I/O. 1600 */ 1601 tlp_stop(ifp, 0); 1602 1603 /* 1604 * Initialize `opmode' to 0, and call the pre-init routine, if 1605 * any. This is required because the 2114x and some of the 1606 * clones require that the media-related bits in `opmode' be 1607 * set before performing a soft-reset in order to get internal 1608 * chip pathways are correct. Yay! 1609 */ 1610 sc->sc_opmode = 0; 1611 if (sc->sc_preinit != NULL) 1612 (*sc->sc_preinit)(sc); 1613 1614 /* 1615 * Reset the Tulip to a known state. 1616 */ 1617 tlp_reset(sc); 1618 1619 /* 1620 * Initialize the BUSMODE register. 1621 */ 1622 sc->sc_busmode = BUSMODE_BAR; 1623 switch (sc->sc_chip) { 1624 case TULIP_CHIP_21140: 1625 case TULIP_CHIP_21140A: 1626 case TULIP_CHIP_21142: 1627 case TULIP_CHIP_21143: 1628 case TULIP_CHIP_82C115: 1629 case TULIP_CHIP_MX98725: 1630 /* 1631 * If we're allowed to do so, use Memory Read Line 1632 * and Memory Read Multiple. 1633 * 1634 * XXX Should we use Memory Write and Invalidate? 1635 */ 1636 if (sc->sc_flags & TULIPF_MRL) 1637 sc->sc_busmode |= BUSMODE_RLE; 1638 if (sc->sc_flags & TULIPF_MRM) 1639 sc->sc_busmode |= BUSMODE_RME; 1640 #if 0 1641 if (sc->sc_flags & TULIPF_MWI) 1642 sc->sc_busmode |= BUSMODE_WLE; 1643 #endif 1644 break; 1645 1646 case TULIP_CHIP_82C168: 1647 case TULIP_CHIP_82C169: 1648 sc->sc_busmode |= BUSMODE_PNIC_MBO; 1649 if (sc->sc_maxburst == 0) 1650 sc->sc_maxburst = 16; 1651 break; 1652 1653 case TULIP_CHIP_AX88140: 1654 case TULIP_CHIP_AX88141: 1655 if (sc->sc_maxburst == 0) 1656 sc->sc_maxburst = 16; 1657 break; 1658 1659 default: 1660 /* Nothing. */ 1661 break; 1662 } 1663 switch (sc->sc_cacheline) { 1664 default: 1665 /* 1666 * Note: We must *always* set these bits; a cache 1667 * alignment of 0 is RESERVED. 1668 */ 1669 case 8: 1670 sc->sc_busmode |= BUSMODE_CAL_8LW; 1671 break; 1672 case 16: 1673 sc->sc_busmode |= BUSMODE_CAL_16LW; 1674 break; 1675 case 32: 1676 sc->sc_busmode |= BUSMODE_CAL_32LW; 1677 break; 1678 } 1679 switch (sc->sc_maxburst) { 1680 case 1: 1681 sc->sc_busmode |= BUSMODE_PBL_1LW; 1682 break; 1683 case 2: 1684 sc->sc_busmode |= BUSMODE_PBL_2LW; 1685 break; 1686 case 4: 1687 sc->sc_busmode |= BUSMODE_PBL_4LW; 1688 break; 1689 case 8: 1690 sc->sc_busmode |= BUSMODE_PBL_8LW; 1691 break; 1692 case 16: 1693 sc->sc_busmode |= BUSMODE_PBL_16LW; 1694 break; 1695 case 32: 1696 sc->sc_busmode |= BUSMODE_PBL_32LW; 1697 break; 1698 default: 1699 sc->sc_busmode |= BUSMODE_PBL_DEFAULT; 1700 break; 1701 } 1702 #if BYTE_ORDER == BIG_ENDIAN 1703 /* 1704 * Can't use BUSMODE_BLE or BUSMODE_DBO; not all chips 1705 * support them, and even on ones that do, it doesn't 1706 * always work. So we always access descriptors with 1707 * little endian via htole32/le32toh. 1708 */ 1709 #endif 1710 /* 1711 * Big-endian bus requires BUSMODE_BLE anyway. 1712 * Also, BUSMODE_DBO is needed because we assume 1713 * descriptors are little endian. 1714 */ 1715 if (sc->sc_flags & TULIPF_BLE) 1716 sc->sc_busmode |= BUSMODE_BLE; 1717 if (sc->sc_flags & TULIPF_DBO) 1718 sc->sc_busmode |= BUSMODE_DBO; 1719 1720 /* 1721 * Some chips have a broken bus interface. 1722 */ 1723 switch (sc->sc_chip) { 1724 case TULIP_CHIP_DM9102: 1725 case TULIP_CHIP_DM9102A: 1726 sc->sc_busmode = 0; 1727 break; 1728 1729 default: 1730 /* Nothing. */ 1731 break; 1732 } 1733 1734 TULIP_WRITE(sc, CSR_BUSMODE, sc->sc_busmode); 1735 1736 /* 1737 * Initialize the OPMODE register. We don't write it until 1738 * we're ready to begin the transmit and receive processes. 1739 * 1740 * Media-related OPMODE bits are set in the media callbacks 1741 * for each specific chip/board. 1742 */ 1743 sc->sc_opmode |= OPMODE_SR | OPMODE_ST | 1744 sc->sc_txth[sc->sc_txthresh].txth_opmode; 1745 1746 /* 1747 * Magical mystery initialization on the Macronix chips. 1748 * The MX98713 uses its own magic value, the rest share 1749 * a common one. 1750 */ 1751 switch (sc->sc_chip) { 1752 case TULIP_CHIP_MX98713: 1753 TULIP_WRITE(sc, CSR_PMAC_TOR, PMAC_TOR_98713); 1754 break; 1755 1756 case TULIP_CHIP_MX98713A: 1757 case TULIP_CHIP_MX98715: 1758 case TULIP_CHIP_MX98715A: 1759 case TULIP_CHIP_MX98715AEC_X: 1760 case TULIP_CHIP_MX98725: 1761 TULIP_WRITE(sc, CSR_PMAC_TOR, PMAC_TOR_98715); 1762 break; 1763 1764 default: 1765 /* Nothing. */ 1766 break; 1767 } 1768 1769 /* 1770 * Initialize the transmit descriptor ring. 1771 */ 1772 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs)); 1773 for (i = 0; i < TULIP_NTXDESC; i++) { 1774 struct tulip_desc *txd = &sc->sc_txdescs[i]; 1775 txd->td_ctl = htole32(sc->sc_tdctl_ch); 1776 txd->td_bufaddr2 = htole32(TULIP_CDTXADDR(sc, TULIP_NEXTTX(i))); 1777 } 1778 sc->sc_txdescs[TULIP_NTXDESC - 1].td_ctl |= htole32(sc->sc_tdctl_er); 1779 TULIP_CDTXSYNC(sc, 0, TULIP_NTXDESC, 1780 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1781 sc->sc_txfree = TULIP_NTXDESC; 1782 sc->sc_txnext = 0; 1783 1784 /* 1785 * Initialize the transmit job descriptors. 1786 */ 1787 SIMPLEQ_INIT(&sc->sc_txfreeq); 1788 SIMPLEQ_INIT(&sc->sc_txdirtyq); 1789 for (i = 0; i < TULIP_TXQUEUELEN; i++) { 1790 txs = &sc->sc_txsoft[i]; 1791 txs->txs_mbuf = NULL; 1792 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q); 1793 } 1794 1795 /* 1796 * Initialize the receive descriptor and receive job 1797 * descriptor rings. 1798 */ 1799 for (i = 0; i < TULIP_NRXDESC; i++) { 1800 rxs = &sc->sc_rxsoft[i]; 1801 if (rxs->rxs_mbuf == NULL) { 1802 if ((error = tlp_add_rxbuf(sc, i)) != 0) { 1803 aprint_error_dev(sc->sc_dev, 1804 "unable to allocate or map rx " 1805 "buffer %d, error = %d\n", i, error); 1806 /* 1807 * XXX Should attempt to run with fewer receive 1808 * XXX buffers instead of just failing. 1809 */ 1810 tlp_rxdrain(sc); 1811 goto out; 1812 } 1813 } else 1814 TULIP_INIT_RXDESC(sc, i); 1815 } 1816 sc->sc_rxptr = 0; 1817 1818 /* 1819 * Initialize the interrupt mask and enable interrupts. 1820 */ 1821 /* normal interrupts */ 1822 sc->sc_inten = STATUS_TI | STATUS_TU | STATUS_RI | STATUS_NIS; 1823 1824 /* abnormal interrupts */ 1825 sc->sc_inten |= STATUS_TPS | STATUS_TJT | STATUS_UNF | 1826 STATUS_RU | STATUS_RPS | STATUS_RWT | STATUS_SE | STATUS_AIS; 1827 1828 sc->sc_rxint_mask = STATUS_RI | STATUS_RU | STATUS_RWT; 1829 sc->sc_txint_mask = STATUS_TI | STATUS_UNF | STATUS_TJT; 1830 1831 switch (sc->sc_chip) { 1832 case TULIP_CHIP_WB89C840F: 1833 /* 1834 * Clear bits that we don't want that happen to 1835 * overlap or don't exist. 1836 */ 1837 sc->sc_inten &= ~(STATUS_WINB_REI | STATUS_RWT); 1838 break; 1839 1840 default: 1841 /* Nothing. */ 1842 break; 1843 } 1844 1845 sc->sc_rxint_mask &= sc->sc_inten; 1846 sc->sc_txint_mask &= sc->sc_inten; 1847 1848 TULIP_WRITE(sc, CSR_INTEN, sc->sc_inten); 1849 TULIP_WRITE(sc, CSR_STATUS, 0xffffffff); 1850 1851 /* 1852 * Give the transmit and receive rings to the Tulip. 1853 */ 1854 TULIP_WRITE(sc, CSR_TXLIST, TULIP_CDTXADDR(sc, sc->sc_txnext)); 1855 TULIP_WRITE(sc, CSR_RXLIST, TULIP_CDRXADDR(sc, sc->sc_rxptr)); 1856 1857 /* 1858 * On chips that do this differently, set the station address. 1859 */ 1860 switch (sc->sc_chip) { 1861 case TULIP_CHIP_WB89C840F: 1862 { 1863 /* XXX Do this with stream writes? */ 1864 bus_addr_t cpa = TULIP_CSR_OFFSET(sc, CSR_WINB_CPA0); 1865 1866 for (i = 0; i < ETHER_ADDR_LEN; i++) { 1867 bus_space_write_1(sc->sc_st, sc->sc_sh, 1868 cpa + i, CLLADDR(ifp->if_sadl)[i]); 1869 } 1870 break; 1871 } 1872 1873 case TULIP_CHIP_AL981: 1874 case TULIP_CHIP_AN983: 1875 case TULIP_CHIP_AN985: 1876 { 1877 uint32_t reg; 1878 const uint8_t *enaddr = CLLADDR(ifp->if_sadl); 1879 1880 reg = enaddr[0] | 1881 (enaddr[1] << 8) | 1882 (enaddr[2] << 16) | 1883 ((uint32_t)enaddr[3] << 24); 1884 bus_space_write_4(sc->sc_st, sc->sc_sh, CSR_ADM_PAR0, reg); 1885 1886 reg = enaddr[4] | 1887 (enaddr[5] << 8); 1888 bus_space_write_4(sc->sc_st, sc->sc_sh, CSR_ADM_PAR1, reg); 1889 break; 1890 } 1891 1892 case TULIP_CHIP_AX88140: 1893 case TULIP_CHIP_AX88141: 1894 { 1895 uint32_t reg; 1896 const uint8_t *enaddr = CLLADDR(ifp->if_sadl); 1897 1898 reg = enaddr[0] | 1899 (enaddr[1] << 8) | 1900 (enaddr[2] << 16) | 1901 ((uint32_t)enaddr[3] << 24); 1902 TULIP_WRITE(sc, CSR_AX_FILTIDX, AX_FILTIDX_PAR0); 1903 TULIP_WRITE(sc, CSR_AX_FILTDATA, reg); 1904 1905 reg = enaddr[4] | (enaddr[5] << 8); 1906 TULIP_WRITE(sc, CSR_AX_FILTIDX, AX_FILTIDX_PAR1); 1907 TULIP_WRITE(sc, CSR_AX_FILTDATA, reg); 1908 break; 1909 } 1910 1911 default: 1912 /* Nothing. */ 1913 break; 1914 } 1915 1916 /* 1917 * Set the receive filter. This will start the transmit and 1918 * receive processes. 1919 */ 1920 (*sc->sc_filter_setup)(sc); 1921 1922 /* 1923 * Set the current media. 1924 */ 1925 (void)(*sc->sc_mediasw->tmsw_set)(sc); 1926 1927 /* 1928 * Start the receive process. 1929 */ 1930 TULIP_WRITE(sc, CSR_RXPOLL, RXPOLL_RPD); 1931 1932 if (sc->sc_tick != NULL) { 1933 /* Start the one second clock. */ 1934 callout_reset(&sc->sc_tick_callout, hz >> 3, sc->sc_tick, sc); 1935 } 1936 1937 /* 1938 * Note that the interface is now running. 1939 */ 1940 ifp->if_flags |= IFF_RUNNING; 1941 sc->sc_if_flags = ifp->if_flags; 1942 1943 out: 1944 if (error) { 1945 ifp->if_flags &= ~IFF_RUNNING; 1946 ifp->if_timer = 0; 1947 printf("%s: interface not running\n", device_xname(sc->sc_dev)); 1948 } 1949 return error; 1950 } 1951 1952 /* 1953 * tlp_enable: 1954 * 1955 * Enable the Tulip chip. 1956 */ 1957 static int 1958 tlp_enable(struct tulip_softc *sc) 1959 { 1960 1961 if (TULIP_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) { 1962 if ((*sc->sc_enable)(sc) != 0) { 1963 aprint_error_dev(sc->sc_dev, "device enable failed\n"); 1964 return EIO; 1965 } 1966 sc->sc_flags |= TULIPF_ENABLED; 1967 } 1968 return 0; 1969 } 1970 1971 /* 1972 * tlp_disable: 1973 * 1974 * Disable the Tulip chip. 1975 */ 1976 static void 1977 tlp_disable(struct tulip_softc *sc) 1978 { 1979 1980 if (TULIP_IS_ENABLED(sc) && sc->sc_disable != NULL) { 1981 (*sc->sc_disable)(sc); 1982 sc->sc_flags &= ~TULIPF_ENABLED; 1983 } 1984 } 1985 1986 /* 1987 * tlp_rxdrain: 1988 * 1989 * Drain the receive queue. 1990 */ 1991 static void 1992 tlp_rxdrain(struct tulip_softc *sc) 1993 { 1994 struct tulip_rxsoft *rxs; 1995 int i; 1996 1997 for (i = 0; i < TULIP_NRXDESC; i++) { 1998 rxs = &sc->sc_rxsoft[i]; 1999 if (rxs->rxs_mbuf != NULL) { 2000 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap); 2001 m_freem(rxs->rxs_mbuf); 2002 rxs->rxs_mbuf = NULL; 2003 } 2004 } 2005 } 2006 2007 /* 2008 * tlp_stop: [ ifnet interface function ] 2009 * 2010 * Stop transmission on the interface. 2011 */ 2012 static void 2013 tlp_stop(struct ifnet *ifp, int disable) 2014 { 2015 struct tulip_softc *sc = ifp->if_softc; 2016 struct tulip_txsoft *txs; 2017 2018 if (sc->sc_tick != NULL) { 2019 /* Stop the one second clock. */ 2020 callout_stop(&sc->sc_tick_callout); 2021 } 2022 2023 if (sc->sc_flags & TULIPF_HAS_MII) { 2024 /* Down the MII. */ 2025 mii_down(&sc->sc_mii); 2026 } 2027 2028 /* Disable interrupts. */ 2029 TULIP_WRITE(sc, CSR_INTEN, 0); 2030 2031 /* Stop the transmit and receive processes. */ 2032 sc->sc_opmode = 0; 2033 TULIP_WRITE(sc, CSR_OPMODE, 0); 2034 TULIP_WRITE(sc, CSR_RXLIST, 0); 2035 TULIP_WRITE(sc, CSR_TXLIST, 0); 2036 2037 /* 2038 * Release any queued transmit buffers. 2039 */ 2040 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) { 2041 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q); 2042 if (txs->txs_mbuf != NULL) { 2043 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap); 2044 m_freem(txs->txs_mbuf); 2045 txs->txs_mbuf = NULL; 2046 } 2047 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q); 2048 } 2049 2050 sc->sc_flags &= ~(TULIPF_WANT_SETUP | TULIPF_DOING_SETUP); 2051 2052 /* 2053 * Mark the interface down and cancel the watchdog timer. 2054 */ 2055 ifp->if_flags &= ~IFF_RUNNING; 2056 sc->sc_if_flags = ifp->if_flags; 2057 ifp->if_timer = 0; 2058 2059 /* 2060 * Reset the chip (needed on some flavors to actually disable it). 2061 */ 2062 tlp_reset(sc); 2063 2064 if (disable) { 2065 tlp_rxdrain(sc); 2066 tlp_disable(sc); 2067 } 2068 } 2069 2070 #define SROM_EMIT(sc, x) \ 2071 do { \ 2072 TULIP_WRITE((sc), CSR_MIIROM, (x)); \ 2073 delay(2); \ 2074 } while (0) 2075 2076 /* 2077 * tlp_srom_idle: 2078 * 2079 * Put the SROM in idle state. 2080 */ 2081 static void 2082 tlp_srom_idle(struct tulip_softc *sc) 2083 { 2084 uint32_t miirom; 2085 int i; 2086 2087 miirom = MIIROM_SR; 2088 SROM_EMIT(sc, miirom); 2089 2090 miirom |= MIIROM_RD; 2091 SROM_EMIT(sc, miirom); 2092 2093 miirom |= MIIROM_SROMCS; 2094 SROM_EMIT(sc, miirom); 2095 2096 SROM_EMIT(sc, miirom | MIIROM_SROMSK); 2097 2098 /* Strobe the clock 32 times. */ 2099 for (i = 0; i < 32; i++) { 2100 SROM_EMIT(sc, miirom); 2101 SROM_EMIT(sc, miirom | MIIROM_SROMSK); 2102 } 2103 2104 SROM_EMIT(sc, miirom); 2105 2106 miirom &= ~MIIROM_SROMCS; 2107 SROM_EMIT(sc, miirom); 2108 2109 SROM_EMIT(sc, 0); 2110 } 2111 2112 /* 2113 * tlp_srom_size: 2114 * 2115 * Determine the number of address bits in the SROM. 2116 */ 2117 static int 2118 tlp_srom_size(struct tulip_softc *sc) 2119 { 2120 uint32_t miirom; 2121 int x; 2122 2123 /* Select the SROM. */ 2124 miirom = MIIROM_SR; 2125 SROM_EMIT(sc, miirom); 2126 2127 miirom |= MIIROM_RD; 2128 SROM_EMIT(sc, miirom); 2129 2130 /* Send CHIP SELECT for one clock tick. */ 2131 miirom |= MIIROM_SROMCS; 2132 SROM_EMIT(sc, miirom); 2133 2134 /* Shift in the READ opcode. */ 2135 for (x = 3; x > 0; x--) { 2136 if (TULIP_SROM_OPC_READ & (1 << (x - 1))) 2137 miirom |= MIIROM_SROMDI; 2138 else 2139 miirom &= ~MIIROM_SROMDI; 2140 SROM_EMIT(sc, miirom); 2141 SROM_EMIT(sc, miirom | MIIROM_SROMSK); 2142 SROM_EMIT(sc, miirom); 2143 } 2144 2145 /* Shift in address and look for dummy 0 bit. */ 2146 for (x = 1; x <= 12; x++) { 2147 miirom &= ~MIIROM_SROMDI; 2148 SROM_EMIT(sc, miirom); 2149 SROM_EMIT(sc, miirom | MIIROM_SROMSK); 2150 if (!TULIP_ISSET(sc, CSR_MIIROM, MIIROM_SROMDO)) 2151 break; 2152 SROM_EMIT(sc, miirom); 2153 } 2154 2155 /* Clear CHIP SELECT. */ 2156 miirom &= ~MIIROM_SROMCS; 2157 SROM_EMIT(sc, miirom); 2158 2159 /* Deselect the SROM. */ 2160 SROM_EMIT(sc, 0); 2161 2162 if (x < 4 || x > 12) { 2163 aprint_debug_dev(sc->sc_dev, "broken MicroWire interface " 2164 "detected; setting SROM size to 1Kb\n"); 2165 return 6; 2166 } else { 2167 if (tlp_srom_debug) 2168 printf("%s: SROM size is 2^%d*16 bits (%d bytes)\n", 2169 device_xname(sc->sc_dev), x, (1 << (x + 4)) >> 3); 2170 return x; 2171 } 2172 } 2173 2174 /* 2175 * tlp_read_srom: 2176 * 2177 * Read the Tulip SROM. 2178 */ 2179 int 2180 tlp_read_srom(struct tulip_softc *sc) 2181 { 2182 uint32_t miirom; 2183 uint16_t datain; 2184 int size, i, x; 2185 2186 tlp_srom_idle(sc); 2187 2188 sc->sc_srom_addrbits = tlp_srom_size(sc); 2189 if (sc->sc_srom_addrbits == 0) 2190 return 0; 2191 size = TULIP_ROM_SIZE(sc->sc_srom_addrbits); 2192 sc->sc_srom = kmem_alloc(size, KM_SLEEP); 2193 2194 /* Select the SROM. */ 2195 miirom = MIIROM_SR; 2196 SROM_EMIT(sc, miirom); 2197 2198 miirom |= MIIROM_RD; 2199 SROM_EMIT(sc, miirom); 2200 2201 for (i = 0; i < size; i += 2) { 2202 /* Send CHIP SELECT for one clock tick. */ 2203 miirom |= MIIROM_SROMCS; 2204 SROM_EMIT(sc, miirom); 2205 2206 /* Shift in the READ opcode. */ 2207 for (x = 3; x > 0; x--) { 2208 if (TULIP_SROM_OPC_READ & (1 << (x - 1))) 2209 miirom |= MIIROM_SROMDI; 2210 else 2211 miirom &= ~MIIROM_SROMDI; 2212 SROM_EMIT(sc, miirom); 2213 SROM_EMIT(sc, miirom | MIIROM_SROMSK); 2214 SROM_EMIT(sc, miirom); 2215 } 2216 2217 /* Shift in address. */ 2218 for (x = sc->sc_srom_addrbits; x > 0; x--) { 2219 if (i & (1 << x)) 2220 miirom |= MIIROM_SROMDI; 2221 else 2222 miirom &= ~MIIROM_SROMDI; 2223 SROM_EMIT(sc, miirom); 2224 SROM_EMIT(sc, miirom | MIIROM_SROMSK); 2225 SROM_EMIT(sc, miirom); 2226 } 2227 2228 /* Shift out data. */ 2229 miirom &= ~MIIROM_SROMDI; 2230 datain = 0; 2231 for (x = 16; x > 0; x--) { 2232 SROM_EMIT(sc, miirom | MIIROM_SROMSK); 2233 if (TULIP_ISSET(sc, CSR_MIIROM, MIIROM_SROMDO)) 2234 datain |= (1 << (x - 1)); 2235 SROM_EMIT(sc, miirom); 2236 } 2237 sc->sc_srom[i] = datain & 0xff; 2238 sc->sc_srom[i + 1] = datain >> 8; 2239 2240 /* Clear CHIP SELECT. */ 2241 miirom &= ~MIIROM_SROMCS; 2242 SROM_EMIT(sc, miirom); 2243 } 2244 2245 /* Deselect the SROM. */ 2246 SROM_EMIT(sc, 0); 2247 2248 /* ...and idle it. */ 2249 tlp_srom_idle(sc); 2250 2251 if (tlp_srom_debug) { 2252 printf("SROM CONTENTS:"); 2253 for (i = 0; i < size; i++) { 2254 if ((i % 8) == 0) 2255 printf("\n\t"); 2256 printf("0x%02x ", sc->sc_srom[i]); 2257 } 2258 printf("\n"); 2259 } 2260 2261 return 1; 2262 } 2263 2264 #undef SROM_EMIT 2265 2266 /* 2267 * tlp_add_rxbuf: 2268 * 2269 * Add a receive buffer to the indicated descriptor. 2270 */ 2271 static int 2272 tlp_add_rxbuf(struct tulip_softc *sc, int idx) 2273 { 2274 struct tulip_rxsoft *rxs = &sc->sc_rxsoft[idx]; 2275 struct mbuf *m; 2276 int error; 2277 2278 MGETHDR(m, M_DONTWAIT, MT_DATA); 2279 if (m == NULL) 2280 return ENOBUFS; 2281 2282 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner); 2283 MCLGET(m, M_DONTWAIT); 2284 if ((m->m_flags & M_EXT) == 0) { 2285 m_freem(m); 2286 return ENOBUFS; 2287 } 2288 2289 if (rxs->rxs_mbuf != NULL) 2290 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap); 2291 2292 rxs->rxs_mbuf = m; 2293 2294 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap, 2295 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, 2296 BUS_DMA_READ | BUS_DMA_NOWAIT); 2297 if (error) { 2298 aprint_error_dev(sc->sc_dev, 2299 "can't load rx DMA map %d, error = %d\n", idx, error); 2300 panic("tlp_add_rxbuf"); /* XXX */ 2301 } 2302 2303 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 2304 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); 2305 2306 TULIP_INIT_RXDESC(sc, idx); 2307 2308 return 0; 2309 } 2310 2311 /* 2312 * tlp_srom_crcok: 2313 * 2314 * Check the CRC of the Tulip SROM. 2315 */ 2316 int 2317 tlp_srom_crcok(const uint8_t *romdata) 2318 { 2319 uint32_t crc; 2320 2321 crc = ether_crc32_le(romdata, TULIP_ROM_CRC32_CHECKSUM); 2322 crc = (crc & 0xffff) ^ 0xffff; 2323 if (crc == TULIP_ROM_GETW(romdata, TULIP_ROM_CRC32_CHECKSUM)) 2324 return 1; 2325 2326 /* 2327 * Try an alternate checksum. 2328 */ 2329 crc = ether_crc32_le(romdata, TULIP_ROM_CRC32_CHECKSUM1); 2330 crc = (crc & 0xffff) ^ 0xffff; 2331 if (crc == TULIP_ROM_GETW(romdata, TULIP_ROM_CRC32_CHECKSUM1)) 2332 return 1; 2333 2334 return 0; 2335 } 2336 2337 /* 2338 * tlp_isv_srom: 2339 * 2340 * Check to see if the SROM is in the new standardized format. 2341 */ 2342 int 2343 tlp_isv_srom(const uint8_t *romdata) 2344 { 2345 int i; 2346 uint16_t cksum; 2347 2348 if (tlp_srom_crcok(romdata)) { 2349 /* 2350 * SROM CRC checks out; must be in the new format. 2351 */ 2352 return 1; 2353 } 2354 2355 cksum = TULIP_ROM_GETW(romdata, TULIP_ROM_CRC32_CHECKSUM); 2356 if (cksum == 0xffff || cksum == 0) { 2357 /* 2358 * No checksum present. Check the SROM ID; 18 bytes of 0 2359 * followed by 1 (version) followed by the number of 2360 * adapters which use this SROM (should be non-zero). 2361 */ 2362 for (i = 0; i < TULIP_ROM_SROM_FORMAT_VERION; i++) { 2363 if (romdata[i] != 0) 2364 return 0; 2365 } 2366 if (romdata[TULIP_ROM_SROM_FORMAT_VERION] != 1) 2367 return 0; 2368 if (romdata[TULIP_ROM_CHIP_COUNT] == 0) 2369 return 0; 2370 return 1; 2371 } 2372 2373 return 0; 2374 } 2375 2376 /* 2377 * tlp_isv_srom_enaddr: 2378 * 2379 * Get the Ethernet address from an ISV SROM. 2380 */ 2381 int 2382 tlp_isv_srom_enaddr(struct tulip_softc *sc, uint8_t *enaddr) 2383 { 2384 int i, devcnt; 2385 2386 if (tlp_isv_srom(sc->sc_srom) == 0) 2387 return 0; 2388 2389 devcnt = sc->sc_srom[TULIP_ROM_CHIP_COUNT]; 2390 for (i = 0; i < devcnt; i++) { 2391 if (sc->sc_srom[TULIP_ROM_CHIP_COUNT] == 1) 2392 break; 2393 if (sc->sc_srom[TULIP_ROM_CHIPn_DEVICE_NUMBER(i)] == 2394 sc->sc_devno) 2395 break; 2396 } 2397 2398 if (i == devcnt) 2399 return 0; 2400 2401 memcpy(enaddr, &sc->sc_srom[TULIP_ROM_IEEE_NETWORK_ADDRESS], 2402 ETHER_ADDR_LEN); 2403 enaddr[5] += i; 2404 2405 return 1; 2406 } 2407 2408 /* 2409 * tlp_parse_old_srom: 2410 * 2411 * Parse old-format SROMs. 2412 * 2413 * This routine is largely lifted from Matt Thomas's `de' driver. 2414 */ 2415 int 2416 tlp_parse_old_srom(struct tulip_softc *sc, uint8_t *enaddr) 2417 { 2418 static const uint8_t testpat[] = 2419 { 0xff, 0, 0x55, 0xaa, 0xff, 0, 0x55, 0xaa }; 2420 int i; 2421 uint32_t cksum; 2422 2423 if (memcmp(&sc->sc_srom[0], &sc->sc_srom[16], 8) != 0) { 2424 /* 2425 * Phobos G100 interfaces have the address at 2426 * offsets 0 and 20, but each pair of bytes is 2427 * swapped. 2428 */ 2429 if (sc->sc_srom_addrbits == 6 && 2430 sc->sc_srom[1] == 0x00 && 2431 sc->sc_srom[0] == 0x60 && 2432 sc->sc_srom[3] == 0xf5 && 2433 memcmp(&sc->sc_srom[0], &sc->sc_srom[20], 6) == 0) { 2434 for (i = 0; i < 6; i += 2) { 2435 enaddr[i] = sc->sc_srom[i + 1]; 2436 enaddr[i + 1] = sc->sc_srom[i]; 2437 } 2438 return 1; 2439 } 2440 2441 /* 2442 * Phobos G130/G160 interfaces have the address at 2443 * offsets 20 and 84, but each pair of bytes is 2444 * swapped. 2445 */ 2446 if (sc->sc_srom_addrbits == 6 && 2447 sc->sc_srom[21] == 0x00 && 2448 sc->sc_srom[20] == 0x60 && 2449 sc->sc_srom[23] == 0xf5 && 2450 memcmp(&sc->sc_srom[20], &sc->sc_srom[84], 6) == 0) { 2451 for (i = 0; i < 6; i += 2) { 2452 enaddr[i] = sc->sc_srom[20 + i + 1]; 2453 enaddr[i + 1] = sc->sc_srom[20 + i]; 2454 } 2455 return 1; 2456 } 2457 2458 /* 2459 * Cobalt Networks interfaces simply have the address 2460 * in the first six bytes. The rest is zeroed out 2461 * on some models, but others contain unknown data. 2462 */ 2463 if (sc->sc_srom[0] == 0x00 && 2464 sc->sc_srom[1] == 0x10 && 2465 sc->sc_srom[2] == 0xe0) { 2466 memcpy(enaddr, sc->sc_srom, ETHER_ADDR_LEN); 2467 return 1; 2468 } 2469 2470 /* 2471 * Some vendors (e.g. ZNYX) don't use the standard 2472 * DEC Address ROM format, but rather just have an 2473 * Ethernet address in the first 6 bytes, maybe a 2474 * 2 byte checksum, and then all 0xff's. 2475 */ 2476 for (i = 8; i < 32; i++) { 2477 if (sc->sc_srom[i] != 0xff && 2478 sc->sc_srom[i] != 0) 2479 return 0; 2480 } 2481 2482 /* 2483 * Sanity check the Ethernet address: 2484 * 2485 * - Make sure it's not multicast or locally 2486 * assigned 2487 * - Make sure it has a non-0 OUI 2488 */ 2489 if (sc->sc_srom[0] & 3) 2490 return 0; 2491 if (sc->sc_srom[0] == 0 && sc->sc_srom[1] == 0 && 2492 sc->sc_srom[2] == 0) 2493 return 0; 2494 2495 memcpy(enaddr, sc->sc_srom, ETHER_ADDR_LEN); 2496 return 1; 2497 } 2498 2499 /* 2500 * Standard DEC Address ROM test. 2501 */ 2502 2503 if (memcmp(&sc->sc_srom[24], testpat, 8) != 0) 2504 return 0; 2505 2506 for (i = 0; i < 8; i++) { 2507 if (sc->sc_srom[i] != sc->sc_srom[15 - i]) 2508 return 0; 2509 } 2510 2511 memcpy(enaddr, sc->sc_srom, ETHER_ADDR_LEN); 2512 2513 cksum = *(uint16_t *) &enaddr[0]; 2514 2515 cksum <<= 1; 2516 if (cksum > 0xffff) 2517 cksum -= 0xffff; 2518 2519 cksum += *(uint16_t *) &enaddr[2]; 2520 if (cksum > 0xffff) 2521 cksum -= 0xffff; 2522 2523 cksum <<= 1; 2524 if (cksum > 0xffff) 2525 cksum -= 0xffff; 2526 2527 cksum += *(uint16_t *) &enaddr[4]; 2528 if (cksum >= 0xffff) 2529 cksum -= 0xffff; 2530 2531 if (cksum != *(uint16_t *) &sc->sc_srom[6]) 2532 return 0; 2533 2534 return 1; 2535 } 2536 2537 /* 2538 * tlp_filter_setup: 2539 * 2540 * Set the Tulip's receive filter. 2541 */ 2542 static void 2543 tlp_filter_setup(struct tulip_softc *sc) 2544 { 2545 struct ethercom *ec = &sc->sc_ethercom; 2546 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 2547 struct ether_multi *enm; 2548 struct ether_multistep step; 2549 volatile uint32_t *sp; 2550 struct tulip_txsoft *txs; 2551 struct tulip_desc *txd; 2552 uint8_t enaddr[ETHER_ADDR_LEN]; 2553 uint32_t hash, hashsize; 2554 int cnt, nexttx; 2555 2556 DPRINTF(sc, ("%s: tlp_filter_setup: sc_flags 0x%08x\n", 2557 device_xname(sc->sc_dev), sc->sc_flags)); 2558 2559 memcpy(enaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN); 2560 2561 /* 2562 * If there are transmissions pending, wait until they have 2563 * completed. 2564 */ 2565 if (! SIMPLEQ_EMPTY(&sc->sc_txdirtyq) || 2566 (sc->sc_flags & TULIPF_DOING_SETUP) != 0) { 2567 sc->sc_flags |= TULIPF_WANT_SETUP; 2568 DPRINTF(sc, ("%s: tlp_filter_setup: deferring\n", 2569 device_xname(sc->sc_dev))); 2570 return; 2571 } 2572 sc->sc_flags &= ~TULIPF_WANT_SETUP; 2573 2574 switch (sc->sc_chip) { 2575 case TULIP_CHIP_82C115: 2576 hashsize = TULIP_PNICII_HASHSIZE; 2577 break; 2578 2579 default: 2580 hashsize = TULIP_MCHASHSIZE; 2581 } 2582 2583 /* 2584 * If we're running, idle the transmit and receive engines. If 2585 * we're NOT running, we're being called from tlp_init(), and our 2586 * writing OPMODE will start the transmit and receive processes 2587 * in motion. 2588 */ 2589 if (ifp->if_flags & IFF_RUNNING) 2590 tlp_idle(sc, OPMODE_ST | OPMODE_SR); 2591 2592 sc->sc_opmode &= ~(OPMODE_PR | OPMODE_PM); 2593 2594 if (ifp->if_flags & IFF_PROMISC) { 2595 sc->sc_opmode |= OPMODE_PR; 2596 goto allmulti; 2597 } 2598 2599 /* 2600 * Try Perfect filtering first. 2601 */ 2602 2603 sc->sc_filtmode = TDCTL_Tx_FT_PERFECT; 2604 sp = TULIP_CDSP(sc); 2605 memset(TULIP_CDSP(sc), 0, TULIP_SETUP_PACKET_LEN); 2606 cnt = 0; 2607 ETHER_LOCK(ec); 2608 ETHER_FIRST_MULTI(step, ec, enm); 2609 while (enm != NULL) { 2610 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { 2611 /* 2612 * We must listen to a range of multicast addresses. 2613 * For now, just accept all multicasts, rather than 2614 * trying to set only those filter bits needed to match 2615 * the range. (At this time, the only use of address 2616 * ranges is for IP multicast routing, for which the 2617 * range is big enough to require all bits set.) 2618 */ 2619 ETHER_UNLOCK(ec); 2620 goto allmulti; 2621 } 2622 if (cnt == (TULIP_MAXADDRS - 2)) { 2623 /* 2624 * We already have our multicast limit (still need 2625 * our station address and broadcast). Go to 2626 * Hash-Perfect mode. 2627 */ 2628 ETHER_UNLOCK(ec); 2629 goto hashperfect; 2630 } 2631 cnt++; 2632 *sp++ = htole32(TULIP_SP_FIELD(enm->enm_addrlo, 0)); 2633 *sp++ = htole32(TULIP_SP_FIELD(enm->enm_addrlo, 1)); 2634 *sp++ = htole32(TULIP_SP_FIELD(enm->enm_addrlo, 2)); 2635 ETHER_NEXT_MULTI(step, enm); 2636 } 2637 ETHER_UNLOCK(ec); 2638 2639 if (ifp->if_flags & IFF_BROADCAST) { 2640 /* ...and the broadcast address. */ 2641 cnt++; 2642 *sp++ = htole32(TULIP_SP_FIELD_C(0xff, 0xff)); 2643 *sp++ = htole32(TULIP_SP_FIELD_C(0xff, 0xff)); 2644 *sp++ = htole32(TULIP_SP_FIELD_C(0xff, 0xff)); 2645 } 2646 2647 /* Pad the rest with our station address. */ 2648 for (; cnt < TULIP_MAXADDRS; cnt++) { 2649 *sp++ = htole32(TULIP_SP_FIELD(enaddr, 0)); 2650 *sp++ = htole32(TULIP_SP_FIELD(enaddr, 1)); 2651 *sp++ = htole32(TULIP_SP_FIELD(enaddr, 2)); 2652 } 2653 ifp->if_flags &= ~IFF_ALLMULTI; 2654 goto setit; 2655 2656 hashperfect: 2657 /* 2658 * Try Hash-Perfect mode. 2659 */ 2660 2661 /* 2662 * Some 21140 chips have broken Hash-Perfect modes. On these 2663 * chips, we simply use Hash-Only mode, and put our station 2664 * address into the filter. 2665 */ 2666 if (sc->sc_chip == TULIP_CHIP_21140) 2667 sc->sc_filtmode = TDCTL_Tx_FT_HASHONLY; 2668 else 2669 sc->sc_filtmode = TDCTL_Tx_FT_HASH; 2670 sp = TULIP_CDSP(sc); 2671 memset(TULIP_CDSP(sc), 0, TULIP_SETUP_PACKET_LEN); 2672 ETHER_LOCK(ec); 2673 ETHER_FIRST_MULTI(step, ec, enm); 2674 while (enm != NULL) { 2675 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { 2676 /* 2677 * We must listen to a range of multicast addresses. 2678 * For now, just accept all multicasts, rather than 2679 * trying to set only those filter bits needed to match 2680 * the range. (At this time, the only use of address 2681 * ranges is for IP multicast routing, for which the 2682 * range is big enough to require all bits set.) 2683 */ 2684 ETHER_UNLOCK(ec); 2685 goto allmulti; 2686 } 2687 hash = tlp_mchash(enm->enm_addrlo, hashsize); 2688 sp[hash >> 4] |= htole32(1 << (hash & 0xf)); 2689 ETHER_NEXT_MULTI(step, enm); 2690 } 2691 ETHER_UNLOCK(ec); 2692 2693 if (ifp->if_flags & IFF_BROADCAST) { 2694 /* ...and the broadcast address. */ 2695 hash = tlp_mchash(etherbroadcastaddr, hashsize); 2696 sp[hash >> 4] |= htole32(1 << (hash & 0xf)); 2697 } 2698 2699 if (sc->sc_filtmode == TDCTL_Tx_FT_HASHONLY) { 2700 /* ...and our station address. */ 2701 hash = tlp_mchash(enaddr, hashsize); 2702 sp[hash >> 4] |= htole32(1 << (hash & 0xf)); 2703 } else { 2704 /* 2705 * Hash-Perfect mode; put our station address after 2706 * the hash table. 2707 */ 2708 sp[39] = htole32(TULIP_SP_FIELD(enaddr, 0)); 2709 sp[40] = htole32(TULIP_SP_FIELD(enaddr, 1)); 2710 sp[41] = htole32(TULIP_SP_FIELD(enaddr, 2)); 2711 } 2712 ifp->if_flags &= ~IFF_ALLMULTI; 2713 goto setit; 2714 2715 allmulti: 2716 /* 2717 * Use Perfect filter mode. First address is the broadcast address, 2718 * and pad the rest with our station address. We'll set Pass-all- 2719 * multicast in OPMODE below. 2720 */ 2721 sc->sc_filtmode = TDCTL_Tx_FT_PERFECT; 2722 sp = TULIP_CDSP(sc); 2723 memset(TULIP_CDSP(sc), 0, TULIP_SETUP_PACKET_LEN); 2724 cnt = 0; 2725 if (ifp->if_flags & IFF_BROADCAST) { 2726 cnt++; 2727 *sp++ = htole32(TULIP_SP_FIELD_C(0xff, 0xff)); 2728 *sp++ = htole32(TULIP_SP_FIELD_C(0xff, 0xff)); 2729 *sp++ = htole32(TULIP_SP_FIELD_C(0xff, 0xff)); 2730 } 2731 for (; cnt < TULIP_MAXADDRS; cnt++) { 2732 *sp++ = htole32(TULIP_SP_FIELD(enaddr, 0)); 2733 *sp++ = htole32(TULIP_SP_FIELD(enaddr, 1)); 2734 *sp++ = htole32(TULIP_SP_FIELD(enaddr, 2)); 2735 } 2736 ifp->if_flags |= IFF_ALLMULTI; 2737 2738 setit: 2739 if (ifp->if_flags & IFF_ALLMULTI) 2740 sc->sc_opmode |= OPMODE_PM; 2741 2742 /* Sync the setup packet buffer. */ 2743 TULIP_CDSPSYNC(sc, BUS_DMASYNC_PREWRITE); 2744 2745 /* 2746 * Fill in the setup packet descriptor. 2747 */ 2748 txs = SIMPLEQ_FIRST(&sc->sc_txfreeq); 2749 2750 txs->txs_firstdesc = sc->sc_txnext; 2751 txs->txs_lastdesc = sc->sc_txnext; 2752 txs->txs_ndescs = 1; 2753 txs->txs_mbuf = NULL; 2754 2755 nexttx = sc->sc_txnext; 2756 txd = &sc->sc_txdescs[nexttx & TULIP_NTXDESC_MASK /* XXXGCC12 */]; 2757 txd->td_status = 0; 2758 txd->td_bufaddr1 = htole32(TULIP_CDSPADDR(sc)); 2759 txd->td_ctl = htole32((TULIP_SETUP_PACKET_LEN << TDCTL_SIZE1_SHIFT) | 2760 sc->sc_filtmode | TDCTL_Tx_SET | sc->sc_setup_fsls | 2761 TDCTL_Tx_IC | sc->sc_tdctl_ch | 2762 (nexttx == (TULIP_NTXDESC - 1) ? sc->sc_tdctl_er : 0)); 2763 TULIP_CDTXSYNC(sc, nexttx, 1, 2764 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2765 2766 #ifdef TLP_DEBUG 2767 if (ifp->if_flags & IFF_DEBUG) { 2768 printf(" filter_setup %p transmit chain:\n", txs); 2769 printf(" descriptor %d:\n", nexttx); 2770 printf(" td_status: 0x%08x\n", le32toh(txd->td_status)); 2771 printf(" td_ctl: 0x%08x\n", le32toh(txd->td_ctl)); 2772 printf(" td_bufaddr1: 0x%08x\n", 2773 le32toh(txd->td_bufaddr1)); 2774 printf(" td_bufaddr2: 0x%08x\n", 2775 le32toh(txd->td_bufaddr2)); 2776 } 2777 #endif 2778 2779 txd->td_status = htole32(TDSTAT_OWN); 2780 TULIP_CDTXSYNC(sc, nexttx, 1, 2781 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2782 2783 /* Advance the tx pointer. */ 2784 sc->sc_txfree -= 1; 2785 sc->sc_txnext = TULIP_NEXTTX(nexttx); 2786 2787 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q); 2788 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q); 2789 2790 /* 2791 * Set the OPMODE register. This will also resume the 2792 * transmit process we idled above. 2793 */ 2794 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode); 2795 2796 sc->sc_flags |= TULIPF_DOING_SETUP; 2797 2798 /* 2799 * Kick the transmitter; this will cause the Tulip to 2800 * read the setup descriptor. 2801 */ 2802 /* XXX USE AUTOPOLLING? */ 2803 TULIP_WRITE(sc, CSR_TXPOLL, TXPOLL_TPD); 2804 2805 /* Set up a watchdog timer in case the chip flakes out. */ 2806 ifp->if_timer = 5; 2807 2808 DPRINTF(sc, ("%s: tlp_filter_setup: returning\n", 2809 device_xname(sc->sc_dev))); 2810 } 2811 2812 /* 2813 * tlp_winb_filter_setup: 2814 * 2815 * Set the Winbond 89C840F's receive filter. 2816 */ 2817 static void 2818 tlp_winb_filter_setup(struct tulip_softc *sc) 2819 { 2820 struct ethercom *ec = &sc->sc_ethercom; 2821 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 2822 struct ether_multi *enm; 2823 struct ether_multistep step; 2824 uint32_t hash, mchash[2]; 2825 2826 DPRINTF(sc, ("%s: tlp_winb_filter_setup: sc_flags 0x%08x\n", 2827 device_xname(sc->sc_dev), sc->sc_flags)); 2828 2829 sc->sc_opmode &= ~(OPMODE_WINB_APP | OPMODE_WINB_AMP |OPMODE_WINB_ABP); 2830 2831 if (ifp->if_flags & IFF_MULTICAST) 2832 sc->sc_opmode |= OPMODE_WINB_AMP; 2833 2834 if (ifp->if_flags & IFF_BROADCAST) 2835 sc->sc_opmode |= OPMODE_WINB_ABP; 2836 2837 if (ifp->if_flags & IFF_PROMISC) { 2838 sc->sc_opmode |= OPMODE_WINB_APP; 2839 goto allmulti; 2840 } 2841 2842 mchash[0] = mchash[1] = 0; 2843 2844 ETHER_FIRST_MULTI(step, ec, enm); 2845 while (enm != NULL) { 2846 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { 2847 /* 2848 * We must listen to a range of multicast addresses. 2849 * For now, just accept all multicasts, rather than 2850 * trying to set only those filter bits needed to match 2851 * the range. (At this time, the only use of address 2852 * ranges is for IP multicast routing, for which the 2853 * range is big enough to require all bits set.) 2854 */ 2855 goto allmulti; 2856 } 2857 2858 /* 2859 * According to the FreeBSD `wb' driver, yes, you 2860 * really do invert the hash. 2861 */ 2862 hash = 2863 (~(ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) >> 26)) 2864 & 0x3f; 2865 mchash[hash >> 5] |= 1 << (hash & 0x1f); 2866 ETHER_NEXT_MULTI(step, enm); 2867 } 2868 ifp->if_flags &= ~IFF_ALLMULTI; 2869 goto setit; 2870 2871 allmulti: 2872 ifp->if_flags |= IFF_ALLMULTI; 2873 mchash[0] = mchash[1] = 0xffffffff; 2874 2875 setit: 2876 TULIP_WRITE(sc, CSR_WINB_CMA0, mchash[0]); 2877 TULIP_WRITE(sc, CSR_WINB_CMA1, mchash[1]); 2878 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode); 2879 DPRINTF(sc, ("%s: tlp_winb_filter_setup: returning\n", 2880 device_xname(sc->sc_dev))); 2881 } 2882 2883 /* 2884 * tlp_al981_filter_setup: 2885 * 2886 * Set the ADMtek AL981's receive filter. 2887 */ 2888 static void 2889 tlp_al981_filter_setup(struct tulip_softc *sc) 2890 { 2891 struct ethercom *ec = &sc->sc_ethercom; 2892 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 2893 struct ether_multi *enm; 2894 struct ether_multistep step; 2895 uint32_t hash, mchash[2]; 2896 2897 /* 2898 * If the chip is running, we need to reset the interface, 2899 * and will revisit here (with IFF_RUNNING) clear. The 2900 * chip seems to really not like to have its multicast 2901 * filter programmed without a reset. 2902 */ 2903 if (ifp->if_flags & IFF_RUNNING) { 2904 (void) tlp_init(ifp); 2905 return; 2906 } 2907 2908 DPRINTF(sc, ("%s: tlp_al981_filter_setup: sc_flags 0x%08x\n", 2909 device_xname(sc->sc_dev), sc->sc_flags)); 2910 2911 sc->sc_opmode &= ~(OPMODE_PR | OPMODE_PM); 2912 2913 if (ifp->if_flags & IFF_PROMISC) { 2914 sc->sc_opmode |= OPMODE_PR; 2915 goto allmulti; 2916 } 2917 2918 mchash[0] = mchash[1] = 0; 2919 2920 ETHER_LOCK(ec); 2921 ETHER_FIRST_MULTI(step, ec, enm); 2922 while (enm != NULL) { 2923 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { 2924 /* 2925 * We must listen to a range of multicast addresses. 2926 * For now, just accept all multicasts, rather than 2927 * trying to set only those filter bits needed to match 2928 * the range. (At this time, the only use of address 2929 * ranges is for IP multicast routing, for which the 2930 * range is big enough to require all bits set.) 2931 */ 2932 ETHER_UNLOCK(ec); 2933 goto allmulti; 2934 } 2935 2936 hash = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) & 0x3f; 2937 mchash[hash >> 5] |= __BIT(hash & 0x1f); 2938 ETHER_NEXT_MULTI(step, enm); 2939 } 2940 ETHER_UNLOCK(ec); 2941 ifp->if_flags &= ~IFF_ALLMULTI; 2942 goto setit; 2943 2944 allmulti: 2945 ifp->if_flags |= IFF_ALLMULTI; 2946 mchash[0] = mchash[1] = 0xffffffff; 2947 2948 setit: 2949 bus_space_write_4(sc->sc_st, sc->sc_sh, CSR_ADM_MAR0, mchash[0]); 2950 bus_space_write_4(sc->sc_st, sc->sc_sh, CSR_ADM_MAR1, mchash[1]); 2951 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode); 2952 DPRINTF(sc, ("%s: tlp_al981_filter_setup: returning\n", 2953 device_xname(sc->sc_dev))); 2954 } 2955 2956 /* 2957 * tlp_asix_filter_setup: 2958 * 2959 * Set the ASIX AX8814x receive filter. 2960 */ 2961 static void 2962 tlp_asix_filter_setup(struct tulip_softc *sc) 2963 { 2964 struct ethercom *ec = &sc->sc_ethercom; 2965 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 2966 struct ether_multi *enm; 2967 struct ether_multistep step; 2968 uint32_t hash, mchash[2]; 2969 2970 DPRINTF(sc, ("%s: tlp_asix_filter_setup: sc_flags 0x%08x\n", 2971 device_xname(sc->sc_dev), sc->sc_flags)); 2972 2973 sc->sc_opmode &= ~(OPMODE_PM | OPMODE_AX_RB | OPMODE_PR); 2974 2975 if (ifp->if_flags & IFF_MULTICAST) 2976 sc->sc_opmode |= OPMODE_PM; 2977 2978 if (ifp->if_flags & IFF_BROADCAST) 2979 sc->sc_opmode |= OPMODE_AX_RB; 2980 2981 if (ifp->if_flags & IFF_PROMISC) { 2982 sc->sc_opmode |= OPMODE_PR; 2983 goto allmulti; 2984 } 2985 2986 mchash[0] = mchash[1] = 0; 2987 2988 ETHER_LOCK(ec); 2989 ETHER_FIRST_MULTI(step, ec, enm); 2990 while (enm != NULL) { 2991 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { 2992 /* 2993 * We must listen to a range of multicast addresses. 2994 * For now, just accept all multicasts, rather than 2995 * trying to set only those filter bits needed to match 2996 * the range. (At this time, the only use of address 2997 * ranges is for IP multicast routing, for which the 2998 * range is big enough to require all bits set.) 2999 */ 3000 ETHER_UNLOCK(ec); 3001 goto allmulti; 3002 } 3003 hash = (ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) >> 26) 3004 & 0x3f; 3005 if (hash < 32) 3006 mchash[0] |= (1 << hash); 3007 else 3008 mchash[1] |= (1 << (hash - 32)); 3009 ETHER_NEXT_MULTI(step, enm); 3010 } 3011 ETHER_UNLOCK(ec); 3012 ifp->if_flags &= ~IFF_ALLMULTI; 3013 goto setit; 3014 3015 allmulti: 3016 ifp->if_flags |= IFF_ALLMULTI; 3017 mchash[0] = mchash[1] = 0xffffffff; 3018 3019 setit: 3020 TULIP_WRITE(sc, CSR_AX_FILTIDX, AX_FILTIDX_MAR0); 3021 TULIP_WRITE(sc, CSR_AX_FILTDATA, mchash[0]); 3022 TULIP_WRITE(sc, CSR_AX_FILTIDX, AX_FILTIDX_MAR1); 3023 TULIP_WRITE(sc, CSR_AX_FILTDATA, mchash[1]); 3024 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode); 3025 DPRINTF(sc, ("%s: tlp_asix_filter_setup: returning\n", 3026 device_xname(sc->sc_dev))); 3027 } 3028 3029 3030 /* 3031 * tlp_idle: 3032 * 3033 * Cause the transmit and/or receive processes to go idle. 3034 */ 3035 void 3036 tlp_idle(struct tulip_softc *sc, uint32_t bits) 3037 { 3038 static const char * const tlp_tx_state_names[] = { 3039 "STOPPED", 3040 "RUNNING - FETCH", 3041 "RUNNING - WAIT", 3042 "RUNNING - READING", 3043 "-- RESERVED --", 3044 "RUNNING - SETUP", 3045 "SUSPENDED", 3046 "RUNNING - CLOSE", 3047 }; 3048 static const char * const tlp_rx_state_names[] = { 3049 "STOPPED", 3050 "RUNNING - FETCH", 3051 "RUNNING - CHECK", 3052 "RUNNING - WAIT", 3053 "SUSPENDED", 3054 "RUNNING - CLOSE", 3055 "RUNNING - FLUSH", 3056 "RUNNING - QUEUE", 3057 }; 3058 static const char * const dm9102_tx_state_names[] = { 3059 "STOPPED", 3060 "RUNNING - FETCH", 3061 "RUNNING - SETUP", 3062 "RUNNING - READING", 3063 "RUNNING - CLOSE - CLEAR OWNER", 3064 "RUNNING - WAIT", 3065 "RUNNING - CLOSE - WRITE STATUS", 3066 "SUSPENDED", 3067 }; 3068 static const char * const dm9102_rx_state_names[] = { 3069 "STOPPED", 3070 "RUNNING - FETCH", 3071 "RUNNING - WAIT", 3072 "RUNNING - QUEUE", 3073 "RUNNING - CLOSE - CLEAR OWNER", 3074 "RUNNING - CLOSE - WRITE STATUS", 3075 "SUSPENDED", 3076 "RUNNING - FLUSH", 3077 }; 3078 3079 const char * const *tx_state_names, * const *rx_state_names; 3080 uint32_t csr, ackmask = 0; 3081 int i; 3082 3083 switch (sc->sc_chip) { 3084 case TULIP_CHIP_DM9102: 3085 case TULIP_CHIP_DM9102A: 3086 tx_state_names = dm9102_tx_state_names; 3087 rx_state_names = dm9102_rx_state_names; 3088 break; 3089 3090 default: 3091 tx_state_names = tlp_tx_state_names; 3092 rx_state_names = tlp_rx_state_names; 3093 break; 3094 } 3095 3096 if (bits & OPMODE_ST) 3097 ackmask |= STATUS_TPS; 3098 3099 if (bits & OPMODE_SR) 3100 ackmask |= STATUS_RPS; 3101 3102 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode & ~bits); 3103 3104 for (i = 0; i < 1000; i++) { 3105 if (TULIP_ISSET(sc, CSR_STATUS, ackmask) == ackmask) 3106 break; 3107 delay(10); 3108 } 3109 3110 csr = TULIP_READ(sc, CSR_STATUS); 3111 if ((csr & ackmask) != ackmask) { 3112 if ((bits & OPMODE_ST) != 0 && (csr & STATUS_TPS) == 0 && 3113 (csr & STATUS_TS) != STATUS_TS_STOPPED) { 3114 switch (sc->sc_chip) { 3115 case TULIP_CHIP_AX88140: 3116 case TULIP_CHIP_AX88141: 3117 /* 3118 * Filter the message out on noisy chips. 3119 */ 3120 break; 3121 default: 3122 printf("%s: transmit process failed to idle: " 3123 "state %s\n", device_xname(sc->sc_dev), 3124 tx_state_names[(csr & STATUS_TS) >> 20]); 3125 } 3126 } 3127 if ((bits & OPMODE_SR) != 0 && (csr & STATUS_RPS) == 0 && 3128 (csr & STATUS_RS) != STATUS_RS_STOPPED) { 3129 switch (sc->sc_chip) { 3130 case TULIP_CHIP_AN983: 3131 case TULIP_CHIP_AN985: 3132 case TULIP_CHIP_DM9102A: 3133 case TULIP_CHIP_RS7112: 3134 /* 3135 * Filter the message out on noisy chips. 3136 */ 3137 break; 3138 default: 3139 printf("%s: receive process failed to idle: " 3140 "state %s\n", device_xname(sc->sc_dev), 3141 rx_state_names[(csr & STATUS_RS) >> 17]); 3142 } 3143 } 3144 } 3145 TULIP_WRITE(sc, CSR_STATUS, ackmask); 3146 } 3147 3148 /***************************************************************************** 3149 * Generic media support functions. 3150 *****************************************************************************/ 3151 3152 /* 3153 * tlp_mediastatus: [ifmedia interface function] 3154 * 3155 * Query the current media. 3156 */ 3157 void 3158 tlp_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) 3159 { 3160 struct tulip_softc *sc = ifp->if_softc; 3161 3162 if (TULIP_IS_ENABLED(sc) == 0) { 3163 ifmr->ifm_active = IFM_ETHER | IFM_NONE; 3164 ifmr->ifm_status = 0; 3165 return; 3166 } 3167 3168 (*sc->sc_mediasw->tmsw_get)(sc, ifmr); 3169 } 3170 3171 /* 3172 * tlp_mediachange: [ifmedia interface function] 3173 * 3174 * Update the current media. 3175 */ 3176 int 3177 tlp_mediachange(struct ifnet *ifp) 3178 { 3179 struct tulip_softc *sc = ifp->if_softc; 3180 3181 if ((ifp->if_flags & IFF_UP) == 0) 3182 return 0; 3183 return (*sc->sc_mediasw->tmsw_set)(sc); 3184 } 3185 3186 /* 3187 * tlp_ifmedia_fini: 3188 * 3189 * Wrapper around ifmedia_fini(), which frees any media-speific 3190 * data we may have associated with each entry. 3191 */ 3192 static void 3193 tlp_ifmedia_fini(struct tulip_softc *sc) 3194 { 3195 struct ifmedia_entry *ife; 3196 struct tulip_21x4x_media *tm; 3197 3198 TAILQ_FOREACH(ife, &sc->sc_mii.mii_media.ifm_list, ifm_list) { 3199 if ((tm = ife->ifm_aux) != NULL) { 3200 ife->ifm_aux = NULL; 3201 kmem_free(tm, sizeof(*tm)); 3202 } 3203 } 3204 ifmedia_fini(&sc->sc_mii.mii_media); 3205 } 3206 3207 /***************************************************************************** 3208 * Support functions for MII-attached media. 3209 *****************************************************************************/ 3210 3211 /* 3212 * tlp_mii_tick: 3213 * 3214 * One second timer, used to tick the MII. 3215 */ 3216 static void 3217 tlp_mii_tick(void *arg) 3218 { 3219 struct tulip_softc *sc = arg; 3220 int s; 3221 3222 if (!device_is_active(sc->sc_dev)) 3223 return; 3224 3225 s = splnet(); 3226 mii_tick(&sc->sc_mii); 3227 splx(s); 3228 3229 callout_reset(&sc->sc_tick_callout, hz, sc->sc_tick, sc); 3230 } 3231 3232 /* 3233 * tlp_mii_statchg: [mii interface function] 3234 * 3235 * Callback from PHY when media changes. 3236 */ 3237 static void 3238 tlp_mii_statchg(struct ifnet *ifp) 3239 { 3240 struct tulip_softc *sc = ifp->if_softc; 3241 3242 /* Idle the transmit and receive processes. */ 3243 tlp_idle(sc, OPMODE_ST | OPMODE_SR); 3244 3245 sc->sc_opmode &= ~(OPMODE_TTM | OPMODE_FD | OPMODE_HBD); 3246 3247 if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_10_T) 3248 sc->sc_opmode |= OPMODE_TTM; 3249 else 3250 sc->sc_opmode |= OPMODE_HBD; 3251 3252 if (sc->sc_mii.mii_media_active & IFM_FDX) 3253 sc->sc_opmode |= OPMODE_FD | OPMODE_HBD; 3254 3255 /* 3256 * Write new OPMODE bits. This also restarts the transmit 3257 * and receive processes. 3258 */ 3259 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode); 3260 } 3261 3262 /* 3263 * tlp_winb_mii_statchg: [mii interface function] 3264 * 3265 * Callback from PHY when media changes. This version is 3266 * for the Winbond 89C840F, which has different OPMODE bits. 3267 */ 3268 static void 3269 tlp_winb_mii_statchg(struct ifnet *ifp) 3270 { 3271 struct tulip_softc *sc = ifp->if_softc; 3272 3273 /* Idle the transmit and receive processes. */ 3274 tlp_idle(sc, OPMODE_ST | OPMODE_SR); 3275 3276 sc->sc_opmode &= ~(OPMODE_WINB_FES | OPMODE_FD); 3277 3278 if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) 3279 sc->sc_opmode |= OPMODE_WINB_FES; 3280 3281 if (sc->sc_mii.mii_media_active & IFM_FDX) 3282 sc->sc_opmode |= OPMODE_FD; 3283 3284 /* 3285 * Write new OPMODE bits. This also restarts the transmit 3286 * and receive processes. 3287 */ 3288 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode); 3289 } 3290 3291 /* 3292 * tlp_dm9102_mii_statchg: [mii interface function] 3293 * 3294 * Callback from PHY when media changes. This version is 3295 * for the DM9102. 3296 */ 3297 static void 3298 tlp_dm9102_mii_statchg(struct ifnet *ifp) 3299 { 3300 struct tulip_softc *sc = ifp->if_softc; 3301 3302 /* 3303 * Don't idle the transmit and receive processes, here. It 3304 * seems to fail, and just causes excess noise. 3305 */ 3306 sc->sc_opmode &= ~(OPMODE_TTM | OPMODE_FD); 3307 3308 if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) != IFM_100_TX) 3309 sc->sc_opmode |= OPMODE_TTM; 3310 3311 if (sc->sc_mii.mii_media_active & IFM_FDX) 3312 sc->sc_opmode |= OPMODE_FD; 3313 3314 /* 3315 * Write new OPMODE bits. 3316 */ 3317 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode); 3318 } 3319 3320 /* 3321 * tlp_mii_getmedia: 3322 * 3323 * Callback from ifmedia to request current media status. 3324 */ 3325 static void 3326 tlp_mii_getmedia(struct tulip_softc *sc, struct ifmediareq *ifmr) 3327 { 3328 struct mii_data * const mii = &sc->sc_mii; 3329 3330 mii_pollstat(mii); 3331 ifmr->ifm_status = mii->mii_media_status; 3332 ifmr->ifm_active = mii->mii_media_active; 3333 } 3334 3335 /* 3336 * tlp_mii_setmedia: 3337 * 3338 * Callback from ifmedia to request new media setting. 3339 */ 3340 static int 3341 tlp_mii_setmedia(struct tulip_softc *sc) 3342 { 3343 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 3344 int rc; 3345 3346 if ((ifp->if_flags & IFF_UP) == 0) 3347 return 0; 3348 switch (sc->sc_chip) { 3349 case TULIP_CHIP_21142: 3350 case TULIP_CHIP_21143: 3351 /* Disable the internal Nway engine. */ 3352 TULIP_WRITE(sc, CSR_SIATXRX, 0); 3353 break; 3354 3355 default: 3356 /* Nothing. */ 3357 break; 3358 } 3359 if ((rc = mii_mediachg(&sc->sc_mii)) == ENXIO) 3360 return 0; 3361 return rc; 3362 } 3363 3364 /* 3365 * tlp_bitbang_mii_readreg: 3366 * 3367 * Read a PHY register via bit-bang'ing the MII. 3368 */ 3369 static int 3370 tlp_bitbang_mii_readreg(device_t self, int phy, int reg, uint16_t *val) 3371 { 3372 struct tulip_softc *sc = device_private(self); 3373 3374 return mii_bitbang_readreg(self, sc->sc_bitbang_ops, phy, reg, val); 3375 } 3376 3377 /* 3378 * tlp_bitbang_mii_writereg: 3379 * 3380 * Write a PHY register via bit-bang'ing the MII. 3381 */ 3382 static int 3383 tlp_bitbang_mii_writereg(device_t self, int phy, int reg, uint16_t val) 3384 { 3385 struct tulip_softc *sc = device_private(self); 3386 3387 return mii_bitbang_writereg(self, sc->sc_bitbang_ops, phy, reg, val); 3388 } 3389 3390 /* 3391 * tlp_sio_mii_bitbang_read: 3392 * 3393 * Read the MII serial port for the MII bit-bang module. 3394 */ 3395 static uint32_t 3396 tlp_sio_mii_bitbang_read(device_t self) 3397 { 3398 struct tulip_softc *sc = device_private(self); 3399 3400 return TULIP_READ(sc, CSR_MIIROM); 3401 } 3402 3403 /* 3404 * tlp_sio_mii_bitbang_write: 3405 * 3406 * Write the MII serial port for the MII bit-bang module. 3407 */ 3408 static void 3409 tlp_sio_mii_bitbang_write(device_t self, uint32_t val) 3410 { 3411 struct tulip_softc *sc = device_private(self); 3412 3413 TULIP_WRITE(sc, CSR_MIIROM, val); 3414 } 3415 3416 /* 3417 * tlp_pnic_mii_readreg: 3418 * 3419 * Read a PHY register on the Lite-On PNIC. 3420 */ 3421 static int 3422 tlp_pnic_mii_readreg(device_t self, int phy, int reg, uint16_t *val) 3423 { 3424 struct tulip_softc *sc = device_private(self); 3425 uint32_t data; 3426 int i; 3427 3428 TULIP_WRITE(sc, CSR_PNIC_MII, 3429 PNIC_MII_MBO | PNIC_MII_RESERVED | 3430 PNIC_MII_READ | (phy << PNIC_MII_PHYSHIFT) | 3431 (reg << PNIC_MII_REGSHIFT)); 3432 3433 for (i = 0; i < 1000; i++) { 3434 delay(10); 3435 data = TULIP_READ(sc, CSR_PNIC_MII); 3436 if ((data & PNIC_MII_BUSY) == 0) { 3437 if ((data & PNIC_MII_DATA) == PNIC_MII_DATA) 3438 return -1; 3439 else { 3440 *val = data & PNIC_MII_DATA; 3441 return 0; 3442 } 3443 } 3444 } 3445 printf("%s: MII read timed out\n", device_xname(sc->sc_dev)); 3446 return ETIMEDOUT; 3447 } 3448 3449 /* 3450 * tlp_pnic_mii_writereg: 3451 * 3452 * Write a PHY register on the Lite-On PNIC. 3453 */ 3454 static int 3455 tlp_pnic_mii_writereg(device_t self, int phy, int reg, uint16_t val) 3456 { 3457 struct tulip_softc *sc = device_private(self); 3458 int i; 3459 3460 TULIP_WRITE(sc, CSR_PNIC_MII, 3461 PNIC_MII_MBO | PNIC_MII_RESERVED | 3462 PNIC_MII_WRITE | (phy << PNIC_MII_PHYSHIFT) | 3463 (reg << PNIC_MII_REGSHIFT) | val); 3464 3465 for (i = 0; i < 1000; i++) { 3466 delay(10); 3467 if (TULIP_ISSET(sc, CSR_PNIC_MII, PNIC_MII_BUSY) == 0) 3468 return 0; 3469 } 3470 printf("%s: MII write timed out\n", device_xname(sc->sc_dev)); 3471 return ETIMEDOUT; 3472 } 3473 3474 static const bus_addr_t tlp_al981_phy_regmap[] = { 3475 CSR_ADM_BMCR, 3476 CSR_ADM_BMSR, 3477 CSR_ADM_PHYIDR1, 3478 CSR_ADM_PHYIDR2, 3479 CSR_ADM_ANAR, 3480 CSR_ADM_ANLPAR, 3481 CSR_ADM_ANER, 3482 3483 CSR_ADM_XMC, 3484 CSR_ADM_XCIIS, 3485 CSR_ADM_XIE, 3486 CSR_ADM_100CTR, 3487 }; 3488 static const int tlp_al981_phy_regmap_size = sizeof(tlp_al981_phy_regmap) / 3489 sizeof(tlp_al981_phy_regmap[0]); 3490 3491 /* 3492 * tlp_al981_mii_readreg: 3493 * 3494 * Read a PHY register on the ADMtek AL981. 3495 */ 3496 static int 3497 tlp_al981_mii_readreg(device_t self, int phy, int reg, uint16_t *val) 3498 { 3499 struct tulip_softc *sc = device_private(self); 3500 3501 /* AL981 only has an internal PHY. */ 3502 if (phy != 0) 3503 return -1; 3504 3505 if (reg >= tlp_al981_phy_regmap_size) 3506 return -1; 3507 3508 *val = bus_space_read_4(sc->sc_st, sc->sc_sh, 3509 tlp_al981_phy_regmap[reg]) & 0xffff; 3510 return 0; 3511 } 3512 3513 /* 3514 * tlp_al981_mii_writereg: 3515 * 3516 * Write a PHY register on the ADMtek AL981. 3517 */ 3518 static int 3519 tlp_al981_mii_writereg(device_t self, int phy, int reg, uint16_t val) 3520 { 3521 struct tulip_softc *sc = device_private(self); 3522 3523 /* AL981 only has an internal PHY. */ 3524 if (phy != 0) 3525 return -1; 3526 3527 if (reg >= tlp_al981_phy_regmap_size) 3528 return -1; 3529 3530 bus_space_write_4(sc->sc_st, sc->sc_sh, 3531 tlp_al981_phy_regmap[reg], val); 3532 3533 return 0; 3534 } 3535 3536 /***************************************************************************** 3537 * Chip-specific pre-init and reset functions. 3538 *****************************************************************************/ 3539 3540 /* 3541 * tlp_2114x_preinit: 3542 * 3543 * Pre-init function shared by DECchip 21140, 21140A, 21142, and 21143. 3544 */ 3545 static void 3546 tlp_2114x_preinit(struct tulip_softc *sc) 3547 { 3548 struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur; 3549 struct tulip_21x4x_media *tm = ife->ifm_aux; 3550 3551 /* 3552 * Whether or not we're in MII or SIA/SYM mode, the media info 3553 * contains the appropriate OPMODE bits. 3554 * 3555 * Also, we always set the Must-Be-One bit. 3556 */ 3557 sc->sc_opmode |= OPMODE_MBO | tm->tm_opmode; 3558 3559 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode); 3560 } 3561 3562 /* 3563 * tlp_2114x_mii_preinit: 3564 * 3565 * Pre-init function shared by DECchip 21140, 21140A, 21142, and 21143. 3566 * This version is used by boards which only have MII and don't have 3567 * an ISV SROM. 3568 */ 3569 static void 3570 tlp_2114x_mii_preinit(struct tulip_softc *sc) 3571 { 3572 3573 /* 3574 * Always set the Must-Be-One bit, and Port Select (to select MII). 3575 * We'll never be called during a media change. 3576 */ 3577 sc->sc_opmode |= OPMODE_MBO | OPMODE_PS; 3578 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode); 3579 } 3580 3581 /* 3582 * tlp_pnic_preinit: 3583 * 3584 * Pre-init function for the Lite-On 82c168 and 82c169. 3585 */ 3586 static void 3587 tlp_pnic_preinit(struct tulip_softc *sc) 3588 { 3589 3590 if (sc->sc_flags & TULIPF_HAS_MII) { 3591 /* 3592 * MII case: just set the port-select bit; we will never 3593 * be called during a media change. 3594 */ 3595 sc->sc_opmode |= OPMODE_PS; 3596 } else { 3597 /* 3598 * ENDEC/PCS/Nway mode; enable the Tx backoff counter. 3599 */ 3600 sc->sc_opmode |= OPMODE_PNIC_TBEN; 3601 } 3602 } 3603 3604 /* 3605 * tlp_asix_preinit: 3606 * 3607 * Pre-init function for the ASIX chipsets. 3608 */ 3609 static void 3610 tlp_asix_preinit(struct tulip_softc *sc) 3611 { 3612 3613 switch (sc->sc_chip) { 3614 case TULIP_CHIP_AX88140: 3615 case TULIP_CHIP_AX88141: 3616 /* XXX Handle PHY. */ 3617 sc->sc_opmode |= OPMODE_HBD | OPMODE_PS; 3618 break; 3619 default: 3620 /* Nothing */ 3621 break; 3622 } 3623 3624 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode); 3625 } 3626 3627 /* 3628 * tlp_dm9102_preinit: 3629 * 3630 * Pre-init function for the Davicom DM9102. 3631 */ 3632 static void 3633 tlp_dm9102_preinit(struct tulip_softc *sc) 3634 { 3635 3636 switch (sc->sc_chip) { 3637 case TULIP_CHIP_DM9102: 3638 sc->sc_opmode |= OPMODE_MBO | OPMODE_HBD | OPMODE_PS; 3639 break; 3640 3641 case TULIP_CHIP_DM9102A: 3642 /* 3643 * XXX Figure out how to actually deal with the HomePNA 3644 * XXX portion of the DM9102A. 3645 */ 3646 sc->sc_opmode |= OPMODE_MBO | OPMODE_HBD; 3647 break; 3648 3649 default: 3650 /* Nothing. */ 3651 break; 3652 } 3653 3654 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode); 3655 } 3656 3657 /* 3658 * tlp_21140_reset: 3659 * 3660 * Issue a reset sequence on the 21140 via the GPIO facility. 3661 */ 3662 static void 3663 tlp_21140_reset(struct tulip_softc *sc) 3664 { 3665 struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur; 3666 struct tulip_21x4x_media *tm = ife->ifm_aux; 3667 int i; 3668 3669 /* First, set the direction on the GPIO pins. */ 3670 TULIP_WRITE(sc, CSR_GPP, GPP_GPC | sc->sc_gp_dir); 3671 3672 /* Now, issue the reset sequence. */ 3673 for (i = 0; i < tm->tm_reset_length; i++) { 3674 delay(10); 3675 TULIP_WRITE(sc, CSR_GPP, sc->sc_srom[tm->tm_reset_offset + i]); 3676 } 3677 3678 /* Now, issue the selection sequence. */ 3679 for (i = 0; i < tm->tm_gp_length; i++) { 3680 delay(10); 3681 TULIP_WRITE(sc, CSR_GPP, sc->sc_srom[tm->tm_gp_offset + i]); 3682 } 3683 3684 /* If there were no sequences, just lower the pins. */ 3685 if (tm->tm_reset_length == 0 && tm->tm_gp_length == 0) { 3686 delay(10); 3687 TULIP_WRITE(sc, CSR_GPP, 0); 3688 } 3689 } 3690 3691 /* 3692 * tlp_21142_reset: 3693 * 3694 * Issue a reset sequence on the 21142 via the GPIO facility. 3695 */ 3696 static void 3697 tlp_21142_reset(struct tulip_softc *sc) 3698 { 3699 struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur; 3700 struct tulip_21x4x_media *tm = ife->ifm_aux; 3701 const uint8_t *cp; 3702 int i; 3703 3704 cp = &sc->sc_srom[tm->tm_reset_offset]; 3705 for (i = 0; i < tm->tm_reset_length; i++, cp += 2) { 3706 delay(10); 3707 TULIP_WRITE(sc, CSR_SIAGEN, TULIP_ROM_GETW(cp, 0) << 16); 3708 } 3709 3710 cp = &sc->sc_srom[tm->tm_gp_offset]; 3711 for (i = 0; i < tm->tm_gp_length; i++, cp += 2) { 3712 delay(10); 3713 TULIP_WRITE(sc, CSR_SIAGEN, TULIP_ROM_GETW(cp, 0) << 16); 3714 } 3715 3716 /* If there were no sequences, just lower the pins. */ 3717 if (tm->tm_reset_length == 0 && tm->tm_gp_length == 0) { 3718 delay(10); 3719 TULIP_WRITE(sc, CSR_SIAGEN, 0); 3720 } 3721 } 3722 3723 /* 3724 * tlp_pmac_reset: 3725 * 3726 * Reset routine for Macronix chips. 3727 */ 3728 static void 3729 tlp_pmac_reset(struct tulip_softc *sc) 3730 { 3731 3732 switch (sc->sc_chip) { 3733 case TULIP_CHIP_82C115: 3734 case TULIP_CHIP_MX98715: 3735 case TULIP_CHIP_MX98715A: 3736 case TULIP_CHIP_MX98725: 3737 /* 3738 * Set the LED operating mode. This information is located 3739 * in the EEPROM at byte offset 0x77, per the MX98715A and 3740 * MX98725 application notes. 3741 */ 3742 TULIP_WRITE(sc, CSR_MIIROM, sc->sc_srom[0x77] << 24); 3743 break; 3744 case TULIP_CHIP_MX98715AEC_X: 3745 /* 3746 * Set the LED operating mode. This information is located 3747 * in the EEPROM at byte offset 0x76, per the MX98715AEC 3748 * application note. 3749 */ 3750 TULIP_WRITE(sc, CSR_MIIROM, ((0xf & sc->sc_srom[0x76]) << 28) 3751 | ((0xf0 & sc->sc_srom[0x76]) << 20)); 3752 break; 3753 3754 default: 3755 /* Nothing. */ 3756 break; 3757 } 3758 } 3759 3760 #if 0 3761 /* 3762 * tlp_dm9102_reset: 3763 * 3764 * Reset routine for the Davicom DM9102. 3765 */ 3766 static void 3767 tlp_dm9102_reset(struct tulip_softc *sc) 3768 { 3769 3770 TULIP_WRITE(sc, CSR_DM_PHYSTAT, DM_PHYSTAT_GEPC | DM_PHYSTAT_GPED); 3771 delay(100); 3772 TULIP_WRITE(sc, CSR_DM_PHYSTAT, 0); 3773 } 3774 #endif 3775 3776 /***************************************************************************** 3777 * Chip/board-specific media switches. The ones here are ones that 3778 * are potentially common to multiple front-ends. 3779 *****************************************************************************/ 3780 3781 /* 3782 * This table is a common place for all sorts of media information, 3783 * keyed off of the SROM media code for that media. 3784 * 3785 * Note that we explicitly configure the 21142/21143 to always advertise 3786 * NWay capabilities when using the UTP port. 3787 * XXX Actually, we don't yet. 3788 */ 3789 static const struct tulip_srom_to_ifmedia tulip_srom_to_ifmedia_table[] = { 3790 { TULIP_ROM_MB_MEDIA_TP, IFM_10_T, 0, 3791 "10baseT", 3792 OPMODE_TTM, 3793 BMSR_10THDX, 3794 { SIACONN_21040_10BASET, 3795 SIATXRX_21040_10BASET, 3796 SIAGEN_21040_10BASET }, 3797 3798 { SIACONN_21041_10BASET, 3799 SIATXRX_21041_10BASET, 3800 SIAGEN_21041_10BASET }, 3801 3802 { SIACONN_21142_10BASET, 3803 SIATXRX_21142_10BASET, 3804 SIAGEN_21142_10BASET } }, 3805 3806 { TULIP_ROM_MB_MEDIA_BNC, IFM_10_2, 0, 3807 "10base2", 3808 0, 3809 0, 3810 { 0, 3811 0, 3812 0 }, 3813 3814 { SIACONN_21041_BNC, 3815 SIATXRX_21041_BNC, 3816 SIAGEN_21041_BNC }, 3817 3818 { SIACONN_21142_BNC, 3819 SIATXRX_21142_BNC, 3820 SIAGEN_21142_BNC } }, 3821 3822 { TULIP_ROM_MB_MEDIA_AUI, IFM_10_5, 0, 3823 "10base5", 3824 0, 3825 0, 3826 { SIACONN_21040_AUI, 3827 SIATXRX_21040_AUI, 3828 SIAGEN_21040_AUI }, 3829 3830 { SIACONN_21041_AUI, 3831 SIATXRX_21041_AUI, 3832 SIAGEN_21041_AUI }, 3833 3834 { SIACONN_21142_AUI, 3835 SIATXRX_21142_AUI, 3836 SIAGEN_21142_AUI } }, 3837 3838 { TULIP_ROM_MB_MEDIA_100TX, IFM_100_TX, 0, 3839 "100baseTX", 3840 OPMODE_PS | OPMODE_PCS | OPMODE_SCR | OPMODE_HBD, 3841 BMSR_100TXHDX, 3842 { 0, 3843 0, 3844 0 }, 3845 3846 { 0, 3847 0, 3848 0 }, 3849 3850 { 0, 3851 0, 3852 SIAGEN_ABM } }, 3853 3854 { TULIP_ROM_MB_MEDIA_TP_FDX, IFM_10_T, IFM_FDX, 3855 "10baseT-FDX", 3856 OPMODE_TTM | OPMODE_FD | OPMODE_HBD, 3857 BMSR_10TFDX, 3858 { SIACONN_21040_10BASET_FDX, 3859 SIATXRX_21040_10BASET_FDX, 3860 SIAGEN_21040_10BASET_FDX }, 3861 3862 { SIACONN_21041_10BASET_FDX, 3863 SIATXRX_21041_10BASET_FDX, 3864 SIAGEN_21041_10BASET_FDX }, 3865 3866 { SIACONN_21142_10BASET_FDX, 3867 SIATXRX_21142_10BASET_FDX, 3868 SIAGEN_21142_10BASET_FDX } }, 3869 3870 { TULIP_ROM_MB_MEDIA_100TX_FDX, IFM_100_TX, IFM_FDX, 3871 "100baseTX-FDX", 3872 OPMODE_PS | OPMODE_PCS | OPMODE_SCR | OPMODE_FD | OPMODE_HBD, 3873 BMSR_100TXFDX, 3874 { 0, 3875 0, 3876 0 }, 3877 3878 { 0, 3879 0, 3880 0 }, 3881 3882 { 0, 3883 0, 3884 SIAGEN_ABM } }, 3885 3886 { TULIP_ROM_MB_MEDIA_100T4, IFM_100_T4, 0, 3887 "100baseT4", 3888 OPMODE_PS | OPMODE_PCS | OPMODE_SCR | OPMODE_HBD, 3889 BMSR_100T4, 3890 { 0, 3891 0, 3892 0 }, 3893 3894 { 0, 3895 0, 3896 0 }, 3897 3898 { 0, 3899 0, 3900 SIAGEN_ABM } }, 3901 3902 { TULIP_ROM_MB_MEDIA_100FX, IFM_100_FX, 0, 3903 "100baseFX", 3904 OPMODE_PS | OPMODE_PCS | OPMODE_HBD, 3905 0, 3906 { 0, 3907 0, 3908 0 }, 3909 3910 { 0, 3911 0, 3912 0 }, 3913 3914 { 0, 3915 0, 3916 SIAGEN_ABM } }, 3917 3918 { TULIP_ROM_MB_MEDIA_100FX_FDX, IFM_100_FX, IFM_FDX, 3919 "100baseFX-FDX", 3920 OPMODE_PS | OPMODE_PCS | OPMODE_FD | OPMODE_HBD, 3921 0, 3922 { 0, 3923 0, 3924 0 }, 3925 3926 { 0, 3927 0, 3928 0 }, 3929 3930 { 0, 3931 0, 3932 SIAGEN_ABM } }, 3933 3934 { 0, 0, 0, 3935 NULL, 3936 0, 3937 0, 3938 { 0, 3939 0, 3940 0 }, 3941 3942 { 0, 3943 0, 3944 0 }, 3945 3946 { 0, 3947 0, 3948 0 } }, 3949 }; 3950 3951 static const struct tulip_srom_to_ifmedia *tlp_srom_to_ifmedia(uint8_t); 3952 static void tlp_srom_media_info(struct tulip_softc *, 3953 const struct tulip_srom_to_ifmedia *, 3954 struct tulip_21x4x_media *); 3955 static void tlp_add_srom_media(struct tulip_softc *, int, 3956 void (*)(struct tulip_softc *, struct ifmediareq *), 3957 int (*)(struct tulip_softc *), const uint8_t *, int); 3958 static void tlp_print_media(struct tulip_softc *); 3959 static void tlp_nway_activate(struct tulip_softc *, int); 3960 static void tlp_get_minst(struct tulip_softc *); 3961 3962 static const struct tulip_srom_to_ifmedia * 3963 tlp_srom_to_ifmedia(uint8_t sm) 3964 { 3965 const struct tulip_srom_to_ifmedia *tsti; 3966 3967 for (tsti = tulip_srom_to_ifmedia_table; 3968 tsti->tsti_name != NULL; tsti++) { 3969 if (tsti->tsti_srom == sm) 3970 return tsti; 3971 } 3972 3973 return NULL; 3974 } 3975 3976 static void 3977 tlp_srom_media_info(struct tulip_softc *sc, 3978 const struct tulip_srom_to_ifmedia *tsti, struct tulip_21x4x_media *tm) 3979 { 3980 3981 tm->tm_name = tsti->tsti_name; 3982 tm->tm_opmode = tsti->tsti_opmode; 3983 3984 sc->sc_sia_cap |= tsti->tsti_sia_cap; 3985 3986 switch (sc->sc_chip) { 3987 case TULIP_CHIP_DE425: 3988 case TULIP_CHIP_21040: 3989 tm->tm_sia = tsti->tsti_21040; /* struct assignment */ 3990 break; 3991 3992 case TULIP_CHIP_21041: 3993 tm->tm_sia = tsti->tsti_21041; /* struct assignment */ 3994 break; 3995 3996 case TULIP_CHIP_21142: 3997 case TULIP_CHIP_21143: 3998 case TULIP_CHIP_82C115: 3999 case TULIP_CHIP_MX98715: 4000 case TULIP_CHIP_MX98715A: 4001 case TULIP_CHIP_MX98715AEC_X: 4002 case TULIP_CHIP_MX98725: 4003 tm->tm_sia = tsti->tsti_21142; /* struct assignment */ 4004 break; 4005 4006 default: 4007 /* Nothing. */ 4008 break; 4009 } 4010 } 4011 4012 static void 4013 tlp_add_srom_media(struct tulip_softc *sc, int type, 4014 void (*get)(struct tulip_softc *, struct ifmediareq *), 4015 int (*set)(struct tulip_softc *), const uint8_t *list, 4016 int cnt) 4017 { 4018 struct tulip_21x4x_media *tm; 4019 const struct tulip_srom_to_ifmedia *tsti; 4020 int i; 4021 4022 for (i = 0; i < cnt; i++) { 4023 tsti = tlp_srom_to_ifmedia(list[i]); 4024 tm = kmem_zalloc(sizeof(*tm), KM_SLEEP); 4025 tlp_srom_media_info(sc, tsti, tm); 4026 tm->tm_type = type; 4027 tm->tm_get = get; 4028 tm->tm_set = set; 4029 4030 ifmedia_add(&sc->sc_mii.mii_media, 4031 IFM_MAKEWORD(IFM_ETHER, tsti->tsti_subtype, 4032 tsti->tsti_options, sc->sc_tlp_minst), 0, tm); 4033 } 4034 } 4035 4036 static void 4037 tlp_print_media(struct tulip_softc *sc) 4038 { 4039 struct ifmedia_entry *ife; 4040 struct tulip_21x4x_media *tm; 4041 const char *sep = ""; 4042 4043 #define PRINT(str) aprint_normal("%s%s", sep, str); sep = ", " 4044 4045 aprint_normal_dev(sc->sc_dev, ""); 4046 TAILQ_FOREACH(ife, &sc->sc_mii.mii_media.ifm_list, ifm_list) { 4047 tm = ife->ifm_aux; 4048 if (tm == NULL) { 4049 #ifdef DIAGNOSTIC 4050 if (IFM_SUBTYPE(ife->ifm_media) != IFM_AUTO) 4051 panic("tlp_print_media"); 4052 #endif 4053 PRINT("auto"); 4054 } else if (tm->tm_type != TULIP_ROM_MB_21140_MII && 4055 tm->tm_type != TULIP_ROM_MB_21142_MII) { 4056 PRINT(tm->tm_name); 4057 } 4058 } 4059 aprint_normal("\n"); 4060 4061 #undef PRINT 4062 } 4063 4064 static void 4065 tlp_nway_activate(struct tulip_softc *sc, int media) 4066 { 4067 struct ifmedia_entry *ife; 4068 4069 ife = ifmedia_match(&sc->sc_mii.mii_media, media, 0); 4070 #ifdef DIAGNOSTIC 4071 if (ife == NULL) 4072 panic("tlp_nway_activate"); 4073 #endif 4074 sc->sc_nway_active = ife; 4075 } 4076 4077 static void 4078 tlp_get_minst(struct tulip_softc *sc) 4079 { 4080 4081 if ((sc->sc_media_seen & 4082 ~((1 << TULIP_ROM_MB_21140_MII) | 4083 (1 << TULIP_ROM_MB_21142_MII))) == 0) { 4084 /* 4085 * We have not yet seen any SIA/SYM media (but are 4086 * about to; that's why we're called!), so assign 4087 * the current media instance to be the `internal media' 4088 * instance, and advance it so any MII media gets a 4089 * fresh one (used to selecting/isolating a PHY). 4090 */ 4091 sc->sc_tlp_minst = sc->sc_mii.mii_instance++; 4092 } 4093 } 4094 4095 /* 4096 * SIA Utility functions. 4097 */ 4098 static void tlp_sia_update_link(struct tulip_softc *); 4099 static void tlp_sia_get(struct tulip_softc *, struct ifmediareq *); 4100 static int tlp_sia_set(struct tulip_softc *); 4101 static int tlp_sia_media(struct tulip_softc *, struct ifmedia_entry *); 4102 static void tlp_sia_fixup(struct tulip_softc *); 4103 4104 static void 4105 tlp_sia_update_link(struct tulip_softc *sc) 4106 { 4107 struct ifmedia_entry *ife; 4108 struct tulip_21x4x_media *tm; 4109 uint32_t siastat; 4110 4111 ife = TULIP_CURRENT_MEDIA(sc); 4112 tm = ife->ifm_aux; 4113 4114 sc->sc_flags &= ~(TULIPF_LINK_UP | TULIPF_LINK_VALID); 4115 4116 siastat = TULIP_READ(sc, CSR_SIASTAT); 4117 4118 /* 4119 * Note that when we do SIA link tests, we are assuming that 4120 * the chip is really in the mode that the current media setting 4121 * reflects. If we're not, then the link tests will not be 4122 * accurate! 4123 */ 4124 switch (IFM_SUBTYPE(ife->ifm_media)) { 4125 case IFM_10_T: 4126 sc->sc_flags |= TULIPF_LINK_VALID; 4127 if ((siastat & SIASTAT_LS10) == 0) 4128 sc->sc_flags |= TULIPF_LINK_UP; 4129 break; 4130 4131 case IFM_100_TX: 4132 case IFM_100_T4: 4133 sc->sc_flags |= TULIPF_LINK_VALID; 4134 if ((siastat & SIASTAT_LS100) == 0) 4135 sc->sc_flags |= TULIPF_LINK_UP; 4136 break; 4137 } 4138 4139 switch (sc->sc_chip) { 4140 case TULIP_CHIP_21142: 4141 case TULIP_CHIP_21143: 4142 /* 4143 * On these chips, we can tell more information about 4144 * AUI/BNC. Note that the AUI/BNC selection is made 4145 * in a different register; for our purpose, it's all 4146 * AUI. 4147 */ 4148 switch (IFM_SUBTYPE(ife->ifm_media)) { 4149 case IFM_10_2: 4150 case IFM_10_5: 4151 sc->sc_flags |= TULIPF_LINK_VALID; 4152 if (siastat & SIASTAT_ARA) { 4153 TULIP_WRITE(sc, CSR_SIASTAT, SIASTAT_ARA); 4154 sc->sc_flags |= TULIPF_LINK_UP; 4155 } 4156 break; 4157 4158 default: 4159 /* 4160 * If we're SYM media and can detect the link 4161 * via the GPIO facility, prefer that status 4162 * over LS100. 4163 */ 4164 if (tm->tm_type == TULIP_ROM_MB_21143_SYM && 4165 tm->tm_actmask != 0) { 4166 sc->sc_flags = (sc->sc_flags & 4167 ~TULIPF_LINK_UP) | TULIPF_LINK_VALID; 4168 if (TULIP_ISSET(sc, CSR_SIAGEN, 4169 tm->tm_actmask) == tm->tm_actdata) 4170 sc->sc_flags |= TULIPF_LINK_UP; 4171 } 4172 } 4173 break; 4174 4175 default: 4176 /* Nothing. */ 4177 break; 4178 } 4179 } 4180 4181 static void 4182 tlp_sia_get(struct tulip_softc *sc, struct ifmediareq *ifmr) 4183 { 4184 struct ifmedia_entry *ife; 4185 4186 ifmr->ifm_status = 0; 4187 4188 tlp_sia_update_link(sc); 4189 4190 ife = TULIP_CURRENT_MEDIA(sc); 4191 4192 if (sc->sc_flags & TULIPF_LINK_VALID) 4193 ifmr->ifm_status |= IFM_AVALID; 4194 if (sc->sc_flags & TULIPF_LINK_UP) 4195 ifmr->ifm_status |= IFM_ACTIVE; 4196 ifmr->ifm_active = ife->ifm_media; 4197 } 4198 4199 static void 4200 tlp_sia_fixup(struct tulip_softc *sc) 4201 { 4202 struct ifmedia_entry *ife; 4203 struct tulip_21x4x_media *tm; 4204 uint32_t siaconn, siatxrx, siagen; 4205 4206 switch (sc->sc_chip) { 4207 case TULIP_CHIP_82C115: 4208 case TULIP_CHIP_MX98713A: 4209 case TULIP_CHIP_MX98715: 4210 case TULIP_CHIP_MX98715A: 4211 case TULIP_CHIP_MX98715AEC_X: 4212 case TULIP_CHIP_MX98725: 4213 siaconn = PMAC_SIACONN_MASK; 4214 siatxrx = PMAC_SIATXRX_MASK; 4215 siagen = PMAC_SIAGEN_MASK; 4216 break; 4217 4218 default: 4219 /* No fixups required on any other chips. */ 4220 return; 4221 } 4222 4223 TAILQ_FOREACH(ife, &sc->sc_mii.mii_media.ifm_list, ifm_list) { 4224 tm = ife->ifm_aux; 4225 if (tm == NULL) 4226 continue; 4227 4228 tm->tm_siaconn &= siaconn; 4229 tm->tm_siatxrx &= siatxrx; 4230 tm->tm_siagen &= siagen; 4231 } 4232 } 4233 4234 static int 4235 tlp_sia_set(struct tulip_softc *sc) 4236 { 4237 4238 return tlp_sia_media(sc, TULIP_CURRENT_MEDIA(sc)); 4239 } 4240 4241 static int 4242 tlp_sia_media(struct tulip_softc *sc, struct ifmedia_entry *ife) 4243 { 4244 struct tulip_21x4x_media *tm; 4245 4246 tm = ife->ifm_aux; 4247 4248 /* 4249 * XXX This appears to be necessary on a bunch of the clone chips. 4250 */ 4251 delay(20000); 4252 4253 /* 4254 * Idle the chip. 4255 */ 4256 tlp_idle(sc, OPMODE_ST | OPMODE_SR); 4257 4258 /* 4259 * Program the SIA. It's important to write in this order, 4260 * resetting the SIA first. 4261 */ 4262 TULIP_WRITE(sc, CSR_SIACONN, 0); /* SRL bit clear */ 4263 delay(1000); 4264 4265 TULIP_WRITE(sc, CSR_SIATXRX, tm->tm_siatxrx); 4266 4267 switch (sc->sc_chip) { 4268 case TULIP_CHIP_21142: 4269 case TULIP_CHIP_21143: 4270 TULIP_WRITE(sc, CSR_SIAGEN, tm->tm_siagen | tm->tm_gpctl); 4271 TULIP_WRITE(sc, CSR_SIAGEN, tm->tm_siagen | tm->tm_gpdata); 4272 break; 4273 default: 4274 TULIP_WRITE(sc, CSR_SIAGEN, tm->tm_siagen); 4275 } 4276 4277 TULIP_WRITE(sc, CSR_SIACONN, tm->tm_siaconn); 4278 4279 /* 4280 * Set the OPMODE bits for this media and write OPMODE. 4281 * This will resume the transmit and receive processes. 4282 */ 4283 sc->sc_opmode = (sc->sc_opmode & ~OPMODE_MEDIA_BITS) | tm->tm_opmode; 4284 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode); 4285 4286 return 0; 4287 } 4288 4289 /* 4290 * 21140 GPIO utility functions. 4291 */ 4292 static void tlp_21140_gpio_update_link(struct tulip_softc *); 4293 4294 static void 4295 tlp_21140_gpio_update_link(struct tulip_softc *sc) 4296 { 4297 struct ifmedia_entry *ife; 4298 struct tulip_21x4x_media *tm; 4299 4300 ife = TULIP_CURRENT_MEDIA(sc); 4301 tm = ife->ifm_aux; 4302 4303 sc->sc_flags &= ~(TULIPF_LINK_UP | TULIPF_LINK_VALID); 4304 4305 if (tm->tm_actmask != 0) { 4306 sc->sc_flags |= TULIPF_LINK_VALID; 4307 if (TULIP_ISSET(sc, CSR_GPP, tm->tm_actmask) == 4308 tm->tm_actdata) 4309 sc->sc_flags |= TULIPF_LINK_UP; 4310 } 4311 } 4312 4313 void 4314 tlp_21140_gpio_get(struct tulip_softc *sc, struct ifmediareq *ifmr) 4315 { 4316 struct ifmedia_entry *ife; 4317 4318 ifmr->ifm_status = 0; 4319 4320 tlp_21140_gpio_update_link(sc); 4321 4322 ife = TULIP_CURRENT_MEDIA(sc); 4323 4324 if (sc->sc_flags & TULIPF_LINK_VALID) 4325 ifmr->ifm_status |= IFM_AVALID; 4326 if (sc->sc_flags & TULIPF_LINK_UP) 4327 ifmr->ifm_status |= IFM_ACTIVE; 4328 ifmr->ifm_active = ife->ifm_media; 4329 } 4330 4331 int 4332 tlp_21140_gpio_set(struct tulip_softc *sc) 4333 { 4334 struct ifmedia_entry *ife; 4335 struct tulip_21x4x_media *tm; 4336 4337 ife = TULIP_CURRENT_MEDIA(sc); 4338 tm = ife->ifm_aux; 4339 4340 /* 4341 * Idle the chip. 4342 */ 4343 tlp_idle(sc, OPMODE_ST | OPMODE_SR); 4344 4345 /* 4346 * Set the GPIO pins for this media, to flip any 4347 * relays, etc. 4348 */ 4349 TULIP_WRITE(sc, CSR_GPP, GPP_GPC | sc->sc_gp_dir); 4350 delay(10); 4351 TULIP_WRITE(sc, CSR_GPP, tm->tm_gpdata); 4352 4353 /* 4354 * Set the OPMODE bits for this media and write OPMODE. 4355 * This will resume the transmit and receive processes. 4356 */ 4357 sc->sc_opmode = (sc->sc_opmode & ~OPMODE_MEDIA_BITS) | tm->tm_opmode; 4358 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode); 4359 4360 return 0; 4361 } 4362 4363 /* 4364 * 21040 and 21041 media switches. 4365 */ 4366 static void tlp_21040_tmsw_init(struct tulip_softc *); 4367 static void tlp_21040_tp_tmsw_init(struct tulip_softc *); 4368 static void tlp_21040_auibnc_tmsw_init(struct tulip_softc *); 4369 static void tlp_21041_tmsw_init(struct tulip_softc *); 4370 4371 const struct tulip_mediasw tlp_21040_mediasw = { 4372 tlp_21040_tmsw_init, tlp_sia_get, tlp_sia_set 4373 }; 4374 4375 const struct tulip_mediasw tlp_21040_tp_mediasw = { 4376 tlp_21040_tp_tmsw_init, tlp_sia_get, tlp_sia_set 4377 }; 4378 4379 const struct tulip_mediasw tlp_21040_auibnc_mediasw = { 4380 tlp_21040_auibnc_tmsw_init, tlp_sia_get, tlp_sia_set 4381 }; 4382 4383 const struct tulip_mediasw tlp_21041_mediasw = { 4384 tlp_21041_tmsw_init, tlp_sia_get, tlp_sia_set 4385 }; 4386 4387 static void 4388 tlp_21040_tmsw_init(struct tulip_softc *sc) 4389 { 4390 struct mii_data * const mii = &sc->sc_mii; 4391 static const uint8_t media[] = { 4392 TULIP_ROM_MB_MEDIA_TP, 4393 TULIP_ROM_MB_MEDIA_TP_FDX, 4394 TULIP_ROM_MB_MEDIA_AUI, 4395 }; 4396 struct tulip_21x4x_media *tm; 4397 4398 sc->sc_ethercom.ec_mii = mii; 4399 ifmedia_init(&mii->mii_media, 0, tlp_mediachange, tlp_mediastatus); 4400 4401 tlp_add_srom_media(sc, 0, NULL, NULL, media, 3); 4402 4403 /* 4404 * No SROM type for External SIA. 4405 */ 4406 tm = kmem_zalloc(sizeof(*tm), KM_SLEEP); 4407 tm->tm_name = "manual"; 4408 tm->tm_opmode = 0; 4409 tm->tm_siaconn = SIACONN_21040_EXTSIA; 4410 tm->tm_siatxrx = SIATXRX_21040_EXTSIA; 4411 tm->tm_siagen = SIAGEN_21040_EXTSIA; 4412 ifmedia_add(&mii->mii_media, 4413 IFM_MAKEWORD(IFM_ETHER, IFM_MANUAL, 0, sc->sc_tlp_minst), 0, tm); 4414 4415 /* 4416 * XXX Autosense not yet supported. 4417 */ 4418 4419 /* XXX This should be auto-sense. */ 4420 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_10_T); 4421 4422 tlp_print_media(sc); 4423 } 4424 4425 static void 4426 tlp_21040_tp_tmsw_init(struct tulip_softc *sc) 4427 { 4428 struct mii_data * const mii = &sc->sc_mii; 4429 static const uint8_t media[] = { 4430 TULIP_ROM_MB_MEDIA_TP, 4431 TULIP_ROM_MB_MEDIA_TP_FDX, 4432 }; 4433 4434 sc->sc_ethercom.ec_mii = mii; 4435 ifmedia_init(&mii->mii_media, 0, tlp_mediachange, tlp_mediastatus); 4436 4437 tlp_add_srom_media(sc, 0, NULL, NULL, media, 2); 4438 4439 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_10_T); 4440 4441 tlp_print_media(sc); 4442 } 4443 4444 static void 4445 tlp_21040_auibnc_tmsw_init(struct tulip_softc *sc) 4446 { 4447 struct mii_data * const mii = &sc->sc_mii; 4448 static const uint8_t media[] = { 4449 TULIP_ROM_MB_MEDIA_AUI, 4450 }; 4451 4452 sc->sc_ethercom.ec_mii = mii; 4453 ifmedia_init(&mii->mii_media, 0, tlp_mediachange, tlp_mediastatus); 4454 4455 tlp_add_srom_media(sc, 0, NULL, NULL, media, 1); 4456 4457 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_10_5); 4458 4459 tlp_print_media(sc); 4460 } 4461 4462 static void 4463 tlp_21041_tmsw_init(struct tulip_softc *sc) 4464 { 4465 struct mii_data * const mii = &sc->sc_mii; 4466 static const uint8_t media[] = { 4467 TULIP_ROM_MB_MEDIA_TP, 4468 TULIP_ROM_MB_MEDIA_TP_FDX, 4469 TULIP_ROM_MB_MEDIA_BNC, 4470 TULIP_ROM_MB_MEDIA_AUI, 4471 }; 4472 int i, defmedia, devcnt, leaf_offset, mb_offset, m_cnt; 4473 const struct tulip_srom_to_ifmedia *tsti; 4474 struct tulip_21x4x_media *tm; 4475 uint16_t romdef; 4476 uint8_t mb; 4477 4478 sc->sc_ethercom.ec_mii = mii; 4479 ifmedia_init(&mii->mii_media, 0, tlp_mediachange, tlp_mediastatus); 4480 4481 if (tlp_isv_srom(sc->sc_srom) == 0) { 4482 not_isv_srom: 4483 /* 4484 * If we have a board without the standard 21041 SROM format, 4485 * we just assume all media are present and try and pick a 4486 * reasonable default. 4487 */ 4488 tlp_add_srom_media(sc, 0, NULL, NULL, media, 4); 4489 4490 /* 4491 * XXX Autosense not yet supported. 4492 */ 4493 4494 /* XXX This should be auto-sense. */ 4495 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_10_T); 4496 4497 tlp_print_media(sc); 4498 return; 4499 } 4500 4501 devcnt = sc->sc_srom[TULIP_ROM_CHIP_COUNT]; 4502 for (i = 0; i < devcnt; i++) { 4503 if (sc->sc_srom[TULIP_ROM_CHIP_COUNT] == 1) 4504 break; 4505 if (sc->sc_srom[TULIP_ROM_CHIPn_DEVICE_NUMBER(i)] == 4506 sc->sc_devno) 4507 break; 4508 } 4509 4510 if (i == devcnt) 4511 goto not_isv_srom; 4512 4513 leaf_offset = TULIP_ROM_GETW(sc->sc_srom, 4514 TULIP_ROM_CHIPn_INFO_LEAF_OFFSET(i)); 4515 mb_offset = leaf_offset + TULIP_ROM_IL_MEDIAn_BLOCK_BASE; 4516 m_cnt = sc->sc_srom[leaf_offset + TULIP_ROM_IL_MEDIA_COUNT]; 4517 4518 for (; m_cnt != 0; 4519 m_cnt--, mb_offset += TULIP_ROM_MB_SIZE(mb)) { 4520 mb = sc->sc_srom[mb_offset]; 4521 tm = kmem_zalloc(sizeof(*tm), KM_SLEEP); 4522 switch (mb & TULIP_ROM_MB_MEDIA_CODE) { 4523 case TULIP_ROM_MB_MEDIA_TP_FDX: 4524 case TULIP_ROM_MB_MEDIA_TP: 4525 case TULIP_ROM_MB_MEDIA_BNC: 4526 case TULIP_ROM_MB_MEDIA_AUI: 4527 tsti = tlp_srom_to_ifmedia(mb & 4528 TULIP_ROM_MB_MEDIA_CODE); 4529 4530 tlp_srom_media_info(sc, tsti, tm); 4531 4532 /* 4533 * Override our default SIA settings if the 4534 * SROM contains its own. 4535 */ 4536 if (mb & TULIP_ROM_MB_EXT) { 4537 tm->tm_siaconn = TULIP_ROM_GETW(sc->sc_srom, 4538 mb_offset + TULIP_ROM_MB_CSR13); 4539 tm->tm_siatxrx = TULIP_ROM_GETW(sc->sc_srom, 4540 mb_offset + TULIP_ROM_MB_CSR14); 4541 tm->tm_siagen = TULIP_ROM_GETW(sc->sc_srom, 4542 mb_offset + TULIP_ROM_MB_CSR15); 4543 } 4544 4545 ifmedia_add(&mii->mii_media, 4546 IFM_MAKEWORD(IFM_ETHER, tsti->tsti_subtype, 4547 tsti->tsti_options, sc->sc_tlp_minst), 0, tm); 4548 break; 4549 4550 default: 4551 aprint_error_dev(sc->sc_dev, 4552 "unknown media code 0x%02x\n", 4553 mb & TULIP_ROM_MB_MEDIA_CODE); 4554 free(tm, M_DEVBUF); 4555 } 4556 } 4557 4558 /* 4559 * XXX Autosense not yet supported. 4560 */ 4561 4562 romdef = TULIP_ROM_GETW(sc->sc_srom, leaf_offset + 4563 TULIP_ROM_IL_SELECT_CONN_TYPE); 4564 switch (romdef) { 4565 case SELECT_CONN_TYPE_TP: 4566 case SELECT_CONN_TYPE_TP_AUTONEG: 4567 case SELECT_CONN_TYPE_TP_NOLINKPASS: 4568 defmedia = IFM_ETHER | IFM_10_T; 4569 break; 4570 4571 case SELECT_CONN_TYPE_TP_FDX: 4572 defmedia = IFM_ETHER | IFM_10_T | IFM_FDX; 4573 break; 4574 4575 case SELECT_CONN_TYPE_BNC: 4576 defmedia = IFM_ETHER | IFM_10_2; 4577 break; 4578 4579 case SELECT_CONN_TYPE_AUI: 4580 defmedia = IFM_ETHER | IFM_10_5; 4581 break; 4582 #if 0 /* XXX */ 4583 case SELECT_CONN_TYPE_ASENSE: 4584 case SELECT_CONN_TYPE_ASENSE_AUTONEG: 4585 defmedia = IFM_ETHER | IFM_AUTO; 4586 break; 4587 #endif 4588 default: 4589 defmedia = 0; 4590 } 4591 4592 if (defmedia == 0) { 4593 /* 4594 * XXX We should default to auto-sense. 4595 */ 4596 defmedia = IFM_ETHER | IFM_10_T; 4597 } 4598 4599 ifmedia_set(&mii->mii_media, defmedia); 4600 4601 tlp_print_media(sc); 4602 } 4603 4604 /* 4605 * DECchip 2114x ISV media switch. 4606 */ 4607 static void tlp_2114x_isv_tmsw_init(struct tulip_softc *); 4608 static void tlp_2114x_isv_tmsw_get(struct tulip_softc *, 4609 struct ifmediareq *); 4610 static int tlp_2114x_isv_tmsw_set(struct tulip_softc *); 4611 4612 const struct tulip_mediasw tlp_2114x_isv_mediasw = { 4613 tlp_2114x_isv_tmsw_init, tlp_2114x_isv_tmsw_get, tlp_2114x_isv_tmsw_set 4614 }; 4615 4616 static void tlp_2114x_nway_get(struct tulip_softc *, struct ifmediareq *); 4617 static int tlp_2114x_nway_set(struct tulip_softc *); 4618 4619 static void tlp_2114x_nway_statchg(struct ifnet *); 4620 static int tlp_2114x_nway_service(struct tulip_softc *, int); 4621 static void tlp_2114x_nway_auto(struct tulip_softc *); 4622 static void tlp_2114x_nway_status(struct tulip_softc *); 4623 4624 static void 4625 tlp_2114x_isv_tmsw_init(struct tulip_softc *sc) 4626 { 4627 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 4628 struct mii_data * const mii = &sc->sc_mii; 4629 struct ifmedia_entry *ife; 4630 struct mii_softc *phy; 4631 struct tulip_21x4x_media *tm; 4632 const struct tulip_srom_to_ifmedia *tsti; 4633 int i, devcnt, leaf_offset, m_cnt, type, length; 4634 int defmedia, miidef; 4635 uint16_t word; 4636 uint8_t *cp, *ncp; 4637 4638 defmedia = miidef = 0; 4639 4640 mii->mii_ifp = ifp; 4641 mii->mii_readreg = tlp_bitbang_mii_readreg; 4642 mii->mii_writereg = tlp_bitbang_mii_writereg; 4643 mii->mii_statchg = sc->sc_statchg; 4644 sc->sc_ethercom.ec_mii = mii; 4645 4646 /* 4647 * Ignore `instance'; we may get a mixture of SIA and MII 4648 * media, and `instance' is used to isolate or select the 4649 * PHY on the MII as appropriate. Note that duplicate media 4650 * are disallowed, so ignoring `instance' is safe. 4651 */ 4652 ifmedia_init(&mii->mii_media, IFM_IMASK, tlp_mediachange, 4653 tlp_mediastatus); 4654 4655 devcnt = sc->sc_srom[TULIP_ROM_CHIP_COUNT]; 4656 for (i = 0; i < devcnt; i++) { 4657 if (sc->sc_srom[TULIP_ROM_CHIP_COUNT] == 1) 4658 break; 4659 if (sc->sc_srom[TULIP_ROM_CHIPn_DEVICE_NUMBER(i)] == 4660 sc->sc_devno) 4661 break; 4662 } 4663 4664 if (i == devcnt) { 4665 aprint_error_dev(sc->sc_dev, 4666 "unable to locate info leaf in SROM\n"); 4667 return; 4668 } 4669 4670 leaf_offset = TULIP_ROM_GETW(sc->sc_srom, 4671 TULIP_ROM_CHIPn_INFO_LEAF_OFFSET(i)); 4672 4673 /* XXX SELECT CONN TYPE */ 4674 4675 cp = &sc->sc_srom[leaf_offset + TULIP_ROM_IL_MEDIA_COUNT]; 4676 4677 /* 4678 * On some chips, the first thing in the Info Leaf is the 4679 * GPIO pin direction data. 4680 */ 4681 switch (sc->sc_chip) { 4682 case TULIP_CHIP_21140: 4683 case TULIP_CHIP_21140A: 4684 case TULIP_CHIP_MX98713: 4685 case TULIP_CHIP_AX88140: 4686 case TULIP_CHIP_AX88141: 4687 sc->sc_gp_dir = *cp++; 4688 break; 4689 4690 default: 4691 /* Nothing. */ 4692 break; 4693 } 4694 4695 /* Get the media count. */ 4696 m_cnt = *cp++; 4697 4698 if (m_cnt == 0) { 4699 sc->sc_mediasw = &tlp_sio_mii_mediasw; 4700 (*sc->sc_mediasw->tmsw_init)(sc); 4701 return; 4702 } 4703 4704 for (; m_cnt != 0; cp = ncp, m_cnt--) { 4705 /* 4706 * Determine the type and length of this media block. 4707 * The 21143 is spec'd to always use extended format blocks, 4708 * but some cards don't set the bit to indicate this. 4709 * Hopefully there are no cards which really don't use 4710 * extended format blocks. 4711 */ 4712 if ((*cp & 0x80) == 0 && sc->sc_chip != TULIP_CHIP_21143) { 4713 length = 4; 4714 type = TULIP_ROM_MB_21140_GPR; 4715 } else { 4716 length = (*cp++ & 0x7f) - 1; 4717 type = *cp++ & 0x3f; 4718 } 4719 4720 /* Compute the start of the next block. */ 4721 ncp = cp + length; 4722 4723 /* Now, parse the block. */ 4724 switch (type) { 4725 case TULIP_ROM_MB_21140_GPR: 4726 tlp_get_minst(sc); 4727 sc->sc_media_seen |= 1 << TULIP_ROM_MB_21140_GPR; 4728 4729 tm = kmem_zalloc(sizeof(*tm), KM_SLEEP); 4730 4731 tm->tm_type = TULIP_ROM_MB_21140_GPR; 4732 tm->tm_get = tlp_21140_gpio_get; 4733 tm->tm_set = tlp_21140_gpio_set; 4734 4735 /* First is the media type code. */ 4736 tsti = tlp_srom_to_ifmedia(cp[0] & 4737 TULIP_ROM_MB_MEDIA_CODE); 4738 if (tsti == NULL) { 4739 /* Invalid media code. */ 4740 free(tm, M_DEVBUF); 4741 break; 4742 } 4743 4744 /* Get defaults. */ 4745 tlp_srom_media_info(sc, tsti, tm); 4746 4747 /* Next is any GPIO info for this media. */ 4748 tm->tm_gpdata = cp[1]; 4749 4750 /* 4751 * Next is a word containing OPMODE information 4752 * and info on how to detect if this media is 4753 * active. 4754 */ 4755 word = TULIP_ROM_GETW(cp, 2); 4756 tm->tm_opmode &= OPMODE_FD; 4757 tm->tm_opmode |= TULIP_ROM_MB_OPMODE(word); 4758 if ((word & TULIP_ROM_MB_NOINDICATOR) == 0) { 4759 tm->tm_actmask = 4760 TULIP_ROM_MB_BITPOS(word); 4761 tm->tm_actdata = 4762 (word & TULIP_ROM_MB_POLARITY) ? 4763 0 : tm->tm_actmask; 4764 } 4765 4766 ifmedia_add(&mii->mii_media, 4767 IFM_MAKEWORD(IFM_ETHER, tsti->tsti_subtype, 4768 tsti->tsti_options, sc->sc_tlp_minst), 0, tm); 4769 break; 4770 4771 case TULIP_ROM_MB_21140_MII: 4772 sc->sc_media_seen |= 1 << TULIP_ROM_MB_21140_MII; 4773 4774 tm = kmem_zalloc(sizeof(*tm), KM_SLEEP); 4775 4776 tm->tm_type = TULIP_ROM_MB_21140_MII; 4777 tm->tm_get = tlp_mii_getmedia; 4778 tm->tm_set = tlp_mii_setmedia; 4779 tm->tm_opmode = OPMODE_PS; 4780 4781 if (sc->sc_reset == NULL) 4782 sc->sc_reset = tlp_21140_reset; 4783 4784 /* First is the PHY number. */ 4785 tm->tm_phyno = *cp++; 4786 4787 /* Next is the MII select sequence length and offset. */ 4788 tm->tm_gp_length = *cp++; 4789 tm->tm_gp_offset = cp - &sc->sc_srom[0]; 4790 cp += tm->tm_gp_length; 4791 4792 /* Next is the MII reset sequence length and offset. */ 4793 tm->tm_reset_length = *cp++; 4794 tm->tm_reset_offset = cp - &sc->sc_srom[0]; 4795 cp += tm->tm_reset_length; 4796 4797 /* 4798 * The following items are left in the media block 4799 * that we don't particularly care about: 4800 * 4801 * capabilities W 4802 * advertisement W 4803 * full duplex W 4804 * tx threshold W 4805 * 4806 * These appear to be bits in the PHY registers, 4807 * which our MII code handles on its own. 4808 */ 4809 4810 /* 4811 * Before we probe the MII bus, we need to reset 4812 * it and issue the selection sequence. 4813 */ 4814 4815 /* Set the direction of the pins... */ 4816 TULIP_WRITE(sc, CSR_GPP, GPP_GPC | sc->sc_gp_dir); 4817 4818 for (i = 0; i < tm->tm_reset_length; i++) { 4819 delay(10); 4820 TULIP_WRITE(sc, CSR_GPP, 4821 sc->sc_srom[tm->tm_reset_offset + i]); 4822 } 4823 4824 for (i = 0; i < tm->tm_gp_length; i++) { 4825 delay(10); 4826 TULIP_WRITE(sc, CSR_GPP, 4827 sc->sc_srom[tm->tm_gp_offset + i]); 4828 } 4829 4830 /* If there were no sequences, just lower the pins. */ 4831 if (tm->tm_reset_length == 0 && tm->tm_gp_length == 0) { 4832 delay(10); 4833 TULIP_WRITE(sc, CSR_GPP, 0); 4834 } 4835 4836 /* 4837 * Now, probe the MII for the PHY. Note, we know 4838 * the location of the PHY on the bus, but we don't 4839 * particularly care; the MII code just likes to 4840 * search the whole thing anyhow. 4841 */ 4842 mii_attach(sc->sc_dev, mii, 0xffffffff, 4843 MII_PHY_ANY, tm->tm_phyno, 0); 4844 4845 /* 4846 * Now, search for the PHY we hopefully just 4847 * configured. If it's not configured into the 4848 * kernel, we lose. The PHY's default media always 4849 * takes priority. 4850 */ 4851 LIST_FOREACH(phy, &mii->mii_phys, mii_list) { 4852 if (phy->mii_offset == tm->tm_phyno) 4853 break; 4854 } 4855 if (phy == NULL) { 4856 aprint_error_dev(sc->sc_dev, 4857 "unable to configure MII\n"); 4858 break; 4859 } 4860 4861 sc->sc_flags |= TULIPF_HAS_MII; 4862 sc->sc_tick = tlp_mii_tick; 4863 miidef = IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0, 4864 phy->mii_inst); 4865 4866 /* 4867 * Okay, now that we've found the PHY and the MII 4868 * layer has added all of the media associated 4869 * with that PHY, we need to traverse the media 4870 * list, and add our `tm' to each entry's `aux' 4871 * pointer. 4872 * 4873 * We do this by looking for media with our 4874 * PHY's `instance'. 4875 */ 4876 TAILQ_FOREACH(ife, &mii->mii_media.ifm_list, 4877 ifm_list) { 4878 if (IFM_INST(ife->ifm_media) != phy->mii_inst) 4879 continue; 4880 ife->ifm_aux = tm; 4881 } 4882 break; 4883 4884 case TULIP_ROM_MB_21142_SIA: 4885 tlp_get_minst(sc); 4886 sc->sc_media_seen |= 1 << TULIP_ROM_MB_21142_SIA; 4887 4888 tm = kmem_zalloc(sizeof(*tm), KM_SLEEP); 4889 4890 tm->tm_type = TULIP_ROM_MB_21142_SIA; 4891 tm->tm_get = tlp_sia_get; 4892 tm->tm_set = tlp_sia_set; 4893 4894 /* First is the media type code. */ 4895 tsti = tlp_srom_to_ifmedia(cp[0] & 4896 TULIP_ROM_MB_MEDIA_CODE); 4897 if (tsti == NULL) { 4898 /* Invalid media code. */ 4899 free(tm, M_DEVBUF); 4900 break; 4901 } 4902 4903 /* Get defaults. */ 4904 tlp_srom_media_info(sc, tsti, tm); 4905 4906 /* 4907 * Override our default SIA settings if the 4908 * SROM contains its own. 4909 */ 4910 if (cp[0] & 0x40) { 4911 tm->tm_siaconn = TULIP_ROM_GETW(cp, 1); 4912 tm->tm_siatxrx = TULIP_ROM_GETW(cp, 3); 4913 tm->tm_siagen = TULIP_ROM_GETW(cp, 5); 4914 cp += 7; 4915 } else 4916 cp++; 4917 4918 /* Next is GPIO control/data. */ 4919 tm->tm_gpctl = TULIP_ROM_GETW(cp, 0) << 16; 4920 tm->tm_gpdata = TULIP_ROM_GETW(cp, 2) << 16; 4921 4922 ifmedia_add(&mii->mii_media, 4923 IFM_MAKEWORD(IFM_ETHER, tsti->tsti_subtype, 4924 tsti->tsti_options, sc->sc_tlp_minst), 0, tm); 4925 break; 4926 4927 case TULIP_ROM_MB_21142_MII: 4928 sc->sc_media_seen |= 1 << TULIP_ROM_MB_21142_MII; 4929 4930 tm = kmem_zalloc(sizeof(*tm), KM_SLEEP); 4931 4932 tm->tm_type = TULIP_ROM_MB_21142_MII; 4933 tm->tm_get = tlp_mii_getmedia; 4934 tm->tm_set = tlp_mii_setmedia; 4935 tm->tm_opmode = OPMODE_PS; 4936 4937 if (sc->sc_reset == NULL) 4938 sc->sc_reset = tlp_21142_reset; 4939 4940 /* First is the PHY number. */ 4941 tm->tm_phyno = *cp++; 4942 4943 /* Next is the MII select sequence length and offset. */ 4944 tm->tm_gp_length = *cp++; 4945 tm->tm_gp_offset = cp - &sc->sc_srom[0]; 4946 cp += tm->tm_gp_length * 2; 4947 4948 /* Next is the MII reset sequence length and offset. */ 4949 tm->tm_reset_length = *cp++; 4950 tm->tm_reset_offset = cp - &sc->sc_srom[0]; 4951 cp += tm->tm_reset_length * 2; 4952 4953 /* 4954 * The following items are left in the media block 4955 * that we don't particularly care about: 4956 * 4957 * capabilities W 4958 * advertisement W 4959 * full duplex W 4960 * tx threshold W 4961 * MII interrupt W 4962 * 4963 * These appear to be bits in the PHY registers, 4964 * which our MII code handles on its own. 4965 */ 4966 4967 /* 4968 * Before we probe the MII bus, we need to reset 4969 * it and issue the selection sequence. 4970 */ 4971 4972 cp = &sc->sc_srom[tm->tm_reset_offset]; 4973 for (i = 0; i < tm->tm_reset_length; i++, cp += 2) { 4974 delay(10); 4975 TULIP_WRITE(sc, CSR_SIAGEN, 4976 TULIP_ROM_GETW(cp, 0) << 16); 4977 } 4978 4979 cp = &sc->sc_srom[tm->tm_gp_offset]; 4980 for (i = 0; i < tm->tm_gp_length; i++, cp += 2) { 4981 delay(10); 4982 TULIP_WRITE(sc, CSR_SIAGEN, 4983 TULIP_ROM_GETW(cp, 0) << 16); 4984 } 4985 4986 /* If there were no sequences, just lower the pins. */ 4987 if (tm->tm_reset_length == 0 && tm->tm_gp_length == 0) { 4988 delay(10); 4989 TULIP_WRITE(sc, CSR_SIAGEN, 0); 4990 } 4991 4992 /* 4993 * Now, probe the MII for the PHY. Note, we know 4994 * the location of the PHY on the bus, but we don't 4995 * particularly care; the MII code just likes to 4996 * search the whole thing anyhow. 4997 */ 4998 mii_attach(sc->sc_dev, mii, 0xffffffff, 4999 MII_PHY_ANY, tm->tm_phyno, 0); 5000 5001 /* 5002 * Now, search for the PHY we hopefully just 5003 * configured. If it's not configured into the 5004 * kernel, we lose. The PHY's default media always 5005 * takes priority. 5006 */ 5007 LIST_FOREACH(phy, &mii->mii_phys, mii_list) { 5008 if (phy->mii_offset == tm->tm_phyno) 5009 break; 5010 } 5011 if (phy == NULL) { 5012 aprint_error_dev(sc->sc_dev, 5013 "unable to configure MII\n"); 5014 break; 5015 } 5016 5017 sc->sc_flags |= TULIPF_HAS_MII; 5018 sc->sc_tick = tlp_mii_tick; 5019 miidef = IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0, 5020 phy->mii_inst); 5021 5022 /* 5023 * Okay, now that we've found the PHY and the MII 5024 * layer has added all of the media associated 5025 * with that PHY, we need to traverse the media 5026 * list, and add our `tm' to each entry's `aux' 5027 * pointer. 5028 * 5029 * We do this by looking for media with our 5030 * PHY's `instance'. 5031 */ 5032 TAILQ_FOREACH(ife, &mii->mii_media.ifm_list, 5033 ifm_list) { 5034 if (IFM_INST(ife->ifm_media) != phy->mii_inst) 5035 continue; 5036 ife->ifm_aux = tm; 5037 } 5038 break; 5039 5040 case TULIP_ROM_MB_21143_SYM: 5041 tlp_get_minst(sc); 5042 sc->sc_media_seen |= 1 << TULIP_ROM_MB_21143_SYM; 5043 5044 tm = kmem_zalloc(sizeof(*tm), KM_SLEEP); 5045 5046 tm->tm_type = TULIP_ROM_MB_21143_SYM; 5047 tm->tm_get = tlp_sia_get; 5048 tm->tm_set = tlp_sia_set; 5049 5050 /* First is the media type code. */ 5051 tsti = tlp_srom_to_ifmedia(cp[0] & 5052 TULIP_ROM_MB_MEDIA_CODE); 5053 if (tsti == NULL) { 5054 /* Invalid media code. */ 5055 free(tm, M_DEVBUF); 5056 break; 5057 } 5058 5059 /* Get defaults. */ 5060 tlp_srom_media_info(sc, tsti, tm); 5061 5062 /* Next is GPIO control/data. */ 5063 tm->tm_gpctl = TULIP_ROM_GETW(cp, 1) << 16; 5064 tm->tm_gpdata = TULIP_ROM_GETW(cp, 3) << 16; 5065 5066 /* 5067 * Next is a word containing OPMODE information 5068 * and info on how to detect if this media is 5069 * active. 5070 */ 5071 word = TULIP_ROM_GETW(cp, 5); 5072 tm->tm_opmode &= OPMODE_FD; 5073 tm->tm_opmode |= TULIP_ROM_MB_OPMODE(word); 5074 if ((word & TULIP_ROM_MB_NOINDICATOR) == 0) { 5075 tm->tm_actmask = 5076 TULIP_ROM_MB_BITPOS(word); 5077 tm->tm_actdata = 5078 (word & TULIP_ROM_MB_POLARITY) ? 5079 0 : tm->tm_actmask; 5080 } 5081 5082 ifmedia_add(&mii->mii_media, 5083 IFM_MAKEWORD(IFM_ETHER, tsti->tsti_subtype, 5084 tsti->tsti_options, sc->sc_tlp_minst), 0, tm); 5085 break; 5086 5087 case TULIP_ROM_MB_21143_RESET: 5088 aprint_normal_dev(sc->sc_dev, "21143 reset block\n"); 5089 break; 5090 5091 default: 5092 aprint_error_dev(sc->sc_dev, 5093 "unknown ISV media block type 0x%02x\n", type); 5094 } 5095 } 5096 5097 /* 5098 * Deal with the case where no media is configured. 5099 */ 5100 if (TAILQ_FIRST(&mii->mii_media.ifm_list) == NULL) { 5101 aprint_error_dev(sc->sc_dev, "no media found!\n"); 5102 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL); 5103 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE); 5104 return; 5105 } 5106 5107 /* 5108 * Pick the default media. 5109 */ 5110 if (miidef != 0) 5111 defmedia = miidef; 5112 else { 5113 switch (sc->sc_chip) { 5114 case TULIP_CHIP_21140: 5115 case TULIP_CHIP_21140A: 5116 /* XXX should come from SROM */ 5117 defmedia = IFM_MAKEWORD(IFM_ETHER, IFM_10_T, 0, 0); 5118 if (ifmedia_match(&mii->mii_media, defmedia, 5119 mii->mii_media.ifm_mask) == NULL) { 5120 /* 5121 * There is not a 10baseT media. 5122 * Fall back to the first found one. 5123 */ 5124 ife = TAILQ_FIRST(&mii->mii_media.ifm_list); 5125 defmedia = ife->ifm_media; 5126 } 5127 break; 5128 5129 case TULIP_CHIP_21142: 5130 case TULIP_CHIP_21143: 5131 case TULIP_CHIP_MX98713A: 5132 case TULIP_CHIP_MX98715: 5133 case TULIP_CHIP_MX98715A: 5134 case TULIP_CHIP_MX98715AEC_X: 5135 case TULIP_CHIP_MX98725: 5136 tm = kmem_zalloc(sizeof(*tm), KM_SLEEP); 5137 tm->tm_name = "auto"; 5138 tm->tm_get = tlp_2114x_nway_get; 5139 tm->tm_set = tlp_2114x_nway_set; 5140 5141 defmedia = IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0, 0); 5142 ifmedia_add(&mii->mii_media, defmedia, 0, tm); 5143 5144 sc->sc_statchg = tlp_2114x_nway_statchg; 5145 sc->sc_tick = tlp_2114x_nway_tick; 5146 break; 5147 5148 default: 5149 defmedia = IFM_MAKEWORD(IFM_ETHER, IFM_10_T, 0, 0); 5150 break; 5151 } 5152 } 5153 5154 ifmedia_set(&mii->mii_media, defmedia); 5155 5156 /* 5157 * Display any non-MII media we've located. 5158 */ 5159 if (sc->sc_media_seen & 5160 ~((1 << TULIP_ROM_MB_21140_MII) | (1 << TULIP_ROM_MB_21142_MII))) 5161 tlp_print_media(sc); 5162 5163 tlp_sia_fixup(sc); 5164 } 5165 5166 static void 5167 tlp_2114x_nway_get(struct tulip_softc *sc, struct ifmediareq *ifmr) 5168 { 5169 5170 (void) tlp_2114x_nway_service(sc, MII_POLLSTAT); 5171 ifmr->ifm_status = sc->sc_mii.mii_media_status; 5172 ifmr->ifm_active = sc->sc_mii.mii_media_active; 5173 } 5174 5175 static int 5176 tlp_2114x_nway_set(struct tulip_softc *sc) 5177 { 5178 5179 return tlp_2114x_nway_service(sc, MII_MEDIACHG); 5180 } 5181 5182 static void 5183 tlp_2114x_nway_statchg(struct ifnet *ifp) 5184 { 5185 struct tulip_softc *sc = ifp->if_softc; 5186 struct mii_data *mii = &sc->sc_mii; 5187 struct ifmedia_entry *ife; 5188 5189 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE) 5190 return; 5191 5192 if ((ife = ifmedia_match(&mii->mii_media, mii->mii_media_active, 5193 mii->mii_media.ifm_mask)) == NULL) { 5194 printf("tlp_2114x_nway_statchg: no match for media 0x%x/0x%x\n", 5195 mii->mii_media_active, ~mii->mii_media.ifm_mask); 5196 panic("tlp_2114x_nway_statchg"); 5197 } 5198 5199 tlp_sia_media(sc, ife); 5200 } 5201 5202 static void 5203 tlp_2114x_nway_tick(void *arg) 5204 { 5205 struct tulip_softc *sc = arg; 5206 struct mii_data *mii = &sc->sc_mii; 5207 int s, ticks; 5208 5209 if (!device_is_active(sc->sc_dev)) 5210 return; 5211 5212 s = splnet(); 5213 tlp_2114x_nway_service(sc, MII_TICK); 5214 if ((sc->sc_flags & TULIPF_LINK_UP) == 0 && 5215 (mii->mii_media_status & IFM_ACTIVE) != 0 && 5216 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) { 5217 sc->sc_flags |= TULIPF_LINK_UP; 5218 tlp_start(&sc->sc_ethercom.ec_if); 5219 } else if ((sc->sc_flags & TULIPF_LINK_UP) != 0 && 5220 (mii->mii_media_status & IFM_ACTIVE) == 0) { 5221 sc->sc_flags &= ~TULIPF_LINK_UP; 5222 } 5223 splx(s); 5224 5225 if ((sc->sc_flags & TULIPF_LINK_UP) == 0) 5226 ticks = hz >> 3; 5227 else 5228 ticks = hz; 5229 callout_reset(&sc->sc_tick_callout, ticks, tlp_2114x_nway_tick, sc); 5230 } 5231 5232 /* 5233 * Support for the 2114X internal NWay block. This is constructed 5234 * somewhat like a PHY driver for simplicity. 5235 */ 5236 5237 static int 5238 tlp_2114x_nway_service(struct tulip_softc *sc, int cmd) 5239 { 5240 struct mii_data *mii = &sc->sc_mii; 5241 struct ifmedia_entry *ife = mii->mii_media.ifm_cur; 5242 5243 if ((mii->mii_ifp->if_flags & IFF_UP) == 0) 5244 return 0; 5245 5246 switch (cmd) { 5247 case MII_POLLSTAT: 5248 /* Nothing special to do here. */ 5249 break; 5250 5251 case MII_MEDIACHG: 5252 switch (IFM_SUBTYPE(ife->ifm_media)) { 5253 case IFM_AUTO: 5254 goto restart; 5255 default: 5256 /* Manual setting doesn't go through here. */ 5257 printf("tlp_2114x_nway_service: oops!\n"); 5258 return EINVAL; 5259 } 5260 break; 5261 5262 case MII_TICK: 5263 /* 5264 * Only used for autonegotiation. 5265 */ 5266 if (IFM_SUBTYPE(ife->ifm_media) != IFM_AUTO) 5267 break; 5268 5269 /* 5270 * Check to see if we have link. If we do, we don't 5271 * need to restart the autonegotiation process. 5272 */ 5273 #if 0 5274 if (mii->mii_media_status & IFM_ACTIVE) 5275 #else 5276 if (sc->sc_flags & TULIPF_LINK_UP) 5277 #endif 5278 break; 5279 5280 /* 5281 * Only retry autonegotiation every 5 seconds. 5282 */ 5283 if (++sc->sc_nway_ticks != (5 << 3)) 5284 break; 5285 5286 restart: 5287 sc->sc_nway_ticks = 0; 5288 ife->ifm_data = IFM_NONE; 5289 tlp_2114x_nway_auto(sc); 5290 break; 5291 } 5292 5293 /* Update the media status. */ 5294 tlp_2114x_nway_status(sc); 5295 5296 /* 5297 * Callback if something changed. Manually configuration goes through 5298 * tlp_sia_set() anyway, so ignore that here. 5299 */ 5300 if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO && 5301 ife->ifm_data != mii->mii_media_active) { 5302 (*sc->sc_statchg)(mii->mii_ifp); 5303 ife->ifm_data = mii->mii_media_active; 5304 } 5305 return 0; 5306 } 5307 5308 static void 5309 tlp_2114x_nway_auto(struct tulip_softc *sc) 5310 { 5311 uint32_t siastat, siatxrx; 5312 5313 tlp_idle(sc, OPMODE_ST | OPMODE_SR); 5314 5315 sc->sc_opmode &= ~(OPMODE_PS | OPMODE_PCS | OPMODE_SCR | OPMODE_FD); 5316 sc->sc_opmode |= OPMODE_TTM | OPMODE_HBD; 5317 siatxrx = 0xffbf; /* XXX magic number */ 5318 5319 /* Compute the link code word to advertise. */ 5320 if (sc->sc_sia_cap & BMSR_100T4) 5321 siatxrx |= SIATXRX_T4; 5322 if (sc->sc_sia_cap & BMSR_100TXFDX) 5323 siatxrx |= SIATXRX_TXF; 5324 if (sc->sc_sia_cap & BMSR_100TXHDX) 5325 siatxrx |= SIATXRX_THX; 5326 if (sc->sc_sia_cap & BMSR_10TFDX) 5327 sc->sc_opmode |= OPMODE_FD; 5328 if (sc->sc_sia_cap & BMSR_10THDX) 5329 siatxrx |= SIATXRX_TH; 5330 5331 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode); 5332 5333 TULIP_WRITE(sc, CSR_SIACONN, 0); 5334 delay(1000); 5335 TULIP_WRITE(sc, CSR_SIATXRX, siatxrx); 5336 TULIP_WRITE(sc, CSR_SIACONN, SIACONN_SRL); 5337 5338 siastat = TULIP_READ(sc, CSR_SIASTAT); 5339 siastat &= ~(SIASTAT_ANS | SIASTAT_LPC | SIASTAT_TRA | SIASTAT_ARA | 5340 SIASTAT_LS100 | SIASTAT_LS10 | SIASTAT_MRA); 5341 siastat |= SIASTAT_ANS_TXDIS; 5342 TULIP_WRITE(sc, CSR_SIASTAT, siastat); 5343 } 5344 5345 static void 5346 tlp_2114x_nway_status(struct tulip_softc *sc) 5347 { 5348 struct mii_data *mii = &sc->sc_mii; 5349 uint32_t siatxrx, siastat, anlpar; 5350 5351 mii->mii_media_status = IFM_AVALID; 5352 mii->mii_media_active = IFM_ETHER; 5353 5354 if ((mii->mii_ifp->if_flags & IFF_UP) == 0) 5355 return; 5356 5357 siastat = TULIP_READ(sc, CSR_SIASTAT); 5358 siatxrx = TULIP_READ(sc, CSR_SIATXRX); 5359 5360 if (siatxrx & SIATXRX_ANE) { 5361 if ((siastat & SIASTAT_ANS) != SIASTAT_ANS_FLPGOOD) { 5362 /* Erg, still trying, I guess... */ 5363 mii->mii_media_active |= IFM_NONE; 5364 return; 5365 } 5366 5367 if (~siastat & (SIASTAT_LS10 | SIASTAT_LS100)) 5368 mii->mii_media_status |= IFM_ACTIVE; 5369 5370 if (siastat & SIASTAT_LPN) { 5371 anlpar = SIASTAT_GETLPC(siastat); 5372 if (anlpar & ANLPAR_T4 && 5373 sc->sc_sia_cap & BMSR_100T4) 5374 mii->mii_media_active |= IFM_100_T4; 5375 else if (anlpar & ANLPAR_TX_FD && 5376 sc->sc_sia_cap & BMSR_100TXFDX) 5377 mii->mii_media_active |= IFM_100_TX | IFM_FDX; 5378 else if (anlpar & ANLPAR_TX && 5379 sc->sc_sia_cap & BMSR_100TXHDX) 5380 mii->mii_media_active |= IFM_100_TX; 5381 else if (anlpar & ANLPAR_10_FD && 5382 sc->sc_sia_cap & BMSR_10TFDX) 5383 mii->mii_media_active |= IFM_10_T | IFM_FDX; 5384 else if (anlpar & ANLPAR_10 && 5385 sc->sc_sia_cap & BMSR_10THDX) 5386 mii->mii_media_active |= IFM_10_T; 5387 else 5388 mii->mii_media_active |= IFM_NONE; 5389 } else { 5390 /* 5391 * If the other side doesn't support NWAY, then the 5392 * best we can do is determine if we have a 10Mbps or 5393 * 100Mbps link. There's no way to know if the link 5394 * is full or half duplex, so we default to half duplex 5395 * and hope that the user is clever enough to manually 5396 * change the media settings if we're wrong. 5397 */ 5398 if ((siastat & SIASTAT_LS100) == 0) 5399 mii->mii_media_active |= IFM_100_TX; 5400 else if ((siastat & SIASTAT_LS10) == 0) 5401 mii->mii_media_active |= IFM_10_T; 5402 else 5403 mii->mii_media_active |= IFM_NONE; 5404 } 5405 } else { 5406 if (~siastat & (SIASTAT_LS10 | SIASTAT_LS100)) 5407 mii->mii_media_status |= IFM_ACTIVE; 5408 5409 if (sc->sc_opmode & OPMODE_TTM) 5410 mii->mii_media_active |= IFM_10_T; 5411 else 5412 mii->mii_media_active |= IFM_100_TX; 5413 if (sc->sc_opmode & OPMODE_FD) 5414 mii->mii_media_active |= IFM_FDX; 5415 } 5416 } 5417 5418 static void 5419 tlp_2114x_isv_tmsw_get(struct tulip_softc *sc, struct ifmediareq *ifmr) 5420 { 5421 struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur; 5422 struct tulip_21x4x_media *tm = ife->ifm_aux; 5423 5424 (*tm->tm_get)(sc, ifmr); 5425 } 5426 5427 static int 5428 tlp_2114x_isv_tmsw_set(struct tulip_softc *sc) 5429 { 5430 struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur; 5431 struct tulip_21x4x_media *tm = ife->ifm_aux; 5432 5433 /* 5434 * Check to see if we need to reset the chip, and do it. The 5435 * reset path will get the OPMODE register right the next 5436 * time through. 5437 */ 5438 if (TULIP_MEDIA_NEEDSRESET(sc, tm->tm_opmode)) 5439 return tlp_init(&sc->sc_ethercom.ec_if); 5440 5441 return (*tm->tm_set)(sc); 5442 } 5443 5444 /* 5445 * MII-on-SIO media switch. Handles only MII attached to the SIO. 5446 */ 5447 static void tlp_sio_mii_tmsw_init(struct tulip_softc *); 5448 5449 const struct tulip_mediasw tlp_sio_mii_mediasw = { 5450 tlp_sio_mii_tmsw_init, tlp_mii_getmedia, tlp_mii_setmedia 5451 }; 5452 5453 static void 5454 tlp_sio_mii_tmsw_init(struct tulip_softc *sc) 5455 { 5456 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 5457 struct mii_data * const mii = &sc->sc_mii; 5458 5459 /* 5460 * We don't attach any media info structures to the ifmedia 5461 * entries, so if we're using a pre-init function that needs 5462 * that info, override it to one that doesn't. 5463 */ 5464 if (sc->sc_preinit == tlp_2114x_preinit) 5465 sc->sc_preinit = tlp_2114x_mii_preinit; 5466 5467 mii->mii_ifp = ifp; 5468 mii->mii_readreg = tlp_bitbang_mii_readreg; 5469 mii->mii_writereg = tlp_bitbang_mii_writereg; 5470 mii->mii_statchg = sc->sc_statchg; 5471 sc->sc_ethercom.ec_mii = mii; 5472 ifmedia_init(&mii->mii_media, 0, tlp_mediachange, tlp_mediastatus); 5473 mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY, 5474 MII_OFFSET_ANY, 0); 5475 if (LIST_FIRST(&mii->mii_phys) == NULL) { 5476 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL); 5477 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE); 5478 } else { 5479 sc->sc_flags |= TULIPF_HAS_MII; 5480 sc->sc_tick = tlp_mii_tick; 5481 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO); 5482 } 5483 } 5484 5485 /* 5486 * Lite-On PNIC media switch. Must handle MII or internal NWAY. 5487 */ 5488 static void tlp_pnic_tmsw_init(struct tulip_softc *); 5489 static void tlp_pnic_tmsw_get(struct tulip_softc *, struct ifmediareq *); 5490 static int tlp_pnic_tmsw_set(struct tulip_softc *); 5491 5492 const struct tulip_mediasw tlp_pnic_mediasw = { 5493 tlp_pnic_tmsw_init, tlp_pnic_tmsw_get, tlp_pnic_tmsw_set 5494 }; 5495 5496 static void tlp_pnic_nway_statchg(struct ifnet *); 5497 static void tlp_pnic_nway_tick(void *); 5498 static int tlp_pnic_nway_service(struct tulip_softc *, int); 5499 static void tlp_pnic_nway_reset(struct tulip_softc *); 5500 static int tlp_pnic_nway_auto(struct tulip_softc *, int); 5501 static void tlp_pnic_nway_auto_timeout(void *); 5502 static void tlp_pnic_nway_status(struct tulip_softc *); 5503 static void tlp_pnic_nway_acomp(struct tulip_softc *); 5504 5505 static void 5506 tlp_pnic_tmsw_init(struct tulip_softc *sc) 5507 { 5508 struct mii_data * const mii = &sc->sc_mii; 5509 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 5510 const char *sep = ""; 5511 5512 #define ADD(m, c) ifmedia_add(&mii->mii_media, (m), (c), NULL) 5513 #define PRINT(str) aprint_normal("%s%s", sep, str); sep = ", " 5514 5515 mii->mii_ifp = ifp; 5516 mii->mii_readreg = tlp_pnic_mii_readreg; 5517 mii->mii_writereg = tlp_pnic_mii_writereg; 5518 mii->mii_statchg = sc->sc_statchg; 5519 sc->sc_ethercom.ec_mii = mii; 5520 ifmedia_init(&mii->mii_media, 0, tlp_mediachange, tlp_mediastatus); 5521 mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY, 5522 MII_OFFSET_ANY, 0); 5523 if (LIST_FIRST(&mii->mii_phys) == NULL) { 5524 /* XXX What about AUI/BNC support? */ 5525 aprint_normal_dev(sc->sc_dev, ""); 5526 5527 tlp_pnic_nway_reset(sc); 5528 5529 ADD(IFM_MAKEWORD(IFM_ETHER, IFM_10_T, 0, 0), 5530 PNIC_NWAY_TW | PNIC_NWAY_CAP10T); 5531 PRINT("10baseT"); 5532 5533 ADD(IFM_MAKEWORD(IFM_ETHER, IFM_10_T, IFM_FDX, 0), 5534 PNIC_NWAY_TW | PNIC_NWAY_FD | PNIC_NWAY_CAP10TFDX); 5535 PRINT("10baseT-FDX"); 5536 5537 ADD(IFM_MAKEWORD(IFM_ETHER, IFM_100_TX, 0, 0), 5538 PNIC_NWAY_TW | PNIC_NWAY_100 | PNIC_NWAY_CAP100TX); 5539 PRINT("100baseTX"); 5540 5541 ADD(IFM_MAKEWORD(IFM_ETHER, IFM_100_TX, IFM_FDX, 0), 5542 PNIC_NWAY_TW | PNIC_NWAY_100 | PNIC_NWAY_FD | 5543 PNIC_NWAY_CAP100TXFDX); 5544 PRINT("100baseTX-FDX"); 5545 5546 ADD(IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0, 0), 5547 PNIC_NWAY_TW | PNIC_NWAY_RN | PNIC_NWAY_NW | 5548 PNIC_NWAY_CAP10T | PNIC_NWAY_CAP10TFDX | 5549 PNIC_NWAY_CAP100TXFDX | PNIC_NWAY_CAP100TX); 5550 PRINT("auto"); 5551 5552 aprint_normal("\n"); 5553 5554 sc->sc_statchg = tlp_pnic_nway_statchg; 5555 sc->sc_tick = tlp_pnic_nway_tick; 5556 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO); 5557 } else { 5558 sc->sc_flags |= TULIPF_HAS_MII; 5559 sc->sc_tick = tlp_mii_tick; 5560 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO); 5561 } 5562 5563 #undef ADD 5564 #undef PRINT 5565 } 5566 5567 static void 5568 tlp_pnic_tmsw_get(struct tulip_softc *sc, struct ifmediareq *ifmr) 5569 { 5570 struct mii_data *mii = &sc->sc_mii; 5571 5572 if (sc->sc_flags & TULIPF_HAS_MII) 5573 tlp_mii_getmedia(sc, ifmr); 5574 else { 5575 mii->mii_media_status = 0; 5576 mii->mii_media_active = IFM_NONE; 5577 tlp_pnic_nway_service(sc, MII_POLLSTAT); 5578 ifmr->ifm_status = mii->mii_media_status; 5579 ifmr->ifm_active = mii->mii_media_active; 5580 } 5581 } 5582 5583 static int 5584 tlp_pnic_tmsw_set(struct tulip_softc *sc) 5585 { 5586 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 5587 struct mii_data *mii = &sc->sc_mii; 5588 5589 if (sc->sc_flags & TULIPF_HAS_MII) { 5590 /* 5591 * Make sure the built-in Tx jabber timer is disabled. 5592 */ 5593 TULIP_WRITE(sc, CSR_PNIC_ENDEC, PNIC_ENDEC_JDIS); 5594 5595 return tlp_mii_setmedia(sc); 5596 } 5597 5598 if (ifp->if_flags & IFF_UP) { 5599 mii->mii_media_status = 0; 5600 mii->mii_media_active = IFM_NONE; 5601 return tlp_pnic_nway_service(sc, MII_MEDIACHG); 5602 } 5603 5604 return 0; 5605 } 5606 5607 static void 5608 tlp_pnic_nway_statchg(struct ifnet *ifp) 5609 { 5610 struct tulip_softc *sc = ifp->if_softc; 5611 5612 /* Idle the transmit and receive processes. */ 5613 tlp_idle(sc, OPMODE_ST | OPMODE_SR); 5614 5615 sc->sc_opmode &= ~(OPMODE_TTM | OPMODE_FD | OPMODE_PS | OPMODE_PCS | 5616 OPMODE_SCR | OPMODE_HBD); 5617 5618 if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_10_T) { 5619 sc->sc_opmode |= OPMODE_TTM; 5620 TULIP_WRITE(sc, CSR_GPP, 5621 GPP_PNIC_OUT(GPP_PNIC_PIN_SPEED_RLY, 0) | 5622 GPP_PNIC_OUT(GPP_PNIC_PIN_100M_LPKB, 1)); 5623 } else { 5624 sc->sc_opmode |= OPMODE_PS |OPMODE_PCS |OPMODE_SCR |OPMODE_HBD; 5625 TULIP_WRITE(sc, CSR_GPP, 5626 GPP_PNIC_OUT(GPP_PNIC_PIN_SPEED_RLY, 1) | 5627 GPP_PNIC_OUT(GPP_PNIC_PIN_100M_LPKB, 1)); 5628 } 5629 5630 if (sc->sc_mii.mii_media_active & IFM_FDX) 5631 sc->sc_opmode |= OPMODE_FD | OPMODE_HBD; 5632 5633 /* 5634 * Write new OPMODE bits. This also restarts the transmit 5635 * and receive processes. 5636 */ 5637 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode); 5638 } 5639 5640 static void 5641 tlp_pnic_nway_tick(void *arg) 5642 { 5643 struct tulip_softc *sc = arg; 5644 int s; 5645 5646 if (!device_is_active(sc->sc_dev)) 5647 return; 5648 5649 s = splnet(); 5650 tlp_pnic_nway_service(sc, MII_TICK); 5651 splx(s); 5652 5653 callout_reset(&sc->sc_tick_callout, hz, tlp_pnic_nway_tick, sc); 5654 } 5655 5656 /* 5657 * Support for the Lite-On PNIC internal NWay block. This is constructed 5658 * somewhat like a PHY driver for simplicity. 5659 */ 5660 5661 static int 5662 tlp_pnic_nway_service(struct tulip_softc *sc, int cmd) 5663 { 5664 struct mii_data *mii = &sc->sc_mii; 5665 struct ifmedia_entry *ife = mii->mii_media.ifm_cur; 5666 5667 if ((mii->mii_ifp->if_flags & IFF_UP) == 0) 5668 return 0; 5669 5670 switch (cmd) { 5671 case MII_POLLSTAT: 5672 /* Nothing special to do here. */ 5673 break; 5674 5675 case MII_MEDIACHG: 5676 switch (IFM_SUBTYPE(ife->ifm_media)) { 5677 case IFM_AUTO: 5678 (void) tlp_pnic_nway_auto(sc, 1); 5679 break; 5680 case IFM_100_T4: 5681 /* 5682 * XXX Not supported as a manual setting right now. 5683 */ 5684 return EINVAL; 5685 default: 5686 /* 5687 * NWAY register data is stored in the ifmedia entry. 5688 */ 5689 TULIP_WRITE(sc, CSR_PNIC_NWAY, ife->ifm_data); 5690 } 5691 break; 5692 5693 case MII_TICK: 5694 /* 5695 * Only used for autonegotiation. 5696 */ 5697 if (IFM_SUBTYPE(ife->ifm_media) != IFM_AUTO) 5698 return 0; 5699 5700 /* 5701 * Check to see if we have link. If we do, we don't 5702 * need to restart the autonegotiation process. 5703 */ 5704 if (sc->sc_flags & TULIPF_LINK_UP) 5705 return 0; 5706 5707 /* 5708 * Only retry autonegotiation every 5 seconds. 5709 */ 5710 if (++sc->sc_nway_ticks != 5) 5711 return 0; 5712 5713 sc->sc_nway_ticks = 0; 5714 tlp_pnic_nway_reset(sc); 5715 if (tlp_pnic_nway_auto(sc, 0) == EJUSTRETURN) 5716 return 0; 5717 break; 5718 } 5719 5720 /* Update the media status. */ 5721 tlp_pnic_nway_status(sc); 5722 5723 /* Callback if something changed. */ 5724 if ((sc->sc_nway_active == NULL || 5725 sc->sc_nway_active->ifm_media != mii->mii_media_active) || 5726 cmd == MII_MEDIACHG) { 5727 (*sc->sc_statchg)(mii->mii_ifp); 5728 tlp_nway_activate(sc, mii->mii_media_active); 5729 } 5730 return 0; 5731 } 5732 5733 static void 5734 tlp_pnic_nway_reset(struct tulip_softc *sc) 5735 { 5736 5737 TULIP_WRITE(sc, CSR_PNIC_NWAY, PNIC_NWAY_RS); 5738 delay(100); 5739 TULIP_WRITE(sc, CSR_PNIC_NWAY, 0); 5740 } 5741 5742 static int 5743 tlp_pnic_nway_auto(struct tulip_softc *sc, int waitfor) 5744 { 5745 struct mii_data *mii = &sc->sc_mii; 5746 struct ifmedia_entry *ife = mii->mii_media.ifm_cur; 5747 uint32_t reg; 5748 int i; 5749 5750 if ((sc->sc_flags & TULIPF_DOINGAUTO) == 0) 5751 TULIP_WRITE(sc, CSR_PNIC_NWAY, ife->ifm_data); 5752 5753 if (waitfor) { 5754 /* Wait 500ms for it to complete. */ 5755 for (i = 0; i < 500; i++) { 5756 reg = TULIP_READ(sc, CSR_PNIC_NWAY); 5757 if (reg & PNIC_NWAY_LPAR_MASK) { 5758 tlp_pnic_nway_acomp(sc); 5759 return 0; 5760 } 5761 delay(1000); 5762 } 5763 #if 0 5764 if ((reg & PNIC_NWAY_LPAR_MASK) == 0) 5765 aprint_error_dev(sc->sc_dev, 5766 "autonegotiation failed to complete\n"); 5767 #endif 5768 5769 /* 5770 * Don't need to worry about clearing DOINGAUTO. 5771 * If that's set, a timeout is pending, and it will 5772 * clear the flag. 5773 */ 5774 return EIO; 5775 } 5776 5777 /* 5778 * Just let it finish asynchronously. This is for the benefit of 5779 * the tick handler driving autonegotiation. Don't want 500ms 5780 * delays all the time while the system is running! 5781 */ 5782 if ((sc->sc_flags & TULIPF_DOINGAUTO) == 0) { 5783 sc->sc_flags |= TULIPF_DOINGAUTO; 5784 callout_reset(&sc->sc_nway_callout, hz >> 1, 5785 tlp_pnic_nway_auto_timeout, sc); 5786 } 5787 return EJUSTRETURN; 5788 } 5789 5790 static void 5791 tlp_pnic_nway_auto_timeout(void *arg) 5792 { 5793 struct tulip_softc *sc = arg; 5794 /* uint32_t reg; */ 5795 int s; 5796 5797 s = splnet(); 5798 sc->sc_flags &= ~TULIPF_DOINGAUTO; 5799 /* reg = */ 5800 TULIP_READ(sc, CSR_PNIC_NWAY); 5801 #if 0 5802 if ((reg & PNIC_NWAY_LPAR_MASK) == 0) 5803 aprint_error_dev(sc->sc_dev, 5804 "autonegotiation failed to complete\n"); 5805 #endif 5806 5807 tlp_pnic_nway_acomp(sc); 5808 5809 /* Update the media status. */ 5810 (void)tlp_pnic_nway_service(sc, MII_POLLSTAT); 5811 splx(s); 5812 } 5813 5814 static void 5815 tlp_pnic_nway_status(struct tulip_softc *sc) 5816 { 5817 struct mii_data *mii = &sc->sc_mii; 5818 uint32_t reg; 5819 5820 mii->mii_media_status = IFM_AVALID; 5821 mii->mii_media_active = IFM_ETHER; 5822 5823 reg = TULIP_READ(sc, CSR_PNIC_NWAY); 5824 5825 if (sc->sc_flags & TULIPF_LINK_UP) 5826 mii->mii_media_status |= IFM_ACTIVE; 5827 5828 if (reg & PNIC_NWAY_NW) { 5829 if ((reg & PNIC_NWAY_LPAR_MASK) == 0) { 5830 /* Erg, still trying, I guess... */ 5831 mii->mii_media_active |= IFM_NONE; 5832 return; 5833 } 5834 5835 #if 0 5836 if (reg & PNIC_NWAY_LPAR100T4) 5837 mii->mii_media_active |= IFM_100_T4; 5838 else 5839 #endif 5840 if (reg & PNIC_NWAY_LPAR100TXFDX) 5841 mii->mii_media_active |= IFM_100_TX | IFM_FDX; 5842 else if (reg & PNIC_NWAY_LPAR100TX) 5843 mii->mii_media_active |= IFM_100_TX; 5844 else if (reg & PNIC_NWAY_LPAR10TFDX) 5845 mii->mii_media_active |= IFM_10_T | IFM_FDX; 5846 else if (reg & PNIC_NWAY_LPAR10T) 5847 mii->mii_media_active |= IFM_10_T; 5848 else 5849 mii->mii_media_active |= IFM_NONE; 5850 } else { 5851 if (reg & PNIC_NWAY_100) 5852 mii->mii_media_active |= IFM_100_TX; 5853 else 5854 mii->mii_media_active |= IFM_10_T; 5855 if (reg & PNIC_NWAY_FD) 5856 mii->mii_media_active |= IFM_FDX; 5857 } 5858 } 5859 5860 static void 5861 tlp_pnic_nway_acomp(struct tulip_softc *sc) 5862 { 5863 uint32_t reg; 5864 5865 reg = TULIP_READ(sc, CSR_PNIC_NWAY); 5866 reg &= ~(PNIC_NWAY_FD | PNIC_NWAY_100 | PNIC_NWAY_RN); 5867 5868 if (reg & (PNIC_NWAY_LPAR100TXFDX | PNIC_NWAY_LPAR100TX)) 5869 reg |= PNIC_NWAY_100; 5870 if (reg & (PNIC_NWAY_LPAR10TFDX | PNIC_NWAY_LPAR100TXFDX)) 5871 reg |= PNIC_NWAY_FD; 5872 5873 TULIP_WRITE(sc, CSR_PNIC_NWAY, reg); 5874 } 5875 5876 /* 5877 * Macronix PMAC and Lite-On PNIC-II media switch: 5878 * 5879 * MX98713 and MX98713A 21140-like MII or GPIO media. 5880 * 5881 * MX98713A 21143-like MII or SIA/SYM media. 5882 * 5883 * MX98715, MX98715A, MX98725, 21143-like SIA/SYM media. 5884 * 82C115, MX98715AEC-C, -E 5885 * 5886 * So, what we do here is fake MII-on-SIO or ISV media info, and 5887 * use the ISV media switch get/set functions to handle the rest. 5888 */ 5889 5890 static void tlp_pmac_tmsw_init(struct tulip_softc *); 5891 5892 const struct tulip_mediasw tlp_pmac_mediasw = { 5893 tlp_pmac_tmsw_init, tlp_2114x_isv_tmsw_get, tlp_2114x_isv_tmsw_set 5894 }; 5895 5896 const struct tulip_mediasw tlp_pmac_mii_mediasw = { 5897 tlp_pmac_tmsw_init, tlp_mii_getmedia, tlp_mii_setmedia 5898 }; 5899 5900 static void 5901 tlp_pmac_tmsw_init(struct tulip_softc *sc) 5902 { 5903 struct mii_data * const mii = &sc->sc_mii; 5904 static const uint8_t media[] = { 5905 TULIP_ROM_MB_MEDIA_TP, 5906 TULIP_ROM_MB_MEDIA_TP_FDX, 5907 TULIP_ROM_MB_MEDIA_100TX, 5908 TULIP_ROM_MB_MEDIA_100TX_FDX, 5909 }; 5910 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 5911 struct tulip_21x4x_media *tm; 5912 5913 mii->mii_ifp = ifp; 5914 mii->mii_readreg = tlp_bitbang_mii_readreg; 5915 mii->mii_writereg = tlp_bitbang_mii_writereg; 5916 mii->mii_statchg = sc->sc_statchg; 5917 sc->sc_ethercom.ec_mii = mii; 5918 ifmedia_init(&mii->mii_media, 0, tlp_mediachange, tlp_mediastatus); 5919 if (sc->sc_chip == TULIP_CHIP_MX98713 || 5920 sc->sc_chip == TULIP_CHIP_MX98713A) { 5921 mii_attach(sc->sc_dev, mii, 0xffffffff, 5922 MII_PHY_ANY, MII_OFFSET_ANY, 0); 5923 if (LIST_FIRST(&mii->mii_phys) != NULL) { 5924 sc->sc_flags |= TULIPF_HAS_MII; 5925 sc->sc_tick = tlp_mii_tick; 5926 sc->sc_preinit = tlp_2114x_mii_preinit; 5927 sc->sc_mediasw = &tlp_pmac_mii_mediasw; 5928 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO); 5929 return; 5930 } 5931 } 5932 5933 switch (sc->sc_chip) { 5934 case TULIP_CHIP_MX98713: 5935 tlp_add_srom_media(sc, TULIP_ROM_MB_21140_GPR, 5936 tlp_21140_gpio_get, tlp_21140_gpio_set, media, 4); 5937 5938 /* 5939 * XXX Should implement auto-sense for this someday, 5940 * XXX when we do the same for the 21140. 5941 */ 5942 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_10_T); 5943 break; 5944 5945 default: 5946 tlp_add_srom_media(sc, TULIP_ROM_MB_21142_SIA, 5947 tlp_sia_get, tlp_sia_set, media, 2); 5948 tlp_add_srom_media(sc, TULIP_ROM_MB_21143_SYM, 5949 tlp_sia_get, tlp_sia_set, media + 2, 2); 5950 5951 tm = kmem_zalloc(sizeof(*tm), KM_SLEEP); 5952 tm->tm_name = "auto"; 5953 tm->tm_get = tlp_2114x_nway_get; 5954 tm->tm_set = tlp_2114x_nway_set; 5955 ifmedia_add(&mii->mii_media, 5956 IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0, 0), 0, tm); 5957 5958 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO); 5959 sc->sc_statchg = tlp_2114x_nway_statchg; 5960 sc->sc_tick = tlp_2114x_nway_tick; 5961 break; 5962 } 5963 5964 tlp_print_media(sc); 5965 tlp_sia_fixup(sc); 5966 5967 /* Set the LED modes. */ 5968 tlp_pmac_reset(sc); 5969 5970 sc->sc_reset = tlp_pmac_reset; 5971 } 5972 5973 /* 5974 * ADMtek AL981 media switch. Only has internal PHY. 5975 */ 5976 static void tlp_al981_tmsw_init(struct tulip_softc *); 5977 5978 const struct tulip_mediasw tlp_al981_mediasw = { 5979 tlp_al981_tmsw_init, tlp_mii_getmedia, tlp_mii_setmedia 5980 }; 5981 5982 static void 5983 tlp_al981_tmsw_init(struct tulip_softc *sc) 5984 { 5985 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 5986 struct mii_data * const mii = &sc->sc_mii; 5987 5988 mii->mii_ifp = ifp; 5989 mii->mii_readreg = tlp_al981_mii_readreg; 5990 mii->mii_writereg = tlp_al981_mii_writereg; 5991 mii->mii_statchg = sc->sc_statchg; 5992 sc->sc_ethercom.ec_mii = mii; 5993 ifmedia_init(&mii->mii_media, 0, tlp_mediachange, tlp_mediastatus); 5994 mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY, 5995 MII_OFFSET_ANY, 0); 5996 if (LIST_FIRST(&mii->mii_phys) == NULL) { 5997 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL); 5998 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE); 5999 } else { 6000 sc->sc_flags |= TULIPF_HAS_MII; 6001 sc->sc_tick = tlp_mii_tick; 6002 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO); 6003 } 6004 } 6005 6006 /* 6007 * ADMtek AN983/985 media switch. Only has internal PHY, but 6008 * on an SIO-like interface. Unfortunately, we can't use the 6009 * standard SIO media switch, because the AN985 "ghosts" the 6010 * singly PHY at every address. 6011 */ 6012 static void tlp_an985_tmsw_init(struct tulip_softc *); 6013 6014 const struct tulip_mediasw tlp_an985_mediasw = { 6015 tlp_an985_tmsw_init, tlp_mii_getmedia, tlp_mii_setmedia 6016 }; 6017 6018 static void 6019 tlp_an985_tmsw_init(struct tulip_softc *sc) 6020 { 6021 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 6022 struct mii_data * const mii = &sc->sc_mii; 6023 6024 mii->mii_ifp = ifp; 6025 mii->mii_readreg = tlp_bitbang_mii_readreg; 6026 mii->mii_writereg = tlp_bitbang_mii_writereg; 6027 mii->mii_statchg = sc->sc_statchg; 6028 sc->sc_ethercom.ec_mii = mii; 6029 ifmedia_init(&mii->mii_media, 0, tlp_mediachange, tlp_mediastatus); 6030 mii_attach(sc->sc_dev, mii, 0xffffffff, 1, MII_OFFSET_ANY, 0); 6031 if (LIST_FIRST(&mii->mii_phys) == NULL) { 6032 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL); 6033 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE); 6034 } else { 6035 sc->sc_flags |= TULIPF_HAS_MII; 6036 sc->sc_tick = tlp_mii_tick; 6037 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO); 6038 } 6039 } 6040 6041 /* 6042 * Davicom DM9102 media switch. Internal PHY and possibly HomePNA. 6043 */ 6044 static void tlp_dm9102_tmsw_init(struct tulip_softc *); 6045 static void tlp_dm9102_tmsw_getmedia(struct tulip_softc *, 6046 struct ifmediareq *); 6047 static int tlp_dm9102_tmsw_setmedia(struct tulip_softc *); 6048 6049 const struct tulip_mediasw tlp_dm9102_mediasw = { 6050 tlp_dm9102_tmsw_init, tlp_dm9102_tmsw_getmedia, 6051 tlp_dm9102_tmsw_setmedia 6052 }; 6053 6054 static void 6055 tlp_dm9102_tmsw_init(struct tulip_softc *sc) 6056 { 6057 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 6058 struct mii_data * const mii = &sc->sc_mii; 6059 uint32_t opmode; 6060 6061 mii->mii_ifp = ifp; 6062 mii->mii_readreg = tlp_bitbang_mii_readreg; 6063 mii->mii_writereg = tlp_bitbang_mii_writereg; 6064 mii->mii_statchg = sc->sc_statchg; 6065 sc->sc_ethercom.ec_mii = mii; 6066 ifmedia_init(&mii->mii_media, 0, tlp_mediachange, tlp_mediastatus); 6067 6068 /* PHY block already reset via tlp_reset(). */ 6069 6070 /* 6071 * Configure OPMODE properly for the internal MII interface. 6072 */ 6073 switch (sc->sc_chip) { 6074 case TULIP_CHIP_DM9102: 6075 opmode = OPMODE_MBO | OPMODE_HBD | OPMODE_PS; 6076 break; 6077 6078 case TULIP_CHIP_DM9102A: 6079 opmode = OPMODE_MBO | OPMODE_HBD; 6080 break; 6081 6082 default: 6083 opmode = 0; 6084 break; 6085 } 6086 6087 TULIP_WRITE(sc, CSR_OPMODE, opmode); 6088 6089 /* Now, probe the internal MII for the internal PHY. */ 6090 mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY, 6091 MII_OFFSET_ANY, 0); 6092 6093 /* 6094 * XXX Figure out what to do about the HomePNA portion 6095 * XXX of the DM9102A. 6096 */ 6097 6098 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) { 6099 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL); 6100 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE); 6101 } else { 6102 sc->sc_flags |= TULIPF_HAS_MII; 6103 sc->sc_tick = tlp_mii_tick; 6104 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO); 6105 } 6106 } 6107 6108 static void 6109 tlp_dm9102_tmsw_getmedia(struct tulip_softc *sc, struct ifmediareq *ifmr) 6110 { 6111 6112 /* XXX HomePNA on DM9102A. */ 6113 tlp_mii_getmedia(sc, ifmr); 6114 } 6115 6116 static int 6117 tlp_dm9102_tmsw_setmedia(struct tulip_softc *sc) 6118 { 6119 6120 /* XXX HomePNA on DM9102A. */ 6121 return tlp_mii_setmedia(sc); 6122 } 6123 6124 /* 6125 * ASIX AX88140A/AX88141 media switch. Internal PHY or MII. 6126 */ 6127 6128 static void tlp_asix_tmsw_init(struct tulip_softc *); 6129 static void tlp_asix_tmsw_getmedia(struct tulip_softc *, 6130 struct ifmediareq *); 6131 static int tlp_asix_tmsw_setmedia(struct tulip_softc *); 6132 6133 const struct tulip_mediasw tlp_asix_mediasw = { 6134 tlp_asix_tmsw_init, tlp_asix_tmsw_getmedia, 6135 tlp_asix_tmsw_setmedia 6136 }; 6137 6138 static void 6139 tlp_asix_tmsw_init(struct tulip_softc *sc) 6140 { 6141 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 6142 struct mii_data * const mii = &sc->sc_mii; 6143 uint32_t opmode; 6144 6145 mii->mii_ifp = ifp; 6146 mii->mii_readreg = tlp_bitbang_mii_readreg; 6147 mii->mii_writereg = tlp_bitbang_mii_writereg; 6148 mii->mii_statchg = sc->sc_statchg; 6149 sc->sc_ethercom.ec_mii = mii; 6150 ifmedia_init(&mii->mii_media, 0, tlp_mediachange, tlp_mediastatus); 6151 6152 /* 6153 * Configure OPMODE properly for the internal MII interface. 6154 */ 6155 switch (sc->sc_chip) { 6156 case TULIP_CHIP_AX88140: 6157 case TULIP_CHIP_AX88141: 6158 opmode = OPMODE_HBD | OPMODE_PS; 6159 break; 6160 default: 6161 opmode = 0; 6162 break; 6163 } 6164 6165 TULIP_WRITE(sc, CSR_OPMODE, opmode); 6166 6167 /* Now, probe the internal MII for the internal PHY. */ 6168 mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY, 6169 MII_OFFSET_ANY, 0); 6170 6171 /* XXX Figure how to handle the PHY. */ 6172 6173 if (LIST_FIRST(&mii->mii_phys) == NULL) { 6174 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL); 6175 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE); 6176 } else { 6177 sc->sc_flags |= TULIPF_HAS_MII; 6178 sc->sc_tick = tlp_mii_tick; 6179 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO); 6180 } 6181 6182 6183 } 6184 6185 static void 6186 tlp_asix_tmsw_getmedia(struct tulip_softc *sc, struct ifmediareq *ifmr) 6187 { 6188 6189 /* XXX PHY handling. */ 6190 tlp_mii_getmedia(sc, ifmr); 6191 } 6192 6193 static int 6194 tlp_asix_tmsw_setmedia(struct tulip_softc *sc) 6195 { 6196 6197 /* XXX PHY handling. */ 6198 return tlp_mii_setmedia(sc); 6199 } 6200 6201 /* 6202 * RS7112 media switch. Handles only MII attached to the SIO. 6203 * We only have a PHY at 1. 6204 */ 6205 void tlp_rs7112_tmsw_init(struct tulip_softc *); 6206 6207 const struct tulip_mediasw tlp_rs7112_mediasw = { 6208 tlp_rs7112_tmsw_init, tlp_mii_getmedia, tlp_mii_setmedia 6209 }; 6210 6211 void 6212 tlp_rs7112_tmsw_init(struct tulip_softc *sc) 6213 { 6214 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 6215 struct mii_data * const mii = &sc->sc_mii; 6216 6217 /* 6218 * We don't attach any media info structures to the ifmedia 6219 * entries, so if we're using a pre-init function that needs 6220 * that info, override it to one that doesn't. 6221 */ 6222 if (sc->sc_preinit == tlp_2114x_preinit) 6223 sc->sc_preinit = tlp_2114x_mii_preinit; 6224 6225 mii->mii_ifp = ifp; 6226 mii->mii_readreg = tlp_bitbang_mii_readreg; 6227 mii->mii_writereg = tlp_bitbang_mii_writereg; 6228 mii->mii_statchg = sc->sc_statchg; 6229 sc->sc_ethercom.ec_mii = mii; 6230 ifmedia_init(&mii->mii_media, 0, tlp_mediachange, tlp_mediastatus); 6231 6232 /* 6233 * The RS7112 reports a PHY at 0 (possibly HomePNA?) 6234 * and 1 (ethernet). We attach ethernet only. 6235 */ 6236 mii_attach(sc->sc_dev, mii, 0xffffffff, 1, MII_OFFSET_ANY, 0); 6237 6238 if (LIST_FIRST(&mii->mii_phys) == NULL) { 6239 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL); 6240 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE); 6241 } else { 6242 sc->sc_flags |= TULIPF_HAS_MII; 6243 sc->sc_tick = tlp_mii_tick; 6244 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO); 6245 } 6246 } 6247 6248 const char * 6249 tlp_chip_name(tulip_chip_t t) { 6250 if ((int)t < 0 || (int)t >= __arraycount(tlp_chip_names)) { 6251 static char buf[256]; 6252 (void)snprintf(buf, sizeof(buf), "[unknown 0x%x]", t); 6253 return buf; 6254 } 6255 return tlp_chip_names[t]; 6256 } 6257