1 /* $NetBSD: tulip.c,v 1.204 2020/03/15 22:19:00 thorpej Exp $ */ 2 3 /*- 4 * Copyright (c) 1998, 1999, 2000, 2002 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, 9 * NASA Ames Research Center; and by Charles M. Hannum. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 30 * POSSIBILITY OF SUCH DAMAGE. 31 */ 32 33 /* 34 * Device driver for the Digital Semiconductor ``Tulip'' (21x4x) 35 * Ethernet controller family, and a variety of clone chips. 36 */ 37 38 #include <sys/cdefs.h> 39 __KERNEL_RCSID(0, "$NetBSD: tulip.c,v 1.204 2020/03/15 22:19:00 thorpej Exp $"); 40 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/callout.h> 45 #include <sys/mbuf.h> 46 #include <sys/malloc.h> 47 #include <sys/kernel.h> 48 #include <sys/socket.h> 49 #include <sys/ioctl.h> 50 #include <sys/errno.h> 51 #include <sys/device.h> 52 53 #include <machine/endian.h> 54 55 #include <net/if.h> 56 #include <net/if_dl.h> 57 #include <net/if_media.h> 58 #include <net/if_ether.h> 59 60 #include <net/bpf.h> 61 62 #include <sys/bus.h> 63 #include <sys/intr.h> 64 65 #include <dev/mii/mii.h> 66 #include <dev/mii/miivar.h> 67 #include <dev/mii/mii_bitbang.h> 68 69 #include <dev/ic/tulipreg.h> 70 #include <dev/ic/tulipvar.h> 71 72 static const char * const tlp_chip_names[] = TULIP_CHIP_NAMES; 73 74 static const struct tulip_txthresh_tab tlp_10_txthresh_tab[] = 75 TLP_TXTHRESH_TAB_10; 76 77 static const struct tulip_txthresh_tab tlp_10_100_txthresh_tab[] = 78 TLP_TXTHRESH_TAB_10_100; 79 80 static const struct tulip_txthresh_tab tlp_dm9102_txthresh_tab[] = 81 TLP_TXTHRESH_TAB_DM9102; 82 83 static void tlp_start(struct ifnet *); 84 static void tlp_watchdog(struct ifnet *); 85 static int tlp_ioctl(struct ifnet *, u_long, void *); 86 static int tlp_init(struct ifnet *); 87 static void tlp_stop(struct ifnet *, int); 88 static int tlp_ifflags_cb(struct ethercom *); 89 90 static void tlp_rxdrain(struct tulip_softc *); 91 static int tlp_add_rxbuf(struct tulip_softc *, int); 92 static void tlp_srom_idle(struct tulip_softc *); 93 static int tlp_srom_size(struct tulip_softc *); 94 95 static int tlp_enable(struct tulip_softc *); 96 static void tlp_disable(struct tulip_softc *); 97 98 static void tlp_filter_setup(struct tulip_softc *); 99 static void tlp_winb_filter_setup(struct tulip_softc *); 100 static void tlp_al981_filter_setup(struct tulip_softc *); 101 static void tlp_asix_filter_setup(struct tulip_softc *); 102 103 static void tlp_rxintr(struct tulip_softc *); 104 static void tlp_txintr(struct tulip_softc *); 105 106 static void tlp_mii_tick(void *); 107 static void tlp_mii_statchg(struct ifnet *); 108 static void tlp_winb_mii_statchg(struct ifnet *); 109 static void tlp_dm9102_mii_statchg(struct ifnet *); 110 111 static void tlp_mii_getmedia(struct tulip_softc *, struct ifmediareq *); 112 static int tlp_mii_setmedia(struct tulip_softc *); 113 114 static int tlp_bitbang_mii_readreg(device_t, int, int, uint16_t *); 115 static int tlp_bitbang_mii_writereg(device_t, int, int, uint16_t); 116 117 static int tlp_pnic_mii_readreg(device_t, int, int, uint16_t *); 118 static int tlp_pnic_mii_writereg(device_t, int, int, uint16_t); 119 120 static int tlp_al981_mii_readreg(device_t, int, int, uint16_t *); 121 static int tlp_al981_mii_writereg(device_t, int, int, uint16_t); 122 123 static void tlp_2114x_preinit(struct tulip_softc *); 124 static void tlp_2114x_mii_preinit(struct tulip_softc *); 125 static void tlp_pnic_preinit(struct tulip_softc *); 126 static void tlp_dm9102_preinit(struct tulip_softc *); 127 static void tlp_asix_preinit(struct tulip_softc *); 128 129 static void tlp_21140_reset(struct tulip_softc *); 130 static void tlp_21142_reset(struct tulip_softc *); 131 static void tlp_pmac_reset(struct tulip_softc *); 132 #if 0 133 static void tlp_dm9102_reset(struct tulip_softc *); 134 #endif 135 136 static void tlp_2114x_nway_tick(void *); 137 138 #define tlp_mchash(addr, sz) \ 139 (ether_crc32_le((addr), ETHER_ADDR_LEN) & ((sz) - 1)) 140 141 /* 142 * MII bit-bang glue. 143 */ 144 static uint32_t tlp_sio_mii_bitbang_read(device_t); 145 static void tlp_sio_mii_bitbang_write(device_t, uint32_t); 146 147 static const struct mii_bitbang_ops tlp_sio_mii_bitbang_ops = { 148 tlp_sio_mii_bitbang_read, 149 tlp_sio_mii_bitbang_write, 150 { 151 MIIROM_MDO, /* MII_BIT_MDO */ 152 MIIROM_MDI, /* MII_BIT_MDI */ 153 MIIROM_MDC, /* MII_BIT_MDC */ 154 0, /* MII_BIT_DIR_HOST_PHY */ 155 MIIROM_MIIDIR, /* MII_BIT_DIR_PHY_HOST */ 156 } 157 }; 158 159 #ifdef TLP_DEBUG 160 #define DPRINTF(sc, x) if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \ 161 printf x 162 #else 163 #define DPRINTF(sc, x) /* nothing */ 164 #endif 165 166 #ifdef TLP_STATS 167 static void tlp_print_stats(struct tulip_softc *); 168 #endif 169 170 /* 171 * Can be used to debug the SROM-related things, including contents. 172 * Initialized so that it's patchable. 173 */ 174 int tlp_srom_debug = 0; 175 176 /* 177 * tlp_attach: 178 * 179 * Attach a Tulip interface to the system. 180 */ 181 int 182 tlp_attach(struct tulip_softc *sc, const uint8_t *enaddr) 183 { 184 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 185 device_t self = sc->sc_dev; 186 int i, error; 187 188 callout_init(&sc->sc_nway_callout, 0); 189 callout_init(&sc->sc_tick_callout, 0); 190 191 /* 192 * NOTE: WE EXPECT THE FRONT-END TO INITIALIZE sc_regshift! 193 */ 194 195 /* 196 * Setup the transmit threshold table. 197 */ 198 switch (sc->sc_chip) { 199 case TULIP_CHIP_DE425: 200 case TULIP_CHIP_21040: 201 case TULIP_CHIP_21041: 202 sc->sc_txth = tlp_10_txthresh_tab; 203 break; 204 205 case TULIP_CHIP_DM9102: 206 case TULIP_CHIP_DM9102A: 207 sc->sc_txth = tlp_dm9102_txthresh_tab; 208 break; 209 210 default: 211 sc->sc_txth = tlp_10_100_txthresh_tab; 212 break; 213 } 214 215 /* 216 * Setup the filter setup function. 217 */ 218 switch (sc->sc_chip) { 219 case TULIP_CHIP_WB89C840F: 220 sc->sc_filter_setup = tlp_winb_filter_setup; 221 break; 222 223 case TULIP_CHIP_AL981: 224 case TULIP_CHIP_AN983: 225 case TULIP_CHIP_AN985: 226 sc->sc_filter_setup = tlp_al981_filter_setup; 227 break; 228 229 case TULIP_CHIP_AX88140: 230 case TULIP_CHIP_AX88141: 231 sc->sc_filter_setup = tlp_asix_filter_setup; 232 break; 233 234 default: 235 sc->sc_filter_setup = tlp_filter_setup; 236 break; 237 } 238 239 /* 240 * Set up the media status change function. 241 */ 242 switch (sc->sc_chip) { 243 case TULIP_CHIP_WB89C840F: 244 sc->sc_statchg = tlp_winb_mii_statchg; 245 break; 246 247 case TULIP_CHIP_DM9102: 248 case TULIP_CHIP_DM9102A: 249 sc->sc_statchg = tlp_dm9102_mii_statchg; 250 break; 251 252 default: 253 /* 254 * We may override this if we have special media 255 * handling requirements (e.g. flipping GPIO pins). 256 * 257 * The pure-MII statchg function covers the basics. 258 */ 259 sc->sc_statchg = tlp_mii_statchg; 260 break; 261 } 262 263 /* 264 * Default to no FS|LS in setup packet descriptors. They're 265 * supposed to be zero according to the 21040 and 21143 266 * manuals, and some chips fall over badly if they're 267 * included. Yet, other chips seem to require them. Sigh. 268 */ 269 switch (sc->sc_chip) { 270 case TULIP_CHIP_X3201_3: 271 sc->sc_setup_fsls = TDCTL_Tx_FS | TDCTL_Tx_LS; 272 break; 273 274 default: 275 sc->sc_setup_fsls = 0; 276 } 277 278 /* 279 * Set up various chip-specific quirks. 280 * 281 * Note that wherever we can, we use the "ring" option for 282 * transmit and receive descriptors. This is because some 283 * clone chips apparently have problems when using chaining, 284 * although some *only* support chaining. 285 * 286 * What we do is always program the "next" pointer, and then 287 * conditionally set the TDCTL_CH and TDCTL_ER bits in the 288 * appropriate places. 289 */ 290 switch (sc->sc_chip) { 291 case TULIP_CHIP_21140: 292 case TULIP_CHIP_21140A: 293 case TULIP_CHIP_21142: 294 case TULIP_CHIP_21143: 295 case TULIP_CHIP_82C115: /* 21143-like */ 296 case TULIP_CHIP_MX98713: /* 21140-like */ 297 case TULIP_CHIP_MX98713A: /* 21143-like */ 298 case TULIP_CHIP_MX98715: /* 21143-like */ 299 case TULIP_CHIP_MX98715A: /* 21143-like */ 300 case TULIP_CHIP_MX98715AEC_X: /* 21143-like */ 301 case TULIP_CHIP_MX98725: /* 21143-like */ 302 case TULIP_CHIP_RS7112: /* 21143-like */ 303 /* 304 * Run these chips in ring mode. 305 */ 306 sc->sc_tdctl_ch = 0; 307 sc->sc_tdctl_er = TDCTL_ER; 308 sc->sc_preinit = tlp_2114x_preinit; 309 break; 310 311 case TULIP_CHIP_82C168: 312 case TULIP_CHIP_82C169: 313 /* 314 * Run these chips in ring mode. 315 */ 316 sc->sc_tdctl_ch = 0; 317 sc->sc_tdctl_er = TDCTL_ER; 318 sc->sc_preinit = tlp_pnic_preinit; 319 320 /* 321 * These chips seem to have busted DMA engines; just put them 322 * in Store-and-Forward mode from the get-go. 323 */ 324 sc->sc_txthresh = TXTH_SF; 325 break; 326 327 case TULIP_CHIP_WB89C840F: 328 /* 329 * Run this chip in chained mode. 330 */ 331 sc->sc_tdctl_ch = TDCTL_CH; 332 sc->sc_tdctl_er = 0; 333 sc->sc_flags |= TULIPF_IC_FS; 334 break; 335 336 case TULIP_CHIP_DM9102: 337 case TULIP_CHIP_DM9102A: 338 /* 339 * Run these chips in chained mode. 340 */ 341 sc->sc_tdctl_ch = TDCTL_CH; 342 sc->sc_tdctl_er = 0; 343 sc->sc_preinit = tlp_dm9102_preinit; 344 345 /* 346 * These chips have a broken bus interface, so we 347 * can't use any optimized bus commands. For this 348 * reason, we tend to underrun pretty quickly, so 349 * just to Store-and-Forward mode from the get-go. 350 */ 351 sc->sc_txthresh = TXTH_DM9102_SF; 352 break; 353 354 case TULIP_CHIP_AX88140: 355 case TULIP_CHIP_AX88141: 356 /* 357 * Run these chips in ring mode. 358 */ 359 sc->sc_tdctl_ch = 0; 360 sc->sc_tdctl_er = TDCTL_ER; 361 sc->sc_preinit = tlp_asix_preinit; 362 break; 363 364 default: 365 /* 366 * Default to running in ring mode. 367 */ 368 sc->sc_tdctl_ch = 0; 369 sc->sc_tdctl_er = TDCTL_ER; 370 } 371 372 /* 373 * Set up the MII bit-bang operations. 374 */ 375 switch (sc->sc_chip) { 376 case TULIP_CHIP_WB89C840F: /* XXX direction bit different? */ 377 sc->sc_bitbang_ops = &tlp_sio_mii_bitbang_ops; 378 break; 379 380 default: 381 sc->sc_bitbang_ops = &tlp_sio_mii_bitbang_ops; 382 } 383 384 SIMPLEQ_INIT(&sc->sc_txfreeq); 385 SIMPLEQ_INIT(&sc->sc_txdirtyq); 386 387 /* 388 * Allocate the control data structures, and create and load the 389 * DMA map for it. 390 */ 391 if ((error = bus_dmamem_alloc(sc->sc_dmat, 392 sizeof(struct tulip_control_data), PAGE_SIZE, 0, &sc->sc_cdseg, 393 1, &sc->sc_cdnseg, 0)) != 0) { 394 aprint_error_dev(self, 395 "unable to allocate control data, error = %d\n", error); 396 goto fail_0; 397 } 398 399 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg, 400 sizeof(struct tulip_control_data), (void **)&sc->sc_control_data, 401 BUS_DMA_COHERENT)) != 0) { 402 aprint_error_dev(self, 403 "unable to map control data, error = %d\n", error); 404 goto fail_1; 405 } 406 407 if ((error = bus_dmamap_create(sc->sc_dmat, 408 sizeof(struct tulip_control_data), 1, 409 sizeof(struct tulip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) { 410 sc->sc_cddmamap = NULL; 411 aprint_error_dev(self, 412 "unable to create control data DMA map, error = %d\n", 413 error); 414 goto fail_2; 415 } 416 417 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap, 418 sc->sc_control_data, sizeof(struct tulip_control_data), NULL, 419 0)) != 0) { 420 aprint_error_dev(self, 421 "unable to load control data DMA map, error = %d\n", 422 error); 423 goto fail_3; 424 } 425 426 /* 427 * Create the transmit buffer DMA maps. 428 * 429 * Note that on the Xircom clone, transmit buffers must be 430 * 4-byte aligned. We're almost guaranteed to have to copy 431 * the packet in that case, so we just limit ourselves to 432 * one segment. 433 * 434 * On the DM9102, the transmit logic can only handle one 435 * DMA segment. 436 */ 437 switch (sc->sc_chip) { 438 case TULIP_CHIP_X3201_3: 439 case TULIP_CHIP_DM9102: 440 case TULIP_CHIP_DM9102A: 441 case TULIP_CHIP_AX88140: 442 case TULIP_CHIP_AX88141: 443 sc->sc_ntxsegs = 1; 444 break; 445 446 default: 447 sc->sc_ntxsegs = TULIP_NTXSEGS; 448 } 449 for (i = 0; i < TULIP_TXQUEUELEN; i++) { 450 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 451 sc->sc_ntxsegs, MCLBYTES, 0, 0, 452 &sc->sc_txsoft[i].txs_dmamap)) != 0) { 453 sc->sc_txsoft[i].txs_dmamap = NULL; 454 aprint_error_dev(self, 455 "unable to create tx DMA map %d, error = %d\n", i, 456 error); 457 goto fail_4; 458 } 459 } 460 461 /* 462 * Create the receive buffer DMA maps. 463 */ 464 for (i = 0; i < TULIP_NRXDESC; i++) { 465 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, 466 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) { 467 sc->sc_rxsoft[i].rxs_dmamap = NULL; 468 aprint_error_dev(self, 469 "unable to create rx DMA map %d, error = %d\n", i, 470 error); 471 goto fail_5; 472 } 473 sc->sc_rxsoft[i].rxs_mbuf = NULL; 474 } 475 476 /* 477 * From this point forward, the attachment cannot fail. A failure 478 * before this point releases all resources that may have been 479 * allocated. 480 */ 481 sc->sc_flags |= TULIPF_ATTACHED; 482 483 /* 484 * Reset the chip to a known state. 485 */ 486 tlp_reset(sc); 487 488 /* Announce ourselves. */ 489 aprint_normal_dev(self, "%s%sEthernet address %s\n", 490 sc->sc_name[0] != '\0' ? sc->sc_name : "", 491 sc->sc_name[0] != '\0' ? ", " : "", 492 ether_sprintf(enaddr)); 493 494 /* 495 * Check to see if we're the simulated Ethernet on Connectix 496 * Virtual PC. 497 */ 498 if (enaddr[0] == 0x00 && enaddr[1] == 0x03 && enaddr[2] == 0xff) 499 sc->sc_flags |= TULIPF_VPC; 500 501 /* 502 * Initialize our media structures. This may probe the MII, if 503 * present. 504 */ 505 (*sc->sc_mediasw->tmsw_init)(sc); 506 507 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ); 508 ifp->if_softc = sc; 509 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 510 sc->sc_if_flags = ifp->if_flags; 511 ifp->if_ioctl = tlp_ioctl; 512 ifp->if_start = tlp_start; 513 ifp->if_watchdog = tlp_watchdog; 514 ifp->if_init = tlp_init; 515 ifp->if_stop = tlp_stop; 516 IFQ_SET_READY(&ifp->if_snd); 517 518 /* 519 * We can support 802.1Q VLAN-sized frames. 520 */ 521 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU; 522 523 /* 524 * Attach the interface. 525 */ 526 if_attach(ifp); 527 if_deferred_start_init(ifp, NULL); 528 ether_ifattach(ifp, enaddr); 529 ether_set_ifflags_cb(&sc->sc_ethercom, tlp_ifflags_cb); 530 531 rnd_attach_source(&sc->sc_rnd_source, device_xname(self), 532 RND_TYPE_NET, RND_FLAG_DEFAULT); 533 534 if (pmf_device_register(self, NULL, NULL)) 535 pmf_class_network_register(self, ifp); 536 else 537 aprint_error_dev(self, "couldn't establish power handler\n"); 538 539 return 0; 540 541 /* 542 * Free any resources we've allocated during the failed attach 543 * attempt. Do this in reverse order and fall through. 544 */ 545 fail_5: 546 for (i = 0; i < TULIP_NRXDESC; i++) { 547 if (sc->sc_rxsoft[i].rxs_dmamap != NULL) 548 bus_dmamap_destroy(sc->sc_dmat, 549 sc->sc_rxsoft[i].rxs_dmamap); 550 } 551 fail_4: 552 for (i = 0; i < TULIP_TXQUEUELEN; i++) { 553 if (sc->sc_txsoft[i].txs_dmamap != NULL) 554 bus_dmamap_destroy(sc->sc_dmat, 555 sc->sc_txsoft[i].txs_dmamap); 556 } 557 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap); 558 fail_3: 559 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap); 560 fail_2: 561 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data, 562 sizeof(struct tulip_control_data)); 563 fail_1: 564 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg); 565 fail_0: 566 return error; 567 } 568 569 /* 570 * tlp_activate: 571 * 572 * Handle device activation/deactivation requests. 573 */ 574 int 575 tlp_activate(device_t self, enum devact act) 576 { 577 struct tulip_softc *sc = device_private(self); 578 579 switch (act) { 580 case DVACT_DEACTIVATE: 581 if_deactivate(&sc->sc_ethercom.ec_if); 582 return 0; 583 default: 584 return EOPNOTSUPP; 585 } 586 } 587 588 /* 589 * tlp_detach: 590 * 591 * Detach a Tulip interface. 592 */ 593 int 594 tlp_detach(struct tulip_softc *sc) 595 { 596 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 597 struct tulip_rxsoft *rxs; 598 struct tulip_txsoft *txs; 599 device_t self = sc->sc_dev; 600 int i, s; 601 602 /* 603 * Succeed now if there isn't any work to do. 604 */ 605 if ((sc->sc_flags & TULIPF_ATTACHED) == 0) 606 return 0; 607 608 s = splnet(); 609 /* Stop the interface. Callouts are stopped in it. */ 610 tlp_stop(ifp, 1); 611 splx(s); 612 613 /* Destroy our callouts. */ 614 callout_destroy(&sc->sc_nway_callout); 615 callout_destroy(&sc->sc_tick_callout); 616 617 if (sc->sc_flags & TULIPF_HAS_MII) { 618 /* Detach all PHYs */ 619 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY); 620 } 621 622 rnd_detach_source(&sc->sc_rnd_source); 623 624 ether_ifdetach(ifp); 625 if_detach(ifp); 626 627 /* Delete all remaining media. */ 628 ifmedia_fini(&sc->sc_mii.mii_media); 629 630 for (i = 0; i < TULIP_NRXDESC; i++) { 631 rxs = &sc->sc_rxsoft[i]; 632 if (rxs->rxs_mbuf != NULL) { 633 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap); 634 m_freem(rxs->rxs_mbuf); 635 rxs->rxs_mbuf = NULL; 636 } 637 bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap); 638 } 639 for (i = 0; i < TULIP_TXQUEUELEN; i++) { 640 txs = &sc->sc_txsoft[i]; 641 if (txs->txs_mbuf != NULL) { 642 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap); 643 m_freem(txs->txs_mbuf); 644 txs->txs_mbuf = NULL; 645 } 646 bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap); 647 } 648 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap); 649 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap); 650 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data, 651 sizeof(struct tulip_control_data)); 652 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg); 653 654 pmf_device_deregister(self); 655 656 if (sc->sc_srom) 657 free(sc->sc_srom, M_DEVBUF); 658 659 return 0; 660 } 661 662 /* 663 * tlp_start: [ifnet interface function] 664 * 665 * Start packet transmission on the interface. 666 */ 667 static void 668 tlp_start(struct ifnet *ifp) 669 { 670 struct tulip_softc *sc = ifp->if_softc; 671 struct mbuf *m0, *m; 672 struct tulip_txsoft *txs, *last_txs = NULL; 673 bus_dmamap_t dmamap; 674 int error, firsttx, nexttx, lasttx = 1, ofree, seg; 675 struct tulip_desc *txd; 676 677 DPRINTF(sc, ("%s: tlp_start: sc_flags 0x%08x, if_flags 0x%08x\n", 678 device_xname(sc->sc_dev), sc->sc_flags, ifp->if_flags)); 679 680 /* 681 * If we want a filter setup, it means no more descriptors were 682 * available for the setup routine. Let it get a chance to wedge 683 * itself into the ring. 684 */ 685 if (sc->sc_flags & TULIPF_WANT_SETUP) 686 return; 687 688 if ((ifp->if_flags & IFF_RUNNING) != IFF_RUNNING) 689 return; 690 691 if (sc->sc_tick == tlp_2114x_nway_tick && 692 (sc->sc_flags & TULIPF_LINK_UP) == 0 && ifp->if_snd.ifq_len < 10) 693 return; 694 695 /* 696 * Remember the previous number of free descriptors and 697 * the first descriptor we'll use. 698 */ 699 ofree = sc->sc_txfree; 700 firsttx = sc->sc_txnext; 701 702 DPRINTF(sc, ("%s: tlp_start: txfree %d, txnext %d\n", 703 device_xname(sc->sc_dev), ofree, firsttx)); 704 705 /* 706 * Loop through the send queue, setting up transmit descriptors 707 * until we drain the queue, or use up all available transmit 708 * descriptors. 709 */ 710 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL && 711 sc->sc_txfree != 0) { 712 /* 713 * Grab a packet off the queue. 714 */ 715 IFQ_POLL(&ifp->if_snd, m0); 716 if (m0 == NULL) 717 break; 718 m = NULL; 719 720 dmamap = txs->txs_dmamap; 721 722 /* 723 * Load the DMA map. If this fails, the packet either 724 * didn't fit in the alloted number of segments, or we were 725 * short on resources. In this case, we'll copy and try 726 * again. 727 * 728 * Note that if we're only allowed 1 Tx segment, we 729 * have an alignment restriction. Do this test before 730 * attempting to load the DMA map, because it's more 731 * likely we'll trip the alignment test than the 732 * more-than-one-segment test. 733 */ 734 if ((sc->sc_ntxsegs == 1 && (mtod(m0, uintptr_t) & 3) != 0) || 735 bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0, 736 BUS_DMA_WRITE | BUS_DMA_NOWAIT) != 0) { 737 MGETHDR(m, M_DONTWAIT, MT_DATA); 738 if (m == NULL) { 739 aprint_error_dev(sc->sc_dev, "unable to allocate Tx mbuf\n"); 740 break; 741 } 742 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner); 743 if (m0->m_pkthdr.len > MHLEN) { 744 MCLGET(m, M_DONTWAIT); 745 if ((m->m_flags & M_EXT) == 0) { 746 aprint_error_dev(sc->sc_dev, 747 "unable to allocate Tx cluster\n"); 748 m_freem(m); 749 break; 750 } 751 } 752 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *)); 753 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len; 754 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, 755 m, BUS_DMA_WRITE | BUS_DMA_NOWAIT); 756 if (error) { 757 aprint_error_dev(sc->sc_dev, 758 "unable to load Tx buffer, error = %d", 759 error); 760 break; 761 } 762 } 763 764 /* 765 * Ensure we have enough descriptors free to describe 766 * the packet. 767 */ 768 if (dmamap->dm_nsegs > sc->sc_txfree) { 769 /* 770 * Not enough free descriptors to transmit this 771 * packet. 772 */ 773 bus_dmamap_unload(sc->sc_dmat, dmamap); 774 if (m != NULL) 775 m_freem(m); 776 break; 777 } 778 779 IFQ_DEQUEUE(&ifp->if_snd, m0); 780 if (m != NULL) { 781 m_freem(m0); 782 m0 = m; 783 } 784 785 /* 786 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET. 787 */ 788 789 /* Sync the DMA map. */ 790 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize, 791 BUS_DMASYNC_PREWRITE); 792 793 /* 794 * Initialize the transmit descriptors. 795 */ 796 for (nexttx = sc->sc_txnext, seg = 0; 797 seg < dmamap->dm_nsegs; 798 seg++, nexttx = TULIP_NEXTTX(nexttx)) { 799 /* 800 * If this is the first descriptor we're 801 * enqueueing, don't set the OWN bit just 802 * yet. That could cause a race condition. 803 * We'll do it below. 804 */ 805 txd = &sc->sc_txdescs[nexttx]; 806 txd->td_status = 807 (nexttx == firsttx) ? 0 : htole32(TDSTAT_OWN); 808 txd->td_bufaddr1 = 809 htole32(dmamap->dm_segs[seg].ds_addr); 810 txd->td_ctl = 811 htole32((dmamap->dm_segs[seg].ds_len << 812 TDCTL_SIZE1_SHIFT) | sc->sc_tdctl_ch | 813 (nexttx == (TULIP_NTXDESC - 1) ? 814 sc->sc_tdctl_er : 0)); 815 lasttx = nexttx; 816 } 817 818 KASSERT(lasttx != -1); 819 820 /* Set `first segment' and `last segment' appropriately. */ 821 sc->sc_txdescs[sc->sc_txnext].td_ctl |= htole32(TDCTL_Tx_FS); 822 sc->sc_txdescs[lasttx].td_ctl |= htole32(TDCTL_Tx_LS); 823 824 #ifdef TLP_DEBUG 825 if (ifp->if_flags & IFF_DEBUG) { 826 printf(" txsoft %p transmit chain:\n", txs); 827 for (seg = sc->sc_txnext;; seg = TULIP_NEXTTX(seg)) { 828 txd = &sc->sc_txdescs[seg]; 829 printf(" descriptor %d:\n", seg); 830 printf(" td_status: 0x%08x\n", 831 le32toh(txd->td_status)); 832 printf(" td_ctl: 0x%08x\n", 833 le32toh(txd->td_ctl)); 834 printf(" td_bufaddr1: 0x%08x\n", 835 le32toh(txd->td_bufaddr1)); 836 printf(" td_bufaddr2: 0x%08x\n", 837 le32toh(txd->td_bufaddr2)); 838 if (seg == lasttx) 839 break; 840 } 841 } 842 #endif 843 844 /* Sync the descriptors we're using. */ 845 TULIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs, 846 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 847 848 /* 849 * Store a pointer to the packet so we can free it later, 850 * and remember what txdirty will be once the packet is 851 * done. 852 */ 853 txs->txs_mbuf = m0; 854 txs->txs_firstdesc = sc->sc_txnext; 855 txs->txs_lastdesc = lasttx; 856 txs->txs_ndescs = dmamap->dm_nsegs; 857 858 /* Advance the tx pointer. */ 859 sc->sc_txfree -= dmamap->dm_nsegs; 860 sc->sc_txnext = nexttx; 861 862 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q); 863 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q); 864 865 last_txs = txs; 866 867 /* 868 * Pass the packet to any BPF listeners. 869 */ 870 bpf_mtap(ifp, m0, BPF_D_OUT); 871 } 872 873 if (sc->sc_txfree != ofree) { 874 DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n", 875 device_xname(sc->sc_dev), lasttx, firsttx)); 876 /* 877 * Cause a transmit interrupt to happen on the 878 * last packet we enqueued. 879 */ 880 sc->sc_txdescs[lasttx].td_ctl |= htole32(TDCTL_Tx_IC); 881 TULIP_CDTXSYNC(sc, lasttx, 1, 882 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 883 884 /* 885 * Some clone chips want IC on the *first* segment in 886 * the packet. Appease them. 887 */ 888 KASSERT(last_txs != NULL); 889 if ((sc->sc_flags & TULIPF_IC_FS) != 0 && 890 last_txs->txs_firstdesc != lasttx) { 891 sc->sc_txdescs[last_txs->txs_firstdesc].td_ctl |= 892 htole32(TDCTL_Tx_IC); 893 TULIP_CDTXSYNC(sc, last_txs->txs_firstdesc, 1, 894 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 895 } 896 897 /* 898 * The entire packet chain is set up. Give the 899 * first descriptor to the chip now. 900 */ 901 sc->sc_txdescs[firsttx].td_status |= htole32(TDSTAT_OWN); 902 TULIP_CDTXSYNC(sc, firsttx, 1, 903 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 904 905 /* Wake up the transmitter. */ 906 /* XXX USE AUTOPOLLING? */ 907 TULIP_WRITE(sc, CSR_TXPOLL, TXPOLL_TPD); 908 909 /* Set a watchdog timer in case the chip flakes out. */ 910 ifp->if_timer = 5; 911 } 912 } 913 914 /* 915 * tlp_watchdog: [ifnet interface function] 916 * 917 * Watchdog timer handler. 918 */ 919 static void 920 tlp_watchdog(struct ifnet *ifp) 921 { 922 struct tulip_softc *sc = ifp->if_softc; 923 int doing_setup, doing_transmit; 924 925 doing_setup = (sc->sc_flags & TULIPF_DOING_SETUP); 926 doing_transmit = (! SIMPLEQ_EMPTY(&sc->sc_txdirtyq)); 927 928 if (doing_setup && doing_transmit) { 929 printf("%s: filter setup and transmit timeout\n", 930 device_xname(sc->sc_dev)); 931 if_statinc(ifp, if_oerrors); 932 } else if (doing_transmit) { 933 printf("%s: transmit timeout\n", device_xname(sc->sc_dev)); 934 if_statinc(ifp, if_oerrors); 935 } else if (doing_setup) 936 printf("%s: filter setup timeout\n", device_xname(sc->sc_dev)); 937 else 938 printf("%s: spurious watchdog timeout\n", 939 device_xname(sc->sc_dev)); 940 941 (void) tlp_init(ifp); 942 943 /* Try to get more packets going. */ 944 tlp_start(ifp); 945 } 946 947 /* If the interface is up and running, only modify the receive 948 * filter when setting promiscuous or debug mode. Otherwise fall 949 * through to ether_ioctl, which will reset the chip. 950 */ 951 static int 952 tlp_ifflags_cb(struct ethercom *ec) 953 { 954 struct ifnet *ifp = &ec->ec_if; 955 struct tulip_softc *sc = ifp->if_softc; 956 u_short change = ifp->if_flags ^ sc->sc_if_flags; 957 958 if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0) 959 return ENETRESET; 960 if ((change & IFF_PROMISC) != 0) 961 (*sc->sc_filter_setup)(sc); 962 return 0; 963 } 964 965 /* 966 * tlp_ioctl: [ifnet interface function] 967 * 968 * Handle control requests from the operator. 969 */ 970 static int 971 tlp_ioctl(struct ifnet *ifp, u_long cmd, void *data) 972 { 973 struct tulip_softc *sc = ifp->if_softc; 974 int s, error; 975 976 s = splnet(); 977 978 switch (cmd) { 979 default: 980 error = ether_ioctl(ifp, cmd, data); 981 if (error == ENETRESET) { 982 if (ifp->if_flags & IFF_RUNNING) { 983 /* 984 * Multicast list has changed. Set the 985 * hardware filter accordingly. 986 */ 987 (*sc->sc_filter_setup)(sc); 988 } 989 error = 0; 990 } 991 break; 992 } 993 994 /* Try to get more packets going. */ 995 if (TULIP_IS_ENABLED(sc)) 996 tlp_start(ifp); 997 998 sc->sc_if_flags = ifp->if_flags; 999 splx(s); 1000 return error; 1001 } 1002 1003 /* 1004 * tlp_intr: 1005 * 1006 * Interrupt service routine. 1007 */ 1008 int 1009 tlp_intr(void *arg) 1010 { 1011 struct tulip_softc *sc = arg; 1012 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1013 uint32_t status, rxstatus, txstatus; 1014 int handled = 0, txthresh; 1015 1016 DPRINTF(sc, ("%s: tlp_intr\n", device_xname(sc->sc_dev))); 1017 1018 #ifdef DEBUG 1019 if (TULIP_IS_ENABLED(sc) == 0) 1020 panic("%s: tlp_intr: not enabled", device_xname(sc->sc_dev)); 1021 #endif 1022 1023 /* 1024 * If the interface isn't running, the interrupt couldn't 1025 * possibly have come from us. 1026 */ 1027 if ((ifp->if_flags & IFF_RUNNING) == 0 || 1028 !device_is_active(sc->sc_dev)) 1029 return 0; 1030 1031 /* Disable interrupts on the DM9102 (interrupt edge bug). */ 1032 switch (sc->sc_chip) { 1033 case TULIP_CHIP_DM9102: 1034 case TULIP_CHIP_DM9102A: 1035 TULIP_WRITE(sc, CSR_INTEN, 0); 1036 break; 1037 1038 default: 1039 /* Nothing. */ 1040 break; 1041 } 1042 1043 for (;;) { 1044 status = TULIP_READ(sc, CSR_STATUS); 1045 if (status) 1046 TULIP_WRITE(sc, CSR_STATUS, status); 1047 1048 if ((status & sc->sc_inten) == 0) 1049 break; 1050 1051 handled = 1; 1052 1053 rxstatus = status & sc->sc_rxint_mask; 1054 txstatus = status & sc->sc_txint_mask; 1055 1056 if (rxstatus) { 1057 /* Grab new any new packets. */ 1058 tlp_rxintr(sc); 1059 1060 if (rxstatus & STATUS_RWT) 1061 printf("%s: receive watchdog timeout\n", 1062 device_xname(sc->sc_dev)); 1063 1064 if (rxstatus & STATUS_RU) { 1065 printf("%s: receive ring overrun\n", 1066 device_xname(sc->sc_dev)); 1067 /* Get the receive process going again. */ 1068 if (sc->sc_tdctl_er != TDCTL_ER) { 1069 tlp_idle(sc, OPMODE_SR); 1070 TULIP_WRITE(sc, CSR_RXLIST, 1071 TULIP_CDRXADDR(sc, sc->sc_rxptr)); 1072 TULIP_WRITE(sc, CSR_OPMODE, 1073 sc->sc_opmode); 1074 } 1075 TULIP_WRITE(sc, CSR_RXPOLL, RXPOLL_RPD); 1076 break; 1077 } 1078 } 1079 1080 if (txstatus) { 1081 /* Sweep up transmit descriptors. */ 1082 tlp_txintr(sc); 1083 1084 if (txstatus & STATUS_TJT) 1085 printf("%s: transmit jabber timeout\n", 1086 device_xname(sc->sc_dev)); 1087 1088 if (txstatus & STATUS_UNF) { 1089 /* 1090 * Increase our transmit threshold if 1091 * another is available. 1092 */ 1093 txthresh = sc->sc_txthresh + 1; 1094 if (sc->sc_txth[txthresh].txth_name != NULL) { 1095 /* Idle the transmit process. */ 1096 tlp_idle(sc, OPMODE_ST); 1097 1098 sc->sc_txthresh = txthresh; 1099 sc->sc_opmode &= ~(OPMODE_TR|OPMODE_SF); 1100 sc->sc_opmode |= 1101 sc->sc_txth[txthresh].txth_opmode; 1102 printf("%s: transmit underrun; new " 1103 "threshold: %s\n", 1104 device_xname(sc->sc_dev), 1105 sc->sc_txth[txthresh].txth_name); 1106 1107 /* 1108 * Set the new threshold and restart 1109 * the transmit process. 1110 */ 1111 TULIP_WRITE(sc, CSR_OPMODE, 1112 sc->sc_opmode); 1113 } 1114 /* 1115 * XXX Log every Nth underrun from 1116 * XXX now on? 1117 */ 1118 } 1119 } 1120 1121 if (status & (STATUS_TPS | STATUS_RPS)) { 1122 if (status & STATUS_TPS) 1123 printf("%s: transmit process stopped\n", 1124 device_xname(sc->sc_dev)); 1125 if (status & STATUS_RPS) 1126 printf("%s: receive process stopped\n", 1127 device_xname(sc->sc_dev)); 1128 (void) tlp_init(ifp); 1129 break; 1130 } 1131 1132 if (status & STATUS_SE) { 1133 const char *str; 1134 switch (status & STATUS_EB) { 1135 case STATUS_EB_PARITY: 1136 str = "parity error"; 1137 break; 1138 1139 case STATUS_EB_MABT: 1140 str = "master abort"; 1141 break; 1142 1143 case STATUS_EB_TABT: 1144 str = "target abort"; 1145 break; 1146 1147 default: 1148 str = "unknown error"; 1149 break; 1150 } 1151 aprint_error_dev(sc->sc_dev, 1152 "fatal system error: %s\n", str); 1153 (void) tlp_init(ifp); 1154 break; 1155 } 1156 1157 /* 1158 * Not handled: 1159 * 1160 * Transmit buffer unavailable -- normal 1161 * condition, nothing to do, really. 1162 * 1163 * General purpose timer experied -- we don't 1164 * use the general purpose timer. 1165 * 1166 * Early receive interrupt -- not available on 1167 * all chips, we just use RI. We also only 1168 * use single-segment receive DMA, so this 1169 * is mostly useless. 1170 */ 1171 } 1172 1173 /* Bring interrupts back up on the DM9102. */ 1174 switch (sc->sc_chip) { 1175 case TULIP_CHIP_DM9102: 1176 case TULIP_CHIP_DM9102A: 1177 TULIP_WRITE(sc, CSR_INTEN, sc->sc_inten); 1178 break; 1179 1180 default: 1181 /* Nothing. */ 1182 break; 1183 } 1184 1185 /* Try to get more packets going. */ 1186 if_schedule_deferred_start(ifp); 1187 1188 if (handled) 1189 rnd_add_uint32(&sc->sc_rnd_source, status); 1190 1191 return handled; 1192 } 1193 1194 /* 1195 * tlp_rxintr: 1196 * 1197 * Helper; handle receive interrupts. 1198 */ 1199 static void 1200 tlp_rxintr(struct tulip_softc *sc) 1201 { 1202 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1203 struct ether_header *eh; 1204 struct tulip_rxsoft *rxs; 1205 struct mbuf *m; 1206 uint32_t rxstat, errors; 1207 int i, len; 1208 1209 for (i = sc->sc_rxptr;; i = TULIP_NEXTRX(i)) { 1210 rxs = &sc->sc_rxsoft[i]; 1211 1212 TULIP_CDRXSYNC(sc, i, 1213 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1214 1215 rxstat = le32toh(sc->sc_rxdescs[i].td_status); 1216 1217 if (rxstat & TDSTAT_OWN) { 1218 /* 1219 * We have processed all of the receive buffers. 1220 */ 1221 break; 1222 } 1223 1224 /* 1225 * Make sure the packet fit in one buffer. This should 1226 * always be the case. But the Lite-On PNIC, rev 33 1227 * has an awful receive engine bug, which may require 1228 * a very icky work-around. 1229 */ 1230 if ((rxstat & (TDSTAT_Rx_FS | TDSTAT_Rx_LS)) != 1231 (TDSTAT_Rx_FS | TDSTAT_Rx_LS)) { 1232 printf("%s: incoming packet spilled, resetting\n", 1233 device_xname(sc->sc_dev)); 1234 (void) tlp_init(ifp); 1235 return; 1236 } 1237 1238 /* 1239 * If any collisions were seen on the wire, count one. 1240 */ 1241 if (rxstat & TDSTAT_Rx_CS) 1242 if_statinc(ifp, if_collisions); 1243 1244 /* 1245 * If an error occurred, update stats, clear the status 1246 * word, and leave the packet buffer in place. It will 1247 * simply be reused the next time the ring comes around. 1248 */ 1249 errors = TDSTAT_Rx_DE | TDSTAT_Rx_RF | TDSTAT_Rx_TL | 1250 TDSTAT_Rx_CS | TDSTAT_Rx_RE | TDSTAT_Rx_DB | TDSTAT_Rx_CE; 1251 /* 1252 * If 802.1Q VLAN MTU is enabled, ignore the Frame Too Long 1253 * error. 1254 */ 1255 if ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) != 0) 1256 errors &= ~TDSTAT_Rx_TL; 1257 /* 1258 * If chip doesn't have MII, ignore the MII error bit. 1259 */ 1260 if ((sc->sc_flags & TULIPF_HAS_MII) == 0) 1261 errors &= ~TDSTAT_Rx_RE; 1262 1263 if ((rxstat & TDSTAT_ES) != 0 && 1264 (rxstat & errors) != 0) { 1265 rxstat &= errors; 1266 #define PRINTERR(bit, str) \ 1267 if (rxstat & (bit)) \ 1268 aprint_error_dev(sc->sc_dev, \ 1269 "receive error: %s\n", str) 1270 if_statinc(ifp, if_ierrors); 1271 PRINTERR(TDSTAT_Rx_DE, "descriptor error"); 1272 PRINTERR(TDSTAT_Rx_RF, "runt frame"); 1273 PRINTERR(TDSTAT_Rx_TL, "frame too long"); 1274 PRINTERR(TDSTAT_Rx_RE, "MII error"); 1275 PRINTERR(TDSTAT_Rx_DB, "dribbling bit"); 1276 PRINTERR(TDSTAT_Rx_CE, "CRC error"); 1277 #undef PRINTERR 1278 TULIP_INIT_RXDESC(sc, i); 1279 continue; 1280 } 1281 1282 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 1283 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); 1284 1285 /* 1286 * No errors; receive the packet. Note the Tulip 1287 * includes the CRC with every packet. 1288 */ 1289 len = TDSTAT_Rx_LENGTH(rxstat) - ETHER_CRC_LEN; 1290 1291 #ifdef __NO_STRICT_ALIGNMENT 1292 /* 1293 * Allocate a new mbuf cluster. If that fails, we are 1294 * out of memory, and must drop the packet and recycle 1295 * the buffer that's already attached to this descriptor. 1296 */ 1297 m = rxs->rxs_mbuf; 1298 if (tlp_add_rxbuf(sc, i) != 0) { 1299 if_statinc(ifp, if_ierrors); 1300 TULIP_INIT_RXDESC(sc, i); 1301 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 1302 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); 1303 continue; 1304 } 1305 #else 1306 /* 1307 * The Tulip's receive buffers must be 4-byte aligned. 1308 * But this means that the data after the Ethernet header 1309 * is misaligned. We must allocate a new buffer and 1310 * copy the data, shifted forward 2 bytes. 1311 */ 1312 MGETHDR(m, M_DONTWAIT, MT_DATA); 1313 if (m == NULL) { 1314 dropit: 1315 if_statinc(ifp, if_ierrors); 1316 TULIP_INIT_RXDESC(sc, i); 1317 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 1318 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); 1319 continue; 1320 } 1321 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner); 1322 if (len > (MHLEN - 2)) { 1323 MCLGET(m, M_DONTWAIT); 1324 if ((m->m_flags & M_EXT) == 0) { 1325 m_freem(m); 1326 goto dropit; 1327 } 1328 } 1329 m->m_data += 2; 1330 1331 /* 1332 * Note that we use clusters for incoming frames, so the 1333 * buffer is virtually contiguous. 1334 */ 1335 memcpy(mtod(m, void *), mtod(rxs->rxs_mbuf, void *), len); 1336 1337 /* Allow the receive descriptor to continue using its mbuf. */ 1338 TULIP_INIT_RXDESC(sc, i); 1339 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 1340 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); 1341 #endif /* __NO_STRICT_ALIGNMENT */ 1342 1343 eh = mtod(m, struct ether_header *); 1344 m_set_rcvif(m, ifp); 1345 m->m_pkthdr.len = m->m_len = len; 1346 1347 /* 1348 * XXX Work-around for a weird problem with the emulated 1349 * 21041 on Connectix Virtual PC: 1350 * 1351 * When we receive a full-size TCP segment, we seem to get 1352 * a packet there the Rx status says 1522 bytes, yet we do 1353 * not get a frame-too-long error from the chip. The extra 1354 * bytes seem to always be zeros. Perhaps Virtual PC is 1355 * inserting 4 bytes of zeros after every packet. In any 1356 * case, let's try and detect this condition and truncate 1357 * the length so that it will pass up the stack. 1358 */ 1359 if (__predict_false((sc->sc_flags & TULIPF_VPC) != 0)) { 1360 uint16_t etype = ntohs(eh->ether_type); 1361 1362 if (len > ETHER_MAX_FRAME(ifp, etype, 0)) 1363 m->m_pkthdr.len = m->m_len = len = 1364 ETHER_MAX_FRAME(ifp, etype, 0); 1365 } 1366 1367 /* 1368 * We sometimes have to run the 21140 in Hash-Only 1369 * mode. If we're in that mode, and not in promiscuous 1370 * mode, and we have a unicast packet that isn't for 1371 * us, then drop it. 1372 */ 1373 if (sc->sc_filtmode == TDCTL_Tx_FT_HASHONLY && 1374 (ifp->if_flags & IFF_PROMISC) == 0 && 1375 ETHER_IS_MULTICAST(eh->ether_dhost) == 0 && 1376 memcmp(CLLADDR(ifp->if_sadl), eh->ether_dhost, 1377 ETHER_ADDR_LEN) != 0) { 1378 m_freem(m); 1379 continue; 1380 } 1381 1382 /* Pass it on. */ 1383 if_percpuq_enqueue(ifp->if_percpuq, m); 1384 } 1385 1386 /* Update the receive pointer. */ 1387 sc->sc_rxptr = i; 1388 } 1389 1390 /* 1391 * tlp_txintr: 1392 * 1393 * Helper; handle transmit interrupts. 1394 */ 1395 static void 1396 tlp_txintr(struct tulip_softc *sc) 1397 { 1398 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1399 struct tulip_txsoft *txs; 1400 uint32_t txstat; 1401 1402 DPRINTF(sc, ("%s: tlp_txintr: sc_flags 0x%08x\n", 1403 device_xname(sc->sc_dev), sc->sc_flags)); 1404 1405 /* 1406 * Go through our Tx list and free mbufs for those 1407 * frames that have been transmitted. 1408 */ 1409 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) { 1410 TULIP_CDTXSYNC(sc, txs->txs_lastdesc, txs->txs_ndescs, 1411 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1412 1413 #ifdef TLP_DEBUG 1414 if (ifp->if_flags & IFF_DEBUG) { 1415 int i; 1416 struct tulip_desc *txd; 1417 printf(" txsoft %p transmit chain:\n", txs); 1418 for (i = txs->txs_firstdesc;; i = TULIP_NEXTTX(i)) { 1419 txd = &sc->sc_txdescs[i]; 1420 printf(" descriptor %d:\n", i); 1421 printf(" td_status: 0x%08x\n", 1422 le32toh(txd->td_status)); 1423 printf(" td_ctl: 0x%08x\n", 1424 le32toh(txd->td_ctl)); 1425 printf(" td_bufaddr1: 0x%08x\n", 1426 le32toh(txd->td_bufaddr1)); 1427 printf(" td_bufaddr2: 0x%08x\n", 1428 le32toh(sc->sc_txdescs[i].td_bufaddr2)); 1429 if (i == txs->txs_lastdesc) 1430 break; 1431 } 1432 } 1433 #endif 1434 1435 txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].td_status); 1436 if (txstat & TDSTAT_OWN) 1437 break; 1438 1439 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q); 1440 1441 sc->sc_txfree += txs->txs_ndescs; 1442 1443 if (txs->txs_mbuf == NULL) { 1444 /* 1445 * If we didn't have an mbuf, it was the setup 1446 * packet. 1447 */ 1448 #ifdef DIAGNOSTIC 1449 if ((sc->sc_flags & TULIPF_DOING_SETUP) == 0) 1450 panic("tlp_txintr: null mbuf, not doing setup"); 1451 #endif 1452 TULIP_CDSPSYNC(sc, BUS_DMASYNC_POSTWRITE); 1453 sc->sc_flags &= ~TULIPF_DOING_SETUP; 1454 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q); 1455 continue; 1456 } 1457 1458 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap, 1459 0, txs->txs_dmamap->dm_mapsize, 1460 BUS_DMASYNC_POSTWRITE); 1461 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap); 1462 m_freem(txs->txs_mbuf); 1463 txs->txs_mbuf = NULL; 1464 1465 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q); 1466 1467 /* 1468 * Check for errors and collisions. 1469 */ 1470 #ifdef TLP_STATS 1471 if (txstat & TDSTAT_Tx_UF) 1472 sc->sc_stats.ts_tx_uf++; 1473 if (txstat & TDSTAT_Tx_TO) 1474 sc->sc_stats.ts_tx_to++; 1475 if (txstat & TDSTAT_Tx_EC) 1476 sc->sc_stats.ts_tx_ec++; 1477 if (txstat & TDSTAT_Tx_LC) 1478 sc->sc_stats.ts_tx_lc++; 1479 #endif 1480 net_stat_ref_t nsr = IF_STAT_GETREF(ifp); 1481 if (txstat & (TDSTAT_Tx_UF | TDSTAT_Tx_TO)) 1482 if_statinc_ref(nsr, if_oerrors); 1483 1484 if (txstat & TDSTAT_Tx_EC) 1485 if_statadd_ref(nsr, if_collisions, 16); 1486 else 1487 if_statadd_ref(nsr, if_collisions, 1488 TDSTAT_Tx_COLLISIONS(txstat)); 1489 if (txstat & TDSTAT_Tx_LC) 1490 if_statinc_ref(nsr, if_collisions); 1491 1492 if_statinc_ref(nsr, if_opackets); 1493 IF_STAT_PUTREF(ifp); 1494 } 1495 1496 /* 1497 * If there are no more pending transmissions, cancel the watchdog 1498 * timer. 1499 */ 1500 if (txs == NULL && (sc->sc_flags & TULIPF_DOING_SETUP) == 0) 1501 ifp->if_timer = 0; 1502 1503 /* 1504 * If we have a receive filter setup pending, do it now. 1505 */ 1506 if (sc->sc_flags & TULIPF_WANT_SETUP) 1507 (*sc->sc_filter_setup)(sc); 1508 } 1509 1510 #ifdef TLP_STATS 1511 void 1512 tlp_print_stats(struct tulip_softc *sc) 1513 { 1514 1515 printf("%s: tx_uf %lu, tx_to %lu, tx_ec %lu, tx_lc %lu\n", 1516 device_xname(sc->sc_dev), 1517 sc->sc_stats.ts_tx_uf, sc->sc_stats.ts_tx_to, 1518 sc->sc_stats.ts_tx_ec, sc->sc_stats.ts_tx_lc); 1519 } 1520 #endif 1521 1522 /* 1523 * tlp_reset: 1524 * 1525 * Perform a soft reset on the Tulip. 1526 */ 1527 void 1528 tlp_reset(struct tulip_softc *sc) 1529 { 1530 int i; 1531 1532 TULIP_WRITE(sc, CSR_BUSMODE, BUSMODE_SWR); 1533 1534 /* 1535 * Xircom, ASIX and Conexant clones don't bring themselves 1536 * out of reset automatically. 1537 * Instead, we have to wait at least 50 PCI cycles, and then 1538 * clear SWR. 1539 */ 1540 switch (sc->sc_chip) { 1541 case TULIP_CHIP_X3201_3: 1542 case TULIP_CHIP_AX88140: 1543 case TULIP_CHIP_AX88141: 1544 case TULIP_CHIP_RS7112: 1545 delay(10); 1546 TULIP_WRITE(sc, CSR_BUSMODE, 0); 1547 break; 1548 default: 1549 break; 1550 } 1551 1552 for (i = 0; i < 1000; i++) { 1553 /* 1554 * Wait at least 50 PCI cycles for the reset to 1555 * complete before peeking at the Tulip again. 1556 * 10 uSec is a bit longer than 50 PCI cycles 1557 * (at 33MHz), but it doesn't hurt have the extra 1558 * wait. 1559 */ 1560 delay(10); 1561 if (TULIP_ISSET(sc, CSR_BUSMODE, BUSMODE_SWR) == 0) 1562 break; 1563 } 1564 1565 if (TULIP_ISSET(sc, CSR_BUSMODE, BUSMODE_SWR)) 1566 aprint_error_dev(sc->sc_dev, "reset failed to complete\n"); 1567 1568 delay(1000); 1569 1570 /* 1571 * If the board has any GPIO reset sequences to issue, do them now. 1572 */ 1573 if (sc->sc_reset != NULL) 1574 (*sc->sc_reset)(sc); 1575 } 1576 1577 /* 1578 * tlp_init: [ ifnet interface function ] 1579 * 1580 * Initialize the interface. Must be called at splnet(). 1581 */ 1582 static int 1583 tlp_init(struct ifnet *ifp) 1584 { 1585 struct tulip_softc *sc = ifp->if_softc; 1586 struct tulip_txsoft *txs; 1587 struct tulip_rxsoft *rxs; 1588 int i, error = 0; 1589 1590 if ((error = tlp_enable(sc)) != 0) 1591 goto out; 1592 1593 /* 1594 * Cancel any pending I/O. 1595 */ 1596 tlp_stop(ifp, 0); 1597 1598 /* 1599 * Initialize `opmode' to 0, and call the pre-init routine, if 1600 * any. This is required because the 2114x and some of the 1601 * clones require that the media-related bits in `opmode' be 1602 * set before performing a soft-reset in order to get internal 1603 * chip pathways are correct. Yay! 1604 */ 1605 sc->sc_opmode = 0; 1606 if (sc->sc_preinit != NULL) 1607 (*sc->sc_preinit)(sc); 1608 1609 /* 1610 * Reset the Tulip to a known state. 1611 */ 1612 tlp_reset(sc); 1613 1614 /* 1615 * Initialize the BUSMODE register. 1616 */ 1617 sc->sc_busmode = BUSMODE_BAR; 1618 switch (sc->sc_chip) { 1619 case TULIP_CHIP_21140: 1620 case TULIP_CHIP_21140A: 1621 case TULIP_CHIP_21142: 1622 case TULIP_CHIP_21143: 1623 case TULIP_CHIP_82C115: 1624 case TULIP_CHIP_MX98725: 1625 /* 1626 * If we're allowed to do so, use Memory Read Line 1627 * and Memory Read Multiple. 1628 * 1629 * XXX Should we use Memory Write and Invalidate? 1630 */ 1631 if (sc->sc_flags & TULIPF_MRL) 1632 sc->sc_busmode |= BUSMODE_RLE; 1633 if (sc->sc_flags & TULIPF_MRM) 1634 sc->sc_busmode |= BUSMODE_RME; 1635 #if 0 1636 if (sc->sc_flags & TULIPF_MWI) 1637 sc->sc_busmode |= BUSMODE_WLE; 1638 #endif 1639 break; 1640 1641 case TULIP_CHIP_82C168: 1642 case TULIP_CHIP_82C169: 1643 sc->sc_busmode |= BUSMODE_PNIC_MBO; 1644 if (sc->sc_maxburst == 0) 1645 sc->sc_maxburst = 16; 1646 break; 1647 1648 case TULIP_CHIP_AX88140: 1649 case TULIP_CHIP_AX88141: 1650 if (sc->sc_maxburst == 0) 1651 sc->sc_maxburst = 16; 1652 break; 1653 1654 default: 1655 /* Nothing. */ 1656 break; 1657 } 1658 switch (sc->sc_cacheline) { 1659 default: 1660 /* 1661 * Note: We must *always* set these bits; a cache 1662 * alignment of 0 is RESERVED. 1663 */ 1664 case 8: 1665 sc->sc_busmode |= BUSMODE_CAL_8LW; 1666 break; 1667 case 16: 1668 sc->sc_busmode |= BUSMODE_CAL_16LW; 1669 break; 1670 case 32: 1671 sc->sc_busmode |= BUSMODE_CAL_32LW; 1672 break; 1673 } 1674 switch (sc->sc_maxburst) { 1675 case 1: 1676 sc->sc_busmode |= BUSMODE_PBL_1LW; 1677 break; 1678 case 2: 1679 sc->sc_busmode |= BUSMODE_PBL_2LW; 1680 break; 1681 case 4: 1682 sc->sc_busmode |= BUSMODE_PBL_4LW; 1683 break; 1684 case 8: 1685 sc->sc_busmode |= BUSMODE_PBL_8LW; 1686 break; 1687 case 16: 1688 sc->sc_busmode |= BUSMODE_PBL_16LW; 1689 break; 1690 case 32: 1691 sc->sc_busmode |= BUSMODE_PBL_32LW; 1692 break; 1693 default: 1694 sc->sc_busmode |= BUSMODE_PBL_DEFAULT; 1695 break; 1696 } 1697 #if BYTE_ORDER == BIG_ENDIAN 1698 /* 1699 * Can't use BUSMODE_BLE or BUSMODE_DBO; not all chips 1700 * support them, and even on ones that do, it doesn't 1701 * always work. So we always access descriptors with 1702 * little endian via htole32/le32toh. 1703 */ 1704 #endif 1705 /* 1706 * Big-endian bus requires BUSMODE_BLE anyway. 1707 * Also, BUSMODE_DBO is needed because we assume 1708 * descriptors are little endian. 1709 */ 1710 if (sc->sc_flags & TULIPF_BLE) 1711 sc->sc_busmode |= BUSMODE_BLE; 1712 if (sc->sc_flags & TULIPF_DBO) 1713 sc->sc_busmode |= BUSMODE_DBO; 1714 1715 /* 1716 * Some chips have a broken bus interface. 1717 */ 1718 switch (sc->sc_chip) { 1719 case TULIP_CHIP_DM9102: 1720 case TULIP_CHIP_DM9102A: 1721 sc->sc_busmode = 0; 1722 break; 1723 1724 default: 1725 /* Nothing. */ 1726 break; 1727 } 1728 1729 TULIP_WRITE(sc, CSR_BUSMODE, sc->sc_busmode); 1730 1731 /* 1732 * Initialize the OPMODE register. We don't write it until 1733 * we're ready to begin the transmit and receive processes. 1734 * 1735 * Media-related OPMODE bits are set in the media callbacks 1736 * for each specific chip/board. 1737 */ 1738 sc->sc_opmode |= OPMODE_SR | OPMODE_ST | 1739 sc->sc_txth[sc->sc_txthresh].txth_opmode; 1740 1741 /* 1742 * Magical mystery initialization on the Macronix chips. 1743 * The MX98713 uses its own magic value, the rest share 1744 * a common one. 1745 */ 1746 switch (sc->sc_chip) { 1747 case TULIP_CHIP_MX98713: 1748 TULIP_WRITE(sc, CSR_PMAC_TOR, PMAC_TOR_98713); 1749 break; 1750 1751 case TULIP_CHIP_MX98713A: 1752 case TULIP_CHIP_MX98715: 1753 case TULIP_CHIP_MX98715A: 1754 case TULIP_CHIP_MX98715AEC_X: 1755 case TULIP_CHIP_MX98725: 1756 TULIP_WRITE(sc, CSR_PMAC_TOR, PMAC_TOR_98715); 1757 break; 1758 1759 default: 1760 /* Nothing. */ 1761 break; 1762 } 1763 1764 /* 1765 * Initialize the transmit descriptor ring. 1766 */ 1767 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs)); 1768 for (i = 0; i < TULIP_NTXDESC; i++) { 1769 struct tulip_desc *txd = &sc->sc_txdescs[i]; 1770 txd->td_ctl = htole32(sc->sc_tdctl_ch); 1771 txd->td_bufaddr2 = htole32(TULIP_CDTXADDR(sc, TULIP_NEXTTX(i))); 1772 } 1773 sc->sc_txdescs[TULIP_NTXDESC - 1].td_ctl |= htole32(sc->sc_tdctl_er); 1774 TULIP_CDTXSYNC(sc, 0, TULIP_NTXDESC, 1775 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1776 sc->sc_txfree = TULIP_NTXDESC; 1777 sc->sc_txnext = 0; 1778 1779 /* 1780 * Initialize the transmit job descriptors. 1781 */ 1782 SIMPLEQ_INIT(&sc->sc_txfreeq); 1783 SIMPLEQ_INIT(&sc->sc_txdirtyq); 1784 for (i = 0; i < TULIP_TXQUEUELEN; i++) { 1785 txs = &sc->sc_txsoft[i]; 1786 txs->txs_mbuf = NULL; 1787 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q); 1788 } 1789 1790 /* 1791 * Initialize the receive descriptor and receive job 1792 * descriptor rings. 1793 */ 1794 for (i = 0; i < TULIP_NRXDESC; i++) { 1795 rxs = &sc->sc_rxsoft[i]; 1796 if (rxs->rxs_mbuf == NULL) { 1797 if ((error = tlp_add_rxbuf(sc, i)) != 0) { 1798 aprint_error_dev(sc->sc_dev, 1799 "unable to allocate or map rx " 1800 "buffer %d, error = %d\n", i, error); 1801 /* 1802 * XXX Should attempt to run with fewer receive 1803 * XXX buffers instead of just failing. 1804 */ 1805 tlp_rxdrain(sc); 1806 goto out; 1807 } 1808 } else 1809 TULIP_INIT_RXDESC(sc, i); 1810 } 1811 sc->sc_rxptr = 0; 1812 1813 /* 1814 * Initialize the interrupt mask and enable interrupts. 1815 */ 1816 /* normal interrupts */ 1817 sc->sc_inten = STATUS_TI | STATUS_TU | STATUS_RI | STATUS_NIS; 1818 1819 /* abnormal interrupts */ 1820 sc->sc_inten |= STATUS_TPS | STATUS_TJT | STATUS_UNF | 1821 STATUS_RU | STATUS_RPS | STATUS_RWT | STATUS_SE | STATUS_AIS; 1822 1823 sc->sc_rxint_mask = STATUS_RI | STATUS_RU | STATUS_RWT; 1824 sc->sc_txint_mask = STATUS_TI | STATUS_UNF | STATUS_TJT; 1825 1826 switch (sc->sc_chip) { 1827 case TULIP_CHIP_WB89C840F: 1828 /* 1829 * Clear bits that we don't want that happen to 1830 * overlap or don't exist. 1831 */ 1832 sc->sc_inten &= ~(STATUS_WINB_REI | STATUS_RWT); 1833 break; 1834 1835 default: 1836 /* Nothing. */ 1837 break; 1838 } 1839 1840 sc->sc_rxint_mask &= sc->sc_inten; 1841 sc->sc_txint_mask &= sc->sc_inten; 1842 1843 TULIP_WRITE(sc, CSR_INTEN, sc->sc_inten); 1844 TULIP_WRITE(sc, CSR_STATUS, 0xffffffff); 1845 1846 /* 1847 * Give the transmit and receive rings to the Tulip. 1848 */ 1849 TULIP_WRITE(sc, CSR_TXLIST, TULIP_CDTXADDR(sc, sc->sc_txnext)); 1850 TULIP_WRITE(sc, CSR_RXLIST, TULIP_CDRXADDR(sc, sc->sc_rxptr)); 1851 1852 /* 1853 * On chips that do this differently, set the station address. 1854 */ 1855 switch (sc->sc_chip) { 1856 case TULIP_CHIP_WB89C840F: 1857 { 1858 /* XXX Do this with stream writes? */ 1859 bus_addr_t cpa = TULIP_CSR_OFFSET(sc, CSR_WINB_CPA0); 1860 1861 for (i = 0; i < ETHER_ADDR_LEN; i++) { 1862 bus_space_write_1(sc->sc_st, sc->sc_sh, 1863 cpa + i, CLLADDR(ifp->if_sadl)[i]); 1864 } 1865 break; 1866 } 1867 1868 case TULIP_CHIP_AL981: 1869 case TULIP_CHIP_AN983: 1870 case TULIP_CHIP_AN985: 1871 { 1872 uint32_t reg; 1873 const uint8_t *enaddr = CLLADDR(ifp->if_sadl); 1874 1875 reg = enaddr[0] | 1876 (enaddr[1] << 8) | 1877 (enaddr[2] << 16) | 1878 ((uint32_t)enaddr[3] << 24); 1879 bus_space_write_4(sc->sc_st, sc->sc_sh, CSR_ADM_PAR0, reg); 1880 1881 reg = enaddr[4] | 1882 (enaddr[5] << 8); 1883 bus_space_write_4(sc->sc_st, sc->sc_sh, CSR_ADM_PAR1, reg); 1884 break; 1885 } 1886 1887 case TULIP_CHIP_AX88140: 1888 case TULIP_CHIP_AX88141: 1889 { 1890 uint32_t reg; 1891 const uint8_t *enaddr = CLLADDR(ifp->if_sadl); 1892 1893 reg = enaddr[0] | 1894 (enaddr[1] << 8) | 1895 (enaddr[2] << 16) | 1896 ((uint32_t)enaddr[3] << 24); 1897 TULIP_WRITE(sc, CSR_AX_FILTIDX, AX_FILTIDX_PAR0); 1898 TULIP_WRITE(sc, CSR_AX_FILTDATA, reg); 1899 1900 reg = enaddr[4] | (enaddr[5] << 8); 1901 TULIP_WRITE(sc, CSR_AX_FILTIDX, AX_FILTIDX_PAR1); 1902 TULIP_WRITE(sc, CSR_AX_FILTDATA, reg); 1903 break; 1904 } 1905 1906 default: 1907 /* Nothing. */ 1908 break; 1909 } 1910 1911 /* 1912 * Set the receive filter. This will start the transmit and 1913 * receive processes. 1914 */ 1915 (*sc->sc_filter_setup)(sc); 1916 1917 /* 1918 * Set the current media. 1919 */ 1920 (void)(*sc->sc_mediasw->tmsw_set)(sc); 1921 1922 /* 1923 * Start the receive process. 1924 */ 1925 TULIP_WRITE(sc, CSR_RXPOLL, RXPOLL_RPD); 1926 1927 if (sc->sc_tick != NULL) { 1928 /* Start the one second clock. */ 1929 callout_reset(&sc->sc_tick_callout, hz >> 3, sc->sc_tick, sc); 1930 } 1931 1932 /* 1933 * Note that the interface is now running. 1934 */ 1935 ifp->if_flags |= IFF_RUNNING; 1936 sc->sc_if_flags = ifp->if_flags; 1937 1938 out: 1939 if (error) { 1940 ifp->if_flags &= ~IFF_RUNNING; 1941 ifp->if_timer = 0; 1942 printf("%s: interface not running\n", device_xname(sc->sc_dev)); 1943 } 1944 return error; 1945 } 1946 1947 /* 1948 * tlp_enable: 1949 * 1950 * Enable the Tulip chip. 1951 */ 1952 static int 1953 tlp_enable(struct tulip_softc *sc) 1954 { 1955 1956 if (TULIP_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) { 1957 if ((*sc->sc_enable)(sc) != 0) { 1958 aprint_error_dev(sc->sc_dev, "device enable failed\n"); 1959 return EIO; 1960 } 1961 sc->sc_flags |= TULIPF_ENABLED; 1962 } 1963 return 0; 1964 } 1965 1966 /* 1967 * tlp_disable: 1968 * 1969 * Disable the Tulip chip. 1970 */ 1971 static void 1972 tlp_disable(struct tulip_softc *sc) 1973 { 1974 1975 if (TULIP_IS_ENABLED(sc) && sc->sc_disable != NULL) { 1976 (*sc->sc_disable)(sc); 1977 sc->sc_flags &= ~TULIPF_ENABLED; 1978 } 1979 } 1980 1981 /* 1982 * tlp_rxdrain: 1983 * 1984 * Drain the receive queue. 1985 */ 1986 static void 1987 tlp_rxdrain(struct tulip_softc *sc) 1988 { 1989 struct tulip_rxsoft *rxs; 1990 int i; 1991 1992 for (i = 0; i < TULIP_NRXDESC; i++) { 1993 rxs = &sc->sc_rxsoft[i]; 1994 if (rxs->rxs_mbuf != NULL) { 1995 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap); 1996 m_freem(rxs->rxs_mbuf); 1997 rxs->rxs_mbuf = NULL; 1998 } 1999 } 2000 } 2001 2002 /* 2003 * tlp_stop: [ ifnet interface function ] 2004 * 2005 * Stop transmission on the interface. 2006 */ 2007 static void 2008 tlp_stop(struct ifnet *ifp, int disable) 2009 { 2010 struct tulip_softc *sc = ifp->if_softc; 2011 struct tulip_txsoft *txs; 2012 2013 if (sc->sc_tick != NULL) { 2014 /* Stop the one second clock. */ 2015 callout_stop(&sc->sc_tick_callout); 2016 } 2017 2018 if (sc->sc_flags & TULIPF_HAS_MII) { 2019 /* Down the MII. */ 2020 mii_down(&sc->sc_mii); 2021 } 2022 2023 /* Disable interrupts. */ 2024 TULIP_WRITE(sc, CSR_INTEN, 0); 2025 2026 /* Stop the transmit and receive processes. */ 2027 sc->sc_opmode = 0; 2028 TULIP_WRITE(sc, CSR_OPMODE, 0); 2029 TULIP_WRITE(sc, CSR_RXLIST, 0); 2030 TULIP_WRITE(sc, CSR_TXLIST, 0); 2031 2032 /* 2033 * Release any queued transmit buffers. 2034 */ 2035 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) { 2036 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q); 2037 if (txs->txs_mbuf != NULL) { 2038 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap); 2039 m_freem(txs->txs_mbuf); 2040 txs->txs_mbuf = NULL; 2041 } 2042 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q); 2043 } 2044 2045 sc->sc_flags &= ~(TULIPF_WANT_SETUP | TULIPF_DOING_SETUP); 2046 2047 /* 2048 * Mark the interface down and cancel the watchdog timer. 2049 */ 2050 ifp->if_flags &= ~IFF_RUNNING; 2051 sc->sc_if_flags = ifp->if_flags; 2052 ifp->if_timer = 0; 2053 2054 /* 2055 * Reset the chip (needed on some flavors to actually disable it). 2056 */ 2057 tlp_reset(sc); 2058 2059 if (disable) { 2060 tlp_rxdrain(sc); 2061 tlp_disable(sc); 2062 } 2063 } 2064 2065 #define SROM_EMIT(sc, x) \ 2066 do { \ 2067 TULIP_WRITE((sc), CSR_MIIROM, (x)); \ 2068 delay(2); \ 2069 } while (0) 2070 2071 /* 2072 * tlp_srom_idle: 2073 * 2074 * Put the SROM in idle state. 2075 */ 2076 static void 2077 tlp_srom_idle(struct tulip_softc *sc) 2078 { 2079 uint32_t miirom; 2080 int i; 2081 2082 miirom = MIIROM_SR; 2083 SROM_EMIT(sc, miirom); 2084 2085 miirom |= MIIROM_RD; 2086 SROM_EMIT(sc, miirom); 2087 2088 miirom |= MIIROM_SROMCS; 2089 SROM_EMIT(sc, miirom); 2090 2091 SROM_EMIT(sc, miirom | MIIROM_SROMSK); 2092 2093 /* Strobe the clock 32 times. */ 2094 for (i = 0; i < 32; i++) { 2095 SROM_EMIT(sc, miirom); 2096 SROM_EMIT(sc, miirom | MIIROM_SROMSK); 2097 } 2098 2099 SROM_EMIT(sc, miirom); 2100 2101 miirom &= ~MIIROM_SROMCS; 2102 SROM_EMIT(sc, miirom); 2103 2104 SROM_EMIT(sc, 0); 2105 } 2106 2107 /* 2108 * tlp_srom_size: 2109 * 2110 * Determine the number of address bits in the SROM. 2111 */ 2112 static int 2113 tlp_srom_size(struct tulip_softc *sc) 2114 { 2115 uint32_t miirom; 2116 int x; 2117 2118 /* Select the SROM. */ 2119 miirom = MIIROM_SR; 2120 SROM_EMIT(sc, miirom); 2121 2122 miirom |= MIIROM_RD; 2123 SROM_EMIT(sc, miirom); 2124 2125 /* Send CHIP SELECT for one clock tick. */ 2126 miirom |= MIIROM_SROMCS; 2127 SROM_EMIT(sc, miirom); 2128 2129 /* Shift in the READ opcode. */ 2130 for (x = 3; x > 0; x--) { 2131 if (TULIP_SROM_OPC_READ & (1 << (x - 1))) 2132 miirom |= MIIROM_SROMDI; 2133 else 2134 miirom &= ~MIIROM_SROMDI; 2135 SROM_EMIT(sc, miirom); 2136 SROM_EMIT(sc, miirom | MIIROM_SROMSK); 2137 SROM_EMIT(sc, miirom); 2138 } 2139 2140 /* Shift in address and look for dummy 0 bit. */ 2141 for (x = 1; x <= 12; x++) { 2142 miirom &= ~MIIROM_SROMDI; 2143 SROM_EMIT(sc, miirom); 2144 SROM_EMIT(sc, miirom | MIIROM_SROMSK); 2145 if (!TULIP_ISSET(sc, CSR_MIIROM, MIIROM_SROMDO)) 2146 break; 2147 SROM_EMIT(sc, miirom); 2148 } 2149 2150 /* Clear CHIP SELECT. */ 2151 miirom &= ~MIIROM_SROMCS; 2152 SROM_EMIT(sc, miirom); 2153 2154 /* Deselect the SROM. */ 2155 SROM_EMIT(sc, 0); 2156 2157 if (x < 4 || x > 12) { 2158 aprint_debug_dev(sc->sc_dev, "broken MicroWire interface " 2159 "detected; setting SROM size to 1Kb\n"); 2160 return 6; 2161 } else { 2162 if (tlp_srom_debug) 2163 printf("%s: SROM size is 2^%d*16 bits (%d bytes)\n", 2164 device_xname(sc->sc_dev), x, (1 << (x + 4)) >> 3); 2165 return x; 2166 } 2167 } 2168 2169 /* 2170 * tlp_read_srom: 2171 * 2172 * Read the Tulip SROM. 2173 */ 2174 int 2175 tlp_read_srom(struct tulip_softc *sc) 2176 { 2177 int size; 2178 uint32_t miirom; 2179 uint16_t datain; 2180 int i, x; 2181 2182 tlp_srom_idle(sc); 2183 2184 sc->sc_srom_addrbits = tlp_srom_size(sc); 2185 if (sc->sc_srom_addrbits == 0) 2186 return 0; 2187 size = TULIP_ROM_SIZE(sc->sc_srom_addrbits); 2188 sc->sc_srom = malloc(size, M_DEVBUF, M_WAITOK); 2189 2190 /* Select the SROM. */ 2191 miirom = MIIROM_SR; 2192 SROM_EMIT(sc, miirom); 2193 2194 miirom |= MIIROM_RD; 2195 SROM_EMIT(sc, miirom); 2196 2197 for (i = 0; i < size; i += 2) { 2198 /* Send CHIP SELECT for one clock tick. */ 2199 miirom |= MIIROM_SROMCS; 2200 SROM_EMIT(sc, miirom); 2201 2202 /* Shift in the READ opcode. */ 2203 for (x = 3; x > 0; x--) { 2204 if (TULIP_SROM_OPC_READ & (1 << (x - 1))) 2205 miirom |= MIIROM_SROMDI; 2206 else 2207 miirom &= ~MIIROM_SROMDI; 2208 SROM_EMIT(sc, miirom); 2209 SROM_EMIT(sc, miirom | MIIROM_SROMSK); 2210 SROM_EMIT(sc, miirom); 2211 } 2212 2213 /* Shift in address. */ 2214 for (x = sc->sc_srom_addrbits; x > 0; x--) { 2215 if (i & (1 << x)) 2216 miirom |= MIIROM_SROMDI; 2217 else 2218 miirom &= ~MIIROM_SROMDI; 2219 SROM_EMIT(sc, miirom); 2220 SROM_EMIT(sc, miirom | MIIROM_SROMSK); 2221 SROM_EMIT(sc, miirom); 2222 } 2223 2224 /* Shift out data. */ 2225 miirom &= ~MIIROM_SROMDI; 2226 datain = 0; 2227 for (x = 16; x > 0; x--) { 2228 SROM_EMIT(sc, miirom | MIIROM_SROMSK); 2229 if (TULIP_ISSET(sc, CSR_MIIROM, MIIROM_SROMDO)) 2230 datain |= (1 << (x - 1)); 2231 SROM_EMIT(sc, miirom); 2232 } 2233 sc->sc_srom[i] = datain & 0xff; 2234 sc->sc_srom[i + 1] = datain >> 8; 2235 2236 /* Clear CHIP SELECT. */ 2237 miirom &= ~MIIROM_SROMCS; 2238 SROM_EMIT(sc, miirom); 2239 } 2240 2241 /* Deselect the SROM. */ 2242 SROM_EMIT(sc, 0); 2243 2244 /* ...and idle it. */ 2245 tlp_srom_idle(sc); 2246 2247 if (tlp_srom_debug) { 2248 printf("SROM CONTENTS:"); 2249 for (i = 0; i < size; i++) { 2250 if ((i % 8) == 0) 2251 printf("\n\t"); 2252 printf("0x%02x ", sc->sc_srom[i]); 2253 } 2254 printf("\n"); 2255 } 2256 2257 return 1; 2258 } 2259 2260 #undef SROM_EMIT 2261 2262 /* 2263 * tlp_add_rxbuf: 2264 * 2265 * Add a receive buffer to the indicated descriptor. 2266 */ 2267 static int 2268 tlp_add_rxbuf(struct tulip_softc *sc, int idx) 2269 { 2270 struct tulip_rxsoft *rxs = &sc->sc_rxsoft[idx]; 2271 struct mbuf *m; 2272 int error; 2273 2274 MGETHDR(m, M_DONTWAIT, MT_DATA); 2275 if (m == NULL) 2276 return ENOBUFS; 2277 2278 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner); 2279 MCLGET(m, M_DONTWAIT); 2280 if ((m->m_flags & M_EXT) == 0) { 2281 m_freem(m); 2282 return ENOBUFS; 2283 } 2284 2285 if (rxs->rxs_mbuf != NULL) 2286 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap); 2287 2288 rxs->rxs_mbuf = m; 2289 2290 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap, 2291 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, 2292 BUS_DMA_READ | BUS_DMA_NOWAIT); 2293 if (error) { 2294 aprint_error_dev(sc->sc_dev, 2295 "can't load rx DMA map %d, error = %d\n", idx, error); 2296 panic("tlp_add_rxbuf"); /* XXX */ 2297 } 2298 2299 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 2300 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); 2301 2302 TULIP_INIT_RXDESC(sc, idx); 2303 2304 return 0; 2305 } 2306 2307 /* 2308 * tlp_srom_crcok: 2309 * 2310 * Check the CRC of the Tulip SROM. 2311 */ 2312 int 2313 tlp_srom_crcok(const uint8_t *romdata) 2314 { 2315 uint32_t crc; 2316 2317 crc = ether_crc32_le(romdata, TULIP_ROM_CRC32_CHECKSUM); 2318 crc = (crc & 0xffff) ^ 0xffff; 2319 if (crc == TULIP_ROM_GETW(romdata, TULIP_ROM_CRC32_CHECKSUM)) 2320 return 1; 2321 2322 /* 2323 * Try an alternate checksum. 2324 */ 2325 crc = ether_crc32_le(romdata, TULIP_ROM_CRC32_CHECKSUM1); 2326 crc = (crc & 0xffff) ^ 0xffff; 2327 if (crc == TULIP_ROM_GETW(romdata, TULIP_ROM_CRC32_CHECKSUM1)) 2328 return 1; 2329 2330 return 0; 2331 } 2332 2333 /* 2334 * tlp_isv_srom: 2335 * 2336 * Check to see if the SROM is in the new standardized format. 2337 */ 2338 int 2339 tlp_isv_srom(const uint8_t *romdata) 2340 { 2341 int i; 2342 uint16_t cksum; 2343 2344 if (tlp_srom_crcok(romdata)) { 2345 /* 2346 * SROM CRC checks out; must be in the new format. 2347 */ 2348 return 1; 2349 } 2350 2351 cksum = TULIP_ROM_GETW(romdata, TULIP_ROM_CRC32_CHECKSUM); 2352 if (cksum == 0xffff || cksum == 0) { 2353 /* 2354 * No checksum present. Check the SROM ID; 18 bytes of 0 2355 * followed by 1 (version) followed by the number of 2356 * adapters which use this SROM (should be non-zero). 2357 */ 2358 for (i = 0; i < TULIP_ROM_SROM_FORMAT_VERION; i++) { 2359 if (romdata[i] != 0) 2360 return 0; 2361 } 2362 if (romdata[TULIP_ROM_SROM_FORMAT_VERION] != 1) 2363 return 0; 2364 if (romdata[TULIP_ROM_CHIP_COUNT] == 0) 2365 return 0; 2366 return 1; 2367 } 2368 2369 return 0; 2370 } 2371 2372 /* 2373 * tlp_isv_srom_enaddr: 2374 * 2375 * Get the Ethernet address from an ISV SROM. 2376 */ 2377 int 2378 tlp_isv_srom_enaddr(struct tulip_softc *sc, uint8_t *enaddr) 2379 { 2380 int i, devcnt; 2381 2382 if (tlp_isv_srom(sc->sc_srom) == 0) 2383 return 0; 2384 2385 devcnt = sc->sc_srom[TULIP_ROM_CHIP_COUNT]; 2386 for (i = 0; i < devcnt; i++) { 2387 if (sc->sc_srom[TULIP_ROM_CHIP_COUNT] == 1) 2388 break; 2389 if (sc->sc_srom[TULIP_ROM_CHIPn_DEVICE_NUMBER(i)] == 2390 sc->sc_devno) 2391 break; 2392 } 2393 2394 if (i == devcnt) 2395 return 0; 2396 2397 memcpy(enaddr, &sc->sc_srom[TULIP_ROM_IEEE_NETWORK_ADDRESS], 2398 ETHER_ADDR_LEN); 2399 enaddr[5] += i; 2400 2401 return 1; 2402 } 2403 2404 /* 2405 * tlp_parse_old_srom: 2406 * 2407 * Parse old-format SROMs. 2408 * 2409 * This routine is largely lifted from Matt Thomas's `de' driver. 2410 */ 2411 int 2412 tlp_parse_old_srom(struct tulip_softc *sc, uint8_t *enaddr) 2413 { 2414 static const uint8_t testpat[] = 2415 { 0xff, 0, 0x55, 0xaa, 0xff, 0, 0x55, 0xaa }; 2416 int i; 2417 uint32_t cksum; 2418 2419 if (memcmp(&sc->sc_srom[0], &sc->sc_srom[16], 8) != 0) { 2420 /* 2421 * Phobos G100 interfaces have the address at 2422 * offsets 0 and 20, but each pair of bytes is 2423 * swapped. 2424 */ 2425 if (sc->sc_srom_addrbits == 6 && 2426 sc->sc_srom[1] == 0x00 && 2427 sc->sc_srom[0] == 0x60 && 2428 sc->sc_srom[3] == 0xf5 && 2429 memcmp(&sc->sc_srom[0], &sc->sc_srom[20], 6) == 0) { 2430 for (i = 0; i < 6; i += 2) { 2431 enaddr[i] = sc->sc_srom[i + 1]; 2432 enaddr[i + 1] = sc->sc_srom[i]; 2433 } 2434 return 1; 2435 } 2436 2437 /* 2438 * Phobos G130/G160 interfaces have the address at 2439 * offsets 20 and 84, but each pair of bytes is 2440 * swapped. 2441 */ 2442 if (sc->sc_srom_addrbits == 6 && 2443 sc->sc_srom[21] == 0x00 && 2444 sc->sc_srom[20] == 0x60 && 2445 sc->sc_srom[23] == 0xf5 && 2446 memcmp(&sc->sc_srom[20], &sc->sc_srom[84], 6) == 0) { 2447 for (i = 0; i < 6; i += 2) { 2448 enaddr[i] = sc->sc_srom[20 + i + 1]; 2449 enaddr[i + 1] = sc->sc_srom[20 + i]; 2450 } 2451 return 1; 2452 } 2453 2454 /* 2455 * Cobalt Networks interfaces simply have the address 2456 * in the first six bytes. The rest is zeroed out 2457 * on some models, but others contain unknown data. 2458 */ 2459 if (sc->sc_srom[0] == 0x00 && 2460 sc->sc_srom[1] == 0x10 && 2461 sc->sc_srom[2] == 0xe0) { 2462 memcpy(enaddr, sc->sc_srom, ETHER_ADDR_LEN); 2463 return 1; 2464 } 2465 2466 /* 2467 * Some vendors (e.g. ZNYX) don't use the standard 2468 * DEC Address ROM format, but rather just have an 2469 * Ethernet address in the first 6 bytes, maybe a 2470 * 2 byte checksum, and then all 0xff's. 2471 */ 2472 for (i = 8; i < 32; i++) { 2473 if (sc->sc_srom[i] != 0xff && 2474 sc->sc_srom[i] != 0) 2475 return 0; 2476 } 2477 2478 /* 2479 * Sanity check the Ethernet address: 2480 * 2481 * - Make sure it's not multicast or locally 2482 * assigned 2483 * - Make sure it has a non-0 OUI 2484 */ 2485 if (sc->sc_srom[0] & 3) 2486 return 0; 2487 if (sc->sc_srom[0] == 0 && sc->sc_srom[1] == 0 && 2488 sc->sc_srom[2] == 0) 2489 return 0; 2490 2491 memcpy(enaddr, sc->sc_srom, ETHER_ADDR_LEN); 2492 return 1; 2493 } 2494 2495 /* 2496 * Standard DEC Address ROM test. 2497 */ 2498 2499 if (memcmp(&sc->sc_srom[24], testpat, 8) != 0) 2500 return 0; 2501 2502 for (i = 0; i < 8; i++) { 2503 if (sc->sc_srom[i] != sc->sc_srom[15 - i]) 2504 return 0; 2505 } 2506 2507 memcpy(enaddr, sc->sc_srom, ETHER_ADDR_LEN); 2508 2509 cksum = *(uint16_t *) &enaddr[0]; 2510 2511 cksum <<= 1; 2512 if (cksum > 0xffff) 2513 cksum -= 0xffff; 2514 2515 cksum += *(uint16_t *) &enaddr[2]; 2516 if (cksum > 0xffff) 2517 cksum -= 0xffff; 2518 2519 cksum <<= 1; 2520 if (cksum > 0xffff) 2521 cksum -= 0xffff; 2522 2523 cksum += *(uint16_t *) &enaddr[4]; 2524 if (cksum >= 0xffff) 2525 cksum -= 0xffff; 2526 2527 if (cksum != *(uint16_t *) &sc->sc_srom[6]) 2528 return 0; 2529 2530 return 1; 2531 } 2532 2533 /* 2534 * tlp_filter_setup: 2535 * 2536 * Set the Tulip's receive filter. 2537 */ 2538 static void 2539 tlp_filter_setup(struct tulip_softc *sc) 2540 { 2541 struct ethercom *ec = &sc->sc_ethercom; 2542 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 2543 struct ether_multi *enm; 2544 struct ether_multistep step; 2545 volatile uint32_t *sp; 2546 struct tulip_txsoft *txs; 2547 struct tulip_desc *txd; 2548 uint8_t enaddr[ETHER_ADDR_LEN]; 2549 uint32_t hash, hashsize; 2550 int cnt, nexttx; 2551 2552 DPRINTF(sc, ("%s: tlp_filter_setup: sc_flags 0x%08x\n", 2553 device_xname(sc->sc_dev), sc->sc_flags)); 2554 2555 memcpy(enaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN); 2556 2557 /* 2558 * If there are transmissions pending, wait until they have 2559 * completed. 2560 */ 2561 if (! SIMPLEQ_EMPTY(&sc->sc_txdirtyq) || 2562 (sc->sc_flags & TULIPF_DOING_SETUP) != 0) { 2563 sc->sc_flags |= TULIPF_WANT_SETUP; 2564 DPRINTF(sc, ("%s: tlp_filter_setup: deferring\n", 2565 device_xname(sc->sc_dev))); 2566 return; 2567 } 2568 sc->sc_flags &= ~TULIPF_WANT_SETUP; 2569 2570 switch (sc->sc_chip) { 2571 case TULIP_CHIP_82C115: 2572 hashsize = TULIP_PNICII_HASHSIZE; 2573 break; 2574 2575 default: 2576 hashsize = TULIP_MCHASHSIZE; 2577 } 2578 2579 /* 2580 * If we're running, idle the transmit and receive engines. If 2581 * we're NOT running, we're being called from tlp_init(), and our 2582 * writing OPMODE will start the transmit and receive processes 2583 * in motion. 2584 */ 2585 if (ifp->if_flags & IFF_RUNNING) 2586 tlp_idle(sc, OPMODE_ST | OPMODE_SR); 2587 2588 sc->sc_opmode &= ~(OPMODE_PR | OPMODE_PM); 2589 2590 if (ifp->if_flags & IFF_PROMISC) { 2591 sc->sc_opmode |= OPMODE_PR; 2592 goto allmulti; 2593 } 2594 2595 /* 2596 * Try Perfect filtering first. 2597 */ 2598 2599 sc->sc_filtmode = TDCTL_Tx_FT_PERFECT; 2600 sp = TULIP_CDSP(sc); 2601 memset(TULIP_CDSP(sc), 0, TULIP_SETUP_PACKET_LEN); 2602 cnt = 0; 2603 ETHER_LOCK(ec); 2604 ETHER_FIRST_MULTI(step, ec, enm); 2605 while (enm != NULL) { 2606 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { 2607 /* 2608 * We must listen to a range of multicast addresses. 2609 * For now, just accept all multicasts, rather than 2610 * trying to set only those filter bits needed to match 2611 * the range. (At this time, the only use of address 2612 * ranges is for IP multicast routing, for which the 2613 * range is big enough to require all bits set.) 2614 */ 2615 ETHER_UNLOCK(ec); 2616 goto allmulti; 2617 } 2618 if (cnt == (TULIP_MAXADDRS - 2)) { 2619 /* 2620 * We already have our multicast limit (still need 2621 * our station address and broadcast). Go to 2622 * Hash-Perfect mode. 2623 */ 2624 ETHER_UNLOCK(ec); 2625 goto hashperfect; 2626 } 2627 cnt++; 2628 *sp++ = htole32(TULIP_SP_FIELD(enm->enm_addrlo, 0)); 2629 *sp++ = htole32(TULIP_SP_FIELD(enm->enm_addrlo, 1)); 2630 *sp++ = htole32(TULIP_SP_FIELD(enm->enm_addrlo, 2)); 2631 ETHER_NEXT_MULTI(step, enm); 2632 } 2633 ETHER_UNLOCK(ec); 2634 2635 if (ifp->if_flags & IFF_BROADCAST) { 2636 /* ...and the broadcast address. */ 2637 cnt++; 2638 *sp++ = htole32(TULIP_SP_FIELD_C(0xff, 0xff)); 2639 *sp++ = htole32(TULIP_SP_FIELD_C(0xff, 0xff)); 2640 *sp++ = htole32(TULIP_SP_FIELD_C(0xff, 0xff)); 2641 } 2642 2643 /* Pad the rest with our station address. */ 2644 for (; cnt < TULIP_MAXADDRS; cnt++) { 2645 *sp++ = htole32(TULIP_SP_FIELD(enaddr, 0)); 2646 *sp++ = htole32(TULIP_SP_FIELD(enaddr, 1)); 2647 *sp++ = htole32(TULIP_SP_FIELD(enaddr, 2)); 2648 } 2649 ifp->if_flags &= ~IFF_ALLMULTI; 2650 goto setit; 2651 2652 hashperfect: 2653 /* 2654 * Try Hash-Perfect mode. 2655 */ 2656 2657 /* 2658 * Some 21140 chips have broken Hash-Perfect modes. On these 2659 * chips, we simply use Hash-Only mode, and put our station 2660 * address into the filter. 2661 */ 2662 if (sc->sc_chip == TULIP_CHIP_21140) 2663 sc->sc_filtmode = TDCTL_Tx_FT_HASHONLY; 2664 else 2665 sc->sc_filtmode = TDCTL_Tx_FT_HASH; 2666 sp = TULIP_CDSP(sc); 2667 memset(TULIP_CDSP(sc), 0, TULIP_SETUP_PACKET_LEN); 2668 ETHER_LOCK(ec); 2669 ETHER_FIRST_MULTI(step, ec, enm); 2670 while (enm != NULL) { 2671 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { 2672 /* 2673 * We must listen to a range of multicast addresses. 2674 * For now, just accept all multicasts, rather than 2675 * trying to set only those filter bits needed to match 2676 * the range. (At this time, the only use of address 2677 * ranges is for IP multicast routing, for which the 2678 * range is big enough to require all bits set.) 2679 */ 2680 ETHER_UNLOCK(ec); 2681 goto allmulti; 2682 } 2683 hash = tlp_mchash(enm->enm_addrlo, hashsize); 2684 sp[hash >> 4] |= htole32(1 << (hash & 0xf)); 2685 ETHER_NEXT_MULTI(step, enm); 2686 } 2687 ETHER_UNLOCK(ec); 2688 2689 if (ifp->if_flags & IFF_BROADCAST) { 2690 /* ...and the broadcast address. */ 2691 hash = tlp_mchash(etherbroadcastaddr, hashsize); 2692 sp[hash >> 4] |= htole32(1 << (hash & 0xf)); 2693 } 2694 2695 if (sc->sc_filtmode == TDCTL_Tx_FT_HASHONLY) { 2696 /* ...and our station address. */ 2697 hash = tlp_mchash(enaddr, hashsize); 2698 sp[hash >> 4] |= htole32(1 << (hash & 0xf)); 2699 } else { 2700 /* 2701 * Hash-Perfect mode; put our station address after 2702 * the hash table. 2703 */ 2704 sp[39] = htole32(TULIP_SP_FIELD(enaddr, 0)); 2705 sp[40] = htole32(TULIP_SP_FIELD(enaddr, 1)); 2706 sp[41] = htole32(TULIP_SP_FIELD(enaddr, 2)); 2707 } 2708 ifp->if_flags &= ~IFF_ALLMULTI; 2709 goto setit; 2710 2711 allmulti: 2712 /* 2713 * Use Perfect filter mode. First address is the broadcast address, 2714 * and pad the rest with our station address. We'll set Pass-all- 2715 * multicast in OPMODE below. 2716 */ 2717 sc->sc_filtmode = TDCTL_Tx_FT_PERFECT; 2718 sp = TULIP_CDSP(sc); 2719 memset(TULIP_CDSP(sc), 0, TULIP_SETUP_PACKET_LEN); 2720 cnt = 0; 2721 if (ifp->if_flags & IFF_BROADCAST) { 2722 cnt++; 2723 *sp++ = htole32(TULIP_SP_FIELD_C(0xff, 0xff)); 2724 *sp++ = htole32(TULIP_SP_FIELD_C(0xff, 0xff)); 2725 *sp++ = htole32(TULIP_SP_FIELD_C(0xff, 0xff)); 2726 } 2727 for (; cnt < TULIP_MAXADDRS; cnt++) { 2728 *sp++ = htole32(TULIP_SP_FIELD(enaddr, 0)); 2729 *sp++ = htole32(TULIP_SP_FIELD(enaddr, 1)); 2730 *sp++ = htole32(TULIP_SP_FIELD(enaddr, 2)); 2731 } 2732 ifp->if_flags |= IFF_ALLMULTI; 2733 2734 setit: 2735 if (ifp->if_flags & IFF_ALLMULTI) 2736 sc->sc_opmode |= OPMODE_PM; 2737 2738 /* Sync the setup packet buffer. */ 2739 TULIP_CDSPSYNC(sc, BUS_DMASYNC_PREWRITE); 2740 2741 /* 2742 * Fill in the setup packet descriptor. 2743 */ 2744 txs = SIMPLEQ_FIRST(&sc->sc_txfreeq); 2745 2746 txs->txs_firstdesc = sc->sc_txnext; 2747 txs->txs_lastdesc = sc->sc_txnext; 2748 txs->txs_ndescs = 1; 2749 txs->txs_mbuf = NULL; 2750 2751 nexttx = sc->sc_txnext; 2752 txd = &sc->sc_txdescs[nexttx]; 2753 txd->td_status = 0; 2754 txd->td_bufaddr1 = htole32(TULIP_CDSPADDR(sc)); 2755 txd->td_ctl = htole32((TULIP_SETUP_PACKET_LEN << TDCTL_SIZE1_SHIFT) | 2756 sc->sc_filtmode | TDCTL_Tx_SET | sc->sc_setup_fsls | 2757 TDCTL_Tx_IC | sc->sc_tdctl_ch | 2758 (nexttx == (TULIP_NTXDESC - 1) ? sc->sc_tdctl_er : 0)); 2759 TULIP_CDTXSYNC(sc, nexttx, 1, 2760 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2761 2762 #ifdef TLP_DEBUG 2763 if (ifp->if_flags & IFF_DEBUG) { 2764 printf(" filter_setup %p transmit chain:\n", txs); 2765 printf(" descriptor %d:\n", nexttx); 2766 printf(" td_status: 0x%08x\n", le32toh(txd->td_status)); 2767 printf(" td_ctl: 0x%08x\n", le32toh(txd->td_ctl)); 2768 printf(" td_bufaddr1: 0x%08x\n", 2769 le32toh(txd->td_bufaddr1)); 2770 printf(" td_bufaddr2: 0x%08x\n", 2771 le32toh(txd->td_bufaddr2)); 2772 } 2773 #endif 2774 2775 txd->td_status = htole32(TDSTAT_OWN); 2776 TULIP_CDTXSYNC(sc, nexttx, 1, 2777 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2778 2779 /* Advance the tx pointer. */ 2780 sc->sc_txfree -= 1; 2781 sc->sc_txnext = TULIP_NEXTTX(nexttx); 2782 2783 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q); 2784 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q); 2785 2786 /* 2787 * Set the OPMODE register. This will also resume the 2788 * transmit process we idled above. 2789 */ 2790 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode); 2791 2792 sc->sc_flags |= TULIPF_DOING_SETUP; 2793 2794 /* 2795 * Kick the transmitter; this will cause the Tulip to 2796 * read the setup descriptor. 2797 */ 2798 /* XXX USE AUTOPOLLING? */ 2799 TULIP_WRITE(sc, CSR_TXPOLL, TXPOLL_TPD); 2800 2801 /* Set up a watchdog timer in case the chip flakes out. */ 2802 ifp->if_timer = 5; 2803 2804 DPRINTF(sc, ("%s: tlp_filter_setup: returning\n", 2805 device_xname(sc->sc_dev))); 2806 } 2807 2808 /* 2809 * tlp_winb_filter_setup: 2810 * 2811 * Set the Winbond 89C840F's receive filter. 2812 */ 2813 static void 2814 tlp_winb_filter_setup(struct tulip_softc *sc) 2815 { 2816 struct ethercom *ec = &sc->sc_ethercom; 2817 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 2818 struct ether_multi *enm; 2819 struct ether_multistep step; 2820 uint32_t hash, mchash[2]; 2821 2822 DPRINTF(sc, ("%s: tlp_winb_filter_setup: sc_flags 0x%08x\n", 2823 device_xname(sc->sc_dev), sc->sc_flags)); 2824 2825 sc->sc_opmode &= ~(OPMODE_WINB_APP | OPMODE_WINB_AMP |OPMODE_WINB_ABP); 2826 2827 if (ifp->if_flags & IFF_MULTICAST) 2828 sc->sc_opmode |= OPMODE_WINB_AMP; 2829 2830 if (ifp->if_flags & IFF_BROADCAST) 2831 sc->sc_opmode |= OPMODE_WINB_ABP; 2832 2833 if (ifp->if_flags & IFF_PROMISC) { 2834 sc->sc_opmode |= OPMODE_WINB_APP; 2835 goto allmulti; 2836 } 2837 2838 mchash[0] = mchash[1] = 0; 2839 2840 ETHER_FIRST_MULTI(step, ec, enm); 2841 while (enm != NULL) { 2842 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { 2843 /* 2844 * We must listen to a range of multicast addresses. 2845 * For now, just accept all multicasts, rather than 2846 * trying to set only those filter bits needed to match 2847 * the range. (At this time, the only use of address 2848 * ranges is for IP multicast routing, for which the 2849 * range is big enough to require all bits set.) 2850 */ 2851 goto allmulti; 2852 } 2853 2854 /* 2855 * According to the FreeBSD `wb' driver, yes, you 2856 * really do invert the hash. 2857 */ 2858 hash = 2859 (~(ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) >> 26)) 2860 & 0x3f; 2861 mchash[hash >> 5] |= 1 << (hash & 0x1f); 2862 ETHER_NEXT_MULTI(step, enm); 2863 } 2864 ifp->if_flags &= ~IFF_ALLMULTI; 2865 goto setit; 2866 2867 allmulti: 2868 ifp->if_flags |= IFF_ALLMULTI; 2869 mchash[0] = mchash[1] = 0xffffffff; 2870 2871 setit: 2872 TULIP_WRITE(sc, CSR_WINB_CMA0, mchash[0]); 2873 TULIP_WRITE(sc, CSR_WINB_CMA1, mchash[1]); 2874 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode); 2875 DPRINTF(sc, ("%s: tlp_winb_filter_setup: returning\n", 2876 device_xname(sc->sc_dev))); 2877 } 2878 2879 /* 2880 * tlp_al981_filter_setup: 2881 * 2882 * Set the ADMtek AL981's receive filter. 2883 */ 2884 static void 2885 tlp_al981_filter_setup(struct tulip_softc *sc) 2886 { 2887 struct ethercom *ec = &sc->sc_ethercom; 2888 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 2889 struct ether_multi *enm; 2890 struct ether_multistep step; 2891 uint32_t hash, mchash[2]; 2892 2893 /* 2894 * If the chip is running, we need to reset the interface, 2895 * and will revisit here (with IFF_RUNNING) clear. The 2896 * chip seems to really not like to have its multicast 2897 * filter programmed without a reset. 2898 */ 2899 if (ifp->if_flags & IFF_RUNNING) { 2900 (void) tlp_init(ifp); 2901 return; 2902 } 2903 2904 DPRINTF(sc, ("%s: tlp_al981_filter_setup: sc_flags 0x%08x\n", 2905 device_xname(sc->sc_dev), sc->sc_flags)); 2906 2907 sc->sc_opmode &= ~(OPMODE_PR | OPMODE_PM); 2908 2909 if (ifp->if_flags & IFF_PROMISC) { 2910 sc->sc_opmode |= OPMODE_PR; 2911 goto allmulti; 2912 } 2913 2914 mchash[0] = mchash[1] = 0; 2915 2916 ETHER_LOCK(ec); 2917 ETHER_FIRST_MULTI(step, ec, enm); 2918 while (enm != NULL) { 2919 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { 2920 /* 2921 * We must listen to a range of multicast addresses. 2922 * For now, just accept all multicasts, rather than 2923 * trying to set only those filter bits needed to match 2924 * the range. (At this time, the only use of address 2925 * ranges is for IP multicast routing, for which the 2926 * range is big enough to require all bits set.) 2927 */ 2928 ETHER_UNLOCK(ec); 2929 goto allmulti; 2930 } 2931 2932 hash = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) & 0x3f; 2933 mchash[hash >> 5] |= __BIT(hash & 0x1f); 2934 ETHER_NEXT_MULTI(step, enm); 2935 } 2936 ETHER_UNLOCK(ec); 2937 ifp->if_flags &= ~IFF_ALLMULTI; 2938 goto setit; 2939 2940 allmulti: 2941 ifp->if_flags |= IFF_ALLMULTI; 2942 mchash[0] = mchash[1] = 0xffffffff; 2943 2944 setit: 2945 bus_space_write_4(sc->sc_st, sc->sc_sh, CSR_ADM_MAR0, mchash[0]); 2946 bus_space_write_4(sc->sc_st, sc->sc_sh, CSR_ADM_MAR1, mchash[1]); 2947 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode); 2948 DPRINTF(sc, ("%s: tlp_al981_filter_setup: returning\n", 2949 device_xname(sc->sc_dev))); 2950 } 2951 2952 /* 2953 * tlp_asix_filter_setup: 2954 * 2955 * Set the ASIX AX8814x receive filter. 2956 */ 2957 static void 2958 tlp_asix_filter_setup(struct tulip_softc *sc) 2959 { 2960 struct ethercom *ec = &sc->sc_ethercom; 2961 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 2962 struct ether_multi *enm; 2963 struct ether_multistep step; 2964 uint32_t hash, mchash[2]; 2965 2966 DPRINTF(sc, ("%s: tlp_asix_filter_setup: sc_flags 0x%08x\n", 2967 device_xname(sc->sc_dev), sc->sc_flags)); 2968 2969 sc->sc_opmode &= ~(OPMODE_PM | OPMODE_AX_RB | OPMODE_PR); 2970 2971 if (ifp->if_flags & IFF_MULTICAST) 2972 sc->sc_opmode |= OPMODE_PM; 2973 2974 if (ifp->if_flags & IFF_BROADCAST) 2975 sc->sc_opmode |= OPMODE_AX_RB; 2976 2977 if (ifp->if_flags & IFF_PROMISC) { 2978 sc->sc_opmode |= OPMODE_PR; 2979 goto allmulti; 2980 } 2981 2982 mchash[0] = mchash[1] = 0; 2983 2984 ETHER_LOCK(ec); 2985 ETHER_FIRST_MULTI(step, ec, enm); 2986 while (enm != NULL) { 2987 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { 2988 /* 2989 * We must listen to a range of multicast addresses. 2990 * For now, just accept all multicasts, rather than 2991 * trying to set only those filter bits needed to match 2992 * the range. (At this time, the only use of address 2993 * ranges is for IP multicast routing, for which the 2994 * range is big enough to require all bits set.) 2995 */ 2996 ETHER_UNLOCK(ec); 2997 goto allmulti; 2998 } 2999 hash = (ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) >> 26) 3000 & 0x3f; 3001 if (hash < 32) 3002 mchash[0] |= (1 << hash); 3003 else 3004 mchash[1] |= (1 << (hash - 32)); 3005 ETHER_NEXT_MULTI(step, enm); 3006 } 3007 ETHER_UNLOCK(ec); 3008 ifp->if_flags &= ~IFF_ALLMULTI; 3009 goto setit; 3010 3011 allmulti: 3012 ifp->if_flags |= IFF_ALLMULTI; 3013 mchash[0] = mchash[1] = 0xffffffff; 3014 3015 setit: 3016 TULIP_WRITE(sc, CSR_AX_FILTIDX, AX_FILTIDX_MAR0); 3017 TULIP_WRITE(sc, CSR_AX_FILTDATA, mchash[0]); 3018 TULIP_WRITE(sc, CSR_AX_FILTIDX, AX_FILTIDX_MAR1); 3019 TULIP_WRITE(sc, CSR_AX_FILTDATA, mchash[1]); 3020 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode); 3021 DPRINTF(sc, ("%s: tlp_asix_filter_setup: returning\n", 3022 device_xname(sc->sc_dev))); 3023 } 3024 3025 3026 /* 3027 * tlp_idle: 3028 * 3029 * Cause the transmit and/or receive processes to go idle. 3030 */ 3031 void 3032 tlp_idle(struct tulip_softc *sc, uint32_t bits) 3033 { 3034 static const char * const tlp_tx_state_names[] = { 3035 "STOPPED", 3036 "RUNNING - FETCH", 3037 "RUNNING - WAIT", 3038 "RUNNING - READING", 3039 "-- RESERVED --", 3040 "RUNNING - SETUP", 3041 "SUSPENDED", 3042 "RUNNING - CLOSE", 3043 }; 3044 static const char * const tlp_rx_state_names[] = { 3045 "STOPPED", 3046 "RUNNING - FETCH", 3047 "RUNNING - CHECK", 3048 "RUNNING - WAIT", 3049 "SUSPENDED", 3050 "RUNNING - CLOSE", 3051 "RUNNING - FLUSH", 3052 "RUNNING - QUEUE", 3053 }; 3054 static const char * const dm9102_tx_state_names[] = { 3055 "STOPPED", 3056 "RUNNING - FETCH", 3057 "RUNNING - SETUP", 3058 "RUNNING - READING", 3059 "RUNNING - CLOSE - CLEAR OWNER", 3060 "RUNNING - WAIT", 3061 "RUNNING - CLOSE - WRITE STATUS", 3062 "SUSPENDED", 3063 }; 3064 static const char * const dm9102_rx_state_names[] = { 3065 "STOPPED", 3066 "RUNNING - FETCH", 3067 "RUNNING - WAIT", 3068 "RUNNING - QUEUE", 3069 "RUNNING - CLOSE - CLEAR OWNER", 3070 "RUNNING - CLOSE - WRITE STATUS", 3071 "SUSPENDED", 3072 "RUNNING - FLUSH", 3073 }; 3074 3075 const char * const *tx_state_names, * const *rx_state_names; 3076 uint32_t csr, ackmask = 0; 3077 int i; 3078 3079 switch (sc->sc_chip) { 3080 case TULIP_CHIP_DM9102: 3081 case TULIP_CHIP_DM9102A: 3082 tx_state_names = dm9102_tx_state_names; 3083 rx_state_names = dm9102_rx_state_names; 3084 break; 3085 3086 default: 3087 tx_state_names = tlp_tx_state_names; 3088 rx_state_names = tlp_rx_state_names; 3089 break; 3090 } 3091 3092 if (bits & OPMODE_ST) 3093 ackmask |= STATUS_TPS; 3094 3095 if (bits & OPMODE_SR) 3096 ackmask |= STATUS_RPS; 3097 3098 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode & ~bits); 3099 3100 for (i = 0; i < 1000; i++) { 3101 if (TULIP_ISSET(sc, CSR_STATUS, ackmask) == ackmask) 3102 break; 3103 delay(10); 3104 } 3105 3106 csr = TULIP_READ(sc, CSR_STATUS); 3107 if ((csr & ackmask) != ackmask) { 3108 if ((bits & OPMODE_ST) != 0 && (csr & STATUS_TPS) == 0 && 3109 (csr & STATUS_TS) != STATUS_TS_STOPPED) { 3110 switch (sc->sc_chip) { 3111 case TULIP_CHIP_AX88140: 3112 case TULIP_CHIP_AX88141: 3113 /* 3114 * Filter the message out on noisy chips. 3115 */ 3116 break; 3117 default: 3118 printf("%s: transmit process failed to idle: " 3119 "state %s\n", device_xname(sc->sc_dev), 3120 tx_state_names[(csr & STATUS_TS) >> 20]); 3121 } 3122 } 3123 if ((bits & OPMODE_SR) != 0 && (csr & STATUS_RPS) == 0 && 3124 (csr & STATUS_RS) != STATUS_RS_STOPPED) { 3125 switch (sc->sc_chip) { 3126 case TULIP_CHIP_AN983: 3127 case TULIP_CHIP_AN985: 3128 case TULIP_CHIP_DM9102A: 3129 case TULIP_CHIP_RS7112: 3130 /* 3131 * Filter the message out on noisy chips. 3132 */ 3133 break; 3134 default: 3135 printf("%s: receive process failed to idle: " 3136 "state %s\n", device_xname(sc->sc_dev), 3137 rx_state_names[(csr & STATUS_RS) >> 17]); 3138 } 3139 } 3140 } 3141 TULIP_WRITE(sc, CSR_STATUS, ackmask); 3142 } 3143 3144 /***************************************************************************** 3145 * Generic media support functions. 3146 *****************************************************************************/ 3147 3148 /* 3149 * tlp_mediastatus: [ifmedia interface function] 3150 * 3151 * Query the current media. 3152 */ 3153 void 3154 tlp_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) 3155 { 3156 struct tulip_softc *sc = ifp->if_softc; 3157 3158 if (TULIP_IS_ENABLED(sc) == 0) { 3159 ifmr->ifm_active = IFM_ETHER | IFM_NONE; 3160 ifmr->ifm_status = 0; 3161 return; 3162 } 3163 3164 (*sc->sc_mediasw->tmsw_get)(sc, ifmr); 3165 } 3166 3167 /* 3168 * tlp_mediachange: [ifmedia interface function] 3169 * 3170 * Update the current media. 3171 */ 3172 int 3173 tlp_mediachange(struct ifnet *ifp) 3174 { 3175 struct tulip_softc *sc = ifp->if_softc; 3176 3177 if ((ifp->if_flags & IFF_UP) == 0) 3178 return 0; 3179 return (*sc->sc_mediasw->tmsw_set)(sc); 3180 } 3181 3182 /***************************************************************************** 3183 * Support functions for MII-attached media. 3184 *****************************************************************************/ 3185 3186 /* 3187 * tlp_mii_tick: 3188 * 3189 * One second timer, used to tick the MII. 3190 */ 3191 static void 3192 tlp_mii_tick(void *arg) 3193 { 3194 struct tulip_softc *sc = arg; 3195 int s; 3196 3197 if (!device_is_active(sc->sc_dev)) 3198 return; 3199 3200 s = splnet(); 3201 mii_tick(&sc->sc_mii); 3202 splx(s); 3203 3204 callout_reset(&sc->sc_tick_callout, hz, sc->sc_tick, sc); 3205 } 3206 3207 /* 3208 * tlp_mii_statchg: [mii interface function] 3209 * 3210 * Callback from PHY when media changes. 3211 */ 3212 static void 3213 tlp_mii_statchg(struct ifnet *ifp) 3214 { 3215 struct tulip_softc *sc = ifp->if_softc; 3216 3217 /* Idle the transmit and receive processes. */ 3218 tlp_idle(sc, OPMODE_ST | OPMODE_SR); 3219 3220 sc->sc_opmode &= ~(OPMODE_TTM | OPMODE_FD | OPMODE_HBD); 3221 3222 if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_10_T) 3223 sc->sc_opmode |= OPMODE_TTM; 3224 else 3225 sc->sc_opmode |= OPMODE_HBD; 3226 3227 if (sc->sc_mii.mii_media_active & IFM_FDX) 3228 sc->sc_opmode |= OPMODE_FD | OPMODE_HBD; 3229 3230 /* 3231 * Write new OPMODE bits. This also restarts the transmit 3232 * and receive processes. 3233 */ 3234 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode); 3235 } 3236 3237 /* 3238 * tlp_winb_mii_statchg: [mii interface function] 3239 * 3240 * Callback from PHY when media changes. This version is 3241 * for the Winbond 89C840F, which has different OPMODE bits. 3242 */ 3243 static void 3244 tlp_winb_mii_statchg(struct ifnet *ifp) 3245 { 3246 struct tulip_softc *sc = ifp->if_softc; 3247 3248 /* Idle the transmit and receive processes. */ 3249 tlp_idle(sc, OPMODE_ST | OPMODE_SR); 3250 3251 sc->sc_opmode &= ~(OPMODE_WINB_FES | OPMODE_FD); 3252 3253 if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) 3254 sc->sc_opmode |= OPMODE_WINB_FES; 3255 3256 if (sc->sc_mii.mii_media_active & IFM_FDX) 3257 sc->sc_opmode |= OPMODE_FD; 3258 3259 /* 3260 * Write new OPMODE bits. This also restarts the transmit 3261 * and receive processes. 3262 */ 3263 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode); 3264 } 3265 3266 /* 3267 * tlp_dm9102_mii_statchg: [mii interface function] 3268 * 3269 * Callback from PHY when media changes. This version is 3270 * for the DM9102. 3271 */ 3272 static void 3273 tlp_dm9102_mii_statchg(struct ifnet *ifp) 3274 { 3275 struct tulip_softc *sc = ifp->if_softc; 3276 3277 /* 3278 * Don't idle the transmit and receive processes, here. It 3279 * seems to fail, and just causes excess noise. 3280 */ 3281 sc->sc_opmode &= ~(OPMODE_TTM | OPMODE_FD); 3282 3283 if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) != IFM_100_TX) 3284 sc->sc_opmode |= OPMODE_TTM; 3285 3286 if (sc->sc_mii.mii_media_active & IFM_FDX) 3287 sc->sc_opmode |= OPMODE_FD; 3288 3289 /* 3290 * Write new OPMODE bits. 3291 */ 3292 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode); 3293 } 3294 3295 /* 3296 * tlp_mii_getmedia: 3297 * 3298 * Callback from ifmedia to request current media status. 3299 */ 3300 static void 3301 tlp_mii_getmedia(struct tulip_softc *sc, struct ifmediareq *ifmr) 3302 { 3303 struct mii_data * const mii = &sc->sc_mii; 3304 3305 mii_pollstat(mii); 3306 ifmr->ifm_status = mii->mii_media_status; 3307 ifmr->ifm_active = mii->mii_media_active; 3308 } 3309 3310 /* 3311 * tlp_mii_setmedia: 3312 * 3313 * Callback from ifmedia to request new media setting. 3314 */ 3315 static int 3316 tlp_mii_setmedia(struct tulip_softc *sc) 3317 { 3318 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 3319 int rc; 3320 3321 if ((ifp->if_flags & IFF_UP) == 0) 3322 return 0; 3323 switch (sc->sc_chip) { 3324 case TULIP_CHIP_21142: 3325 case TULIP_CHIP_21143: 3326 /* Disable the internal Nway engine. */ 3327 TULIP_WRITE(sc, CSR_SIATXRX, 0); 3328 break; 3329 3330 default: 3331 /* Nothing. */ 3332 break; 3333 } 3334 if ((rc = mii_mediachg(&sc->sc_mii)) == ENXIO) 3335 return 0; 3336 return rc; 3337 } 3338 3339 /* 3340 * tlp_bitbang_mii_readreg: 3341 * 3342 * Read a PHY register via bit-bang'ing the MII. 3343 */ 3344 static int 3345 tlp_bitbang_mii_readreg(device_t self, int phy, int reg, uint16_t *val) 3346 { 3347 struct tulip_softc *sc = device_private(self); 3348 3349 return mii_bitbang_readreg(self, sc->sc_bitbang_ops, phy, reg, val); 3350 } 3351 3352 /* 3353 * tlp_bitbang_mii_writereg: 3354 * 3355 * Write a PHY register via bit-bang'ing the MII. 3356 */ 3357 static int 3358 tlp_bitbang_mii_writereg(device_t self, int phy, int reg, uint16_t val) 3359 { 3360 struct tulip_softc *sc = device_private(self); 3361 3362 return mii_bitbang_writereg(self, sc->sc_bitbang_ops, phy, reg, val); 3363 } 3364 3365 /* 3366 * tlp_sio_mii_bitbang_read: 3367 * 3368 * Read the MII serial port for the MII bit-bang module. 3369 */ 3370 static uint32_t 3371 tlp_sio_mii_bitbang_read(device_t self) 3372 { 3373 struct tulip_softc *sc = device_private(self); 3374 3375 return TULIP_READ(sc, CSR_MIIROM); 3376 } 3377 3378 /* 3379 * tlp_sio_mii_bitbang_write: 3380 * 3381 * Write the MII serial port for the MII bit-bang module. 3382 */ 3383 static void 3384 tlp_sio_mii_bitbang_write(device_t self, uint32_t val) 3385 { 3386 struct tulip_softc *sc = device_private(self); 3387 3388 TULIP_WRITE(sc, CSR_MIIROM, val); 3389 } 3390 3391 /* 3392 * tlp_pnic_mii_readreg: 3393 * 3394 * Read a PHY register on the Lite-On PNIC. 3395 */ 3396 static int 3397 tlp_pnic_mii_readreg(device_t self, int phy, int reg, uint16_t *val) 3398 { 3399 struct tulip_softc *sc = device_private(self); 3400 uint32_t data; 3401 int i; 3402 3403 TULIP_WRITE(sc, CSR_PNIC_MII, 3404 PNIC_MII_MBO | PNIC_MII_RESERVED | 3405 PNIC_MII_READ | (phy << PNIC_MII_PHYSHIFT) | 3406 (reg << PNIC_MII_REGSHIFT)); 3407 3408 for (i = 0; i < 1000; i++) { 3409 delay(10); 3410 data = TULIP_READ(sc, CSR_PNIC_MII); 3411 if ((data & PNIC_MII_BUSY) == 0) { 3412 if ((data & PNIC_MII_DATA) == PNIC_MII_DATA) 3413 return -1; 3414 else { 3415 *val = data & PNIC_MII_DATA; 3416 return 0; 3417 } 3418 } 3419 } 3420 printf("%s: MII read timed out\n", device_xname(sc->sc_dev)); 3421 return ETIMEDOUT; 3422 } 3423 3424 /* 3425 * tlp_pnic_mii_writereg: 3426 * 3427 * Write a PHY register on the Lite-On PNIC. 3428 */ 3429 static int 3430 tlp_pnic_mii_writereg(device_t self, int phy, int reg, uint16_t val) 3431 { 3432 struct tulip_softc *sc = device_private(self); 3433 int i; 3434 3435 TULIP_WRITE(sc, CSR_PNIC_MII, 3436 PNIC_MII_MBO | PNIC_MII_RESERVED | 3437 PNIC_MII_WRITE | (phy << PNIC_MII_PHYSHIFT) | 3438 (reg << PNIC_MII_REGSHIFT) | val); 3439 3440 for (i = 0; i < 1000; i++) { 3441 delay(10); 3442 if (TULIP_ISSET(sc, CSR_PNIC_MII, PNIC_MII_BUSY) == 0) 3443 return 0; 3444 } 3445 printf("%s: MII write timed out\n", device_xname(sc->sc_dev)); 3446 return ETIMEDOUT; 3447 } 3448 3449 static const bus_addr_t tlp_al981_phy_regmap[] = { 3450 CSR_ADM_BMCR, 3451 CSR_ADM_BMSR, 3452 CSR_ADM_PHYIDR1, 3453 CSR_ADM_PHYIDR2, 3454 CSR_ADM_ANAR, 3455 CSR_ADM_ANLPAR, 3456 CSR_ADM_ANER, 3457 3458 CSR_ADM_XMC, 3459 CSR_ADM_XCIIS, 3460 CSR_ADM_XIE, 3461 CSR_ADM_100CTR, 3462 }; 3463 static const int tlp_al981_phy_regmap_size = sizeof(tlp_al981_phy_regmap) / 3464 sizeof(tlp_al981_phy_regmap[0]); 3465 3466 /* 3467 * tlp_al981_mii_readreg: 3468 * 3469 * Read a PHY register on the ADMtek AL981. 3470 */ 3471 static int 3472 tlp_al981_mii_readreg(device_t self, int phy, int reg, uint16_t *val) 3473 { 3474 struct tulip_softc *sc = device_private(self); 3475 3476 /* AL981 only has an internal PHY. */ 3477 if (phy != 0) 3478 return -1; 3479 3480 if (reg >= tlp_al981_phy_regmap_size) 3481 return -1; 3482 3483 *val = bus_space_read_4(sc->sc_st, sc->sc_sh, 3484 tlp_al981_phy_regmap[reg]) & 0xffff; 3485 return 0; 3486 } 3487 3488 /* 3489 * tlp_al981_mii_writereg: 3490 * 3491 * Write a PHY register on the ADMtek AL981. 3492 */ 3493 static int 3494 tlp_al981_mii_writereg(device_t self, int phy, int reg, uint16_t val) 3495 { 3496 struct tulip_softc *sc = device_private(self); 3497 3498 /* AL981 only has an internal PHY. */ 3499 if (phy != 0) 3500 return -1; 3501 3502 if (reg >= tlp_al981_phy_regmap_size) 3503 return -1; 3504 3505 bus_space_write_4(sc->sc_st, sc->sc_sh, 3506 tlp_al981_phy_regmap[reg], val); 3507 3508 return 0; 3509 } 3510 3511 /***************************************************************************** 3512 * Chip-specific pre-init and reset functions. 3513 *****************************************************************************/ 3514 3515 /* 3516 * tlp_2114x_preinit: 3517 * 3518 * Pre-init function shared by DECchip 21140, 21140A, 21142, and 21143. 3519 */ 3520 static void 3521 tlp_2114x_preinit(struct tulip_softc *sc) 3522 { 3523 struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur; 3524 struct tulip_21x4x_media *tm = ife->ifm_aux; 3525 3526 /* 3527 * Whether or not we're in MII or SIA/SYM mode, the media info 3528 * contains the appropriate OPMODE bits. 3529 * 3530 * Also, we always set the Must-Be-One bit. 3531 */ 3532 sc->sc_opmode |= OPMODE_MBO | tm->tm_opmode; 3533 3534 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode); 3535 } 3536 3537 /* 3538 * tlp_2114x_mii_preinit: 3539 * 3540 * Pre-init function shared by DECchip 21140, 21140A, 21142, and 21143. 3541 * This version is used by boards which only have MII and don't have 3542 * an ISV SROM. 3543 */ 3544 static void 3545 tlp_2114x_mii_preinit(struct tulip_softc *sc) 3546 { 3547 3548 /* 3549 * Always set the Must-Be-One bit, and Port Select (to select MII). 3550 * We'll never be called during a media change. 3551 */ 3552 sc->sc_opmode |= OPMODE_MBO | OPMODE_PS; 3553 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode); 3554 } 3555 3556 /* 3557 * tlp_pnic_preinit: 3558 * 3559 * Pre-init function for the Lite-On 82c168 and 82c169. 3560 */ 3561 static void 3562 tlp_pnic_preinit(struct tulip_softc *sc) 3563 { 3564 3565 if (sc->sc_flags & TULIPF_HAS_MII) { 3566 /* 3567 * MII case: just set the port-select bit; we will never 3568 * be called during a media change. 3569 */ 3570 sc->sc_opmode |= OPMODE_PS; 3571 } else { 3572 /* 3573 * ENDEC/PCS/Nway mode; enable the Tx backoff counter. 3574 */ 3575 sc->sc_opmode |= OPMODE_PNIC_TBEN; 3576 } 3577 } 3578 3579 /* 3580 * tlp_asix_preinit: 3581 * 3582 * Pre-init function for the ASIX chipsets. 3583 */ 3584 static void 3585 tlp_asix_preinit(struct tulip_softc *sc) 3586 { 3587 3588 switch (sc->sc_chip) { 3589 case TULIP_CHIP_AX88140: 3590 case TULIP_CHIP_AX88141: 3591 /* XXX Handle PHY. */ 3592 sc->sc_opmode |= OPMODE_HBD | OPMODE_PS; 3593 break; 3594 default: 3595 /* Nothing */ 3596 break; 3597 } 3598 3599 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode); 3600 } 3601 3602 /* 3603 * tlp_dm9102_preinit: 3604 * 3605 * Pre-init function for the Davicom DM9102. 3606 */ 3607 static void 3608 tlp_dm9102_preinit(struct tulip_softc *sc) 3609 { 3610 3611 switch (sc->sc_chip) { 3612 case TULIP_CHIP_DM9102: 3613 sc->sc_opmode |= OPMODE_MBO | OPMODE_HBD | OPMODE_PS; 3614 break; 3615 3616 case TULIP_CHIP_DM9102A: 3617 /* 3618 * XXX Figure out how to actually deal with the HomePNA 3619 * XXX portion of the DM9102A. 3620 */ 3621 sc->sc_opmode |= OPMODE_MBO | OPMODE_HBD; 3622 break; 3623 3624 default: 3625 /* Nothing. */ 3626 break; 3627 } 3628 3629 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode); 3630 } 3631 3632 /* 3633 * tlp_21140_reset: 3634 * 3635 * Issue a reset sequence on the 21140 via the GPIO facility. 3636 */ 3637 static void 3638 tlp_21140_reset(struct tulip_softc *sc) 3639 { 3640 struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur; 3641 struct tulip_21x4x_media *tm = ife->ifm_aux; 3642 int i; 3643 3644 /* First, set the direction on the GPIO pins. */ 3645 TULIP_WRITE(sc, CSR_GPP, GPP_GPC | sc->sc_gp_dir); 3646 3647 /* Now, issue the reset sequence. */ 3648 for (i = 0; i < tm->tm_reset_length; i++) { 3649 delay(10); 3650 TULIP_WRITE(sc, CSR_GPP, sc->sc_srom[tm->tm_reset_offset + i]); 3651 } 3652 3653 /* Now, issue the selection sequence. */ 3654 for (i = 0; i < tm->tm_gp_length; i++) { 3655 delay(10); 3656 TULIP_WRITE(sc, CSR_GPP, sc->sc_srom[tm->tm_gp_offset + i]); 3657 } 3658 3659 /* If there were no sequences, just lower the pins. */ 3660 if (tm->tm_reset_length == 0 && tm->tm_gp_length == 0) { 3661 delay(10); 3662 TULIP_WRITE(sc, CSR_GPP, 0); 3663 } 3664 } 3665 3666 /* 3667 * tlp_21142_reset: 3668 * 3669 * Issue a reset sequence on the 21142 via the GPIO facility. 3670 */ 3671 static void 3672 tlp_21142_reset(struct tulip_softc *sc) 3673 { 3674 struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur; 3675 struct tulip_21x4x_media *tm = ife->ifm_aux; 3676 const uint8_t *cp; 3677 int i; 3678 3679 cp = &sc->sc_srom[tm->tm_reset_offset]; 3680 for (i = 0; i < tm->tm_reset_length; i++, cp += 2) { 3681 delay(10); 3682 TULIP_WRITE(sc, CSR_SIAGEN, TULIP_ROM_GETW(cp, 0) << 16); 3683 } 3684 3685 cp = &sc->sc_srom[tm->tm_gp_offset]; 3686 for (i = 0; i < tm->tm_gp_length; i++, cp += 2) { 3687 delay(10); 3688 TULIP_WRITE(sc, CSR_SIAGEN, TULIP_ROM_GETW(cp, 0) << 16); 3689 } 3690 3691 /* If there were no sequences, just lower the pins. */ 3692 if (tm->tm_reset_length == 0 && tm->tm_gp_length == 0) { 3693 delay(10); 3694 TULIP_WRITE(sc, CSR_SIAGEN, 0); 3695 } 3696 } 3697 3698 /* 3699 * tlp_pmac_reset: 3700 * 3701 * Reset routine for Macronix chips. 3702 */ 3703 static void 3704 tlp_pmac_reset(struct tulip_softc *sc) 3705 { 3706 3707 switch (sc->sc_chip) { 3708 case TULIP_CHIP_82C115: 3709 case TULIP_CHIP_MX98715: 3710 case TULIP_CHIP_MX98715A: 3711 case TULIP_CHIP_MX98725: 3712 /* 3713 * Set the LED operating mode. This information is located 3714 * in the EEPROM at byte offset 0x77, per the MX98715A and 3715 * MX98725 application notes. 3716 */ 3717 TULIP_WRITE(sc, CSR_MIIROM, sc->sc_srom[0x77] << 24); 3718 break; 3719 case TULIP_CHIP_MX98715AEC_X: 3720 /* 3721 * Set the LED operating mode. This information is located 3722 * in the EEPROM at byte offset 0x76, per the MX98715AEC 3723 * application note. 3724 */ 3725 TULIP_WRITE(sc, CSR_MIIROM, ((0xf & sc->sc_srom[0x76]) << 28) 3726 | ((0xf0 & sc->sc_srom[0x76]) << 20)); 3727 break; 3728 3729 default: 3730 /* Nothing. */ 3731 break; 3732 } 3733 } 3734 3735 #if 0 3736 /* 3737 * tlp_dm9102_reset: 3738 * 3739 * Reset routine for the Davicom DM9102. 3740 */ 3741 static void 3742 tlp_dm9102_reset(struct tulip_softc *sc) 3743 { 3744 3745 TULIP_WRITE(sc, CSR_DM_PHYSTAT, DM_PHYSTAT_GEPC | DM_PHYSTAT_GPED); 3746 delay(100); 3747 TULIP_WRITE(sc, CSR_DM_PHYSTAT, 0); 3748 } 3749 #endif 3750 3751 /***************************************************************************** 3752 * Chip/board-specific media switches. The ones here are ones that 3753 * are potentially common to multiple front-ends. 3754 *****************************************************************************/ 3755 3756 /* 3757 * This table is a common place for all sorts of media information, 3758 * keyed off of the SROM media code for that media. 3759 * 3760 * Note that we explicitly configure the 21142/21143 to always advertise 3761 * NWay capabilities when using the UTP port. 3762 * XXX Actually, we don't yet. 3763 */ 3764 static const struct tulip_srom_to_ifmedia tulip_srom_to_ifmedia_table[] = { 3765 { TULIP_ROM_MB_MEDIA_TP, IFM_10_T, 0, 3766 "10baseT", 3767 OPMODE_TTM, 3768 BMSR_10THDX, 3769 { SIACONN_21040_10BASET, 3770 SIATXRX_21040_10BASET, 3771 SIAGEN_21040_10BASET }, 3772 3773 { SIACONN_21041_10BASET, 3774 SIATXRX_21041_10BASET, 3775 SIAGEN_21041_10BASET }, 3776 3777 { SIACONN_21142_10BASET, 3778 SIATXRX_21142_10BASET, 3779 SIAGEN_21142_10BASET } }, 3780 3781 { TULIP_ROM_MB_MEDIA_BNC, IFM_10_2, 0, 3782 "10base2", 3783 0, 3784 0, 3785 { 0, 3786 0, 3787 0 }, 3788 3789 { SIACONN_21041_BNC, 3790 SIATXRX_21041_BNC, 3791 SIAGEN_21041_BNC }, 3792 3793 { SIACONN_21142_BNC, 3794 SIATXRX_21142_BNC, 3795 SIAGEN_21142_BNC } }, 3796 3797 { TULIP_ROM_MB_MEDIA_AUI, IFM_10_5, 0, 3798 "10base5", 3799 0, 3800 0, 3801 { SIACONN_21040_AUI, 3802 SIATXRX_21040_AUI, 3803 SIAGEN_21040_AUI }, 3804 3805 { SIACONN_21041_AUI, 3806 SIATXRX_21041_AUI, 3807 SIAGEN_21041_AUI }, 3808 3809 { SIACONN_21142_AUI, 3810 SIATXRX_21142_AUI, 3811 SIAGEN_21142_AUI } }, 3812 3813 { TULIP_ROM_MB_MEDIA_100TX, IFM_100_TX, 0, 3814 "100baseTX", 3815 OPMODE_PS | OPMODE_PCS | OPMODE_SCR | OPMODE_HBD, 3816 BMSR_100TXHDX, 3817 { 0, 3818 0, 3819 0 }, 3820 3821 { 0, 3822 0, 3823 0 }, 3824 3825 { 0, 3826 0, 3827 SIAGEN_ABM } }, 3828 3829 { TULIP_ROM_MB_MEDIA_TP_FDX, IFM_10_T, IFM_FDX, 3830 "10baseT-FDX", 3831 OPMODE_TTM | OPMODE_FD | OPMODE_HBD, 3832 BMSR_10TFDX, 3833 { SIACONN_21040_10BASET_FDX, 3834 SIATXRX_21040_10BASET_FDX, 3835 SIAGEN_21040_10BASET_FDX }, 3836 3837 { SIACONN_21041_10BASET_FDX, 3838 SIATXRX_21041_10BASET_FDX, 3839 SIAGEN_21041_10BASET_FDX }, 3840 3841 { SIACONN_21142_10BASET_FDX, 3842 SIATXRX_21142_10BASET_FDX, 3843 SIAGEN_21142_10BASET_FDX } }, 3844 3845 { TULIP_ROM_MB_MEDIA_100TX_FDX, IFM_100_TX, IFM_FDX, 3846 "100baseTX-FDX", 3847 OPMODE_PS | OPMODE_PCS | OPMODE_SCR | OPMODE_FD | OPMODE_HBD, 3848 BMSR_100TXFDX, 3849 { 0, 3850 0, 3851 0 }, 3852 3853 { 0, 3854 0, 3855 0 }, 3856 3857 { 0, 3858 0, 3859 SIAGEN_ABM } }, 3860 3861 { TULIP_ROM_MB_MEDIA_100T4, IFM_100_T4, 0, 3862 "100baseT4", 3863 OPMODE_PS | OPMODE_PCS | OPMODE_SCR | OPMODE_HBD, 3864 BMSR_100T4, 3865 { 0, 3866 0, 3867 0 }, 3868 3869 { 0, 3870 0, 3871 0 }, 3872 3873 { 0, 3874 0, 3875 SIAGEN_ABM } }, 3876 3877 { TULIP_ROM_MB_MEDIA_100FX, IFM_100_FX, 0, 3878 "100baseFX", 3879 OPMODE_PS | OPMODE_PCS | OPMODE_HBD, 3880 0, 3881 { 0, 3882 0, 3883 0 }, 3884 3885 { 0, 3886 0, 3887 0 }, 3888 3889 { 0, 3890 0, 3891 SIAGEN_ABM } }, 3892 3893 { TULIP_ROM_MB_MEDIA_100FX_FDX, IFM_100_FX, IFM_FDX, 3894 "100baseFX-FDX", 3895 OPMODE_PS | OPMODE_PCS | OPMODE_FD | OPMODE_HBD, 3896 0, 3897 { 0, 3898 0, 3899 0 }, 3900 3901 { 0, 3902 0, 3903 0 }, 3904 3905 { 0, 3906 0, 3907 SIAGEN_ABM } }, 3908 3909 { 0, 0, 0, 3910 NULL, 3911 0, 3912 0, 3913 { 0, 3914 0, 3915 0 }, 3916 3917 { 0, 3918 0, 3919 0 }, 3920 3921 { 0, 3922 0, 3923 0 } }, 3924 }; 3925 3926 static const struct tulip_srom_to_ifmedia *tlp_srom_to_ifmedia(uint8_t); 3927 static void tlp_srom_media_info(struct tulip_softc *, 3928 const struct tulip_srom_to_ifmedia *, 3929 struct tulip_21x4x_media *); 3930 static void tlp_add_srom_media(struct tulip_softc *, int, 3931 void (*)(struct tulip_softc *, struct ifmediareq *), 3932 int (*)(struct tulip_softc *), const uint8_t *, int); 3933 static void tlp_print_media(struct tulip_softc *); 3934 static void tlp_nway_activate(struct tulip_softc *, int); 3935 static void tlp_get_minst(struct tulip_softc *); 3936 3937 static const struct tulip_srom_to_ifmedia * 3938 tlp_srom_to_ifmedia(uint8_t sm) 3939 { 3940 const struct tulip_srom_to_ifmedia *tsti; 3941 3942 for (tsti = tulip_srom_to_ifmedia_table; 3943 tsti->tsti_name != NULL; tsti++) { 3944 if (tsti->tsti_srom == sm) 3945 return tsti; 3946 } 3947 3948 return NULL; 3949 } 3950 3951 static void 3952 tlp_srom_media_info(struct tulip_softc *sc, 3953 const struct tulip_srom_to_ifmedia *tsti, struct tulip_21x4x_media *tm) 3954 { 3955 3956 tm->tm_name = tsti->tsti_name; 3957 tm->tm_opmode = tsti->tsti_opmode; 3958 3959 sc->sc_sia_cap |= tsti->tsti_sia_cap; 3960 3961 switch (sc->sc_chip) { 3962 case TULIP_CHIP_DE425: 3963 case TULIP_CHIP_21040: 3964 tm->tm_sia = tsti->tsti_21040; /* struct assignment */ 3965 break; 3966 3967 case TULIP_CHIP_21041: 3968 tm->tm_sia = tsti->tsti_21041; /* struct assignment */ 3969 break; 3970 3971 case TULIP_CHIP_21142: 3972 case TULIP_CHIP_21143: 3973 case TULIP_CHIP_82C115: 3974 case TULIP_CHIP_MX98715: 3975 case TULIP_CHIP_MX98715A: 3976 case TULIP_CHIP_MX98715AEC_X: 3977 case TULIP_CHIP_MX98725: 3978 tm->tm_sia = tsti->tsti_21142; /* struct assignment */ 3979 break; 3980 3981 default: 3982 /* Nothing. */ 3983 break; 3984 } 3985 } 3986 3987 static void 3988 tlp_add_srom_media(struct tulip_softc *sc, int type, 3989 void (*get)(struct tulip_softc *, struct ifmediareq *), 3990 int (*set)(struct tulip_softc *), const uint8_t *list, 3991 int cnt) 3992 { 3993 struct tulip_21x4x_media *tm; 3994 const struct tulip_srom_to_ifmedia *tsti; 3995 int i; 3996 3997 for (i = 0; i < cnt; i++) { 3998 tsti = tlp_srom_to_ifmedia(list[i]); 3999 tm = malloc(sizeof(*tm), M_DEVBUF, M_WAITOK | M_ZERO); 4000 tlp_srom_media_info(sc, tsti, tm); 4001 tm->tm_type = type; 4002 tm->tm_get = get; 4003 tm->tm_set = set; 4004 4005 ifmedia_add(&sc->sc_mii.mii_media, 4006 IFM_MAKEWORD(IFM_ETHER, tsti->tsti_subtype, 4007 tsti->tsti_options, sc->sc_tlp_minst), 0, tm); 4008 } 4009 } 4010 4011 static void 4012 tlp_print_media(struct tulip_softc *sc) 4013 { 4014 struct ifmedia_entry *ife; 4015 struct tulip_21x4x_media *tm; 4016 const char *sep = ""; 4017 4018 #define PRINT(str) aprint_normal("%s%s", sep, str); sep = ", " 4019 4020 aprint_normal_dev(sc->sc_dev, ""); 4021 TAILQ_FOREACH(ife, &sc->sc_mii.mii_media.ifm_list, ifm_list) { 4022 tm = ife->ifm_aux; 4023 if (tm == NULL) { 4024 #ifdef DIAGNOSTIC 4025 if (IFM_SUBTYPE(ife->ifm_media) != IFM_AUTO) 4026 panic("tlp_print_media"); 4027 #endif 4028 PRINT("auto"); 4029 } else if (tm->tm_type != TULIP_ROM_MB_21140_MII && 4030 tm->tm_type != TULIP_ROM_MB_21142_MII) { 4031 PRINT(tm->tm_name); 4032 } 4033 } 4034 aprint_normal("\n"); 4035 4036 #undef PRINT 4037 } 4038 4039 static void 4040 tlp_nway_activate(struct tulip_softc *sc, int media) 4041 { 4042 struct ifmedia_entry *ife; 4043 4044 ife = ifmedia_match(&sc->sc_mii.mii_media, media, 0); 4045 #ifdef DIAGNOSTIC 4046 if (ife == NULL) 4047 panic("tlp_nway_activate"); 4048 #endif 4049 sc->sc_nway_active = ife; 4050 } 4051 4052 static void 4053 tlp_get_minst(struct tulip_softc *sc) 4054 { 4055 4056 if ((sc->sc_media_seen & 4057 ~((1 << TULIP_ROM_MB_21140_MII) | 4058 (1 << TULIP_ROM_MB_21142_MII))) == 0) { 4059 /* 4060 * We have not yet seen any SIA/SYM media (but are 4061 * about to; that's why we're called!), so assign 4062 * the current media instance to be the `internal media' 4063 * instance, and advance it so any MII media gets a 4064 * fresh one (used to selecting/isolating a PHY). 4065 */ 4066 sc->sc_tlp_minst = sc->sc_mii.mii_instance++; 4067 } 4068 } 4069 4070 /* 4071 * SIA Utility functions. 4072 */ 4073 static void tlp_sia_update_link(struct tulip_softc *); 4074 static void tlp_sia_get(struct tulip_softc *, struct ifmediareq *); 4075 static int tlp_sia_set(struct tulip_softc *); 4076 static int tlp_sia_media(struct tulip_softc *, struct ifmedia_entry *); 4077 static void tlp_sia_fixup(struct tulip_softc *); 4078 4079 static void 4080 tlp_sia_update_link(struct tulip_softc *sc) 4081 { 4082 struct ifmedia_entry *ife; 4083 struct tulip_21x4x_media *tm; 4084 uint32_t siastat; 4085 4086 ife = TULIP_CURRENT_MEDIA(sc); 4087 tm = ife->ifm_aux; 4088 4089 sc->sc_flags &= ~(TULIPF_LINK_UP | TULIPF_LINK_VALID); 4090 4091 siastat = TULIP_READ(sc, CSR_SIASTAT); 4092 4093 /* 4094 * Note that when we do SIA link tests, we are assuming that 4095 * the chip is really in the mode that the current media setting 4096 * reflects. If we're not, then the link tests will not be 4097 * accurate! 4098 */ 4099 switch (IFM_SUBTYPE(ife->ifm_media)) { 4100 case IFM_10_T: 4101 sc->sc_flags |= TULIPF_LINK_VALID; 4102 if ((siastat & SIASTAT_LS10) == 0) 4103 sc->sc_flags |= TULIPF_LINK_UP; 4104 break; 4105 4106 case IFM_100_TX: 4107 case IFM_100_T4: 4108 sc->sc_flags |= TULIPF_LINK_VALID; 4109 if ((siastat & SIASTAT_LS100) == 0) 4110 sc->sc_flags |= TULIPF_LINK_UP; 4111 break; 4112 } 4113 4114 switch (sc->sc_chip) { 4115 case TULIP_CHIP_21142: 4116 case TULIP_CHIP_21143: 4117 /* 4118 * On these chips, we can tell more information about 4119 * AUI/BNC. Note that the AUI/BNC selection is made 4120 * in a different register; for our purpose, it's all 4121 * AUI. 4122 */ 4123 switch (IFM_SUBTYPE(ife->ifm_media)) { 4124 case IFM_10_2: 4125 case IFM_10_5: 4126 sc->sc_flags |= TULIPF_LINK_VALID; 4127 if (siastat & SIASTAT_ARA) { 4128 TULIP_WRITE(sc, CSR_SIASTAT, SIASTAT_ARA); 4129 sc->sc_flags |= TULIPF_LINK_UP; 4130 } 4131 break; 4132 4133 default: 4134 /* 4135 * If we're SYM media and can detect the link 4136 * via the GPIO facility, prefer that status 4137 * over LS100. 4138 */ 4139 if (tm->tm_type == TULIP_ROM_MB_21143_SYM && 4140 tm->tm_actmask != 0) { 4141 sc->sc_flags = (sc->sc_flags & 4142 ~TULIPF_LINK_UP) | TULIPF_LINK_VALID; 4143 if (TULIP_ISSET(sc, CSR_SIAGEN, 4144 tm->tm_actmask) == tm->tm_actdata) 4145 sc->sc_flags |= TULIPF_LINK_UP; 4146 } 4147 } 4148 break; 4149 4150 default: 4151 /* Nothing. */ 4152 break; 4153 } 4154 } 4155 4156 static void 4157 tlp_sia_get(struct tulip_softc *sc, struct ifmediareq *ifmr) 4158 { 4159 struct ifmedia_entry *ife; 4160 4161 ifmr->ifm_status = 0; 4162 4163 tlp_sia_update_link(sc); 4164 4165 ife = TULIP_CURRENT_MEDIA(sc); 4166 4167 if (sc->sc_flags & TULIPF_LINK_VALID) 4168 ifmr->ifm_status |= IFM_AVALID; 4169 if (sc->sc_flags & TULIPF_LINK_UP) 4170 ifmr->ifm_status |= IFM_ACTIVE; 4171 ifmr->ifm_active = ife->ifm_media; 4172 } 4173 4174 static void 4175 tlp_sia_fixup(struct tulip_softc *sc) 4176 { 4177 struct ifmedia_entry *ife; 4178 struct tulip_21x4x_media *tm; 4179 uint32_t siaconn, siatxrx, siagen; 4180 4181 switch (sc->sc_chip) { 4182 case TULIP_CHIP_82C115: 4183 case TULIP_CHIP_MX98713A: 4184 case TULIP_CHIP_MX98715: 4185 case TULIP_CHIP_MX98715A: 4186 case TULIP_CHIP_MX98715AEC_X: 4187 case TULIP_CHIP_MX98725: 4188 siaconn = PMAC_SIACONN_MASK; 4189 siatxrx = PMAC_SIATXRX_MASK; 4190 siagen = PMAC_SIAGEN_MASK; 4191 break; 4192 4193 default: 4194 /* No fixups required on any other chips. */ 4195 return; 4196 } 4197 4198 TAILQ_FOREACH(ife, &sc->sc_mii.mii_media.ifm_list, ifm_list) { 4199 tm = ife->ifm_aux; 4200 if (tm == NULL) 4201 continue; 4202 4203 tm->tm_siaconn &= siaconn; 4204 tm->tm_siatxrx &= siatxrx; 4205 tm->tm_siagen &= siagen; 4206 } 4207 } 4208 4209 static int 4210 tlp_sia_set(struct tulip_softc *sc) 4211 { 4212 4213 return tlp_sia_media(sc, TULIP_CURRENT_MEDIA(sc)); 4214 } 4215 4216 static int 4217 tlp_sia_media(struct tulip_softc *sc, struct ifmedia_entry *ife) 4218 { 4219 struct tulip_21x4x_media *tm; 4220 4221 tm = ife->ifm_aux; 4222 4223 /* 4224 * XXX This appears to be necessary on a bunch of the clone chips. 4225 */ 4226 delay(20000); 4227 4228 /* 4229 * Idle the chip. 4230 */ 4231 tlp_idle(sc, OPMODE_ST | OPMODE_SR); 4232 4233 /* 4234 * Program the SIA. It's important to write in this order, 4235 * resetting the SIA first. 4236 */ 4237 TULIP_WRITE(sc, CSR_SIACONN, 0); /* SRL bit clear */ 4238 delay(1000); 4239 4240 TULIP_WRITE(sc, CSR_SIATXRX, tm->tm_siatxrx); 4241 4242 switch (sc->sc_chip) { 4243 case TULIP_CHIP_21142: 4244 case TULIP_CHIP_21143: 4245 TULIP_WRITE(sc, CSR_SIAGEN, tm->tm_siagen | tm->tm_gpctl); 4246 TULIP_WRITE(sc, CSR_SIAGEN, tm->tm_siagen | tm->tm_gpdata); 4247 break; 4248 default: 4249 TULIP_WRITE(sc, CSR_SIAGEN, tm->tm_siagen); 4250 } 4251 4252 TULIP_WRITE(sc, CSR_SIACONN, tm->tm_siaconn); 4253 4254 /* 4255 * Set the OPMODE bits for this media and write OPMODE. 4256 * This will resume the transmit and receive processes. 4257 */ 4258 sc->sc_opmode = (sc->sc_opmode & ~OPMODE_MEDIA_BITS) | tm->tm_opmode; 4259 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode); 4260 4261 return 0; 4262 } 4263 4264 /* 4265 * 21140 GPIO utility functions. 4266 */ 4267 static void tlp_21140_gpio_update_link(struct tulip_softc *); 4268 4269 static void 4270 tlp_21140_gpio_update_link(struct tulip_softc *sc) 4271 { 4272 struct ifmedia_entry *ife; 4273 struct tulip_21x4x_media *tm; 4274 4275 ife = TULIP_CURRENT_MEDIA(sc); 4276 tm = ife->ifm_aux; 4277 4278 sc->sc_flags &= ~(TULIPF_LINK_UP | TULIPF_LINK_VALID); 4279 4280 if (tm->tm_actmask != 0) { 4281 sc->sc_flags |= TULIPF_LINK_VALID; 4282 if (TULIP_ISSET(sc, CSR_GPP, tm->tm_actmask) == 4283 tm->tm_actdata) 4284 sc->sc_flags |= TULIPF_LINK_UP; 4285 } 4286 } 4287 4288 void 4289 tlp_21140_gpio_get(struct tulip_softc *sc, struct ifmediareq *ifmr) 4290 { 4291 struct ifmedia_entry *ife; 4292 4293 ifmr->ifm_status = 0; 4294 4295 tlp_21140_gpio_update_link(sc); 4296 4297 ife = TULIP_CURRENT_MEDIA(sc); 4298 4299 if (sc->sc_flags & TULIPF_LINK_VALID) 4300 ifmr->ifm_status |= IFM_AVALID; 4301 if (sc->sc_flags & TULIPF_LINK_UP) 4302 ifmr->ifm_status |= IFM_ACTIVE; 4303 ifmr->ifm_active = ife->ifm_media; 4304 } 4305 4306 int 4307 tlp_21140_gpio_set(struct tulip_softc *sc) 4308 { 4309 struct ifmedia_entry *ife; 4310 struct tulip_21x4x_media *tm; 4311 4312 ife = TULIP_CURRENT_MEDIA(sc); 4313 tm = ife->ifm_aux; 4314 4315 /* 4316 * Idle the chip. 4317 */ 4318 tlp_idle(sc, OPMODE_ST | OPMODE_SR); 4319 4320 /* 4321 * Set the GPIO pins for this media, to flip any 4322 * relays, etc. 4323 */ 4324 TULIP_WRITE(sc, CSR_GPP, GPP_GPC | sc->sc_gp_dir); 4325 delay(10); 4326 TULIP_WRITE(sc, CSR_GPP, tm->tm_gpdata); 4327 4328 /* 4329 * Set the OPMODE bits for this media and write OPMODE. 4330 * This will resume the transmit and receive processes. 4331 */ 4332 sc->sc_opmode = (sc->sc_opmode & ~OPMODE_MEDIA_BITS) | tm->tm_opmode; 4333 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode); 4334 4335 return 0; 4336 } 4337 4338 /* 4339 * 21040 and 21041 media switches. 4340 */ 4341 static void tlp_21040_tmsw_init(struct tulip_softc *); 4342 static void tlp_21040_tp_tmsw_init(struct tulip_softc *); 4343 static void tlp_21040_auibnc_tmsw_init(struct tulip_softc *); 4344 static void tlp_21041_tmsw_init(struct tulip_softc *); 4345 4346 const struct tulip_mediasw tlp_21040_mediasw = { 4347 tlp_21040_tmsw_init, tlp_sia_get, tlp_sia_set 4348 }; 4349 4350 const struct tulip_mediasw tlp_21040_tp_mediasw = { 4351 tlp_21040_tp_tmsw_init, tlp_sia_get, tlp_sia_set 4352 }; 4353 4354 const struct tulip_mediasw tlp_21040_auibnc_mediasw = { 4355 tlp_21040_auibnc_tmsw_init, tlp_sia_get, tlp_sia_set 4356 }; 4357 4358 const struct tulip_mediasw tlp_21041_mediasw = { 4359 tlp_21041_tmsw_init, tlp_sia_get, tlp_sia_set 4360 }; 4361 4362 static void 4363 tlp_21040_tmsw_init(struct tulip_softc *sc) 4364 { 4365 struct mii_data * const mii = &sc->sc_mii; 4366 static const uint8_t media[] = { 4367 TULIP_ROM_MB_MEDIA_TP, 4368 TULIP_ROM_MB_MEDIA_TP_FDX, 4369 TULIP_ROM_MB_MEDIA_AUI, 4370 }; 4371 struct tulip_21x4x_media *tm; 4372 4373 sc->sc_ethercom.ec_mii = mii; 4374 ifmedia_init(&mii->mii_media, 0, tlp_mediachange, tlp_mediastatus); 4375 4376 tlp_add_srom_media(sc, 0, NULL, NULL, media, 3); 4377 4378 /* 4379 * No SROM type for External SIA. 4380 */ 4381 tm = malloc(sizeof(*tm), M_DEVBUF, M_WAITOK | M_ZERO); 4382 tm->tm_name = "manual"; 4383 tm->tm_opmode = 0; 4384 tm->tm_siaconn = SIACONN_21040_EXTSIA; 4385 tm->tm_siatxrx = SIATXRX_21040_EXTSIA; 4386 tm->tm_siagen = SIAGEN_21040_EXTSIA; 4387 ifmedia_add(&mii->mii_media, 4388 IFM_MAKEWORD(IFM_ETHER, IFM_MANUAL, 0, sc->sc_tlp_minst), 0, tm); 4389 4390 /* 4391 * XXX Autosense not yet supported. 4392 */ 4393 4394 /* XXX This should be auto-sense. */ 4395 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_10_T); 4396 4397 tlp_print_media(sc); 4398 } 4399 4400 static void 4401 tlp_21040_tp_tmsw_init(struct tulip_softc *sc) 4402 { 4403 struct mii_data * const mii = &sc->sc_mii; 4404 static const uint8_t media[] = { 4405 TULIP_ROM_MB_MEDIA_TP, 4406 TULIP_ROM_MB_MEDIA_TP_FDX, 4407 }; 4408 4409 sc->sc_ethercom.ec_mii = mii; 4410 ifmedia_init(&mii->mii_media, 0, tlp_mediachange, tlp_mediastatus); 4411 4412 tlp_add_srom_media(sc, 0, NULL, NULL, media, 2); 4413 4414 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_10_T); 4415 4416 tlp_print_media(sc); 4417 } 4418 4419 static void 4420 tlp_21040_auibnc_tmsw_init(struct tulip_softc *sc) 4421 { 4422 struct mii_data * const mii = &sc->sc_mii; 4423 static const uint8_t media[] = { 4424 TULIP_ROM_MB_MEDIA_AUI, 4425 }; 4426 4427 sc->sc_ethercom.ec_mii = mii; 4428 ifmedia_init(&mii->mii_media, 0, tlp_mediachange, tlp_mediastatus); 4429 4430 tlp_add_srom_media(sc, 0, NULL, NULL, media, 1); 4431 4432 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_10_5); 4433 4434 tlp_print_media(sc); 4435 } 4436 4437 static void 4438 tlp_21041_tmsw_init(struct tulip_softc *sc) 4439 { 4440 struct mii_data * const mii = &sc->sc_mii; 4441 static const uint8_t media[] = { 4442 TULIP_ROM_MB_MEDIA_TP, 4443 TULIP_ROM_MB_MEDIA_TP_FDX, 4444 TULIP_ROM_MB_MEDIA_BNC, 4445 TULIP_ROM_MB_MEDIA_AUI, 4446 }; 4447 int i, defmedia, devcnt, leaf_offset, mb_offset, m_cnt; 4448 const struct tulip_srom_to_ifmedia *tsti; 4449 struct tulip_21x4x_media *tm; 4450 uint16_t romdef; 4451 uint8_t mb; 4452 4453 sc->sc_ethercom.ec_mii = mii; 4454 ifmedia_init(&mii->mii_media, 0, tlp_mediachange, tlp_mediastatus); 4455 4456 if (tlp_isv_srom(sc->sc_srom) == 0) { 4457 not_isv_srom: 4458 /* 4459 * If we have a board without the standard 21041 SROM format, 4460 * we just assume all media are present and try and pick a 4461 * reasonable default. 4462 */ 4463 tlp_add_srom_media(sc, 0, NULL, NULL, media, 4); 4464 4465 /* 4466 * XXX Autosense not yet supported. 4467 */ 4468 4469 /* XXX This should be auto-sense. */ 4470 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_10_T); 4471 4472 tlp_print_media(sc); 4473 return; 4474 } 4475 4476 devcnt = sc->sc_srom[TULIP_ROM_CHIP_COUNT]; 4477 for (i = 0; i < devcnt; i++) { 4478 if (sc->sc_srom[TULIP_ROM_CHIP_COUNT] == 1) 4479 break; 4480 if (sc->sc_srom[TULIP_ROM_CHIPn_DEVICE_NUMBER(i)] == 4481 sc->sc_devno) 4482 break; 4483 } 4484 4485 if (i == devcnt) 4486 goto not_isv_srom; 4487 4488 leaf_offset = TULIP_ROM_GETW(sc->sc_srom, 4489 TULIP_ROM_CHIPn_INFO_LEAF_OFFSET(i)); 4490 mb_offset = leaf_offset + TULIP_ROM_IL_MEDIAn_BLOCK_BASE; 4491 m_cnt = sc->sc_srom[leaf_offset + TULIP_ROM_IL_MEDIA_COUNT]; 4492 4493 for (; m_cnt != 0; 4494 m_cnt--, mb_offset += TULIP_ROM_MB_SIZE(mb)) { 4495 mb = sc->sc_srom[mb_offset]; 4496 tm = malloc(sizeof(*tm), M_DEVBUF, M_WAITOK | M_ZERO); 4497 switch (mb & TULIP_ROM_MB_MEDIA_CODE) { 4498 case TULIP_ROM_MB_MEDIA_TP_FDX: 4499 case TULIP_ROM_MB_MEDIA_TP: 4500 case TULIP_ROM_MB_MEDIA_BNC: 4501 case TULIP_ROM_MB_MEDIA_AUI: 4502 tsti = tlp_srom_to_ifmedia(mb & 4503 TULIP_ROM_MB_MEDIA_CODE); 4504 4505 tlp_srom_media_info(sc, tsti, tm); 4506 4507 /* 4508 * Override our default SIA settings if the 4509 * SROM contains its own. 4510 */ 4511 if (mb & TULIP_ROM_MB_EXT) { 4512 tm->tm_siaconn = TULIP_ROM_GETW(sc->sc_srom, 4513 mb_offset + TULIP_ROM_MB_CSR13); 4514 tm->tm_siatxrx = TULIP_ROM_GETW(sc->sc_srom, 4515 mb_offset + TULIP_ROM_MB_CSR14); 4516 tm->tm_siagen = TULIP_ROM_GETW(sc->sc_srom, 4517 mb_offset + TULIP_ROM_MB_CSR15); 4518 } 4519 4520 ifmedia_add(&mii->mii_media, 4521 IFM_MAKEWORD(IFM_ETHER, tsti->tsti_subtype, 4522 tsti->tsti_options, sc->sc_tlp_minst), 0, tm); 4523 break; 4524 4525 default: 4526 aprint_error_dev(sc->sc_dev, 4527 "unknown media code 0x%02x\n", 4528 mb & TULIP_ROM_MB_MEDIA_CODE); 4529 free(tm, M_DEVBUF); 4530 } 4531 } 4532 4533 /* 4534 * XXX Autosense not yet supported. 4535 */ 4536 4537 romdef = TULIP_ROM_GETW(sc->sc_srom, leaf_offset + 4538 TULIP_ROM_IL_SELECT_CONN_TYPE); 4539 switch (romdef) { 4540 case SELECT_CONN_TYPE_TP: 4541 case SELECT_CONN_TYPE_TP_AUTONEG: 4542 case SELECT_CONN_TYPE_TP_NOLINKPASS: 4543 defmedia = IFM_ETHER | IFM_10_T; 4544 break; 4545 4546 case SELECT_CONN_TYPE_TP_FDX: 4547 defmedia = IFM_ETHER | IFM_10_T | IFM_FDX; 4548 break; 4549 4550 case SELECT_CONN_TYPE_BNC: 4551 defmedia = IFM_ETHER | IFM_10_2; 4552 break; 4553 4554 case SELECT_CONN_TYPE_AUI: 4555 defmedia = IFM_ETHER | IFM_10_5; 4556 break; 4557 #if 0 /* XXX */ 4558 case SELECT_CONN_TYPE_ASENSE: 4559 case SELECT_CONN_TYPE_ASENSE_AUTONEG: 4560 defmedia = IFM_ETHER | IFM_AUTO; 4561 break; 4562 #endif 4563 default: 4564 defmedia = 0; 4565 } 4566 4567 if (defmedia == 0) { 4568 /* 4569 * XXX We should default to auto-sense. 4570 */ 4571 defmedia = IFM_ETHER | IFM_10_T; 4572 } 4573 4574 ifmedia_set(&mii->mii_media, defmedia); 4575 4576 tlp_print_media(sc); 4577 } 4578 4579 /* 4580 * DECchip 2114x ISV media switch. 4581 */ 4582 static void tlp_2114x_isv_tmsw_init(struct tulip_softc *); 4583 static void tlp_2114x_isv_tmsw_get(struct tulip_softc *, 4584 struct ifmediareq *); 4585 static int tlp_2114x_isv_tmsw_set(struct tulip_softc *); 4586 4587 const struct tulip_mediasw tlp_2114x_isv_mediasw = { 4588 tlp_2114x_isv_tmsw_init, tlp_2114x_isv_tmsw_get, tlp_2114x_isv_tmsw_set 4589 }; 4590 4591 static void tlp_2114x_nway_get(struct tulip_softc *, struct ifmediareq *); 4592 static int tlp_2114x_nway_set(struct tulip_softc *); 4593 4594 static void tlp_2114x_nway_statchg(struct ifnet *); 4595 static int tlp_2114x_nway_service(struct tulip_softc *, int); 4596 static void tlp_2114x_nway_auto(struct tulip_softc *); 4597 static void tlp_2114x_nway_status(struct tulip_softc *); 4598 4599 static void 4600 tlp_2114x_isv_tmsw_init(struct tulip_softc *sc) 4601 { 4602 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 4603 struct mii_data * const mii = &sc->sc_mii; 4604 struct ifmedia_entry *ife; 4605 struct mii_softc *phy; 4606 struct tulip_21x4x_media *tm; 4607 const struct tulip_srom_to_ifmedia *tsti; 4608 int i, devcnt, leaf_offset, m_cnt, type, length; 4609 int defmedia, miidef; 4610 uint16_t word; 4611 uint8_t *cp, *ncp; 4612 4613 defmedia = miidef = 0; 4614 4615 mii->mii_ifp = ifp; 4616 mii->mii_readreg = tlp_bitbang_mii_readreg; 4617 mii->mii_writereg = tlp_bitbang_mii_writereg; 4618 mii->mii_statchg = sc->sc_statchg; 4619 sc->sc_ethercom.ec_mii = mii; 4620 4621 /* 4622 * Ignore `instance'; we may get a mixture of SIA and MII 4623 * media, and `instance' is used to isolate or select the 4624 * PHY on the MII as appropriate. Note that duplicate media 4625 * are disallowed, so ignoring `instance' is safe. 4626 */ 4627 ifmedia_init(&mii->mii_media, IFM_IMASK, tlp_mediachange, 4628 tlp_mediastatus); 4629 4630 devcnt = sc->sc_srom[TULIP_ROM_CHIP_COUNT]; 4631 for (i = 0; i < devcnt; i++) { 4632 if (sc->sc_srom[TULIP_ROM_CHIP_COUNT] == 1) 4633 break; 4634 if (sc->sc_srom[TULIP_ROM_CHIPn_DEVICE_NUMBER(i)] == 4635 sc->sc_devno) 4636 break; 4637 } 4638 4639 if (i == devcnt) { 4640 aprint_error_dev(sc->sc_dev, 4641 "unable to locate info leaf in SROM\n"); 4642 return; 4643 } 4644 4645 leaf_offset = TULIP_ROM_GETW(sc->sc_srom, 4646 TULIP_ROM_CHIPn_INFO_LEAF_OFFSET(i)); 4647 4648 /* XXX SELECT CONN TYPE */ 4649 4650 cp = &sc->sc_srom[leaf_offset + TULIP_ROM_IL_MEDIA_COUNT]; 4651 4652 /* 4653 * On some chips, the first thing in the Info Leaf is the 4654 * GPIO pin direction data. 4655 */ 4656 switch (sc->sc_chip) { 4657 case TULIP_CHIP_21140: 4658 case TULIP_CHIP_21140A: 4659 case TULIP_CHIP_MX98713: 4660 case TULIP_CHIP_AX88140: 4661 case TULIP_CHIP_AX88141: 4662 sc->sc_gp_dir = *cp++; 4663 break; 4664 4665 default: 4666 /* Nothing. */ 4667 break; 4668 } 4669 4670 /* Get the media count. */ 4671 m_cnt = *cp++; 4672 4673 if (m_cnt == 0) { 4674 sc->sc_mediasw = &tlp_sio_mii_mediasw; 4675 (*sc->sc_mediasw->tmsw_init)(sc); 4676 return; 4677 } 4678 4679 for (; m_cnt != 0; cp = ncp, m_cnt--) { 4680 /* 4681 * Determine the type and length of this media block. 4682 * The 21143 is spec'd to always use extended format blocks, 4683 * but some cards don't set the bit to indicate this. 4684 * Hopefully there are no cards which really don't use 4685 * extended format blocks. 4686 */ 4687 if ((*cp & 0x80) == 0 && sc->sc_chip != TULIP_CHIP_21143) { 4688 length = 4; 4689 type = TULIP_ROM_MB_21140_GPR; 4690 } else { 4691 length = (*cp++ & 0x7f) - 1; 4692 type = *cp++ & 0x3f; 4693 } 4694 4695 /* Compute the start of the next block. */ 4696 ncp = cp + length; 4697 4698 /* Now, parse the block. */ 4699 switch (type) { 4700 case TULIP_ROM_MB_21140_GPR: 4701 tlp_get_minst(sc); 4702 sc->sc_media_seen |= 1 << TULIP_ROM_MB_21140_GPR; 4703 4704 tm = malloc(sizeof(*tm), M_DEVBUF, M_WAITOK | M_ZERO); 4705 4706 tm->tm_type = TULIP_ROM_MB_21140_GPR; 4707 tm->tm_get = tlp_21140_gpio_get; 4708 tm->tm_set = tlp_21140_gpio_set; 4709 4710 /* First is the media type code. */ 4711 tsti = tlp_srom_to_ifmedia(cp[0] & 4712 TULIP_ROM_MB_MEDIA_CODE); 4713 if (tsti == NULL) { 4714 /* Invalid media code. */ 4715 free(tm, M_DEVBUF); 4716 break; 4717 } 4718 4719 /* Get defaults. */ 4720 tlp_srom_media_info(sc, tsti, tm); 4721 4722 /* Next is any GPIO info for this media. */ 4723 tm->tm_gpdata = cp[1]; 4724 4725 /* 4726 * Next is a word containing OPMODE information 4727 * and info on how to detect if this media is 4728 * active. 4729 */ 4730 word = TULIP_ROM_GETW(cp, 2); 4731 tm->tm_opmode &= OPMODE_FD; 4732 tm->tm_opmode |= TULIP_ROM_MB_OPMODE(word); 4733 if ((word & TULIP_ROM_MB_NOINDICATOR) == 0) { 4734 tm->tm_actmask = 4735 TULIP_ROM_MB_BITPOS(word); 4736 tm->tm_actdata = 4737 (word & TULIP_ROM_MB_POLARITY) ? 4738 0 : tm->tm_actmask; 4739 } 4740 4741 ifmedia_add(&mii->mii_media, 4742 IFM_MAKEWORD(IFM_ETHER, tsti->tsti_subtype, 4743 tsti->tsti_options, sc->sc_tlp_minst), 0, tm); 4744 break; 4745 4746 case TULIP_ROM_MB_21140_MII: 4747 sc->sc_media_seen |= 1 << TULIP_ROM_MB_21140_MII; 4748 4749 tm = malloc(sizeof(*tm), M_DEVBUF, M_WAITOK | M_ZERO); 4750 4751 tm->tm_type = TULIP_ROM_MB_21140_MII; 4752 tm->tm_get = tlp_mii_getmedia; 4753 tm->tm_set = tlp_mii_setmedia; 4754 tm->tm_opmode = OPMODE_PS; 4755 4756 if (sc->sc_reset == NULL) 4757 sc->sc_reset = tlp_21140_reset; 4758 4759 /* First is the PHY number. */ 4760 tm->tm_phyno = *cp++; 4761 4762 /* Next is the MII select sequence length and offset. */ 4763 tm->tm_gp_length = *cp++; 4764 tm->tm_gp_offset = cp - &sc->sc_srom[0]; 4765 cp += tm->tm_gp_length; 4766 4767 /* Next is the MII reset sequence length and offset. */ 4768 tm->tm_reset_length = *cp++; 4769 tm->tm_reset_offset = cp - &sc->sc_srom[0]; 4770 cp += tm->tm_reset_length; 4771 4772 /* 4773 * The following items are left in the media block 4774 * that we don't particularly care about: 4775 * 4776 * capabilities W 4777 * advertisement W 4778 * full duplex W 4779 * tx threshold W 4780 * 4781 * These appear to be bits in the PHY registers, 4782 * which our MII code handles on its own. 4783 */ 4784 4785 /* 4786 * Before we probe the MII bus, we need to reset 4787 * it and issue the selection sequence. 4788 */ 4789 4790 /* Set the direction of the pins... */ 4791 TULIP_WRITE(sc, CSR_GPP, GPP_GPC | sc->sc_gp_dir); 4792 4793 for (i = 0; i < tm->tm_reset_length; i++) { 4794 delay(10); 4795 TULIP_WRITE(sc, CSR_GPP, 4796 sc->sc_srom[tm->tm_reset_offset + i]); 4797 } 4798 4799 for (i = 0; i < tm->tm_gp_length; i++) { 4800 delay(10); 4801 TULIP_WRITE(sc, CSR_GPP, 4802 sc->sc_srom[tm->tm_gp_offset + i]); 4803 } 4804 4805 /* If there were no sequences, just lower the pins. */ 4806 if (tm->tm_reset_length == 0 && tm->tm_gp_length == 0) { 4807 delay(10); 4808 TULIP_WRITE(sc, CSR_GPP, 0); 4809 } 4810 4811 /* 4812 * Now, probe the MII for the PHY. Note, we know 4813 * the location of the PHY on the bus, but we don't 4814 * particularly care; the MII code just likes to 4815 * search the whole thing anyhow. 4816 */ 4817 mii_attach(sc->sc_dev, mii, 0xffffffff, 4818 MII_PHY_ANY, tm->tm_phyno, 0); 4819 4820 /* 4821 * Now, search for the PHY we hopefully just 4822 * configured. If it's not configured into the 4823 * kernel, we lose. The PHY's default media always 4824 * takes priority. 4825 */ 4826 LIST_FOREACH(phy, &mii->mii_phys, mii_list) { 4827 if (phy->mii_offset == tm->tm_phyno) 4828 break; 4829 } 4830 if (phy == NULL) { 4831 aprint_error_dev(sc->sc_dev, 4832 "unable to configure MII\n"); 4833 break; 4834 } 4835 4836 sc->sc_flags |= TULIPF_HAS_MII; 4837 sc->sc_tick = tlp_mii_tick; 4838 miidef = IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0, 4839 phy->mii_inst); 4840 4841 /* 4842 * Okay, now that we've found the PHY and the MII 4843 * layer has added all of the media associated 4844 * with that PHY, we need to traverse the media 4845 * list, and add our `tm' to each entry's `aux' 4846 * pointer. 4847 * 4848 * We do this by looking for media with our 4849 * PHY's `instance'. 4850 */ 4851 TAILQ_FOREACH(ife, &mii->mii_media.ifm_list, 4852 ifm_list) { 4853 if (IFM_INST(ife->ifm_media) != phy->mii_inst) 4854 continue; 4855 ife->ifm_aux = tm; 4856 } 4857 break; 4858 4859 case TULIP_ROM_MB_21142_SIA: 4860 tlp_get_minst(sc); 4861 sc->sc_media_seen |= 1 << TULIP_ROM_MB_21142_SIA; 4862 4863 tm = malloc(sizeof(*tm), M_DEVBUF, M_WAITOK | M_ZERO); 4864 4865 tm->tm_type = TULIP_ROM_MB_21142_SIA; 4866 tm->tm_get = tlp_sia_get; 4867 tm->tm_set = tlp_sia_set; 4868 4869 /* First is the media type code. */ 4870 tsti = tlp_srom_to_ifmedia(cp[0] & 4871 TULIP_ROM_MB_MEDIA_CODE); 4872 if (tsti == NULL) { 4873 /* Invalid media code. */ 4874 free(tm, M_DEVBUF); 4875 break; 4876 } 4877 4878 /* Get defaults. */ 4879 tlp_srom_media_info(sc, tsti, tm); 4880 4881 /* 4882 * Override our default SIA settings if the 4883 * SROM contains its own. 4884 */ 4885 if (cp[0] & 0x40) { 4886 tm->tm_siaconn = TULIP_ROM_GETW(cp, 1); 4887 tm->tm_siatxrx = TULIP_ROM_GETW(cp, 3); 4888 tm->tm_siagen = TULIP_ROM_GETW(cp, 5); 4889 cp += 7; 4890 } else 4891 cp++; 4892 4893 /* Next is GPIO control/data. */ 4894 tm->tm_gpctl = TULIP_ROM_GETW(cp, 0) << 16; 4895 tm->tm_gpdata = TULIP_ROM_GETW(cp, 2) << 16; 4896 4897 ifmedia_add(&mii->mii_media, 4898 IFM_MAKEWORD(IFM_ETHER, tsti->tsti_subtype, 4899 tsti->tsti_options, sc->sc_tlp_minst), 0, tm); 4900 break; 4901 4902 case TULIP_ROM_MB_21142_MII: 4903 sc->sc_media_seen |= 1 << TULIP_ROM_MB_21142_MII; 4904 4905 tm = malloc(sizeof(*tm), M_DEVBUF, M_WAITOK | M_ZERO); 4906 4907 tm->tm_type = TULIP_ROM_MB_21142_MII; 4908 tm->tm_get = tlp_mii_getmedia; 4909 tm->tm_set = tlp_mii_setmedia; 4910 tm->tm_opmode = OPMODE_PS; 4911 4912 if (sc->sc_reset == NULL) 4913 sc->sc_reset = tlp_21142_reset; 4914 4915 /* First is the PHY number. */ 4916 tm->tm_phyno = *cp++; 4917 4918 /* Next is the MII select sequence length and offset. */ 4919 tm->tm_gp_length = *cp++; 4920 tm->tm_gp_offset = cp - &sc->sc_srom[0]; 4921 cp += tm->tm_gp_length * 2; 4922 4923 /* Next is the MII reset sequence length and offset. */ 4924 tm->tm_reset_length = *cp++; 4925 tm->tm_reset_offset = cp - &sc->sc_srom[0]; 4926 cp += tm->tm_reset_length * 2; 4927 4928 /* 4929 * The following items are left in the media block 4930 * that we don't particularly care about: 4931 * 4932 * capabilities W 4933 * advertisement W 4934 * full duplex W 4935 * tx threshold W 4936 * MII interrupt W 4937 * 4938 * These appear to be bits in the PHY registers, 4939 * which our MII code handles on its own. 4940 */ 4941 4942 /* 4943 * Before we probe the MII bus, we need to reset 4944 * it and issue the selection sequence. 4945 */ 4946 4947 cp = &sc->sc_srom[tm->tm_reset_offset]; 4948 for (i = 0; i < tm->tm_reset_length; i++, cp += 2) { 4949 delay(10); 4950 TULIP_WRITE(sc, CSR_SIAGEN, 4951 TULIP_ROM_GETW(cp, 0) << 16); 4952 } 4953 4954 cp = &sc->sc_srom[tm->tm_gp_offset]; 4955 for (i = 0; i < tm->tm_gp_length; i++, cp += 2) { 4956 delay(10); 4957 TULIP_WRITE(sc, CSR_SIAGEN, 4958 TULIP_ROM_GETW(cp, 0) << 16); 4959 } 4960 4961 /* If there were no sequences, just lower the pins. */ 4962 if (tm->tm_reset_length == 0 && tm->tm_gp_length == 0) { 4963 delay(10); 4964 TULIP_WRITE(sc, CSR_SIAGEN, 0); 4965 } 4966 4967 /* 4968 * Now, probe the MII for the PHY. Note, we know 4969 * the location of the PHY on the bus, but we don't 4970 * particularly care; the MII code just likes to 4971 * search the whole thing anyhow. 4972 */ 4973 mii_attach(sc->sc_dev, mii, 0xffffffff, 4974 MII_PHY_ANY, tm->tm_phyno, 0); 4975 4976 /* 4977 * Now, search for the PHY we hopefully just 4978 * configured. If it's not configured into the 4979 * kernel, we lose. The PHY's default media always 4980 * takes priority. 4981 */ 4982 LIST_FOREACH(phy, &mii->mii_phys, mii_list) { 4983 if (phy->mii_offset == tm->tm_phyno) 4984 break; 4985 } 4986 if (phy == NULL) { 4987 aprint_error_dev(sc->sc_dev, 4988 "unable to configure MII\n"); 4989 break; 4990 } 4991 4992 sc->sc_flags |= TULIPF_HAS_MII; 4993 sc->sc_tick = tlp_mii_tick; 4994 miidef = IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0, 4995 phy->mii_inst); 4996 4997 /* 4998 * Okay, now that we've found the PHY and the MII 4999 * layer has added all of the media associated 5000 * with that PHY, we need to traverse the media 5001 * list, and add our `tm' to each entry's `aux' 5002 * pointer. 5003 * 5004 * We do this by looking for media with our 5005 * PHY's `instance'. 5006 */ 5007 TAILQ_FOREACH(ife, &mii->mii_media.ifm_list, 5008 ifm_list) { 5009 if (IFM_INST(ife->ifm_media) != phy->mii_inst) 5010 continue; 5011 ife->ifm_aux = tm; 5012 } 5013 break; 5014 5015 case TULIP_ROM_MB_21143_SYM: 5016 tlp_get_minst(sc); 5017 sc->sc_media_seen |= 1 << TULIP_ROM_MB_21143_SYM; 5018 5019 tm = malloc(sizeof(*tm), M_DEVBUF, M_WAITOK | M_ZERO); 5020 5021 tm->tm_type = TULIP_ROM_MB_21143_SYM; 5022 tm->tm_get = tlp_sia_get; 5023 tm->tm_set = tlp_sia_set; 5024 5025 /* First is the media type code. */ 5026 tsti = tlp_srom_to_ifmedia(cp[0] & 5027 TULIP_ROM_MB_MEDIA_CODE); 5028 if (tsti == NULL) { 5029 /* Invalid media code. */ 5030 free(tm, M_DEVBUF); 5031 break; 5032 } 5033 5034 /* Get defaults. */ 5035 tlp_srom_media_info(sc, tsti, tm); 5036 5037 /* Next is GPIO control/data. */ 5038 tm->tm_gpctl = TULIP_ROM_GETW(cp, 1) << 16; 5039 tm->tm_gpdata = TULIP_ROM_GETW(cp, 3) << 16; 5040 5041 /* 5042 * Next is a word containing OPMODE information 5043 * and info on how to detect if this media is 5044 * active. 5045 */ 5046 word = TULIP_ROM_GETW(cp, 5); 5047 tm->tm_opmode &= OPMODE_FD; 5048 tm->tm_opmode |= TULIP_ROM_MB_OPMODE(word); 5049 if ((word & TULIP_ROM_MB_NOINDICATOR) == 0) { 5050 tm->tm_actmask = 5051 TULIP_ROM_MB_BITPOS(word); 5052 tm->tm_actdata = 5053 (word & TULIP_ROM_MB_POLARITY) ? 5054 0 : tm->tm_actmask; 5055 } 5056 5057 ifmedia_add(&mii->mii_media, 5058 IFM_MAKEWORD(IFM_ETHER, tsti->tsti_subtype, 5059 tsti->tsti_options, sc->sc_tlp_minst), 0, tm); 5060 break; 5061 5062 case TULIP_ROM_MB_21143_RESET: 5063 aprint_normal_dev(sc->sc_dev, "21143 reset block\n"); 5064 break; 5065 5066 default: 5067 aprint_error_dev(sc->sc_dev, 5068 "unknown ISV media block type 0x%02x\n", type); 5069 } 5070 } 5071 5072 /* 5073 * Deal with the case where no media is configured. 5074 */ 5075 if (TAILQ_FIRST(&mii->mii_media.ifm_list) == NULL) { 5076 aprint_error_dev(sc->sc_dev, "no media found!\n"); 5077 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL); 5078 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE); 5079 return; 5080 } 5081 5082 /* 5083 * Pick the default media. 5084 */ 5085 if (miidef != 0) 5086 defmedia = miidef; 5087 else { 5088 switch (sc->sc_chip) { 5089 case TULIP_CHIP_21140: 5090 case TULIP_CHIP_21140A: 5091 /* XXX should come from SROM */ 5092 defmedia = IFM_MAKEWORD(IFM_ETHER, IFM_10_T, 0, 0); 5093 if (ifmedia_match(&mii->mii_media, defmedia, 5094 mii->mii_media.ifm_mask) == NULL) { 5095 /* 5096 * There is not a 10baseT media. 5097 * Fall back to the first found one. 5098 */ 5099 ife = TAILQ_FIRST(&mii->mii_media.ifm_list); 5100 defmedia = ife->ifm_media; 5101 } 5102 break; 5103 5104 case TULIP_CHIP_21142: 5105 case TULIP_CHIP_21143: 5106 case TULIP_CHIP_MX98713A: 5107 case TULIP_CHIP_MX98715: 5108 case TULIP_CHIP_MX98715A: 5109 case TULIP_CHIP_MX98715AEC_X: 5110 case TULIP_CHIP_MX98725: 5111 tm = malloc(sizeof(*tm), M_DEVBUF, M_WAITOK | M_ZERO); 5112 tm->tm_name = "auto"; 5113 tm->tm_get = tlp_2114x_nway_get; 5114 tm->tm_set = tlp_2114x_nway_set; 5115 5116 defmedia = IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0, 0); 5117 ifmedia_add(&mii->mii_media, defmedia, 0, tm); 5118 5119 sc->sc_statchg = tlp_2114x_nway_statchg; 5120 sc->sc_tick = tlp_2114x_nway_tick; 5121 break; 5122 5123 default: 5124 defmedia = IFM_MAKEWORD(IFM_ETHER, IFM_10_T, 0, 0); 5125 break; 5126 } 5127 } 5128 5129 ifmedia_set(&mii->mii_media, defmedia); 5130 5131 /* 5132 * Display any non-MII media we've located. 5133 */ 5134 if (sc->sc_media_seen & 5135 ~((1 << TULIP_ROM_MB_21140_MII) | (1 << TULIP_ROM_MB_21142_MII))) 5136 tlp_print_media(sc); 5137 5138 tlp_sia_fixup(sc); 5139 } 5140 5141 static void 5142 tlp_2114x_nway_get(struct tulip_softc *sc, struct ifmediareq *ifmr) 5143 { 5144 5145 (void) tlp_2114x_nway_service(sc, MII_POLLSTAT); 5146 ifmr->ifm_status = sc->sc_mii.mii_media_status; 5147 ifmr->ifm_active = sc->sc_mii.mii_media_active; 5148 } 5149 5150 static int 5151 tlp_2114x_nway_set(struct tulip_softc *sc) 5152 { 5153 5154 return tlp_2114x_nway_service(sc, MII_MEDIACHG); 5155 } 5156 5157 static void 5158 tlp_2114x_nway_statchg(struct ifnet *ifp) 5159 { 5160 struct tulip_softc *sc = ifp->if_softc; 5161 struct mii_data *mii = &sc->sc_mii; 5162 struct ifmedia_entry *ife; 5163 5164 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE) 5165 return; 5166 5167 if ((ife = ifmedia_match(&mii->mii_media, mii->mii_media_active, 5168 mii->mii_media.ifm_mask)) == NULL) { 5169 printf("tlp_2114x_nway_statchg: no match for media 0x%x/0x%x\n", 5170 mii->mii_media_active, ~mii->mii_media.ifm_mask); 5171 panic("tlp_2114x_nway_statchg"); 5172 } 5173 5174 tlp_sia_media(sc, ife); 5175 } 5176 5177 static void 5178 tlp_2114x_nway_tick(void *arg) 5179 { 5180 struct tulip_softc *sc = arg; 5181 struct mii_data *mii = &sc->sc_mii; 5182 int s, ticks; 5183 5184 if (!device_is_active(sc->sc_dev)) 5185 return; 5186 5187 s = splnet(); 5188 tlp_2114x_nway_service(sc, MII_TICK); 5189 if ((sc->sc_flags & TULIPF_LINK_UP) == 0 && 5190 (mii->mii_media_status & IFM_ACTIVE) != 0 && 5191 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) { 5192 sc->sc_flags |= TULIPF_LINK_UP; 5193 tlp_start(&sc->sc_ethercom.ec_if); 5194 } else if ((sc->sc_flags & TULIPF_LINK_UP) != 0 && 5195 (mii->mii_media_status & IFM_ACTIVE) == 0) { 5196 sc->sc_flags &= ~TULIPF_LINK_UP; 5197 } 5198 splx(s); 5199 5200 if ((sc->sc_flags & TULIPF_LINK_UP) == 0) 5201 ticks = hz >> 3; 5202 else 5203 ticks = hz; 5204 callout_reset(&sc->sc_tick_callout, ticks, tlp_2114x_nway_tick, sc); 5205 } 5206 5207 /* 5208 * Support for the 2114X internal NWay block. This is constructed 5209 * somewhat like a PHY driver for simplicity. 5210 */ 5211 5212 static int 5213 tlp_2114x_nway_service(struct tulip_softc *sc, int cmd) 5214 { 5215 struct mii_data *mii = &sc->sc_mii; 5216 struct ifmedia_entry *ife = mii->mii_media.ifm_cur; 5217 5218 if ((mii->mii_ifp->if_flags & IFF_UP) == 0) 5219 return 0; 5220 5221 switch (cmd) { 5222 case MII_POLLSTAT: 5223 /* Nothing special to do here. */ 5224 break; 5225 5226 case MII_MEDIACHG: 5227 switch (IFM_SUBTYPE(ife->ifm_media)) { 5228 case IFM_AUTO: 5229 goto restart; 5230 default: 5231 /* Manual setting doesn't go through here. */ 5232 printf("tlp_2114x_nway_service: oops!\n"); 5233 return EINVAL; 5234 } 5235 break; 5236 5237 case MII_TICK: 5238 /* 5239 * Only used for autonegotiation. 5240 */ 5241 if (IFM_SUBTYPE(ife->ifm_media) != IFM_AUTO) 5242 break; 5243 5244 /* 5245 * Check to see if we have link. If we do, we don't 5246 * need to restart the autonegotiation process. 5247 */ 5248 #if 0 5249 if (mii->mii_media_status & IFM_ACTIVE) 5250 #else 5251 if (sc->sc_flags & TULIPF_LINK_UP) 5252 #endif 5253 break; 5254 5255 /* 5256 * Only retry autonegotiation every 5 seconds. 5257 */ 5258 if (++sc->sc_nway_ticks != (5 << 3)) 5259 break; 5260 5261 restart: 5262 sc->sc_nway_ticks = 0; 5263 ife->ifm_data = IFM_NONE; 5264 tlp_2114x_nway_auto(sc); 5265 break; 5266 } 5267 5268 /* Update the media status. */ 5269 tlp_2114x_nway_status(sc); 5270 5271 /* 5272 * Callback if something changed. Manually configuration goes through 5273 * tlp_sia_set() anyway, so ignore that here. 5274 */ 5275 if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO && 5276 ife->ifm_data != mii->mii_media_active) { 5277 (*sc->sc_statchg)(mii->mii_ifp); 5278 ife->ifm_data = mii->mii_media_active; 5279 } 5280 return 0; 5281 } 5282 5283 static void 5284 tlp_2114x_nway_auto(struct tulip_softc *sc) 5285 { 5286 uint32_t siastat, siatxrx; 5287 5288 tlp_idle(sc, OPMODE_ST | OPMODE_SR); 5289 5290 sc->sc_opmode &= ~(OPMODE_PS | OPMODE_PCS | OPMODE_SCR | OPMODE_FD); 5291 sc->sc_opmode |= OPMODE_TTM | OPMODE_HBD; 5292 siatxrx = 0xffbf; /* XXX magic number */ 5293 5294 /* Compute the link code word to advertise. */ 5295 if (sc->sc_sia_cap & BMSR_100T4) 5296 siatxrx |= SIATXRX_T4; 5297 if (sc->sc_sia_cap & BMSR_100TXFDX) 5298 siatxrx |= SIATXRX_TXF; 5299 if (sc->sc_sia_cap & BMSR_100TXHDX) 5300 siatxrx |= SIATXRX_THX; 5301 if (sc->sc_sia_cap & BMSR_10TFDX) 5302 sc->sc_opmode |= OPMODE_FD; 5303 if (sc->sc_sia_cap & BMSR_10THDX) 5304 siatxrx |= SIATXRX_TH; 5305 5306 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode); 5307 5308 TULIP_WRITE(sc, CSR_SIACONN, 0); 5309 delay(1000); 5310 TULIP_WRITE(sc, CSR_SIATXRX, siatxrx); 5311 TULIP_WRITE(sc, CSR_SIACONN, SIACONN_SRL); 5312 5313 siastat = TULIP_READ(sc, CSR_SIASTAT); 5314 siastat &= ~(SIASTAT_ANS | SIASTAT_LPC | SIASTAT_TRA | SIASTAT_ARA | 5315 SIASTAT_LS100 | SIASTAT_LS10 | SIASTAT_MRA); 5316 siastat |= SIASTAT_ANS_TXDIS; 5317 TULIP_WRITE(sc, CSR_SIASTAT, siastat); 5318 } 5319 5320 static void 5321 tlp_2114x_nway_status(struct tulip_softc *sc) 5322 { 5323 struct mii_data *mii = &sc->sc_mii; 5324 uint32_t siatxrx, siastat, anlpar; 5325 5326 mii->mii_media_status = IFM_AVALID; 5327 mii->mii_media_active = IFM_ETHER; 5328 5329 if ((mii->mii_ifp->if_flags & IFF_UP) == 0) 5330 return; 5331 5332 siastat = TULIP_READ(sc, CSR_SIASTAT); 5333 siatxrx = TULIP_READ(sc, CSR_SIATXRX); 5334 5335 if (siatxrx & SIATXRX_ANE) { 5336 if ((siastat & SIASTAT_ANS) != SIASTAT_ANS_FLPGOOD) { 5337 /* Erg, still trying, I guess... */ 5338 mii->mii_media_active |= IFM_NONE; 5339 return; 5340 } 5341 5342 if (~siastat & (SIASTAT_LS10 | SIASTAT_LS100)) 5343 mii->mii_media_status |= IFM_ACTIVE; 5344 5345 if (siastat & SIASTAT_LPN) { 5346 anlpar = SIASTAT_GETLPC(siastat); 5347 if (anlpar & ANLPAR_T4 && 5348 sc->sc_sia_cap & BMSR_100T4) 5349 mii->mii_media_active |= IFM_100_T4; 5350 else if (anlpar & ANLPAR_TX_FD && 5351 sc->sc_sia_cap & BMSR_100TXFDX) 5352 mii->mii_media_active |= IFM_100_TX | IFM_FDX; 5353 else if (anlpar & ANLPAR_TX && 5354 sc->sc_sia_cap & BMSR_100TXHDX) 5355 mii->mii_media_active |= IFM_100_TX; 5356 else if (anlpar & ANLPAR_10_FD && 5357 sc->sc_sia_cap & BMSR_10TFDX) 5358 mii->mii_media_active |= IFM_10_T | IFM_FDX; 5359 else if (anlpar & ANLPAR_10 && 5360 sc->sc_sia_cap & BMSR_10THDX) 5361 mii->mii_media_active |= IFM_10_T; 5362 else 5363 mii->mii_media_active |= IFM_NONE; 5364 } else { 5365 /* 5366 * If the other side doesn't support NWAY, then the 5367 * best we can do is determine if we have a 10Mbps or 5368 * 100Mbps link. There's no way to know if the link 5369 * is full or half duplex, so we default to half duplex 5370 * and hope that the user is clever enough to manually 5371 * change the media settings if we're wrong. 5372 */ 5373 if ((siastat & SIASTAT_LS100) == 0) 5374 mii->mii_media_active |= IFM_100_TX; 5375 else if ((siastat & SIASTAT_LS10) == 0) 5376 mii->mii_media_active |= IFM_10_T; 5377 else 5378 mii->mii_media_active |= IFM_NONE; 5379 } 5380 } else { 5381 if (~siastat & (SIASTAT_LS10 | SIASTAT_LS100)) 5382 mii->mii_media_status |= IFM_ACTIVE; 5383 5384 if (sc->sc_opmode & OPMODE_TTM) 5385 mii->mii_media_active |= IFM_10_T; 5386 else 5387 mii->mii_media_active |= IFM_100_TX; 5388 if (sc->sc_opmode & OPMODE_FD) 5389 mii->mii_media_active |= IFM_FDX; 5390 } 5391 } 5392 5393 static void 5394 tlp_2114x_isv_tmsw_get(struct tulip_softc *sc, struct ifmediareq *ifmr) 5395 { 5396 struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur; 5397 struct tulip_21x4x_media *tm = ife->ifm_aux; 5398 5399 (*tm->tm_get)(sc, ifmr); 5400 } 5401 5402 static int 5403 tlp_2114x_isv_tmsw_set(struct tulip_softc *sc) 5404 { 5405 struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur; 5406 struct tulip_21x4x_media *tm = ife->ifm_aux; 5407 5408 /* 5409 * Check to see if we need to reset the chip, and do it. The 5410 * reset path will get the OPMODE register right the next 5411 * time through. 5412 */ 5413 if (TULIP_MEDIA_NEEDSRESET(sc, tm->tm_opmode)) 5414 return tlp_init(&sc->sc_ethercom.ec_if); 5415 5416 return (*tm->tm_set)(sc); 5417 } 5418 5419 /* 5420 * MII-on-SIO media switch. Handles only MII attached to the SIO. 5421 */ 5422 static void tlp_sio_mii_tmsw_init(struct tulip_softc *); 5423 5424 const struct tulip_mediasw tlp_sio_mii_mediasw = { 5425 tlp_sio_mii_tmsw_init, tlp_mii_getmedia, tlp_mii_setmedia 5426 }; 5427 5428 static void 5429 tlp_sio_mii_tmsw_init(struct tulip_softc *sc) 5430 { 5431 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 5432 struct mii_data * const mii = &sc->sc_mii; 5433 5434 /* 5435 * We don't attach any media info structures to the ifmedia 5436 * entries, so if we're using a pre-init function that needs 5437 * that info, override it to one that doesn't. 5438 */ 5439 if (sc->sc_preinit == tlp_2114x_preinit) 5440 sc->sc_preinit = tlp_2114x_mii_preinit; 5441 5442 mii->mii_ifp = ifp; 5443 mii->mii_readreg = tlp_bitbang_mii_readreg; 5444 mii->mii_writereg = tlp_bitbang_mii_writereg; 5445 mii->mii_statchg = sc->sc_statchg; 5446 sc->sc_ethercom.ec_mii = mii; 5447 ifmedia_init(&mii->mii_media, 0, tlp_mediachange, tlp_mediastatus); 5448 mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY, 5449 MII_OFFSET_ANY, 0); 5450 if (LIST_FIRST(&mii->mii_phys) == NULL) { 5451 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL); 5452 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE); 5453 } else { 5454 sc->sc_flags |= TULIPF_HAS_MII; 5455 sc->sc_tick = tlp_mii_tick; 5456 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO); 5457 } 5458 } 5459 5460 /* 5461 * Lite-On PNIC media switch. Must handle MII or internal NWAY. 5462 */ 5463 static void tlp_pnic_tmsw_init(struct tulip_softc *); 5464 static void tlp_pnic_tmsw_get(struct tulip_softc *, struct ifmediareq *); 5465 static int tlp_pnic_tmsw_set(struct tulip_softc *); 5466 5467 const struct tulip_mediasw tlp_pnic_mediasw = { 5468 tlp_pnic_tmsw_init, tlp_pnic_tmsw_get, tlp_pnic_tmsw_set 5469 }; 5470 5471 static void tlp_pnic_nway_statchg(struct ifnet *); 5472 static void tlp_pnic_nway_tick(void *); 5473 static int tlp_pnic_nway_service(struct tulip_softc *, int); 5474 static void tlp_pnic_nway_reset(struct tulip_softc *); 5475 static int tlp_pnic_nway_auto(struct tulip_softc *, int); 5476 static void tlp_pnic_nway_auto_timeout(void *); 5477 static void tlp_pnic_nway_status(struct tulip_softc *); 5478 static void tlp_pnic_nway_acomp(struct tulip_softc *); 5479 5480 static void 5481 tlp_pnic_tmsw_init(struct tulip_softc *sc) 5482 { 5483 struct mii_data * const mii = &sc->sc_mii; 5484 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 5485 const char *sep = ""; 5486 5487 #define ADD(m, c) ifmedia_add(&mii->mii_media, (m), (c), NULL) 5488 #define PRINT(str) aprint_normal("%s%s", sep, str); sep = ", " 5489 5490 mii->mii_ifp = ifp; 5491 mii->mii_readreg = tlp_pnic_mii_readreg; 5492 mii->mii_writereg = tlp_pnic_mii_writereg; 5493 mii->mii_statchg = sc->sc_statchg; 5494 sc->sc_ethercom.ec_mii = mii; 5495 ifmedia_init(&mii->mii_media, 0, tlp_mediachange, tlp_mediastatus); 5496 mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY, 5497 MII_OFFSET_ANY, 0); 5498 if (LIST_FIRST(&mii->mii_phys) == NULL) { 5499 /* XXX What about AUI/BNC support? */ 5500 aprint_normal_dev(sc->sc_dev, ""); 5501 5502 tlp_pnic_nway_reset(sc); 5503 5504 ADD(IFM_MAKEWORD(IFM_ETHER, IFM_10_T, 0, 0), 5505 PNIC_NWAY_TW | PNIC_NWAY_CAP10T); 5506 PRINT("10baseT"); 5507 5508 ADD(IFM_MAKEWORD(IFM_ETHER, IFM_10_T, IFM_FDX, 0), 5509 PNIC_NWAY_TW | PNIC_NWAY_FD | PNIC_NWAY_CAP10TFDX); 5510 PRINT("10baseT-FDX"); 5511 5512 ADD(IFM_MAKEWORD(IFM_ETHER, IFM_100_TX, 0, 0), 5513 PNIC_NWAY_TW | PNIC_NWAY_100 | PNIC_NWAY_CAP100TX); 5514 PRINT("100baseTX"); 5515 5516 ADD(IFM_MAKEWORD(IFM_ETHER, IFM_100_TX, IFM_FDX, 0), 5517 PNIC_NWAY_TW | PNIC_NWAY_100 | PNIC_NWAY_FD | 5518 PNIC_NWAY_CAP100TXFDX); 5519 PRINT("100baseTX-FDX"); 5520 5521 ADD(IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0, 0), 5522 PNIC_NWAY_TW | PNIC_NWAY_RN | PNIC_NWAY_NW | 5523 PNIC_NWAY_CAP10T | PNIC_NWAY_CAP10TFDX | 5524 PNIC_NWAY_CAP100TXFDX | PNIC_NWAY_CAP100TX); 5525 PRINT("auto"); 5526 5527 aprint_normal("\n"); 5528 5529 sc->sc_statchg = tlp_pnic_nway_statchg; 5530 sc->sc_tick = tlp_pnic_nway_tick; 5531 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO); 5532 } else { 5533 sc->sc_flags |= TULIPF_HAS_MII; 5534 sc->sc_tick = tlp_mii_tick; 5535 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO); 5536 } 5537 5538 #undef ADD 5539 #undef PRINT 5540 } 5541 5542 static void 5543 tlp_pnic_tmsw_get(struct tulip_softc *sc, struct ifmediareq *ifmr) 5544 { 5545 struct mii_data *mii = &sc->sc_mii; 5546 5547 if (sc->sc_flags & TULIPF_HAS_MII) 5548 tlp_mii_getmedia(sc, ifmr); 5549 else { 5550 mii->mii_media_status = 0; 5551 mii->mii_media_active = IFM_NONE; 5552 tlp_pnic_nway_service(sc, MII_POLLSTAT); 5553 ifmr->ifm_status = mii->mii_media_status; 5554 ifmr->ifm_active = mii->mii_media_active; 5555 } 5556 } 5557 5558 static int 5559 tlp_pnic_tmsw_set(struct tulip_softc *sc) 5560 { 5561 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 5562 struct mii_data *mii = &sc->sc_mii; 5563 5564 if (sc->sc_flags & TULIPF_HAS_MII) { 5565 /* 5566 * Make sure the built-in Tx jabber timer is disabled. 5567 */ 5568 TULIP_WRITE(sc, CSR_PNIC_ENDEC, PNIC_ENDEC_JDIS); 5569 5570 return tlp_mii_setmedia(sc); 5571 } 5572 5573 if (ifp->if_flags & IFF_UP) { 5574 mii->mii_media_status = 0; 5575 mii->mii_media_active = IFM_NONE; 5576 return tlp_pnic_nway_service(sc, MII_MEDIACHG); 5577 } 5578 5579 return 0; 5580 } 5581 5582 static void 5583 tlp_pnic_nway_statchg(struct ifnet *ifp) 5584 { 5585 struct tulip_softc *sc = ifp->if_softc; 5586 5587 /* Idle the transmit and receive processes. */ 5588 tlp_idle(sc, OPMODE_ST | OPMODE_SR); 5589 5590 sc->sc_opmode &= ~(OPMODE_TTM | OPMODE_FD | OPMODE_PS | OPMODE_PCS | 5591 OPMODE_SCR | OPMODE_HBD); 5592 5593 if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_10_T) { 5594 sc->sc_opmode |= OPMODE_TTM; 5595 TULIP_WRITE(sc, CSR_GPP, 5596 GPP_PNIC_OUT(GPP_PNIC_PIN_SPEED_RLY, 0) | 5597 GPP_PNIC_OUT(GPP_PNIC_PIN_100M_LPKB, 1)); 5598 } else { 5599 sc->sc_opmode |= OPMODE_PS |OPMODE_PCS |OPMODE_SCR |OPMODE_HBD; 5600 TULIP_WRITE(sc, CSR_GPP, 5601 GPP_PNIC_OUT(GPP_PNIC_PIN_SPEED_RLY, 1) | 5602 GPP_PNIC_OUT(GPP_PNIC_PIN_100M_LPKB, 1)); 5603 } 5604 5605 if (sc->sc_mii.mii_media_active & IFM_FDX) 5606 sc->sc_opmode |= OPMODE_FD | OPMODE_HBD; 5607 5608 /* 5609 * Write new OPMODE bits. This also restarts the transmit 5610 * and receive processes. 5611 */ 5612 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode); 5613 } 5614 5615 static void 5616 tlp_pnic_nway_tick(void *arg) 5617 { 5618 struct tulip_softc *sc = arg; 5619 int s; 5620 5621 if (!device_is_active(sc->sc_dev)) 5622 return; 5623 5624 s = splnet(); 5625 tlp_pnic_nway_service(sc, MII_TICK); 5626 splx(s); 5627 5628 callout_reset(&sc->sc_tick_callout, hz, tlp_pnic_nway_tick, sc); 5629 } 5630 5631 /* 5632 * Support for the Lite-On PNIC internal NWay block. This is constructed 5633 * somewhat like a PHY driver for simplicity. 5634 */ 5635 5636 static int 5637 tlp_pnic_nway_service(struct tulip_softc *sc, int cmd) 5638 { 5639 struct mii_data *mii = &sc->sc_mii; 5640 struct ifmedia_entry *ife = mii->mii_media.ifm_cur; 5641 5642 if ((mii->mii_ifp->if_flags & IFF_UP) == 0) 5643 return 0; 5644 5645 switch (cmd) { 5646 case MII_POLLSTAT: 5647 /* Nothing special to do here. */ 5648 break; 5649 5650 case MII_MEDIACHG: 5651 switch (IFM_SUBTYPE(ife->ifm_media)) { 5652 case IFM_AUTO: 5653 (void) tlp_pnic_nway_auto(sc, 1); 5654 break; 5655 case IFM_100_T4: 5656 /* 5657 * XXX Not supported as a manual setting right now. 5658 */ 5659 return EINVAL; 5660 default: 5661 /* 5662 * NWAY register data is stored in the ifmedia entry. 5663 */ 5664 TULIP_WRITE(sc, CSR_PNIC_NWAY, ife->ifm_data); 5665 } 5666 break; 5667 5668 case MII_TICK: 5669 /* 5670 * Only used for autonegotiation. 5671 */ 5672 if (IFM_SUBTYPE(ife->ifm_media) != IFM_AUTO) 5673 return 0; 5674 5675 /* 5676 * Check to see if we have link. If we do, we don't 5677 * need to restart the autonegotiation process. 5678 */ 5679 if (sc->sc_flags & TULIPF_LINK_UP) 5680 return 0; 5681 5682 /* 5683 * Only retry autonegotiation every 5 seconds. 5684 */ 5685 if (++sc->sc_nway_ticks != 5) 5686 return 0; 5687 5688 sc->sc_nway_ticks = 0; 5689 tlp_pnic_nway_reset(sc); 5690 if (tlp_pnic_nway_auto(sc, 0) == EJUSTRETURN) 5691 return 0; 5692 break; 5693 } 5694 5695 /* Update the media status. */ 5696 tlp_pnic_nway_status(sc); 5697 5698 /* Callback if something changed. */ 5699 if ((sc->sc_nway_active == NULL || 5700 sc->sc_nway_active->ifm_media != mii->mii_media_active) || 5701 cmd == MII_MEDIACHG) { 5702 (*sc->sc_statchg)(mii->mii_ifp); 5703 tlp_nway_activate(sc, mii->mii_media_active); 5704 } 5705 return 0; 5706 } 5707 5708 static void 5709 tlp_pnic_nway_reset(struct tulip_softc *sc) 5710 { 5711 5712 TULIP_WRITE(sc, CSR_PNIC_NWAY, PNIC_NWAY_RS); 5713 delay(100); 5714 TULIP_WRITE(sc, CSR_PNIC_NWAY, 0); 5715 } 5716 5717 static int 5718 tlp_pnic_nway_auto(struct tulip_softc *sc, int waitfor) 5719 { 5720 struct mii_data *mii = &sc->sc_mii; 5721 struct ifmedia_entry *ife = mii->mii_media.ifm_cur; 5722 uint32_t reg; 5723 int i; 5724 5725 if ((sc->sc_flags & TULIPF_DOINGAUTO) == 0) 5726 TULIP_WRITE(sc, CSR_PNIC_NWAY, ife->ifm_data); 5727 5728 if (waitfor) { 5729 /* Wait 500ms for it to complete. */ 5730 for (i = 0; i < 500; i++) { 5731 reg = TULIP_READ(sc, CSR_PNIC_NWAY); 5732 if (reg & PNIC_NWAY_LPAR_MASK) { 5733 tlp_pnic_nway_acomp(sc); 5734 return 0; 5735 } 5736 delay(1000); 5737 } 5738 #if 0 5739 if ((reg & PNIC_NWAY_LPAR_MASK) == 0) 5740 aprint_error_dev(sc->sc_dev, 5741 "autonegotiation failed to complete\n"); 5742 #endif 5743 5744 /* 5745 * Don't need to worry about clearing DOINGAUTO. 5746 * If that's set, a timeout is pending, and it will 5747 * clear the flag. 5748 */ 5749 return EIO; 5750 } 5751 5752 /* 5753 * Just let it finish asynchronously. This is for the benefit of 5754 * the tick handler driving autonegotiation. Don't want 500ms 5755 * delays all the time while the system is running! 5756 */ 5757 if ((sc->sc_flags & TULIPF_DOINGAUTO) == 0) { 5758 sc->sc_flags |= TULIPF_DOINGAUTO; 5759 callout_reset(&sc->sc_nway_callout, hz >> 1, 5760 tlp_pnic_nway_auto_timeout, sc); 5761 } 5762 return EJUSTRETURN; 5763 } 5764 5765 static void 5766 tlp_pnic_nway_auto_timeout(void *arg) 5767 { 5768 struct tulip_softc *sc = arg; 5769 /* uint32_t reg; */ 5770 int s; 5771 5772 s = splnet(); 5773 sc->sc_flags &= ~TULIPF_DOINGAUTO; 5774 /* reg = */ 5775 TULIP_READ(sc, CSR_PNIC_NWAY); 5776 #if 0 5777 if ((reg & PNIC_NWAY_LPAR_MASK) == 0) 5778 aprint_error_dev(sc->sc_dev, 5779 "autonegotiation failed to complete\n"); 5780 #endif 5781 5782 tlp_pnic_nway_acomp(sc); 5783 5784 /* Update the media status. */ 5785 (void)tlp_pnic_nway_service(sc, MII_POLLSTAT); 5786 splx(s); 5787 } 5788 5789 static void 5790 tlp_pnic_nway_status(struct tulip_softc *sc) 5791 { 5792 struct mii_data *mii = &sc->sc_mii; 5793 uint32_t reg; 5794 5795 mii->mii_media_status = IFM_AVALID; 5796 mii->mii_media_active = IFM_ETHER; 5797 5798 reg = TULIP_READ(sc, CSR_PNIC_NWAY); 5799 5800 if (sc->sc_flags & TULIPF_LINK_UP) 5801 mii->mii_media_status |= IFM_ACTIVE; 5802 5803 if (reg & PNIC_NWAY_NW) { 5804 if ((reg & PNIC_NWAY_LPAR_MASK) == 0) { 5805 /* Erg, still trying, I guess... */ 5806 mii->mii_media_active |= IFM_NONE; 5807 return; 5808 } 5809 5810 #if 0 5811 if (reg & PNIC_NWAY_LPAR100T4) 5812 mii->mii_media_active |= IFM_100_T4; 5813 else 5814 #endif 5815 if (reg & PNIC_NWAY_LPAR100TXFDX) 5816 mii->mii_media_active |= IFM_100_TX | IFM_FDX; 5817 else if (reg & PNIC_NWAY_LPAR100TX) 5818 mii->mii_media_active |= IFM_100_TX; 5819 else if (reg & PNIC_NWAY_LPAR10TFDX) 5820 mii->mii_media_active |= IFM_10_T | IFM_FDX; 5821 else if (reg & PNIC_NWAY_LPAR10T) 5822 mii->mii_media_active |= IFM_10_T; 5823 else 5824 mii->mii_media_active |= IFM_NONE; 5825 } else { 5826 if (reg & PNIC_NWAY_100) 5827 mii->mii_media_active |= IFM_100_TX; 5828 else 5829 mii->mii_media_active |= IFM_10_T; 5830 if (reg & PNIC_NWAY_FD) 5831 mii->mii_media_active |= IFM_FDX; 5832 } 5833 } 5834 5835 static void 5836 tlp_pnic_nway_acomp(struct tulip_softc *sc) 5837 { 5838 uint32_t reg; 5839 5840 reg = TULIP_READ(sc, CSR_PNIC_NWAY); 5841 reg &= ~(PNIC_NWAY_FD | PNIC_NWAY_100 | PNIC_NWAY_RN); 5842 5843 if (reg & (PNIC_NWAY_LPAR100TXFDX | PNIC_NWAY_LPAR100TX)) 5844 reg |= PNIC_NWAY_100; 5845 if (reg & (PNIC_NWAY_LPAR10TFDX | PNIC_NWAY_LPAR100TXFDX)) 5846 reg |= PNIC_NWAY_FD; 5847 5848 TULIP_WRITE(sc, CSR_PNIC_NWAY, reg); 5849 } 5850 5851 /* 5852 * Macronix PMAC and Lite-On PNIC-II media switch: 5853 * 5854 * MX98713 and MX98713A 21140-like MII or GPIO media. 5855 * 5856 * MX98713A 21143-like MII or SIA/SYM media. 5857 * 5858 * MX98715, MX98715A, MX98725, 21143-like SIA/SYM media. 5859 * 82C115, MX98715AEC-C, -E 5860 * 5861 * So, what we do here is fake MII-on-SIO or ISV media info, and 5862 * use the ISV media switch get/set functions to handle the rest. 5863 */ 5864 5865 static void tlp_pmac_tmsw_init(struct tulip_softc *); 5866 5867 const struct tulip_mediasw tlp_pmac_mediasw = { 5868 tlp_pmac_tmsw_init, tlp_2114x_isv_tmsw_get, tlp_2114x_isv_tmsw_set 5869 }; 5870 5871 const struct tulip_mediasw tlp_pmac_mii_mediasw = { 5872 tlp_pmac_tmsw_init, tlp_mii_getmedia, tlp_mii_setmedia 5873 }; 5874 5875 static void 5876 tlp_pmac_tmsw_init(struct tulip_softc *sc) 5877 { 5878 struct mii_data * const mii = &sc->sc_mii; 5879 static const uint8_t media[] = { 5880 TULIP_ROM_MB_MEDIA_TP, 5881 TULIP_ROM_MB_MEDIA_TP_FDX, 5882 TULIP_ROM_MB_MEDIA_100TX, 5883 TULIP_ROM_MB_MEDIA_100TX_FDX, 5884 }; 5885 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 5886 struct tulip_21x4x_media *tm; 5887 5888 mii->mii_ifp = ifp; 5889 mii->mii_readreg = tlp_bitbang_mii_readreg; 5890 mii->mii_writereg = tlp_bitbang_mii_writereg; 5891 mii->mii_statchg = sc->sc_statchg; 5892 sc->sc_ethercom.ec_mii = mii; 5893 ifmedia_init(&mii->mii_media, 0, tlp_mediachange, tlp_mediastatus); 5894 if (sc->sc_chip == TULIP_CHIP_MX98713 || 5895 sc->sc_chip == TULIP_CHIP_MX98713A) { 5896 mii_attach(sc->sc_dev, mii, 0xffffffff, 5897 MII_PHY_ANY, MII_OFFSET_ANY, 0); 5898 if (LIST_FIRST(&mii->mii_phys) != NULL) { 5899 sc->sc_flags |= TULIPF_HAS_MII; 5900 sc->sc_tick = tlp_mii_tick; 5901 sc->sc_preinit = tlp_2114x_mii_preinit; 5902 sc->sc_mediasw = &tlp_pmac_mii_mediasw; 5903 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO); 5904 return; 5905 } 5906 } 5907 5908 switch (sc->sc_chip) { 5909 case TULIP_CHIP_MX98713: 5910 tlp_add_srom_media(sc, TULIP_ROM_MB_21140_GPR, 5911 tlp_21140_gpio_get, tlp_21140_gpio_set, media, 4); 5912 5913 /* 5914 * XXX Should implement auto-sense for this someday, 5915 * XXX when we do the same for the 21140. 5916 */ 5917 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_10_T); 5918 break; 5919 5920 default: 5921 tlp_add_srom_media(sc, TULIP_ROM_MB_21142_SIA, 5922 tlp_sia_get, tlp_sia_set, media, 2); 5923 tlp_add_srom_media(sc, TULIP_ROM_MB_21143_SYM, 5924 tlp_sia_get, tlp_sia_set, media + 2, 2); 5925 5926 tm = malloc(sizeof(*tm), M_DEVBUF, M_WAITOK | M_ZERO); 5927 tm->tm_name = "auto"; 5928 tm->tm_get = tlp_2114x_nway_get; 5929 tm->tm_set = tlp_2114x_nway_set; 5930 ifmedia_add(&mii->mii_media, 5931 IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0, 0), 0, tm); 5932 5933 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO); 5934 sc->sc_statchg = tlp_2114x_nway_statchg; 5935 sc->sc_tick = tlp_2114x_nway_tick; 5936 break; 5937 } 5938 5939 tlp_print_media(sc); 5940 tlp_sia_fixup(sc); 5941 5942 /* Set the LED modes. */ 5943 tlp_pmac_reset(sc); 5944 5945 sc->sc_reset = tlp_pmac_reset; 5946 } 5947 5948 /* 5949 * ADMtek AL981 media switch. Only has internal PHY. 5950 */ 5951 static void tlp_al981_tmsw_init(struct tulip_softc *); 5952 5953 const struct tulip_mediasw tlp_al981_mediasw = { 5954 tlp_al981_tmsw_init, tlp_mii_getmedia, tlp_mii_setmedia 5955 }; 5956 5957 static void 5958 tlp_al981_tmsw_init(struct tulip_softc *sc) 5959 { 5960 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 5961 struct mii_data * const mii = &sc->sc_mii; 5962 5963 mii->mii_ifp = ifp; 5964 mii->mii_readreg = tlp_al981_mii_readreg; 5965 mii->mii_writereg = tlp_al981_mii_writereg; 5966 mii->mii_statchg = sc->sc_statchg; 5967 sc->sc_ethercom.ec_mii = mii; 5968 ifmedia_init(&mii->mii_media, 0, tlp_mediachange, tlp_mediastatus); 5969 mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY, 5970 MII_OFFSET_ANY, 0); 5971 if (LIST_FIRST(&mii->mii_phys) == NULL) { 5972 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL); 5973 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE); 5974 } else { 5975 sc->sc_flags |= TULIPF_HAS_MII; 5976 sc->sc_tick = tlp_mii_tick; 5977 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO); 5978 } 5979 } 5980 5981 /* 5982 * ADMtek AN983/985 media switch. Only has internal PHY, but 5983 * on an SIO-like interface. Unfortunately, we can't use the 5984 * standard SIO media switch, because the AN985 "ghosts" the 5985 * singly PHY at every address. 5986 */ 5987 static void tlp_an985_tmsw_init(struct tulip_softc *); 5988 5989 const struct tulip_mediasw tlp_an985_mediasw = { 5990 tlp_an985_tmsw_init, tlp_mii_getmedia, tlp_mii_setmedia 5991 }; 5992 5993 static void 5994 tlp_an985_tmsw_init(struct tulip_softc *sc) 5995 { 5996 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 5997 struct mii_data * const mii = &sc->sc_mii; 5998 5999 mii->mii_ifp = ifp; 6000 mii->mii_readreg = tlp_bitbang_mii_readreg; 6001 mii->mii_writereg = tlp_bitbang_mii_writereg; 6002 mii->mii_statchg = sc->sc_statchg; 6003 sc->sc_ethercom.ec_mii = mii; 6004 ifmedia_init(&mii->mii_media, 0, tlp_mediachange, tlp_mediastatus); 6005 mii_attach(sc->sc_dev, mii, 0xffffffff, 1, MII_OFFSET_ANY, 0); 6006 if (LIST_FIRST(&mii->mii_phys) == NULL) { 6007 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL); 6008 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE); 6009 } else { 6010 sc->sc_flags |= TULIPF_HAS_MII; 6011 sc->sc_tick = tlp_mii_tick; 6012 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO); 6013 } 6014 } 6015 6016 /* 6017 * Davicom DM9102 media switch. Internal PHY and possibly HomePNA. 6018 */ 6019 static void tlp_dm9102_tmsw_init(struct tulip_softc *); 6020 static void tlp_dm9102_tmsw_getmedia(struct tulip_softc *, 6021 struct ifmediareq *); 6022 static int tlp_dm9102_tmsw_setmedia(struct tulip_softc *); 6023 6024 const struct tulip_mediasw tlp_dm9102_mediasw = { 6025 tlp_dm9102_tmsw_init, tlp_dm9102_tmsw_getmedia, 6026 tlp_dm9102_tmsw_setmedia 6027 }; 6028 6029 static void 6030 tlp_dm9102_tmsw_init(struct tulip_softc *sc) 6031 { 6032 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 6033 struct mii_data * const mii = &sc->sc_mii; 6034 uint32_t opmode; 6035 6036 mii->mii_ifp = ifp; 6037 mii->mii_readreg = tlp_bitbang_mii_readreg; 6038 mii->mii_writereg = tlp_bitbang_mii_writereg; 6039 mii->mii_statchg = sc->sc_statchg; 6040 sc->sc_ethercom.ec_mii = mii; 6041 ifmedia_init(&mii->mii_media, 0, tlp_mediachange, tlp_mediastatus); 6042 6043 /* PHY block already reset via tlp_reset(). */ 6044 6045 /* 6046 * Configure OPMODE properly for the internal MII interface. 6047 */ 6048 switch (sc->sc_chip) { 6049 case TULIP_CHIP_DM9102: 6050 opmode = OPMODE_MBO | OPMODE_HBD | OPMODE_PS; 6051 break; 6052 6053 case TULIP_CHIP_DM9102A: 6054 opmode = OPMODE_MBO | OPMODE_HBD; 6055 break; 6056 6057 default: 6058 opmode = 0; 6059 break; 6060 } 6061 6062 TULIP_WRITE(sc, CSR_OPMODE, opmode); 6063 6064 /* Now, probe the internal MII for the internal PHY. */ 6065 mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY, 6066 MII_OFFSET_ANY, 0); 6067 6068 /* 6069 * XXX Figure out what to do about the HomePNA portion 6070 * XXX of the DM9102A. 6071 */ 6072 6073 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) { 6074 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL); 6075 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE); 6076 } else { 6077 sc->sc_flags |= TULIPF_HAS_MII; 6078 sc->sc_tick = tlp_mii_tick; 6079 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO); 6080 } 6081 } 6082 6083 static void 6084 tlp_dm9102_tmsw_getmedia(struct tulip_softc *sc, struct ifmediareq *ifmr) 6085 { 6086 6087 /* XXX HomePNA on DM9102A. */ 6088 tlp_mii_getmedia(sc, ifmr); 6089 } 6090 6091 static int 6092 tlp_dm9102_tmsw_setmedia(struct tulip_softc *sc) 6093 { 6094 6095 /* XXX HomePNA on DM9102A. */ 6096 return tlp_mii_setmedia(sc); 6097 } 6098 6099 /* 6100 * ASIX AX88140A/AX88141 media switch. Internal PHY or MII. 6101 */ 6102 6103 static void tlp_asix_tmsw_init(struct tulip_softc *); 6104 static void tlp_asix_tmsw_getmedia(struct tulip_softc *, 6105 struct ifmediareq *); 6106 static int tlp_asix_tmsw_setmedia(struct tulip_softc *); 6107 6108 const struct tulip_mediasw tlp_asix_mediasw = { 6109 tlp_asix_tmsw_init, tlp_asix_tmsw_getmedia, 6110 tlp_asix_tmsw_setmedia 6111 }; 6112 6113 static void 6114 tlp_asix_tmsw_init(struct tulip_softc *sc) 6115 { 6116 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 6117 struct mii_data * const mii = &sc->sc_mii; 6118 uint32_t opmode; 6119 6120 mii->mii_ifp = ifp; 6121 mii->mii_readreg = tlp_bitbang_mii_readreg; 6122 mii->mii_writereg = tlp_bitbang_mii_writereg; 6123 mii->mii_statchg = sc->sc_statchg; 6124 sc->sc_ethercom.ec_mii = mii; 6125 ifmedia_init(&mii->mii_media, 0, tlp_mediachange, tlp_mediastatus); 6126 6127 /* 6128 * Configure OPMODE properly for the internal MII interface. 6129 */ 6130 switch (sc->sc_chip) { 6131 case TULIP_CHIP_AX88140: 6132 case TULIP_CHIP_AX88141: 6133 opmode = OPMODE_HBD | OPMODE_PS; 6134 break; 6135 default: 6136 opmode = 0; 6137 break; 6138 } 6139 6140 TULIP_WRITE(sc, CSR_OPMODE, opmode); 6141 6142 /* Now, probe the internal MII for the internal PHY. */ 6143 mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY, 6144 MII_OFFSET_ANY, 0); 6145 6146 /* XXX Figure how to handle the PHY. */ 6147 6148 if (LIST_FIRST(&mii->mii_phys) == NULL) { 6149 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL); 6150 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE); 6151 } else { 6152 sc->sc_flags |= TULIPF_HAS_MII; 6153 sc->sc_tick = tlp_mii_tick; 6154 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO); 6155 } 6156 6157 6158 } 6159 6160 static void 6161 tlp_asix_tmsw_getmedia(struct tulip_softc *sc, struct ifmediareq *ifmr) 6162 { 6163 6164 /* XXX PHY handling. */ 6165 tlp_mii_getmedia(sc, ifmr); 6166 } 6167 6168 static int 6169 tlp_asix_tmsw_setmedia(struct tulip_softc *sc) 6170 { 6171 6172 /* XXX PHY handling. */ 6173 return tlp_mii_setmedia(sc); 6174 } 6175 6176 /* 6177 * RS7112 media switch. Handles only MII attached to the SIO. 6178 * We only have a PHY at 1. 6179 */ 6180 void tlp_rs7112_tmsw_init(struct tulip_softc *); 6181 6182 const struct tulip_mediasw tlp_rs7112_mediasw = { 6183 tlp_rs7112_tmsw_init, tlp_mii_getmedia, tlp_mii_setmedia 6184 }; 6185 6186 void 6187 tlp_rs7112_tmsw_init(struct tulip_softc *sc) 6188 { 6189 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 6190 struct mii_data * const mii = &sc->sc_mii; 6191 6192 /* 6193 * We don't attach any media info structures to the ifmedia 6194 * entries, so if we're using a pre-init function that needs 6195 * that info, override it to one that doesn't. 6196 */ 6197 if (sc->sc_preinit == tlp_2114x_preinit) 6198 sc->sc_preinit = tlp_2114x_mii_preinit; 6199 6200 mii->mii_ifp = ifp; 6201 mii->mii_readreg = tlp_bitbang_mii_readreg; 6202 mii->mii_writereg = tlp_bitbang_mii_writereg; 6203 mii->mii_statchg = sc->sc_statchg; 6204 sc->sc_ethercom.ec_mii = mii; 6205 ifmedia_init(&mii->mii_media, 0, tlp_mediachange, tlp_mediastatus); 6206 6207 /* 6208 * The RS7112 reports a PHY at 0 (possibly HomePNA?) 6209 * and 1 (ethernet). We attach ethernet only. 6210 */ 6211 mii_attach(sc->sc_dev, mii, 0xffffffff, 1, MII_OFFSET_ANY, 0); 6212 6213 if (LIST_FIRST(&mii->mii_phys) == NULL) { 6214 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL); 6215 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE); 6216 } else { 6217 sc->sc_flags |= TULIPF_HAS_MII; 6218 sc->sc_tick = tlp_mii_tick; 6219 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO); 6220 } 6221 } 6222 6223 const char * 6224 tlp_chip_name(tulip_chip_t t) { 6225 if ((int)t < 0 || (int)t >= __arraycount(tlp_chip_names)) { 6226 static char buf[256]; 6227 (void)snprintf(buf, sizeof(buf), "[unknown 0x%x]", t); 6228 return buf; 6229 } 6230 return tlp_chip_names[t]; 6231 } 6232