xref: /netbsd-src/sys/dev/ic/spdmem.c (revision b7b7574d3bf8eeb51a1fa3977b59142ec6434a55)
1 /* $NetBSD: spdmem.c,v 1.10 2014/04/14 14:30:24 pooka Exp $ */
2 
3 /*
4  * Copyright (c) 2007 Nicolas Joly
5  * Copyright (c) 2007 Paul Goyette
6  * Copyright (c) 2007 Tobias Nygren
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. The name of the author may not be used to endorse or promote products
18  *    derived from this software without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 /*
34  * Serial Presence Detect (SPD) memory identification
35  */
36 
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: spdmem.c,v 1.10 2014/04/14 14:30:24 pooka Exp $");
39 
40 #include <sys/param.h>
41 #include <sys/device.h>
42 #include <sys/endian.h>
43 #include <sys/sysctl.h>
44 #include <machine/bswap.h>
45 
46 #include <dev/i2c/i2cvar.h>
47 #include <dev/ic/spdmemreg.h>
48 #include <dev/ic/spdmemvar.h>
49 
50 /* Routines for decoding spd data */
51 static void decode_edofpm(const struct sysctlnode *, device_t, struct spdmem *);
52 static void decode_rom(const struct sysctlnode *, device_t, struct spdmem *);
53 static void decode_sdram(const struct sysctlnode *, device_t, struct spdmem *,
54 	int);
55 static void decode_ddr(const struct sysctlnode *, device_t, struct spdmem *);
56 static void decode_ddr2(const struct sysctlnode *, device_t, struct spdmem *);
57 static void decode_ddr3(const struct sysctlnode *, device_t, struct spdmem *);
58 static void decode_fbdimm(const struct sysctlnode *, device_t, struct spdmem *);
59 
60 static void decode_size_speed(device_t, const struct sysctlnode *,
61 			      int, int, int, int, bool, const char *, int);
62 static void decode_voltage_refresh(device_t, struct spdmem *);
63 
64 #define IS_RAMBUS_TYPE (s->sm_len < 4)
65 
66 static const char* spdmem_basic_types[] = {
67 	"unknown",
68 	"FPM",
69 	"EDO",
70 	"Pipelined Nibble",
71 	"SDRAM",
72 	"ROM",
73 	"DDR SGRAM",
74 	"DDR SDRAM",
75 	"DDR2 SDRAM",
76 	"DDR2 SDRAM FB",
77 	"DDR2 SDRAM FB Probe",
78 	"DDR3 SDRAM"
79 };
80 
81 static const char* spdmem_superset_types[] = {
82 	"unknown",
83 	"ESDRAM",
84 	"DDR ESDRAM",
85 	"PEM EDO",
86 	"PEM SDRAM"
87 };
88 
89 static const char* spdmem_voltage_types[] = {
90 	"TTL (5V tolerant)",
91 	"LvTTL (not 5V tolerant)",
92 	"HSTL 1.5V",
93 	"SSTL 3.3V",
94 	"SSTL 2.5V",
95 	"SSTL 1.8V"
96 };
97 
98 static const char* spdmem_refresh_types[] = {
99 	"15.625us",
100 	"3.9us",
101 	"7.8us",
102 	"31.3us",
103 	"62.5us",
104 	"125us"
105 };
106 
107 static const char* spdmem_parity_types[] = {
108 	"no parity or ECC",
109 	"data parity",
110 	"data ECC",
111 	"data parity and ECC",
112 	"cmd/addr parity",
113 	"cmd/addr/data parity",
114 	"cmd/addr parity, data ECC",
115 	"cmd/addr/data parity, data ECC"
116 };
117 
118 /* Cycle time fractional values (units of .001 ns) for DDR2 SDRAM */
119 static const uint16_t spdmem_cycle_frac[] = {
120 	0, 100, 200, 300, 400, 500, 600, 700, 800, 900,
121 	250, 333, 667, 750, 999, 999
122 };
123 
124 /* Format string for timing info */
125 #define	LATENCY	"tAA-tRCD-tRP-tRAS: %d-%d-%d-%d\n"
126 
127 /* CRC functions used for certain memory types */
128 
129 static uint16_t spdcrc16 (struct spdmem_softc *sc, int count)
130 {
131 	uint16_t crc;
132 	int i, j;
133 	uint8_t val;
134 	crc = 0;
135 	for (j = 0; j <= count; j++) {
136 		val = (sc->sc_read)(sc, j);
137 		crc = crc ^ val << 8;
138 		for (i = 0; i < 8; ++i)
139 			if (crc & 0x8000)
140 				crc = crc << 1 ^ 0x1021;
141 			else
142 				crc = crc << 1;
143 	}
144 	return (crc & 0xFFFF);
145 }
146 
147 int
148 spdmem_common_probe(struct spdmem_softc *sc)
149 {
150 	int cksum = 0;
151 	uint8_t i, val, spd_type;
152 	int spd_len, spd_crc_cover;
153 	uint16_t crc_calc, crc_spd;
154 
155 	spd_type = (sc->sc_read)(sc, 2);
156 
157 	/* For older memory types, validate the checksum over 1st 63 bytes */
158 	if (spd_type <= SPDMEM_MEMTYPE_DDR2SDRAM) {
159 		for (i = 0; i < 63; i++)
160 			cksum += (sc->sc_read)(sc, i);
161 
162 		val = (sc->sc_read)(sc, 63);
163 
164 		if (cksum == 0 || (cksum & 0xff) != val) {
165 			aprint_debug("spd checksum failed, calc = 0x%02x, "
166 				     "spd = 0x%02x\n", cksum, val);
167 			return 0;
168 		} else
169 			return 1;
170 	}
171 
172 	/* For DDR3 and FBDIMM, verify the CRC */
173 	else if (spd_type <= SPDMEM_MEMTYPE_DDR3SDRAM) {
174 		spd_len = (sc->sc_read)(sc, 0);
175 		if (spd_len & SPDMEM_SPDCRC_116)
176 			spd_crc_cover = 116;
177 		else
178 			spd_crc_cover = 125;
179 		switch (spd_len & SPDMEM_SPDLEN_MASK) {
180 		case SPDMEM_SPDLEN_128:
181 			spd_len = 128;
182 			break;
183 		case SPDMEM_SPDLEN_176:
184 			spd_len = 176;
185 			break;
186 		case SPDMEM_SPDLEN_256:
187 			spd_len = 256;
188 			break;
189 		default:
190 			return 0;
191 		}
192 		if (spd_crc_cover > spd_len)
193 			return 0;
194 		crc_calc = spdcrc16(sc, spd_crc_cover);
195 		crc_spd = (sc->sc_read)(sc, 127) << 8;
196 		crc_spd |= (sc->sc_read)(sc, 126);
197 		if (crc_calc != crc_spd) {
198 			aprint_debug("crc16 failed, covers %d bytes, "
199 				     "calc = 0x%04x, spd = 0x%04x\n",
200 				     spd_crc_cover, crc_calc, crc_spd);
201 			return 0;
202 		}
203 		return 1;
204 	}
205 
206 	/* For unrecognized memory types, don't match at all */
207 	return 0;
208 }
209 
210 void
211 spdmem_common_attach(struct spdmem_softc *sc, device_t self)
212 {
213 	struct spdmem *s = &(sc->sc_spd_data);
214 	const char *type;
215 	const char *rambus_rev = "Reserved";
216 	int dimm_size;
217 	unsigned int i, spd_len, spd_size;
218 	const struct sysctlnode *node = NULL;
219 
220 	/*
221 	 * FBDIMM and DDR3 (and probably all newer) have a different
222 	 * encoding of the SPD EEPROM used/total sizes
223 	 */
224 	s->sm_len = (sc->sc_read)(sc, 0);
225 	s->sm_size = (sc->sc_read)(sc, 1);
226 	s->sm_type = (sc->sc_read)(sc, 2);
227 
228 	if (s->sm_type >= SPDMEM_MEMTYPE_FBDIMM) {
229 		spd_size = 64 << (s->sm_len & SPDMEM_SPDSIZE_MASK);
230 		switch (s->sm_len & SPDMEM_SPDLEN_MASK) {
231 		case SPDMEM_SPDLEN_128:
232 			spd_len = 128;
233 			break;
234 		case SPDMEM_SPDLEN_176:
235 			spd_len = 176;
236 			break;
237 		case SPDMEM_SPDLEN_256:
238 			spd_len = 256;
239 			break;
240 		default:
241 			spd_len = 64;
242 			break;
243 		}
244 	} else {
245 		spd_size = 1 << s->sm_size;
246 		spd_len = s->sm_len;
247 		if (spd_len < 64)
248 			spd_len = 64;
249 	}
250 	if (spd_len > spd_size)
251 		spd_len = spd_size;
252 	if (spd_len > sizeof(struct spdmem))
253 		spd_len = sizeof(struct spdmem);
254 	for (i = 3; i < spd_len; i++)
255 		((uint8_t *)s)[i] = (sc->sc_read)(sc, i);
256 
257 	/*
258 	 * Setup our sysctl subtree, hw.spdmemN
259 	 */
260 	sc->sc_sysctl_log = NULL;
261 	sysctl_createv(&sc->sc_sysctl_log, 0, NULL, &node,
262 	    0, CTLTYPE_NODE,
263 	    device_xname(self), NULL, NULL, 0, NULL, 0,
264 	    CTL_HW, CTL_CREATE, CTL_EOL);
265 	if (node != NULL && spd_len != 0)
266                 sysctl_createv(&sc->sc_sysctl_log, 0, NULL, NULL,
267                     0,
268                     CTLTYPE_STRUCT, "spd_data",
269 		    SYSCTL_DESCR("raw spd data"), NULL,
270                     0, s, spd_len,
271                     CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
272 
273 	/*
274 	 * Decode and print key SPD contents
275 	 */
276 	if (IS_RAMBUS_TYPE) {
277 		if (s->sm_type == SPDMEM_MEMTYPE_RAMBUS)
278 			type = "Rambus";
279 		else if (s->sm_type == SPDMEM_MEMTYPE_DIRECTRAMBUS)
280 			type = "Direct Rambus";
281 		else
282 			type = "Rambus (unknown)";
283 
284 		switch (s->sm_len) {
285 		case 0:
286 			rambus_rev = "Invalid";
287 			break;
288 		case 1:
289 			rambus_rev = "0.7";
290 			break;
291 		case 2:
292 			rambus_rev = "1.0";
293 			break;
294 		default:
295 			rambus_rev = "Reserved";
296 			break;
297 		}
298 	} else {
299 		if (s->sm_type < __arraycount(spdmem_basic_types))
300 			type = spdmem_basic_types[s->sm_type];
301 		else
302 			type = "unknown memory type";
303 
304 		if (s->sm_type == SPDMEM_MEMTYPE_EDO &&
305 		    s->sm_fpm.fpm_superset == SPDMEM_SUPERSET_EDO_PEM)
306 			type = spdmem_superset_types[SPDMEM_SUPERSET_EDO_PEM];
307 		if (s->sm_type == SPDMEM_MEMTYPE_SDRAM &&
308 		    s->sm_sdr.sdr_superset == SPDMEM_SUPERSET_SDRAM_PEM)
309 			type = spdmem_superset_types[SPDMEM_SUPERSET_SDRAM_PEM];
310 		if (s->sm_type == SPDMEM_MEMTYPE_DDRSDRAM &&
311 		    s->sm_ddr.ddr_superset == SPDMEM_SUPERSET_DDR_ESDRAM)
312 			type =
313 			    spdmem_superset_types[SPDMEM_SUPERSET_DDR_ESDRAM];
314 		if (s->sm_type == SPDMEM_MEMTYPE_SDRAM &&
315 		    s->sm_sdr.sdr_superset == SPDMEM_SUPERSET_ESDRAM) {
316 			type = spdmem_superset_types[SPDMEM_SUPERSET_ESDRAM];
317 		}
318 	}
319 
320 	strlcpy(sc->sc_type, type, SPDMEM_TYPE_MAXLEN);
321 	if (node != NULL)
322 		sysctl_createv(&sc->sc_sysctl_log, 0, NULL, NULL,
323 		    0,
324 		    CTLTYPE_STRING, "mem_type",
325 		    SYSCTL_DESCR("memory module type"), NULL,
326 		    0, sc->sc_type, 0,
327 		    CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
328 
329 	if (IS_RAMBUS_TYPE) {
330 		aprint_naive("\n");
331 		aprint_normal("\n");
332 		aprint_normal_dev(self, "%s, SPD Revision %s", type, rambus_rev);
333 		dimm_size = 1 << (s->sm_rdr.rdr_rows + s->sm_rdr.rdr_cols - 13);
334 		if (dimm_size >= 1024)
335 			aprint_normal(", %dGB\n", dimm_size / 1024);
336 		else
337 			aprint_normal(", %dMB\n", dimm_size);
338 
339 		/* No further decode for RAMBUS memory */
340 		return;
341 	}
342 	switch (s->sm_type) {
343 	case SPDMEM_MEMTYPE_EDO:
344 	case SPDMEM_MEMTYPE_FPM:
345 		decode_edofpm(node, self, s);
346 		break;
347 	case SPDMEM_MEMTYPE_ROM:
348 		decode_rom(node, self, s);
349 		break;
350 	case SPDMEM_MEMTYPE_SDRAM:
351 		decode_sdram(node, self, s, spd_len);
352 		break;
353 	case SPDMEM_MEMTYPE_DDRSDRAM:
354 		decode_ddr(node, self, s);
355 		break;
356 	case SPDMEM_MEMTYPE_DDR2SDRAM:
357 		decode_ddr2(node, self, s);
358 		break;
359 	case SPDMEM_MEMTYPE_DDR3SDRAM:
360 		decode_ddr3(node, self, s);
361 		break;
362 	case SPDMEM_MEMTYPE_FBDIMM:
363 	case SPDMEM_MEMTYPE_FBDIMM_PROBE:
364 		decode_fbdimm(node, self, s);
365 		break;
366 	}
367 
368 	/* Dump SPD */
369 	for (i = 0; i < spd_len;  i += 16) {
370 		unsigned int j, k;
371 		aprint_debug_dev(self, "0x%02x:", i);
372 		k = (spd_len > (i + 16)) ? i + 16 : spd_len;
373 		for (j = i; j < k; j++)
374 			aprint_debug(" %02x", ((uint8_t *)s)[j]);
375 		aprint_debug("\n");
376 	}
377 }
378 
379 int
380 spdmem_common_detach(struct spdmem_softc *sc, device_t self)
381 {
382 	sysctl_teardown(&sc->sc_sysctl_log);
383 
384 	return 0;
385 }
386 
387 static void
388 decode_size_speed(device_t self, const struct sysctlnode *node,
389 		  int dimm_size, int cycle_time, int d_clk, int bits,
390 		  bool round, const char *ddr_type_string, int speed)
391 {
392 	int p_clk;
393 	struct spdmem_softc *sc = device_private(self);
394 
395 	if (dimm_size < 1024)
396 		aprint_normal("%dMB", dimm_size);
397 	else
398 		aprint_normal("%dGB", dimm_size / 1024);
399 	if (node != NULL)
400 		sysctl_createv(&sc->sc_sysctl_log, 0, NULL, NULL,
401 		    CTLFLAG_IMMEDIATE,
402 		    CTLTYPE_INT, "size",
403 		    SYSCTL_DESCR("module size in MB"), NULL,
404 		    dimm_size, NULL, 0,
405 		    CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
406 
407 	if (cycle_time == 0) {
408 		aprint_normal("\n");
409 		return;
410 	}
411 
412 	/*
413 	 * Calculate p_clk first, since for DDR3 we need maximum significance.
414 	 * DDR3 rating is not rounded to a multiple of 100.  This results in
415 	 * cycle_time of 1.5ns displayed as PC3-10666.
416 	 *
417 	 * For SDRAM, the speed is provided by the caller so we use it.
418 	 */
419 	d_clk *= 1000 * 1000;
420 	if (speed)
421 		p_clk = speed;
422 	else
423 		p_clk = (d_clk * bits) / 8 / cycle_time;
424 	d_clk = ((d_clk + cycle_time / 2) ) / cycle_time;
425 	if (round) {
426 		if ((p_clk % 100) >= 50)
427 			p_clk += 50;
428 		p_clk -= p_clk % 100;
429 	}
430 	aprint_normal(", %dMHz (%s-%d)\n",
431 		      d_clk, ddr_type_string, p_clk);
432 	if (node != NULL)
433 		sysctl_createv(&sc->sc_sysctl_log, 0, NULL, NULL,
434 			       CTLFLAG_IMMEDIATE,
435 			       CTLTYPE_INT, "speed",
436 			       SYSCTL_DESCR("memory speed in MHz"),
437 			       NULL, d_clk, NULL, 0,
438 			       CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
439 }
440 
441 static void
442 decode_voltage_refresh(device_t self, struct spdmem *s)
443 {
444 	const char *voltage, *refresh;
445 
446 	if (s->sm_voltage < __arraycount(spdmem_voltage_types))
447 		voltage = spdmem_voltage_types[s->sm_voltage];
448 	else
449 		voltage = "unknown";
450 
451 	if (s->sm_refresh < __arraycount(spdmem_refresh_types))
452 		refresh = spdmem_refresh_types[s->sm_refresh];
453 	else
454 		refresh = "unknown";
455 
456 	aprint_verbose_dev(self, "voltage %s, refresh time %s%s\n",
457 			voltage, refresh,
458 			s->sm_selfrefresh?" (self-refreshing)":"");
459 }
460 
461 static void
462 decode_edofpm(const struct sysctlnode *node, device_t self, struct spdmem *s) {
463 	aprint_naive("\n");
464 	aprint_normal("\n");
465 	aprint_normal_dev(self, "%s", spdmem_basic_types[s->sm_type]);
466 
467 	aprint_normal("\n");
468 	aprint_verbose_dev(self,
469 	    "%d rows, %d cols, %d banks, %dns tRAC, %dns tCAC\n",
470 	    s->sm_fpm.fpm_rows, s->sm_fpm.fpm_cols, s->sm_fpm.fpm_banks,
471 	    s->sm_fpm.fpm_tRAC, s->sm_fpm.fpm_tCAC);
472 }
473 
474 static void
475 decode_rom(const struct sysctlnode *node, device_t self, struct spdmem *s) {
476 	aprint_naive("\n");
477 	aprint_normal("\n");
478 	aprint_normal_dev(self, "%s", spdmem_basic_types[s->sm_type]);
479 
480 	aprint_normal("\n");
481 	aprint_verbose_dev(self, "%d rows, %d cols, %d banks\n",
482 	    s->sm_rom.rom_rows, s->sm_rom.rom_cols, s->sm_rom.rom_banks);
483 }
484 
485 static void
486 decode_sdram(const struct sysctlnode *node, device_t self, struct spdmem *s,
487 	     int spd_len) {
488 	int dimm_size, cycle_time, bits, tAA, i, speed, freq;
489 
490 	aprint_naive("\n");
491 	aprint_normal("\n");
492 	aprint_normal_dev(self, "%s", spdmem_basic_types[s->sm_type]);
493 
494 	aprint_normal("%s, %s, ",
495 		(s->sm_sdr.sdr_mod_attrs & SPDMEM_SDR_MASK_REG)?
496 			" (registered)":"",
497 		(s->sm_config < __arraycount(spdmem_parity_types))?
498 			spdmem_parity_types[s->sm_config]:"invalid parity");
499 
500 	dimm_size = 1 << (s->sm_sdr.sdr_rows + s->sm_sdr.sdr_cols - 17);
501 	dimm_size *= s->sm_sdr.sdr_banks * s->sm_sdr.sdr_banks_per_chip;
502 
503 	cycle_time = s->sm_sdr.sdr_cycle_whole * 1000 +
504 		     s->sm_sdr.sdr_cycle_tenths * 100;
505 	bits = le16toh(s->sm_sdr.sdr_datawidth);
506 	if (s->sm_config == 1 || s->sm_config == 2)
507 		bits -= 8;
508 
509 	/* Calculate speed here - from OpenBSD */
510 	if (spd_len >= 128)
511 		freq = ((uint8_t *)s)[126];
512 	else
513 		freq = 0;
514 	switch (freq) {
515 		/*
516 		 * Must check cycle time since some PC-133 DIMMs
517 		 * actually report PC-100
518 		 */
519 	    case 100:
520 	    case 133:
521 		if (cycle_time < 8000)
522 			speed = 133;
523 		else
524 			speed = 100;
525 		break;
526 	    case 0x66:		/* Legacy DIMMs use _hex_ 66! */
527 	    default:
528 		speed = 66;
529 	}
530 	decode_size_speed(self, node, dimm_size, cycle_time, 1, bits, FALSE,
531 			  "PC", speed);
532 
533 	aprint_verbose_dev(self,
534 	    "%d rows, %d cols, %d banks, %d banks/chip, %d.%dns cycle time\n",
535 	    s->sm_sdr.sdr_rows, s->sm_sdr.sdr_cols, s->sm_sdr.sdr_banks,
536 	    s->sm_sdr.sdr_banks_per_chip, cycle_time/1000,
537 	    (cycle_time % 1000) / 100);
538 
539 	tAA  = 0;
540 	for (i = 0; i < 8; i++)
541 		if (s->sm_sdr.sdr_tCAS & (1 << i))
542 			tAA = i;
543 	tAA++;
544 	aprint_verbose_dev(self, LATENCY, tAA, s->sm_sdr.sdr_tRCD,
545 	    s->sm_sdr.sdr_tRP, s->sm_sdr.sdr_tRAS);
546 
547 	decode_voltage_refresh(self, s);
548 }
549 
550 static void
551 decode_ddr(const struct sysctlnode *node, device_t self, struct spdmem *s) {
552 	int dimm_size, cycle_time, bits, tAA, i;
553 
554 	aprint_naive("\n");
555 	aprint_normal("\n");
556 	aprint_normal_dev(self, "%s", spdmem_basic_types[s->sm_type]);
557 
558 	aprint_normal("%s, %s, ",
559 		(s->sm_ddr.ddr_mod_attrs & SPDMEM_DDR_MASK_REG)?
560 			" (registered)":"",
561 		(s->sm_config < __arraycount(spdmem_parity_types))?
562 			spdmem_parity_types[s->sm_config]:"invalid parity");
563 
564 	dimm_size = 1 << (s->sm_ddr.ddr_rows + s->sm_ddr.ddr_cols - 17);
565 	dimm_size *= s->sm_ddr.ddr_ranks * s->sm_ddr.ddr_banks_per_chip;
566 
567 	cycle_time = s->sm_ddr.ddr_cycle_whole * 1000 +
568 		  spdmem_cycle_frac[s->sm_ddr.ddr_cycle_tenths];
569 	bits = le16toh(s->sm_ddr.ddr_datawidth);
570 	if (s->sm_config == 1 || s->sm_config == 2)
571 		bits -= 8;
572 	decode_size_speed(self, node, dimm_size, cycle_time, 2, bits, TRUE,
573 			  "PC", 0);
574 
575 	aprint_verbose_dev(self,
576 	    "%d rows, %d cols, %d ranks, %d banks/chip, %d.%dns cycle time\n",
577 	    s->sm_ddr.ddr_rows, s->sm_ddr.ddr_cols, s->sm_ddr.ddr_ranks,
578 	    s->sm_ddr.ddr_banks_per_chip, cycle_time/1000,
579 	    (cycle_time % 1000 + 50) / 100);
580 
581 	tAA  = 0;
582 	for (i = 2; i < 8; i++)
583 		if (s->sm_ddr.ddr_tCAS & (1 << i))
584 			tAA = i;
585 	tAA /= 2;
586 
587 #define __DDR_ROUND(scale, field)	\
588 		((scale * s->sm_ddr.field + cycle_time - 1) / cycle_time)
589 
590 	aprint_verbose_dev(self, LATENCY, tAA, __DDR_ROUND(250, ddr_tRCD),
591 		__DDR_ROUND(250, ddr_tRP), __DDR_ROUND(1000, ddr_tRAS));
592 
593 #undef	__DDR_ROUND
594 
595 	decode_voltage_refresh(self, s);
596 }
597 
598 static void
599 decode_ddr2(const struct sysctlnode *node, device_t self, struct spdmem *s) {
600 	int dimm_size, cycle_time, bits, tAA, i;
601 
602 	aprint_naive("\n");
603 	aprint_normal("\n");
604 	aprint_normal_dev(self, "%s", spdmem_basic_types[s->sm_type]);
605 
606 	aprint_normal("%s, %s, ",
607 		(s->sm_ddr2.ddr2_mod_attrs & SPDMEM_DDR2_MASK_REG)?
608 			" (registered)":"",
609 		(s->sm_config < __arraycount(spdmem_parity_types))?
610 			spdmem_parity_types[s->sm_config]:"invalid parity");
611 
612 	dimm_size = 1 << (s->sm_ddr2.ddr2_rows + s->sm_ddr2.ddr2_cols - 17);
613 	dimm_size *= (s->sm_ddr2.ddr2_ranks + 1) *
614 		     s->sm_ddr2.ddr2_banks_per_chip;
615 
616 	cycle_time = s->sm_ddr2.ddr2_cycle_whole * 1000 +
617 		 spdmem_cycle_frac[s->sm_ddr2.ddr2_cycle_frac];
618 	bits = s->sm_ddr2.ddr2_datawidth;
619 	if ((s->sm_config & 0x03) != 0)
620 		bits -= 8;
621 	decode_size_speed(self, node, dimm_size, cycle_time, 2, bits, TRUE,
622 			  "PC2", 0);
623 
624 	aprint_verbose_dev(self,
625 	    "%d rows, %d cols, %d ranks, %d banks/chip, %d.%02dns cycle time\n",
626 	    s->sm_ddr2.ddr2_rows, s->sm_ddr2.ddr2_cols,
627 	    s->sm_ddr2.ddr2_ranks + 1, s->sm_ddr2.ddr2_banks_per_chip,
628 	    cycle_time / 1000, (cycle_time % 1000 + 5) /10 );
629 
630 	tAA  = 0;
631 	for (i = 2; i < 8; i++)
632 		if (s->sm_ddr2.ddr2_tCAS & (1 << i))
633 			tAA = i;
634 
635 #define __DDR2_ROUND(scale, field)	\
636 		((scale * s->sm_ddr2.field + cycle_time - 1) / cycle_time)
637 
638 	aprint_verbose_dev(self, LATENCY, tAA, __DDR2_ROUND(250, ddr2_tRCD),
639 		__DDR2_ROUND(250, ddr2_tRP), __DDR2_ROUND(1000, ddr2_tRAS));
640 
641 #undef	__DDR_ROUND
642 
643 	decode_voltage_refresh(self, s);
644 }
645 
646 static void
647 decode_ddr3(const struct sysctlnode *node, device_t self, struct spdmem *s) {
648 	int dimm_size, cycle_time, bits;
649 
650 	aprint_naive("\n");
651 	aprint_normal(": %18s\n", s->sm_ddr3.ddr3_part);
652 	aprint_normal_dev(self, "%s", spdmem_basic_types[s->sm_type]);
653 
654 	if (s->sm_ddr3.ddr3_mod_type ==
655 		SPDMEM_DDR3_TYPE_MINI_RDIMM ||
656 	    s->sm_ddr3.ddr3_mod_type == SPDMEM_DDR3_TYPE_RDIMM)
657 		aprint_normal(" (registered)");
658 	aprint_normal(", %sECC, %stemp-sensor, ",
659 		(s->sm_ddr3.ddr3_hasECC)?"":"no ",
660 		(s->sm_ddr3.ddr3_has_therm_sensor)?"":"no ");
661 
662 	/*
663 	 * DDR3 size specification is quite different from others
664 	 *
665 	 * Module capacity is defined as
666 	 *	Chip_Capacity_in_bits / 8bits-per-byte *
667 	 *	external_bus_width / internal_bus_width
668 	 * We further divide by 2**20 to get our answer in MB
669 	 */
670 	dimm_size = (s->sm_ddr3.ddr3_chipsize + 28 - 20) - 3 +
671 		    (s->sm_ddr3.ddr3_datawidth + 3) -
672 		    (s->sm_ddr3.ddr3_chipwidth + 2);
673 	dimm_size = (1 << dimm_size) * (s->sm_ddr3.ddr3_physbanks + 1);
674 
675 	cycle_time = (1000 * s->sm_ddr3.ddr3_mtb_dividend +
676 			    (s->sm_ddr3.ddr3_mtb_divisor / 2)) /
677 		     s->sm_ddr3.ddr3_mtb_divisor;
678 	cycle_time *= s->sm_ddr3.ddr3_tCKmin;
679 	bits = 1 << (s->sm_ddr3.ddr3_datawidth + 3);
680 	decode_size_speed(self, node, dimm_size, cycle_time, 2, bits, FALSE,
681 			  "PC3", 0);
682 
683 	aprint_verbose_dev(self,
684 	    "%d rows, %d cols, %d log. banks, %d phys. banks, "
685 	    "%d.%03dns cycle time\n",
686 	    s->sm_ddr3.ddr3_rows + 9, s->sm_ddr3.ddr3_cols + 12,
687 	    1 << (s->sm_ddr3.ddr3_logbanks + 3),
688 	    s->sm_ddr3.ddr3_physbanks + 1,
689 	    cycle_time/1000, cycle_time % 1000);
690 
691 #define	__DDR3_CYCLES(field) (s->sm_ddr3.field / s->sm_ddr3.ddr3_tCKmin)
692 
693 	aprint_verbose_dev(self, LATENCY, __DDR3_CYCLES(ddr3_tAAmin),
694 		__DDR3_CYCLES(ddr3_tRCDmin), __DDR3_CYCLES(ddr3_tRPmin),
695 		(s->sm_ddr3.ddr3_tRAS_msb * 256 + s->sm_ddr3.ddr3_tRAS_lsb) /
696 		    s->sm_ddr3.ddr3_tCKmin);
697 
698 #undef	__DDR3_CYCLES
699 }
700 
701 static void
702 decode_fbdimm(const struct sysctlnode *node, device_t self, struct spdmem *s) {
703 	int dimm_size, cycle_time, bits;
704 
705 	aprint_naive("\n");
706 	aprint_normal("\n");
707 	aprint_normal_dev(self, "%s", spdmem_basic_types[s->sm_type]);
708 
709 	/*
710 	 * FB-DIMM module size calculation is very much like DDR3
711 	 */
712 	dimm_size = s->sm_fbd.fbdimm_rows + 12 +
713 		    s->sm_fbd.fbdimm_cols +  9 - 20 - 3;
714 	dimm_size = (1 << dimm_size) * (1 << (s->sm_fbd.fbdimm_banks + 2));
715 
716 	cycle_time = (1000 * s->sm_fbd.fbdimm_mtb_dividend +
717 			    (s->sm_fbd.fbdimm_mtb_divisor / 2)) /
718 		     s->sm_fbd.fbdimm_mtb_divisor;
719 	bits = 1 << (s->sm_fbd.fbdimm_dev_width + 2);
720 	decode_size_speed(self, node, dimm_size, cycle_time, 2, bits, TRUE,
721 			  "PC2", 0);
722 
723 	aprint_verbose_dev(self,
724 	    "%d rows, %d cols, %d banks, %d.%02dns cycle time\n",
725 	    s->sm_fbd.fbdimm_rows, s->sm_fbd.fbdimm_cols,
726 	    1 << (s->sm_fbd.fbdimm_banks + 2),
727 	    cycle_time / 1000, (cycle_time % 1000 + 5) /10 );
728 
729 #define	__FBDIMM_CYCLES(field) (s->sm_fbd.field / s->sm_fbd.fbdimm_tCKmin)
730 
731 	aprint_verbose_dev(self, LATENCY, __FBDIMM_CYCLES(fbdimm_tAAmin),
732 		__FBDIMM_CYCLES(fbdimm_tRCDmin), __FBDIMM_CYCLES(fbdimm_tRPmin),
733 		(s->sm_fbd.fbdimm_tRAS_msb * 256 +
734 			s->sm_fbd.fbdimm_tRAS_lsb) /
735 		    s->sm_fbd.fbdimm_tCKmin);
736 
737 #undef	__FBDIMM_CYCLES
738 
739 	decode_voltage_refresh(self, s);
740 }
741