xref: /netbsd-src/sys/dev/ic/spdmem.c (revision 6a493d6bc668897c91594964a732d38505b70cbb)
1 /* $NetBSD: spdmem.c,v 1.8 2013/07/19 01:02:49 soren Exp $ */
2 
3 /*
4  * Copyright (c) 2007 Nicolas Joly
5  * Copyright (c) 2007 Paul Goyette
6  * Copyright (c) 2007 Tobias Nygren
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. The name of the author may not be used to endorse or promote products
18  *    derived from this software without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 /*
34  * Serial Presence Detect (SPD) memory identification
35  */
36 
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: spdmem.c,v 1.8 2013/07/19 01:02:49 soren Exp $");
39 
40 #include <sys/param.h>
41 #include <sys/device.h>
42 #include <sys/endian.h>
43 #include <sys/sysctl.h>
44 #include <machine/bswap.h>
45 
46 #include <dev/i2c/i2cvar.h>
47 #include <dev/ic/spdmemreg.h>
48 #include <dev/ic/spdmemvar.h>
49 
50 SYSCTL_SETUP_PROTO(sysctl_spdmem_setup);
51 
52 /* Routines for decoding spd data */
53 static void decode_edofpm(const struct sysctlnode *, device_t, struct spdmem *);
54 static void decode_rom(const struct sysctlnode *, device_t, struct spdmem *);
55 static void decode_sdram(const struct sysctlnode *, device_t, struct spdmem *,
56 	int);
57 static void decode_ddr(const struct sysctlnode *, device_t, struct spdmem *);
58 static void decode_ddr2(const struct sysctlnode *, device_t, struct spdmem *);
59 static void decode_ddr3(const struct sysctlnode *, device_t, struct spdmem *);
60 static void decode_fbdimm(const struct sysctlnode *, device_t, struct spdmem *);
61 
62 static void decode_size_speed(device_t, const struct sysctlnode *,
63 			      int, int, int, int, bool, const char *, int);
64 static void decode_voltage_refresh(device_t, struct spdmem *);
65 
66 #define IS_RAMBUS_TYPE (s->sm_len < 4)
67 
68 static const char* spdmem_basic_types[] = {
69 	"unknown",
70 	"FPM",
71 	"EDO",
72 	"Pipelined Nibble",
73 	"SDRAM",
74 	"ROM",
75 	"DDR SGRAM",
76 	"DDR SDRAM",
77 	"DDR2 SDRAM",
78 	"DDR2 SDRAM FB",
79 	"DDR2 SDRAM FB Probe",
80 	"DDR3 SDRAM"
81 };
82 
83 static const char* spdmem_superset_types[] = {
84 	"unknown",
85 	"ESDRAM",
86 	"DDR ESDRAM",
87 	"PEM EDO",
88 	"PEM SDRAM"
89 };
90 
91 static const char* spdmem_voltage_types[] = {
92 	"TTL (5V tolerant)",
93 	"LvTTL (not 5V tolerant)",
94 	"HSTL 1.5V",
95 	"SSTL 3.3V",
96 	"SSTL 2.5V",
97 	"SSTL 1.8V"
98 };
99 
100 static const char* spdmem_refresh_types[] = {
101 	"15.625us",
102 	"3.9us",
103 	"7.8us",
104 	"31.3us",
105 	"62.5us",
106 	"125us"
107 };
108 
109 static const char* spdmem_parity_types[] = {
110 	"no parity or ECC",
111 	"data parity",
112 	"data ECC",
113 	"data parity and ECC",
114 	"cmd/addr parity",
115 	"cmd/addr/data parity",
116 	"cmd/addr parity, data ECC",
117 	"cmd/addr/data parity, data ECC"
118 };
119 
120 /* Cycle time fractional values (units of .001 ns) for DDR2 SDRAM */
121 static const uint16_t spdmem_cycle_frac[] = {
122 	0, 100, 200, 300, 400, 500, 600, 700, 800, 900,
123 	250, 333, 667, 750, 999, 999
124 };
125 
126 /* Format string for timing info */
127 #define	LATENCY	"tAA-tRCD-tRP-tRAS: %d-%d-%d-%d\n"
128 
129 /* sysctl stuff */
130 static int hw_node = CTL_EOL;
131 
132 /* CRC functions used for certain memory types */
133 
134 static uint16_t spdcrc16 (struct spdmem_softc *sc, int count)
135 {
136 	uint16_t crc;
137 	int i, j;
138 	uint8_t val;
139 	crc = 0;
140 	for (j = 0; j <= count; j++) {
141 		val = (sc->sc_read)(sc, j);
142 		crc = crc ^ val << 8;
143 		for (i = 0; i < 8; ++i)
144 			if (crc & 0x8000)
145 				crc = crc << 1 ^ 0x1021;
146 			else
147 				crc = crc << 1;
148 	}
149 	return (crc & 0xFFFF);
150 }
151 
152 int
153 spdmem_common_probe(struct spdmem_softc *sc)
154 {
155 	int cksum = 0;
156 	uint8_t i, val, spd_type;
157 	int spd_len, spd_crc_cover;
158 	uint16_t crc_calc, crc_spd;
159 
160 	spd_type = (sc->sc_read)(sc, 2);
161 
162 	/* For older memory types, validate the checksum over 1st 63 bytes */
163 	if (spd_type <= SPDMEM_MEMTYPE_DDR2SDRAM) {
164 		for (i = 0; i < 63; i++)
165 			cksum += (sc->sc_read)(sc, i);
166 
167 		val = (sc->sc_read)(sc, 63);
168 
169 		if (cksum == 0 || (cksum & 0xff) != val) {
170 			aprint_debug("spd checksum failed, calc = 0x%02x, "
171 				     "spd = 0x%02x\n", cksum, val);
172 			return 0;
173 		} else
174 			return 1;
175 	}
176 
177 	/* For DDR3 and FBDIMM, verify the CRC */
178 	else if (spd_type <= SPDMEM_MEMTYPE_DDR3SDRAM) {
179 		spd_len = (sc->sc_read)(sc, 0);
180 		if (spd_len & SPDMEM_SPDCRC_116)
181 			spd_crc_cover = 116;
182 		else
183 			spd_crc_cover = 125;
184 		switch (spd_len & SPDMEM_SPDLEN_MASK) {
185 		case SPDMEM_SPDLEN_128:
186 			spd_len = 128;
187 			break;
188 		case SPDMEM_SPDLEN_176:
189 			spd_len = 176;
190 			break;
191 		case SPDMEM_SPDLEN_256:
192 			spd_len = 256;
193 			break;
194 		default:
195 			return 0;
196 		}
197 		if (spd_crc_cover > spd_len)
198 			return 0;
199 		crc_calc = spdcrc16(sc, spd_crc_cover);
200 		crc_spd = (sc->sc_read)(sc, 127) << 8;
201 		crc_spd |= (sc->sc_read)(sc, 126);
202 		if (crc_calc != crc_spd) {
203 			aprint_debug("crc16 failed, covers %d bytes, "
204 				     "calc = 0x%04x, spd = 0x%04x\n",
205 				     spd_crc_cover, crc_calc, crc_spd);
206 			return 0;
207 		}
208 		return 1;
209 	}
210 
211 	/* For unrecognized memory types, don't match at all */
212 	return 0;
213 }
214 
215 void
216 spdmem_common_attach(struct spdmem_softc *sc, device_t self)
217 {
218 	struct spdmem *s = &(sc->sc_spd_data);
219 	const char *type;
220 	const char *rambus_rev = "Reserved";
221 	int dimm_size;
222 	unsigned int i, spd_len, spd_size;
223 	const struct sysctlnode *node = NULL;
224 
225 	/*
226 	 * FBDIMM and DDR3 (and probably all newer) have a different
227 	 * encoding of the SPD EEPROM used/total sizes
228 	 */
229 	s->sm_len = (sc->sc_read)(sc, 0);
230 	s->sm_size = (sc->sc_read)(sc, 1);
231 	s->sm_type = (sc->sc_read)(sc, 2);
232 
233 	if (s->sm_type >= SPDMEM_MEMTYPE_FBDIMM) {
234 		spd_size = 64 << (s->sm_len & SPDMEM_SPDSIZE_MASK);
235 		switch (s->sm_len & SPDMEM_SPDLEN_MASK) {
236 		case SPDMEM_SPDLEN_128:
237 			spd_len = 128;
238 			break;
239 		case SPDMEM_SPDLEN_176:
240 			spd_len = 176;
241 			break;
242 		case SPDMEM_SPDLEN_256:
243 			spd_len = 256;
244 			break;
245 		default:
246 			spd_len = 64;
247 			break;
248 		}
249 	} else {
250 		spd_size = 1 << s->sm_size;
251 		spd_len = s->sm_len;
252 		if (spd_len < 64)
253 			spd_len = 64;
254 	}
255 	if (spd_len > spd_size)
256 		spd_len = spd_size;
257 	if (spd_len > sizeof(struct spdmem))
258 		spd_len = sizeof(struct spdmem);
259 	for (i = 3; i < spd_len; i++)
260 		((uint8_t *)s)[i] = (sc->sc_read)(sc, i);
261 
262 	/*
263 	 * Setup our sysctl subtree, hw.spdmemN
264 	 */
265 	sc->sc_sysctl_log = NULL;
266 	if (hw_node != CTL_EOL)
267 		sysctl_createv(&sc->sc_sysctl_log, 0, NULL, &node,
268 		    0, CTLTYPE_NODE,
269 		    device_xname(self), NULL, NULL, 0, NULL, 0,
270 		    CTL_HW, CTL_CREATE, CTL_EOL);
271 	if (node != NULL && spd_len != 0)
272                 sysctl_createv(&sc->sc_sysctl_log, 0, NULL, NULL,
273                     0,
274                     CTLTYPE_STRUCT, "spd_data",
275 		    SYSCTL_DESCR("raw spd data"), NULL,
276                     0, s, spd_len,
277                     CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
278 
279 	/*
280 	 * Decode and print key SPD contents
281 	 */
282 	if (IS_RAMBUS_TYPE) {
283 		if (s->sm_type == SPDMEM_MEMTYPE_RAMBUS)
284 			type = "Rambus";
285 		else if (s->sm_type == SPDMEM_MEMTYPE_DIRECTRAMBUS)
286 			type = "Direct Rambus";
287 		else
288 			type = "Rambus (unknown)";
289 
290 		switch (s->sm_len) {
291 		case 0:
292 			rambus_rev = "Invalid";
293 			break;
294 		case 1:
295 			rambus_rev = "0.7";
296 			break;
297 		case 2:
298 			rambus_rev = "1.0";
299 			break;
300 		default:
301 			rambus_rev = "Reserved";
302 			break;
303 		}
304 	} else {
305 		if (s->sm_type < __arraycount(spdmem_basic_types))
306 			type = spdmem_basic_types[s->sm_type];
307 		else
308 			type = "unknown memory type";
309 
310 		if (s->sm_type == SPDMEM_MEMTYPE_EDO &&
311 		    s->sm_fpm.fpm_superset == SPDMEM_SUPERSET_EDO_PEM)
312 			type = spdmem_superset_types[SPDMEM_SUPERSET_EDO_PEM];
313 		if (s->sm_type == SPDMEM_MEMTYPE_SDRAM &&
314 		    s->sm_sdr.sdr_superset == SPDMEM_SUPERSET_SDRAM_PEM)
315 			type = spdmem_superset_types[SPDMEM_SUPERSET_SDRAM_PEM];
316 		if (s->sm_type == SPDMEM_MEMTYPE_DDRSDRAM &&
317 		    s->sm_ddr.ddr_superset == SPDMEM_SUPERSET_DDR_ESDRAM)
318 			type =
319 			    spdmem_superset_types[SPDMEM_SUPERSET_DDR_ESDRAM];
320 		if (s->sm_type == SPDMEM_MEMTYPE_SDRAM &&
321 		    s->sm_sdr.sdr_superset == SPDMEM_SUPERSET_ESDRAM) {
322 			type = spdmem_superset_types[SPDMEM_SUPERSET_ESDRAM];
323 		}
324 	}
325 
326 	strlcpy(sc->sc_type, type, SPDMEM_TYPE_MAXLEN);
327 	if (node != NULL)
328 		sysctl_createv(&sc->sc_sysctl_log, 0, NULL, NULL,
329 		    0,
330 		    CTLTYPE_STRING, "mem_type",
331 		    SYSCTL_DESCR("memory module type"), NULL,
332 		    0, sc->sc_type, 0,
333 		    CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
334 
335 	if (IS_RAMBUS_TYPE) {
336 		aprint_naive("\n");
337 		aprint_normal("\n");
338 		aprint_normal_dev(self, "%s, SPD Revision %s", type, rambus_rev);
339 		dimm_size = 1 << (s->sm_rdr.rdr_rows + s->sm_rdr.rdr_cols - 13);
340 		if (dimm_size >= 1024)
341 			aprint_normal(", %dGB\n", dimm_size / 1024);
342 		else
343 			aprint_normal(", %dMB\n", dimm_size);
344 
345 		/* No further decode for RAMBUS memory */
346 		return;
347 	}
348 	switch (s->sm_type) {
349 	case SPDMEM_MEMTYPE_EDO:
350 	case SPDMEM_MEMTYPE_FPM:
351 		decode_edofpm(node, self, s);
352 		break;
353 	case SPDMEM_MEMTYPE_ROM:
354 		decode_rom(node, self, s);
355 		break;
356 	case SPDMEM_MEMTYPE_SDRAM:
357 		decode_sdram(node, self, s, spd_len);
358 		break;
359 	case SPDMEM_MEMTYPE_DDRSDRAM:
360 		decode_ddr(node, self, s);
361 		break;
362 	case SPDMEM_MEMTYPE_DDR2SDRAM:
363 		decode_ddr2(node, self, s);
364 		break;
365 	case SPDMEM_MEMTYPE_DDR3SDRAM:
366 		decode_ddr3(node, self, s);
367 		break;
368 	case SPDMEM_MEMTYPE_FBDIMM:
369 	case SPDMEM_MEMTYPE_FBDIMM_PROBE:
370 		decode_fbdimm(node, self, s);
371 		break;
372 	}
373 
374 	/* Dump SPD */
375 	for (i = 0; i < spd_len;  i += 16) {
376 		unsigned int j, k;
377 		aprint_debug_dev(self, "0x%02x:", i);
378 		k = (spd_len > (i + 16)) ? i + 16 : spd_len;
379 		for (j = i; j < k; j++)
380 			aprint_debug(" %02x", ((uint8_t *)s)[j]);
381 		aprint_debug("\n");
382 	}
383 }
384 
385 int
386 spdmem_common_detach(struct spdmem_softc *sc, device_t self)
387 {
388 	sysctl_teardown(&sc->sc_sysctl_log);
389 
390 	return 0;
391 }
392 
393 SYSCTL_SETUP(sysctl_spdmem_setup, "sysctl hw.spdmem subtree setup")
394 {
395 	const struct sysctlnode *node;
396 
397 	if (sysctl_createv(clog, 0, NULL, &node,
398 #ifdef _MODULE
399 			       0,
400 #else
401 			       CTLFLAG_PERMANENT,
402 #endif
403 			       CTLTYPE_NODE, "hw", NULL, NULL, 0, NULL, 0,
404 			       CTL_HW, CTL_EOL) != 0)
405 		return;
406 
407 	hw_node = node->sysctl_num;
408 }
409 
410 static void
411 decode_size_speed(device_t self, const struct sysctlnode *node,
412 		  int dimm_size, int cycle_time, int d_clk, int bits,
413 		  bool round, const char *ddr_type_string, int speed)
414 {
415 	int p_clk;
416 	struct spdmem_softc *sc = device_private(self);
417 
418 	if (dimm_size < 1024)
419 		aprint_normal("%dMB", dimm_size);
420 	else
421 		aprint_normal("%dGB", dimm_size / 1024);
422 	if (node != NULL)
423 		sysctl_createv(&sc->sc_sysctl_log, 0, NULL, NULL,
424 		    CTLFLAG_IMMEDIATE,
425 		    CTLTYPE_INT, "size",
426 		    SYSCTL_DESCR("module size in MB"), NULL,
427 		    dimm_size, NULL, 0,
428 		    CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
429 
430 	if (cycle_time == 0) {
431 		aprint_normal("\n");
432 		return;
433 	}
434 
435 	/*
436 	 * Calculate p_clk first, since for DDR3 we need maximum significance.
437 	 * DDR3 rating is not rounded to a multiple of 100.  This results in
438 	 * cycle_time of 1.5ns displayed as PC3-10666.
439 	 *
440 	 * For SDRAM, the speed is provided by the caller so we use it.
441 	 */
442 	d_clk *= 1000 * 1000;
443 	if (speed)
444 		p_clk = speed;
445 	else
446 		p_clk = (d_clk * bits) / 8 / cycle_time;
447 	d_clk = ((d_clk + cycle_time / 2) ) / cycle_time;
448 	if (round) {
449 		if ((p_clk % 100) >= 50)
450 			p_clk += 50;
451 		p_clk -= p_clk % 100;
452 	}
453 	aprint_normal(", %dMHz (%s-%d)\n",
454 		      d_clk, ddr_type_string, p_clk);
455 	if (node != NULL)
456 		sysctl_createv(&sc->sc_sysctl_log, 0, NULL, NULL,
457 			       CTLFLAG_IMMEDIATE,
458 			       CTLTYPE_INT, "speed",
459 			       SYSCTL_DESCR("memory speed in MHz"),
460 			       NULL, d_clk, NULL, 0,
461 			       CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
462 }
463 
464 static void
465 decode_voltage_refresh(device_t self, struct spdmem *s)
466 {
467 	const char *voltage, *refresh;
468 
469 	if (s->sm_voltage < __arraycount(spdmem_voltage_types))
470 		voltage = spdmem_voltage_types[s->sm_voltage];
471 	else
472 		voltage = "unknown";
473 
474 	if (s->sm_refresh < __arraycount(spdmem_refresh_types))
475 		refresh = spdmem_refresh_types[s->sm_refresh];
476 	else
477 		refresh = "unknown";
478 
479 	aprint_verbose_dev(self, "voltage %s, refresh time %s%s\n",
480 			voltage, refresh,
481 			s->sm_selfrefresh?" (self-refreshing)":"");
482 }
483 
484 static void
485 decode_edofpm(const struct sysctlnode *node, device_t self, struct spdmem *s) {
486 	aprint_naive("\n");
487 	aprint_normal("\n");
488 	aprint_normal_dev(self, "%s", spdmem_basic_types[s->sm_type]);
489 
490 	aprint_normal("\n");
491 	aprint_verbose_dev(self,
492 	    "%d rows, %d cols, %d banks, %dns tRAC, %dns tCAC\n",
493 	    s->sm_fpm.fpm_rows, s->sm_fpm.fpm_cols, s->sm_fpm.fpm_banks,
494 	    s->sm_fpm.fpm_tRAC, s->sm_fpm.fpm_tCAC);
495 }
496 
497 static void
498 decode_rom(const struct sysctlnode *node, device_t self, struct spdmem *s) {
499 	aprint_naive("\n");
500 	aprint_normal("\n");
501 	aprint_normal_dev(self, "%s", spdmem_basic_types[s->sm_type]);
502 
503 	aprint_normal("\n");
504 	aprint_verbose_dev(self, "%d rows, %d cols, %d banks\n",
505 	    s->sm_rom.rom_rows, s->sm_rom.rom_cols, s->sm_rom.rom_banks);
506 }
507 
508 static void
509 decode_sdram(const struct sysctlnode *node, device_t self, struct spdmem *s,
510 	     int spd_len) {
511 	int dimm_size, cycle_time, bits, tAA, i, speed, freq;
512 
513 	aprint_naive("\n");
514 	aprint_normal("\n");
515 	aprint_normal_dev(self, "%s", spdmem_basic_types[s->sm_type]);
516 
517 	aprint_normal("%s, %s, ",
518 		(s->sm_sdr.sdr_mod_attrs & SPDMEM_SDR_MASK_REG)?
519 			" (registered)":"",
520 		(s->sm_config < __arraycount(spdmem_parity_types))?
521 			spdmem_parity_types[s->sm_config]:"invalid parity");
522 
523 	dimm_size = 1 << (s->sm_sdr.sdr_rows + s->sm_sdr.sdr_cols - 17);
524 	dimm_size *= s->sm_sdr.sdr_banks * s->sm_sdr.sdr_banks_per_chip;
525 
526 	cycle_time = s->sm_sdr.sdr_cycle_whole * 1000 +
527 		     s->sm_sdr.sdr_cycle_tenths * 100;
528 	bits = le16toh(s->sm_sdr.sdr_datawidth);
529 	if (s->sm_config == 1 || s->sm_config == 2)
530 		bits -= 8;
531 
532 	/* Calculate speed here - from OpenBSD */
533 	if (spd_len >= 128)
534 		freq = ((uint8_t *)s)[126];
535 	else
536 		freq = 0;
537 	switch (freq) {
538 		/*
539 		 * Must check cycle time since some PC-133 DIMMs
540 		 * actually report PC-100
541 		 */
542 	    case 100:
543 	    case 133:
544 		if (cycle_time < 8000)
545 			speed = 133;
546 		else
547 			speed = 100;
548 		break;
549 	    case 0x66:		/* Legacy DIMMs use _hex_ 66! */
550 	    default:
551 		speed = 66;
552 	}
553 	decode_size_speed(self, node, dimm_size, cycle_time, 1, bits, FALSE,
554 			  "PC", speed);
555 
556 	aprint_verbose_dev(self,
557 	    "%d rows, %d cols, %d banks, %d banks/chip, %d.%dns cycle time\n",
558 	    s->sm_sdr.sdr_rows, s->sm_sdr.sdr_cols, s->sm_sdr.sdr_banks,
559 	    s->sm_sdr.sdr_banks_per_chip, cycle_time/1000,
560 	    (cycle_time % 1000) / 100);
561 
562 	tAA  = 0;
563 	for (i = 0; i < 8; i++)
564 		if (s->sm_sdr.sdr_tCAS & (1 << i))
565 			tAA = i;
566 	tAA++;
567 	aprint_verbose_dev(self, LATENCY, tAA, s->sm_sdr.sdr_tRCD,
568 	    s->sm_sdr.sdr_tRP, s->sm_sdr.sdr_tRAS);
569 
570 	decode_voltage_refresh(self, s);
571 }
572 
573 static void
574 decode_ddr(const struct sysctlnode *node, device_t self, struct spdmem *s) {
575 	int dimm_size, cycle_time, bits, tAA, i;
576 
577 	aprint_naive("\n");
578 	aprint_normal("\n");
579 	aprint_normal_dev(self, "%s", spdmem_basic_types[s->sm_type]);
580 
581 	aprint_normal("%s, %s, ",
582 		(s->sm_ddr.ddr_mod_attrs & SPDMEM_DDR_MASK_REG)?
583 			" (registered)":"",
584 		(s->sm_config < __arraycount(spdmem_parity_types))?
585 			spdmem_parity_types[s->sm_config]:"invalid parity");
586 
587 	dimm_size = 1 << (s->sm_ddr.ddr_rows + s->sm_ddr.ddr_cols - 17);
588 	dimm_size *= s->sm_ddr.ddr_ranks * s->sm_ddr.ddr_banks_per_chip;
589 
590 	cycle_time = s->sm_ddr.ddr_cycle_whole * 1000 +
591 		  spdmem_cycle_frac[s->sm_ddr.ddr_cycle_tenths];
592 	bits = le16toh(s->sm_ddr.ddr_datawidth);
593 	if (s->sm_config == 1 || s->sm_config == 2)
594 		bits -= 8;
595 	decode_size_speed(self, node, dimm_size, cycle_time, 2, bits, TRUE,
596 			  "PC", 0);
597 
598 	aprint_verbose_dev(self,
599 	    "%d rows, %d cols, %d ranks, %d banks/chip, %d.%dns cycle time\n",
600 	    s->sm_ddr.ddr_rows, s->sm_ddr.ddr_cols, s->sm_ddr.ddr_ranks,
601 	    s->sm_ddr.ddr_banks_per_chip, cycle_time/1000,
602 	    (cycle_time % 1000 + 50) / 100);
603 
604 	tAA  = 0;
605 	for (i = 2; i < 8; i++)
606 		if (s->sm_ddr.ddr_tCAS & (1 << i))
607 			tAA = i;
608 	tAA /= 2;
609 
610 #define __DDR_ROUND(scale, field)	\
611 		((scale * s->sm_ddr.field + cycle_time - 1) / cycle_time)
612 
613 	aprint_verbose_dev(self, LATENCY, tAA, __DDR_ROUND(250, ddr_tRCD),
614 		__DDR_ROUND(250, ddr_tRP), __DDR_ROUND(1000, ddr_tRAS));
615 
616 #undef	__DDR_ROUND
617 
618 	decode_voltage_refresh(self, s);
619 }
620 
621 static void
622 decode_ddr2(const struct sysctlnode *node, device_t self, struct spdmem *s) {
623 	int dimm_size, cycle_time, bits, tAA, i;
624 
625 	aprint_naive("\n");
626 	aprint_normal("\n");
627 	aprint_normal_dev(self, "%s", spdmem_basic_types[s->sm_type]);
628 
629 	aprint_normal("%s, %s, ",
630 		(s->sm_ddr2.ddr2_mod_attrs & SPDMEM_DDR2_MASK_REG)?
631 			" (registered)":"",
632 		(s->sm_config < __arraycount(spdmem_parity_types))?
633 			spdmem_parity_types[s->sm_config]:"invalid parity");
634 
635 	dimm_size = 1 << (s->sm_ddr2.ddr2_rows + s->sm_ddr2.ddr2_cols - 17);
636 	dimm_size *= (s->sm_ddr2.ddr2_ranks + 1) *
637 		     s->sm_ddr2.ddr2_banks_per_chip;
638 
639 	cycle_time = s->sm_ddr2.ddr2_cycle_whole * 1000 +
640 		 spdmem_cycle_frac[s->sm_ddr2.ddr2_cycle_frac];
641 	bits = s->sm_ddr2.ddr2_datawidth;
642 	if ((s->sm_config & 0x03) != 0)
643 		bits -= 8;
644 	decode_size_speed(self, node, dimm_size, cycle_time, 2, bits, TRUE,
645 			  "PC2", 0);
646 
647 	aprint_verbose_dev(self,
648 	    "%d rows, %d cols, %d ranks, %d banks/chip, %d.%02dns cycle time\n",
649 	    s->sm_ddr2.ddr2_rows, s->sm_ddr2.ddr2_cols,
650 	    s->sm_ddr2.ddr2_ranks + 1, s->sm_ddr2.ddr2_banks_per_chip,
651 	    cycle_time / 1000, (cycle_time % 1000 + 5) /10 );
652 
653 	tAA  = 0;
654 	for (i = 2; i < 8; i++)
655 		if (s->sm_ddr2.ddr2_tCAS & (1 << i))
656 			tAA = i;
657 
658 #define __DDR2_ROUND(scale, field)	\
659 		((scale * s->sm_ddr2.field + cycle_time - 1) / cycle_time)
660 
661 	aprint_verbose_dev(self, LATENCY, tAA, __DDR2_ROUND(250, ddr2_tRCD),
662 		__DDR2_ROUND(250, ddr2_tRP), __DDR2_ROUND(1000, ddr2_tRAS));
663 
664 #undef	__DDR_ROUND
665 
666 	decode_voltage_refresh(self, s);
667 }
668 
669 static void
670 decode_ddr3(const struct sysctlnode *node, device_t self, struct spdmem *s) {
671 	int dimm_size, cycle_time, bits;
672 
673 	aprint_naive("\n");
674 	aprint_normal(": %18s\n", s->sm_ddr3.ddr3_part);
675 	aprint_normal_dev(self, "%s", spdmem_basic_types[s->sm_type]);
676 
677 	if (s->sm_ddr3.ddr3_mod_type ==
678 		SPDMEM_DDR3_TYPE_MINI_RDIMM ||
679 	    s->sm_ddr3.ddr3_mod_type == SPDMEM_DDR3_TYPE_RDIMM)
680 		aprint_normal(" (registered)");
681 	aprint_normal(", %sECC, %stemp-sensor, ",
682 		(s->sm_ddr3.ddr3_hasECC)?"":"no ",
683 		(s->sm_ddr3.ddr3_has_therm_sensor)?"":"no ");
684 
685 	/*
686 	 * DDR3 size specification is quite different from others
687 	 *
688 	 * Module capacity is defined as
689 	 *	Chip_Capacity_in_bits / 8bits-per-byte *
690 	 *	external_bus_width / internal_bus_width
691 	 * We further divide by 2**20 to get our answer in MB
692 	 */
693 	dimm_size = (s->sm_ddr3.ddr3_chipsize + 28 - 20) - 3 +
694 		    (s->sm_ddr3.ddr3_datawidth + 3) -
695 		    (s->sm_ddr3.ddr3_chipwidth + 2);
696 	dimm_size = (1 << dimm_size) * (s->sm_ddr3.ddr3_physbanks + 1);
697 
698 	cycle_time = (1000 * s->sm_ddr3.ddr3_mtb_dividend +
699 			    (s->sm_ddr3.ddr3_mtb_divisor / 2)) /
700 		     s->sm_ddr3.ddr3_mtb_divisor;
701 	cycle_time *= s->sm_ddr3.ddr3_tCKmin;
702 	bits = 1 << (s->sm_ddr3.ddr3_datawidth + 3);
703 	decode_size_speed(self, node, dimm_size, cycle_time, 2, bits, FALSE,
704 			  "PC3", 0);
705 
706 	aprint_verbose_dev(self,
707 	    "%d rows, %d cols, %d log. banks, %d phys. banks, "
708 	    "%d.%03dns cycle time\n",
709 	    s->sm_ddr3.ddr3_rows + 9, s->sm_ddr3.ddr3_cols + 12,
710 	    1 << (s->sm_ddr3.ddr3_logbanks + 3),
711 	    s->sm_ddr3.ddr3_physbanks + 1,
712 	    cycle_time/1000, cycle_time % 1000);
713 
714 #define	__DDR3_CYCLES(field) (s->sm_ddr3.field / s->sm_ddr3.ddr3_tCKmin)
715 
716 	aprint_verbose_dev(self, LATENCY, __DDR3_CYCLES(ddr3_tAAmin),
717 		__DDR3_CYCLES(ddr3_tRCDmin), __DDR3_CYCLES(ddr3_tRPmin),
718 		(s->sm_ddr3.ddr3_tRAS_msb * 256 + s->sm_ddr3.ddr3_tRAS_lsb) /
719 		    s->sm_ddr3.ddr3_tCKmin);
720 
721 #undef	__DDR3_CYCLES
722 }
723 
724 static void
725 decode_fbdimm(const struct sysctlnode *node, device_t self, struct spdmem *s) {
726 	int dimm_size, cycle_time, bits;
727 
728 	aprint_naive("\n");
729 	aprint_normal("\n");
730 	aprint_normal_dev(self, "%s", spdmem_basic_types[s->sm_type]);
731 
732 	/*
733 	 * FB-DIMM module size calculation is very much like DDR3
734 	 */
735 	dimm_size = s->sm_fbd.fbdimm_rows + 12 +
736 		    s->sm_fbd.fbdimm_cols +  9 - 20 - 3;
737 	dimm_size = (1 << dimm_size) * (1 << (s->sm_fbd.fbdimm_banks + 2));
738 
739 	cycle_time = (1000 * s->sm_fbd.fbdimm_mtb_dividend +
740 			    (s->sm_fbd.fbdimm_mtb_divisor / 2)) /
741 		     s->sm_fbd.fbdimm_mtb_divisor;
742 	bits = 1 << (s->sm_fbd.fbdimm_dev_width + 2);
743 	decode_size_speed(self, node, dimm_size, cycle_time, 2, bits, TRUE,
744 			  "PC2", 0);
745 
746 	aprint_verbose_dev(self,
747 	    "%d rows, %d cols, %d banks, %d.%02dns cycle time\n",
748 	    s->sm_fbd.fbdimm_rows, s->sm_fbd.fbdimm_cols,
749 	    1 << (s->sm_fbd.fbdimm_banks + 2),
750 	    cycle_time / 1000, (cycle_time % 1000 + 5) /10 );
751 
752 #define	__FBDIMM_CYCLES(field) (s->sm_fbd.field / s->sm_fbd.fbdimm_tCKmin)
753 
754 	aprint_verbose_dev(self, LATENCY, __FBDIMM_CYCLES(fbdimm_tAAmin),
755 		__FBDIMM_CYCLES(fbdimm_tRCDmin), __FBDIMM_CYCLES(fbdimm_tRPmin),
756 		(s->sm_fbd.fbdimm_tRAS_msb * 256 +
757 			s->sm_fbd.fbdimm_tRAS_lsb) /
758 		    s->sm_fbd.fbdimm_tCKmin);
759 
760 #undef	__FBDIMM_CYCLES
761 
762 	decode_voltage_refresh(self, s);
763 }
764