1 /* $NetBSD: spdmem.c,v 1.14 2015/05/15 08:44:24 msaitoh Exp $ */ 2 3 /* 4 * Copyright (c) 2007 Nicolas Joly 5 * Copyright (c) 2007 Paul Goyette 6 * Copyright (c) 2007 Tobias Nygren 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. The name of the author may not be used to endorse or promote products 18 * derived from this software without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS 21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 30 * POSSIBILITY OF SUCH DAMAGE. 31 */ 32 33 /* 34 * Serial Presence Detect (SPD) memory identification 35 */ 36 37 #include <sys/cdefs.h> 38 __KERNEL_RCSID(0, "$NetBSD: spdmem.c,v 1.14 2015/05/15 08:44:24 msaitoh Exp $"); 39 40 #include <sys/param.h> 41 #include <sys/device.h> 42 #include <sys/endian.h> 43 #include <sys/sysctl.h> 44 #include <machine/bswap.h> 45 46 #include <dev/i2c/i2cvar.h> 47 #include <dev/ic/spdmemreg.h> 48 #include <dev/ic/spdmemvar.h> 49 50 /* Routines for decoding spd data */ 51 static void decode_edofpm(const struct sysctlnode *, device_t, struct spdmem *); 52 static void decode_rom(const struct sysctlnode *, device_t, struct spdmem *); 53 static void decode_sdram(const struct sysctlnode *, device_t, struct spdmem *, 54 int); 55 static void decode_ddr(const struct sysctlnode *, device_t, struct spdmem *); 56 static void decode_ddr2(const struct sysctlnode *, device_t, struct spdmem *); 57 static void decode_ddr3(const struct sysctlnode *, device_t, struct spdmem *); 58 static void decode_ddr4(const struct sysctlnode *, device_t, struct spdmem *); 59 static void decode_fbdimm(const struct sysctlnode *, device_t, struct spdmem *); 60 61 static void decode_size_speed(device_t, const struct sysctlnode *, 62 int, int, int, int, bool, const char *, int); 63 static void decode_voltage_refresh(device_t, struct spdmem *); 64 65 #define IS_RAMBUS_TYPE (s->sm_len < 4) 66 67 static const char* const spdmem_basic_types[] = { 68 "unknown", 69 "FPM", 70 "EDO", 71 "Pipelined Nibble", 72 "SDRAM", 73 "ROM", 74 "DDR SGRAM", 75 "DDR SDRAM", 76 "DDR2 SDRAM", 77 "DDR2 SDRAM FB", 78 "DDR2 SDRAM FB Probe", 79 "DDR3 SDRAM", 80 "DDR4 SDRAM" 81 }; 82 83 static const char* const spdmem_ddr4_module_types[] = { 84 "DDR4 Extended", 85 "DDR4 RDIMM", 86 "DDR4 UDIMM", 87 "DDR4 SO-DIMM", 88 "DDR4 Load-Reduced DIMM", 89 "DDR4 Mini-RDIMM", 90 "DDR4 Mini-UDIMM", 91 "DDR4 Reserved", 92 "DDR4 72Bit SO-RDIMM", 93 "DDR4 72Bit SO-UDIMM", 94 "DDR4 Undefined", 95 "DDR4 Reserved", 96 "DDR4 16Bit SO-DIMM", 97 "DDR4 32Bit SO-DIMM", 98 "DDR4 Reserved", 99 "DDR4 Undefined" 100 }; 101 102 static const char* const spdmem_superset_types[] = { 103 "unknown", 104 "ESDRAM", 105 "DDR ESDRAM", 106 "PEM EDO", 107 "PEM SDRAM" 108 }; 109 110 static const char* const spdmem_voltage_types[] = { 111 "TTL (5V tolerant)", 112 "LvTTL (not 5V tolerant)", 113 "HSTL 1.5V", 114 "SSTL 3.3V", 115 "SSTL 2.5V", 116 "SSTL 1.8V" 117 }; 118 119 static const char* const spdmem_refresh_types[] = { 120 "15.625us", 121 "3.9us", 122 "7.8us", 123 "31.3us", 124 "62.5us", 125 "125us" 126 }; 127 128 static const char* const spdmem_parity_types[] = { 129 "no parity or ECC", 130 "data parity", 131 "data ECC", 132 "data parity and ECC", 133 "cmd/addr parity", 134 "cmd/addr/data parity", 135 "cmd/addr parity, data ECC", 136 "cmd/addr/data parity, data ECC" 137 }; 138 139 int spd_rom_sizes[] = { 0, 128, 256, 384, 512 }; 140 141 142 /* Cycle time fractional values (units of .001 ns) for DDR2 SDRAM */ 143 static const uint16_t spdmem_cycle_frac[] = { 144 0, 100, 200, 300, 400, 500, 600, 700, 800, 900, 145 250, 333, 667, 750, 999, 999 146 }; 147 148 /* Format string for timing info */ 149 #define LATENCY "tAA-tRCD-tRP-tRAS: %d-%d-%d-%d\n" 150 151 /* CRC functions used for certain memory types */ 152 153 static uint16_t spdcrc16 (struct spdmem_softc *sc, int count) 154 { 155 uint16_t crc; 156 int i, j; 157 uint8_t val; 158 crc = 0; 159 for (j = 0; j <= count; j++) { 160 val = (sc->sc_read)(sc, j); 161 crc = crc ^ val << 8; 162 for (i = 0; i < 8; ++i) 163 if (crc & 0x8000) 164 crc = crc << 1 ^ 0x1021; 165 else 166 crc = crc << 1; 167 } 168 return (crc & 0xFFFF); 169 } 170 171 int 172 spdmem_common_probe(struct spdmem_softc *sc) 173 { 174 int cksum = 0; 175 uint8_t i, val, spd_type; 176 int spd_len, spd_crc_cover; 177 uint16_t crc_calc, crc_spd; 178 179 spd_type = (sc->sc_read)(sc, 2); 180 181 /* For older memory types, validate the checksum over 1st 63 bytes */ 182 if (spd_type <= SPDMEM_MEMTYPE_DDR2SDRAM) { 183 for (i = 0; i < 63; i++) 184 cksum += (sc->sc_read)(sc, i); 185 186 val = (sc->sc_read)(sc, 63); 187 188 if (cksum == 0 || (cksum & 0xff) != val) { 189 aprint_debug("spd checksum failed, calc = 0x%02x, " 190 "spd = 0x%02x\n", cksum, val); 191 return 0; 192 } else 193 return 1; 194 } 195 196 /* For DDR3 and FBDIMM, verify the CRC */ 197 else if (spd_type <= SPDMEM_MEMTYPE_DDR3SDRAM) { 198 spd_len = (sc->sc_read)(sc, 0); 199 if (spd_len & SPDMEM_SPDCRC_116) 200 spd_crc_cover = 116; 201 else 202 spd_crc_cover = 125; 203 switch (spd_len & SPDMEM_SPDLEN_MASK) { 204 case SPDMEM_SPDLEN_128: 205 spd_len = 128; 206 break; 207 case SPDMEM_SPDLEN_176: 208 spd_len = 176; 209 break; 210 case SPDMEM_SPDLEN_256: 211 spd_len = 256; 212 break; 213 default: 214 return 0; 215 } 216 if (spd_crc_cover > spd_len) 217 return 0; 218 crc_calc = spdcrc16(sc, spd_crc_cover); 219 crc_spd = (sc->sc_read)(sc, 127) << 8; 220 crc_spd |= (sc->sc_read)(sc, 126); 221 if (crc_calc != crc_spd) { 222 aprint_debug("crc16 failed, covers %d bytes, " 223 "calc = 0x%04x, spd = 0x%04x\n", 224 spd_crc_cover, crc_calc, crc_spd); 225 return 0; 226 } 227 return 1; 228 } else if (spd_type == SPDMEM_MEMTYPE_DDR4SDRAM) { 229 spd_len = (sc->sc_read)(sc, 0) & 0x0f; 230 if ((unsigned int)spd_len > __arraycount(spd_rom_sizes)) 231 return 0; 232 spd_len = spd_rom_sizes[spd_len]; 233 spd_crc_cover=128; 234 if (spd_crc_cover > spd_len) 235 return 0; 236 crc_calc = spdcrc16(sc, spd_crc_cover); 237 crc_spd = (sc->sc_read)(sc, 127) << 8; 238 crc_spd |= (sc->sc_read)(sc, 126); 239 if (crc_calc != crc_spd) { 240 aprint_debug("crc16 failed, covers %d bytes, " 241 "calc = 0x%04x, spd = 0x%04x\n", 242 spd_crc_cover, crc_calc, crc_spd); 243 return 0; 244 } 245 /* 246 * We probably could also verify the CRC for the other 247 * "pages" of SPD data in blocks 1 and 2, but we'll do 248 * it some other time. 249 */ 250 return 1; 251 } else 252 return 0; 253 254 /* For unrecognized memory types, don't match at all */ 255 return 0; 256 } 257 258 void 259 spdmem_common_attach(struct spdmem_softc *sc, device_t self) 260 { 261 struct spdmem *s = &(sc->sc_spd_data); 262 const char *type; 263 const char *rambus_rev = "Reserved"; 264 int dimm_size; 265 unsigned int i, spd_len, spd_size; 266 const struct sysctlnode *node = NULL; 267 268 s->sm_len = (sc->sc_read)(sc, 0); 269 s->sm_size = (sc->sc_read)(sc, 1); 270 s->sm_type = (sc->sc_read)(sc, 2); 271 272 if (s->sm_type == SPDMEM_MEMTYPE_DDR4SDRAM) { 273 /* 274 * An even newer encoding with one byte holding both 275 * the used-size and capacity values 276 */ 277 spd_len = s->sm_len & 0x0f; 278 spd_size = (s->sm_len >> 4) & 0x07; 279 280 spd_len = spd_rom_sizes[spd_len]; 281 spd_size *= 512; 282 283 } else if (s->sm_type >= SPDMEM_MEMTYPE_FBDIMM) { 284 /* 285 * FBDIMM and DDR3 (and probably all newer) have a different 286 * encoding of the SPD EEPROM used/total sizes 287 */ 288 spd_size = 64 << (s->sm_len & SPDMEM_SPDSIZE_MASK); 289 switch (s->sm_len & SPDMEM_SPDLEN_MASK) { 290 case SPDMEM_SPDLEN_128: 291 spd_len = 128; 292 break; 293 case SPDMEM_SPDLEN_176: 294 spd_len = 176; 295 break; 296 case SPDMEM_SPDLEN_256: 297 spd_len = 256; 298 break; 299 default: 300 spd_len = 64; 301 break; 302 } 303 } else { 304 spd_size = 1 << s->sm_size; 305 spd_len = s->sm_len; 306 if (spd_len < 64) 307 spd_len = 64; 308 } 309 if (spd_len > spd_size) 310 spd_len = spd_size; 311 if (spd_len > sizeof(struct spdmem)) 312 spd_len = sizeof(struct spdmem); 313 for (i = 3; i < spd_len; i++) 314 ((uint8_t *)s)[i] = (sc->sc_read)(sc, i); 315 316 /* 317 * Setup our sysctl subtree, hw.spdmemN 318 */ 319 sc->sc_sysctl_log = NULL; 320 sysctl_createv(&sc->sc_sysctl_log, 0, NULL, &node, 321 0, CTLTYPE_NODE, 322 device_xname(self), NULL, NULL, 0, NULL, 0, 323 CTL_HW, CTL_CREATE, CTL_EOL); 324 if (node != NULL && spd_len != 0) 325 sysctl_createv(&sc->sc_sysctl_log, 0, NULL, NULL, 326 0, 327 CTLTYPE_STRUCT, "spd_data", 328 SYSCTL_DESCR("raw spd data"), NULL, 329 0, s, spd_len, 330 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL); 331 332 /* 333 * Decode and print key SPD contents 334 */ 335 if (IS_RAMBUS_TYPE) { 336 if (s->sm_type == SPDMEM_MEMTYPE_RAMBUS) 337 type = "Rambus"; 338 else if (s->sm_type == SPDMEM_MEMTYPE_DIRECTRAMBUS) 339 type = "Direct Rambus"; 340 else 341 type = "Rambus (unknown)"; 342 343 switch (s->sm_len) { 344 case 0: 345 rambus_rev = "Invalid"; 346 break; 347 case 1: 348 rambus_rev = "0.7"; 349 break; 350 case 2: 351 rambus_rev = "1.0"; 352 break; 353 default: 354 rambus_rev = "Reserved"; 355 break; 356 } 357 } else { 358 if (s->sm_type < __arraycount(spdmem_basic_types)) 359 type = spdmem_basic_types[s->sm_type]; 360 else 361 type = "unknown memory type"; 362 363 if (s->sm_type == SPDMEM_MEMTYPE_EDO && 364 s->sm_fpm.fpm_superset == SPDMEM_SUPERSET_EDO_PEM) 365 type = spdmem_superset_types[SPDMEM_SUPERSET_EDO_PEM]; 366 if (s->sm_type == SPDMEM_MEMTYPE_SDRAM && 367 s->sm_sdr.sdr_superset == SPDMEM_SUPERSET_SDRAM_PEM) 368 type = spdmem_superset_types[SPDMEM_SUPERSET_SDRAM_PEM]; 369 if (s->sm_type == SPDMEM_MEMTYPE_DDRSDRAM && 370 s->sm_ddr.ddr_superset == SPDMEM_SUPERSET_DDR_ESDRAM) 371 type = 372 spdmem_superset_types[SPDMEM_SUPERSET_DDR_ESDRAM]; 373 if (s->sm_type == SPDMEM_MEMTYPE_SDRAM && 374 s->sm_sdr.sdr_superset == SPDMEM_SUPERSET_ESDRAM) { 375 type = spdmem_superset_types[SPDMEM_SUPERSET_ESDRAM]; 376 } 377 if (s->sm_type == SPDMEM_MEMTYPE_DDR4SDRAM && 378 s->sm_ddr4.ddr4_mod_type < 379 __arraycount(spdmem_ddr4_module_types)) { 380 type = spdmem_ddr4_module_types[s->sm_ddr4.ddr4_mod_type]; 381 } 382 } 383 384 strlcpy(sc->sc_type, type, SPDMEM_TYPE_MAXLEN); 385 if (node != NULL) 386 sysctl_createv(&sc->sc_sysctl_log, 0, NULL, NULL, 387 0, 388 CTLTYPE_STRING, "mem_type", 389 SYSCTL_DESCR("memory module type"), NULL, 390 0, sc->sc_type, 0, 391 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL); 392 393 if (IS_RAMBUS_TYPE) { 394 aprint_naive("\n"); 395 aprint_normal("\n"); 396 aprint_normal_dev(self, "%s, SPD Revision %s", type, rambus_rev); 397 dimm_size = 1 << (s->sm_rdr.rdr_rows + s->sm_rdr.rdr_cols - 13); 398 if (dimm_size >= 1024) 399 aprint_normal(", %dGB\n", dimm_size / 1024); 400 else 401 aprint_normal(", %dMB\n", dimm_size); 402 403 /* No further decode for RAMBUS memory */ 404 return; 405 } 406 switch (s->sm_type) { 407 case SPDMEM_MEMTYPE_EDO: 408 case SPDMEM_MEMTYPE_FPM: 409 decode_edofpm(node, self, s); 410 break; 411 case SPDMEM_MEMTYPE_ROM: 412 decode_rom(node, self, s); 413 break; 414 case SPDMEM_MEMTYPE_SDRAM: 415 decode_sdram(node, self, s, spd_len); 416 break; 417 case SPDMEM_MEMTYPE_DDRSDRAM: 418 decode_ddr(node, self, s); 419 break; 420 case SPDMEM_MEMTYPE_DDR2SDRAM: 421 decode_ddr2(node, self, s); 422 break; 423 case SPDMEM_MEMTYPE_DDR3SDRAM: 424 decode_ddr3(node, self, s); 425 break; 426 case SPDMEM_MEMTYPE_FBDIMM: 427 case SPDMEM_MEMTYPE_FBDIMM_PROBE: 428 decode_fbdimm(node, self, s); 429 break; 430 case SPDMEM_MEMTYPE_DDR4SDRAM: 431 decode_ddr4(node, self, s); 432 break; 433 } 434 435 /* Dump SPD */ 436 for (i = 0; i < spd_len; i += 16) { 437 unsigned int j, k; 438 aprint_debug_dev(self, "0x%02x:", i); 439 k = (spd_len > (i + 16)) ? i + 16 : spd_len; 440 for (j = i; j < k; j++) 441 aprint_debug(" %02x", ((uint8_t *)s)[j]); 442 aprint_debug("\n"); 443 } 444 } 445 446 int 447 spdmem_common_detach(struct spdmem_softc *sc, device_t self) 448 { 449 sysctl_teardown(&sc->sc_sysctl_log); 450 451 return 0; 452 } 453 454 static void 455 decode_size_speed(device_t self, const struct sysctlnode *node, 456 int dimm_size, int cycle_time, int d_clk, int bits, 457 bool round, const char *ddr_type_string, int speed) 458 { 459 int p_clk; 460 struct spdmem_softc *sc = device_private(self); 461 462 if (dimm_size < 1024) 463 aprint_normal("%dMB", dimm_size); 464 else 465 aprint_normal("%dGB", dimm_size / 1024); 466 if (node != NULL) 467 sysctl_createv(&sc->sc_sysctl_log, 0, NULL, NULL, 468 CTLFLAG_IMMEDIATE, 469 CTLTYPE_INT, "size", 470 SYSCTL_DESCR("module size in MB"), NULL, 471 dimm_size, NULL, 0, 472 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL); 473 474 if (cycle_time == 0) { 475 aprint_normal("\n"); 476 return; 477 } 478 479 /* 480 * Calculate p_clk first, since for DDR3 we need maximum significance. 481 * DDR3 rating is not rounded to a multiple of 100. This results in 482 * cycle_time of 1.5ns displayed as PC3-10666. 483 * 484 * For SDRAM, the speed is provided by the caller so we use it. 485 */ 486 d_clk *= 1000 * 1000; 487 if (speed) 488 p_clk = speed; 489 else 490 p_clk = (d_clk * bits) / 8 / cycle_time; 491 d_clk = ((d_clk + cycle_time / 2) ) / cycle_time; 492 if (round) { 493 if ((p_clk % 100) >= 50) 494 p_clk += 50; 495 p_clk -= p_clk % 100; 496 } 497 aprint_normal(", %dMHz (%s-%d)\n", 498 d_clk, ddr_type_string, p_clk); 499 if (node != NULL) 500 sysctl_createv(&sc->sc_sysctl_log, 0, NULL, NULL, 501 CTLFLAG_IMMEDIATE, 502 CTLTYPE_INT, "speed", 503 SYSCTL_DESCR("memory speed in MHz"), 504 NULL, d_clk, NULL, 0, 505 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL); 506 } 507 508 static void 509 decode_voltage_refresh(device_t self, struct spdmem *s) 510 { 511 const char *voltage, *refresh; 512 513 if (s->sm_voltage < __arraycount(spdmem_voltage_types)) 514 voltage = spdmem_voltage_types[s->sm_voltage]; 515 else 516 voltage = "unknown"; 517 518 if (s->sm_refresh < __arraycount(spdmem_refresh_types)) 519 refresh = spdmem_refresh_types[s->sm_refresh]; 520 else 521 refresh = "unknown"; 522 523 aprint_verbose_dev(self, "voltage %s, refresh time %s%s\n", 524 voltage, refresh, 525 s->sm_selfrefresh?" (self-refreshing)":""); 526 } 527 528 static void 529 decode_edofpm(const struct sysctlnode *node, device_t self, struct spdmem *s) { 530 aprint_naive("\n"); 531 aprint_normal("\n"); 532 aprint_normal_dev(self, "%s", spdmem_basic_types[s->sm_type]); 533 534 aprint_normal("\n"); 535 aprint_verbose_dev(self, 536 "%d rows, %d cols, %d banks, %dns tRAC, %dns tCAC\n", 537 s->sm_fpm.fpm_rows, s->sm_fpm.fpm_cols, s->sm_fpm.fpm_banks, 538 s->sm_fpm.fpm_tRAC, s->sm_fpm.fpm_tCAC); 539 } 540 541 static void 542 decode_rom(const struct sysctlnode *node, device_t self, struct spdmem *s) { 543 aprint_naive("\n"); 544 aprint_normal("\n"); 545 aprint_normal_dev(self, "%s", spdmem_basic_types[s->sm_type]); 546 547 aprint_normal("\n"); 548 aprint_verbose_dev(self, "%d rows, %d cols, %d banks\n", 549 s->sm_rom.rom_rows, s->sm_rom.rom_cols, s->sm_rom.rom_banks); 550 } 551 552 static void 553 decode_sdram(const struct sysctlnode *node, device_t self, struct spdmem *s, 554 int spd_len) { 555 int dimm_size, cycle_time, bits, tAA, i, speed, freq; 556 557 aprint_naive("\n"); 558 aprint_normal("\n"); 559 aprint_normal_dev(self, "%s", spdmem_basic_types[s->sm_type]); 560 561 aprint_normal("%s, %s, ", 562 (s->sm_sdr.sdr_mod_attrs & SPDMEM_SDR_MASK_REG)? 563 " (registered)":"", 564 (s->sm_config < __arraycount(spdmem_parity_types))? 565 spdmem_parity_types[s->sm_config]:"invalid parity"); 566 567 dimm_size = 1 << (s->sm_sdr.sdr_rows + s->sm_sdr.sdr_cols - 17); 568 dimm_size *= s->sm_sdr.sdr_banks * s->sm_sdr.sdr_banks_per_chip; 569 570 cycle_time = s->sm_sdr.sdr_cycle_whole * 1000 + 571 s->sm_sdr.sdr_cycle_tenths * 100; 572 bits = le16toh(s->sm_sdr.sdr_datawidth); 573 if (s->sm_config == 1 || s->sm_config == 2) 574 bits -= 8; 575 576 /* Calculate speed here - from OpenBSD */ 577 if (spd_len >= 128) 578 freq = ((uint8_t *)s)[126]; 579 else 580 freq = 0; 581 switch (freq) { 582 /* 583 * Must check cycle time since some PC-133 DIMMs 584 * actually report PC-100 585 */ 586 case 100: 587 case 133: 588 if (cycle_time < 8000) 589 speed = 133; 590 else 591 speed = 100; 592 break; 593 case 0x66: /* Legacy DIMMs use _hex_ 66! */ 594 default: 595 speed = 66; 596 } 597 decode_size_speed(self, node, dimm_size, cycle_time, 1, bits, FALSE, 598 "PC", speed); 599 600 aprint_verbose_dev(self, 601 "%d rows, %d cols, %d banks, %d banks/chip, %d.%dns cycle time\n", 602 s->sm_sdr.sdr_rows, s->sm_sdr.sdr_cols, s->sm_sdr.sdr_banks, 603 s->sm_sdr.sdr_banks_per_chip, cycle_time/1000, 604 (cycle_time % 1000) / 100); 605 606 tAA = 0; 607 for (i = 0; i < 8; i++) 608 if (s->sm_sdr.sdr_tCAS & (1 << i)) 609 tAA = i; 610 tAA++; 611 aprint_verbose_dev(self, LATENCY, tAA, s->sm_sdr.sdr_tRCD, 612 s->sm_sdr.sdr_tRP, s->sm_sdr.sdr_tRAS); 613 614 decode_voltage_refresh(self, s); 615 } 616 617 static void 618 decode_ddr(const struct sysctlnode *node, device_t self, struct spdmem *s) { 619 int dimm_size, cycle_time, bits, tAA, i; 620 621 aprint_naive("\n"); 622 aprint_normal("\n"); 623 aprint_normal_dev(self, "%s", spdmem_basic_types[s->sm_type]); 624 625 aprint_normal("%s, %s, ", 626 (s->sm_ddr.ddr_mod_attrs & SPDMEM_DDR_MASK_REG)? 627 " (registered)":"", 628 (s->sm_config < __arraycount(spdmem_parity_types))? 629 spdmem_parity_types[s->sm_config]:"invalid parity"); 630 631 dimm_size = 1 << (s->sm_ddr.ddr_rows + s->sm_ddr.ddr_cols - 17); 632 dimm_size *= s->sm_ddr.ddr_ranks * s->sm_ddr.ddr_banks_per_chip; 633 634 cycle_time = s->sm_ddr.ddr_cycle_whole * 1000 + 635 spdmem_cycle_frac[s->sm_ddr.ddr_cycle_tenths]; 636 bits = le16toh(s->sm_ddr.ddr_datawidth); 637 if (s->sm_config == 1 || s->sm_config == 2) 638 bits -= 8; 639 decode_size_speed(self, node, dimm_size, cycle_time, 2, bits, TRUE, 640 "PC", 0); 641 642 aprint_verbose_dev(self, 643 "%d rows, %d cols, %d ranks, %d banks/chip, %d.%dns cycle time\n", 644 s->sm_ddr.ddr_rows, s->sm_ddr.ddr_cols, s->sm_ddr.ddr_ranks, 645 s->sm_ddr.ddr_banks_per_chip, cycle_time/1000, 646 (cycle_time % 1000 + 50) / 100); 647 648 tAA = 0; 649 for (i = 2; i < 8; i++) 650 if (s->sm_ddr.ddr_tCAS & (1 << i)) 651 tAA = i; 652 tAA /= 2; 653 654 #define __DDR_ROUND(scale, field) \ 655 ((scale * s->sm_ddr.field + cycle_time - 1) / cycle_time) 656 657 aprint_verbose_dev(self, LATENCY, tAA, __DDR_ROUND(250, ddr_tRCD), 658 __DDR_ROUND(250, ddr_tRP), __DDR_ROUND(1000, ddr_tRAS)); 659 660 #undef __DDR_ROUND 661 662 decode_voltage_refresh(self, s); 663 } 664 665 static void 666 decode_ddr2(const struct sysctlnode *node, device_t self, struct spdmem *s) { 667 int dimm_size, cycle_time, bits, tAA, i; 668 669 aprint_naive("\n"); 670 aprint_normal("\n"); 671 aprint_normal_dev(self, "%s", spdmem_basic_types[s->sm_type]); 672 673 aprint_normal("%s, %s, ", 674 (s->sm_ddr2.ddr2_mod_attrs & SPDMEM_DDR2_MASK_REG)? 675 " (registered)":"", 676 (s->sm_config < __arraycount(spdmem_parity_types))? 677 spdmem_parity_types[s->sm_config]:"invalid parity"); 678 679 dimm_size = 1 << (s->sm_ddr2.ddr2_rows + s->sm_ddr2.ddr2_cols - 17); 680 dimm_size *= (s->sm_ddr2.ddr2_ranks + 1) * 681 s->sm_ddr2.ddr2_banks_per_chip; 682 683 cycle_time = s->sm_ddr2.ddr2_cycle_whole * 1000 + 684 spdmem_cycle_frac[s->sm_ddr2.ddr2_cycle_frac]; 685 bits = s->sm_ddr2.ddr2_datawidth; 686 if ((s->sm_config & 0x03) != 0) 687 bits -= 8; 688 decode_size_speed(self, node, dimm_size, cycle_time, 2, bits, TRUE, 689 "PC2", 0); 690 691 aprint_verbose_dev(self, 692 "%d rows, %d cols, %d ranks, %d banks/chip, %d.%02dns cycle time\n", 693 s->sm_ddr2.ddr2_rows, s->sm_ddr2.ddr2_cols, 694 s->sm_ddr2.ddr2_ranks + 1, s->sm_ddr2.ddr2_banks_per_chip, 695 cycle_time / 1000, (cycle_time % 1000 + 5) /10 ); 696 697 tAA = 0; 698 for (i = 2; i < 8; i++) 699 if (s->sm_ddr2.ddr2_tCAS & (1 << i)) 700 tAA = i; 701 702 #define __DDR2_ROUND(scale, field) \ 703 ((scale * s->sm_ddr2.field + cycle_time - 1) / cycle_time) 704 705 aprint_verbose_dev(self, LATENCY, tAA, __DDR2_ROUND(250, ddr2_tRCD), 706 __DDR2_ROUND(250, ddr2_tRP), __DDR2_ROUND(1000, ddr2_tRAS)); 707 708 #undef __DDR_ROUND 709 710 decode_voltage_refresh(self, s); 711 } 712 713 static void 714 decode_ddr3(const struct sysctlnode *node, device_t self, struct spdmem *s) { 715 int dimm_size, cycle_time, bits; 716 717 aprint_naive("\n"); 718 aprint_normal(": %18s\n", s->sm_ddr3.ddr3_part); 719 aprint_normal_dev(self, "%s", spdmem_basic_types[s->sm_type]); 720 721 if (s->sm_ddr3.ddr3_mod_type == 722 SPDMEM_DDR3_TYPE_MINI_RDIMM || 723 s->sm_ddr3.ddr3_mod_type == SPDMEM_DDR3_TYPE_RDIMM) 724 aprint_normal(" (registered)"); 725 aprint_normal(", %sECC, %stemp-sensor, ", 726 (s->sm_ddr3.ddr3_hasECC)?"":"no ", 727 (s->sm_ddr3.ddr3_has_therm_sensor)?"":"no "); 728 729 /* 730 * DDR3 size specification is quite different from others 731 * 732 * Module capacity is defined as 733 * Chip_Capacity_in_bits / 8bits-per-byte * 734 * external_bus_width / internal_bus_width 735 * We further divide by 2**20 to get our answer in MB 736 */ 737 dimm_size = (s->sm_ddr3.ddr3_chipsize + 28 - 20) - 3 + 738 (s->sm_ddr3.ddr3_datawidth + 3) - 739 (s->sm_ddr3.ddr3_chipwidth + 2); 740 dimm_size = (1 << dimm_size) * (s->sm_ddr3.ddr3_physbanks + 1); 741 742 cycle_time = (1000 * s->sm_ddr3.ddr3_mtb_dividend + 743 (s->sm_ddr3.ddr3_mtb_divisor / 2)) / 744 s->sm_ddr3.ddr3_mtb_divisor; 745 cycle_time *= s->sm_ddr3.ddr3_tCKmin; 746 bits = 1 << (s->sm_ddr3.ddr3_datawidth + 3); 747 decode_size_speed(self, node, dimm_size, cycle_time, 2, bits, FALSE, 748 "PC3", 0); 749 750 aprint_verbose_dev(self, 751 "%d rows, %d cols, %d log. banks, %d phys. banks, " 752 "%d.%03dns cycle time\n", 753 s->sm_ddr3.ddr3_rows + 9, s->sm_ddr3.ddr3_cols + 12, 754 1 << (s->sm_ddr3.ddr3_logbanks + 3), 755 s->sm_ddr3.ddr3_physbanks + 1, 756 cycle_time/1000, cycle_time % 1000); 757 758 #define __DDR3_CYCLES(field) (s->sm_ddr3.field / s->sm_ddr3.ddr3_tCKmin) 759 760 aprint_verbose_dev(self, LATENCY, __DDR3_CYCLES(ddr3_tAAmin), 761 __DDR3_CYCLES(ddr3_tRCDmin), __DDR3_CYCLES(ddr3_tRPmin), 762 (s->sm_ddr3.ddr3_tRAS_msb * 256 + s->sm_ddr3.ddr3_tRAS_lsb) / 763 s->sm_ddr3.ddr3_tCKmin); 764 765 #undef __DDR3_CYCLES 766 767 /* For DDR3, Voltage is written in another area */ 768 if (!s->sm_ddr3.ddr3_NOT15V || s->sm_ddr3.ddr3_135V 769 || s->sm_ddr3.ddr3_125V) { 770 aprint_verbose("%s:", device_xname(self)); 771 if (!s->sm_ddr3.ddr3_NOT15V) 772 aprint_verbose(" 1.5V"); 773 if (s->sm_ddr3.ddr3_135V) 774 aprint_verbose(" 1.35V"); 775 if (s->sm_ddr3.ddr3_125V) 776 aprint_verbose(" 1.25V"); 777 aprint_verbose(" operable\n"); 778 } 779 } 780 781 static void 782 decode_fbdimm(const struct sysctlnode *node, device_t self, struct spdmem *s) { 783 int dimm_size, cycle_time, bits; 784 785 aprint_naive("\n"); 786 aprint_normal("\n"); 787 aprint_normal_dev(self, "%s", spdmem_basic_types[s->sm_type]); 788 789 /* 790 * FB-DIMM module size calculation is very much like DDR3 791 */ 792 dimm_size = s->sm_fbd.fbdimm_rows + 12 + 793 s->sm_fbd.fbdimm_cols + 9 - 20 - 3; 794 dimm_size = (1 << dimm_size) * (1 << (s->sm_fbd.fbdimm_banks + 2)); 795 796 cycle_time = (1000 * s->sm_fbd.fbdimm_mtb_dividend + 797 (s->sm_fbd.fbdimm_mtb_divisor / 2)) / 798 s->sm_fbd.fbdimm_mtb_divisor; 799 bits = 1 << (s->sm_fbd.fbdimm_dev_width + 2); 800 decode_size_speed(self, node, dimm_size, cycle_time, 2, bits, TRUE, 801 "PC2", 0); 802 803 aprint_verbose_dev(self, 804 "%d rows, %d cols, %d banks, %d.%02dns cycle time\n", 805 s->sm_fbd.fbdimm_rows, s->sm_fbd.fbdimm_cols, 806 1 << (s->sm_fbd.fbdimm_banks + 2), 807 cycle_time / 1000, (cycle_time % 1000 + 5) /10 ); 808 809 #define __FBDIMM_CYCLES(field) (s->sm_fbd.field / s->sm_fbd.fbdimm_tCKmin) 810 811 aprint_verbose_dev(self, LATENCY, __FBDIMM_CYCLES(fbdimm_tAAmin), 812 __FBDIMM_CYCLES(fbdimm_tRCDmin), __FBDIMM_CYCLES(fbdimm_tRPmin), 813 (s->sm_fbd.fbdimm_tRAS_msb * 256 + 814 s->sm_fbd.fbdimm_tRAS_lsb) / 815 s->sm_fbd.fbdimm_tCKmin); 816 817 #undef __FBDIMM_CYCLES 818 819 decode_voltage_refresh(self, s); 820 } 821 822 static void 823 decode_ddr4(const struct sysctlnode *node, device_t self, struct spdmem *s) { 824 int dimm_size, cycle_time; 825 int tAA_clocks, tRCD_clocks,tRP_clocks, tRAS_clocks; 826 827 aprint_naive("\n"); 828 aprint_normal(": %20s\n", s->sm_ddr4.ddr4_part_number); 829 aprint_normal_dev(self, "%s", spdmem_basic_types[s->sm_type]); 830 if (s->sm_ddr4.ddr4_mod_type < __arraycount(spdmem_ddr4_module_types)) 831 aprint_normal(" (%s)", 832 spdmem_ddr4_module_types[s->sm_ddr4.ddr4_mod_type]); 833 aprint_normal(", %stemp-sensor, ", 834 (s->sm_ddr4.ddr4_has_therm_sensor)?"":"no "); 835 836 /* 837 * DDR4 size calculation from JEDEC spec 838 * 839 * Module capacity in bytes is defined as 840 * Chip_Capacity_in_bits / 8bits-per-byte * 841 * primary_bus_width / DRAM_width * 842 * logical_ranks_per_DIMM 843 * 844 * logical_ranks_per DIMM equals package_ranks, but multiply 845 * by diecount for 3DS packages 846 * 847 * We further divide by 2**20 to get our answer in MB 848 */ 849 dimm_size = (s->sm_ddr4.ddr4_capacity + 28) /* chip_capacity */ 850 - 20 /* convert to MB */ 851 - 3 /* bits --> bytes */ 852 + (s->sm_ddr4.ddr4_primary_bus_width + 3); /* bus width */ 853 switch (s->sm_ddr4.ddr4_device_width) { /* DRAM width */ 854 case 0: dimm_size -= 2; 855 break; 856 case 1: dimm_size -= 3; 857 break; 858 case 2: dimm_size -= 4; 859 break; 860 case 4: dimm_size -= 5; 861 break; 862 default: 863 dimm_size = -1; /* flag invalid value */ 864 } 865 if (dimm_size >=0) { 866 dimm_size = (1 << dimm_size) * 867 (s->sm_ddr4.ddr4_package_ranks + 1); /* log.ranks/DIMM */ 868 if (s->sm_ddr4.ddr4_signal_loading == 2) { 869 dimm_size *= s->sm_ddr4.ddr4_diecount; 870 } 871 } 872 873 /* 874 * For now, the only value for mtb is 1 = 125ps, and ftp = 1ps 875 * so we don't need to figure out the time-base units - just 876 * hard-code them for now. 877 */ 878 cycle_time = 125 * s->sm_ddr4.ddr4_tCKAVGmin_mtb + 879 s->sm_ddr4.ddr4_tCKAVGmin_ftb; 880 aprint_normal("%d MB, %d.%03dns cycle time (%dMHz)\n", dimm_size, 881 cycle_time/1000, cycle_time % 1000, 1000000 / cycle_time); 882 883 decode_size_speed(self, node, dimm_size, cycle_time, 2, 884 1 << (s->sm_ddr4.ddr4_device_width + 3), 885 TRUE, "PC4", 0); 886 887 aprint_verbose_dev(self, 888 "%d rows, %d cols, %d banks, %d bank groups\n", 889 s->sm_ddr3.ddr3_rows + 9, s->sm_ddr3.ddr3_cols + 12, 890 1 << (2 + s->sm_ddr4.ddr4_logbanks), 891 1 << s->sm_ddr4.ddr4_bankgroups); 892 893 /* 894 * Note that the ddr4_xxx_ftb fields are actually signed offsets from 895 * the corresponding mtb value, so we might have to subtract 256! 896 */ 897 #define __DDR4_VALUE(field) (s->sm_ddr4.ddr4_##field##_mtb * 256 + \ 898 s->sm_ddr4.ddr4_##field##_ftb) - \ 899 ((s->sm_ddr4.ddr4_##field##_ftb > 127)?256:0) 900 901 tAA_clocks = (__DDR4_VALUE(tAAmin) * 1000 ) / cycle_time; 902 tRP_clocks = (__DDR4_VALUE(tRPmin) * 1000 ) / cycle_time; 903 tRCD_clocks = (__DDR4_VALUE(tRCDmin) * 1000 ) / cycle_time; 904 tRAS_clocks = (s->sm_ddr4.ddr4_tRASmin_msb * 256 + 905 s->sm_ddr4.ddr4_tRASmin_lsb) * 125 * 1000 / cycle_time; 906 907 /* 908 * Per JEDEC spec, rounding is done by taking the time value, dividing 909 * by the cycle time, subtracting .010 from the result, and then 910 * rounded up to the nearest integer. Unfortunately, none of their 911 * examples say what to do when the result of the subtraction is already 912 * an integer. For now, assume that we still round up (so an interval 913 * of exactly 12.010 clock cycles will be printed as 13). 914 */ 915 #define __DDR4_ROUND(value) ((value - 10) / 1000 + 1) 916 917 aprint_verbose_dev(self, LATENCY, __DDR4_ROUND(tAA_clocks), 918 __DDR4_ROUND(tRP_clocks), 919 __DDR4_ROUND(tRCD_clocks), 920 __DDR4_ROUND(tRAS_clocks)); 921 922 #undef __DDR4_VALUE 923 #undef __DDR4_ROUND 924 } 925