xref: /netbsd-src/sys/dev/ic/smc83c170.c (revision c2f76ff004a2cb67efe5b12d97bd3ef7fe89e18d)
1 /*	$NetBSD: smc83c170.c,v 1.80 2010/11/13 13:52:02 uebayasi Exp $	*/
2 
3 /*-
4  * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 /*
34  * Device driver for the Standard Microsystems Corp. 83C170
35  * Ethernet PCI Integrated Controller (EPIC/100).
36  */
37 
38 #include <sys/cdefs.h>
39 __KERNEL_RCSID(0, "$NetBSD: smc83c170.c,v 1.80 2010/11/13 13:52:02 uebayasi Exp $");
40 
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/callout.h>
45 #include <sys/mbuf.h>
46 #include <sys/malloc.h>
47 #include <sys/kernel.h>
48 #include <sys/socket.h>
49 #include <sys/ioctl.h>
50 #include <sys/errno.h>
51 #include <sys/device.h>
52 
53 #include <net/if.h>
54 #include <net/if_dl.h>
55 #include <net/if_media.h>
56 #include <net/if_ether.h>
57 
58 #include <net/bpf.h>
59 
60 #include <sys/bus.h>
61 #include <sys/intr.h>
62 
63 #include <dev/mii/miivar.h>
64 #include <dev/mii/lxtphyreg.h>
65 
66 #include <dev/ic/smc83c170reg.h>
67 #include <dev/ic/smc83c170var.h>
68 
69 void	epic_start(struct ifnet *);
70 void	epic_watchdog(struct ifnet *);
71 int	epic_ioctl(struct ifnet *, u_long, void *);
72 int	epic_init(struct ifnet *);
73 void	epic_stop(struct ifnet *, int);
74 
75 bool	epic_shutdown(device_t, int);
76 
77 void	epic_reset(struct epic_softc *);
78 void	epic_rxdrain(struct epic_softc *);
79 int	epic_add_rxbuf(struct epic_softc *, int);
80 void	epic_read_eeprom(struct epic_softc *, int, int, uint16_t *);
81 void	epic_set_mchash(struct epic_softc *);
82 void	epic_fixup_clock_source(struct epic_softc *);
83 int	epic_mii_read(device_t, int, int);
84 void	epic_mii_write(device_t, int, int, int);
85 int	epic_mii_wait(struct epic_softc *, uint32_t);
86 void	epic_tick(void *);
87 
88 void	epic_statchg(device_t);
89 int	epic_mediachange(struct ifnet *);
90 
91 #define	INTMASK	(INTSTAT_FATAL_INT | INTSTAT_TXU | \
92 	    INTSTAT_TXC | INTSTAT_RXE | INTSTAT_RQE | INTSTAT_RCC)
93 
94 int	epic_copy_small = 0;
95 
96 #define	ETHER_PAD_LEN (ETHER_MIN_LEN - ETHER_CRC_LEN)
97 
98 /*
99  * Attach an EPIC interface to the system.
100  */
101 void
102 epic_attach(struct epic_softc *sc)
103 {
104 	bus_space_tag_t st = sc->sc_st;
105 	bus_space_handle_t sh = sc->sc_sh;
106 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
107 	int rseg, error, miiflags;
108 	u_int i;
109 	bus_dma_segment_t seg;
110 	uint8_t enaddr[ETHER_ADDR_LEN], devname[12 + 1];
111 	uint16_t myea[ETHER_ADDR_LEN / 2], mydevname[6];
112 	char *nullbuf;
113 
114 	callout_init(&sc->sc_mii_callout, 0);
115 
116 	/*
117 	 * Allocate the control data structures, and create and load the
118 	 * DMA map for it.
119 	 */
120 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
121 	    sizeof(struct epic_control_data) + ETHER_PAD_LEN, PAGE_SIZE, 0,
122 	    &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
123 		aprint_error_dev(sc->sc_dev,
124 		    "unable to allocate control data, error = %d\n", error);
125 		goto fail_0;
126 	}
127 
128 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
129 	    sizeof(struct epic_control_data) + ETHER_PAD_LEN,
130 	    (void **)&sc->sc_control_data,
131 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
132 		aprint_error_dev(sc->sc_dev,
133 		    "unable to map control data, error = %d\n", error);
134 		goto fail_1;
135 	}
136 	nullbuf =
137 	    (char *)sc->sc_control_data + sizeof(struct epic_control_data);
138 	memset(nullbuf, 0, ETHER_PAD_LEN);
139 
140 	if ((error = bus_dmamap_create(sc->sc_dmat,
141 	    sizeof(struct epic_control_data), 1,
142 	    sizeof(struct epic_control_data), 0, BUS_DMA_NOWAIT,
143 	    &sc->sc_cddmamap)) != 0) {
144 		aprint_error_dev(sc->sc_dev,
145 		    "unable to create control data DMA map, error = %d\n",
146 		    error);
147 		goto fail_2;
148 	}
149 
150 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
151 	    sc->sc_control_data, sizeof(struct epic_control_data), NULL,
152 	    BUS_DMA_NOWAIT)) != 0) {
153 		aprint_error_dev(sc->sc_dev,
154 		    "unable to load control data DMA map, error = %d\n",
155 		    error);
156 		goto fail_3;
157 	}
158 
159 	/*
160 	 * Create the transmit buffer DMA maps.
161 	 */
162 	for (i = 0; i < EPIC_NTXDESC; i++) {
163 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
164 		    EPIC_NFRAGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
165 		    &EPIC_DSTX(sc, i)->ds_dmamap)) != 0) {
166 			aprint_error_dev(sc->sc_dev,
167 			    "unable to create tx DMA map %d, error = %d\n",
168 			    i, error);
169 			goto fail_4;
170 		}
171 	}
172 
173 	/*
174 	 * Create the receive buffer DMA maps.
175 	 */
176 	for (i = 0; i < EPIC_NRXDESC; i++) {
177 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
178 		    MCLBYTES, 0, BUS_DMA_NOWAIT,
179 		    &EPIC_DSRX(sc, i)->ds_dmamap)) != 0) {
180 			aprint_error_dev(sc->sc_dev,
181 			    "unable to create rx DMA map %d, error = %d\n",
182 			    i, error);
183 			goto fail_5;
184 		}
185 		EPIC_DSRX(sc, i)->ds_mbuf = NULL;
186 	}
187 
188 	/*
189 	 * create and map the pad buffer
190 	 */
191 	if ((error = bus_dmamap_create(sc->sc_dmat, ETHER_PAD_LEN, 1,
192 	    ETHER_PAD_LEN, 0, BUS_DMA_NOWAIT,&sc->sc_nulldmamap)) != 0) {
193 		aprint_error_dev(sc->sc_dev,
194 		    "unable to create pad buffer DMA map, error = %d\n", error);
195 		goto fail_5;
196 	}
197 
198 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_nulldmamap,
199 	    nullbuf, ETHER_PAD_LEN, NULL, BUS_DMA_NOWAIT)) != 0) {
200 		aprint_error_dev(sc->sc_dev,
201 		    "unable to load pad buffer DMA map, error = %d\n", error);
202 		goto fail_6;
203 	}
204 	bus_dmamap_sync(sc->sc_dmat, sc->sc_nulldmamap, 0, ETHER_PAD_LEN,
205 	    BUS_DMASYNC_PREWRITE);
206 
207 	/*
208 	 * Bring the chip out of low-power mode and reset it to a known state.
209 	 */
210 	bus_space_write_4(st, sh, EPIC_GENCTL, 0);
211 	epic_reset(sc);
212 
213 	/*
214 	 * Read the Ethernet address from the EEPROM.
215 	 */
216 	epic_read_eeprom(sc, 0, __arraycount(myea), myea);
217 	for (i = 0; i < __arraycount(myea); i++) {
218 		enaddr[i * 2]     = myea[i] & 0xff;
219 		enaddr[i * 2 + 1] = myea[i] >> 8;
220 	}
221 
222 	/*
223 	 * ...and the device name.
224 	 */
225 	epic_read_eeprom(sc, 0x2c, __arraycount(mydevname), mydevname);
226 	for (i = 0; i < __arraycount(mydevname); i++) {
227 		devname[i * 2]     = mydevname[i] & 0xff;
228 		devname[i * 2 + 1] = mydevname[i] >> 8;
229 	}
230 
231 	devname[sizeof(mydevname)] = '\0';
232 	for (i = sizeof(mydevname) ; i > 0; i--) {
233 		if (devname[i - 1] == ' ')
234 			devname[i - 1] = '\0';
235 		else
236 			break;
237 	}
238 
239 	aprint_normal_dev(sc->sc_dev, "%s, Ethernet address %s\n",
240 	    devname, ether_sprintf(enaddr));
241 
242 	miiflags = 0;
243 	if (sc->sc_hwflags & EPIC_HAS_MII_FIBER)
244 		miiflags |= MIIF_HAVEFIBER;
245 
246 	/*
247 	 * Initialize our media structures and probe the MII.
248 	 */
249 	sc->sc_mii.mii_ifp = ifp;
250 	sc->sc_mii.mii_readreg = epic_mii_read;
251 	sc->sc_mii.mii_writereg = epic_mii_write;
252 	sc->sc_mii.mii_statchg = epic_statchg;
253 
254 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
255 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, epic_mediachange,
256 	    ether_mediastatus);
257 	mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
258 	    MII_OFFSET_ANY, miiflags);
259 	if (LIST_EMPTY(&sc->sc_mii.mii_phys)) {
260 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
261 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
262 	} else
263 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
264 
265 	if (sc->sc_hwflags & EPIC_HAS_BNC) {
266 		/* use the next free media instance */
267 		sc->sc_serinst = sc->sc_mii.mii_instance++;
268 		ifmedia_add(&sc->sc_mii.mii_media,
269 		    IFM_MAKEWORD(IFM_ETHER, IFM_10_2, 0, sc->sc_serinst),
270 		    0, NULL);
271 		aprint_normal_dev(sc->sc_dev, "10base2/BNC\n");
272 	} else
273 		sc->sc_serinst = -1;
274 
275 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
276 	ifp->if_softc = sc;
277 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
278 	ifp->if_ioctl = epic_ioctl;
279 	ifp->if_start = epic_start;
280 	ifp->if_watchdog = epic_watchdog;
281 	ifp->if_init = epic_init;
282 	ifp->if_stop = epic_stop;
283 	IFQ_SET_READY(&ifp->if_snd);
284 
285 	/*
286 	 * We can support 802.1Q VLAN-sized frames.
287 	 */
288 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
289 
290 	/*
291 	 * Attach the interface.
292 	 */
293 	if_attach(ifp);
294 	ether_ifattach(ifp, enaddr);
295 
296 	/*
297 	 * Make sure the interface is shutdown during reboot.
298 	 */
299 	if (pmf_device_register1(sc->sc_dev, NULL, NULL, epic_shutdown))
300 		pmf_class_network_register(sc->sc_dev, ifp);
301 	else
302 		aprint_error_dev(sc->sc_dev,
303 		    "couldn't establish power handler\n");
304 
305 	return;
306 
307 	/*
308 	 * Free any resources we've allocated during the failed attach
309 	 * attempt.  Do this in reverse order and fall through.
310 	 */
311  fail_6:
312 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_nulldmamap);
313  fail_5:
314 	for (i = 0; i < EPIC_NRXDESC; i++) {
315 		if (EPIC_DSRX(sc, i)->ds_dmamap != NULL)
316 			bus_dmamap_destroy(sc->sc_dmat,
317 			    EPIC_DSRX(sc, i)->ds_dmamap);
318 	}
319  fail_4:
320 	for (i = 0; i < EPIC_NTXDESC; i++) {
321 		if (EPIC_DSTX(sc, i)->ds_dmamap != NULL)
322 			bus_dmamap_destroy(sc->sc_dmat,
323 			    EPIC_DSTX(sc, i)->ds_dmamap);
324 	}
325 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
326  fail_3:
327 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
328  fail_2:
329 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
330 	    sizeof(struct epic_control_data));
331  fail_1:
332 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
333  fail_0:
334 	return;
335 }
336 
337 /*
338  * Shutdown hook.  Make sure the interface is stopped at reboot.
339  */
340 bool
341 epic_shutdown(device_t self, int howto)
342 {
343 	struct epic_softc *sc = device_private(self);
344 
345 	epic_stop(&sc->sc_ethercom.ec_if, 1);
346 
347 	return true;
348 }
349 
350 /*
351  * Start packet transmission on the interface.
352  * [ifnet interface function]
353  */
354 void
355 epic_start(struct ifnet *ifp)
356 {
357 	struct epic_softc *sc = ifp->if_softc;
358 	struct mbuf *m0, *m;
359 	struct epic_txdesc *txd;
360 	struct epic_descsoft *ds;
361 	struct epic_fraglist *fr;
362 	bus_dmamap_t dmamap;
363 	int error, firsttx, nexttx, opending, seg;
364 	u_int len;
365 
366 	/*
367 	 * Remember the previous txpending and the first transmit
368 	 * descriptor we use.
369 	 */
370 	opending = sc->sc_txpending;
371 	firsttx = EPIC_NEXTTX(sc->sc_txlast);
372 
373 	/*
374 	 * Loop through the send queue, setting up transmit descriptors
375 	 * until we drain the queue, or use up all available transmit
376 	 * descriptors.
377 	 */
378 	while (sc->sc_txpending < EPIC_NTXDESC) {
379 		/*
380 		 * Grab a packet off the queue.
381 		 */
382 		IFQ_POLL(&ifp->if_snd, m0);
383 		if (m0 == NULL)
384 			break;
385 		m = NULL;
386 
387 		/*
388 		 * Get the last and next available transmit descriptor.
389 		 */
390 		nexttx = EPIC_NEXTTX(sc->sc_txlast);
391 		txd = EPIC_CDTX(sc, nexttx);
392 		fr = EPIC_CDFL(sc, nexttx);
393 		ds = EPIC_DSTX(sc, nexttx);
394 		dmamap = ds->ds_dmamap;
395 
396 		/*
397 		 * Load the DMA map.  If this fails, the packet either
398 		 * didn't fit in the alloted number of frags, or we were
399 		 * short on resources.  In this case, we'll copy and try
400 		 * again.
401 		 */
402 		if ((error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
403 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 ||
404 		    (m0->m_pkthdr.len < ETHER_PAD_LEN &&
405 		    dmamap-> dm_nsegs == EPIC_NFRAGS)) {
406 			if (error == 0)
407 				bus_dmamap_unload(sc->sc_dmat, dmamap);
408 
409 			MGETHDR(m, M_DONTWAIT, MT_DATA);
410 			if (m == NULL) {
411 				printf("%s: unable to allocate Tx mbuf\n",
412 				    device_xname(sc->sc_dev));
413 				break;
414 			}
415 			if (m0->m_pkthdr.len > MHLEN) {
416 				MCLGET(m, M_DONTWAIT);
417 				if ((m->m_flags & M_EXT) == 0) {
418 					printf("%s: unable to allocate Tx "
419 					    "cluster\n",
420 					    device_xname(sc->sc_dev));
421 					m_freem(m);
422 					break;
423 				}
424 			}
425 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
426 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
427 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
428 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
429 			if (error) {
430 				printf("%s: unable to load Tx buffer, "
431 				    "error = %d\n", device_xname(sc->sc_dev),
432 				    error);
433 				break;
434 			}
435 		}
436 		IFQ_DEQUEUE(&ifp->if_snd, m0);
437 		if (m != NULL) {
438 			m_freem(m0);
439 			m0 = m;
440 		}
441 
442 		/* Initialize the fraglist. */
443 		for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
444 			fr->ef_frags[seg].ef_addr =
445 			    dmamap->dm_segs[seg].ds_addr;
446 			fr->ef_frags[seg].ef_length =
447 			    dmamap->dm_segs[seg].ds_len;
448 		}
449 		len = m0->m_pkthdr.len;
450 		if (len < ETHER_PAD_LEN) {
451 			fr->ef_frags[seg].ef_addr = sc->sc_nulldma;
452 			fr->ef_frags[seg].ef_length = ETHER_PAD_LEN - len;
453 			len = ETHER_PAD_LEN;
454 			seg++;
455 		}
456 		fr->ef_nfrags = seg;
457 
458 		EPIC_CDFLSYNC(sc, nexttx, BUS_DMASYNC_PREWRITE);
459 
460 		/* Sync the DMA map. */
461 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
462 		    BUS_DMASYNC_PREWRITE);
463 
464 		/*
465 		 * Store a pointer to the packet so we can free it later.
466 		 */
467 		ds->ds_mbuf = m0;
468 
469 		/*
470 		 * Fill in the transmit descriptor.
471 		 */
472 		txd->et_control = ET_TXCTL_LASTDESC | ET_TXCTL_FRAGLIST;
473 
474 		/*
475 		 * If this is the first descriptor we're enqueueing,
476 		 * don't give it to the EPIC yet.  That could cause
477 		 * a race condition.  We'll do it below.
478 		 */
479 		if (nexttx == firsttx)
480 			txd->et_txstatus = TXSTAT_TXLENGTH(len);
481 		else
482 			txd->et_txstatus =
483 			    TXSTAT_TXLENGTH(len) | ET_TXSTAT_OWNER;
484 
485 		EPIC_CDTXSYNC(sc, nexttx,
486 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
487 
488 		/* Advance the tx pointer. */
489 		sc->sc_txpending++;
490 		sc->sc_txlast = nexttx;
491 
492 		/*
493 		 * Pass the packet to any BPF listeners.
494 		 */
495 		bpf_mtap(ifp, m0);
496 	}
497 
498 	if (sc->sc_txpending == EPIC_NTXDESC) {
499 		/* No more slots left; notify upper layer. */
500 		ifp->if_flags |= IFF_OACTIVE;
501 	}
502 
503 	if (sc->sc_txpending != opending) {
504 		/*
505 		 * We enqueued packets.  If the transmitter was idle,
506 		 * reset the txdirty pointer.
507 		 */
508 		if (opending == 0)
509 			sc->sc_txdirty = firsttx;
510 
511 		/*
512 		 * Cause a transmit interrupt to happen on the
513 		 * last packet we enqueued.
514 		 */
515 		EPIC_CDTX(sc, sc->sc_txlast)->et_control |= ET_TXCTL_IAF;
516 		EPIC_CDTXSYNC(sc, sc->sc_txlast,
517 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
518 
519 		/*
520 		 * The entire packet chain is set up.  Give the
521 		 * first descriptor to the EPIC now.
522 		 */
523 		EPIC_CDTX(sc, firsttx)->et_txstatus |= ET_TXSTAT_OWNER;
524 		EPIC_CDTXSYNC(sc, firsttx,
525 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
526 
527 		/* Start the transmitter. */
528 		bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_COMMAND,
529 		    COMMAND_TXQUEUED);
530 
531 		/* Set a watchdog timer in case the chip flakes out. */
532 		ifp->if_timer = 5;
533 	}
534 }
535 
536 /*
537  * Watchdog timer handler.
538  * [ifnet interface function]
539  */
540 void
541 epic_watchdog(struct ifnet *ifp)
542 {
543 	struct epic_softc *sc = ifp->if_softc;
544 
545 	printf("%s: device timeout\n", device_xname(sc->sc_dev));
546 	ifp->if_oerrors++;
547 
548 	(void)epic_init(ifp);
549 }
550 
551 /*
552  * Handle control requests from the operator.
553  * [ifnet interface function]
554  */
555 int
556 epic_ioctl(struct ifnet *ifp, u_long cmd, void *data)
557 {
558 	struct epic_softc *sc = ifp->if_softc;
559 	int s, error;
560 
561 	s = splnet();
562 
563 	error = ether_ioctl(ifp, cmd, data);
564 	if (error == ENETRESET) {
565 		/*
566 		 * Multicast list has changed; set the hardware filter
567 		 * accordingly.  Update our idea of the current media;
568 		 * epic_set_mchash() needs to know what it is.
569 		 */
570 		if (ifp->if_flags & IFF_RUNNING) {
571 			mii_pollstat(&sc->sc_mii);
572 			epic_set_mchash(sc);
573 		}
574 		error = 0;
575 	}
576 
577 	splx(s);
578 	return error;
579 }
580 
581 /*
582  * Interrupt handler.
583  */
584 int
585 epic_intr(void *arg)
586 {
587 	struct epic_softc *sc = arg;
588 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
589 	struct epic_rxdesc *rxd;
590 	struct epic_txdesc *txd;
591 	struct epic_descsoft *ds;
592 	struct mbuf *m;
593 	uint32_t intstat, rxstatus, txstatus;
594 	int i, claimed = 0;
595 	u_int len;
596 
597  top:
598 	/*
599 	 * Get the interrupt status from the EPIC.
600 	 */
601 	intstat = bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_INTSTAT);
602 	if ((intstat & INTSTAT_INT_ACTV) == 0)
603 		return claimed;
604 
605 	claimed = 1;
606 
607 	/*
608 	 * Acknowledge the interrupt.
609 	 */
610 	bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_INTSTAT,
611 	    intstat & INTMASK);
612 
613 	/*
614 	 * Check for receive interrupts.
615 	 */
616 	if (intstat & (INTSTAT_RCC | INTSTAT_RXE | INTSTAT_RQE)) {
617 		for (i = sc->sc_rxptr;; i = EPIC_NEXTRX(i)) {
618 			rxd = EPIC_CDRX(sc, i);
619 			ds = EPIC_DSRX(sc, i);
620 
621 			EPIC_CDRXSYNC(sc, i,
622 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
623 
624 			rxstatus = rxd->er_rxstatus;
625 			if (rxstatus & ER_RXSTAT_OWNER) {
626 				/*
627 				 * We have processed all of the
628 				 * receive buffers.
629 				 */
630 				break;
631 			}
632 
633 			/*
634 			 * Make sure the packet arrived intact.  If an error
635 			 * occurred, update stats and reset the descriptor.
636 			 * The buffer will be reused the next time the
637 			 * descriptor comes up in the ring.
638 			 */
639 			if ((rxstatus & ER_RXSTAT_PKTINTACT) == 0) {
640 				if (rxstatus & ER_RXSTAT_CRCERROR)
641 					printf("%s: CRC error\n",
642 					    device_xname(sc->sc_dev));
643 				if (rxstatus & ER_RXSTAT_ALIGNERROR)
644 					printf("%s: alignment error\n",
645 					    device_xname(sc->sc_dev));
646 				ifp->if_ierrors++;
647 				EPIC_INIT_RXDESC(sc, i);
648 				continue;
649 			}
650 
651 			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
652 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
653 
654 			/*
655 			 * The EPIC includes the CRC with every packet;
656 			 * trim it.
657 			 */
658 			len = RXSTAT_RXLENGTH(rxstatus) - ETHER_CRC_LEN;
659 
660 			if (len < sizeof(struct ether_header)) {
661 				/*
662 				 * Runt packet; drop it now.
663 				 */
664 				ifp->if_ierrors++;
665 				EPIC_INIT_RXDESC(sc, i);
666 				bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
667 				    ds->ds_dmamap->dm_mapsize,
668 				    BUS_DMASYNC_PREREAD);
669 				continue;
670 			}
671 
672 			/*
673 			 * If the packet is small enough to fit in a
674 			 * single header mbuf, allocate one and copy
675 			 * the data into it.  This greatly reduces
676 			 * memory consumption when we receive lots
677 			 * of small packets.
678 			 *
679 			 * Otherwise, we add a new buffer to the receive
680 			 * chain.  If this fails, we drop the packet and
681 			 * recycle the old buffer.
682 			 */
683 			if (epic_copy_small != 0 && len <= MHLEN) {
684 				MGETHDR(m, M_DONTWAIT, MT_DATA);
685 				if (m == NULL)
686 					goto dropit;
687 				memcpy(mtod(m, void *),
688 				    mtod(ds->ds_mbuf, void *), len);
689 				EPIC_INIT_RXDESC(sc, i);
690 				bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
691 				    ds->ds_dmamap->dm_mapsize,
692 				    BUS_DMASYNC_PREREAD);
693 			} else {
694 				m = ds->ds_mbuf;
695 				if (epic_add_rxbuf(sc, i) != 0) {
696  dropit:
697 					ifp->if_ierrors++;
698 					EPIC_INIT_RXDESC(sc, i);
699 					bus_dmamap_sync(sc->sc_dmat,
700 					    ds->ds_dmamap, 0,
701 					    ds->ds_dmamap->dm_mapsize,
702 					    BUS_DMASYNC_PREREAD);
703 					continue;
704 				}
705 			}
706 
707 			m->m_pkthdr.rcvif = ifp;
708 			m->m_pkthdr.len = m->m_len = len;
709 
710 			/*
711 			 * Pass this up to any BPF listeners, but only
712 			 * pass it up the stack if it's for us.
713 			 */
714 			bpf_mtap(ifp, m);
715 
716 			/* Pass it on. */
717 			(*ifp->if_input)(ifp, m);
718 			ifp->if_ipackets++;
719 		}
720 
721 		/* Update the receive pointer. */
722 		sc->sc_rxptr = i;
723 
724 		/*
725 		 * Check for receive queue underflow.
726 		 */
727 		if (intstat & INTSTAT_RQE) {
728 			printf("%s: receiver queue empty\n",
729 			    device_xname(sc->sc_dev));
730 			/*
731 			 * Ring is already built; just restart the
732 			 * receiver.
733 			 */
734 			bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_PRCDAR,
735 			    EPIC_CDRXADDR(sc, sc->sc_rxptr));
736 			bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_COMMAND,
737 			    COMMAND_RXQUEUED | COMMAND_START_RX);
738 		}
739 	}
740 
741 	/*
742 	 * Check for transmission complete interrupts.
743 	 */
744 	if (intstat & (INTSTAT_TXC | INTSTAT_TXU)) {
745 		ifp->if_flags &= ~IFF_OACTIVE;
746 		for (i = sc->sc_txdirty; sc->sc_txpending != 0;
747 		     i = EPIC_NEXTTX(i), sc->sc_txpending--) {
748 			txd = EPIC_CDTX(sc, i);
749 			ds = EPIC_DSTX(sc, i);
750 
751 			EPIC_CDTXSYNC(sc, i,
752 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
753 
754 			txstatus = txd->et_txstatus;
755 			if (txstatus & ET_TXSTAT_OWNER)
756 				break;
757 
758 			EPIC_CDFLSYNC(sc, i, BUS_DMASYNC_POSTWRITE);
759 
760 			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
761 			    0, ds->ds_dmamap->dm_mapsize,
762 			    BUS_DMASYNC_POSTWRITE);
763 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
764 			m_freem(ds->ds_mbuf);
765 			ds->ds_mbuf = NULL;
766 
767 			/*
768 			 * Check for errors and collisions.
769 			 */
770 			if ((txstatus & ET_TXSTAT_PACKETTX) == 0)
771 				ifp->if_oerrors++;
772 			else
773 				ifp->if_opackets++;
774 			ifp->if_collisions +=
775 			    TXSTAT_COLLISIONS(txstatus);
776 			if (txstatus & ET_TXSTAT_CARSENSELOST)
777 				printf("%s: lost carrier\n",
778 				    device_xname(sc->sc_dev));
779 		}
780 
781 		/* Update the dirty transmit buffer pointer. */
782 		sc->sc_txdirty = i;
783 
784 		/*
785 		 * Cancel the watchdog timer if there are no pending
786 		 * transmissions.
787 		 */
788 		if (sc->sc_txpending == 0)
789 			ifp->if_timer = 0;
790 
791 		/*
792 		 * Kick the transmitter after a DMA underrun.
793 		 */
794 		if (intstat & INTSTAT_TXU) {
795 			printf("%s: transmit underrun\n",
796 			    device_xname(sc->sc_dev));
797 			bus_space_write_4(sc->sc_st, sc->sc_sh,
798 			    EPIC_COMMAND, COMMAND_TXUGO);
799 			if (sc->sc_txpending)
800 				bus_space_write_4(sc->sc_st, sc->sc_sh,
801 				    EPIC_COMMAND, COMMAND_TXQUEUED);
802 		}
803 
804 		/*
805 		 * Try to get more packets going.
806 		 */
807 		epic_start(ifp);
808 	}
809 
810 	/*
811 	 * Check for fatal interrupts.
812 	 */
813 	if (intstat & INTSTAT_FATAL_INT) {
814 		if (intstat & INTSTAT_PTA)
815 			printf("%s: PCI target abort error\n",
816 			    device_xname(sc->sc_dev));
817 		else if (intstat & INTSTAT_PMA)
818 			printf("%s: PCI master abort error\n",
819 			    device_xname(sc->sc_dev));
820 		else if (intstat & INTSTAT_APE)
821 			printf("%s: PCI address parity error\n",
822 			    device_xname(sc->sc_dev));
823 		else if (intstat & INTSTAT_DPE)
824 			printf("%s: PCI data parity error\n",
825 			    device_xname(sc->sc_dev));
826 		else
827 			printf("%s: unknown fatal error\n",
828 			    device_xname(sc->sc_dev));
829 		(void)epic_init(ifp);
830 	}
831 
832 	/*
833 	 * Check for more interrupts.
834 	 */
835 	goto top;
836 }
837 
838 /*
839  * One second timer, used to tick the MII.
840  */
841 void
842 epic_tick(void *arg)
843 {
844 	struct epic_softc *sc = arg;
845 	int s;
846 
847 	s = splnet();
848 	mii_tick(&sc->sc_mii);
849 	splx(s);
850 
851 	callout_reset(&sc->sc_mii_callout, hz, epic_tick, sc);
852 }
853 
854 /*
855  * Fixup the clock source on the EPIC.
856  */
857 void
858 epic_fixup_clock_source(struct epic_softc *sc)
859 {
860 	int i;
861 
862 	/*
863 	 * According to SMC Application Note 7-15, the EPIC's clock
864 	 * source is incorrect following a reset.  This manifests itself
865 	 * as failure to recognize when host software has written to
866 	 * a register on the EPIC.  The appnote recommends issuing at
867 	 * least 16 consecutive writes to the CLOCK TEST bit to correctly
868 	 * configure the clock source.
869 	 */
870 	for (i = 0; i < 16; i++)
871 		bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_TEST,
872 		    TEST_CLOCKTEST);
873 }
874 
875 /*
876  * Perform a soft reset on the EPIC.
877  */
878 void
879 epic_reset(struct epic_softc *sc)
880 {
881 
882 	epic_fixup_clock_source(sc);
883 
884 	bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_GENCTL, 0);
885 	delay(100);
886 	bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_GENCTL, GENCTL_SOFTRESET);
887 	delay(100);
888 
889 	epic_fixup_clock_source(sc);
890 }
891 
892 /*
893  * Initialize the interface.  Must be called at splnet().
894  */
895 int
896 epic_init(struct ifnet *ifp)
897 {
898 	struct epic_softc *sc = ifp->if_softc;
899 	bus_space_tag_t st = sc->sc_st;
900 	bus_space_handle_t sh = sc->sc_sh;
901 	const uint8_t *enaddr = CLLADDR(ifp->if_sadl);
902 	struct epic_txdesc *txd;
903 	struct epic_descsoft *ds;
904 	uint32_t genctl, reg0;
905 	int i, error = 0;
906 
907 	/*
908 	 * Cancel any pending I/O.
909 	 */
910 	epic_stop(ifp, 0);
911 
912 	/*
913 	 * Reset the EPIC to a known state.
914 	 */
915 	epic_reset(sc);
916 
917 	/*
918 	 * Magical mystery initialization.
919 	 */
920 	bus_space_write_4(st, sh, EPIC_TXTEST, 0);
921 
922 	/*
923 	 * Initialize the EPIC genctl register:
924 	 *
925 	 *	- 64 byte receive FIFO threshold
926 	 *	- automatic advance to next receive frame
927 	 */
928 	genctl = GENCTL_RX_FIFO_THRESH0 | GENCTL_ONECOPY;
929 #if BYTE_ORDER == BIG_ENDIAN
930 	genctl |= GENCTL_BIG_ENDIAN;
931 #endif
932 	bus_space_write_4(st, sh, EPIC_GENCTL, genctl);
933 
934 	/*
935 	 * Reset the MII bus and PHY.
936 	 */
937 	reg0 = bus_space_read_4(st, sh, EPIC_NVCTL);
938 	bus_space_write_4(st, sh, EPIC_NVCTL, reg0 | NVCTL_GPIO1 | NVCTL_GPOE1);
939 	bus_space_write_4(st, sh, EPIC_MIICFG, MIICFG_ENASER);
940 	bus_space_write_4(st, sh, EPIC_GENCTL, genctl | GENCTL_RESET_PHY);
941 	delay(100);
942 	bus_space_write_4(st, sh, EPIC_GENCTL, genctl);
943 	delay(1000);
944 	bus_space_write_4(st, sh, EPIC_NVCTL, reg0);
945 
946 	/*
947 	 * Initialize Ethernet address.
948 	 */
949 	reg0 = enaddr[1] << 8 | enaddr[0];
950 	bus_space_write_4(st, sh, EPIC_LAN0, reg0);
951 	reg0 = enaddr[3] << 8 | enaddr[2];
952 	bus_space_write_4(st, sh, EPIC_LAN1, reg0);
953 	reg0 = enaddr[5] << 8 | enaddr[4];
954 	bus_space_write_4(st, sh, EPIC_LAN2, reg0);
955 
956 	/*
957 	 * Initialize receive control.  Remember the external buffer
958 	 * size setting.
959 	 */
960 	reg0 = bus_space_read_4(st, sh, EPIC_RXCON) &
961 	    (RXCON_EXTBUFSIZESEL1 | RXCON_EXTBUFSIZESEL0);
962 	reg0 |= (RXCON_RXMULTICAST | RXCON_RXBROADCAST);
963 	if (ifp->if_flags & IFF_PROMISC)
964 		reg0 |= RXCON_PROMISCMODE;
965 	bus_space_write_4(st, sh, EPIC_RXCON, reg0);
966 
967 	/* Set the current media. */
968 	if ((error = epic_mediachange(ifp)) != 0)
969 		goto out;
970 
971 	/* Set up the multicast hash table. */
972 	epic_set_mchash(sc);
973 
974 	/*
975 	 * Initialize the transmit descriptor ring.  txlast is initialized
976 	 * to the end of the list so that it will wrap around to the first
977 	 * descriptor when the first packet is transmitted.
978 	 */
979 	for (i = 0; i < EPIC_NTXDESC; i++) {
980 		txd = EPIC_CDTX(sc, i);
981 		memset(txd, 0, sizeof(struct epic_txdesc));
982 		txd->et_bufaddr = EPIC_CDFLADDR(sc, i);
983 		txd->et_nextdesc = EPIC_CDTXADDR(sc, EPIC_NEXTTX(i));
984 		EPIC_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
985 	}
986 	sc->sc_txpending = 0;
987 	sc->sc_txdirty = 0;
988 	sc->sc_txlast = EPIC_NTXDESC - 1;
989 
990 	/*
991 	 * Initialize the receive descriptor ring.
992 	 */
993 	for (i = 0; i < EPIC_NRXDESC; i++) {
994 		ds = EPIC_DSRX(sc, i);
995 		if (ds->ds_mbuf == NULL) {
996 			if ((error = epic_add_rxbuf(sc, i)) != 0) {
997 				printf("%s: unable to allocate or map rx "
998 				    "buffer %d error = %d\n",
999 				    device_xname(sc->sc_dev), i, error);
1000 				/*
1001 				 * XXX Should attempt to run with fewer receive
1002 				 * XXX buffers instead of just failing.
1003 				 */
1004 				epic_rxdrain(sc);
1005 				goto out;
1006 			}
1007 		} else
1008 			EPIC_INIT_RXDESC(sc, i);
1009 	}
1010 	sc->sc_rxptr = 0;
1011 
1012 	/*
1013 	 * Initialize the interrupt mask and enable interrupts.
1014 	 */
1015 	bus_space_write_4(st, sh, EPIC_INTMASK, INTMASK);
1016 	bus_space_write_4(st, sh, EPIC_GENCTL, genctl | GENCTL_INTENA);
1017 
1018 	/*
1019 	 * Give the transmit and receive rings to the EPIC.
1020 	 */
1021 	bus_space_write_4(st, sh, EPIC_PTCDAR,
1022 	    EPIC_CDTXADDR(sc, EPIC_NEXTTX(sc->sc_txlast)));
1023 	bus_space_write_4(st, sh, EPIC_PRCDAR,
1024 	    EPIC_CDRXADDR(sc, sc->sc_rxptr));
1025 
1026 	/*
1027 	 * Set the EPIC in motion.
1028 	 */
1029 	bus_space_write_4(st, sh, EPIC_COMMAND,
1030 	    COMMAND_RXQUEUED | COMMAND_START_RX);
1031 
1032 	/*
1033 	 * ...all done!
1034 	 */
1035 	ifp->if_flags |= IFF_RUNNING;
1036 	ifp->if_flags &= ~IFF_OACTIVE;
1037 
1038 	/*
1039 	 * Start the one second clock.
1040 	 */
1041 	callout_reset(&sc->sc_mii_callout, hz, epic_tick, sc);
1042 
1043 	/*
1044 	 * Attempt to start output on the interface.
1045 	 */
1046 	epic_start(ifp);
1047 
1048  out:
1049 	if (error)
1050 		printf("%s: interface not running\n", device_xname(sc->sc_dev));
1051 	return error;
1052 }
1053 
1054 /*
1055  * Drain the receive queue.
1056  */
1057 void
1058 epic_rxdrain(struct epic_softc *sc)
1059 {
1060 	struct epic_descsoft *ds;
1061 	int i;
1062 
1063 	for (i = 0; i < EPIC_NRXDESC; i++) {
1064 		ds = EPIC_DSRX(sc, i);
1065 		if (ds->ds_mbuf != NULL) {
1066 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1067 			m_freem(ds->ds_mbuf);
1068 			ds->ds_mbuf = NULL;
1069 		}
1070 	}
1071 }
1072 
1073 /*
1074  * Stop transmission on the interface.
1075  */
1076 void
1077 epic_stop(struct ifnet *ifp, int disable)
1078 {
1079 	struct epic_softc *sc = ifp->if_softc;
1080 	bus_space_tag_t st = sc->sc_st;
1081 	bus_space_handle_t sh = sc->sc_sh;
1082 	struct epic_descsoft *ds;
1083 	uint32_t reg;
1084 	int i;
1085 
1086 	/*
1087 	 * Stop the one second clock.
1088 	 */
1089 	callout_stop(&sc->sc_mii_callout);
1090 
1091 	/* Down the MII. */
1092 	mii_down(&sc->sc_mii);
1093 
1094 	/* Paranoia... */
1095 	epic_fixup_clock_source(sc);
1096 
1097 	/*
1098 	 * Disable interrupts.
1099 	 */
1100 	reg = bus_space_read_4(st, sh, EPIC_GENCTL);
1101 	bus_space_write_4(st, sh, EPIC_GENCTL, reg & ~GENCTL_INTENA);
1102 	bus_space_write_4(st, sh, EPIC_INTMASK, 0);
1103 
1104 	/*
1105 	 * Stop the DMA engine and take the receiver off-line.
1106 	 */
1107 	bus_space_write_4(st, sh, EPIC_COMMAND, COMMAND_STOP_RDMA |
1108 	    COMMAND_STOP_TDMA | COMMAND_STOP_RX);
1109 
1110 	/*
1111 	 * Release any queued transmit buffers.
1112 	 */
1113 	for (i = 0; i < EPIC_NTXDESC; i++) {
1114 		ds = EPIC_DSTX(sc, i);
1115 		if (ds->ds_mbuf != NULL) {
1116 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1117 			m_freem(ds->ds_mbuf);
1118 			ds->ds_mbuf = NULL;
1119 		}
1120 	}
1121 
1122 	/*
1123 	 * Mark the interface down and cancel the watchdog timer.
1124 	 */
1125 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1126 	ifp->if_timer = 0;
1127 
1128 	if (disable)
1129 		epic_rxdrain(sc);
1130 }
1131 
1132 /*
1133  * Read the EPIC Serial EEPROM.
1134  */
1135 void
1136 epic_read_eeprom(struct epic_softc *sc, int word, int wordcnt, uint16_t *data)
1137 {
1138 	bus_space_tag_t st = sc->sc_st;
1139 	bus_space_handle_t sh = sc->sc_sh;
1140 	uint16_t reg;
1141 	int i, x;
1142 
1143 #define	EEPROM_WAIT_READY(st, sh) \
1144 	while ((bus_space_read_4((st), (sh), EPIC_EECTL) & EECTL_EERDY) == 0) \
1145 		/* nothing */
1146 
1147 	/*
1148 	 * Enable the EEPROM.
1149 	 */
1150 	bus_space_write_4(st, sh, EPIC_EECTL, EECTL_ENABLE);
1151 	EEPROM_WAIT_READY(st, sh);
1152 
1153 	for (i = 0; i < wordcnt; i++) {
1154 		/* Send CHIP SELECT for one clock tick. */
1155 		bus_space_write_4(st, sh, EPIC_EECTL, EECTL_ENABLE|EECTL_EECS);
1156 		EEPROM_WAIT_READY(st, sh);
1157 
1158 		/* Shift in the READ opcode. */
1159 		for (x = 3; x > 0; x--) {
1160 			reg = EECTL_ENABLE|EECTL_EECS;
1161 			if (EPIC_EEPROM_OPC_READ & (1 << (x - 1)))
1162 				reg |= EECTL_EEDI;
1163 			bus_space_write_4(st, sh, EPIC_EECTL, reg);
1164 			EEPROM_WAIT_READY(st, sh);
1165 			bus_space_write_4(st, sh, EPIC_EECTL, reg|EECTL_EESK);
1166 			EEPROM_WAIT_READY(st, sh);
1167 			bus_space_write_4(st, sh, EPIC_EECTL, reg);
1168 			EEPROM_WAIT_READY(st, sh);
1169 		}
1170 
1171 		/* Shift in address. */
1172 		for (x = 6; x > 0; x--) {
1173 			reg = EECTL_ENABLE|EECTL_EECS;
1174 			if ((word + i) & (1 << (x - 1)))
1175 				reg |= EECTL_EEDI;
1176 			bus_space_write_4(st, sh, EPIC_EECTL, reg);
1177 			EEPROM_WAIT_READY(st, sh);
1178 			bus_space_write_4(st, sh, EPIC_EECTL, reg|EECTL_EESK);
1179 			EEPROM_WAIT_READY(st, sh);
1180 			bus_space_write_4(st, sh, EPIC_EECTL, reg);
1181 			EEPROM_WAIT_READY(st, sh);
1182 		}
1183 
1184 		/* Shift out data. */
1185 		reg = EECTL_ENABLE|EECTL_EECS;
1186 		data[i] = 0;
1187 		for (x = 16; x > 0; x--) {
1188 			bus_space_write_4(st, sh, EPIC_EECTL, reg|EECTL_EESK);
1189 			EEPROM_WAIT_READY(st, sh);
1190 			if (bus_space_read_4(st, sh, EPIC_EECTL) & EECTL_EEDO)
1191 				data[i] |= (1 << (x - 1));
1192 			bus_space_write_4(st, sh, EPIC_EECTL, reg);
1193 			EEPROM_WAIT_READY(st, sh);
1194 		}
1195 
1196 		/* Clear CHIP SELECT. */
1197 		bus_space_write_4(st, sh, EPIC_EECTL, EECTL_ENABLE);
1198 		EEPROM_WAIT_READY(st, sh);
1199 	}
1200 
1201 	/*
1202 	 * Disable the EEPROM.
1203 	 */
1204 	bus_space_write_4(st, sh, EPIC_EECTL, 0);
1205 
1206 #undef EEPROM_WAIT_READY
1207 }
1208 
1209 /*
1210  * Add a receive buffer to the indicated descriptor.
1211  */
1212 int
1213 epic_add_rxbuf(struct epic_softc *sc, int idx)
1214 {
1215 	struct epic_descsoft *ds = EPIC_DSRX(sc, idx);
1216 	struct mbuf *m;
1217 	int error;
1218 
1219 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1220 	if (m == NULL)
1221 		return ENOBUFS;
1222 
1223 	MCLGET(m, M_DONTWAIT);
1224 	if ((m->m_flags & M_EXT) == 0) {
1225 		m_freem(m);
1226 		return ENOBUFS;
1227 	}
1228 
1229 	if (ds->ds_mbuf != NULL)
1230 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1231 
1232 	ds->ds_mbuf = m;
1233 
1234 	error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1235 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1236 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
1237 	if (error) {
1238 		printf("%s: can't load rx DMA map %d, error = %d\n",
1239 		    device_xname(sc->sc_dev), idx, error);
1240 		panic("%s", __func__);	/* XXX */
1241 	}
1242 
1243 	bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1244 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1245 
1246 	EPIC_INIT_RXDESC(sc, idx);
1247 
1248 	return 0;
1249 }
1250 
1251 /*
1252  * Set the EPIC multicast hash table.
1253  *
1254  * NOTE: We rely on a recently-updated mii_media_active here!
1255  */
1256 void
1257 epic_set_mchash(struct epic_softc *sc)
1258 {
1259 	struct ethercom *ec = &sc->sc_ethercom;
1260 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1261 	struct ether_multi *enm;
1262 	struct ether_multistep step;
1263 	uint32_t hash, mchash[4];
1264 
1265 	/*
1266 	 * Set up the multicast address filter by passing all multicast
1267 	 * addresses through a CRC generator, and then using the low-order
1268 	 * 6 bits as an index into the 64 bit multicast hash table (only
1269 	 * the lower 16 bits of each 32 bit multicast hash register are
1270 	 * valid).  The high order bits select the register, while the
1271 	 * rest of the bits select the bit within the register.
1272 	 */
1273 
1274 	if (ifp->if_flags & IFF_PROMISC)
1275 		goto allmulti;
1276 
1277 	if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_10_T) {
1278 		/* XXX hardware bug in 10Mbps mode. */
1279 		goto allmulti;
1280 	}
1281 
1282 	mchash[0] = mchash[1] = mchash[2] = mchash[3] = 0;
1283 
1284 	ETHER_FIRST_MULTI(step, ec, enm);
1285 	while (enm != NULL) {
1286 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1287 			/*
1288 			 * We must listen to a range of multicast addresses.
1289 			 * For now, just accept all multicasts, rather than
1290 			 * trying to set only those filter bits needed to match
1291 			 * the range.  (At this time, the only use of address
1292 			 * ranges is for IP multicast routing, for which the
1293 			 * range is big enough to require all bits set.)
1294 			 */
1295 			goto allmulti;
1296 		}
1297 
1298 		hash = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1299 		hash >>= 26;
1300 
1301 		/* Set the corresponding bit in the hash table. */
1302 		mchash[hash >> 4] |= 1 << (hash & 0xf);
1303 
1304 		ETHER_NEXT_MULTI(step, enm);
1305 	}
1306 
1307 	ifp->if_flags &= ~IFF_ALLMULTI;
1308 	goto sethash;
1309 
1310  allmulti:
1311 	ifp->if_flags |= IFF_ALLMULTI;
1312 	mchash[0] = mchash[1] = mchash[2] = mchash[3] = 0xffff;
1313 
1314  sethash:
1315 	bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MC0, mchash[0]);
1316 	bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MC1, mchash[1]);
1317 	bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MC2, mchash[2]);
1318 	bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MC3, mchash[3]);
1319 }
1320 
1321 /*
1322  * Wait for the MII to become ready.
1323  */
1324 int
1325 epic_mii_wait(struct epic_softc *sc, uint32_t rw)
1326 {
1327 	int i;
1328 
1329 	for (i = 0; i < 50; i++) {
1330 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_MMCTL) & rw)
1331 		    == 0)
1332 			break;
1333 		delay(2);
1334 	}
1335 	if (i == 50) {
1336 		printf("%s: MII timed out\n", device_xname(sc->sc_dev));
1337 		return 1;
1338 	}
1339 
1340 	return 0;
1341 }
1342 
1343 /*
1344  * Read from the MII.
1345  */
1346 int
1347 epic_mii_read(device_t self, int phy, int reg)
1348 {
1349 	struct epic_softc *sc = device_private(self);
1350 
1351 	if (epic_mii_wait(sc, MMCTL_WRITE))
1352 		return 0;
1353 
1354 	bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MMCTL,
1355 	    MMCTL_ARG(phy, reg, MMCTL_READ));
1356 
1357 	if (epic_mii_wait(sc, MMCTL_READ))
1358 		return 0;
1359 
1360 	return bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_MMDATA) &
1361 	    MMDATA_MASK;
1362 }
1363 
1364 /*
1365  * Write to the MII.
1366  */
1367 void
1368 epic_mii_write(device_t self, int phy, int reg, int val)
1369 {
1370 	struct epic_softc *sc = device_private(self);
1371 
1372 	if (epic_mii_wait(sc, MMCTL_WRITE))
1373 		return;
1374 
1375 	bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MMDATA, val);
1376 	bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MMCTL,
1377 	    MMCTL_ARG(phy, reg, MMCTL_WRITE));
1378 }
1379 
1380 /*
1381  * Callback from PHY when media changes.
1382  */
1383 void
1384 epic_statchg(device_t self)
1385 {
1386 	struct epic_softc *sc = device_private(self);
1387 	uint32_t txcon, miicfg;
1388 
1389 	/*
1390 	 * Update loopback bits in TXCON to reflect duplex mode.
1391 	 */
1392 	txcon = bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_TXCON);
1393 	if (sc->sc_mii.mii_media_active & IFM_FDX)
1394 		txcon |= (TXCON_LOOPBACK_D1|TXCON_LOOPBACK_D2);
1395 	else
1396 		txcon &= ~(TXCON_LOOPBACK_D1|TXCON_LOOPBACK_D2);
1397 	bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_TXCON, txcon);
1398 
1399 	/* On some cards we need manualy set fullduplex led */
1400 	if (sc->sc_hwflags & EPIC_DUPLEXLED_ON_694) {
1401 		miicfg = bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_MIICFG);
1402 		if (IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX)
1403 			miicfg |= MIICFG_ENABLE;
1404 		else
1405 			miicfg &= ~MIICFG_ENABLE;
1406 		bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MIICFG, miicfg);
1407 	}
1408 
1409 	/*
1410 	 * There is a multicast filter bug in 10Mbps mode.  Kick the
1411 	 * multicast filter in case the speed changed.
1412 	 */
1413 	epic_set_mchash(sc);
1414 }
1415 
1416 /*
1417  * Callback from ifmedia to request new media setting.
1418  *
1419  * XXX Looks to me like some of this complexity should move into
1420  * XXX one or two custom PHY drivers. --dyoung
1421  */
1422 int
1423 epic_mediachange(struct ifnet *ifp)
1424 {
1425 	struct epic_softc *sc = ifp->if_softc;
1426 	struct mii_data *mii = &sc->sc_mii;
1427 	struct ifmedia *ifm = &mii->mii_media;
1428 	int media = ifm->ifm_cur->ifm_media;
1429 	uint32_t miicfg;
1430 	struct mii_softc *miisc;
1431 	int cfg, rc;
1432 
1433 	if ((ifp->if_flags & IFF_UP) == 0)
1434 		return 0;
1435 
1436 	if (IFM_INST(media) != sc->sc_serinst) {
1437 		/* If we're not selecting serial interface, select MII mode */
1438 #ifdef EPICMEDIADEBUG
1439 		printf("%s: parallel mode\n", ifp->if_xname);
1440 #endif
1441 		miicfg = bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_MIICFG);
1442 		miicfg &= ~MIICFG_SERMODEENA;
1443 		bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MIICFG, miicfg);
1444 	}
1445 
1446 	if ((rc = mii_mediachg(mii)) == ENXIO)
1447 		rc = 0;
1448 
1449 	if (IFM_INST(media) == sc->sc_serinst) {
1450 		/* select serial interface */
1451 #ifdef EPICMEDIADEBUG
1452 		printf("%s: serial mode\n", ifp->if_xname);
1453 #endif
1454 		miicfg = bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_MIICFG);
1455 		miicfg |= (MIICFG_SERMODEENA | MIICFG_ENABLE);
1456 		bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MIICFG, miicfg);
1457 
1458 		/* There is no driver to fill this */
1459 		mii->mii_media_active = media;
1460 		mii->mii_media_status = 0;
1461 
1462 		epic_statchg(sc->sc_dev);
1463 		return 0;
1464 	}
1465 
1466 	/* Lookup selected PHY */
1467 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list) {
1468 		if (IFM_INST(media) == miisc->mii_inst)
1469 			break;
1470 	}
1471 	if (!miisc) {
1472 		printf("%s: can't happen\n", __func__); /* ??? panic */
1473 		return 0;
1474 	}
1475 #ifdef EPICMEDIADEBUG
1476 	printf("%s: using phy %s\n", ifp->if_xname,
1477 	       device_xname(miisc->mii_dev));
1478 #endif
1479 
1480 	if (miisc->mii_flags & MIIF_HAVEFIBER) {
1481 		/* XXX XXX assume it's a Level1 - should check */
1482 
1483 		/* We have to powerup fiber transceivers */
1484 		cfg = PHY_READ(miisc, MII_LXTPHY_CONFIG);
1485 		if (IFM_SUBTYPE(media) == IFM_100_FX) {
1486 #ifdef EPICMEDIADEBUG
1487 			printf("%s: power up fiber\n", ifp->if_xname);
1488 #endif
1489 			cfg |= (CONFIG_LEDC1 | CONFIG_LEDC0);
1490 		} else {
1491 #ifdef EPICMEDIADEBUG
1492 			printf("%s: power down fiber\n", ifp->if_xname);
1493 #endif
1494 			cfg &= ~(CONFIG_LEDC1 | CONFIG_LEDC0);
1495 		}
1496 		PHY_WRITE(miisc, MII_LXTPHY_CONFIG, cfg);
1497 	}
1498 
1499 	return rc;
1500 }
1501