xref: /netbsd-src/sys/dev/ic/smc83c170.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /*	$NetBSD: smc83c170.c,v 1.86 2018/06/26 06:48:00 msaitoh Exp $	*/
2 
3 /*-
4  * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 /*
34  * Device driver for the Standard Microsystems Corp. 83C170
35  * Ethernet PCI Integrated Controller (EPIC/100).
36  */
37 
38 #include <sys/cdefs.h>
39 __KERNEL_RCSID(0, "$NetBSD: smc83c170.c,v 1.86 2018/06/26 06:48:00 msaitoh Exp $");
40 
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/callout.h>
45 #include <sys/mbuf.h>
46 #include <sys/malloc.h>
47 #include <sys/kernel.h>
48 #include <sys/socket.h>
49 #include <sys/ioctl.h>
50 #include <sys/errno.h>
51 #include <sys/device.h>
52 
53 #include <net/if.h>
54 #include <net/if_dl.h>
55 #include <net/if_media.h>
56 #include <net/if_ether.h>
57 
58 #include <net/bpf.h>
59 
60 #include <sys/bus.h>
61 #include <sys/intr.h>
62 
63 #include <dev/mii/miivar.h>
64 #include <dev/mii/lxtphyreg.h>
65 
66 #include <dev/ic/smc83c170reg.h>
67 #include <dev/ic/smc83c170var.h>
68 
69 void	epic_start(struct ifnet *);
70 void	epic_watchdog(struct ifnet *);
71 int	epic_ioctl(struct ifnet *, u_long, void *);
72 int	epic_init(struct ifnet *);
73 void	epic_stop(struct ifnet *, int);
74 
75 bool	epic_shutdown(device_t, int);
76 
77 void	epic_reset(struct epic_softc *);
78 void	epic_rxdrain(struct epic_softc *);
79 int	epic_add_rxbuf(struct epic_softc *, int);
80 void	epic_read_eeprom(struct epic_softc *, int, int, uint16_t *);
81 void	epic_set_mchash(struct epic_softc *);
82 void	epic_fixup_clock_source(struct epic_softc *);
83 int	epic_mii_read(device_t, int, int);
84 void	epic_mii_write(device_t, int, int, int);
85 int	epic_mii_wait(struct epic_softc *, uint32_t);
86 void	epic_tick(void *);
87 
88 void	epic_statchg(struct ifnet *);
89 int	epic_mediachange(struct ifnet *);
90 
91 #define	INTMASK	(INTSTAT_FATAL_INT | INTSTAT_TXU | \
92 	    INTSTAT_TXC | INTSTAT_RXE | INTSTAT_RQE | INTSTAT_RCC)
93 
94 int	epic_copy_small = 0;
95 
96 #define	ETHER_PAD_LEN (ETHER_MIN_LEN - ETHER_CRC_LEN)
97 
98 /*
99  * Attach an EPIC interface to the system.
100  */
101 void
102 epic_attach(struct epic_softc *sc)
103 {
104 	bus_space_tag_t st = sc->sc_st;
105 	bus_space_handle_t sh = sc->sc_sh;
106 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
107 	int rseg, error, miiflags;
108 	u_int i;
109 	bus_dma_segment_t seg;
110 	uint8_t enaddr[ETHER_ADDR_LEN], devname[12 + 1];
111 	uint16_t myea[ETHER_ADDR_LEN / 2], mydevname[6];
112 	char *nullbuf;
113 
114 	callout_init(&sc->sc_mii_callout, 0);
115 
116 	/*
117 	 * Allocate the control data structures, and create and load the
118 	 * DMA map for it.
119 	 */
120 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
121 	    sizeof(struct epic_control_data) + ETHER_PAD_LEN, PAGE_SIZE, 0,
122 	    &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
123 		aprint_error_dev(sc->sc_dev,
124 		    "unable to allocate control data, error = %d\n", error);
125 		goto fail_0;
126 	}
127 
128 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
129 	    sizeof(struct epic_control_data) + ETHER_PAD_LEN,
130 	    (void **)&sc->sc_control_data,
131 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
132 		aprint_error_dev(sc->sc_dev,
133 		    "unable to map control data, error = %d\n", error);
134 		goto fail_1;
135 	}
136 	nullbuf =
137 	    (char *)sc->sc_control_data + sizeof(struct epic_control_data);
138 	memset(nullbuf, 0, ETHER_PAD_LEN);
139 
140 	if ((error = bus_dmamap_create(sc->sc_dmat,
141 	    sizeof(struct epic_control_data), 1,
142 	    sizeof(struct epic_control_data), 0, BUS_DMA_NOWAIT,
143 	    &sc->sc_cddmamap)) != 0) {
144 		aprint_error_dev(sc->sc_dev,
145 		    "unable to create control data DMA map, error = %d\n",
146 		    error);
147 		goto fail_2;
148 	}
149 
150 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
151 	    sc->sc_control_data, sizeof(struct epic_control_data), NULL,
152 	    BUS_DMA_NOWAIT)) != 0) {
153 		aprint_error_dev(sc->sc_dev,
154 		    "unable to load control data DMA map, error = %d\n",
155 		    error);
156 		goto fail_3;
157 	}
158 
159 	/*
160 	 * Create the transmit buffer DMA maps.
161 	 */
162 	for (i = 0; i < EPIC_NTXDESC; i++) {
163 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
164 		    EPIC_NFRAGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
165 		    &EPIC_DSTX(sc, i)->ds_dmamap)) != 0) {
166 			aprint_error_dev(sc->sc_dev,
167 			    "unable to create tx DMA map %d, error = %d\n",
168 			    i, error);
169 			goto fail_4;
170 		}
171 	}
172 
173 	/*
174 	 * Create the receive buffer DMA maps.
175 	 */
176 	for (i = 0; i < EPIC_NRXDESC; i++) {
177 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
178 		    MCLBYTES, 0, BUS_DMA_NOWAIT,
179 		    &EPIC_DSRX(sc, i)->ds_dmamap)) != 0) {
180 			aprint_error_dev(sc->sc_dev,
181 			    "unable to create rx DMA map %d, error = %d\n",
182 			    i, error);
183 			goto fail_5;
184 		}
185 		EPIC_DSRX(sc, i)->ds_mbuf = NULL;
186 	}
187 
188 	/*
189 	 * create and map the pad buffer
190 	 */
191 	if ((error = bus_dmamap_create(sc->sc_dmat, ETHER_PAD_LEN, 1,
192 	    ETHER_PAD_LEN, 0, BUS_DMA_NOWAIT,&sc->sc_nulldmamap)) != 0) {
193 		aprint_error_dev(sc->sc_dev,
194 		    "unable to create pad buffer DMA map, error = %d\n", error);
195 		goto fail_5;
196 	}
197 
198 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_nulldmamap,
199 	    nullbuf, ETHER_PAD_LEN, NULL, BUS_DMA_NOWAIT)) != 0) {
200 		aprint_error_dev(sc->sc_dev,
201 		    "unable to load pad buffer DMA map, error = %d\n", error);
202 		goto fail_6;
203 	}
204 	bus_dmamap_sync(sc->sc_dmat, sc->sc_nulldmamap, 0, ETHER_PAD_LEN,
205 	    BUS_DMASYNC_PREWRITE);
206 
207 	/*
208 	 * Bring the chip out of low-power mode and reset it to a known state.
209 	 */
210 	bus_space_write_4(st, sh, EPIC_GENCTL, 0);
211 	epic_reset(sc);
212 
213 	/*
214 	 * Read the Ethernet address from the EEPROM.
215 	 */
216 	epic_read_eeprom(sc, 0, __arraycount(myea), myea);
217 	for (i = 0; i < __arraycount(myea); i++) {
218 		enaddr[i * 2]     = myea[i] & 0xff;
219 		enaddr[i * 2 + 1] = myea[i] >> 8;
220 	}
221 
222 	/*
223 	 * ...and the device name.
224 	 */
225 	epic_read_eeprom(sc, 0x2c, __arraycount(mydevname), mydevname);
226 	for (i = 0; i < __arraycount(mydevname); i++) {
227 		devname[i * 2]     = mydevname[i] & 0xff;
228 		devname[i * 2 + 1] = mydevname[i] >> 8;
229 	}
230 
231 	devname[sizeof(mydevname)] = '\0';
232 	for (i = sizeof(mydevname) ; i > 0; i--) {
233 		if (devname[i - 1] == ' ')
234 			devname[i - 1] = '\0';
235 		else
236 			break;
237 	}
238 
239 	aprint_normal_dev(sc->sc_dev, "%s, Ethernet address %s\n",
240 	    devname, ether_sprintf(enaddr));
241 
242 	miiflags = 0;
243 	if (sc->sc_hwflags & EPIC_HAS_MII_FIBER)
244 		miiflags |= MIIF_HAVEFIBER;
245 
246 	/*
247 	 * Initialize our media structures and probe the MII.
248 	 */
249 	sc->sc_mii.mii_ifp = ifp;
250 	sc->sc_mii.mii_readreg = epic_mii_read;
251 	sc->sc_mii.mii_writereg = epic_mii_write;
252 	sc->sc_mii.mii_statchg = epic_statchg;
253 
254 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
255 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, epic_mediachange,
256 	    ether_mediastatus);
257 	mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
258 	    MII_OFFSET_ANY, miiflags);
259 	if (LIST_EMPTY(&sc->sc_mii.mii_phys)) {
260 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
261 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
262 	} else
263 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
264 
265 	if (sc->sc_hwflags & EPIC_HAS_BNC) {
266 		/* use the next free media instance */
267 		sc->sc_serinst = sc->sc_mii.mii_instance++;
268 		ifmedia_add(&sc->sc_mii.mii_media,
269 		    IFM_MAKEWORD(IFM_ETHER, IFM_10_2, 0, sc->sc_serinst),
270 		    0, NULL);
271 		aprint_normal_dev(sc->sc_dev, "10base2/BNC\n");
272 	} else
273 		sc->sc_serinst = -1;
274 
275 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
276 	ifp->if_softc = sc;
277 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
278 	ifp->if_ioctl = epic_ioctl;
279 	ifp->if_start = epic_start;
280 	ifp->if_watchdog = epic_watchdog;
281 	ifp->if_init = epic_init;
282 	ifp->if_stop = epic_stop;
283 	IFQ_SET_READY(&ifp->if_snd);
284 
285 	/*
286 	 * We can support 802.1Q VLAN-sized frames.
287 	 */
288 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
289 
290 	/*
291 	 * Attach the interface.
292 	 */
293 	if_attach(ifp);
294 	if_deferred_start_init(ifp, NULL);
295 	ether_ifattach(ifp, enaddr);
296 
297 	/*
298 	 * Make sure the interface is shutdown during reboot.
299 	 */
300 	if (pmf_device_register1(sc->sc_dev, NULL, NULL, epic_shutdown))
301 		pmf_class_network_register(sc->sc_dev, ifp);
302 	else
303 		aprint_error_dev(sc->sc_dev,
304 		    "couldn't establish power handler\n");
305 
306 	return;
307 
308 	/*
309 	 * Free any resources we've allocated during the failed attach
310 	 * attempt.  Do this in reverse order and fall through.
311 	 */
312  fail_6:
313 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_nulldmamap);
314  fail_5:
315 	for (i = 0; i < EPIC_NRXDESC; i++) {
316 		if (EPIC_DSRX(sc, i)->ds_dmamap != NULL)
317 			bus_dmamap_destroy(sc->sc_dmat,
318 			    EPIC_DSRX(sc, i)->ds_dmamap);
319 	}
320  fail_4:
321 	for (i = 0; i < EPIC_NTXDESC; i++) {
322 		if (EPIC_DSTX(sc, i)->ds_dmamap != NULL)
323 			bus_dmamap_destroy(sc->sc_dmat,
324 			    EPIC_DSTX(sc, i)->ds_dmamap);
325 	}
326 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
327  fail_3:
328 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
329  fail_2:
330 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
331 	    sizeof(struct epic_control_data));
332  fail_1:
333 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
334  fail_0:
335 	return;
336 }
337 
338 /*
339  * Shutdown hook.  Make sure the interface is stopped at reboot.
340  */
341 bool
342 epic_shutdown(device_t self, int howto)
343 {
344 	struct epic_softc *sc = device_private(self);
345 
346 	epic_stop(&sc->sc_ethercom.ec_if, 1);
347 
348 	return true;
349 }
350 
351 /*
352  * Start packet transmission on the interface.
353  * [ifnet interface function]
354  */
355 void
356 epic_start(struct ifnet *ifp)
357 {
358 	struct epic_softc *sc = ifp->if_softc;
359 	struct mbuf *m0, *m;
360 	struct epic_txdesc *txd;
361 	struct epic_descsoft *ds;
362 	struct epic_fraglist *fr;
363 	bus_dmamap_t dmamap;
364 	int error, firsttx, nexttx, opending, seg;
365 	u_int len;
366 
367 	/*
368 	 * Remember the previous txpending and the first transmit
369 	 * descriptor we use.
370 	 */
371 	opending = sc->sc_txpending;
372 	firsttx = EPIC_NEXTTX(sc->sc_txlast);
373 
374 	/*
375 	 * Loop through the send queue, setting up transmit descriptors
376 	 * until we drain the queue, or use up all available transmit
377 	 * descriptors.
378 	 */
379 	while (sc->sc_txpending < EPIC_NTXDESC) {
380 		/*
381 		 * Grab a packet off the queue.
382 		 */
383 		IFQ_POLL(&ifp->if_snd, m0);
384 		if (m0 == NULL)
385 			break;
386 		m = NULL;
387 
388 		/*
389 		 * Get the last and next available transmit descriptor.
390 		 */
391 		nexttx = EPIC_NEXTTX(sc->sc_txlast);
392 		txd = EPIC_CDTX(sc, nexttx);
393 		fr = EPIC_CDFL(sc, nexttx);
394 		ds = EPIC_DSTX(sc, nexttx);
395 		dmamap = ds->ds_dmamap;
396 
397 		/*
398 		 * Load the DMA map.  If this fails, the packet either
399 		 * didn't fit in the alloted number of frags, or we were
400 		 * short on resources.  In this case, we'll copy and try
401 		 * again.
402 		 */
403 		if ((error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
404 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 ||
405 		    (m0->m_pkthdr.len < ETHER_PAD_LEN &&
406 		    dmamap-> dm_nsegs == EPIC_NFRAGS)) {
407 			if (error == 0)
408 				bus_dmamap_unload(sc->sc_dmat, dmamap);
409 
410 			MGETHDR(m, M_DONTWAIT, MT_DATA);
411 			if (m == NULL) {
412 				printf("%s: unable to allocate Tx mbuf\n",
413 				    device_xname(sc->sc_dev));
414 				break;
415 			}
416 			if (m0->m_pkthdr.len > MHLEN) {
417 				MCLGET(m, M_DONTWAIT);
418 				if ((m->m_flags & M_EXT) == 0) {
419 					printf("%s: unable to allocate Tx "
420 					    "cluster\n",
421 					    device_xname(sc->sc_dev));
422 					m_freem(m);
423 					break;
424 				}
425 			}
426 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
427 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
428 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
429 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
430 			if (error) {
431 				printf("%s: unable to load Tx buffer, "
432 				    "error = %d\n", device_xname(sc->sc_dev),
433 				    error);
434 				break;
435 			}
436 		}
437 		IFQ_DEQUEUE(&ifp->if_snd, m0);
438 		if (m != NULL) {
439 			m_freem(m0);
440 			m0 = m;
441 		}
442 
443 		/* Initialize the fraglist. */
444 		for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
445 			fr->ef_frags[seg].ef_addr =
446 			    dmamap->dm_segs[seg].ds_addr;
447 			fr->ef_frags[seg].ef_length =
448 			    dmamap->dm_segs[seg].ds_len;
449 		}
450 		len = m0->m_pkthdr.len;
451 		if (len < ETHER_PAD_LEN) {
452 			fr->ef_frags[seg].ef_addr = sc->sc_nulldma;
453 			fr->ef_frags[seg].ef_length = ETHER_PAD_LEN - len;
454 			len = ETHER_PAD_LEN;
455 			seg++;
456 		}
457 		fr->ef_nfrags = seg;
458 
459 		EPIC_CDFLSYNC(sc, nexttx, BUS_DMASYNC_PREWRITE);
460 
461 		/* Sync the DMA map. */
462 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
463 		    BUS_DMASYNC_PREWRITE);
464 
465 		/*
466 		 * Store a pointer to the packet so we can free it later.
467 		 */
468 		ds->ds_mbuf = m0;
469 
470 		/*
471 		 * Fill in the transmit descriptor.
472 		 */
473 		txd->et_control = ET_TXCTL_LASTDESC | ET_TXCTL_FRAGLIST;
474 
475 		/*
476 		 * If this is the first descriptor we're enqueueing,
477 		 * don't give it to the EPIC yet.  That could cause
478 		 * a race condition.  We'll do it below.
479 		 */
480 		if (nexttx == firsttx)
481 			txd->et_txstatus = TXSTAT_TXLENGTH(len);
482 		else
483 			txd->et_txstatus =
484 			    TXSTAT_TXLENGTH(len) | ET_TXSTAT_OWNER;
485 
486 		EPIC_CDTXSYNC(sc, nexttx,
487 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
488 
489 		/* Advance the tx pointer. */
490 		sc->sc_txpending++;
491 		sc->sc_txlast = nexttx;
492 
493 		/*
494 		 * Pass the packet to any BPF listeners.
495 		 */
496 		bpf_mtap(ifp, m0, BPF_D_OUT);
497 	}
498 
499 	if (sc->sc_txpending == EPIC_NTXDESC) {
500 		/* No more slots left; notify upper layer. */
501 		ifp->if_flags |= IFF_OACTIVE;
502 	}
503 
504 	if (sc->sc_txpending != opending) {
505 		/*
506 		 * We enqueued packets.  If the transmitter was idle,
507 		 * reset the txdirty pointer.
508 		 */
509 		if (opending == 0)
510 			sc->sc_txdirty = firsttx;
511 
512 		/*
513 		 * Cause a transmit interrupt to happen on the
514 		 * last packet we enqueued.
515 		 */
516 		EPIC_CDTX(sc, sc->sc_txlast)->et_control |= ET_TXCTL_IAF;
517 		EPIC_CDTXSYNC(sc, sc->sc_txlast,
518 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
519 
520 		/*
521 		 * The entire packet chain is set up.  Give the
522 		 * first descriptor to the EPIC now.
523 		 */
524 		EPIC_CDTX(sc, firsttx)->et_txstatus |= ET_TXSTAT_OWNER;
525 		EPIC_CDTXSYNC(sc, firsttx,
526 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
527 
528 		/* Start the transmitter. */
529 		bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_COMMAND,
530 		    COMMAND_TXQUEUED);
531 
532 		/* Set a watchdog timer in case the chip flakes out. */
533 		ifp->if_timer = 5;
534 	}
535 }
536 
537 /*
538  * Watchdog timer handler.
539  * [ifnet interface function]
540  */
541 void
542 epic_watchdog(struct ifnet *ifp)
543 {
544 	struct epic_softc *sc = ifp->if_softc;
545 
546 	printf("%s: device timeout\n", device_xname(sc->sc_dev));
547 	ifp->if_oerrors++;
548 
549 	(void)epic_init(ifp);
550 }
551 
552 /*
553  * Handle control requests from the operator.
554  * [ifnet interface function]
555  */
556 int
557 epic_ioctl(struct ifnet *ifp, u_long cmd, void *data)
558 {
559 	struct epic_softc *sc = ifp->if_softc;
560 	int s, error;
561 
562 	s = splnet();
563 
564 	error = ether_ioctl(ifp, cmd, data);
565 	if (error == ENETRESET) {
566 		/*
567 		 * Multicast list has changed; set the hardware filter
568 		 * accordingly.  Update our idea of the current media;
569 		 * epic_set_mchash() needs to know what it is.
570 		 */
571 		if (ifp->if_flags & IFF_RUNNING) {
572 			mii_pollstat(&sc->sc_mii);
573 			epic_set_mchash(sc);
574 		}
575 		error = 0;
576 	}
577 
578 	splx(s);
579 	return error;
580 }
581 
582 /*
583  * Interrupt handler.
584  */
585 int
586 epic_intr(void *arg)
587 {
588 	struct epic_softc *sc = arg;
589 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
590 	struct epic_rxdesc *rxd;
591 	struct epic_txdesc *txd;
592 	struct epic_descsoft *ds;
593 	struct mbuf *m;
594 	uint32_t intstat, rxstatus, txstatus;
595 	int i, claimed = 0;
596 	u_int len;
597 
598  top:
599 	/*
600 	 * Get the interrupt status from the EPIC.
601 	 */
602 	intstat = bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_INTSTAT);
603 	if ((intstat & INTSTAT_INT_ACTV) == 0)
604 		return claimed;
605 
606 	claimed = 1;
607 
608 	/*
609 	 * Acknowledge the interrupt.
610 	 */
611 	bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_INTSTAT,
612 	    intstat & INTMASK);
613 
614 	/*
615 	 * Check for receive interrupts.
616 	 */
617 	if (intstat & (INTSTAT_RCC | INTSTAT_RXE | INTSTAT_RQE)) {
618 		for (i = sc->sc_rxptr;; i = EPIC_NEXTRX(i)) {
619 			rxd = EPIC_CDRX(sc, i);
620 			ds = EPIC_DSRX(sc, i);
621 
622 			EPIC_CDRXSYNC(sc, i,
623 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
624 
625 			rxstatus = rxd->er_rxstatus;
626 			if (rxstatus & ER_RXSTAT_OWNER) {
627 				/*
628 				 * We have processed all of the
629 				 * receive buffers.
630 				 */
631 				break;
632 			}
633 
634 			/*
635 			 * Make sure the packet arrived intact.  If an error
636 			 * occurred, update stats and reset the descriptor.
637 			 * The buffer will be reused the next time the
638 			 * descriptor comes up in the ring.
639 			 */
640 			if ((rxstatus & ER_RXSTAT_PKTINTACT) == 0) {
641 				if (rxstatus & ER_RXSTAT_CRCERROR)
642 					printf("%s: CRC error\n",
643 					    device_xname(sc->sc_dev));
644 				if (rxstatus & ER_RXSTAT_ALIGNERROR)
645 					printf("%s: alignment error\n",
646 					    device_xname(sc->sc_dev));
647 				ifp->if_ierrors++;
648 				EPIC_INIT_RXDESC(sc, i);
649 				continue;
650 			}
651 
652 			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
653 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
654 
655 			/*
656 			 * The EPIC includes the CRC with every packet;
657 			 * trim it.
658 			 */
659 			len = RXSTAT_RXLENGTH(rxstatus) - ETHER_CRC_LEN;
660 
661 			if (len < sizeof(struct ether_header)) {
662 				/*
663 				 * Runt packet; drop it now.
664 				 */
665 				ifp->if_ierrors++;
666 				EPIC_INIT_RXDESC(sc, i);
667 				bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
668 				    ds->ds_dmamap->dm_mapsize,
669 				    BUS_DMASYNC_PREREAD);
670 				continue;
671 			}
672 
673 			/*
674 			 * If the packet is small enough to fit in a
675 			 * single header mbuf, allocate one and copy
676 			 * the data into it.  This greatly reduces
677 			 * memory consumption when we receive lots
678 			 * of small packets.
679 			 *
680 			 * Otherwise, we add a new buffer to the receive
681 			 * chain.  If this fails, we drop the packet and
682 			 * recycle the old buffer.
683 			 */
684 			if (epic_copy_small != 0 && len <= MHLEN) {
685 				MGETHDR(m, M_DONTWAIT, MT_DATA);
686 				if (m == NULL)
687 					goto dropit;
688 				memcpy(mtod(m, void *),
689 				    mtod(ds->ds_mbuf, void *), len);
690 				EPIC_INIT_RXDESC(sc, i);
691 				bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
692 				    ds->ds_dmamap->dm_mapsize,
693 				    BUS_DMASYNC_PREREAD);
694 			} else {
695 				m = ds->ds_mbuf;
696 				if (epic_add_rxbuf(sc, i) != 0) {
697  dropit:
698 					ifp->if_ierrors++;
699 					EPIC_INIT_RXDESC(sc, i);
700 					bus_dmamap_sync(sc->sc_dmat,
701 					    ds->ds_dmamap, 0,
702 					    ds->ds_dmamap->dm_mapsize,
703 					    BUS_DMASYNC_PREREAD);
704 					continue;
705 				}
706 			}
707 
708 			m_set_rcvif(m, ifp);
709 			m->m_pkthdr.len = m->m_len = len;
710 
711 			/* Pass it on. */
712 			if_percpuq_enqueue(ifp->if_percpuq, m);
713 		}
714 
715 		/* Update the receive pointer. */
716 		sc->sc_rxptr = i;
717 
718 		/*
719 		 * Check for receive queue underflow.
720 		 */
721 		if (intstat & INTSTAT_RQE) {
722 			printf("%s: receiver queue empty\n",
723 			    device_xname(sc->sc_dev));
724 			/*
725 			 * Ring is already built; just restart the
726 			 * receiver.
727 			 */
728 			bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_PRCDAR,
729 			    EPIC_CDRXADDR(sc, sc->sc_rxptr));
730 			bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_COMMAND,
731 			    COMMAND_RXQUEUED | COMMAND_START_RX);
732 		}
733 	}
734 
735 	/*
736 	 * Check for transmission complete interrupts.
737 	 */
738 	if (intstat & (INTSTAT_TXC | INTSTAT_TXU)) {
739 		ifp->if_flags &= ~IFF_OACTIVE;
740 		for (i = sc->sc_txdirty; sc->sc_txpending != 0;
741 		     i = EPIC_NEXTTX(i), sc->sc_txpending--) {
742 			txd = EPIC_CDTX(sc, i);
743 			ds = EPIC_DSTX(sc, i);
744 
745 			EPIC_CDTXSYNC(sc, i,
746 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
747 
748 			txstatus = txd->et_txstatus;
749 			if (txstatus & ET_TXSTAT_OWNER)
750 				break;
751 
752 			EPIC_CDFLSYNC(sc, i, BUS_DMASYNC_POSTWRITE);
753 
754 			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
755 			    0, ds->ds_dmamap->dm_mapsize,
756 			    BUS_DMASYNC_POSTWRITE);
757 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
758 			m_freem(ds->ds_mbuf);
759 			ds->ds_mbuf = NULL;
760 
761 			/*
762 			 * Check for errors and collisions.
763 			 */
764 			if ((txstatus & ET_TXSTAT_PACKETTX) == 0)
765 				ifp->if_oerrors++;
766 			else
767 				ifp->if_opackets++;
768 			ifp->if_collisions +=
769 			    TXSTAT_COLLISIONS(txstatus);
770 			if (txstatus & ET_TXSTAT_CARSENSELOST)
771 				printf("%s: lost carrier\n",
772 				    device_xname(sc->sc_dev));
773 		}
774 
775 		/* Update the dirty transmit buffer pointer. */
776 		sc->sc_txdirty = i;
777 
778 		/*
779 		 * Cancel the watchdog timer if there are no pending
780 		 * transmissions.
781 		 */
782 		if (sc->sc_txpending == 0)
783 			ifp->if_timer = 0;
784 
785 		/*
786 		 * Kick the transmitter after a DMA underrun.
787 		 */
788 		if (intstat & INTSTAT_TXU) {
789 			printf("%s: transmit underrun\n",
790 			    device_xname(sc->sc_dev));
791 			bus_space_write_4(sc->sc_st, sc->sc_sh,
792 			    EPIC_COMMAND, COMMAND_TXUGO);
793 			if (sc->sc_txpending)
794 				bus_space_write_4(sc->sc_st, sc->sc_sh,
795 				    EPIC_COMMAND, COMMAND_TXQUEUED);
796 		}
797 
798 		/*
799 		 * Try to get more packets going.
800 		 */
801 		if_schedule_deferred_start(ifp);
802 	}
803 
804 	/*
805 	 * Check for fatal interrupts.
806 	 */
807 	if (intstat & INTSTAT_FATAL_INT) {
808 		if (intstat & INTSTAT_PTA)
809 			printf("%s: PCI target abort error\n",
810 			    device_xname(sc->sc_dev));
811 		else if (intstat & INTSTAT_PMA)
812 			printf("%s: PCI master abort error\n",
813 			    device_xname(sc->sc_dev));
814 		else if (intstat & INTSTAT_APE)
815 			printf("%s: PCI address parity error\n",
816 			    device_xname(sc->sc_dev));
817 		else if (intstat & INTSTAT_DPE)
818 			printf("%s: PCI data parity error\n",
819 			    device_xname(sc->sc_dev));
820 		else
821 			printf("%s: unknown fatal error\n",
822 			    device_xname(sc->sc_dev));
823 		(void)epic_init(ifp);
824 	}
825 
826 	/*
827 	 * Check for more interrupts.
828 	 */
829 	goto top;
830 }
831 
832 /*
833  * One second timer, used to tick the MII.
834  */
835 void
836 epic_tick(void *arg)
837 {
838 	struct epic_softc *sc = arg;
839 	int s;
840 
841 	s = splnet();
842 	mii_tick(&sc->sc_mii);
843 	splx(s);
844 
845 	callout_reset(&sc->sc_mii_callout, hz, epic_tick, sc);
846 }
847 
848 /*
849  * Fixup the clock source on the EPIC.
850  */
851 void
852 epic_fixup_clock_source(struct epic_softc *sc)
853 {
854 	int i;
855 
856 	/*
857 	 * According to SMC Application Note 7-15, the EPIC's clock
858 	 * source is incorrect following a reset.  This manifests itself
859 	 * as failure to recognize when host software has written to
860 	 * a register on the EPIC.  The appnote recommends issuing at
861 	 * least 16 consecutive writes to the CLOCK TEST bit to correctly
862 	 * configure the clock source.
863 	 */
864 	for (i = 0; i < 16; i++)
865 		bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_TEST,
866 		    TEST_CLOCKTEST);
867 }
868 
869 /*
870  * Perform a soft reset on the EPIC.
871  */
872 void
873 epic_reset(struct epic_softc *sc)
874 {
875 
876 	epic_fixup_clock_source(sc);
877 
878 	bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_GENCTL, 0);
879 	delay(100);
880 	bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_GENCTL, GENCTL_SOFTRESET);
881 	delay(100);
882 
883 	epic_fixup_clock_source(sc);
884 }
885 
886 /*
887  * Initialize the interface.  Must be called at splnet().
888  */
889 int
890 epic_init(struct ifnet *ifp)
891 {
892 	struct epic_softc *sc = ifp->if_softc;
893 	bus_space_tag_t st = sc->sc_st;
894 	bus_space_handle_t sh = sc->sc_sh;
895 	const uint8_t *enaddr = CLLADDR(ifp->if_sadl);
896 	struct epic_txdesc *txd;
897 	struct epic_descsoft *ds;
898 	uint32_t genctl, reg0;
899 	int i, error = 0;
900 
901 	/*
902 	 * Cancel any pending I/O.
903 	 */
904 	epic_stop(ifp, 0);
905 
906 	/*
907 	 * Reset the EPIC to a known state.
908 	 */
909 	epic_reset(sc);
910 
911 	/*
912 	 * Magical mystery initialization.
913 	 */
914 	bus_space_write_4(st, sh, EPIC_TXTEST, 0);
915 
916 	/*
917 	 * Initialize the EPIC genctl register:
918 	 *
919 	 *	- 64 byte receive FIFO threshold
920 	 *	- automatic advance to next receive frame
921 	 */
922 	genctl = GENCTL_RX_FIFO_THRESH0 | GENCTL_ONECOPY;
923 #if BYTE_ORDER == BIG_ENDIAN
924 	genctl |= GENCTL_BIG_ENDIAN;
925 #endif
926 	bus_space_write_4(st, sh, EPIC_GENCTL, genctl);
927 
928 	/*
929 	 * Reset the MII bus and PHY.
930 	 */
931 	reg0 = bus_space_read_4(st, sh, EPIC_NVCTL);
932 	bus_space_write_4(st, sh, EPIC_NVCTL, reg0 | NVCTL_GPIO1 | NVCTL_GPOE1);
933 	bus_space_write_4(st, sh, EPIC_MIICFG, MIICFG_ENASER);
934 	bus_space_write_4(st, sh, EPIC_GENCTL, genctl | GENCTL_RESET_PHY);
935 	delay(100);
936 	bus_space_write_4(st, sh, EPIC_GENCTL, genctl);
937 	delay(1000);
938 	bus_space_write_4(st, sh, EPIC_NVCTL, reg0);
939 
940 	/*
941 	 * Initialize Ethernet address.
942 	 */
943 	reg0 = enaddr[1] << 8 | enaddr[0];
944 	bus_space_write_4(st, sh, EPIC_LAN0, reg0);
945 	reg0 = enaddr[3] << 8 | enaddr[2];
946 	bus_space_write_4(st, sh, EPIC_LAN1, reg0);
947 	reg0 = enaddr[5] << 8 | enaddr[4];
948 	bus_space_write_4(st, sh, EPIC_LAN2, reg0);
949 
950 	/*
951 	 * Initialize receive control.  Remember the external buffer
952 	 * size setting.
953 	 */
954 	reg0 = bus_space_read_4(st, sh, EPIC_RXCON) &
955 	    (RXCON_EXTBUFSIZESEL1 | RXCON_EXTBUFSIZESEL0);
956 	reg0 |= (RXCON_RXMULTICAST | RXCON_RXBROADCAST);
957 	if (ifp->if_flags & IFF_PROMISC)
958 		reg0 |= RXCON_PROMISCMODE;
959 	bus_space_write_4(st, sh, EPIC_RXCON, reg0);
960 
961 	/* Set the current media. */
962 	if ((error = epic_mediachange(ifp)) != 0)
963 		goto out;
964 
965 	/* Set up the multicast hash table. */
966 	epic_set_mchash(sc);
967 
968 	/*
969 	 * Initialize the transmit descriptor ring.  txlast is initialized
970 	 * to the end of the list so that it will wrap around to the first
971 	 * descriptor when the first packet is transmitted.
972 	 */
973 	for (i = 0; i < EPIC_NTXDESC; i++) {
974 		txd = EPIC_CDTX(sc, i);
975 		memset(txd, 0, sizeof(struct epic_txdesc));
976 		txd->et_bufaddr = EPIC_CDFLADDR(sc, i);
977 		txd->et_nextdesc = EPIC_CDTXADDR(sc, EPIC_NEXTTX(i));
978 		EPIC_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
979 	}
980 	sc->sc_txpending = 0;
981 	sc->sc_txdirty = 0;
982 	sc->sc_txlast = EPIC_NTXDESC - 1;
983 
984 	/*
985 	 * Initialize the receive descriptor ring.
986 	 */
987 	for (i = 0; i < EPIC_NRXDESC; i++) {
988 		ds = EPIC_DSRX(sc, i);
989 		if (ds->ds_mbuf == NULL) {
990 			if ((error = epic_add_rxbuf(sc, i)) != 0) {
991 				printf("%s: unable to allocate or map rx "
992 				    "buffer %d error = %d\n",
993 				    device_xname(sc->sc_dev), i, error);
994 				/*
995 				 * XXX Should attempt to run with fewer receive
996 				 * XXX buffers instead of just failing.
997 				 */
998 				epic_rxdrain(sc);
999 				goto out;
1000 			}
1001 		} else
1002 			EPIC_INIT_RXDESC(sc, i);
1003 	}
1004 	sc->sc_rxptr = 0;
1005 
1006 	/*
1007 	 * Initialize the interrupt mask and enable interrupts.
1008 	 */
1009 	bus_space_write_4(st, sh, EPIC_INTMASK, INTMASK);
1010 	bus_space_write_4(st, sh, EPIC_GENCTL, genctl | GENCTL_INTENA);
1011 
1012 	/*
1013 	 * Give the transmit and receive rings to the EPIC.
1014 	 */
1015 	bus_space_write_4(st, sh, EPIC_PTCDAR,
1016 	    EPIC_CDTXADDR(sc, EPIC_NEXTTX(sc->sc_txlast)));
1017 	bus_space_write_4(st, sh, EPIC_PRCDAR,
1018 	    EPIC_CDRXADDR(sc, sc->sc_rxptr));
1019 
1020 	/*
1021 	 * Set the EPIC in motion.
1022 	 */
1023 	bus_space_write_4(st, sh, EPIC_COMMAND,
1024 	    COMMAND_RXQUEUED | COMMAND_START_RX);
1025 
1026 	/*
1027 	 * ...all done!
1028 	 */
1029 	ifp->if_flags |= IFF_RUNNING;
1030 	ifp->if_flags &= ~IFF_OACTIVE;
1031 
1032 	/*
1033 	 * Start the one second clock.
1034 	 */
1035 	callout_reset(&sc->sc_mii_callout, hz, epic_tick, sc);
1036 
1037 	/*
1038 	 * Attempt to start output on the interface.
1039 	 */
1040 	epic_start(ifp);
1041 
1042  out:
1043 	if (error)
1044 		printf("%s: interface not running\n", device_xname(sc->sc_dev));
1045 	return error;
1046 }
1047 
1048 /*
1049  * Drain the receive queue.
1050  */
1051 void
1052 epic_rxdrain(struct epic_softc *sc)
1053 {
1054 	struct epic_descsoft *ds;
1055 	int i;
1056 
1057 	for (i = 0; i < EPIC_NRXDESC; i++) {
1058 		ds = EPIC_DSRX(sc, i);
1059 		if (ds->ds_mbuf != NULL) {
1060 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1061 			m_freem(ds->ds_mbuf);
1062 			ds->ds_mbuf = NULL;
1063 		}
1064 	}
1065 }
1066 
1067 /*
1068  * Stop transmission on the interface.
1069  */
1070 void
1071 epic_stop(struct ifnet *ifp, int disable)
1072 {
1073 	struct epic_softc *sc = ifp->if_softc;
1074 	bus_space_tag_t st = sc->sc_st;
1075 	bus_space_handle_t sh = sc->sc_sh;
1076 	struct epic_descsoft *ds;
1077 	uint32_t reg;
1078 	int i;
1079 
1080 	/*
1081 	 * Stop the one second clock.
1082 	 */
1083 	callout_stop(&sc->sc_mii_callout);
1084 
1085 	/* Down the MII. */
1086 	mii_down(&sc->sc_mii);
1087 
1088 	/* Paranoia... */
1089 	epic_fixup_clock_source(sc);
1090 
1091 	/*
1092 	 * Disable interrupts.
1093 	 */
1094 	reg = bus_space_read_4(st, sh, EPIC_GENCTL);
1095 	bus_space_write_4(st, sh, EPIC_GENCTL, reg & ~GENCTL_INTENA);
1096 	bus_space_write_4(st, sh, EPIC_INTMASK, 0);
1097 
1098 	/*
1099 	 * Stop the DMA engine and take the receiver off-line.
1100 	 */
1101 	bus_space_write_4(st, sh, EPIC_COMMAND, COMMAND_STOP_RDMA |
1102 	    COMMAND_STOP_TDMA | COMMAND_STOP_RX);
1103 
1104 	/*
1105 	 * Release any queued transmit buffers.
1106 	 */
1107 	for (i = 0; i < EPIC_NTXDESC; i++) {
1108 		ds = EPIC_DSTX(sc, i);
1109 		if (ds->ds_mbuf != NULL) {
1110 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1111 			m_freem(ds->ds_mbuf);
1112 			ds->ds_mbuf = NULL;
1113 		}
1114 	}
1115 
1116 	/*
1117 	 * Mark the interface down and cancel the watchdog timer.
1118 	 */
1119 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1120 	ifp->if_timer = 0;
1121 
1122 	if (disable)
1123 		epic_rxdrain(sc);
1124 }
1125 
1126 /*
1127  * Read the EPIC Serial EEPROM.
1128  */
1129 void
1130 epic_read_eeprom(struct epic_softc *sc, int word, int wordcnt, uint16_t *data)
1131 {
1132 	bus_space_tag_t st = sc->sc_st;
1133 	bus_space_handle_t sh = sc->sc_sh;
1134 	uint16_t reg;
1135 	int i, x;
1136 
1137 #define	EEPROM_WAIT_READY(st, sh) \
1138 	while ((bus_space_read_4((st), (sh), EPIC_EECTL) & EECTL_EERDY) == 0) \
1139 		/* nothing */
1140 
1141 	/*
1142 	 * Enable the EEPROM.
1143 	 */
1144 	bus_space_write_4(st, sh, EPIC_EECTL, EECTL_ENABLE);
1145 	EEPROM_WAIT_READY(st, sh);
1146 
1147 	for (i = 0; i < wordcnt; i++) {
1148 		/* Send CHIP SELECT for one clock tick. */
1149 		bus_space_write_4(st, sh, EPIC_EECTL, EECTL_ENABLE|EECTL_EECS);
1150 		EEPROM_WAIT_READY(st, sh);
1151 
1152 		/* Shift in the READ opcode. */
1153 		for (x = 3; x > 0; x--) {
1154 			reg = EECTL_ENABLE|EECTL_EECS;
1155 			if (EPIC_EEPROM_OPC_READ & (1 << (x - 1)))
1156 				reg |= EECTL_EEDI;
1157 			bus_space_write_4(st, sh, EPIC_EECTL, reg);
1158 			EEPROM_WAIT_READY(st, sh);
1159 			bus_space_write_4(st, sh, EPIC_EECTL, reg|EECTL_EESK);
1160 			EEPROM_WAIT_READY(st, sh);
1161 			bus_space_write_4(st, sh, EPIC_EECTL, reg);
1162 			EEPROM_WAIT_READY(st, sh);
1163 		}
1164 
1165 		/* Shift in address. */
1166 		for (x = 6; x > 0; x--) {
1167 			reg = EECTL_ENABLE|EECTL_EECS;
1168 			if ((word + i) & (1 << (x - 1)))
1169 				reg |= EECTL_EEDI;
1170 			bus_space_write_4(st, sh, EPIC_EECTL, reg);
1171 			EEPROM_WAIT_READY(st, sh);
1172 			bus_space_write_4(st, sh, EPIC_EECTL, reg|EECTL_EESK);
1173 			EEPROM_WAIT_READY(st, sh);
1174 			bus_space_write_4(st, sh, EPIC_EECTL, reg);
1175 			EEPROM_WAIT_READY(st, sh);
1176 		}
1177 
1178 		/* Shift out data. */
1179 		reg = EECTL_ENABLE|EECTL_EECS;
1180 		data[i] = 0;
1181 		for (x = 16; x > 0; x--) {
1182 			bus_space_write_4(st, sh, EPIC_EECTL, reg|EECTL_EESK);
1183 			EEPROM_WAIT_READY(st, sh);
1184 			if (bus_space_read_4(st, sh, EPIC_EECTL) & EECTL_EEDO)
1185 				data[i] |= (1 << (x - 1));
1186 			bus_space_write_4(st, sh, EPIC_EECTL, reg);
1187 			EEPROM_WAIT_READY(st, sh);
1188 		}
1189 
1190 		/* Clear CHIP SELECT. */
1191 		bus_space_write_4(st, sh, EPIC_EECTL, EECTL_ENABLE);
1192 		EEPROM_WAIT_READY(st, sh);
1193 	}
1194 
1195 	/*
1196 	 * Disable the EEPROM.
1197 	 */
1198 	bus_space_write_4(st, sh, EPIC_EECTL, 0);
1199 
1200 #undef EEPROM_WAIT_READY
1201 }
1202 
1203 /*
1204  * Add a receive buffer to the indicated descriptor.
1205  */
1206 int
1207 epic_add_rxbuf(struct epic_softc *sc, int idx)
1208 {
1209 	struct epic_descsoft *ds = EPIC_DSRX(sc, idx);
1210 	struct mbuf *m;
1211 	int error;
1212 
1213 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1214 	if (m == NULL)
1215 		return ENOBUFS;
1216 
1217 	MCLGET(m, M_DONTWAIT);
1218 	if ((m->m_flags & M_EXT) == 0) {
1219 		m_freem(m);
1220 		return ENOBUFS;
1221 	}
1222 
1223 	if (ds->ds_mbuf != NULL)
1224 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1225 
1226 	ds->ds_mbuf = m;
1227 
1228 	error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1229 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1230 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
1231 	if (error) {
1232 		printf("%s: can't load rx DMA map %d, error = %d\n",
1233 		    device_xname(sc->sc_dev), idx, error);
1234 		panic("%s", __func__);	/* XXX */
1235 	}
1236 
1237 	bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1238 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1239 
1240 	EPIC_INIT_RXDESC(sc, idx);
1241 
1242 	return 0;
1243 }
1244 
1245 /*
1246  * Set the EPIC multicast hash table.
1247  *
1248  * NOTE: We rely on a recently-updated mii_media_active here!
1249  */
1250 void
1251 epic_set_mchash(struct epic_softc *sc)
1252 {
1253 	struct ethercom *ec = &sc->sc_ethercom;
1254 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1255 	struct ether_multi *enm;
1256 	struct ether_multistep step;
1257 	uint32_t hash, mchash[4];
1258 
1259 	/*
1260 	 * Set up the multicast address filter by passing all multicast
1261 	 * addresses through a CRC generator, and then using the low-order
1262 	 * 6 bits as an index into the 64 bit multicast hash table (only
1263 	 * the lower 16 bits of each 32 bit multicast hash register are
1264 	 * valid).  The high order bits select the register, while the
1265 	 * rest of the bits select the bit within the register.
1266 	 */
1267 
1268 	if (ifp->if_flags & IFF_PROMISC)
1269 		goto allmulti;
1270 
1271 	if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_10_T) {
1272 		/* XXX hardware bug in 10Mbps mode. */
1273 		goto allmulti;
1274 	}
1275 
1276 	mchash[0] = mchash[1] = mchash[2] = mchash[3] = 0;
1277 
1278 	ETHER_FIRST_MULTI(step, ec, enm);
1279 	while (enm != NULL) {
1280 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1281 			/*
1282 			 * We must listen to a range of multicast addresses.
1283 			 * For now, just accept all multicasts, rather than
1284 			 * trying to set only those filter bits needed to match
1285 			 * the range.  (At this time, the only use of address
1286 			 * ranges is for IP multicast routing, for which the
1287 			 * range is big enough to require all bits set.)
1288 			 */
1289 			goto allmulti;
1290 		}
1291 
1292 		hash = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1293 		hash >>= 26;
1294 
1295 		/* Set the corresponding bit in the hash table. */
1296 		mchash[hash >> 4] |= 1 << (hash & 0xf);
1297 
1298 		ETHER_NEXT_MULTI(step, enm);
1299 	}
1300 
1301 	ifp->if_flags &= ~IFF_ALLMULTI;
1302 	goto sethash;
1303 
1304  allmulti:
1305 	ifp->if_flags |= IFF_ALLMULTI;
1306 	mchash[0] = mchash[1] = mchash[2] = mchash[3] = 0xffff;
1307 
1308  sethash:
1309 	bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MC0, mchash[0]);
1310 	bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MC1, mchash[1]);
1311 	bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MC2, mchash[2]);
1312 	bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MC3, mchash[3]);
1313 }
1314 
1315 /*
1316  * Wait for the MII to become ready.
1317  */
1318 int
1319 epic_mii_wait(struct epic_softc *sc, uint32_t rw)
1320 {
1321 	int i;
1322 
1323 	for (i = 0; i < 50; i++) {
1324 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_MMCTL) & rw)
1325 		    == 0)
1326 			break;
1327 		delay(2);
1328 	}
1329 	if (i == 50) {
1330 		printf("%s: MII timed out\n", device_xname(sc->sc_dev));
1331 		return 1;
1332 	}
1333 
1334 	return 0;
1335 }
1336 
1337 /*
1338  * Read from the MII.
1339  */
1340 int
1341 epic_mii_read(device_t self, int phy, int reg)
1342 {
1343 	struct epic_softc *sc = device_private(self);
1344 
1345 	if (epic_mii_wait(sc, MMCTL_WRITE))
1346 		return 0;
1347 
1348 	bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MMCTL,
1349 	    MMCTL_ARG(phy, reg, MMCTL_READ));
1350 
1351 	if (epic_mii_wait(sc, MMCTL_READ))
1352 		return 0;
1353 
1354 	return bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_MMDATA) &
1355 	    MMDATA_MASK;
1356 }
1357 
1358 /*
1359  * Write to the MII.
1360  */
1361 void
1362 epic_mii_write(device_t self, int phy, int reg, int val)
1363 {
1364 	struct epic_softc *sc = device_private(self);
1365 
1366 	if (epic_mii_wait(sc, MMCTL_WRITE))
1367 		return;
1368 
1369 	bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MMDATA, val);
1370 	bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MMCTL,
1371 	    MMCTL_ARG(phy, reg, MMCTL_WRITE));
1372 }
1373 
1374 /*
1375  * Callback from PHY when media changes.
1376  */
1377 void
1378 epic_statchg(struct ifnet *ifp)
1379 {
1380 	struct epic_softc *sc = ifp->if_softc;
1381 	uint32_t txcon, miicfg;
1382 
1383 	/*
1384 	 * Update loopback bits in TXCON to reflect duplex mode.
1385 	 */
1386 	txcon = bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_TXCON);
1387 	if (sc->sc_mii.mii_media_active & IFM_FDX)
1388 		txcon |= (TXCON_LOOPBACK_D1|TXCON_LOOPBACK_D2);
1389 	else
1390 		txcon &= ~(TXCON_LOOPBACK_D1|TXCON_LOOPBACK_D2);
1391 	bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_TXCON, txcon);
1392 
1393 	/* On some cards we need manualy set fullduplex led */
1394 	if (sc->sc_hwflags & EPIC_DUPLEXLED_ON_694) {
1395 		miicfg = bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_MIICFG);
1396 		if (IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX)
1397 			miicfg |= MIICFG_ENABLE;
1398 		else
1399 			miicfg &= ~MIICFG_ENABLE;
1400 		bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MIICFG, miicfg);
1401 	}
1402 
1403 	/*
1404 	 * There is a multicast filter bug in 10Mbps mode.  Kick the
1405 	 * multicast filter in case the speed changed.
1406 	 */
1407 	epic_set_mchash(sc);
1408 }
1409 
1410 /*
1411  * Callback from ifmedia to request new media setting.
1412  *
1413  * XXX Looks to me like some of this complexity should move into
1414  * XXX one or two custom PHY drivers. --dyoung
1415  */
1416 int
1417 epic_mediachange(struct ifnet *ifp)
1418 {
1419 	struct epic_softc *sc = ifp->if_softc;
1420 	struct mii_data *mii = &sc->sc_mii;
1421 	struct ifmedia *ifm = &mii->mii_media;
1422 	int media = ifm->ifm_cur->ifm_media;
1423 	uint32_t miicfg;
1424 	struct mii_softc *miisc;
1425 	int cfg, rc;
1426 
1427 	if ((ifp->if_flags & IFF_UP) == 0)
1428 		return 0;
1429 
1430 	if (IFM_INST(media) != sc->sc_serinst) {
1431 		/* If we're not selecting serial interface, select MII mode */
1432 #ifdef EPICMEDIADEBUG
1433 		printf("%s: parallel mode\n", ifp->if_xname);
1434 #endif
1435 		miicfg = bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_MIICFG);
1436 		miicfg &= ~MIICFG_SERMODEENA;
1437 		bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MIICFG, miicfg);
1438 	}
1439 
1440 	if ((rc = mii_mediachg(mii)) == ENXIO)
1441 		rc = 0;
1442 
1443 	if (IFM_INST(media) == sc->sc_serinst) {
1444 		/* select serial interface */
1445 #ifdef EPICMEDIADEBUG
1446 		printf("%s: serial mode\n", ifp->if_xname);
1447 #endif
1448 		miicfg = bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_MIICFG);
1449 		miicfg |= (MIICFG_SERMODEENA | MIICFG_ENABLE);
1450 		bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MIICFG, miicfg);
1451 
1452 		/* There is no driver to fill this */
1453 		mii->mii_media_active = media;
1454 		mii->mii_media_status = 0;
1455 
1456 		epic_statchg(mii->mii_ifp);
1457 		return 0;
1458 	}
1459 
1460 	/* Lookup selected PHY */
1461 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list) {
1462 		if (IFM_INST(media) == miisc->mii_inst)
1463 			break;
1464 	}
1465 	if (!miisc) {
1466 		printf("%s: can't happen\n", __func__); /* ??? panic */
1467 		return 0;
1468 	}
1469 #ifdef EPICMEDIADEBUG
1470 	printf("%s: using phy %s\n", ifp->if_xname,
1471 	       device_xname(miisc->mii_dev));
1472 #endif
1473 
1474 	if (miisc->mii_flags & MIIF_HAVEFIBER) {
1475 		/* XXX XXX assume it's a Level1 - should check */
1476 
1477 		/* We have to powerup fiber transceivers */
1478 		cfg = PHY_READ(miisc, MII_LXTPHY_CONFIG);
1479 		if (IFM_SUBTYPE(media) == IFM_100_FX) {
1480 #ifdef EPICMEDIADEBUG
1481 			printf("%s: power up fiber\n", ifp->if_xname);
1482 #endif
1483 			cfg |= (CONFIG_LEDC1 | CONFIG_LEDC0);
1484 		} else {
1485 #ifdef EPICMEDIADEBUG
1486 			printf("%s: power down fiber\n", ifp->if_xname);
1487 #endif
1488 			cfg &= ~(CONFIG_LEDC1 | CONFIG_LEDC0);
1489 		}
1490 		PHY_WRITE(miisc, MII_LXTPHY_CONFIG, cfg);
1491 	}
1492 
1493 	return rc;
1494 }
1495