1 /* $NetBSD: smc83c170.c,v 1.67 2007/10/19 12:00:01 ad Exp $ */ 2 3 /*- 4 * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, 9 * NASA Ames Research Center. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. All advertising materials mentioning features or use of this software 20 * must display the following acknowledgement: 21 * This product includes software developed by the NetBSD 22 * Foundation, Inc. and its contributors. 23 * 4. Neither the name of The NetBSD Foundation nor the names of its 24 * contributors may be used to endorse or promote products derived 25 * from this software without specific prior written permission. 26 * 27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 37 * POSSIBILITY OF SUCH DAMAGE. 38 */ 39 40 /* 41 * Device driver for the Standard Microsystems Corp. 83C170 42 * Ethernet PCI Integrated Controller (EPIC/100). 43 */ 44 45 #include <sys/cdefs.h> 46 __KERNEL_RCSID(0, "$NetBSD: smc83c170.c,v 1.67 2007/10/19 12:00:01 ad Exp $"); 47 48 #include "bpfilter.h" 49 50 #include <sys/param.h> 51 #include <sys/systm.h> 52 #include <sys/callout.h> 53 #include <sys/mbuf.h> 54 #include <sys/malloc.h> 55 #include <sys/kernel.h> 56 #include <sys/socket.h> 57 #include <sys/ioctl.h> 58 #include <sys/errno.h> 59 #include <sys/device.h> 60 61 #include <uvm/uvm_extern.h> 62 63 #include <net/if.h> 64 #include <net/if_dl.h> 65 #include <net/if_media.h> 66 #include <net/if_ether.h> 67 68 #if NBPFILTER > 0 69 #include <net/bpf.h> 70 #endif 71 72 #include <sys/bus.h> 73 #include <sys/intr.h> 74 75 #include <dev/mii/miivar.h> 76 #include <dev/mii/lxtphyreg.h> 77 78 #include <dev/ic/smc83c170reg.h> 79 #include <dev/ic/smc83c170var.h> 80 81 void epic_start(struct ifnet *); 82 void epic_watchdog(struct ifnet *); 83 int epic_ioctl(struct ifnet *, u_long, void *); 84 int epic_init(struct ifnet *); 85 void epic_stop(struct ifnet *, int); 86 87 void epic_shutdown(void *); 88 89 void epic_reset(struct epic_softc *); 90 void epic_rxdrain(struct epic_softc *); 91 int epic_add_rxbuf(struct epic_softc *, int); 92 void epic_read_eeprom(struct epic_softc *, int, int, uint16_t *); 93 void epic_set_mchash(struct epic_softc *); 94 void epic_fixup_clock_source(struct epic_softc *); 95 int epic_mii_read(struct device *, int, int); 96 void epic_mii_write(struct device *, int, int, int); 97 int epic_mii_wait(struct epic_softc *, uint32_t); 98 void epic_tick(void *); 99 100 void epic_statchg(struct device *); 101 int epic_mediachange(struct ifnet *); 102 void epic_mediastatus(struct ifnet *, struct ifmediareq *); 103 104 #define INTMASK (INTSTAT_FATAL_INT | INTSTAT_TXU | \ 105 INTSTAT_TXC | INTSTAT_RXE | INTSTAT_RQE | INTSTAT_RCC) 106 107 int epic_copy_small = 0; 108 109 #define ETHER_PAD_LEN (ETHER_MIN_LEN - ETHER_CRC_LEN) 110 111 /* 112 * Attach an EPIC interface to the system. 113 */ 114 void 115 epic_attach(sc) 116 struct epic_softc *sc; 117 { 118 bus_space_tag_t st = sc->sc_st; 119 bus_space_handle_t sh = sc->sc_sh; 120 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 121 int rseg, error, miiflags; 122 u_int i; 123 bus_dma_segment_t seg; 124 uint8_t enaddr[ETHER_ADDR_LEN], devname[12 + 1]; 125 uint16_t myea[ETHER_ADDR_LEN / 2], mydevname[6]; 126 char *nullbuf; 127 128 callout_init(&sc->sc_mii_callout, 0); 129 130 /* 131 * Allocate the control data structures, and create and load the 132 * DMA map for it. 133 */ 134 if ((error = bus_dmamem_alloc(sc->sc_dmat, 135 sizeof(struct epic_control_data) + ETHER_PAD_LEN, PAGE_SIZE, 0, 136 &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) { 137 aprint_error( 138 "%s: unable to allocate control data, error = %d\n", 139 sc->sc_dev.dv_xname, error); 140 goto fail_0; 141 } 142 143 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg, 144 sizeof(struct epic_control_data) + ETHER_PAD_LEN, 145 (void **)&sc->sc_control_data, 146 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) { 147 aprint_error("%s: unable to map control data, error = %d\n", 148 sc->sc_dev.dv_xname, error); 149 goto fail_1; 150 } 151 nullbuf = 152 (char *)sc->sc_control_data + sizeof(struct epic_control_data); 153 memset(nullbuf, 0, ETHER_PAD_LEN); 154 155 if ((error = bus_dmamap_create(sc->sc_dmat, 156 sizeof(struct epic_control_data), 1, 157 sizeof(struct epic_control_data), 0, BUS_DMA_NOWAIT, 158 &sc->sc_cddmamap)) != 0) { 159 aprint_error("%s: unable to create control data DMA map, " 160 "error = %d\n", sc->sc_dev.dv_xname, error); 161 goto fail_2; 162 } 163 164 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap, 165 sc->sc_control_data, sizeof(struct epic_control_data), NULL, 166 BUS_DMA_NOWAIT)) != 0) { 167 aprint_error( 168 "%s: unable to load control data DMA map, error = %d\n", 169 sc->sc_dev.dv_xname, error); 170 goto fail_3; 171 } 172 173 /* 174 * Create the transmit buffer DMA maps. 175 */ 176 for (i = 0; i < EPIC_NTXDESC; i++) { 177 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 178 EPIC_NFRAGS, MCLBYTES, 0, BUS_DMA_NOWAIT, 179 &EPIC_DSTX(sc, i)->ds_dmamap)) != 0) { 180 aprint_error("%s: unable to create tx DMA map %d, " 181 "error = %d\n", sc->sc_dev.dv_xname, i, error); 182 goto fail_4; 183 } 184 } 185 186 /* 187 * Create the receive buffer DMA maps. 188 */ 189 for (i = 0; i < EPIC_NRXDESC; i++) { 190 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, 191 MCLBYTES, 0, BUS_DMA_NOWAIT, 192 &EPIC_DSRX(sc, i)->ds_dmamap)) != 0) { 193 aprint_error("%s: unable to create rx DMA map %d, " 194 "error = %d\n", sc->sc_dev.dv_xname, i, error); 195 goto fail_5; 196 } 197 EPIC_DSRX(sc, i)->ds_mbuf = NULL; 198 } 199 200 /* 201 * create and map the pad buffer 202 */ 203 if ((error = bus_dmamap_create(sc->sc_dmat, ETHER_PAD_LEN, 1, 204 ETHER_PAD_LEN, 0, BUS_DMA_NOWAIT,&sc->sc_nulldmamap)) != 0) { 205 printf("%s: unable to create pad buffer DMA map, " 206 "error = %d\n", sc->sc_dev.dv_xname, error); 207 goto fail_5; 208 } 209 210 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_nulldmamap, 211 nullbuf, ETHER_PAD_LEN, NULL, BUS_DMA_NOWAIT)) != 0) { 212 printf("%s: unable to load pad buffer DMA map, " 213 "error = %d\n", sc->sc_dev.dv_xname, error); 214 goto fail_6; 215 } 216 bus_dmamap_sync(sc->sc_dmat, sc->sc_nulldmamap, 0, ETHER_PAD_LEN, 217 BUS_DMASYNC_PREWRITE); 218 219 /* 220 * Bring the chip out of low-power mode and reset it to a known state. 221 */ 222 bus_space_write_4(st, sh, EPIC_GENCTL, 0); 223 epic_reset(sc); 224 225 /* 226 * Read the Ethernet address from the EEPROM. 227 */ 228 epic_read_eeprom(sc, 0, __arraycount(myea), myea); 229 for (i = 0; i < __arraycount(myea); i++) { 230 enaddr[i * 2] = myea[i] & 0xff; 231 enaddr[i * 2 + 1] = myea[i] >> 8; 232 } 233 234 /* 235 * ...and the device name. 236 */ 237 epic_read_eeprom(sc, 0x2c, __arraycount(mydevname), mydevname); 238 for (i = 0; i < __arraycount(mydevname); i++) { 239 devname[i * 2] = mydevname[i] & 0xff; 240 devname[i * 2 + 1] = mydevname[i] >> 8; 241 } 242 243 devname[sizeof(mydevname)] = '\0'; 244 for (i = sizeof(mydevname) ; i > 0; i--) { 245 if (devname[i - 1] == ' ') 246 devname[i - 1] = '\0'; 247 else 248 break; 249 } 250 251 aprint_normal("%s: %s, Ethernet address %s\n", sc->sc_dev.dv_xname, 252 devname, ether_sprintf(enaddr)); 253 254 miiflags = 0; 255 if (sc->sc_hwflags & EPIC_HAS_MII_FIBER) 256 miiflags |= MIIF_HAVEFIBER; 257 258 /* 259 * Initialize our media structures and probe the MII. 260 */ 261 sc->sc_mii.mii_ifp = ifp; 262 sc->sc_mii.mii_readreg = epic_mii_read; 263 sc->sc_mii.mii_writereg = epic_mii_write; 264 sc->sc_mii.mii_statchg = epic_statchg; 265 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, epic_mediachange, 266 epic_mediastatus); 267 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY, 268 MII_OFFSET_ANY, miiflags); 269 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) { 270 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL); 271 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE); 272 } else 273 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO); 274 275 if (sc->sc_hwflags & EPIC_HAS_BNC) { 276 /* use the next free media instance */ 277 sc->sc_serinst = sc->sc_mii.mii_instance++; 278 ifmedia_add(&sc->sc_mii.mii_media, 279 IFM_MAKEWORD(IFM_ETHER, IFM_10_2, 0, 280 sc->sc_serinst), 281 0, NULL); 282 aprint_normal("%s: 10base2/BNC\n", sc->sc_dev.dv_xname); 283 } else 284 sc->sc_serinst = -1; 285 286 strcpy(ifp->if_xname, sc->sc_dev.dv_xname); 287 ifp->if_softc = sc; 288 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 289 ifp->if_ioctl = epic_ioctl; 290 ifp->if_start = epic_start; 291 ifp->if_watchdog = epic_watchdog; 292 ifp->if_init = epic_init; 293 ifp->if_stop = epic_stop; 294 IFQ_SET_READY(&ifp->if_snd); 295 296 /* 297 * We can support 802.1Q VLAN-sized frames. 298 */ 299 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU; 300 301 /* 302 * Attach the interface. 303 */ 304 if_attach(ifp); 305 ether_ifattach(ifp, enaddr); 306 307 /* 308 * Make sure the interface is shutdown during reboot. 309 */ 310 sc->sc_sdhook = shutdownhook_establish(epic_shutdown, sc); 311 if (sc->sc_sdhook == NULL) 312 aprint_error("%s: WARNING: unable to establish shutdown hook\n", 313 sc->sc_dev.dv_xname); 314 return; 315 316 /* 317 * Free any resources we've allocated during the failed attach 318 * attempt. Do this in reverse order and fall through. 319 */ 320 fail_6: 321 bus_dmamap_destroy(sc->sc_dmat, sc->sc_nulldmamap); 322 fail_5: 323 for (i = 0; i < EPIC_NRXDESC; i++) { 324 if (EPIC_DSRX(sc, i)->ds_dmamap != NULL) 325 bus_dmamap_destroy(sc->sc_dmat, 326 EPIC_DSRX(sc, i)->ds_dmamap); 327 } 328 fail_4: 329 for (i = 0; i < EPIC_NTXDESC; i++) { 330 if (EPIC_DSTX(sc, i)->ds_dmamap != NULL) 331 bus_dmamap_destroy(sc->sc_dmat, 332 EPIC_DSTX(sc, i)->ds_dmamap); 333 } 334 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap); 335 fail_3: 336 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap); 337 fail_2: 338 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data, 339 sizeof(struct epic_control_data)); 340 fail_1: 341 bus_dmamem_free(sc->sc_dmat, &seg, rseg); 342 fail_0: 343 return; 344 } 345 346 /* 347 * Shutdown hook. Make sure the interface is stopped at reboot. 348 */ 349 void 350 epic_shutdown(arg) 351 void *arg; 352 { 353 struct epic_softc *sc = arg; 354 355 epic_stop(&sc->sc_ethercom.ec_if, 1); 356 } 357 358 /* 359 * Start packet transmission on the interface. 360 * [ifnet interface function] 361 */ 362 void 363 epic_start(ifp) 364 struct ifnet *ifp; 365 { 366 struct epic_softc *sc = ifp->if_softc; 367 struct mbuf *m0, *m; 368 struct epic_txdesc *txd; 369 struct epic_descsoft *ds; 370 struct epic_fraglist *fr; 371 bus_dmamap_t dmamap; 372 int error, firsttx, nexttx, opending, seg; 373 u_int len; 374 375 /* 376 * Remember the previous txpending and the first transmit 377 * descriptor we use. 378 */ 379 opending = sc->sc_txpending; 380 firsttx = EPIC_NEXTTX(sc->sc_txlast); 381 382 /* 383 * Loop through the send queue, setting up transmit descriptors 384 * until we drain the queue, or use up all available transmit 385 * descriptors. 386 */ 387 while (sc->sc_txpending < EPIC_NTXDESC) { 388 /* 389 * Grab a packet off the queue. 390 */ 391 IFQ_POLL(&ifp->if_snd, m0); 392 if (m0 == NULL) 393 break; 394 m = NULL; 395 396 /* 397 * Get the last and next available transmit descriptor. 398 */ 399 nexttx = EPIC_NEXTTX(sc->sc_txlast); 400 txd = EPIC_CDTX(sc, nexttx); 401 fr = EPIC_CDFL(sc, nexttx); 402 ds = EPIC_DSTX(sc, nexttx); 403 dmamap = ds->ds_dmamap; 404 405 /* 406 * Load the DMA map. If this fails, the packet either 407 * didn't fit in the alloted number of frags, or we were 408 * short on resources. In this case, we'll copy and try 409 * again. 410 */ 411 if ((error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0, 412 BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 || 413 (m0->m_pkthdr.len < ETHER_PAD_LEN && 414 dmamap-> dm_nsegs == EPIC_NFRAGS)) { 415 if (error == 0) 416 bus_dmamap_unload(sc->sc_dmat, dmamap); 417 418 MGETHDR(m, M_DONTWAIT, MT_DATA); 419 if (m == NULL) { 420 printf("%s: unable to allocate Tx mbuf\n", 421 sc->sc_dev.dv_xname); 422 break; 423 } 424 if (m0->m_pkthdr.len > MHLEN) { 425 MCLGET(m, M_DONTWAIT); 426 if ((m->m_flags & M_EXT) == 0) { 427 printf("%s: unable to allocate Tx " 428 "cluster\n", sc->sc_dev.dv_xname); 429 m_freem(m); 430 break; 431 } 432 } 433 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *)); 434 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len; 435 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, 436 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT); 437 if (error) { 438 printf("%s: unable to load Tx buffer, " 439 "error = %d\n", sc->sc_dev.dv_xname, error); 440 break; 441 } 442 } 443 IFQ_DEQUEUE(&ifp->if_snd, m0); 444 if (m != NULL) { 445 m_freem(m0); 446 m0 = m; 447 } 448 449 /* Initialize the fraglist. */ 450 for (seg = 0; seg < dmamap->dm_nsegs; seg++) { 451 fr->ef_frags[seg].ef_addr = 452 dmamap->dm_segs[seg].ds_addr; 453 fr->ef_frags[seg].ef_length = 454 dmamap->dm_segs[seg].ds_len; 455 } 456 len = m0->m_pkthdr.len; 457 if (len < ETHER_PAD_LEN) { 458 fr->ef_frags[seg].ef_addr = sc->sc_nulldma; 459 fr->ef_frags[seg].ef_length = ETHER_PAD_LEN - len; 460 len = ETHER_PAD_LEN; 461 seg++; 462 } 463 fr->ef_nfrags = seg; 464 465 EPIC_CDFLSYNC(sc, nexttx, BUS_DMASYNC_PREWRITE); 466 467 /* Sync the DMA map. */ 468 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize, 469 BUS_DMASYNC_PREWRITE); 470 471 /* 472 * Store a pointer to the packet so we can free it later. 473 */ 474 ds->ds_mbuf = m0; 475 476 /* 477 * Fill in the transmit descriptor. 478 */ 479 txd->et_control = ET_TXCTL_LASTDESC | ET_TXCTL_FRAGLIST; 480 481 /* 482 * If this is the first descriptor we're enqueueing, 483 * don't give it to the EPIC yet. That could cause 484 * a race condition. We'll do it below. 485 */ 486 if (nexttx == firsttx) 487 txd->et_txstatus = TXSTAT_TXLENGTH(len); 488 else 489 txd->et_txstatus = 490 TXSTAT_TXLENGTH(len) | ET_TXSTAT_OWNER; 491 492 EPIC_CDTXSYNC(sc, nexttx, 493 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 494 495 /* Advance the tx pointer. */ 496 sc->sc_txpending++; 497 sc->sc_txlast = nexttx; 498 499 #if NBPFILTER > 0 500 /* 501 * Pass the packet to any BPF listeners. 502 */ 503 if (ifp->if_bpf) 504 bpf_mtap(ifp->if_bpf, m0); 505 #endif 506 } 507 508 if (sc->sc_txpending == EPIC_NTXDESC) { 509 /* No more slots left; notify upper layer. */ 510 ifp->if_flags |= IFF_OACTIVE; 511 } 512 513 if (sc->sc_txpending != opending) { 514 /* 515 * We enqueued packets. If the transmitter was idle, 516 * reset the txdirty pointer. 517 */ 518 if (opending == 0) 519 sc->sc_txdirty = firsttx; 520 521 /* 522 * Cause a transmit interrupt to happen on the 523 * last packet we enqueued. 524 */ 525 EPIC_CDTX(sc, sc->sc_txlast)->et_control |= ET_TXCTL_IAF; 526 EPIC_CDTXSYNC(sc, sc->sc_txlast, 527 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 528 529 /* 530 * The entire packet chain is set up. Give the 531 * first descriptor to the EPIC now. 532 */ 533 EPIC_CDTX(sc, firsttx)->et_txstatus |= ET_TXSTAT_OWNER; 534 EPIC_CDTXSYNC(sc, firsttx, 535 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 536 537 /* Start the transmitter. */ 538 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_COMMAND, 539 COMMAND_TXQUEUED); 540 541 /* Set a watchdog timer in case the chip flakes out. */ 542 ifp->if_timer = 5; 543 } 544 } 545 546 /* 547 * Watchdog timer handler. 548 * [ifnet interface function] 549 */ 550 void 551 epic_watchdog(ifp) 552 struct ifnet *ifp; 553 { 554 struct epic_softc *sc = ifp->if_softc; 555 556 printf("%s: device timeout\n", sc->sc_dev.dv_xname); 557 ifp->if_oerrors++; 558 559 (void) epic_init(ifp); 560 } 561 562 /* 563 * Handle control requests from the operator. 564 * [ifnet interface function] 565 */ 566 int 567 epic_ioctl(ifp, cmd, data) 568 struct ifnet *ifp; 569 u_long cmd; 570 void *data; 571 { 572 struct epic_softc *sc = ifp->if_softc; 573 struct ifreq *ifr = (struct ifreq *)data; 574 int s, error; 575 576 s = splnet(); 577 578 switch (cmd) { 579 case SIOCSIFMEDIA: 580 case SIOCGIFMEDIA: 581 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd); 582 break; 583 584 default: 585 error = ether_ioctl(ifp, cmd, data); 586 if (error == ENETRESET) { 587 /* 588 * Multicast list has changed; set the hardware filter 589 * accordingly. Update our idea of the current media; 590 * epic_set_mchash() needs to know what it is. 591 */ 592 if (ifp->if_flags & IFF_RUNNING) { 593 mii_pollstat(&sc->sc_mii); 594 epic_set_mchash(sc); 595 } 596 error = 0; 597 } 598 break; 599 } 600 601 splx(s); 602 return (error); 603 } 604 605 /* 606 * Interrupt handler. 607 */ 608 int 609 epic_intr(arg) 610 void *arg; 611 { 612 struct epic_softc *sc = arg; 613 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 614 struct epic_rxdesc *rxd; 615 struct epic_txdesc *txd; 616 struct epic_descsoft *ds; 617 struct mbuf *m; 618 uint32_t intstat, rxstatus, txstatus; 619 int i, claimed = 0; 620 u_int len; 621 622 top: 623 /* 624 * Get the interrupt status from the EPIC. 625 */ 626 intstat = bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_INTSTAT); 627 if ((intstat & INTSTAT_INT_ACTV) == 0) 628 return (claimed); 629 630 claimed = 1; 631 632 /* 633 * Acknowledge the interrupt. 634 */ 635 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_INTSTAT, 636 intstat & INTMASK); 637 638 /* 639 * Check for receive interrupts. 640 */ 641 if (intstat & (INTSTAT_RCC | INTSTAT_RXE | INTSTAT_RQE)) { 642 for (i = sc->sc_rxptr;; i = EPIC_NEXTRX(i)) { 643 rxd = EPIC_CDRX(sc, i); 644 ds = EPIC_DSRX(sc, i); 645 646 EPIC_CDRXSYNC(sc, i, 647 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 648 649 rxstatus = rxd->er_rxstatus; 650 if (rxstatus & ER_RXSTAT_OWNER) { 651 /* 652 * We have processed all of the 653 * receive buffers. 654 */ 655 break; 656 } 657 658 /* 659 * Make sure the packet arrived intact. If an error 660 * occurred, update stats and reset the descriptor. 661 * The buffer will be reused the next time the 662 * descriptor comes up in the ring. 663 */ 664 if ((rxstatus & ER_RXSTAT_PKTINTACT) == 0) { 665 if (rxstatus & ER_RXSTAT_CRCERROR) 666 printf("%s: CRC error\n", 667 sc->sc_dev.dv_xname); 668 if (rxstatus & ER_RXSTAT_ALIGNERROR) 669 printf("%s: alignment error\n", 670 sc->sc_dev.dv_xname); 671 ifp->if_ierrors++; 672 EPIC_INIT_RXDESC(sc, i); 673 continue; 674 } 675 676 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0, 677 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); 678 679 /* 680 * The EPIC includes the CRC with every packet; 681 * trim it. 682 */ 683 len = RXSTAT_RXLENGTH(rxstatus) - ETHER_CRC_LEN; 684 685 if (len < sizeof(struct ether_header)) { 686 /* 687 * Runt packet; drop it now. 688 */ 689 ifp->if_ierrors++; 690 EPIC_INIT_RXDESC(sc, i); 691 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0, 692 ds->ds_dmamap->dm_mapsize, 693 BUS_DMASYNC_PREREAD); 694 continue; 695 } 696 697 /* 698 * If the packet is small enough to fit in a 699 * single header mbuf, allocate one and copy 700 * the data into it. This greatly reduces 701 * memory consumption when we receive lots 702 * of small packets. 703 * 704 * Otherwise, we add a new buffer to the receive 705 * chain. If this fails, we drop the packet and 706 * recycle the old buffer. 707 */ 708 if (epic_copy_small != 0 && len <= MHLEN) { 709 MGETHDR(m, M_DONTWAIT, MT_DATA); 710 if (m == NULL) 711 goto dropit; 712 memcpy(mtod(m, void *), 713 mtod(ds->ds_mbuf, void *), len); 714 EPIC_INIT_RXDESC(sc, i); 715 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0, 716 ds->ds_dmamap->dm_mapsize, 717 BUS_DMASYNC_PREREAD); 718 } else { 719 m = ds->ds_mbuf; 720 if (epic_add_rxbuf(sc, i) != 0) { 721 dropit: 722 ifp->if_ierrors++; 723 EPIC_INIT_RXDESC(sc, i); 724 bus_dmamap_sync(sc->sc_dmat, 725 ds->ds_dmamap, 0, 726 ds->ds_dmamap->dm_mapsize, 727 BUS_DMASYNC_PREREAD); 728 continue; 729 } 730 } 731 732 m->m_pkthdr.rcvif = ifp; 733 m->m_pkthdr.len = m->m_len = len; 734 735 #if NBPFILTER > 0 736 /* 737 * Pass this up to any BPF listeners, but only 738 * pass it up the stack if its for us. 739 */ 740 if (ifp->if_bpf) 741 bpf_mtap(ifp->if_bpf, m); 742 #endif 743 744 /* Pass it on. */ 745 (*ifp->if_input)(ifp, m); 746 ifp->if_ipackets++; 747 } 748 749 /* Update the receive pointer. */ 750 sc->sc_rxptr = i; 751 752 /* 753 * Check for receive queue underflow. 754 */ 755 if (intstat & INTSTAT_RQE) { 756 printf("%s: receiver queue empty\n", 757 sc->sc_dev.dv_xname); 758 /* 759 * Ring is already built; just restart the 760 * receiver. 761 */ 762 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_PRCDAR, 763 EPIC_CDRXADDR(sc, sc->sc_rxptr)); 764 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_COMMAND, 765 COMMAND_RXQUEUED | COMMAND_START_RX); 766 } 767 } 768 769 /* 770 * Check for transmission complete interrupts. 771 */ 772 if (intstat & (INTSTAT_TXC | INTSTAT_TXU)) { 773 ifp->if_flags &= ~IFF_OACTIVE; 774 for (i = sc->sc_txdirty; sc->sc_txpending != 0; 775 i = EPIC_NEXTTX(i), sc->sc_txpending--) { 776 txd = EPIC_CDTX(sc, i); 777 ds = EPIC_DSTX(sc, i); 778 779 EPIC_CDTXSYNC(sc, i, 780 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 781 782 txstatus = txd->et_txstatus; 783 if (txstatus & ET_TXSTAT_OWNER) 784 break; 785 786 EPIC_CDFLSYNC(sc, i, BUS_DMASYNC_POSTWRITE); 787 788 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 789 0, ds->ds_dmamap->dm_mapsize, 790 BUS_DMASYNC_POSTWRITE); 791 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap); 792 m_freem(ds->ds_mbuf); 793 ds->ds_mbuf = NULL; 794 795 /* 796 * Check for errors and collisions. 797 */ 798 if ((txstatus & ET_TXSTAT_PACKETTX) == 0) 799 ifp->if_oerrors++; 800 else 801 ifp->if_opackets++; 802 ifp->if_collisions += 803 TXSTAT_COLLISIONS(txstatus); 804 if (txstatus & ET_TXSTAT_CARSENSELOST) 805 printf("%s: lost carrier\n", 806 sc->sc_dev.dv_xname); 807 } 808 809 /* Update the dirty transmit buffer pointer. */ 810 sc->sc_txdirty = i; 811 812 /* 813 * Cancel the watchdog timer if there are no pending 814 * transmissions. 815 */ 816 if (sc->sc_txpending == 0) 817 ifp->if_timer = 0; 818 819 /* 820 * Kick the transmitter after a DMA underrun. 821 */ 822 if (intstat & INTSTAT_TXU) { 823 printf("%s: transmit underrun\n", sc->sc_dev.dv_xname); 824 bus_space_write_4(sc->sc_st, sc->sc_sh, 825 EPIC_COMMAND, COMMAND_TXUGO); 826 if (sc->sc_txpending) 827 bus_space_write_4(sc->sc_st, sc->sc_sh, 828 EPIC_COMMAND, COMMAND_TXQUEUED); 829 } 830 831 /* 832 * Try to get more packets going. 833 */ 834 epic_start(ifp); 835 } 836 837 /* 838 * Check for fatal interrupts. 839 */ 840 if (intstat & INTSTAT_FATAL_INT) { 841 if (intstat & INTSTAT_PTA) 842 printf("%s: PCI target abort error\n", 843 sc->sc_dev.dv_xname); 844 else if (intstat & INTSTAT_PMA) 845 printf("%s: PCI master abort error\n", 846 sc->sc_dev.dv_xname); 847 else if (intstat & INTSTAT_APE) 848 printf("%s: PCI address parity error\n", 849 sc->sc_dev.dv_xname); 850 else if (intstat & INTSTAT_DPE) 851 printf("%s: PCI data parity error\n", 852 sc->sc_dev.dv_xname); 853 else 854 printf("%s: unknown fatal error\n", 855 sc->sc_dev.dv_xname); 856 (void) epic_init(ifp); 857 } 858 859 /* 860 * Check for more interrupts. 861 */ 862 goto top; 863 } 864 865 /* 866 * One second timer, used to tick the MII. 867 */ 868 void 869 epic_tick(arg) 870 void *arg; 871 { 872 struct epic_softc *sc = arg; 873 int s; 874 875 s = splnet(); 876 mii_tick(&sc->sc_mii); 877 splx(s); 878 879 callout_reset(&sc->sc_mii_callout, hz, epic_tick, sc); 880 } 881 882 /* 883 * Fixup the clock source on the EPIC. 884 */ 885 void 886 epic_fixup_clock_source(sc) 887 struct epic_softc *sc; 888 { 889 int i; 890 891 /* 892 * According to SMC Application Note 7-15, the EPIC's clock 893 * source is incorrect following a reset. This manifests itself 894 * as failure to recognize when host software has written to 895 * a register on the EPIC. The appnote recommends issuing at 896 * least 16 consecutive writes to the CLOCK TEST bit to correctly 897 * configure the clock source. 898 */ 899 for (i = 0; i < 16; i++) 900 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_TEST, 901 TEST_CLOCKTEST); 902 } 903 904 /* 905 * Perform a soft reset on the EPIC. 906 */ 907 void 908 epic_reset(sc) 909 struct epic_softc *sc; 910 { 911 912 epic_fixup_clock_source(sc); 913 914 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_GENCTL, 0); 915 delay(100); 916 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_GENCTL, GENCTL_SOFTRESET); 917 delay(100); 918 919 epic_fixup_clock_source(sc); 920 } 921 922 /* 923 * Initialize the interface. Must be called at splnet(). 924 */ 925 int 926 epic_init(ifp) 927 struct ifnet *ifp; 928 { 929 struct epic_softc *sc = ifp->if_softc; 930 bus_space_tag_t st = sc->sc_st; 931 bus_space_handle_t sh = sc->sc_sh; 932 const uint8_t *enaddr = CLLADDR(ifp->if_sadl); 933 struct epic_txdesc *txd; 934 struct epic_descsoft *ds; 935 uint32_t genctl, reg0; 936 int i, error = 0; 937 938 /* 939 * Cancel any pending I/O. 940 */ 941 epic_stop(ifp, 0); 942 943 /* 944 * Reset the EPIC to a known state. 945 */ 946 epic_reset(sc); 947 948 /* 949 * Magical mystery initialization. 950 */ 951 bus_space_write_4(st, sh, EPIC_TXTEST, 0); 952 953 /* 954 * Initialize the EPIC genctl register: 955 * 956 * - 64 byte receive FIFO threshold 957 * - automatic advance to next receive frame 958 */ 959 genctl = GENCTL_RX_FIFO_THRESH0 | GENCTL_ONECOPY; 960 #if BYTE_ORDER == BIG_ENDIAN 961 genctl |= GENCTL_BIG_ENDIAN; 962 #endif 963 bus_space_write_4(st, sh, EPIC_GENCTL, genctl); 964 965 /* 966 * Reset the MII bus and PHY. 967 */ 968 reg0 = bus_space_read_4(st, sh, EPIC_NVCTL); 969 bus_space_write_4(st, sh, EPIC_NVCTL, reg0 | NVCTL_GPIO1 | NVCTL_GPOE1); 970 bus_space_write_4(st, sh, EPIC_MIICFG, MIICFG_ENASER); 971 bus_space_write_4(st, sh, EPIC_GENCTL, genctl | GENCTL_RESET_PHY); 972 delay(100); 973 bus_space_write_4(st, sh, EPIC_GENCTL, genctl); 974 delay(1000); 975 bus_space_write_4(st, sh, EPIC_NVCTL, reg0); 976 977 /* 978 * Initialize Ethernet address. 979 */ 980 reg0 = enaddr[1] << 8 | enaddr[0]; 981 bus_space_write_4(st, sh, EPIC_LAN0, reg0); 982 reg0 = enaddr[3] << 8 | enaddr[2]; 983 bus_space_write_4(st, sh, EPIC_LAN1, reg0); 984 reg0 = enaddr[5] << 8 | enaddr[4]; 985 bus_space_write_4(st, sh, EPIC_LAN2, reg0); 986 987 /* 988 * Initialize receive control. Remember the external buffer 989 * size setting. 990 */ 991 reg0 = bus_space_read_4(st, sh, EPIC_RXCON) & 992 (RXCON_EXTBUFSIZESEL1 | RXCON_EXTBUFSIZESEL0); 993 reg0 |= (RXCON_RXMULTICAST | RXCON_RXBROADCAST); 994 if (ifp->if_flags & IFF_PROMISC) 995 reg0 |= RXCON_PROMISCMODE; 996 bus_space_write_4(st, sh, EPIC_RXCON, reg0); 997 998 /* Set the current media. */ 999 epic_mediachange(ifp); 1000 1001 /* Set up the multicast hash table. */ 1002 epic_set_mchash(sc); 1003 1004 /* 1005 * Initialize the transmit descriptor ring. txlast is initialized 1006 * to the end of the list so that it will wrap around to the first 1007 * descriptor when the first packet is transmitted. 1008 */ 1009 for (i = 0; i < EPIC_NTXDESC; i++) { 1010 txd = EPIC_CDTX(sc, i); 1011 memset(txd, 0, sizeof(struct epic_txdesc)); 1012 txd->et_bufaddr = EPIC_CDFLADDR(sc, i); 1013 txd->et_nextdesc = EPIC_CDTXADDR(sc, EPIC_NEXTTX(i)); 1014 EPIC_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 1015 } 1016 sc->sc_txpending = 0; 1017 sc->sc_txdirty = 0; 1018 sc->sc_txlast = EPIC_NTXDESC - 1; 1019 1020 /* 1021 * Initialize the receive descriptor ring. 1022 */ 1023 for (i = 0; i < EPIC_NRXDESC; i++) { 1024 ds = EPIC_DSRX(sc, i); 1025 if (ds->ds_mbuf == NULL) { 1026 if ((error = epic_add_rxbuf(sc, i)) != 0) { 1027 printf("%s: unable to allocate or map rx " 1028 "buffer %d error = %d\n", 1029 sc->sc_dev.dv_xname, i, error); 1030 /* 1031 * XXX Should attempt to run with fewer receive 1032 * XXX buffers instead of just failing. 1033 */ 1034 epic_rxdrain(sc); 1035 goto out; 1036 } 1037 } else 1038 EPIC_INIT_RXDESC(sc, i); 1039 } 1040 sc->sc_rxptr = 0; 1041 1042 /* 1043 * Initialize the interrupt mask and enable interrupts. 1044 */ 1045 bus_space_write_4(st, sh, EPIC_INTMASK, INTMASK); 1046 bus_space_write_4(st, sh, EPIC_GENCTL, genctl | GENCTL_INTENA); 1047 1048 /* 1049 * Give the transmit and receive rings to the EPIC. 1050 */ 1051 bus_space_write_4(st, sh, EPIC_PTCDAR, 1052 EPIC_CDTXADDR(sc, EPIC_NEXTTX(sc->sc_txlast))); 1053 bus_space_write_4(st, sh, EPIC_PRCDAR, 1054 EPIC_CDRXADDR(sc, sc->sc_rxptr)); 1055 1056 /* 1057 * Set the EPIC in motion. 1058 */ 1059 bus_space_write_4(st, sh, EPIC_COMMAND, 1060 COMMAND_RXQUEUED | COMMAND_START_RX); 1061 1062 /* 1063 * ...all done! 1064 */ 1065 ifp->if_flags |= IFF_RUNNING; 1066 ifp->if_flags &= ~IFF_OACTIVE; 1067 1068 /* 1069 * Start the one second clock. 1070 */ 1071 callout_reset(&sc->sc_mii_callout, hz, epic_tick, sc); 1072 1073 /* 1074 * Attempt to start output on the interface. 1075 */ 1076 epic_start(ifp); 1077 1078 out: 1079 if (error) 1080 printf("%s: interface not running\n", sc->sc_dev.dv_xname); 1081 return (error); 1082 } 1083 1084 /* 1085 * Drain the receive queue. 1086 */ 1087 void 1088 epic_rxdrain(sc) 1089 struct epic_softc *sc; 1090 { 1091 struct epic_descsoft *ds; 1092 int i; 1093 1094 for (i = 0; i < EPIC_NRXDESC; i++) { 1095 ds = EPIC_DSRX(sc, i); 1096 if (ds->ds_mbuf != NULL) { 1097 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap); 1098 m_freem(ds->ds_mbuf); 1099 ds->ds_mbuf = NULL; 1100 } 1101 } 1102 } 1103 1104 /* 1105 * Stop transmission on the interface. 1106 */ 1107 void 1108 epic_stop(ifp, disable) 1109 struct ifnet *ifp; 1110 int disable; 1111 { 1112 struct epic_softc *sc = ifp->if_softc; 1113 bus_space_tag_t st = sc->sc_st; 1114 bus_space_handle_t sh = sc->sc_sh; 1115 struct epic_descsoft *ds; 1116 uint32_t reg; 1117 int i; 1118 1119 /* 1120 * Stop the one second clock. 1121 */ 1122 callout_stop(&sc->sc_mii_callout); 1123 1124 /* Down the MII. */ 1125 mii_down(&sc->sc_mii); 1126 1127 /* Paranoia... */ 1128 epic_fixup_clock_source(sc); 1129 1130 /* 1131 * Disable interrupts. 1132 */ 1133 reg = bus_space_read_4(st, sh, EPIC_GENCTL); 1134 bus_space_write_4(st, sh, EPIC_GENCTL, reg & ~GENCTL_INTENA); 1135 bus_space_write_4(st, sh, EPIC_INTMASK, 0); 1136 1137 /* 1138 * Stop the DMA engine and take the receiver off-line. 1139 */ 1140 bus_space_write_4(st, sh, EPIC_COMMAND, COMMAND_STOP_RDMA | 1141 COMMAND_STOP_TDMA | COMMAND_STOP_RX); 1142 1143 /* 1144 * Release any queued transmit buffers. 1145 */ 1146 for (i = 0; i < EPIC_NTXDESC; i++) { 1147 ds = EPIC_DSTX(sc, i); 1148 if (ds->ds_mbuf != NULL) { 1149 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap); 1150 m_freem(ds->ds_mbuf); 1151 ds->ds_mbuf = NULL; 1152 } 1153 } 1154 1155 if (disable) 1156 epic_rxdrain(sc); 1157 1158 /* 1159 * Mark the interface down and cancel the watchdog timer. 1160 */ 1161 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 1162 ifp->if_timer = 0; 1163 } 1164 1165 /* 1166 * Read the EPIC Serial EEPROM. 1167 */ 1168 void 1169 epic_read_eeprom(sc, word, wordcnt, data) 1170 struct epic_softc *sc; 1171 int word, wordcnt; 1172 uint16_t *data; 1173 { 1174 bus_space_tag_t st = sc->sc_st; 1175 bus_space_handle_t sh = sc->sc_sh; 1176 uint16_t reg; 1177 int i, x; 1178 1179 #define EEPROM_WAIT_READY(st, sh) \ 1180 while ((bus_space_read_4((st), (sh), EPIC_EECTL) & EECTL_EERDY) == 0) \ 1181 /* nothing */ 1182 1183 /* 1184 * Enable the EEPROM. 1185 */ 1186 bus_space_write_4(st, sh, EPIC_EECTL, EECTL_ENABLE); 1187 EEPROM_WAIT_READY(st, sh); 1188 1189 for (i = 0; i < wordcnt; i++) { 1190 /* Send CHIP SELECT for one clock tick. */ 1191 bus_space_write_4(st, sh, EPIC_EECTL, EECTL_ENABLE|EECTL_EECS); 1192 EEPROM_WAIT_READY(st, sh); 1193 1194 /* Shift in the READ opcode. */ 1195 for (x = 3; x > 0; x--) { 1196 reg = EECTL_ENABLE|EECTL_EECS; 1197 if (EPIC_EEPROM_OPC_READ & (1 << (x - 1))) 1198 reg |= EECTL_EEDI; 1199 bus_space_write_4(st, sh, EPIC_EECTL, reg); 1200 EEPROM_WAIT_READY(st, sh); 1201 bus_space_write_4(st, sh, EPIC_EECTL, reg|EECTL_EESK); 1202 EEPROM_WAIT_READY(st, sh); 1203 bus_space_write_4(st, sh, EPIC_EECTL, reg); 1204 EEPROM_WAIT_READY(st, sh); 1205 } 1206 1207 /* Shift in address. */ 1208 for (x = 6; x > 0; x--) { 1209 reg = EECTL_ENABLE|EECTL_EECS; 1210 if ((word + i) & (1 << (x - 1))) 1211 reg |= EECTL_EEDI; 1212 bus_space_write_4(st, sh, EPIC_EECTL, reg); 1213 EEPROM_WAIT_READY(st, sh); 1214 bus_space_write_4(st, sh, EPIC_EECTL, reg|EECTL_EESK); 1215 EEPROM_WAIT_READY(st, sh); 1216 bus_space_write_4(st, sh, EPIC_EECTL, reg); 1217 EEPROM_WAIT_READY(st, sh); 1218 } 1219 1220 /* Shift out data. */ 1221 reg = EECTL_ENABLE|EECTL_EECS; 1222 data[i] = 0; 1223 for (x = 16; x > 0; x--) { 1224 bus_space_write_4(st, sh, EPIC_EECTL, reg|EECTL_EESK); 1225 EEPROM_WAIT_READY(st, sh); 1226 if (bus_space_read_4(st, sh, EPIC_EECTL) & EECTL_EEDO) 1227 data[i] |= (1 << (x - 1)); 1228 bus_space_write_4(st, sh, EPIC_EECTL, reg); 1229 EEPROM_WAIT_READY(st, sh); 1230 } 1231 1232 /* Clear CHIP SELECT. */ 1233 bus_space_write_4(st, sh, EPIC_EECTL, EECTL_ENABLE); 1234 EEPROM_WAIT_READY(st, sh); 1235 } 1236 1237 /* 1238 * Disable the EEPROM. 1239 */ 1240 bus_space_write_4(st, sh, EPIC_EECTL, 0); 1241 1242 #undef EEPROM_WAIT_READY 1243 } 1244 1245 /* 1246 * Add a receive buffer to the indicated descriptor. 1247 */ 1248 int 1249 epic_add_rxbuf(sc, idx) 1250 struct epic_softc *sc; 1251 int idx; 1252 { 1253 struct epic_descsoft *ds = EPIC_DSRX(sc, idx); 1254 struct mbuf *m; 1255 int error; 1256 1257 MGETHDR(m, M_DONTWAIT, MT_DATA); 1258 if (m == NULL) 1259 return (ENOBUFS); 1260 1261 MCLGET(m, M_DONTWAIT); 1262 if ((m->m_flags & M_EXT) == 0) { 1263 m_freem(m); 1264 return (ENOBUFS); 1265 } 1266 1267 if (ds->ds_mbuf != NULL) 1268 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap); 1269 1270 ds->ds_mbuf = m; 1271 1272 error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap, 1273 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, 1274 BUS_DMA_READ|BUS_DMA_NOWAIT); 1275 if (error) { 1276 printf("%s: can't load rx DMA map %d, error = %d\n", 1277 sc->sc_dev.dv_xname, idx, error); 1278 panic("epic_add_rxbuf"); /* XXX */ 1279 } 1280 1281 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0, 1282 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); 1283 1284 EPIC_INIT_RXDESC(sc, idx); 1285 1286 return (0); 1287 } 1288 1289 /* 1290 * Set the EPIC multicast hash table. 1291 * 1292 * NOTE: We rely on a recently-updated mii_media_active here! 1293 */ 1294 void 1295 epic_set_mchash(sc) 1296 struct epic_softc *sc; 1297 { 1298 struct ethercom *ec = &sc->sc_ethercom; 1299 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1300 struct ether_multi *enm; 1301 struct ether_multistep step; 1302 uint32_t hash, mchash[4]; 1303 1304 /* 1305 * Set up the multicast address filter by passing all multicast 1306 * addresses through a CRC generator, and then using the low-order 1307 * 6 bits as an index into the 64 bit multicast hash table (only 1308 * the lower 16 bits of each 32 bit multicast hash register are 1309 * valid). The high order bits select the register, while the 1310 * rest of the bits select the bit within the register. 1311 */ 1312 1313 if (ifp->if_flags & IFF_PROMISC) 1314 goto allmulti; 1315 1316 if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_10_T) { 1317 /* XXX hardware bug in 10Mbps mode. */ 1318 goto allmulti; 1319 } 1320 1321 mchash[0] = mchash[1] = mchash[2] = mchash[3] = 0; 1322 1323 ETHER_FIRST_MULTI(step, ec, enm); 1324 while (enm != NULL) { 1325 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { 1326 /* 1327 * We must listen to a range of multicast addresses. 1328 * For now, just accept all multicasts, rather than 1329 * trying to set only those filter bits needed to match 1330 * the range. (At this time, the only use of address 1331 * ranges is for IP multicast routing, for which the 1332 * range is big enough to require all bits set.) 1333 */ 1334 goto allmulti; 1335 } 1336 1337 hash = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN); 1338 hash >>= 26; 1339 1340 /* Set the corresponding bit in the hash table. */ 1341 mchash[hash >> 4] |= 1 << (hash & 0xf); 1342 1343 ETHER_NEXT_MULTI(step, enm); 1344 } 1345 1346 ifp->if_flags &= ~IFF_ALLMULTI; 1347 goto sethash; 1348 1349 allmulti: 1350 ifp->if_flags |= IFF_ALLMULTI; 1351 mchash[0] = mchash[1] = mchash[2] = mchash[3] = 0xffff; 1352 1353 sethash: 1354 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MC0, mchash[0]); 1355 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MC1, mchash[1]); 1356 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MC2, mchash[2]); 1357 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MC3, mchash[3]); 1358 } 1359 1360 /* 1361 * Wait for the MII to become ready. 1362 */ 1363 int 1364 epic_mii_wait(sc, rw) 1365 struct epic_softc *sc; 1366 uint32_t rw; 1367 { 1368 int i; 1369 1370 for (i = 0; i < 50; i++) { 1371 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_MMCTL) & rw) 1372 == 0) 1373 break; 1374 delay(2); 1375 } 1376 if (i == 50) { 1377 printf("%s: MII timed out\n", sc->sc_dev.dv_xname); 1378 return (1); 1379 } 1380 1381 return (0); 1382 } 1383 1384 /* 1385 * Read from the MII. 1386 */ 1387 int 1388 epic_mii_read(self, phy, reg) 1389 struct device *self; 1390 int phy, reg; 1391 { 1392 struct epic_softc *sc = (struct epic_softc *)self; 1393 1394 if (epic_mii_wait(sc, MMCTL_WRITE)) 1395 return (0); 1396 1397 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MMCTL, 1398 MMCTL_ARG(phy, reg, MMCTL_READ)); 1399 1400 if (epic_mii_wait(sc, MMCTL_READ)) 1401 return (0); 1402 1403 return (bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_MMDATA) & 1404 MMDATA_MASK); 1405 } 1406 1407 /* 1408 * Write to the MII. 1409 */ 1410 void 1411 epic_mii_write(self, phy, reg, val) 1412 struct device *self; 1413 int phy, reg, val; 1414 { 1415 struct epic_softc *sc = (struct epic_softc *)self; 1416 1417 if (epic_mii_wait(sc, MMCTL_WRITE)) 1418 return; 1419 1420 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MMDATA, val); 1421 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MMCTL, 1422 MMCTL_ARG(phy, reg, MMCTL_WRITE)); 1423 } 1424 1425 /* 1426 * Callback from PHY when media changes. 1427 */ 1428 void 1429 epic_statchg(self) 1430 struct device *self; 1431 { 1432 struct epic_softc *sc = (struct epic_softc *)self; 1433 uint32_t txcon, miicfg; 1434 1435 /* 1436 * Update loopback bits in TXCON to reflect duplex mode. 1437 */ 1438 txcon = bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_TXCON); 1439 if (sc->sc_mii.mii_media_active & IFM_FDX) 1440 txcon |= (TXCON_LOOPBACK_D1|TXCON_LOOPBACK_D2); 1441 else 1442 txcon &= ~(TXCON_LOOPBACK_D1|TXCON_LOOPBACK_D2); 1443 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_TXCON, txcon); 1444 1445 /* On some cards we need manualy set fullduplex led */ 1446 if (sc->sc_hwflags & EPIC_DUPLEXLED_ON_694) { 1447 miicfg = bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_MIICFG); 1448 if (IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) 1449 miicfg |= MIICFG_ENABLE; 1450 else 1451 miicfg &= ~MIICFG_ENABLE; 1452 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MIICFG, miicfg); 1453 } 1454 1455 /* 1456 * There is a multicast filter bug in 10Mbps mode. Kick the 1457 * multicast filter in case the speed changed. 1458 */ 1459 epic_set_mchash(sc); 1460 } 1461 1462 /* 1463 * Callback from ifmedia to request current media status. 1464 */ 1465 void 1466 epic_mediastatus(ifp, ifmr) 1467 struct ifnet *ifp; 1468 struct ifmediareq *ifmr; 1469 { 1470 struct epic_softc *sc = ifp->if_softc; 1471 1472 mii_pollstat(&sc->sc_mii); 1473 ifmr->ifm_status = sc->sc_mii.mii_media_status; 1474 ifmr->ifm_active = sc->sc_mii.mii_media_active; 1475 } 1476 1477 /* 1478 * Callback from ifmedia to request new media setting. 1479 */ 1480 int 1481 epic_mediachange(ifp) 1482 struct ifnet *ifp; 1483 { 1484 struct epic_softc *sc = ifp->if_softc; 1485 struct mii_data *mii = &sc->sc_mii; 1486 struct ifmedia *ifm = &mii->mii_media; 1487 int media = ifm->ifm_cur->ifm_media; 1488 uint32_t miicfg; 1489 struct mii_softc *miisc; 1490 int cfg; 1491 1492 if (!(ifp->if_flags & IFF_UP)) 1493 return (0); 1494 1495 if (IFM_INST(media) != sc->sc_serinst) { 1496 /* If we're not selecting serial interface, select MII mode */ 1497 #ifdef EPICMEDIADEBUG 1498 printf("%s: parallel mode\n", ifp->if_xname); 1499 #endif 1500 miicfg = bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_MIICFG); 1501 miicfg &= ~MIICFG_SERMODEENA; 1502 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MIICFG, miicfg); 1503 } 1504 1505 mii_mediachg(mii); 1506 1507 if (IFM_INST(media) == sc->sc_serinst) { 1508 /* select serial interface */ 1509 #ifdef EPICMEDIADEBUG 1510 printf("%s: serial mode\n", ifp->if_xname); 1511 #endif 1512 miicfg = bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_MIICFG); 1513 miicfg |= (MIICFG_SERMODEENA | MIICFG_ENABLE); 1514 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MIICFG, miicfg); 1515 1516 /* There is no driver to fill this */ 1517 mii->mii_media_active = media; 1518 mii->mii_media_status = 0; 1519 1520 epic_statchg(&sc->sc_dev); 1521 return (0); 1522 } 1523 1524 /* Lookup selected PHY */ 1525 for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL; 1526 miisc = LIST_NEXT(miisc, mii_list)) { 1527 if (IFM_INST(media) == miisc->mii_inst) 1528 break; 1529 } 1530 if (!miisc) { 1531 printf("epic_mediachange: can't happen\n"); /* ??? panic */ 1532 return (0); 1533 } 1534 #ifdef EPICMEDIADEBUG 1535 printf("%s: using phy %s\n", ifp->if_xname, 1536 miisc->mii_dev.dv_xname); 1537 #endif 1538 1539 if (miisc->mii_flags & MIIF_HAVEFIBER) { 1540 /* XXX XXX assume it's a Level1 - should check */ 1541 1542 /* We have to powerup fiber transceivers */ 1543 cfg = PHY_READ(miisc, MII_LXTPHY_CONFIG); 1544 if (IFM_SUBTYPE(media) == IFM_100_FX) { 1545 #ifdef EPICMEDIADEBUG 1546 printf("%s: power up fiber\n", ifp->if_xname); 1547 #endif 1548 cfg |= (CONFIG_LEDC1 | CONFIG_LEDC0); 1549 } else { 1550 #ifdef EPICMEDIADEBUG 1551 printf("%s: power down fiber\n", ifp->if_xname); 1552 #endif 1553 cfg &= ~(CONFIG_LEDC1 | CONFIG_LEDC0); 1554 } 1555 PHY_WRITE(miisc, MII_LXTPHY_CONFIG, cfg); 1556 } 1557 1558 return (0); 1559 } 1560