xref: /netbsd-src/sys/dev/ic/smc83c170.c (revision 3b01aba77a7a698587faaae455bbfe740923c1f5)
1 /*	$NetBSD: smc83c170.c,v 1.48 2001/07/23 17:20:04 thorpej Exp $	*/
2 
3 /*-
4  * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the NetBSD
22  *	Foundation, Inc. and its contributors.
23  * 4. Neither the name of The NetBSD Foundation nor the names of its
24  *    contributors may be used to endorse or promote products derived
25  *    from this software without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37  * POSSIBILITY OF SUCH DAMAGE.
38  */
39 
40 /*
41  * Device driver for the Standard Microsystems Corp. 83C170
42  * Ethernet PCI Integrated Controller (EPIC/100).
43  */
44 
45 #include "bpfilter.h"
46 
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/callout.h>
50 #include <sys/mbuf.h>
51 #include <sys/malloc.h>
52 #include <sys/kernel.h>
53 #include <sys/socket.h>
54 #include <sys/ioctl.h>
55 #include <sys/errno.h>
56 #include <sys/device.h>
57 
58 #include <uvm/uvm_extern.h>
59 
60 #include <net/if.h>
61 #include <net/if_dl.h>
62 #include <net/if_media.h>
63 #include <net/if_ether.h>
64 
65 #if NBPFILTER > 0
66 #include <net/bpf.h>
67 #endif
68 
69 #include <machine/bus.h>
70 #include <machine/intr.h>
71 
72 #include <dev/mii/miivar.h>
73 #include <dev/mii/lxtphyreg.h>
74 
75 #include <dev/ic/smc83c170reg.h>
76 #include <dev/ic/smc83c170var.h>
77 
78 void	epic_start __P((struct ifnet *));
79 void	epic_watchdog __P((struct ifnet *));
80 int	epic_ioctl __P((struct ifnet *, u_long, caddr_t));
81 int	epic_init __P((struct ifnet *));
82 void	epic_stop __P((struct ifnet *, int));
83 
84 void	epic_shutdown __P((void *));
85 
86 void	epic_reset __P((struct epic_softc *));
87 void	epic_rxdrain __P((struct epic_softc *));
88 int	epic_add_rxbuf __P((struct epic_softc *, int));
89 void	epic_read_eeprom __P((struct epic_softc *, int, int, u_int16_t *));
90 void	epic_set_mchash __P((struct epic_softc *));
91 void	epic_fixup_clock_source __P((struct epic_softc *));
92 int	epic_mii_read __P((struct device *, int, int));
93 void	epic_mii_write __P((struct device *, int, int, int));
94 int	epic_mii_wait __P((struct epic_softc *, u_int32_t));
95 void	epic_tick __P((void *));
96 
97 void	epic_statchg __P((struct device *));
98 int	epic_mediachange __P((struct ifnet *));
99 void	epic_mediastatus __P((struct ifnet *, struct ifmediareq *));
100 
101 #define	INTMASK	(INTSTAT_FATAL_INT | INTSTAT_TXU | \
102 	    INTSTAT_TXC | INTSTAT_RXE | INTSTAT_RQE | INTSTAT_RCC)
103 
104 int	epic_copy_small = 0;
105 
106 /*
107  * Attach an EPIC interface to the system.
108  */
109 void
110 epic_attach(sc)
111 	struct epic_softc *sc;
112 {
113 	bus_space_tag_t st = sc->sc_st;
114 	bus_space_handle_t sh = sc->sc_sh;
115 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
116 	int i, rseg, error, miiflags;
117 	bus_dma_segment_t seg;
118 	u_int8_t enaddr[ETHER_ADDR_LEN], devname[12 + 1];
119 	u_int16_t myea[ETHER_ADDR_LEN / 2], mydevname[6];
120 
121 	callout_init(&sc->sc_mii_callout);
122 
123 	/*
124 	 * Allocate the control data structures, and create and load the
125 	 * DMA map for it.
126 	 */
127 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
128 	    sizeof(struct epic_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
129 	    BUS_DMA_NOWAIT)) != 0) {
130 		printf("%s: unable to allocate control data, error = %d\n",
131 		    sc->sc_dev.dv_xname, error);
132 		goto fail_0;
133 	}
134 
135 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
136 	    sizeof(struct epic_control_data), (caddr_t *)&sc->sc_control_data,
137 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
138 		printf("%s: unable to map control data, error = %d\n",
139 		    sc->sc_dev.dv_xname, error);
140 		goto fail_1;
141 	}
142 
143 	if ((error = bus_dmamap_create(sc->sc_dmat,
144 	    sizeof(struct epic_control_data), 1,
145 	    sizeof(struct epic_control_data), 0, BUS_DMA_NOWAIT,
146 	    &sc->sc_cddmamap)) != 0) {
147 		printf("%s: unable to create control data DMA map, "
148 		    "error = %d\n", sc->sc_dev.dv_xname, error);
149 		goto fail_2;
150 	}
151 
152 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
153 	    sc->sc_control_data, sizeof(struct epic_control_data), NULL,
154 	    BUS_DMA_NOWAIT)) != 0) {
155 		printf("%s: unable to load control data DMA map, error = %d\n",
156 		    sc->sc_dev.dv_xname, error);
157 		goto fail_3;
158 	}
159 
160 	/*
161 	 * Create the transmit buffer DMA maps.
162 	 */
163 	for (i = 0; i < EPIC_NTXDESC; i++) {
164 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
165 		    EPIC_NFRAGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
166 		    &EPIC_DSTX(sc, i)->ds_dmamap)) != 0) {
167 			printf("%s: unable to create tx DMA map %d, "
168 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
169 			goto fail_4;
170 		}
171 	}
172 
173 	/*
174 	 * Create the receive buffer DMA maps.
175 	 */
176 	for (i = 0; i < EPIC_NRXDESC; i++) {
177 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
178 		    MCLBYTES, 0, BUS_DMA_NOWAIT,
179 		    &EPIC_DSRX(sc, i)->ds_dmamap)) != 0) {
180 			printf("%s: unable to create rx DMA map %d, "
181 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
182 			goto fail_5;
183 		}
184 		EPIC_DSRX(sc, i)->ds_mbuf = NULL;
185 	}
186 
187 
188 	/*
189 	 * Bring the chip out of low-power mode and reset it to a known state.
190 	 */
191 	bus_space_write_4(st, sh, EPIC_GENCTL, 0);
192 	epic_reset(sc);
193 
194 	/*
195 	 * Read the Ethernet address from the EEPROM.
196 	 */
197 	epic_read_eeprom(sc, 0, (sizeof(myea) / sizeof(myea[0])), myea);
198 	for (i = 0; i < sizeof(myea)/ sizeof(myea[0]); i++) {
199 		enaddr[i * 2]     = myea[i] & 0xff;
200 		enaddr[i * 2 + 1] = myea[i] >> 8;
201 	}
202 
203 	/*
204 	 * ...and the device name.
205 	 */
206 	epic_read_eeprom(sc, 0x2c, (sizeof(mydevname) / sizeof(mydevname[0])),
207 	    mydevname);
208 	for (i = 0; i < sizeof(mydevname) / sizeof(mydevname[0]); i++) {
209 		devname[i * 2]     = mydevname[i] & 0xff;
210 		devname[i * 2 + 1] = mydevname[i] >> 8;
211 	}
212 
213 	devname[sizeof(mydevname)] = '\0';
214 	for (i = sizeof(mydevname) - 1; i >= 0; i--) {
215 		if (devname[i] == ' ')
216 			devname[i] = '\0';
217 		else
218 			break;
219 	}
220 
221 	printf("%s: %s, Ethernet address %s\n", sc->sc_dev.dv_xname,
222 	    devname, ether_sprintf(enaddr));
223 
224 	miiflags = 0;
225 	if (sc->sc_hwflags & EPIC_HAS_MII_FIBER)
226 		miiflags |= MIIF_HAVEFIBER;
227 
228 	/*
229 	 * Initialize our media structures and probe the MII.
230 	 */
231 	sc->sc_mii.mii_ifp = ifp;
232 	sc->sc_mii.mii_readreg = epic_mii_read;
233 	sc->sc_mii.mii_writereg = epic_mii_write;
234 	sc->sc_mii.mii_statchg = epic_statchg;
235 	ifmedia_init(&sc->sc_mii.mii_media, 0, epic_mediachange,
236 	    epic_mediastatus);
237 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
238 	    MII_OFFSET_ANY, miiflags);
239 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
240 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
241 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
242 	} else
243 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
244 
245 	if (sc->sc_hwflags & EPIC_HAS_BNC) {
246 		/* use the next free media instance */
247 		sc->sc_serinst = sc->sc_mii.mii_instance++;
248 		ifmedia_add(&sc->sc_mii.mii_media,
249 			    IFM_MAKEWORD(IFM_ETHER, IFM_10_2, 0,
250 					 sc->sc_serinst),
251 			    0, NULL);
252 		printf("%s: 10base2/BNC\n", sc->sc_dev.dv_xname);
253 	} else
254 		sc->sc_serinst = -1;
255 
256 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
257 	ifp->if_softc = sc;
258 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
259 	ifp->if_ioctl = epic_ioctl;
260 	ifp->if_start = epic_start;
261 	ifp->if_watchdog = epic_watchdog;
262 	ifp->if_init = epic_init;
263 	ifp->if_stop = epic_stop;
264 	IFQ_SET_READY(&ifp->if_snd);
265 
266 	/*
267 	 * We can support 802.1Q VLAN-sized frames.
268 	 */
269 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
270 
271 	/*
272 	 * Attach the interface.
273 	 */
274 	if_attach(ifp);
275 	ether_ifattach(ifp, enaddr);
276 
277 	/*
278 	 * Make sure the interface is shutdown during reboot.
279 	 */
280 	sc->sc_sdhook = shutdownhook_establish(epic_shutdown, sc);
281 	if (sc->sc_sdhook == NULL)
282 		printf("%s: WARNING: unable to establish shutdown hook\n",
283 		    sc->sc_dev.dv_xname);
284 	return;
285 
286 	/*
287 	 * Free any resources we've allocated during the failed attach
288 	 * attempt.  Do this in reverse order and fall through.
289 	 */
290  fail_5:
291 	for (i = 0; i < EPIC_NRXDESC; i++) {
292 		if (EPIC_DSRX(sc, i)->ds_dmamap != NULL)
293 			bus_dmamap_destroy(sc->sc_dmat,
294 			    EPIC_DSRX(sc, i)->ds_dmamap);
295 	}
296  fail_4:
297 	for (i = 0; i < EPIC_NTXDESC; i++) {
298 		if (EPIC_DSTX(sc, i)->ds_dmamap != NULL)
299 			bus_dmamap_destroy(sc->sc_dmat,
300 			    EPIC_DSTX(sc, i)->ds_dmamap);
301 	}
302 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
303  fail_3:
304 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
305  fail_2:
306 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
307 	    sizeof(struct epic_control_data));
308  fail_1:
309 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
310  fail_0:
311 	return;
312 }
313 
314 /*
315  * Shutdown hook.  Make sure the interface is stopped at reboot.
316  */
317 void
318 epic_shutdown(arg)
319 	void *arg;
320 {
321 	struct epic_softc *sc = arg;
322 
323 	epic_stop(&sc->sc_ethercom.ec_if, 1);
324 }
325 
326 /*
327  * Start packet transmission on the interface.
328  * [ifnet interface function]
329  */
330 void
331 epic_start(ifp)
332 	struct ifnet *ifp;
333 {
334 	struct epic_softc *sc = ifp->if_softc;
335 	struct mbuf *m0, *m;
336 	struct epic_txdesc *txd;
337 	struct epic_descsoft *ds;
338 	struct epic_fraglist *fr;
339 	bus_dmamap_t dmamap;
340 	int error, firsttx, nexttx, opending, seg;
341 
342 	/*
343 	 * Remember the previous txpending and the first transmit
344 	 * descriptor we use.
345 	 */
346 	opending = sc->sc_txpending;
347 	firsttx = EPIC_NEXTTX(sc->sc_txlast);
348 
349 	/*
350 	 * Loop through the send queue, setting up transmit descriptors
351 	 * until we drain the queue, or use up all available transmit
352 	 * descriptors.
353 	 */
354 	while (sc->sc_txpending < EPIC_NTXDESC) {
355 		/*
356 		 * Grab a packet off the queue.
357 		 */
358 		IFQ_POLL(&ifp->if_snd, m0);
359 		if (m0 == NULL)
360 			break;
361 		m = NULL;
362 
363 		/*
364 		 * Get the last and next available transmit descriptor.
365 		 */
366 		nexttx = EPIC_NEXTTX(sc->sc_txlast);
367 		txd = EPIC_CDTX(sc, nexttx);
368 		fr = EPIC_CDFL(sc, nexttx);
369 		ds = EPIC_DSTX(sc, nexttx);
370 		dmamap = ds->ds_dmamap;
371 
372 		/*
373 		 * Load the DMA map.  If this fails, the packet either
374 		 * didn't fit in the alloted number of frags, or we were
375 		 * short on resources.  In this case, we'll copy and try
376 		 * again.
377 		 */
378 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
379 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
380 			MGETHDR(m, M_DONTWAIT, MT_DATA);
381 			if (m == NULL) {
382 				printf("%s: unable to allocate Tx mbuf\n",
383 				    sc->sc_dev.dv_xname);
384 				break;
385 			}
386 			if (m0->m_pkthdr.len > MHLEN) {
387 				MCLGET(m, M_DONTWAIT);
388 				if ((m->m_flags & M_EXT) == 0) {
389 					printf("%s: unable to allocate Tx "
390 					    "cluster\n", sc->sc_dev.dv_xname);
391 					m_freem(m);
392 					break;
393 				}
394 			}
395 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
396 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
397 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
398 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
399 			if (error) {
400 				printf("%s: unable to load Tx buffer, "
401 				    "error = %d\n", sc->sc_dev.dv_xname, error);
402 				break;
403 			}
404 		}
405 		IFQ_DEQUEUE(&ifp->if_snd, m0);
406 		if (m != NULL) {
407 			m_freem(m0);
408 			m0 = m;
409 		}
410 
411 		/* Initialize the fraglist. */
412 		fr->ef_nfrags = dmamap->dm_nsegs;
413 		for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
414 			fr->ef_frags[seg].ef_addr =
415 			    dmamap->dm_segs[seg].ds_addr;
416 			fr->ef_frags[seg].ef_length =
417 			    dmamap->dm_segs[seg].ds_len;
418 		}
419 
420 		EPIC_CDFLSYNC(sc, nexttx, BUS_DMASYNC_PREWRITE);
421 
422 		/* Sync the DMA map. */
423 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
424 		    BUS_DMASYNC_PREWRITE);
425 
426 		/*
427 		 * Store a pointer to the packet so we can free it later.
428 		 */
429 		ds->ds_mbuf = m0;
430 
431 		/*
432 		 * Fill in the transmit descriptor.  The EPIC doesn't
433 		 * auto-pad, so we have to do this ourselves.
434 		 */
435 		txd->et_control = ET_TXCTL_LASTDESC | ET_TXCTL_FRAGLIST;
436 		txd->et_txlength = max(m0->m_pkthdr.len,
437 		    ETHER_MIN_LEN - ETHER_CRC_LEN);
438 
439 		/*
440 		 * If this is the first descriptor we're enqueueing,
441 		 * don't give it to the EPIC yet.  That could cause
442 		 * a race condition.  We'll do it below.
443 		 */
444 		if (nexttx == firsttx)
445 			txd->et_txstatus = 0;
446 		else
447 			txd->et_txstatus = ET_TXSTAT_OWNER;
448 
449 		EPIC_CDTXSYNC(sc, nexttx,
450 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
451 
452 		/* Advance the tx pointer. */
453 		sc->sc_txpending++;
454 		sc->sc_txlast = nexttx;
455 
456 #if NBPFILTER > 0
457 		/*
458 		 * Pass the packet to any BPF listeners.
459 		 */
460 		if (ifp->if_bpf)
461 			bpf_mtap(ifp->if_bpf, m0);
462 #endif
463 	}
464 
465 	if (sc->sc_txpending == EPIC_NTXDESC) {
466 		/* No more slots left; notify upper layer. */
467 		ifp->if_flags |= IFF_OACTIVE;
468 	}
469 
470 	if (sc->sc_txpending != opending) {
471 		/*
472 		 * We enqueued packets.  If the transmitter was idle,
473 		 * reset the txdirty pointer.
474 		 */
475 		if (opending == 0)
476 			sc->sc_txdirty = firsttx;
477 
478 		/*
479 		 * Cause a transmit interrupt to happen on the
480 		 * last packet we enqueued.
481 		 */
482 		EPIC_CDTX(sc, sc->sc_txlast)->et_control |= ET_TXCTL_IAF;
483 		EPIC_CDTXSYNC(sc, sc->sc_txlast,
484 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
485 
486 		/*
487 		 * The entire packet chain is set up.  Give the
488 		 * first descriptor to the EPIC now.
489 		 */
490 		EPIC_CDTX(sc, firsttx)->et_txstatus = ET_TXSTAT_OWNER;
491 		EPIC_CDTXSYNC(sc, firsttx,
492 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
493 
494 		/* Start the transmitter. */
495 		bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_COMMAND,
496 		    COMMAND_TXQUEUED);
497 
498 		/* Set a watchdog timer in case the chip flakes out. */
499 		ifp->if_timer = 5;
500 	}
501 }
502 
503 /*
504  * Watchdog timer handler.
505  * [ifnet interface function]
506  */
507 void
508 epic_watchdog(ifp)
509 	struct ifnet *ifp;
510 {
511 	struct epic_softc *sc = ifp->if_softc;
512 
513 	printf("%s: device timeout\n", sc->sc_dev.dv_xname);
514 	ifp->if_oerrors++;
515 
516 	(void) epic_init(ifp);
517 }
518 
519 /*
520  * Handle control requests from the operator.
521  * [ifnet interface function]
522  */
523 int
524 epic_ioctl(ifp, cmd, data)
525 	struct ifnet *ifp;
526 	u_long cmd;
527 	caddr_t data;
528 {
529 	struct epic_softc *sc = ifp->if_softc;
530 	struct ifreq *ifr = (struct ifreq *)data;
531 	int s, error;
532 
533 	s = splnet();
534 
535 	switch (cmd) {
536 	case SIOCSIFMEDIA:
537 	case SIOCGIFMEDIA:
538 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
539 		break;
540 
541 	default:
542 		error = ether_ioctl(ifp, cmd, data);
543 		if (error == ENETRESET) {
544 			/*
545 			 * Multicast list has changed; set the hardware filter
546 			 * accordingly.  Update our idea of the current media;
547 			 * epic_set_mchash() needs to know what it is.
548 			 */
549 			mii_pollstat(&sc->sc_mii);
550 			epic_set_mchash(sc);
551 			error = 0;
552 		}
553 		break;
554 	}
555 
556 	splx(s);
557 	return (error);
558 }
559 
560 /*
561  * Interrupt handler.
562  */
563 int
564 epic_intr(arg)
565 	void *arg;
566 {
567 	struct epic_softc *sc = arg;
568 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
569 	struct epic_rxdesc *rxd;
570 	struct epic_txdesc *txd;
571 	struct epic_descsoft *ds;
572 	struct mbuf *m;
573 	u_int32_t intstat;
574 	int i, len, claimed = 0;
575 
576  top:
577 	/*
578 	 * Get the interrupt status from the EPIC.
579 	 */
580 	intstat = bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_INTSTAT);
581 	if ((intstat & INTSTAT_INT_ACTV) == 0)
582 		return (claimed);
583 
584 	claimed = 1;
585 
586 	/*
587 	 * Acknowledge the interrupt.
588 	 */
589 	bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_INTSTAT,
590 	    intstat & INTMASK);
591 
592 	/*
593 	 * Check for receive interrupts.
594 	 */
595 	if (intstat & (INTSTAT_RCC | INTSTAT_RXE | INTSTAT_RQE)) {
596 		for (i = sc->sc_rxptr;; i = EPIC_NEXTRX(i)) {
597 			rxd = EPIC_CDRX(sc, i);
598 			ds = EPIC_DSRX(sc, i);
599 
600 			EPIC_CDRXSYNC(sc, i,
601 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
602 
603 			if (rxd->er_rxstatus & ER_RXSTAT_OWNER) {
604 				/*
605 				 * We have processed all of the
606 				 * receive buffers.
607 				 */
608 				break;
609 			}
610 
611 			/*
612 			 * Make sure the packet arrived intact.  If an error
613 			 * occurred, update stats and reset the descriptor.
614 			 * The buffer will be reused the next time the
615 			 * descriptor comes up in the ring.
616 			 */
617 			if ((rxd->er_rxstatus & ER_RXSTAT_PKTINTACT) == 0) {
618 				if (rxd->er_rxstatus & ER_RXSTAT_CRCERROR)
619 					printf("%s: CRC error\n",
620 					    sc->sc_dev.dv_xname);
621 				if (rxd->er_rxstatus & ER_RXSTAT_ALIGNERROR)
622 					printf("%s: alignment error\n",
623 					    sc->sc_dev.dv_xname);
624 				ifp->if_ierrors++;
625 				EPIC_INIT_RXDESC(sc, i);
626 				continue;
627 			}
628 
629 			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
630 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
631 
632 			/*
633 			 * The EPIC includes the CRC with every packet.
634 			 */
635 			len = rxd->er_rxlength;
636 
637 			if (len < sizeof(struct ether_header)) {
638 				/*
639 				 * Runt packet; drop it now.
640 				 */
641 				ifp->if_ierrors++;
642 				EPIC_INIT_RXDESC(sc, i);
643 				bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
644 				    ds->ds_dmamap->dm_mapsize,
645 				    BUS_DMASYNC_PREREAD);
646 				continue;
647 			}
648 
649 			/*
650 			 * If the packet is small enough to fit in a
651 			 * single header mbuf, allocate one and copy
652 			 * the data into it.  This greatly reduces
653 			 * memory consumption when we receive lots
654 			 * of small packets.
655 			 *
656 			 * Otherwise, we add a new buffer to the receive
657 			 * chain.  If this fails, we drop the packet and
658 			 * recycle the old buffer.
659 			 */
660 			if (epic_copy_small != 0 && len <= MHLEN) {
661 				MGETHDR(m, M_DONTWAIT, MT_DATA);
662 				if (m == NULL)
663 					goto dropit;
664 				memcpy(mtod(m, caddr_t),
665 				    mtod(ds->ds_mbuf, caddr_t), len);
666 				EPIC_INIT_RXDESC(sc, i);
667 				bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
668 				    ds->ds_dmamap->dm_mapsize,
669 				    BUS_DMASYNC_PREREAD);
670 			} else {
671 				m = ds->ds_mbuf;
672 				if (epic_add_rxbuf(sc, i) != 0) {
673  dropit:
674 					ifp->if_ierrors++;
675 					EPIC_INIT_RXDESC(sc, i);
676 					bus_dmamap_sync(sc->sc_dmat,
677 					    ds->ds_dmamap, 0,
678 					    ds->ds_dmamap->dm_mapsize,
679 					    BUS_DMASYNC_PREREAD);
680 					continue;
681 				}
682 			}
683 
684 			m->m_flags |= M_HASFCS;
685 			m->m_pkthdr.rcvif = ifp;
686 			m->m_pkthdr.len = m->m_len = len;
687 
688 #if NBPFILTER > 0
689 			/*
690 			 * Pass this up to any BPF listeners, but only
691 			 * pass it up the stack if its for us.
692 			 */
693 			if (ifp->if_bpf)
694 				bpf_mtap(ifp->if_bpf, m);
695 #endif
696 
697 			/* Pass it on. */
698 			(*ifp->if_input)(ifp, m);
699 			ifp->if_ipackets++;
700 		}
701 
702 		/* Update the receive pointer. */
703 		sc->sc_rxptr = i;
704 
705 		/*
706 		 * Check for receive queue underflow.
707 		 */
708 		if (intstat & INTSTAT_RQE) {
709 			printf("%s: receiver queue empty\n",
710 			    sc->sc_dev.dv_xname);
711 			/*
712 			 * Ring is already built; just restart the
713 			 * receiver.
714 			 */
715 			bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_PRCDAR,
716 			    EPIC_CDRXADDR(sc, sc->sc_rxptr));
717 			bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_COMMAND,
718 			    COMMAND_RXQUEUED | COMMAND_START_RX);
719 		}
720 	}
721 
722 	/*
723 	 * Check for transmission complete interrupts.
724 	 */
725 	if (intstat & (INTSTAT_TXC | INTSTAT_TXU)) {
726 		ifp->if_flags &= ~IFF_OACTIVE;
727 		for (i = sc->sc_txdirty; sc->sc_txpending != 0;
728 		     i = EPIC_NEXTTX(i), sc->sc_txpending--) {
729 			txd = EPIC_CDTX(sc, i);
730 			ds = EPIC_DSTX(sc, i);
731 
732 			EPIC_CDTXSYNC(sc, i,
733 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
734 
735 			if (txd->et_txstatus & ET_TXSTAT_OWNER)
736 				break;
737 
738 			EPIC_CDFLSYNC(sc, i, BUS_DMASYNC_POSTWRITE);
739 
740 			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
741 			    0, ds->ds_dmamap->dm_mapsize,
742 			    BUS_DMASYNC_POSTWRITE);
743 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
744 			m_freem(ds->ds_mbuf);
745 			ds->ds_mbuf = NULL;
746 
747 			/*
748 			 * Check for errors and collisions.
749 			 */
750 			if ((txd->et_txstatus & ET_TXSTAT_PACKETTX) == 0)
751 				ifp->if_oerrors++;
752 			else
753 				ifp->if_opackets++;
754 			ifp->if_collisions +=
755 			    TXSTAT_COLLISIONS(txd->et_txstatus);
756 			if (txd->et_txstatus & ET_TXSTAT_CARSENSELOST)
757 				printf("%s: lost carrier\n",
758 				    sc->sc_dev.dv_xname);
759 		}
760 
761 		/* Update the dirty transmit buffer pointer. */
762 		sc->sc_txdirty = i;
763 
764 		/*
765 		 * Cancel the watchdog timer if there are no pending
766 		 * transmissions.
767 		 */
768 		if (sc->sc_txpending == 0)
769 			ifp->if_timer = 0;
770 
771 		/*
772 		 * Kick the transmitter after a DMA underrun.
773 		 */
774 		if (intstat & INTSTAT_TXU) {
775 			printf("%s: transmit underrun\n", sc->sc_dev.dv_xname);
776 			bus_space_write_4(sc->sc_st, sc->sc_sh,
777 			    EPIC_COMMAND, COMMAND_TXUGO);
778 			if (sc->sc_txpending)
779 				bus_space_write_4(sc->sc_st, sc->sc_sh,
780 				    EPIC_COMMAND, COMMAND_TXQUEUED);
781 		}
782 
783 		/*
784 		 * Try to get more packets going.
785 		 */
786 		epic_start(ifp);
787 	}
788 
789 	/*
790 	 * Check for fatal interrupts.
791 	 */
792 	if (intstat & INTSTAT_FATAL_INT) {
793 		if (intstat & INTSTAT_PTA)
794 			printf("%s: PCI target abort error\n",
795 			    sc->sc_dev.dv_xname);
796 		else if (intstat & INTSTAT_PMA)
797 			printf("%s: PCI master abort error\n",
798 			    sc->sc_dev.dv_xname);
799 		else if (intstat & INTSTAT_APE)
800 			printf("%s: PCI address parity error\n",
801 			    sc->sc_dev.dv_xname);
802 		else if (intstat & INTSTAT_DPE)
803 			printf("%s: PCI data parity error\n",
804 			    sc->sc_dev.dv_xname);
805 		else
806 			printf("%s: unknown fatal error\n",
807 			    sc->sc_dev.dv_xname);
808 		(void) epic_init(ifp);
809 	}
810 
811 	/*
812 	 * Check for more interrupts.
813 	 */
814 	goto top;
815 }
816 
817 /*
818  * One second timer, used to tick the MII.
819  */
820 void
821 epic_tick(arg)
822 	void *arg;
823 {
824 	struct epic_softc *sc = arg;
825 	int s;
826 
827 	s = splnet();
828 	mii_tick(&sc->sc_mii);
829 	splx(s);
830 
831 	callout_reset(&sc->sc_mii_callout, hz, epic_tick, sc);
832 }
833 
834 /*
835  * Fixup the clock source on the EPIC.
836  */
837 void
838 epic_fixup_clock_source(sc)
839 	struct epic_softc *sc;
840 {
841 	int i;
842 
843 	/*
844 	 * According to SMC Application Note 7-15, the EPIC's clock
845 	 * source is incorrect following a reset.  This manifests itself
846 	 * as failure to recognize when host software has written to
847 	 * a register on the EPIC.  The appnote recommends issuing at
848 	 * least 16 consecutive writes to the CLOCK TEST bit to correctly
849 	 * configure the clock source.
850 	 */
851 	for (i = 0; i < 16; i++)
852 		bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_TEST,
853 		    TEST_CLOCKTEST);
854 }
855 
856 /*
857  * Perform a soft reset on the EPIC.
858  */
859 void
860 epic_reset(sc)
861 	struct epic_softc *sc;
862 {
863 
864 	epic_fixup_clock_source(sc);
865 
866 	bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_GENCTL, 0);
867 	delay(100);
868 	bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_GENCTL, GENCTL_SOFTRESET);
869 	delay(100);
870 
871 	epic_fixup_clock_source(sc);
872 }
873 
874 /*
875  * Initialize the interface.  Must be called at splnet().
876  */
877 int
878 epic_init(ifp)
879 	struct ifnet *ifp;
880 {
881 	struct epic_softc *sc = ifp->if_softc;
882 	bus_space_tag_t st = sc->sc_st;
883 	bus_space_handle_t sh = sc->sc_sh;
884 	u_int8_t *enaddr = LLADDR(ifp->if_sadl);
885 	struct epic_txdesc *txd;
886 	struct epic_descsoft *ds;
887 	u_int32_t genctl, reg0;
888 	int i, error = 0;
889 
890 	/*
891 	 * Cancel any pending I/O.
892 	 */
893 	epic_stop(ifp, 0);
894 
895 	/*
896 	 * Reset the EPIC to a known state.
897 	 */
898 	epic_reset(sc);
899 
900 	/*
901 	 * Magical mystery initialization.
902 	 */
903 	bus_space_write_4(st, sh, EPIC_TXTEST, 0);
904 
905 	/*
906 	 * Initialize the EPIC genctl register:
907 	 *
908 	 *	- 64 byte receive FIFO threshold
909 	 *	- automatic advance to next receive frame
910 	 */
911 	genctl = GENCTL_RX_FIFO_THRESH0 | GENCTL_ONECOPY;
912 #if BYTE_ORDER == BIG_ENDIAN
913 	genctl |= GENCTL_BIG_ENDIAN;
914 #endif
915 	bus_space_write_4(st, sh, EPIC_GENCTL, genctl);
916 
917 	/*
918 	 * Reset the MII bus and PHY.
919 	 */
920 	reg0 = bus_space_read_4(st, sh, EPIC_NVCTL);
921 	bus_space_write_4(st, sh, EPIC_NVCTL, reg0 | NVCTL_GPIO1 | NVCTL_GPOE1);
922 	bus_space_write_4(st, sh, EPIC_MIICFG, MIICFG_ENASER);
923 	bus_space_write_4(st, sh, EPIC_GENCTL, genctl | GENCTL_RESET_PHY);
924 	delay(100);
925 	bus_space_write_4(st, sh, EPIC_GENCTL, genctl);
926 	delay(1000);
927 	bus_space_write_4(st, sh, EPIC_NVCTL, reg0);
928 
929 	/*
930 	 * Initialize Ethernet address.
931 	 */
932 	reg0 = enaddr[1] << 8 | enaddr[0];
933 	bus_space_write_4(st, sh, EPIC_LAN0, reg0);
934 	reg0 = enaddr[3] << 8 | enaddr[2];
935 	bus_space_write_4(st, sh, EPIC_LAN1, reg0);
936 	reg0 = enaddr[5] << 8 | enaddr[4];
937 	bus_space_write_4(st, sh, EPIC_LAN2, reg0);
938 
939 	/*
940 	 * Initialize receive control.  Remember the external buffer
941 	 * size setting.
942 	 */
943 	reg0 = bus_space_read_4(st, sh, EPIC_RXCON) &
944 	    (RXCON_EXTBUFSIZESEL1 | RXCON_EXTBUFSIZESEL0);
945 	reg0 |= (RXCON_RXMULTICAST | RXCON_RXBROADCAST);
946 	if (ifp->if_flags & IFF_PROMISC)
947 		reg0 |= RXCON_PROMISCMODE;
948 	bus_space_write_4(st, sh, EPIC_RXCON, reg0);
949 
950 	/* Set the current media. */
951 	epic_mediachange(ifp);
952 
953 	/* Set up the multicast hash table. */
954 	epic_set_mchash(sc);
955 
956 	/*
957 	 * Initialize the transmit descriptor ring.  txlast is initialized
958 	 * to the end of the list so that it will wrap around to the first
959 	 * descriptor when the first packet is transmitted.
960 	 */
961 	for (i = 0; i < EPIC_NTXDESC; i++) {
962 		txd = EPIC_CDTX(sc, i);
963 		memset(txd, 0, sizeof(struct epic_txdesc));
964 		txd->et_bufaddr = EPIC_CDFLADDR(sc, i);
965 		txd->et_nextdesc = EPIC_CDTXADDR(sc, EPIC_NEXTTX(i));
966 		EPIC_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
967 	}
968 	sc->sc_txpending = 0;
969 	sc->sc_txdirty = 0;
970 	sc->sc_txlast = EPIC_NTXDESC - 1;
971 
972 	/*
973 	 * Initialize the receive descriptor ring.
974 	 */
975 	for (i = 0; i < EPIC_NRXDESC; i++) {
976 		ds = EPIC_DSRX(sc, i);
977 		if (ds->ds_mbuf == NULL) {
978 			if ((error = epic_add_rxbuf(sc, i)) != 0) {
979 				printf("%s: unable to allocate or map rx "
980 				    "buffer %d error = %d\n",
981 				    sc->sc_dev.dv_xname, i, error);
982 				/*
983 				 * XXX Should attempt to run with fewer receive
984 				 * XXX buffers instead of just failing.
985 				 */
986 				epic_rxdrain(sc);
987 				goto out;
988 			}
989 		} else
990 			EPIC_INIT_RXDESC(sc, i);
991 	}
992 	sc->sc_rxptr = 0;
993 
994 	/*
995 	 * Initialize the interrupt mask and enable interrupts.
996 	 */
997 	bus_space_write_4(st, sh, EPIC_INTMASK, INTMASK);
998 	bus_space_write_4(st, sh, EPIC_GENCTL, genctl | GENCTL_INTENA);
999 
1000 	/*
1001 	 * Give the transmit and receive rings to the EPIC.
1002 	 */
1003 	bus_space_write_4(st, sh, EPIC_PTCDAR,
1004 	    EPIC_CDTXADDR(sc, EPIC_NEXTTX(sc->sc_txlast)));
1005 	bus_space_write_4(st, sh, EPIC_PRCDAR,
1006 	    EPIC_CDRXADDR(sc, sc->sc_rxptr));
1007 
1008 	/*
1009 	 * Set the EPIC in motion.
1010 	 */
1011 	bus_space_write_4(st, sh, EPIC_COMMAND,
1012 	    COMMAND_RXQUEUED | COMMAND_START_RX);
1013 
1014 	/*
1015 	 * ...all done!
1016 	 */
1017 	ifp->if_flags |= IFF_RUNNING;
1018 	ifp->if_flags &= ~IFF_OACTIVE;
1019 
1020 	/*
1021 	 * Start the one second clock.
1022 	 */
1023 	callout_reset(&sc->sc_mii_callout, hz, epic_tick, sc);
1024 
1025 	/*
1026 	 * Attempt to start output on the interface.
1027 	 */
1028 	epic_start(ifp);
1029 
1030  out:
1031 	if (error)
1032 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1033 	return (error);
1034 }
1035 
1036 /*
1037  * Drain the receive queue.
1038  */
1039 void
1040 epic_rxdrain(sc)
1041 	struct epic_softc *sc;
1042 {
1043 	struct epic_descsoft *ds;
1044 	int i;
1045 
1046 	for (i = 0; i < EPIC_NRXDESC; i++) {
1047 		ds = EPIC_DSRX(sc, i);
1048 		if (ds->ds_mbuf != NULL) {
1049 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1050 			m_freem(ds->ds_mbuf);
1051 			ds->ds_mbuf = NULL;
1052 		}
1053 	}
1054 }
1055 
1056 /*
1057  * Stop transmission on the interface.
1058  */
1059 void
1060 epic_stop(ifp, disable)
1061 	struct ifnet *ifp;
1062 	int disable;
1063 {
1064 	struct epic_softc *sc = ifp->if_softc;
1065 	bus_space_tag_t st = sc->sc_st;
1066 	bus_space_handle_t sh = sc->sc_sh;
1067 	struct epic_descsoft *ds;
1068 	u_int32_t reg;
1069 	int i;
1070 
1071 	/*
1072 	 * Stop the one second clock.
1073 	 */
1074 	callout_stop(&sc->sc_mii_callout);
1075 
1076 	/* Down the MII. */
1077 	mii_down(&sc->sc_mii);
1078 
1079 	/* Paranoia... */
1080 	epic_fixup_clock_source(sc);
1081 
1082 	/*
1083 	 * Disable interrupts.
1084 	 */
1085 	reg = bus_space_read_4(st, sh, EPIC_GENCTL);
1086 	bus_space_write_4(st, sh, EPIC_GENCTL, reg & ~GENCTL_INTENA);
1087 	bus_space_write_4(st, sh, EPIC_INTMASK, 0);
1088 
1089 	/*
1090 	 * Stop the DMA engine and take the receiver off-line.
1091 	 */
1092 	bus_space_write_4(st, sh, EPIC_COMMAND, COMMAND_STOP_RDMA |
1093 	    COMMAND_STOP_TDMA | COMMAND_STOP_RX);
1094 
1095 	/*
1096 	 * Release any queued transmit buffers.
1097 	 */
1098 	for (i = 0; i < EPIC_NTXDESC; i++) {
1099 		ds = EPIC_DSTX(sc, i);
1100 		if (ds->ds_mbuf != NULL) {
1101 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1102 			m_freem(ds->ds_mbuf);
1103 			ds->ds_mbuf = NULL;
1104 		}
1105 	}
1106 
1107 	if (disable)
1108 		epic_rxdrain(sc);
1109 
1110 	/*
1111 	 * Mark the interface down and cancel the watchdog timer.
1112 	 */
1113 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1114 	ifp->if_timer = 0;
1115 }
1116 
1117 /*
1118  * Read the EPIC Serial EEPROM.
1119  */
1120 void
1121 epic_read_eeprom(sc, word, wordcnt, data)
1122 	struct epic_softc *sc;
1123 	int word, wordcnt;
1124 	u_int16_t *data;
1125 {
1126 	bus_space_tag_t st = sc->sc_st;
1127 	bus_space_handle_t sh = sc->sc_sh;
1128 	u_int16_t reg;
1129 	int i, x;
1130 
1131 #define	EEPROM_WAIT_READY(st, sh) \
1132 	while ((bus_space_read_4((st), (sh), EPIC_EECTL) & EECTL_EERDY) == 0) \
1133 		/* nothing */
1134 
1135 	/*
1136 	 * Enable the EEPROM.
1137 	 */
1138 	bus_space_write_4(st, sh, EPIC_EECTL, EECTL_ENABLE);
1139 	EEPROM_WAIT_READY(st, sh);
1140 
1141 	for (i = 0; i < wordcnt; i++) {
1142 		/* Send CHIP SELECT for one clock tick. */
1143 		bus_space_write_4(st, sh, EPIC_EECTL, EECTL_ENABLE|EECTL_EECS);
1144 		EEPROM_WAIT_READY(st, sh);
1145 
1146 		/* Shift in the READ opcode. */
1147 		for (x = 3; x > 0; x--) {
1148 			reg = EECTL_ENABLE|EECTL_EECS;
1149 			if (EPIC_EEPROM_OPC_READ & (1 << (x - 1)))
1150 				reg |= EECTL_EEDI;
1151 			bus_space_write_4(st, sh, EPIC_EECTL, reg);
1152 			EEPROM_WAIT_READY(st, sh);
1153 			bus_space_write_4(st, sh, EPIC_EECTL, reg|EECTL_EESK);
1154 			EEPROM_WAIT_READY(st, sh);
1155 			bus_space_write_4(st, sh, EPIC_EECTL, reg);
1156 			EEPROM_WAIT_READY(st, sh);
1157 		}
1158 
1159 		/* Shift in address. */
1160 		for (x = 6; x > 0; x--) {
1161 			reg = EECTL_ENABLE|EECTL_EECS;
1162 			if ((word + i) & (1 << (x - 1)))
1163 				reg |= EECTL_EEDI;
1164 			bus_space_write_4(st, sh, EPIC_EECTL, reg);
1165 			EEPROM_WAIT_READY(st, sh);
1166 			bus_space_write_4(st, sh, EPIC_EECTL, reg|EECTL_EESK);
1167 			EEPROM_WAIT_READY(st, sh);
1168 			bus_space_write_4(st, sh, EPIC_EECTL, reg);
1169 			EEPROM_WAIT_READY(st, sh);
1170 		}
1171 
1172 		/* Shift out data. */
1173 		reg = EECTL_ENABLE|EECTL_EECS;
1174 		data[i] = 0;
1175 		for (x = 16; x > 0; x--) {
1176 			bus_space_write_4(st, sh, EPIC_EECTL, reg|EECTL_EESK);
1177 			EEPROM_WAIT_READY(st, sh);
1178 			if (bus_space_read_4(st, sh, EPIC_EECTL) & EECTL_EEDO)
1179 				data[i] |= (1 << (x - 1));
1180 			bus_space_write_4(st, sh, EPIC_EECTL, reg);
1181 			EEPROM_WAIT_READY(st, sh);
1182 		}
1183 
1184 		/* Clear CHIP SELECT. */
1185 		bus_space_write_4(st, sh, EPIC_EECTL, EECTL_ENABLE);
1186 		EEPROM_WAIT_READY(st, sh);
1187 	}
1188 
1189 	/*
1190 	 * Disable the EEPROM.
1191 	 */
1192 	bus_space_write_4(st, sh, EPIC_EECTL, 0);
1193 
1194 #undef EEPROM_WAIT_READY
1195 }
1196 
1197 /*
1198  * Add a receive buffer to the indicated descriptor.
1199  */
1200 int
1201 epic_add_rxbuf(sc, idx)
1202 	struct epic_softc *sc;
1203 	int idx;
1204 {
1205 	struct epic_descsoft *ds = EPIC_DSRX(sc, idx);
1206 	struct mbuf *m;
1207 	int error;
1208 
1209 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1210 	if (m == NULL)
1211 		return (ENOBUFS);
1212 
1213 	MCLGET(m, M_DONTWAIT);
1214 	if ((m->m_flags & M_EXT) == 0) {
1215 		m_freem(m);
1216 		return (ENOBUFS);
1217 	}
1218 
1219 	if (ds->ds_mbuf != NULL)
1220 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1221 
1222 	ds->ds_mbuf = m;
1223 
1224 	error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1225 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1226 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
1227 	if (error) {
1228 		printf("%s: can't load rx DMA map %d, error = %d\n",
1229 		    sc->sc_dev.dv_xname, idx, error);
1230 		panic("epic_add_rxbuf");	/* XXX */
1231 	}
1232 
1233 	bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1234 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1235 
1236 	EPIC_INIT_RXDESC(sc, idx);
1237 
1238 	return (0);
1239 }
1240 
1241 /*
1242  * Set the EPIC multicast hash table.
1243  *
1244  * NOTE: We rely on a recently-updated mii_media_active here!
1245  */
1246 void
1247 epic_set_mchash(sc)
1248 	struct epic_softc *sc;
1249 {
1250 	struct ethercom *ec = &sc->sc_ethercom;
1251 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1252 	struct ether_multi *enm;
1253 	struct ether_multistep step;
1254 	u_int32_t hash, mchash[4];
1255 
1256 	/*
1257 	 * Set up the multicast address filter by passing all multicast
1258 	 * addresses through a CRC generator, and then using the low-order
1259 	 * 6 bits as an index into the 64 bit multicast hash table (only
1260 	 * the lower 16 bits of each 32 bit multicast hash register are
1261 	 * valid).  The high order bits select the register, while the
1262 	 * rest of the bits select the bit within the register.
1263 	 */
1264 
1265 	if (ifp->if_flags & IFF_PROMISC)
1266 		goto allmulti;
1267 
1268 	if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_10_T) {
1269 		/* XXX hardware bug in 10Mbps mode. */
1270 		goto allmulti;
1271 	}
1272 
1273 	mchash[0] = mchash[1] = mchash[2] = mchash[3] = 0;
1274 
1275 	ETHER_FIRST_MULTI(step, ec, enm);
1276 	while (enm != NULL) {
1277 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1278 			/*
1279 			 * We must listen to a range of multicast addresses.
1280 			 * For now, just accept all multicasts, rather than
1281 			 * trying to set only those filter bits needed to match
1282 			 * the range.  (At this time, the only use of address
1283 			 * ranges is for IP multicast routing, for which the
1284 			 * range is big enough to require all bits set.)
1285 			 */
1286 			goto allmulti;
1287 		}
1288 
1289 		hash = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1290 		hash >>= 26;
1291 
1292 		/* Set the corresponding bit in the hash table. */
1293 		mchash[hash >> 4] |= 1 << (hash & 0xf);
1294 
1295 		ETHER_NEXT_MULTI(step, enm);
1296 	}
1297 
1298 	ifp->if_flags &= ~IFF_ALLMULTI;
1299 	goto sethash;
1300 
1301  allmulti:
1302 	ifp->if_flags |= IFF_ALLMULTI;
1303 	mchash[0] = mchash[1] = mchash[2] = mchash[3] = 0xffff;
1304 
1305  sethash:
1306 	bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MC0, mchash[0]);
1307 	bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MC1, mchash[1]);
1308 	bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MC2, mchash[2]);
1309 	bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MC3, mchash[3]);
1310 }
1311 
1312 /*
1313  * Wait for the MII to become ready.
1314  */
1315 int
1316 epic_mii_wait(sc, rw)
1317 	struct epic_softc *sc;
1318 	u_int32_t rw;
1319 {
1320 	int i;
1321 
1322 	for (i = 0; i < 50; i++) {
1323 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_MMCTL) & rw)
1324 		    == 0)
1325 			break;
1326 		delay(2);
1327 	}
1328 	if (i == 50) {
1329 		printf("%s: MII timed out\n", sc->sc_dev.dv_xname);
1330 		return (1);
1331 	}
1332 
1333 	return (0);
1334 }
1335 
1336 /*
1337  * Read from the MII.
1338  */
1339 int
1340 epic_mii_read(self, phy, reg)
1341 	struct device *self;
1342 	int phy, reg;
1343 {
1344 	struct epic_softc *sc = (struct epic_softc *)self;
1345 
1346 	if (epic_mii_wait(sc, MMCTL_WRITE))
1347 		return (0);
1348 
1349 	bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MMCTL,
1350 	    MMCTL_ARG(phy, reg, MMCTL_READ));
1351 
1352 	if (epic_mii_wait(sc, MMCTL_READ))
1353 		return (0);
1354 
1355 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_MMDATA) &
1356 	    MMDATA_MASK);
1357 }
1358 
1359 /*
1360  * Write to the MII.
1361  */
1362 void
1363 epic_mii_write(self, phy, reg, val)
1364 	struct device *self;
1365 	int phy, reg, val;
1366 {
1367 	struct epic_softc *sc = (struct epic_softc *)self;
1368 
1369 	if (epic_mii_wait(sc, MMCTL_WRITE))
1370 		return;
1371 
1372 	bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MMDATA, val);
1373 	bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MMCTL,
1374 	    MMCTL_ARG(phy, reg, MMCTL_WRITE));
1375 }
1376 
1377 /*
1378  * Callback from PHY when media changes.
1379  */
1380 void
1381 epic_statchg(self)
1382 	struct device *self;
1383 {
1384 	struct epic_softc *sc = (struct epic_softc *)self;
1385 	u_int32_t txcon, miicfg;
1386 
1387 	/*
1388 	 * Update loopback bits in TXCON to reflect duplex mode.
1389 	 */
1390 	txcon = bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_TXCON);
1391 	if (sc->sc_mii.mii_media_active & IFM_FDX)
1392 		txcon |= (TXCON_LOOPBACK_D1|TXCON_LOOPBACK_D2);
1393 	else
1394 		txcon &= ~(TXCON_LOOPBACK_D1|TXCON_LOOPBACK_D2);
1395 	bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_TXCON, txcon);
1396 
1397 	/* On some cards we need manualy set fullduplex led */
1398 	if (sc->sc_hwflags & EPIC_DUPLEXLED_ON_694) {
1399 		miicfg = bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_MIICFG);
1400 		if (IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX)
1401 			miicfg |= MIICFG_ENABLE;
1402 		else
1403 			miicfg &= ~MIICFG_ENABLE;
1404 		bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MIICFG, miicfg);
1405 	}
1406 
1407 	/*
1408 	 * There is a multicast filter bug in 10Mbps mode.  Kick the
1409 	 * multicast filter in case the speed changed.
1410 	 */
1411 	epic_set_mchash(sc);
1412 }
1413 
1414 /*
1415  * Callback from ifmedia to request current media status.
1416  */
1417 void
1418 epic_mediastatus(ifp, ifmr)
1419 	struct ifnet *ifp;
1420 	struct ifmediareq *ifmr;
1421 {
1422 	struct epic_softc *sc = ifp->if_softc;
1423 
1424 	mii_pollstat(&sc->sc_mii);
1425 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
1426 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
1427 }
1428 
1429 /*
1430  * Callback from ifmedia to request new media setting.
1431  */
1432 int
1433 epic_mediachange(ifp)
1434 	struct ifnet *ifp;
1435 {
1436 	struct epic_softc *sc = ifp->if_softc;
1437 	struct mii_data *mii = &sc->sc_mii;
1438 	struct ifmedia *ifm = &mii->mii_media;
1439 	int media = ifm->ifm_cur->ifm_media;
1440 	u_int32_t miicfg;
1441 	struct mii_softc *miisc;
1442 	int cfg;
1443 
1444 	if (!(ifp->if_flags & IFF_UP))
1445 		return (0);
1446 
1447 	if (IFM_INST(media) != sc->sc_serinst) {
1448 		/* If we're not selecting serial interface, select MII mode */
1449 #ifdef EPICMEDIADEBUG
1450 		printf("%s: parallel mode\n", ifp->if_xname);
1451 #endif
1452 		miicfg = bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_MIICFG);
1453 		miicfg &= ~MIICFG_SERMODEENA;
1454 		bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MIICFG, miicfg);
1455 	}
1456 
1457 	mii_mediachg(mii);
1458 
1459 	if (IFM_INST(media) == sc->sc_serinst) {
1460 		/* select serial interface */
1461 #ifdef EPICMEDIADEBUG
1462 		printf("%s: serial mode\n", ifp->if_xname);
1463 #endif
1464 		miicfg = bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_MIICFG);
1465 		miicfg |= (MIICFG_SERMODEENA | MIICFG_ENABLE);
1466 		bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MIICFG, miicfg);
1467 
1468 		/* There is no driver to fill this */
1469 		mii->mii_media_active = media;
1470 		mii->mii_media_status = 0;
1471 
1472 		epic_statchg(&sc->sc_dev);
1473 		return (0);
1474 	}
1475 
1476 	/* Lookup selected PHY */
1477 	for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
1478 	     miisc = LIST_NEXT(miisc, mii_list)) {
1479 		if (IFM_INST(media) == miisc->mii_inst)
1480 			break;
1481 	}
1482 	if (!miisc) {
1483 		printf("epic_mediachange: can't happen\n"); /* ??? panic */
1484 		return (0);
1485 	}
1486 #ifdef EPICMEDIADEBUG
1487 	printf("%s: using phy %s\n", ifp->if_xname,
1488 	       miisc->mii_dev.dv_xname);
1489 #endif
1490 
1491 	if (miisc->mii_flags & MIIF_HAVEFIBER) {
1492 		/* XXX XXX assume it's a Level1 - should check */
1493 
1494 		/* We have to powerup fiber tranceivers */
1495 		cfg = PHY_READ(miisc, MII_LXTPHY_CONFIG);
1496 		if (IFM_SUBTYPE(media) == IFM_100_FX) {
1497 #ifdef EPICMEDIADEBUG
1498 			printf("%s: power up fiber\n", ifp->if_xname);
1499 #endif
1500 			cfg |= (CONFIG_LEDC1 | CONFIG_LEDC0);
1501 		} else {
1502 #ifdef EPICMEDIADEBUG
1503 			printf("%s: power down fiber\n", ifp->if_xname);
1504 #endif
1505 			cfg &= ~(CONFIG_LEDC1 | CONFIG_LEDC0);
1506 		}
1507 		PHY_WRITE(miisc, MII_LXTPHY_CONFIG, cfg);
1508 	}
1509 
1510 	return (0);
1511 }
1512