1 /* $NetBSD: smc83c170.c,v 1.77 2009/09/03 14:13:16 tsutsui Exp $ */ 2 3 /*- 4 * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, 9 * NASA Ames Research Center. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 30 * POSSIBILITY OF SUCH DAMAGE. 31 */ 32 33 /* 34 * Device driver for the Standard Microsystems Corp. 83C170 35 * Ethernet PCI Integrated Controller (EPIC/100). 36 */ 37 38 #include <sys/cdefs.h> 39 __KERNEL_RCSID(0, "$NetBSD: smc83c170.c,v 1.77 2009/09/03 14:13:16 tsutsui Exp $"); 40 41 #include "bpfilter.h" 42 43 #include <sys/param.h> 44 #include <sys/systm.h> 45 #include <sys/callout.h> 46 #include <sys/mbuf.h> 47 #include <sys/malloc.h> 48 #include <sys/kernel.h> 49 #include <sys/socket.h> 50 #include <sys/ioctl.h> 51 #include <sys/errno.h> 52 #include <sys/device.h> 53 54 #include <uvm/uvm_extern.h> 55 56 #include <net/if.h> 57 #include <net/if_dl.h> 58 #include <net/if_media.h> 59 #include <net/if_ether.h> 60 61 #if NBPFILTER > 0 62 #include <net/bpf.h> 63 #endif 64 65 #include <sys/bus.h> 66 #include <sys/intr.h> 67 68 #include <dev/mii/miivar.h> 69 #include <dev/mii/lxtphyreg.h> 70 71 #include <dev/ic/smc83c170reg.h> 72 #include <dev/ic/smc83c170var.h> 73 74 void epic_start(struct ifnet *); 75 void epic_watchdog(struct ifnet *); 76 int epic_ioctl(struct ifnet *, u_long, void *); 77 int epic_init(struct ifnet *); 78 void epic_stop(struct ifnet *, int); 79 80 bool epic_shutdown(device_t, int); 81 82 void epic_reset(struct epic_softc *); 83 void epic_rxdrain(struct epic_softc *); 84 int epic_add_rxbuf(struct epic_softc *, int); 85 void epic_read_eeprom(struct epic_softc *, int, int, uint16_t *); 86 void epic_set_mchash(struct epic_softc *); 87 void epic_fixup_clock_source(struct epic_softc *); 88 int epic_mii_read(device_t, int, int); 89 void epic_mii_write(device_t, int, int, int); 90 int epic_mii_wait(struct epic_softc *, uint32_t); 91 void epic_tick(void *); 92 93 void epic_statchg(device_t); 94 int epic_mediachange(struct ifnet *); 95 96 #define INTMASK (INTSTAT_FATAL_INT | INTSTAT_TXU | \ 97 INTSTAT_TXC | INTSTAT_RXE | INTSTAT_RQE | INTSTAT_RCC) 98 99 int epic_copy_small = 0; 100 101 #define ETHER_PAD_LEN (ETHER_MIN_LEN - ETHER_CRC_LEN) 102 103 /* 104 * Attach an EPIC interface to the system. 105 */ 106 void 107 epic_attach(struct epic_softc *sc) 108 { 109 bus_space_tag_t st = sc->sc_st; 110 bus_space_handle_t sh = sc->sc_sh; 111 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 112 int rseg, error, miiflags; 113 u_int i; 114 bus_dma_segment_t seg; 115 uint8_t enaddr[ETHER_ADDR_LEN], devname[12 + 1]; 116 uint16_t myea[ETHER_ADDR_LEN / 2], mydevname[6]; 117 char *nullbuf; 118 119 callout_init(&sc->sc_mii_callout, 0); 120 121 /* 122 * Allocate the control data structures, and create and load the 123 * DMA map for it. 124 */ 125 if ((error = bus_dmamem_alloc(sc->sc_dmat, 126 sizeof(struct epic_control_data) + ETHER_PAD_LEN, PAGE_SIZE, 0, 127 &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) { 128 aprint_error_dev(sc->sc_dev, 129 "unable to allocate control data, error = %d\n", error); 130 goto fail_0; 131 } 132 133 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg, 134 sizeof(struct epic_control_data) + ETHER_PAD_LEN, 135 (void **)&sc->sc_control_data, 136 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) { 137 aprint_error_dev(sc->sc_dev, 138 "unable to map control data, error = %d\n", error); 139 goto fail_1; 140 } 141 nullbuf = 142 (char *)sc->sc_control_data + sizeof(struct epic_control_data); 143 memset(nullbuf, 0, ETHER_PAD_LEN); 144 145 if ((error = bus_dmamap_create(sc->sc_dmat, 146 sizeof(struct epic_control_data), 1, 147 sizeof(struct epic_control_data), 0, BUS_DMA_NOWAIT, 148 &sc->sc_cddmamap)) != 0) { 149 aprint_error_dev(sc->sc_dev, 150 "unable to create control data DMA map, error = %d\n", 151 error); 152 goto fail_2; 153 } 154 155 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap, 156 sc->sc_control_data, sizeof(struct epic_control_data), NULL, 157 BUS_DMA_NOWAIT)) != 0) { 158 aprint_error_dev(sc->sc_dev, 159 "unable to load control data DMA map, error = %d\n", 160 error); 161 goto fail_3; 162 } 163 164 /* 165 * Create the transmit buffer DMA maps. 166 */ 167 for (i = 0; i < EPIC_NTXDESC; i++) { 168 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 169 EPIC_NFRAGS, MCLBYTES, 0, BUS_DMA_NOWAIT, 170 &EPIC_DSTX(sc, i)->ds_dmamap)) != 0) { 171 aprint_error_dev(sc->sc_dev, 172 "unable to create tx DMA map %d, error = %d\n", 173 i, error); 174 goto fail_4; 175 } 176 } 177 178 /* 179 * Create the receive buffer DMA maps. 180 */ 181 for (i = 0; i < EPIC_NRXDESC; i++) { 182 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, 183 MCLBYTES, 0, BUS_DMA_NOWAIT, 184 &EPIC_DSRX(sc, i)->ds_dmamap)) != 0) { 185 aprint_error_dev(sc->sc_dev, 186 "unable to create rx DMA map %d, error = %d\n", 187 i, error); 188 goto fail_5; 189 } 190 EPIC_DSRX(sc, i)->ds_mbuf = NULL; 191 } 192 193 /* 194 * create and map the pad buffer 195 */ 196 if ((error = bus_dmamap_create(sc->sc_dmat, ETHER_PAD_LEN, 1, 197 ETHER_PAD_LEN, 0, BUS_DMA_NOWAIT,&sc->sc_nulldmamap)) != 0) { 198 aprint_error_dev(sc->sc_dev, 199 "unable to create pad buffer DMA map, error = %d\n", error); 200 goto fail_5; 201 } 202 203 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_nulldmamap, 204 nullbuf, ETHER_PAD_LEN, NULL, BUS_DMA_NOWAIT)) != 0) { 205 aprint_error_dev(sc->sc_dev, 206 "unable to load pad buffer DMA map, error = %d\n", error); 207 goto fail_6; 208 } 209 bus_dmamap_sync(sc->sc_dmat, sc->sc_nulldmamap, 0, ETHER_PAD_LEN, 210 BUS_DMASYNC_PREWRITE); 211 212 /* 213 * Bring the chip out of low-power mode and reset it to a known state. 214 */ 215 bus_space_write_4(st, sh, EPIC_GENCTL, 0); 216 epic_reset(sc); 217 218 /* 219 * Read the Ethernet address from the EEPROM. 220 */ 221 epic_read_eeprom(sc, 0, __arraycount(myea), myea); 222 for (i = 0; i < __arraycount(myea); i++) { 223 enaddr[i * 2] = myea[i] & 0xff; 224 enaddr[i * 2 + 1] = myea[i] >> 8; 225 } 226 227 /* 228 * ...and the device name. 229 */ 230 epic_read_eeprom(sc, 0x2c, __arraycount(mydevname), mydevname); 231 for (i = 0; i < __arraycount(mydevname); i++) { 232 devname[i * 2] = mydevname[i] & 0xff; 233 devname[i * 2 + 1] = mydevname[i] >> 8; 234 } 235 236 devname[sizeof(mydevname)] = '\0'; 237 for (i = sizeof(mydevname) ; i > 0; i--) { 238 if (devname[i - 1] == ' ') 239 devname[i - 1] = '\0'; 240 else 241 break; 242 } 243 244 aprint_normal_dev(sc->sc_dev, "%s, Ethernet address %s\n", 245 devname, ether_sprintf(enaddr)); 246 247 miiflags = 0; 248 if (sc->sc_hwflags & EPIC_HAS_MII_FIBER) 249 miiflags |= MIIF_HAVEFIBER; 250 251 /* 252 * Initialize our media structures and probe the MII. 253 */ 254 sc->sc_mii.mii_ifp = ifp; 255 sc->sc_mii.mii_readreg = epic_mii_read; 256 sc->sc_mii.mii_writereg = epic_mii_write; 257 sc->sc_mii.mii_statchg = epic_statchg; 258 259 sc->sc_ethercom.ec_mii = &sc->sc_mii; 260 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, epic_mediachange, 261 ether_mediastatus); 262 mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY, 263 MII_OFFSET_ANY, miiflags); 264 if (LIST_EMPTY(&sc->sc_mii.mii_phys)) { 265 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL); 266 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE); 267 } else 268 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO); 269 270 if (sc->sc_hwflags & EPIC_HAS_BNC) { 271 /* use the next free media instance */ 272 sc->sc_serinst = sc->sc_mii.mii_instance++; 273 ifmedia_add(&sc->sc_mii.mii_media, 274 IFM_MAKEWORD(IFM_ETHER, IFM_10_2, 0, sc->sc_serinst), 275 0, NULL); 276 aprint_normal_dev(sc->sc_dev, "10base2/BNC\n"); 277 } else 278 sc->sc_serinst = -1; 279 280 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ); 281 ifp->if_softc = sc; 282 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 283 ifp->if_ioctl = epic_ioctl; 284 ifp->if_start = epic_start; 285 ifp->if_watchdog = epic_watchdog; 286 ifp->if_init = epic_init; 287 ifp->if_stop = epic_stop; 288 IFQ_SET_READY(&ifp->if_snd); 289 290 /* 291 * We can support 802.1Q VLAN-sized frames. 292 */ 293 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU; 294 295 /* 296 * Attach the interface. 297 */ 298 if_attach(ifp); 299 ether_ifattach(ifp, enaddr); 300 301 /* 302 * Make sure the interface is shutdown during reboot. 303 */ 304 if (pmf_device_register1(sc->sc_dev, NULL, NULL, epic_shutdown)) 305 pmf_class_network_register(sc->sc_dev, ifp); 306 else 307 aprint_error_dev(sc->sc_dev, 308 "couldn't establish power handler\n"); 309 310 return; 311 312 /* 313 * Free any resources we've allocated during the failed attach 314 * attempt. Do this in reverse order and fall through. 315 */ 316 fail_6: 317 bus_dmamap_destroy(sc->sc_dmat, sc->sc_nulldmamap); 318 fail_5: 319 for (i = 0; i < EPIC_NRXDESC; i++) { 320 if (EPIC_DSRX(sc, i)->ds_dmamap != NULL) 321 bus_dmamap_destroy(sc->sc_dmat, 322 EPIC_DSRX(sc, i)->ds_dmamap); 323 } 324 fail_4: 325 for (i = 0; i < EPIC_NTXDESC; i++) { 326 if (EPIC_DSTX(sc, i)->ds_dmamap != NULL) 327 bus_dmamap_destroy(sc->sc_dmat, 328 EPIC_DSTX(sc, i)->ds_dmamap); 329 } 330 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap); 331 fail_3: 332 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap); 333 fail_2: 334 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data, 335 sizeof(struct epic_control_data)); 336 fail_1: 337 bus_dmamem_free(sc->sc_dmat, &seg, rseg); 338 fail_0: 339 return; 340 } 341 342 /* 343 * Shutdown hook. Make sure the interface is stopped at reboot. 344 */ 345 bool 346 epic_shutdown(device_t self, int howto) 347 { 348 struct epic_softc *sc = device_private(self); 349 350 epic_stop(&sc->sc_ethercom.ec_if, 1); 351 352 return true; 353 } 354 355 /* 356 * Start packet transmission on the interface. 357 * [ifnet interface function] 358 */ 359 void 360 epic_start(struct ifnet *ifp) 361 { 362 struct epic_softc *sc = ifp->if_softc; 363 struct mbuf *m0, *m; 364 struct epic_txdesc *txd; 365 struct epic_descsoft *ds; 366 struct epic_fraglist *fr; 367 bus_dmamap_t dmamap; 368 int error, firsttx, nexttx, opending, seg; 369 u_int len; 370 371 /* 372 * Remember the previous txpending and the first transmit 373 * descriptor we use. 374 */ 375 opending = sc->sc_txpending; 376 firsttx = EPIC_NEXTTX(sc->sc_txlast); 377 378 /* 379 * Loop through the send queue, setting up transmit descriptors 380 * until we drain the queue, or use up all available transmit 381 * descriptors. 382 */ 383 while (sc->sc_txpending < EPIC_NTXDESC) { 384 /* 385 * Grab a packet off the queue. 386 */ 387 IFQ_POLL(&ifp->if_snd, m0); 388 if (m0 == NULL) 389 break; 390 m = NULL; 391 392 /* 393 * Get the last and next available transmit descriptor. 394 */ 395 nexttx = EPIC_NEXTTX(sc->sc_txlast); 396 txd = EPIC_CDTX(sc, nexttx); 397 fr = EPIC_CDFL(sc, nexttx); 398 ds = EPIC_DSTX(sc, nexttx); 399 dmamap = ds->ds_dmamap; 400 401 /* 402 * Load the DMA map. If this fails, the packet either 403 * didn't fit in the alloted number of frags, or we were 404 * short on resources. In this case, we'll copy and try 405 * again. 406 */ 407 if ((error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0, 408 BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 || 409 (m0->m_pkthdr.len < ETHER_PAD_LEN && 410 dmamap-> dm_nsegs == EPIC_NFRAGS)) { 411 if (error == 0) 412 bus_dmamap_unload(sc->sc_dmat, dmamap); 413 414 MGETHDR(m, M_DONTWAIT, MT_DATA); 415 if (m == NULL) { 416 printf("%s: unable to allocate Tx mbuf\n", 417 device_xname(sc->sc_dev)); 418 break; 419 } 420 if (m0->m_pkthdr.len > MHLEN) { 421 MCLGET(m, M_DONTWAIT); 422 if ((m->m_flags & M_EXT) == 0) { 423 printf("%s: unable to allocate Tx " 424 "cluster\n", 425 device_xname(sc->sc_dev)); 426 m_freem(m); 427 break; 428 } 429 } 430 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *)); 431 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len; 432 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, 433 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT); 434 if (error) { 435 printf("%s: unable to load Tx buffer, " 436 "error = %d\n", device_xname(sc->sc_dev), 437 error); 438 break; 439 } 440 } 441 IFQ_DEQUEUE(&ifp->if_snd, m0); 442 if (m != NULL) { 443 m_freem(m0); 444 m0 = m; 445 } 446 447 /* Initialize the fraglist. */ 448 for (seg = 0; seg < dmamap->dm_nsegs; seg++) { 449 fr->ef_frags[seg].ef_addr = 450 dmamap->dm_segs[seg].ds_addr; 451 fr->ef_frags[seg].ef_length = 452 dmamap->dm_segs[seg].ds_len; 453 } 454 len = m0->m_pkthdr.len; 455 if (len < ETHER_PAD_LEN) { 456 fr->ef_frags[seg].ef_addr = sc->sc_nulldma; 457 fr->ef_frags[seg].ef_length = ETHER_PAD_LEN - len; 458 len = ETHER_PAD_LEN; 459 seg++; 460 } 461 fr->ef_nfrags = seg; 462 463 EPIC_CDFLSYNC(sc, nexttx, BUS_DMASYNC_PREWRITE); 464 465 /* Sync the DMA map. */ 466 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize, 467 BUS_DMASYNC_PREWRITE); 468 469 /* 470 * Store a pointer to the packet so we can free it later. 471 */ 472 ds->ds_mbuf = m0; 473 474 /* 475 * Fill in the transmit descriptor. 476 */ 477 txd->et_control = ET_TXCTL_LASTDESC | ET_TXCTL_FRAGLIST; 478 479 /* 480 * If this is the first descriptor we're enqueueing, 481 * don't give it to the EPIC yet. That could cause 482 * a race condition. We'll do it below. 483 */ 484 if (nexttx == firsttx) 485 txd->et_txstatus = TXSTAT_TXLENGTH(len); 486 else 487 txd->et_txstatus = 488 TXSTAT_TXLENGTH(len) | ET_TXSTAT_OWNER; 489 490 EPIC_CDTXSYNC(sc, nexttx, 491 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 492 493 /* Advance the tx pointer. */ 494 sc->sc_txpending++; 495 sc->sc_txlast = nexttx; 496 497 #if NBPFILTER > 0 498 /* 499 * Pass the packet to any BPF listeners. 500 */ 501 if (ifp->if_bpf) 502 bpf_mtap(ifp->if_bpf, m0); 503 #endif 504 } 505 506 if (sc->sc_txpending == EPIC_NTXDESC) { 507 /* No more slots left; notify upper layer. */ 508 ifp->if_flags |= IFF_OACTIVE; 509 } 510 511 if (sc->sc_txpending != opending) { 512 /* 513 * We enqueued packets. If the transmitter was idle, 514 * reset the txdirty pointer. 515 */ 516 if (opending == 0) 517 sc->sc_txdirty = firsttx; 518 519 /* 520 * Cause a transmit interrupt to happen on the 521 * last packet we enqueued. 522 */ 523 EPIC_CDTX(sc, sc->sc_txlast)->et_control |= ET_TXCTL_IAF; 524 EPIC_CDTXSYNC(sc, sc->sc_txlast, 525 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 526 527 /* 528 * The entire packet chain is set up. Give the 529 * first descriptor to the EPIC now. 530 */ 531 EPIC_CDTX(sc, firsttx)->et_txstatus |= ET_TXSTAT_OWNER; 532 EPIC_CDTXSYNC(sc, firsttx, 533 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 534 535 /* Start the transmitter. */ 536 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_COMMAND, 537 COMMAND_TXQUEUED); 538 539 /* Set a watchdog timer in case the chip flakes out. */ 540 ifp->if_timer = 5; 541 } 542 } 543 544 /* 545 * Watchdog timer handler. 546 * [ifnet interface function] 547 */ 548 void 549 epic_watchdog(struct ifnet *ifp) 550 { 551 struct epic_softc *sc = ifp->if_softc; 552 553 printf("%s: device timeout\n", device_xname(sc->sc_dev)); 554 ifp->if_oerrors++; 555 556 (void)epic_init(ifp); 557 } 558 559 /* 560 * Handle control requests from the operator. 561 * [ifnet interface function] 562 */ 563 int 564 epic_ioctl(struct ifnet *ifp, u_long cmd, void *data) 565 { 566 struct epic_softc *sc = ifp->if_softc; 567 int s, error; 568 569 s = splnet(); 570 571 error = ether_ioctl(ifp, cmd, data); 572 if (error == ENETRESET) { 573 /* 574 * Multicast list has changed; set the hardware filter 575 * accordingly. Update our idea of the current media; 576 * epic_set_mchash() needs to know what it is. 577 */ 578 if (ifp->if_flags & IFF_RUNNING) { 579 mii_pollstat(&sc->sc_mii); 580 epic_set_mchash(sc); 581 } 582 error = 0; 583 } 584 585 splx(s); 586 return error; 587 } 588 589 /* 590 * Interrupt handler. 591 */ 592 int 593 epic_intr(void *arg) 594 { 595 struct epic_softc *sc = arg; 596 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 597 struct epic_rxdesc *rxd; 598 struct epic_txdesc *txd; 599 struct epic_descsoft *ds; 600 struct mbuf *m; 601 uint32_t intstat, rxstatus, txstatus; 602 int i, claimed = 0; 603 u_int len; 604 605 top: 606 /* 607 * Get the interrupt status from the EPIC. 608 */ 609 intstat = bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_INTSTAT); 610 if ((intstat & INTSTAT_INT_ACTV) == 0) 611 return claimed; 612 613 claimed = 1; 614 615 /* 616 * Acknowledge the interrupt. 617 */ 618 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_INTSTAT, 619 intstat & INTMASK); 620 621 /* 622 * Check for receive interrupts. 623 */ 624 if (intstat & (INTSTAT_RCC | INTSTAT_RXE | INTSTAT_RQE)) { 625 for (i = sc->sc_rxptr;; i = EPIC_NEXTRX(i)) { 626 rxd = EPIC_CDRX(sc, i); 627 ds = EPIC_DSRX(sc, i); 628 629 EPIC_CDRXSYNC(sc, i, 630 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 631 632 rxstatus = rxd->er_rxstatus; 633 if (rxstatus & ER_RXSTAT_OWNER) { 634 /* 635 * We have processed all of the 636 * receive buffers. 637 */ 638 break; 639 } 640 641 /* 642 * Make sure the packet arrived intact. If an error 643 * occurred, update stats and reset the descriptor. 644 * The buffer will be reused the next time the 645 * descriptor comes up in the ring. 646 */ 647 if ((rxstatus & ER_RXSTAT_PKTINTACT) == 0) { 648 if (rxstatus & ER_RXSTAT_CRCERROR) 649 printf("%s: CRC error\n", 650 device_xname(sc->sc_dev)); 651 if (rxstatus & ER_RXSTAT_ALIGNERROR) 652 printf("%s: alignment error\n", 653 device_xname(sc->sc_dev)); 654 ifp->if_ierrors++; 655 EPIC_INIT_RXDESC(sc, i); 656 continue; 657 } 658 659 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0, 660 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); 661 662 /* 663 * The EPIC includes the CRC with every packet; 664 * trim it. 665 */ 666 len = RXSTAT_RXLENGTH(rxstatus) - ETHER_CRC_LEN; 667 668 if (len < sizeof(struct ether_header)) { 669 /* 670 * Runt packet; drop it now. 671 */ 672 ifp->if_ierrors++; 673 EPIC_INIT_RXDESC(sc, i); 674 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0, 675 ds->ds_dmamap->dm_mapsize, 676 BUS_DMASYNC_PREREAD); 677 continue; 678 } 679 680 /* 681 * If the packet is small enough to fit in a 682 * single header mbuf, allocate one and copy 683 * the data into it. This greatly reduces 684 * memory consumption when we receive lots 685 * of small packets. 686 * 687 * Otherwise, we add a new buffer to the receive 688 * chain. If this fails, we drop the packet and 689 * recycle the old buffer. 690 */ 691 if (epic_copy_small != 0 && len <= MHLEN) { 692 MGETHDR(m, M_DONTWAIT, MT_DATA); 693 if (m == NULL) 694 goto dropit; 695 memcpy(mtod(m, void *), 696 mtod(ds->ds_mbuf, void *), len); 697 EPIC_INIT_RXDESC(sc, i); 698 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0, 699 ds->ds_dmamap->dm_mapsize, 700 BUS_DMASYNC_PREREAD); 701 } else { 702 m = ds->ds_mbuf; 703 if (epic_add_rxbuf(sc, i) != 0) { 704 dropit: 705 ifp->if_ierrors++; 706 EPIC_INIT_RXDESC(sc, i); 707 bus_dmamap_sync(sc->sc_dmat, 708 ds->ds_dmamap, 0, 709 ds->ds_dmamap->dm_mapsize, 710 BUS_DMASYNC_PREREAD); 711 continue; 712 } 713 } 714 715 m->m_pkthdr.rcvif = ifp; 716 m->m_pkthdr.len = m->m_len = len; 717 718 #if NBPFILTER > 0 719 /* 720 * Pass this up to any BPF listeners, but only 721 * pass it up the stack if it's for us. 722 */ 723 if (ifp->if_bpf) 724 bpf_mtap(ifp->if_bpf, m); 725 #endif 726 727 /* Pass it on. */ 728 (*ifp->if_input)(ifp, m); 729 ifp->if_ipackets++; 730 } 731 732 /* Update the receive pointer. */ 733 sc->sc_rxptr = i; 734 735 /* 736 * Check for receive queue underflow. 737 */ 738 if (intstat & INTSTAT_RQE) { 739 printf("%s: receiver queue empty\n", 740 device_xname(sc->sc_dev)); 741 /* 742 * Ring is already built; just restart the 743 * receiver. 744 */ 745 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_PRCDAR, 746 EPIC_CDRXADDR(sc, sc->sc_rxptr)); 747 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_COMMAND, 748 COMMAND_RXQUEUED | COMMAND_START_RX); 749 } 750 } 751 752 /* 753 * Check for transmission complete interrupts. 754 */ 755 if (intstat & (INTSTAT_TXC | INTSTAT_TXU)) { 756 ifp->if_flags &= ~IFF_OACTIVE; 757 for (i = sc->sc_txdirty; sc->sc_txpending != 0; 758 i = EPIC_NEXTTX(i), sc->sc_txpending--) { 759 txd = EPIC_CDTX(sc, i); 760 ds = EPIC_DSTX(sc, i); 761 762 EPIC_CDTXSYNC(sc, i, 763 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 764 765 txstatus = txd->et_txstatus; 766 if (txstatus & ET_TXSTAT_OWNER) 767 break; 768 769 EPIC_CDFLSYNC(sc, i, BUS_DMASYNC_POSTWRITE); 770 771 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 772 0, ds->ds_dmamap->dm_mapsize, 773 BUS_DMASYNC_POSTWRITE); 774 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap); 775 m_freem(ds->ds_mbuf); 776 ds->ds_mbuf = NULL; 777 778 /* 779 * Check for errors and collisions. 780 */ 781 if ((txstatus & ET_TXSTAT_PACKETTX) == 0) 782 ifp->if_oerrors++; 783 else 784 ifp->if_opackets++; 785 ifp->if_collisions += 786 TXSTAT_COLLISIONS(txstatus); 787 if (txstatus & ET_TXSTAT_CARSENSELOST) 788 printf("%s: lost carrier\n", 789 device_xname(sc->sc_dev)); 790 } 791 792 /* Update the dirty transmit buffer pointer. */ 793 sc->sc_txdirty = i; 794 795 /* 796 * Cancel the watchdog timer if there are no pending 797 * transmissions. 798 */ 799 if (sc->sc_txpending == 0) 800 ifp->if_timer = 0; 801 802 /* 803 * Kick the transmitter after a DMA underrun. 804 */ 805 if (intstat & INTSTAT_TXU) { 806 printf("%s: transmit underrun\n", 807 device_xname(sc->sc_dev)); 808 bus_space_write_4(sc->sc_st, sc->sc_sh, 809 EPIC_COMMAND, COMMAND_TXUGO); 810 if (sc->sc_txpending) 811 bus_space_write_4(sc->sc_st, sc->sc_sh, 812 EPIC_COMMAND, COMMAND_TXQUEUED); 813 } 814 815 /* 816 * Try to get more packets going. 817 */ 818 epic_start(ifp); 819 } 820 821 /* 822 * Check for fatal interrupts. 823 */ 824 if (intstat & INTSTAT_FATAL_INT) { 825 if (intstat & INTSTAT_PTA) 826 printf("%s: PCI target abort error\n", 827 device_xname(sc->sc_dev)); 828 else if (intstat & INTSTAT_PMA) 829 printf("%s: PCI master abort error\n", 830 device_xname(sc->sc_dev)); 831 else if (intstat & INTSTAT_APE) 832 printf("%s: PCI address parity error\n", 833 device_xname(sc->sc_dev)); 834 else if (intstat & INTSTAT_DPE) 835 printf("%s: PCI data parity error\n", 836 device_xname(sc->sc_dev)); 837 else 838 printf("%s: unknown fatal error\n", 839 device_xname(sc->sc_dev)); 840 (void)epic_init(ifp); 841 } 842 843 /* 844 * Check for more interrupts. 845 */ 846 goto top; 847 } 848 849 /* 850 * One second timer, used to tick the MII. 851 */ 852 void 853 epic_tick(void *arg) 854 { 855 struct epic_softc *sc = arg; 856 int s; 857 858 s = splnet(); 859 mii_tick(&sc->sc_mii); 860 splx(s); 861 862 callout_reset(&sc->sc_mii_callout, hz, epic_tick, sc); 863 } 864 865 /* 866 * Fixup the clock source on the EPIC. 867 */ 868 void 869 epic_fixup_clock_source(struct epic_softc *sc) 870 { 871 int i; 872 873 /* 874 * According to SMC Application Note 7-15, the EPIC's clock 875 * source is incorrect following a reset. This manifests itself 876 * as failure to recognize when host software has written to 877 * a register on the EPIC. The appnote recommends issuing at 878 * least 16 consecutive writes to the CLOCK TEST bit to correctly 879 * configure the clock source. 880 */ 881 for (i = 0; i < 16; i++) 882 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_TEST, 883 TEST_CLOCKTEST); 884 } 885 886 /* 887 * Perform a soft reset on the EPIC. 888 */ 889 void 890 epic_reset(struct epic_softc *sc) 891 { 892 893 epic_fixup_clock_source(sc); 894 895 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_GENCTL, 0); 896 delay(100); 897 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_GENCTL, GENCTL_SOFTRESET); 898 delay(100); 899 900 epic_fixup_clock_source(sc); 901 } 902 903 /* 904 * Initialize the interface. Must be called at splnet(). 905 */ 906 int 907 epic_init(struct ifnet *ifp) 908 { 909 struct epic_softc *sc = ifp->if_softc; 910 bus_space_tag_t st = sc->sc_st; 911 bus_space_handle_t sh = sc->sc_sh; 912 const uint8_t *enaddr = CLLADDR(ifp->if_sadl); 913 struct epic_txdesc *txd; 914 struct epic_descsoft *ds; 915 uint32_t genctl, reg0; 916 int i, error = 0; 917 918 /* 919 * Cancel any pending I/O. 920 */ 921 epic_stop(ifp, 0); 922 923 /* 924 * Reset the EPIC to a known state. 925 */ 926 epic_reset(sc); 927 928 /* 929 * Magical mystery initialization. 930 */ 931 bus_space_write_4(st, sh, EPIC_TXTEST, 0); 932 933 /* 934 * Initialize the EPIC genctl register: 935 * 936 * - 64 byte receive FIFO threshold 937 * - automatic advance to next receive frame 938 */ 939 genctl = GENCTL_RX_FIFO_THRESH0 | GENCTL_ONECOPY; 940 #if BYTE_ORDER == BIG_ENDIAN 941 genctl |= GENCTL_BIG_ENDIAN; 942 #endif 943 bus_space_write_4(st, sh, EPIC_GENCTL, genctl); 944 945 /* 946 * Reset the MII bus and PHY. 947 */ 948 reg0 = bus_space_read_4(st, sh, EPIC_NVCTL); 949 bus_space_write_4(st, sh, EPIC_NVCTL, reg0 | NVCTL_GPIO1 | NVCTL_GPOE1); 950 bus_space_write_4(st, sh, EPIC_MIICFG, MIICFG_ENASER); 951 bus_space_write_4(st, sh, EPIC_GENCTL, genctl | GENCTL_RESET_PHY); 952 delay(100); 953 bus_space_write_4(st, sh, EPIC_GENCTL, genctl); 954 delay(1000); 955 bus_space_write_4(st, sh, EPIC_NVCTL, reg0); 956 957 /* 958 * Initialize Ethernet address. 959 */ 960 reg0 = enaddr[1] << 8 | enaddr[0]; 961 bus_space_write_4(st, sh, EPIC_LAN0, reg0); 962 reg0 = enaddr[3] << 8 | enaddr[2]; 963 bus_space_write_4(st, sh, EPIC_LAN1, reg0); 964 reg0 = enaddr[5] << 8 | enaddr[4]; 965 bus_space_write_4(st, sh, EPIC_LAN2, reg0); 966 967 /* 968 * Initialize receive control. Remember the external buffer 969 * size setting. 970 */ 971 reg0 = bus_space_read_4(st, sh, EPIC_RXCON) & 972 (RXCON_EXTBUFSIZESEL1 | RXCON_EXTBUFSIZESEL0); 973 reg0 |= (RXCON_RXMULTICAST | RXCON_RXBROADCAST); 974 if (ifp->if_flags & IFF_PROMISC) 975 reg0 |= RXCON_PROMISCMODE; 976 bus_space_write_4(st, sh, EPIC_RXCON, reg0); 977 978 /* Set the current media. */ 979 if ((error = epic_mediachange(ifp)) != 0) 980 goto out; 981 982 /* Set up the multicast hash table. */ 983 epic_set_mchash(sc); 984 985 /* 986 * Initialize the transmit descriptor ring. txlast is initialized 987 * to the end of the list so that it will wrap around to the first 988 * descriptor when the first packet is transmitted. 989 */ 990 for (i = 0; i < EPIC_NTXDESC; i++) { 991 txd = EPIC_CDTX(sc, i); 992 memset(txd, 0, sizeof(struct epic_txdesc)); 993 txd->et_bufaddr = EPIC_CDFLADDR(sc, i); 994 txd->et_nextdesc = EPIC_CDTXADDR(sc, EPIC_NEXTTX(i)); 995 EPIC_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 996 } 997 sc->sc_txpending = 0; 998 sc->sc_txdirty = 0; 999 sc->sc_txlast = EPIC_NTXDESC - 1; 1000 1001 /* 1002 * Initialize the receive descriptor ring. 1003 */ 1004 for (i = 0; i < EPIC_NRXDESC; i++) { 1005 ds = EPIC_DSRX(sc, i); 1006 if (ds->ds_mbuf == NULL) { 1007 if ((error = epic_add_rxbuf(sc, i)) != 0) { 1008 printf("%s: unable to allocate or map rx " 1009 "buffer %d error = %d\n", 1010 device_xname(sc->sc_dev), i, error); 1011 /* 1012 * XXX Should attempt to run with fewer receive 1013 * XXX buffers instead of just failing. 1014 */ 1015 epic_rxdrain(sc); 1016 goto out; 1017 } 1018 } else 1019 EPIC_INIT_RXDESC(sc, i); 1020 } 1021 sc->sc_rxptr = 0; 1022 1023 /* 1024 * Initialize the interrupt mask and enable interrupts. 1025 */ 1026 bus_space_write_4(st, sh, EPIC_INTMASK, INTMASK); 1027 bus_space_write_4(st, sh, EPIC_GENCTL, genctl | GENCTL_INTENA); 1028 1029 /* 1030 * Give the transmit and receive rings to the EPIC. 1031 */ 1032 bus_space_write_4(st, sh, EPIC_PTCDAR, 1033 EPIC_CDTXADDR(sc, EPIC_NEXTTX(sc->sc_txlast))); 1034 bus_space_write_4(st, sh, EPIC_PRCDAR, 1035 EPIC_CDRXADDR(sc, sc->sc_rxptr)); 1036 1037 /* 1038 * Set the EPIC in motion. 1039 */ 1040 bus_space_write_4(st, sh, EPIC_COMMAND, 1041 COMMAND_RXQUEUED | COMMAND_START_RX); 1042 1043 /* 1044 * ...all done! 1045 */ 1046 ifp->if_flags |= IFF_RUNNING; 1047 ifp->if_flags &= ~IFF_OACTIVE; 1048 1049 /* 1050 * Start the one second clock. 1051 */ 1052 callout_reset(&sc->sc_mii_callout, hz, epic_tick, sc); 1053 1054 /* 1055 * Attempt to start output on the interface. 1056 */ 1057 epic_start(ifp); 1058 1059 out: 1060 if (error) 1061 printf("%s: interface not running\n", device_xname(sc->sc_dev)); 1062 return error; 1063 } 1064 1065 /* 1066 * Drain the receive queue. 1067 */ 1068 void 1069 epic_rxdrain(struct epic_softc *sc) 1070 { 1071 struct epic_descsoft *ds; 1072 int i; 1073 1074 for (i = 0; i < EPIC_NRXDESC; i++) { 1075 ds = EPIC_DSRX(sc, i); 1076 if (ds->ds_mbuf != NULL) { 1077 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap); 1078 m_freem(ds->ds_mbuf); 1079 ds->ds_mbuf = NULL; 1080 } 1081 } 1082 } 1083 1084 /* 1085 * Stop transmission on the interface. 1086 */ 1087 void 1088 epic_stop(struct ifnet *ifp, int disable) 1089 { 1090 struct epic_softc *sc = ifp->if_softc; 1091 bus_space_tag_t st = sc->sc_st; 1092 bus_space_handle_t sh = sc->sc_sh; 1093 struct epic_descsoft *ds; 1094 uint32_t reg; 1095 int i; 1096 1097 /* 1098 * Stop the one second clock. 1099 */ 1100 callout_stop(&sc->sc_mii_callout); 1101 1102 /* Down the MII. */ 1103 mii_down(&sc->sc_mii); 1104 1105 /* Paranoia... */ 1106 epic_fixup_clock_source(sc); 1107 1108 /* 1109 * Disable interrupts. 1110 */ 1111 reg = bus_space_read_4(st, sh, EPIC_GENCTL); 1112 bus_space_write_4(st, sh, EPIC_GENCTL, reg & ~GENCTL_INTENA); 1113 bus_space_write_4(st, sh, EPIC_INTMASK, 0); 1114 1115 /* 1116 * Stop the DMA engine and take the receiver off-line. 1117 */ 1118 bus_space_write_4(st, sh, EPIC_COMMAND, COMMAND_STOP_RDMA | 1119 COMMAND_STOP_TDMA | COMMAND_STOP_RX); 1120 1121 /* 1122 * Release any queued transmit buffers. 1123 */ 1124 for (i = 0; i < EPIC_NTXDESC; i++) { 1125 ds = EPIC_DSTX(sc, i); 1126 if (ds->ds_mbuf != NULL) { 1127 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap); 1128 m_freem(ds->ds_mbuf); 1129 ds->ds_mbuf = NULL; 1130 } 1131 } 1132 1133 /* 1134 * Mark the interface down and cancel the watchdog timer. 1135 */ 1136 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 1137 ifp->if_timer = 0; 1138 1139 if (disable) 1140 epic_rxdrain(sc); 1141 } 1142 1143 /* 1144 * Read the EPIC Serial EEPROM. 1145 */ 1146 void 1147 epic_read_eeprom(struct epic_softc *sc, int word, int wordcnt, uint16_t *data) 1148 { 1149 bus_space_tag_t st = sc->sc_st; 1150 bus_space_handle_t sh = sc->sc_sh; 1151 uint16_t reg; 1152 int i, x; 1153 1154 #define EEPROM_WAIT_READY(st, sh) \ 1155 while ((bus_space_read_4((st), (sh), EPIC_EECTL) & EECTL_EERDY) == 0) \ 1156 /* nothing */ 1157 1158 /* 1159 * Enable the EEPROM. 1160 */ 1161 bus_space_write_4(st, sh, EPIC_EECTL, EECTL_ENABLE); 1162 EEPROM_WAIT_READY(st, sh); 1163 1164 for (i = 0; i < wordcnt; i++) { 1165 /* Send CHIP SELECT for one clock tick. */ 1166 bus_space_write_4(st, sh, EPIC_EECTL, EECTL_ENABLE|EECTL_EECS); 1167 EEPROM_WAIT_READY(st, sh); 1168 1169 /* Shift in the READ opcode. */ 1170 for (x = 3; x > 0; x--) { 1171 reg = EECTL_ENABLE|EECTL_EECS; 1172 if (EPIC_EEPROM_OPC_READ & (1 << (x - 1))) 1173 reg |= EECTL_EEDI; 1174 bus_space_write_4(st, sh, EPIC_EECTL, reg); 1175 EEPROM_WAIT_READY(st, sh); 1176 bus_space_write_4(st, sh, EPIC_EECTL, reg|EECTL_EESK); 1177 EEPROM_WAIT_READY(st, sh); 1178 bus_space_write_4(st, sh, EPIC_EECTL, reg); 1179 EEPROM_WAIT_READY(st, sh); 1180 } 1181 1182 /* Shift in address. */ 1183 for (x = 6; x > 0; x--) { 1184 reg = EECTL_ENABLE|EECTL_EECS; 1185 if ((word + i) & (1 << (x - 1))) 1186 reg |= EECTL_EEDI; 1187 bus_space_write_4(st, sh, EPIC_EECTL, reg); 1188 EEPROM_WAIT_READY(st, sh); 1189 bus_space_write_4(st, sh, EPIC_EECTL, reg|EECTL_EESK); 1190 EEPROM_WAIT_READY(st, sh); 1191 bus_space_write_4(st, sh, EPIC_EECTL, reg); 1192 EEPROM_WAIT_READY(st, sh); 1193 } 1194 1195 /* Shift out data. */ 1196 reg = EECTL_ENABLE|EECTL_EECS; 1197 data[i] = 0; 1198 for (x = 16; x > 0; x--) { 1199 bus_space_write_4(st, sh, EPIC_EECTL, reg|EECTL_EESK); 1200 EEPROM_WAIT_READY(st, sh); 1201 if (bus_space_read_4(st, sh, EPIC_EECTL) & EECTL_EEDO) 1202 data[i] |= (1 << (x - 1)); 1203 bus_space_write_4(st, sh, EPIC_EECTL, reg); 1204 EEPROM_WAIT_READY(st, sh); 1205 } 1206 1207 /* Clear CHIP SELECT. */ 1208 bus_space_write_4(st, sh, EPIC_EECTL, EECTL_ENABLE); 1209 EEPROM_WAIT_READY(st, sh); 1210 } 1211 1212 /* 1213 * Disable the EEPROM. 1214 */ 1215 bus_space_write_4(st, sh, EPIC_EECTL, 0); 1216 1217 #undef EEPROM_WAIT_READY 1218 } 1219 1220 /* 1221 * Add a receive buffer to the indicated descriptor. 1222 */ 1223 int 1224 epic_add_rxbuf(struct epic_softc *sc, int idx) 1225 { 1226 struct epic_descsoft *ds = EPIC_DSRX(sc, idx); 1227 struct mbuf *m; 1228 int error; 1229 1230 MGETHDR(m, M_DONTWAIT, MT_DATA); 1231 if (m == NULL) 1232 return ENOBUFS; 1233 1234 MCLGET(m, M_DONTWAIT); 1235 if ((m->m_flags & M_EXT) == 0) { 1236 m_freem(m); 1237 return ENOBUFS; 1238 } 1239 1240 if (ds->ds_mbuf != NULL) 1241 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap); 1242 1243 ds->ds_mbuf = m; 1244 1245 error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap, 1246 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, 1247 BUS_DMA_READ|BUS_DMA_NOWAIT); 1248 if (error) { 1249 printf("%s: can't load rx DMA map %d, error = %d\n", 1250 device_xname(sc->sc_dev), idx, error); 1251 panic("%s", __func__); /* XXX */ 1252 } 1253 1254 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0, 1255 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); 1256 1257 EPIC_INIT_RXDESC(sc, idx); 1258 1259 return 0; 1260 } 1261 1262 /* 1263 * Set the EPIC multicast hash table. 1264 * 1265 * NOTE: We rely on a recently-updated mii_media_active here! 1266 */ 1267 void 1268 epic_set_mchash(struct epic_softc *sc) 1269 { 1270 struct ethercom *ec = &sc->sc_ethercom; 1271 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1272 struct ether_multi *enm; 1273 struct ether_multistep step; 1274 uint32_t hash, mchash[4]; 1275 1276 /* 1277 * Set up the multicast address filter by passing all multicast 1278 * addresses through a CRC generator, and then using the low-order 1279 * 6 bits as an index into the 64 bit multicast hash table (only 1280 * the lower 16 bits of each 32 bit multicast hash register are 1281 * valid). The high order bits select the register, while the 1282 * rest of the bits select the bit within the register. 1283 */ 1284 1285 if (ifp->if_flags & IFF_PROMISC) 1286 goto allmulti; 1287 1288 if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_10_T) { 1289 /* XXX hardware bug in 10Mbps mode. */ 1290 goto allmulti; 1291 } 1292 1293 mchash[0] = mchash[1] = mchash[2] = mchash[3] = 0; 1294 1295 ETHER_FIRST_MULTI(step, ec, enm); 1296 while (enm != NULL) { 1297 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { 1298 /* 1299 * We must listen to a range of multicast addresses. 1300 * For now, just accept all multicasts, rather than 1301 * trying to set only those filter bits needed to match 1302 * the range. (At this time, the only use of address 1303 * ranges is for IP multicast routing, for which the 1304 * range is big enough to require all bits set.) 1305 */ 1306 goto allmulti; 1307 } 1308 1309 hash = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN); 1310 hash >>= 26; 1311 1312 /* Set the corresponding bit in the hash table. */ 1313 mchash[hash >> 4] |= 1 << (hash & 0xf); 1314 1315 ETHER_NEXT_MULTI(step, enm); 1316 } 1317 1318 ifp->if_flags &= ~IFF_ALLMULTI; 1319 goto sethash; 1320 1321 allmulti: 1322 ifp->if_flags |= IFF_ALLMULTI; 1323 mchash[0] = mchash[1] = mchash[2] = mchash[3] = 0xffff; 1324 1325 sethash: 1326 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MC0, mchash[0]); 1327 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MC1, mchash[1]); 1328 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MC2, mchash[2]); 1329 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MC3, mchash[3]); 1330 } 1331 1332 /* 1333 * Wait for the MII to become ready. 1334 */ 1335 int 1336 epic_mii_wait(struct epic_softc *sc, uint32_t rw) 1337 { 1338 int i; 1339 1340 for (i = 0; i < 50; i++) { 1341 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_MMCTL) & rw) 1342 == 0) 1343 break; 1344 delay(2); 1345 } 1346 if (i == 50) { 1347 printf("%s: MII timed out\n", device_xname(sc->sc_dev)); 1348 return 1; 1349 } 1350 1351 return 0; 1352 } 1353 1354 /* 1355 * Read from the MII. 1356 */ 1357 int 1358 epic_mii_read(device_t self, int phy, int reg) 1359 { 1360 struct epic_softc *sc = device_private(self); 1361 1362 if (epic_mii_wait(sc, MMCTL_WRITE)) 1363 return 0; 1364 1365 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MMCTL, 1366 MMCTL_ARG(phy, reg, MMCTL_READ)); 1367 1368 if (epic_mii_wait(sc, MMCTL_READ)) 1369 return 0; 1370 1371 return bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_MMDATA) & 1372 MMDATA_MASK; 1373 } 1374 1375 /* 1376 * Write to the MII. 1377 */ 1378 void 1379 epic_mii_write(device_t self, int phy, int reg, int val) 1380 { 1381 struct epic_softc *sc = device_private(self); 1382 1383 if (epic_mii_wait(sc, MMCTL_WRITE)) 1384 return; 1385 1386 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MMDATA, val); 1387 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MMCTL, 1388 MMCTL_ARG(phy, reg, MMCTL_WRITE)); 1389 } 1390 1391 /* 1392 * Callback from PHY when media changes. 1393 */ 1394 void 1395 epic_statchg(device_t self) 1396 { 1397 struct epic_softc *sc = device_private(self); 1398 uint32_t txcon, miicfg; 1399 1400 /* 1401 * Update loopback bits in TXCON to reflect duplex mode. 1402 */ 1403 txcon = bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_TXCON); 1404 if (sc->sc_mii.mii_media_active & IFM_FDX) 1405 txcon |= (TXCON_LOOPBACK_D1|TXCON_LOOPBACK_D2); 1406 else 1407 txcon &= ~(TXCON_LOOPBACK_D1|TXCON_LOOPBACK_D2); 1408 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_TXCON, txcon); 1409 1410 /* On some cards we need manualy set fullduplex led */ 1411 if (sc->sc_hwflags & EPIC_DUPLEXLED_ON_694) { 1412 miicfg = bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_MIICFG); 1413 if (IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) 1414 miicfg |= MIICFG_ENABLE; 1415 else 1416 miicfg &= ~MIICFG_ENABLE; 1417 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MIICFG, miicfg); 1418 } 1419 1420 /* 1421 * There is a multicast filter bug in 10Mbps mode. Kick the 1422 * multicast filter in case the speed changed. 1423 */ 1424 epic_set_mchash(sc); 1425 } 1426 1427 /* 1428 * Callback from ifmedia to request new media setting. 1429 * 1430 * XXX Looks to me like some of this complexity should move into 1431 * XXX one or two custom PHY drivers. --dyoung 1432 */ 1433 int 1434 epic_mediachange(struct ifnet *ifp) 1435 { 1436 struct epic_softc *sc = ifp->if_softc; 1437 struct mii_data *mii = &sc->sc_mii; 1438 struct ifmedia *ifm = &mii->mii_media; 1439 int media = ifm->ifm_cur->ifm_media; 1440 uint32_t miicfg; 1441 struct mii_softc *miisc; 1442 int cfg, rc; 1443 1444 if ((ifp->if_flags & IFF_UP) == 0) 1445 return 0; 1446 1447 if (IFM_INST(media) != sc->sc_serinst) { 1448 /* If we're not selecting serial interface, select MII mode */ 1449 #ifdef EPICMEDIADEBUG 1450 printf("%s: parallel mode\n", ifp->if_xname); 1451 #endif 1452 miicfg = bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_MIICFG); 1453 miicfg &= ~MIICFG_SERMODEENA; 1454 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MIICFG, miicfg); 1455 } 1456 1457 if ((rc = mii_mediachg(mii)) == ENXIO) 1458 rc = 0; 1459 1460 if (IFM_INST(media) == sc->sc_serinst) { 1461 /* select serial interface */ 1462 #ifdef EPICMEDIADEBUG 1463 printf("%s: serial mode\n", ifp->if_xname); 1464 #endif 1465 miicfg = bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_MIICFG); 1466 miicfg |= (MIICFG_SERMODEENA | MIICFG_ENABLE); 1467 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MIICFG, miicfg); 1468 1469 /* There is no driver to fill this */ 1470 mii->mii_media_active = media; 1471 mii->mii_media_status = 0; 1472 1473 epic_statchg(sc->sc_dev); 1474 return 0; 1475 } 1476 1477 /* Lookup selected PHY */ 1478 LIST_FOREACH(miisc, &mii->mii_phys, mii_list) { 1479 if (IFM_INST(media) == miisc->mii_inst) 1480 break; 1481 } 1482 if (!miisc) { 1483 printf("%s: can't happen\n", __func__); /* ??? panic */ 1484 return 0; 1485 } 1486 #ifdef EPICMEDIADEBUG 1487 printf("%s: using phy %s\n", ifp->if_xname, 1488 device_xname(miisc->mii_dev)); 1489 #endif 1490 1491 if (miisc->mii_flags & MIIF_HAVEFIBER) { 1492 /* XXX XXX assume it's a Level1 - should check */ 1493 1494 /* We have to powerup fiber transceivers */ 1495 cfg = PHY_READ(miisc, MII_LXTPHY_CONFIG); 1496 if (IFM_SUBTYPE(media) == IFM_100_FX) { 1497 #ifdef EPICMEDIADEBUG 1498 printf("%s: power up fiber\n", ifp->if_xname); 1499 #endif 1500 cfg |= (CONFIG_LEDC1 | CONFIG_LEDC0); 1501 } else { 1502 #ifdef EPICMEDIADEBUG 1503 printf("%s: power down fiber\n", ifp->if_xname); 1504 #endif 1505 cfg &= ~(CONFIG_LEDC1 | CONFIG_LEDC0); 1506 } 1507 PHY_WRITE(miisc, MII_LXTPHY_CONFIG, cfg); 1508 } 1509 1510 return rc; 1511 } 1512