xref: /netbsd-src/sys/dev/ic/sl811hs.c (revision cef8759bd76c1b621f8eab8faa6f208faabc2e15)
1 /*	$NetBSD: sl811hs.c,v 1.103 2020/02/15 01:21:56 riastradh Exp $	*/
2 
3 /*
4  * Not (c) 2007 Matthew Orgass
5  * This file is public domain, meaning anyone can make any use of part or all
6  * of this file including copying into other works without credit.  Any use,
7  * modified or not, is solely the responsibility of the user.  If this file is
8  * part of a collection then use in the collection is governed by the terms of
9  * the collection.
10  */
11 
12 /*
13  * Cypress/ScanLogic SL811HS/T USB Host Controller
14  * Datasheet, Errata, and App Note available at www.cypress.com
15  *
16  * Uses: Ratoc CFU1U PCMCIA USB Host Controller, Nereid X68k USB HC, ISA
17  * HCs.  The Ratoc CFU2 uses a different chip.
18  *
19  * This chip puts the serial in USB.  It implements USB by means of an eight
20  * bit I/O interface.  It can be used for ISA, PCMCIA/CF, parallel port,
21  * serial port, or any eight bit interface.  It has 256 bytes of memory, the
22  * first 16 of which are used for register access.  There are two sets of
23  * registers for sending individual bus transactions.  Because USB is polled,
24  * this organization means that some amount of card access must often be made
25  * when devices are attached, even if when they are not directly being used.
26  * A per-ms frame interrupt is necessary and many devices will poll with a
27  * per-frame bulk transfer.
28  *
29  * It is possible to write a little over two bytes to the chip (auto
30  * incremented) per full speed byte time on the USB.  Unfortunately,
31  * auto-increment does not work reliably so write and bus speed is
32  * approximately the same for full speed devices.
33  *
34  * In addition to the 240 byte packet size limit for isochronous transfers,
35  * this chip has no means of determining the current frame number other than
36  * getting all 1ms SOF interrupts, which is not always possible even on a fast
37  * system.  Isochronous transfers guarantee that transfers will never be
38  * retried in a later frame, so this can cause problems with devices beyond
39  * the difficulty in actually performing the transfer most frames.  I tried
40  * implementing isoc transfers and was able to play CD-derrived audio via an
41  * iMic on a 2GHz PC, however it would still be interrupted at times and
42  * once interrupted, would stay out of sync.  All isoc support has been
43  * removed.
44  *
45  * BUGS: all chip revisions have problems with low speed devices through hubs.
46  * The chip stops generating SOF with hubs that send SE0 during SOF.  See
47  * comment in dointr().  All performance enhancing features of this chip seem
48  * not to work properly, most confirmed buggy in errata doc.
49  *
50  */
51 
52 /*
53  * The hard interrupt is the main entry point.  Start, callbacks, and repeat
54  * are the only others called frequently.
55  *
56  * Since this driver attaches to pcmcia, card removal at any point should be
57  * expected and not cause panics or infinite loops.
58  */
59 
60 /*
61  * XXX TODO:
62  *   copy next output packet while transfering
63  *   usb suspend
64  *   could keep track of known values of all buffer space?
65  *   combined print/log function for errors
66  *
67  *   ub_usepolling support is untested and may not work
68  */
69 
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: sl811hs.c,v 1.103 2020/02/15 01:21:56 riastradh Exp $");
72 
73 #ifdef _KERNEL_OPT
74 #include "opt_slhci.h"
75 #include "opt_usb.h"
76 #endif
77 
78 #include <sys/param.h>
79 
80 #include <sys/bus.h>
81 #include <sys/cpu.h>
82 #include <sys/device.h>
83 #include <sys/gcq.h>
84 #include <sys/intr.h>
85 #include <sys/kernel.h>
86 #include <sys/kmem.h>
87 #include <sys/proc.h>
88 #include <sys/queue.h>
89 #include <sys/sysctl.h>
90 #include <sys/systm.h>
91 
92 #include <dev/usb/usb.h>
93 #include <dev/usb/usbdi.h>
94 #include <dev/usb/usbdivar.h>
95 #include <dev/usb/usbhist.h>
96 #include <dev/usb/usb_mem.h>
97 #include <dev/usb/usbdevs.h>
98 #include <dev/usb/usbroothub.h>
99 
100 #include <dev/ic/sl811hsreg.h>
101 #include <dev/ic/sl811hsvar.h>
102 
103 #define Q_CB 0				/* Control/Bulk */
104 #define Q_NEXT_CB 1
105 #define Q_MAX_XFER Q_CB
106 #define Q_CALLBACKS 2
107 #define Q_MAX Q_CALLBACKS
108 
109 #define F_AREADY		(0x00000001)
110 #define F_BREADY		(0x00000002)
111 #define F_AINPROG		(0x00000004)
112 #define F_BINPROG		(0x00000008)
113 #define F_LOWSPEED		(0x00000010)
114 #define F_UDISABLED		(0x00000020) /* Consider disabled for USB */
115 #define F_NODEV			(0x00000040)
116 #define F_ROOTINTR		(0x00000080)
117 #define F_REALPOWER		(0x00000100) /* Actual power state */
118 #define F_POWER			(0x00000200) /* USB reported power state */
119 #define F_ACTIVE		(0x00000400)
120 #define F_CALLBACK		(0x00000800) /* Callback scheduled */
121 #define F_SOFCHECK1		(0x00001000)
122 #define F_SOFCHECK2		(0x00002000)
123 #define F_CRESET		(0x00004000) /* Reset done not reported */
124 #define F_CCONNECT		(0x00008000) /* Connect change not reported */
125 #define F_RESET			(0x00010000)
126 #define F_ISOC_WARNED		(0x00020000)
127 #define F_LSVH_WARNED		(0x00040000)
128 
129 #define F_DISABLED		(F_NODEV|F_UDISABLED)
130 #define F_CHANGE		(F_CRESET|F_CCONNECT)
131 
132 #ifdef SLHCI_TRY_LSVH
133 unsigned int slhci_try_lsvh = 1;
134 #else
135 unsigned int slhci_try_lsvh = 0;
136 #endif
137 
138 #define ADR 0
139 #define LEN 1
140 #define PID 2
141 #define DEV 3
142 #define STAT 2
143 #define CONT 3
144 
145 #define A 0
146 #define B 1
147 
148 static const uint8_t slhci_tregs[2][4] =
149 {{SL11_E0ADDR, SL11_E0LEN, SL11_E0PID, SL11_E0DEV },
150  {SL11_E1ADDR, SL11_E1LEN, SL11_E1PID, SL11_E1DEV }};
151 
152 #define PT_ROOT_CTRL	0
153 #define PT_ROOT_INTR	1
154 #define PT_CTRL_SETUP	2
155 #define PT_CTRL_DATA	3
156 #define PT_CTRL_STATUS	4
157 #define PT_INTR		5
158 #define PT_BULK		6
159 #define PT_MAX		6
160 
161 #ifdef SLHCI_DEBUG
162 #define SLHCI_MEM_ACCOUNTING
163 #endif
164 
165 /*
166  * Maximum allowable reserved bus time.  Since intr/isoc transfers have
167  * unconditional priority, this is all that ensures control and bulk transfers
168  * get a chance.  It is a single value for all frames since all transfers can
169  * use multiple consecutive frames if an error is encountered.  Note that it
170  * is not really possible to fill the bus with transfers, so this value should
171  * be on the low side.  Defaults to giving a warning unless SLHCI_NO_OVERTIME
172  * is defined.  Full time is 12000 - END_BUSTIME.
173  */
174 #ifndef SLHCI_RESERVED_BUSTIME
175 #define SLHCI_RESERVED_BUSTIME 5000
176 #endif
177 
178 /*
179  * Rate for "exceeds reserved bus time" warnings (default) or errors.
180  * Warnings only happen when an endpoint open causes the time to go above
181  * SLHCI_RESERVED_BUSTIME, not if it is already above.
182  */
183 #ifndef SLHCI_OVERTIME_WARNING_RATE
184 #define SLHCI_OVERTIME_WARNING_RATE { 60, 0 } /* 60 seconds */
185 #endif
186 static const struct timeval reserved_warn_rate = SLHCI_OVERTIME_WARNING_RATE;
187 
188 /*
189  * For EOF, the spec says 42 bit times, plus (I think) a possible hub skew of
190  * 20 bit times.  By default leave 66 bit times to start the transfer beyond
191  * the required time.  Units are full-speed bit times (a bit over 5us per 64).
192  * Only multiples of 64 are significant.
193  */
194 #define SLHCI_STANDARD_END_BUSTIME 128
195 #ifndef SLHCI_EXTRA_END_BUSTIME
196 #define SLHCI_EXTRA_END_BUSTIME 0
197 #endif
198 
199 #define SLHCI_END_BUSTIME (SLHCI_STANDARD_END_BUSTIME+SLHCI_EXTRA_END_BUSTIME)
200 
201 /*
202  * This is an approximation of the USB worst-case timings presented on p. 54 of
203  * the USB 1.1 spec translated to full speed bit times.
204  * FS = full speed with handshake, FSII = isoc in, FSIO = isoc out,
205  * FSI = isoc (worst case), LS = low speed
206  */
207 #define SLHCI_FS_CONST		114
208 #define SLHCI_FSII_CONST	92
209 #define SLHCI_FSIO_CONST	80
210 #define SLHCI_FSI_CONST		92
211 #define SLHCI_LS_CONST		804
212 #ifndef SLHCI_PRECICE_BUSTIME
213 /*
214  * These values are < 3% too high (compared to the multiply and divide) for
215  * max sized packets.
216  */
217 #define SLHCI_FS_DATA_TIME(len) (((u_int)(len)<<3)+(len)+((len)>>1))
218 #define SLHCI_LS_DATA_TIME(len) (((u_int)(len)<<6)+((u_int)(len)<<4))
219 #else
220 #define SLHCI_FS_DATA_TIME(len) (56*(len)/6)
221 #define SLHCI_LS_DATA_TIME(len) (449*(len)/6)
222 #endif
223 
224 /*
225  * Set SLHCI_WAIT_SIZE to the desired maximum size of single FS transfer
226  * to poll for after starting a transfer.  64 gets all full speed transfers.
227  * Note that even if 0 polling will occur if data equal or greater than the
228  * transfer size is copied to the chip while the transfer is in progress.
229  * Setting SLHCI_WAIT_TIME to -12000 will disable polling.
230  */
231 #ifndef SLHCI_WAIT_SIZE
232 #define SLHCI_WAIT_SIZE 8
233 #endif
234 #ifndef SLHCI_WAIT_TIME
235 #define SLHCI_WAIT_TIME (SLHCI_FS_CONST + \
236     SLHCI_FS_DATA_TIME(SLHCI_WAIT_SIZE))
237 #endif
238 const int slhci_wait_time = SLHCI_WAIT_TIME;
239 
240 #ifndef SLHCI_MAX_RETRIES
241 #define SLHCI_MAX_RETRIES 3
242 #endif
243 
244 /* Check IER values for corruption after this many unrecognized interrupts. */
245 #ifndef SLHCI_IER_CHECK_FREQUENCY
246 #ifdef SLHCI_DEBUG
247 #define SLHCI_IER_CHECK_FREQUENCY 1
248 #else
249 #define SLHCI_IER_CHECK_FREQUENCY 100
250 #endif
251 #endif
252 
253 /* Note that buffer points to the start of the buffer for this transfer.  */
254 struct slhci_pipe {
255 	struct usbd_pipe pipe;
256 	struct usbd_xfer *xfer;		/* xfer in progress */
257 	uint8_t		*buffer;	/* I/O buffer (if needed) */
258 	struct gcq 	ap;		/* All pipes */
259 	struct gcq 	to;		/* Timeout list */
260 	struct gcq 	xq;		/* Xfer queues */
261 	unsigned int	pflags;		/* Pipe flags */
262 #define PF_GONE		(0x01)		/* Pipe is on disabled device */
263 #define PF_TOGGLE 	(0x02)		/* Data toggle status */
264 #define PF_LS		(0x04)		/* Pipe is low speed */
265 #define PF_PREAMBLE	(0x08)		/* Needs preamble */
266 	Frame		to_frame;	/* Frame number for timeout */
267 	Frame		frame;		/* Frame number for intr xfer */
268 	Frame		lastframe;	/* Previous frame number for intr */
269 	uint16_t	bustime;	/* Worst case bus time usage */
270 	uint16_t	newbustime[2];	/* new bustimes (see index below) */
271 	uint8_t		tregs[4];	/* ADR, LEN, PID, DEV */
272 	uint8_t		newlen[2];	/* 0 = short data, 1 = ctrl data */
273 	uint8_t		newpid;		/* for ctrl */
274 	uint8_t		wantshort;	/* last xfer must be short */
275 	uint8_t		control;	/* Host control register settings */
276 	uint8_t		nerrs;		/* Current number of errors */
277 	uint8_t 	ptype;		/* Pipe type */
278 };
279 
280 #define SLHCI_BUS2SC(bus)	((bus)->ub_hcpriv)
281 #define SLHCI_PIPE2SC(pipe)	SLHCI_BUS2SC((pipe)->up_dev->ud_bus)
282 #define SLHCI_XFER2SC(xfer)	SLHCI_BUS2SC((xfer)->ux_bus)
283 
284 #define SLHCI_PIPE2SPIPE(pipe)	((struct slhci_pipe *)(pipe))
285 #define SLHCI_XFER2SPIPE(xfer)	SLHCI_PIPE2SPIPE((xfer)->ux_pipe)
286 
287 #define SLHCI_XFER_TYPE(x)	(SLHCI_XFER2SPIPE(xfer)->ptype)
288 
289 #ifdef SLHCI_PROFILE_TRANSFER
290 #if defined(__mips__)
291 /*
292  * MIPS cycle counter does not directly count cpu cycles but is a different
293  * fraction of cpu cycles depending on the cpu.
294  */
295 typedef uint32_t cc_type;
296 #define CC_TYPE_FMT "%u"
297 #define slhci_cc_set(x) __asm volatile ("mfc0 %[cc], $9\n\tnop\n\tnop\n\tnop" \
298     : [cc] "=r"(x))
299 #elif defined(__i386__)
300 typedef uint64_t cc_type;
301 #define CC_TYPE_FMT "%llu"
302 #define slhci_cc_set(x) __asm volatile ("rdtsc" : "=A"(x))
303 #else
304 #error "SLHCI_PROFILE_TRANSFER not implemented on this MACHINE_ARCH (see sys/dev/ic/sl811hs.c)"
305 #endif
306 struct slhci_cc_time {
307 	cc_type start;
308 	cc_type stop;
309 	unsigned int miscdata;
310 };
311 #ifndef SLHCI_N_TIMES
312 #define SLHCI_N_TIMES 200
313 #endif
314 struct slhci_cc_times {
315 	struct slhci_cc_time times[SLHCI_N_TIMES];
316 	int current;
317 	int wraparound;
318 };
319 
320 static struct slhci_cc_times t_ab[2];
321 static struct slhci_cc_times t_abdone;
322 static struct slhci_cc_times t_copy_to_dev;
323 static struct slhci_cc_times t_copy_from_dev;
324 static struct slhci_cc_times t_intr;
325 static struct slhci_cc_times t_lock;
326 static struct slhci_cc_times t_delay;
327 static struct slhci_cc_times t_hard_int;
328 static struct slhci_cc_times t_callback;
329 
330 static inline void
331 start_cc_time(struct slhci_cc_times *times, unsigned int misc) {
332 	times->times[times->current].miscdata = misc;
333 	slhci_cc_set(times->times[times->current].start);
334 }
335 static inline void
336 stop_cc_time(struct slhci_cc_times *times) {
337 	slhci_cc_set(times->times[times->current].stop);
338 	if (++times->current >= SLHCI_N_TIMES) {
339 		times->current = 0;
340 		times->wraparound = 1;
341 	}
342 }
343 
344 void slhci_dump_cc_times(int);
345 
346 void
347 slhci_dump_cc_times(int n) {
348 	struct slhci_cc_times *times;
349 	int i;
350 
351 	switch (n) {
352 	default:
353 	case 0:
354 		printf("USBA start transfer to intr:\n");
355 		times = &t_ab[A];
356 		break;
357 	case 1:
358 		printf("USBB start transfer to intr:\n");
359 		times = &t_ab[B];
360 		break;
361 	case 2:
362 		printf("abdone:\n");
363 		times = &t_abdone;
364 		break;
365 	case 3:
366 		printf("copy to device:\n");
367 		times = &t_copy_to_dev;
368 		break;
369 	case 4:
370 		printf("copy from device:\n");
371 		times = &t_copy_from_dev;
372 		break;
373 	case 5:
374 		printf("intr to intr:\n");
375 		times = &t_intr;
376 		break;
377 	case 6:
378 		printf("lock to release:\n");
379 		times = &t_lock;
380 		break;
381 	case 7:
382 		printf("delay time:\n");
383 		times = &t_delay;
384 		break;
385 	case 8:
386 		printf("hard interrupt enter to exit:\n");
387 		times = &t_hard_int;
388 		break;
389 	case 9:
390 		printf("callback:\n");
391 		times = &t_callback;
392 		break;
393 	}
394 
395 	if (times->wraparound)
396 		for (i = times->current + 1; i < SLHCI_N_TIMES; i++)
397 			printf("start " CC_TYPE_FMT " stop " CC_TYPE_FMT
398 			    " difference %8i miscdata %#x\n",
399 			    times->times[i].start, times->times[i].stop,
400 			    (int)(times->times[i].stop -
401 			    times->times[i].start), times->times[i].miscdata);
402 
403 	for (i = 0; i < times->current; i++)
404 		printf("start " CC_TYPE_FMT " stop " CC_TYPE_FMT
405 		    " difference %8i miscdata %#x\n", times->times[i].start,
406 		    times->times[i].stop, (int)(times->times[i].stop -
407 		    times->times[i].start), times->times[i].miscdata);
408 }
409 #else
410 #define start_cc_time(x, y)
411 #define stop_cc_time(x)
412 #endif /* SLHCI_PROFILE_TRANSFER */
413 
414 typedef usbd_status (*LockCallFunc)(struct slhci_softc *, struct slhci_pipe
415     *, struct usbd_xfer *);
416 
417 struct usbd_xfer * slhci_allocx(struct usbd_bus *, unsigned int);
418 void slhci_freex(struct usbd_bus *, struct usbd_xfer *);
419 static void slhci_get_lock(struct usbd_bus *, kmutex_t **);
420 
421 usbd_status slhci_transfer(struct usbd_xfer *);
422 usbd_status slhci_start(struct usbd_xfer *);
423 usbd_status slhci_root_start(struct usbd_xfer *);
424 usbd_status slhci_open(struct usbd_pipe *);
425 
426 static int slhci_roothub_ctrl(struct usbd_bus *, usb_device_request_t *,
427     void *, int);
428 
429 /*
430  * slhci_supported_rev, slhci_preinit, slhci_attach, slhci_detach,
431  * slhci_activate
432  */
433 
434 void slhci_abort(struct usbd_xfer *);
435 void slhci_close(struct usbd_pipe *);
436 void slhci_clear_toggle(struct usbd_pipe *);
437 void slhci_poll(struct usbd_bus *);
438 void slhci_done(struct usbd_xfer *);
439 void slhci_void(void *);
440 
441 /* lock entry functions */
442 
443 #ifdef SLHCI_MEM_ACCOUNTING
444 void slhci_mem_use(struct usbd_bus *, int);
445 #endif
446 
447 void slhci_reset_entry(void *);
448 usbd_status slhci_lock_call(struct slhci_softc *, LockCallFunc,
449     struct slhci_pipe *, struct usbd_xfer *);
450 void slhci_start_entry(struct slhci_softc *, struct slhci_pipe *);
451 void slhci_callback_entry(void *arg);
452 void slhci_do_callback(struct slhci_softc *, struct usbd_xfer *);
453 
454 /* slhci_intr */
455 
456 void slhci_main(struct slhci_softc *);
457 
458 /* in lock functions */
459 
460 static void slhci_write(struct slhci_softc *, uint8_t, uint8_t);
461 static uint8_t slhci_read(struct slhci_softc *, uint8_t);
462 static void slhci_write_multi(struct slhci_softc *, uint8_t, uint8_t *, int);
463 static void slhci_read_multi(struct slhci_softc *, uint8_t, uint8_t *, int);
464 
465 static void slhci_waitintr(struct slhci_softc *, int);
466 static int slhci_dointr(struct slhci_softc *);
467 static void slhci_abdone(struct slhci_softc *, int);
468 static void slhci_tstart(struct slhci_softc *);
469 static void slhci_dotransfer(struct slhci_softc *);
470 
471 static void slhci_callback(struct slhci_softc *);
472 static void slhci_enter_xfer(struct slhci_softc *, struct slhci_pipe *);
473 static void slhci_enter_xfers(struct slhci_softc *);
474 static void slhci_queue_timed(struct slhci_softc *, struct slhci_pipe *);
475 static void slhci_xfer_timer(struct slhci_softc *, struct slhci_pipe *);
476 
477 static void slhci_callback_schedule(struct slhci_softc *);
478 static void slhci_do_callback_schedule(struct slhci_softc *);
479 #if 0
480 void slhci_pollxfer(struct slhci_softc *, struct usbd_xfer *); /* XXX */
481 #endif
482 
483 static usbd_status slhci_do_poll(struct slhci_softc *, struct slhci_pipe *,
484     struct usbd_xfer *);
485 static usbd_status slhci_lsvh_warn(struct slhci_softc *, struct slhci_pipe *,
486     struct usbd_xfer *);
487 static usbd_status slhci_isoc_warn(struct slhci_softc *, struct slhci_pipe *,
488     struct usbd_xfer *);
489 static usbd_status slhci_open_pipe(struct slhci_softc *, struct slhci_pipe *,
490     struct usbd_xfer *);
491 static usbd_status slhci_close_pipe(struct slhci_softc *, struct slhci_pipe *,
492     struct usbd_xfer *);
493 static usbd_status slhci_do_abort(struct slhci_softc *, struct slhci_pipe *,
494     struct usbd_xfer *);
495 static usbd_status slhci_halt(struct slhci_softc *, struct slhci_pipe *,
496     struct usbd_xfer *);
497 
498 static void slhci_intrchange(struct slhci_softc *, uint8_t);
499 static void slhci_drain(struct slhci_softc *);
500 static void slhci_reset(struct slhci_softc *);
501 static int slhci_reserve_bustime(struct slhci_softc *, struct slhci_pipe *,
502     int);
503 static void slhci_insert(struct slhci_softc *);
504 
505 static usbd_status slhci_clear_feature(struct slhci_softc *, unsigned int);
506 static usbd_status slhci_set_feature(struct slhci_softc *, unsigned int);
507 static void slhci_get_status(struct slhci_softc *, usb_port_status_t *);
508 
509 #define	SLHCIHIST_FUNC()	USBHIST_FUNC()
510 #define	SLHCIHIST_CALLED()	USBHIST_CALLED(slhcidebug)
511 
512 #ifdef SLHCI_DEBUG
513 static int slhci_memtest(struct slhci_softc *);
514 
515 void slhci_log_buffer(struct usbd_xfer *);
516 void slhci_log_req(usb_device_request_t *);
517 void slhci_log_dumpreg(void);
518 void slhci_log_xfer(struct usbd_xfer *);
519 void slhci_log_spipe(struct slhci_pipe *);
520 void slhci_print_intr(void);
521 void slhci_log_sc(void);
522 void slhci_log_slreq(struct slhci_pipe *);
523 
524 /* Constified so you can read the values from ddb */
525 const int SLHCI_D_TRACE =	0x0001;
526 const int SLHCI_D_MSG = 	0x0002;
527 const int SLHCI_D_XFER =	0x0004;
528 const int SLHCI_D_MEM = 	0x0008;
529 const int SLHCI_D_INTR =	0x0010;
530 const int SLHCI_D_SXFER =	0x0020;
531 const int SLHCI_D_ERR = 	0x0080;
532 const int SLHCI_D_BUF = 	0x0100;
533 const int SLHCI_D_SOFT =	0x0200;
534 const int SLHCI_D_WAIT =	0x0400;
535 const int SLHCI_D_ROOT =	0x0800;
536 /* SOF/NAK alone normally ignored, SOF also needs D_INTR */
537 const int SLHCI_D_SOF =		0x1000;
538 const int SLHCI_D_NAK =		0x2000;
539 
540 int slhcidebug = 0x1cbc; /* 0xc8c; */ /* 0xffff; */ /* 0xd8c; */
541 
542 SYSCTL_SETUP(sysctl_hw_slhci_setup, "sysctl hw.slhci setup")
543 {
544 	int err;
545 	const struct sysctlnode *rnode;
546 	const struct sysctlnode *cnode;
547 
548 	err = sysctl_createv(clog, 0, NULL, &rnode,
549 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "slhci",
550 	    SYSCTL_DESCR("slhci global controls"),
551 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL);
552 
553 	if (err)
554 		goto fail;
555 
556 	/* control debugging printfs */
557 	err = sysctl_createv(clog, 0, &rnode, &cnode,
558 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
559 	    "debug", SYSCTL_DESCR("Enable debugging output"),
560 	    NULL, 0, &slhcidebug, sizeof(slhcidebug), CTL_CREATE, CTL_EOL);
561 	if (err)
562 		goto fail;
563 
564 	return;
565 fail:
566 	aprint_error("%s: sysctl_createv failed (err = %d)\n", __func__, err);
567 }
568 
569 struct slhci_softc *ssc;
570 
571 #define SLHCI_DEXEC(x, y) do { if ((slhcidebug & SLHCI_ ## x)) { y; } \
572 } while (/*CONSTCOND*/ 0)
573 #define DDOLOG(f, a, b, c, d) do { KERNHIST_LOG(usbhist, f, a, b, c, d); \
574 } while (/*CONSTCOND*/0)
575 #define DLOG(x, f, a, b, c, d) SLHCI_DEXEC(x, DDOLOG(f, a, b, c, d))
576 
577 /*
578  * DDOLOGBUF logs a buffer up to 8 bytes at a time. No identifier so that we
579  * can make it a real function.
580  */
581 static void
582 DDOLOGBUF(uint8_t *buf, unsigned int length)
583 {
584 	SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
585 	int i;
586 
587 	for(i=0; i+8 <= length; i+=8)
588 		DDOLOG("%.4x %.4x %.4x %.4x", (buf[i] << 8) | buf[i+1],
589 		    (buf[i+2] << 8) | buf[i+3], (buf[i+4] << 8) | buf[i+5],
590 		    (buf[i+6] << 8) | buf[i+7]);
591 	if (length == i+7)
592 		DDOLOG("%.4x %.4x %.4x %.2x", (buf[i] << 8) | buf[i+1],
593 		    (buf[i+2] << 8) | buf[i+3], (buf[i+4] << 8) | buf[i+5],
594 		    buf[i+6]);
595 	else if (length == i+6)
596 		DDOLOG("%.4x %.4x %.4x", (buf[i] << 8) | buf[i+1],
597 		    (buf[i+2] << 8) | buf[i+3], (buf[i+4] << 8) | buf[i+5], 0);
598 	else if (length == i+5)
599 		DDOLOG("%.4x %.4x %.2x", (buf[i] << 8) | buf[i+1],
600 		    (buf[i+2] << 8) | buf[i+3], buf[i+4], 0);
601 	else if (length == i+4)
602 		DDOLOG("%.4x %.4x", (buf[i] << 8) | buf[i+1],
603 		    (buf[i+2] << 8) | buf[i+3], 0,0);
604 	else if (length == i+3)
605 		DDOLOG("%.4x %.2x", (buf[i] << 8) | buf[i+1], buf[i+2], 0,0);
606 	else if (length == i+2)
607 		DDOLOG("%.4x", (buf[i] << 8) | buf[i+1], 0,0,0);
608 	else if (length == i+1)
609 		DDOLOG("%.2x", buf[i], 0,0,0);
610 }
611 #define DLOGBUF(x, b, l) SLHCI_DEXEC(x, DDOLOGBUF(b, l))
612 
613 #define DDOLOGCTRL(x)	do {						\
614     DDOLOG("CTRL suspend=%jd", !!((x) & SL11_CTRL_SUSPEND), 0, 0, 0);	\
615     DDOLOG("CTRL ls     =%jd  jk     =%jd  reset  =%jd  sof    =%jd",	\
616 	!!((x) & SL11_CTRL_LOWSPEED), !!((x) & SL11_CTRL_JKSTATE),	\
617 	!!((x) & SL11_CTRL_RESETENGINE), !!((x) & SL11_CTRL_ENABLESOF));\
618 } while (0)
619 
620 #define DDOLOGISR(r)	do {						\
621     DDOLOG("ISR  data   =%jd  det/res=%jd  insert =%jd  sof    =%jd",	\
622 	!!((r) & SL11_ISR_DATA), !!((r) & SL11_ISR_RESUME),		\
623 	!!((r) & SL11_ISR_INSERT), !!!!((r) & SL11_ISR_SOF));		\
624     DDOLOG("ISR             babble =%jd  usbb   =%jd  usba   =%jd",	\
625 	!!((r) & SL11_ISR_BABBLE), !!((r) & SL11_ISR_USBB),		\
626 	!!((r) & SL11_ISR_USBA), 0);					\
627 } while (0)
628 
629 #define DDOLOGIER(r)	do {						\
630     DDOLOG("IER              det/res=%d  insert =%d  sof    =%d",	\
631 	!!((r) & SL11_IER_RESUME),					\
632 	!!((r) & SL11_IER_INSERT), !!!!((r) & SL11_IER_SOF), 0);		\
633     DDOLOG("IER              babble =%d  usbb   =%d  usba   =%d",	\
634 	!!((r) & SL11_IER_BABBLE), !!((r) & SL11_IER_USBB),		\
635 	!!((r) & SL11_IER_USBA), 0);					\
636 } while (0)
637 
638 #define DDOLOGSTATUS(s)	do {						\
639     DDOLOG("STAT stall   =%d  nak     =%d  overflow =%d  setup   =%d",	\
640 	!!((s) & SL11_EPSTAT_STALL), !!((s) & SL11_EPSTAT_NAK),		\
641 	!!((s) & SL11_EPSTAT_OVERFLOW), !!((s) & SL11_EPSTAT_SETUP));	\
642     DDOLOG("STAT sequence=%d  timeout =%d  error    =%d  ack     =%d",	\
643 	!!((s) & SL11_EPSTAT_SEQUENCE),	!!((s) & SL11_EPSTAT_TIMEOUT),	\
644 	!!((s) & SL11_EPSTAT_ERROR), !!((s) & SL11_EPSTAT_ACK));	\
645 } while (0)
646 
647 #define DDOLOGEPCTRL(r)	do {						\
648     DDOLOG("CTRL preamble=%d  toggle  =%d  sof     =%d  iso     =%d",	\
649 	!!((r) & SL11_EPCTRL_PREAMBLE), !!((r) & SL11_EPCTRL_DATATOGGLE),\
650 	!!((r) & SL11_EPCTRL_SOF), !!((r) & SL11_EPCTRL_ISO));		\
651     DDOLOG("CTRL              out     =%d  enable  =%d  arm     =%d",	\
652 	!!((r) & SL11_EPCTRL_DIRECTION),				\
653 	!!((r) & SL11_EPCTRL_ENABLE), !!((r) & SL11_EPCTRL_ARM), 0);	\
654 } while (0)
655 
656 #define DDOLOGEPSTAT(r)	do {						\
657     DDOLOG("STAT stall   =%d  nak     =%d  overflow =%d  setup   =%d",	\
658 	!!((r) & SL11_EPSTAT_STALL), !!((r) & SL11_EPSTAT_NAK),		\
659 	!!((r) & SL11_EPSTAT_OVERFLOW), !!((r) & SL11_EPSTAT_SETUP));	\
660     DDOLOG("STAT sequence=%d  timeout =%d  error    =%d  ack   =%d",	\
661 	!!((r) & SL11_EPSTAT_SEQUENCE), !!((r) & SL11_EPSTAT_TIMEOUT),	\
662 	!!((r) & SL11_EPSTAT_ERROR), !!((r) & SL11_EPSTAT_ACK));	\
663 } while (0)
664 #else /* now !SLHCI_DEBUG */
665 #define slhcidebug 0
666 #define slhci_log_spipe(spipe) ((void)0)
667 #define slhci_log_xfer(xfer) ((void)0)
668 #define SLHCI_DEXEC(x, y) ((void)0)
669 #define DDOLOG(f, a, b, c, d) ((void)0)
670 #define DLOG(x, f, a, b, c, d) ((void)0)
671 #define DDOLOGBUF(b, l) ((void)0)
672 #define DLOGBUF(x, b, l) ((void)0)
673 #define DDOLOGCTRL(x) ((void)0)
674 #define DDOLOGISR(r) ((void)0)
675 #define DDOLOGIER(r) ((void)0)
676 #define DDOLOGSTATUS(s) ((void)0)
677 #define DDOLOGEPCTRL(r) ((void)0)
678 #define DDOLOGEPSTAT(r) ((void)0)
679 #endif /* SLHCI_DEBUG */
680 
681 #ifdef DIAGNOSTIC
682 #define LK_SLASSERT(exp, sc, spipe, xfer, ext) do {			\
683 	if (!(exp)) {							\
684 		printf("%s: assertion %s failed line %u function %s!"	\
685 		" halted\n", SC_NAME(sc), #exp, __LINE__, __func__);\
686 		slhci_halt(sc, spipe, xfer);				\
687 		ext;							\
688 	}								\
689 } while (/*CONSTCOND*/0)
690 #define UL_SLASSERT(exp, sc, spipe, xfer, ext) do {			\
691 	if (!(exp)) {							\
692 		printf("%s: assertion %s failed line %u function %s!"	\
693 		" halted\n", SC_NAME(sc), #exp, __LINE__, __func__);	\
694 		slhci_lock_call(sc, &slhci_halt, spipe, xfer);		\
695 		ext;							\
696 	}								\
697 } while (/*CONSTCOND*/0)
698 #else
699 #define LK_SLASSERT(exp, sc, spipe, xfer, ext) ((void)0)
700 #define UL_SLASSERT(exp, sc, spipe, xfer, ext) ((void)0)
701 #endif
702 
703 const struct usbd_bus_methods slhci_bus_methods = {
704 	.ubm_open = slhci_open,
705 	.ubm_softint= slhci_void,
706 	.ubm_dopoll = slhci_poll,
707 	.ubm_allocx = slhci_allocx,
708 	.ubm_freex = slhci_freex,
709 	.ubm_getlock = slhci_get_lock,
710 	.ubm_rhctrl = slhci_roothub_ctrl,
711 };
712 
713 const struct usbd_pipe_methods slhci_pipe_methods = {
714 	.upm_transfer = slhci_transfer,
715 	.upm_start = slhci_start,
716 	.upm_abort = slhci_abort,
717 	.upm_close = slhci_close,
718 	.upm_cleartoggle = slhci_clear_toggle,
719 	.upm_done = slhci_done,
720 };
721 
722 const struct usbd_pipe_methods slhci_root_methods = {
723 	.upm_transfer = slhci_transfer,
724 	.upm_start = slhci_root_start,
725 	.upm_abort = slhci_abort,
726 	.upm_close = (void (*)(struct usbd_pipe *))slhci_void, /* XXX safe? */
727 	.upm_cleartoggle = slhci_clear_toggle,
728 	.upm_done = slhci_done,
729 };
730 
731 /* Queue inlines */
732 
733 #define GOT_FIRST_TO(tvar, t) \
734     GCQ_GOT_FIRST_TYPED(tvar, &(t)->to, struct slhci_pipe, to)
735 
736 #define FIND_TO(var, t, tvar, cond) \
737     GCQ_FIND_TYPED(var, &(t)->to, tvar, struct slhci_pipe, to, cond)
738 
739 #define FOREACH_AP(var, t, tvar) \
740     GCQ_FOREACH_TYPED(var, &(t)->ap, tvar, struct slhci_pipe, ap)
741 
742 #define GOT_FIRST_TIMED_COND(tvar, t, cond) \
743     GCQ_GOT_FIRST_COND_TYPED(tvar, &(t)->timed, struct slhci_pipe, xq, cond)
744 
745 #define GOT_FIRST_CB(tvar, t) \
746     GCQ_GOT_FIRST_TYPED(tvar, &(t)->q[Q_CB], struct slhci_pipe, xq)
747 
748 #define DEQUEUED_CALLBACK(tvar, t) \
749     GCQ_DEQUEUED_FIRST_TYPED(tvar, &(t)->q[Q_CALLBACKS], struct slhci_pipe, xq)
750 
751 #define FIND_TIMED(var, t, tvar, cond) \
752    GCQ_FIND_TYPED(var, &(t)->timed, tvar, struct slhci_pipe, xq, cond)
753 
754 #define DEQUEUED_WAITQ(tvar, sc) \
755     GCQ_DEQUEUED_FIRST_TYPED(tvar, &(sc)->sc_waitq, struct slhci_pipe, xq)
756 
757 static inline void
758 enter_waitq(struct slhci_softc *sc, struct slhci_pipe *spipe)
759 {
760 	gcq_insert_tail(&sc->sc_waitq, &spipe->xq);
761 }
762 
763 static inline void
764 enter_q(struct slhci_transfers *t, struct slhci_pipe *spipe, int i)
765 {
766 	gcq_insert_tail(&t->q[i], &spipe->xq);
767 }
768 
769 static inline void
770 enter_callback(struct slhci_transfers *t, struct slhci_pipe *spipe)
771 {
772 	gcq_insert_tail(&t->q[Q_CALLBACKS], &spipe->xq);
773 }
774 
775 static inline void
776 enter_all_pipes(struct slhci_transfers *t, struct slhci_pipe *spipe)
777 {
778 	gcq_insert_tail(&t->ap, &spipe->ap);
779 }
780 
781 /* Start out of lock functions. */
782 
783 struct usbd_xfer *
784 slhci_allocx(struct usbd_bus *bus, unsigned int nframes)
785 {
786 	SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
787 	struct usbd_xfer *xfer;
788 
789 	xfer = kmem_zalloc(sizeof(*xfer), KM_SLEEP);
790 
791 	DLOG(D_MEM, "allocx %#jx", (uintptr_t)xfer, 0,0,0);
792 
793 #ifdef SLHCI_MEM_ACCOUNTING
794 	slhci_mem_use(bus, 1);
795 #endif
796 #ifdef DIAGNOSTIC
797 	if (xfer != NULL)
798 		xfer->ux_state = XFER_BUSY;
799 #endif
800 	return xfer;
801 }
802 
803 void
804 slhci_freex(struct usbd_bus *bus, struct usbd_xfer *xfer)
805 {
806 	SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
807 	DLOG(D_MEM, "freex xfer %#jx spipe %#jx",
808 	    (uintptr_t)xfer, (uintptr_t)xfer->ux_pipe,0,0);
809 
810 #ifdef SLHCI_MEM_ACCOUNTING
811 	slhci_mem_use(bus, -1);
812 #endif
813 #ifdef DIAGNOSTIC
814 	if (xfer->ux_state != XFER_BUSY &&
815 	    xfer->ux_status != USBD_NOT_STARTED) {
816 		struct slhci_softc *sc = SLHCI_BUS2SC(bus);
817 		printf("%s: slhci_freex: xfer=%p not busy, %#08x halted\n",
818 		    SC_NAME(sc), xfer, xfer->ux_state);
819 		DDOLOG("xfer=%p not busy, %#08x halted\n", xfer,
820 		    xfer->ux_state, 0, 0);
821 		slhci_lock_call(sc, &slhci_halt, NULL, NULL);
822 		return;
823 	}
824 	xfer->ux_state = XFER_FREE;
825 #endif
826 
827 	kmem_free(xfer, sizeof(*xfer));
828 }
829 
830 static void
831 slhci_get_lock(struct usbd_bus *bus, kmutex_t **lock)
832 {
833 	struct slhci_softc *sc = SLHCI_BUS2SC(bus);
834 
835 	*lock = &sc->sc_lock;
836 }
837 
838 usbd_status
839 slhci_transfer(struct usbd_xfer *xfer)
840 {
841 	SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
842 	struct slhci_softc *sc = SLHCI_XFER2SC(xfer);
843 	usbd_status error;
844 
845 	DLOG(D_TRACE, "transfer type %jd xfer %#jx spipe %#jx ",
846 	    SLHCI_XFER_TYPE(xfer), (uintptr_t)xfer, (uintptr_t)xfer->ux_pipe,
847 	    0);
848 
849 	/* Insert last in queue */
850 	mutex_enter(&sc->sc_lock);
851 	error = usb_insert_transfer(xfer);
852 	mutex_exit(&sc->sc_lock);
853 	if (error) {
854 		if (error != USBD_IN_PROGRESS)
855 			DLOG(D_ERR, "usb_insert_transfer returns %jd!", error,
856 			    0,0,0);
857 		return error;
858 	}
859 
860 	/*
861 	 * Pipe isn't running (otherwise error would be USBD_INPROG),
862 	 * so start it first.
863 	 */
864 
865 	/*
866 	 * Start will take the lock.
867 	 */
868 	error = xfer->ux_pipe->up_methods->upm_start(SIMPLEQ_FIRST(&xfer->ux_pipe->up_queue));
869 
870 	return error;
871 }
872 
873 /* It is not safe for start to return anything other than USBD_INPROG. */
874 usbd_status
875 slhci_start(struct usbd_xfer *xfer)
876 {
877 	SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
878 	struct slhci_softc *sc = SLHCI_XFER2SC(xfer);
879 	struct usbd_pipe *pipe = xfer->ux_pipe;
880 	struct slhci_pipe *spipe = SLHCI_PIPE2SPIPE(pipe);
881 	struct slhci_transfers *t = &sc->sc_transfers;
882 	usb_endpoint_descriptor_t *ed = pipe->up_endpoint->ue_edesc;
883 	unsigned int max_packet;
884 
885 	mutex_enter(&sc->sc_lock);
886 
887 	max_packet = UGETW(ed->wMaxPacketSize);
888 
889 	DLOG(D_TRACE, "transfer type %jd start xfer %#jx spipe %#jx length %jd",
890 	    spipe->ptype, (uintptr_t)xfer, (uintptr_t)spipe, xfer->ux_length);
891 
892 	/* root transfers use slhci_root_start */
893 
894 	KASSERT(spipe->xfer == NULL); /* not SLASSERT */
895 
896 	xfer->ux_actlen = 0;
897 	xfer->ux_status = USBD_IN_PROGRESS;
898 
899 	spipe->xfer = xfer;
900 
901 	spipe->nerrs = 0;
902 	spipe->frame = t->frame;
903 	spipe->control = SL11_EPCTRL_ARM_ENABLE;
904 	spipe->tregs[DEV] = pipe->up_dev->ud_addr;
905 	spipe->tregs[PID] = spipe->newpid = UE_GET_ADDR(ed->bEndpointAddress)
906 	    | (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN ? SL11_PID_IN :
907 	    SL11_PID_OUT);
908 	spipe->newlen[0] = xfer->ux_length % max_packet;
909 	spipe->newlen[1] = uimin(xfer->ux_length, max_packet);
910 
911 	if (spipe->ptype == PT_BULK || spipe->ptype == PT_INTR) {
912 		if (spipe->pflags & PF_TOGGLE)
913 			spipe->control |= SL11_EPCTRL_DATATOGGLE;
914 		spipe->tregs[LEN] = spipe->newlen[1];
915 		if (spipe->tregs[LEN])
916 			spipe->buffer = xfer->ux_buf;
917 		else
918 			spipe->buffer = NULL;
919 		spipe->lastframe = t->frame;
920 		if (spipe->ptype == PT_INTR) {
921 			spipe->frame = spipe->lastframe +
922 			    spipe->pipe.up_interval;
923 		}
924 
925 #if defined(DEBUG) || defined(SLHCI_DEBUG)
926 		if (__predict_false(spipe->ptype == PT_INTR &&
927 		    xfer->ux_length > spipe->tregs[LEN])) {
928 			printf("%s: Long INTR transfer not supported!\n",
929 			    SC_NAME(sc));
930 			DDOLOG("Long INTR transfer not supported!", 0, 0, 0, 0);
931 			xfer->ux_status = USBD_INVAL;
932 		}
933 #endif
934 	} else {
935 		/* ptype may be currently set to any control transfer type. */
936 		SLHCI_DEXEC(D_TRACE, slhci_log_xfer(xfer));
937 
938 		/* SETUP contains IN/OUT bits also */
939 		spipe->tregs[PID] |= SL11_PID_SETUP;
940 		spipe->tregs[LEN] = 8;
941 		spipe->buffer = (uint8_t *)&xfer->ux_request;
942 		DLOGBUF(D_XFER, spipe->buffer, spipe->tregs[LEN]);
943 		spipe->ptype = PT_CTRL_SETUP;
944 		spipe->newpid &= ~SL11_PID_BITS;
945 		if (xfer->ux_length == 0 ||
946 		    (xfer->ux_request.bmRequestType & UT_READ))
947 			spipe->newpid |= SL11_PID_IN;
948 		else
949 			spipe->newpid |= SL11_PID_OUT;
950 	}
951 
952 	if (xfer->ux_flags & USBD_FORCE_SHORT_XFER &&
953 	    spipe->tregs[LEN] == max_packet &&
954 	    (spipe->newpid & SL11_PID_BITS) == SL11_PID_OUT)
955 		spipe->wantshort = 1;
956 	else
957 		spipe->wantshort = 0;
958 
959 	/*
960 	 * The goal of newbustime and newlen is to avoid bustime calculation
961 	 * in the interrupt.  The calculations are not too complex, but they
962 	 * complicate the conditional logic somewhat and doing them all in the
963 	 * same place shares constants. Index 0 is "short length" for bulk and
964 	 * ctrl data and 1 is "full length" for ctrl data (bulk/intr are
965 	 * already set to full length).
966 	 */
967 	if (spipe->pflags & PF_LS) {
968 		/*
969 		 * Setting PREAMBLE for directly connected LS devices will
970 		 * lock up the chip.
971 		 */
972 		if (spipe->pflags & PF_PREAMBLE)
973 			spipe->control |= SL11_EPCTRL_PREAMBLE;
974 		if (max_packet <= 8) {
975 			spipe->bustime = SLHCI_LS_CONST +
976 			    SLHCI_LS_DATA_TIME(spipe->tregs[LEN]);
977 			spipe->newbustime[0] = SLHCI_LS_CONST +
978 			    SLHCI_LS_DATA_TIME(spipe->newlen[0]);
979 			spipe->newbustime[1] = SLHCI_LS_CONST +
980 			    SLHCI_LS_DATA_TIME(spipe->newlen[1]);
981 		} else
982 			xfer->ux_status = USBD_INVAL;
983 	} else {
984 		UL_SLASSERT(pipe->up_dev->ud_speed == USB_SPEED_FULL, sc,
985 		    spipe, xfer, return USBD_IN_PROGRESS);
986 		if (max_packet <= SL11_MAX_PACKET_SIZE) {
987 			spipe->bustime = SLHCI_FS_CONST +
988 			    SLHCI_FS_DATA_TIME(spipe->tregs[LEN]);
989 			spipe->newbustime[0] = SLHCI_FS_CONST +
990 			    SLHCI_FS_DATA_TIME(spipe->newlen[0]);
991 			spipe->newbustime[1] = SLHCI_FS_CONST +
992 			    SLHCI_FS_DATA_TIME(spipe->newlen[1]);
993 		} else
994 			xfer->ux_status = USBD_INVAL;
995 	}
996 
997 	/*
998 	 * The datasheet incorrectly indicates that DIRECTION is for
999 	 * "transmit to host".  It is for OUT and SETUP.  The app note
1000 	 * describes its use correctly.
1001 	 */
1002 	if ((spipe->tregs[PID] & SL11_PID_BITS) != SL11_PID_IN)
1003 		spipe->control |= SL11_EPCTRL_DIRECTION;
1004 
1005 	slhci_start_entry(sc, spipe);
1006 
1007 	mutex_exit(&sc->sc_lock);
1008 
1009 	return USBD_IN_PROGRESS;
1010 }
1011 
1012 usbd_status
1013 slhci_root_start(struct usbd_xfer *xfer)
1014 {
1015 	SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
1016 	struct slhci_softc *sc;
1017 	struct slhci_pipe *spipe __diagused;
1018 
1019 	spipe = SLHCI_PIPE2SPIPE(xfer->ux_pipe);
1020 	sc = SLHCI_XFER2SC(xfer);
1021 
1022 	struct slhci_transfers *t = &sc->sc_transfers;
1023 
1024 	LK_SLASSERT(spipe != NULL && xfer != NULL, sc, spipe, xfer, return
1025 	    USBD_CANCELLED);
1026 
1027 	DLOG(D_TRACE, "transfer type %jd start",
1028 	    SLHCI_XFER_TYPE(xfer), 0, 0, 0);
1029 
1030 	KASSERT(spipe->ptype == PT_ROOT_INTR);
1031 
1032 	mutex_enter(&sc->sc_intr_lock);
1033 	KASSERT(t->rootintr == NULL);
1034 	t->rootintr = xfer;
1035 	xfer->ux_status = USBD_IN_PROGRESS;
1036 	mutex_exit(&sc->sc_intr_lock);
1037 
1038 	return USBD_IN_PROGRESS;
1039 }
1040 
1041 usbd_status
1042 slhci_open(struct usbd_pipe *pipe)
1043 {
1044 	SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
1045 	struct usbd_device *dev;
1046 	struct slhci_softc *sc;
1047 	struct slhci_pipe *spipe;
1048 	usb_endpoint_descriptor_t *ed;
1049 	unsigned int max_packet, pmaxpkt;
1050 	uint8_t rhaddr;
1051 
1052 	dev = pipe->up_dev;
1053 	sc = SLHCI_PIPE2SC(pipe);
1054 	spipe = SLHCI_PIPE2SPIPE(pipe);
1055 	ed = pipe->up_endpoint->ue_edesc;
1056 	rhaddr = dev->ud_bus->ub_rhaddr;
1057 
1058 	DLOG(D_TRACE, "slhci_open(addr=%jd,ep=%jd,rootaddr=%jd)",
1059 		dev->ud_addr, ed->bEndpointAddress, rhaddr, 0);
1060 
1061 	spipe->pflags = 0;
1062 	spipe->frame = 0;
1063 	spipe->lastframe = 0;
1064 	spipe->xfer = NULL;
1065 	spipe->buffer = NULL;
1066 
1067 	gcq_init(&spipe->ap);
1068 	gcq_init(&spipe->to);
1069 	gcq_init(&spipe->xq);
1070 
1071 	/*
1072 	 * The endpoint descriptor will not have been set up yet in the case
1073 	 * of the standard control pipe, so the max packet checks are also
1074 	 * necessary in start.
1075 	 */
1076 
1077 	max_packet = UGETW(ed->wMaxPacketSize);
1078 
1079 	if (dev->ud_speed == USB_SPEED_LOW) {
1080 		spipe->pflags |= PF_LS;
1081 		if (dev->ud_myhub->ud_addr != rhaddr) {
1082 			spipe->pflags |= PF_PREAMBLE;
1083 			if (!slhci_try_lsvh)
1084 				return slhci_lock_call(sc, &slhci_lsvh_warn,
1085 				    spipe, NULL);
1086 		}
1087 		pmaxpkt = 8;
1088 	} else
1089 		pmaxpkt = SL11_MAX_PACKET_SIZE;
1090 
1091 	if (max_packet > pmaxpkt) {
1092 		DLOG(D_ERR, "packet too large! size %jd spipe %#jx", max_packet,
1093 		    (uintptr_t)spipe, 0,0);
1094 		return USBD_INVAL;
1095 	}
1096 
1097 	if (dev->ud_addr == rhaddr) {
1098 		switch (ed->bEndpointAddress) {
1099 		case USB_CONTROL_ENDPOINT:
1100 			spipe->ptype = PT_ROOT_CTRL;
1101 			pipe->up_interval = 0;
1102 			pipe->up_methods = &roothub_ctrl_methods;
1103 			break;
1104 		case UE_DIR_IN | USBROOTHUB_INTR_ENDPT:
1105 			spipe->ptype = PT_ROOT_INTR;
1106 			pipe->up_interval = 1;
1107 			pipe->up_methods = &slhci_root_methods;
1108 			break;
1109 		default:
1110 			printf("%s: Invalid root endpoint!\n", SC_NAME(sc));
1111 			DDOLOG("Invalid root endpoint", 0, 0, 0, 0);
1112 			return USBD_INVAL;
1113 		}
1114 		return USBD_NORMAL_COMPLETION;
1115 	} else {
1116 		switch (ed->bmAttributes & UE_XFERTYPE) {
1117 		case UE_CONTROL:
1118 			spipe->ptype = PT_CTRL_SETUP;
1119 			pipe->up_interval = 0;
1120 			break;
1121 		case UE_INTERRUPT:
1122 			spipe->ptype = PT_INTR;
1123 			if (pipe->up_interval == USBD_DEFAULT_INTERVAL)
1124 				pipe->up_interval = ed->bInterval;
1125 			break;
1126 		case UE_ISOCHRONOUS:
1127 			return slhci_lock_call(sc, &slhci_isoc_warn, spipe,
1128 			    NULL);
1129 		case UE_BULK:
1130 			spipe->ptype = PT_BULK;
1131 			pipe->up_interval = 0;
1132 			break;
1133 		}
1134 
1135 		DLOG(D_MSG, "open pipe type %jd interval %jd", spipe->ptype,
1136 		    pipe->up_interval, 0,0);
1137 
1138 		pipe->up_methods = __UNCONST(&slhci_pipe_methods);
1139 
1140 		return slhci_lock_call(sc, &slhci_open_pipe, spipe, NULL);
1141 	}
1142 }
1143 
1144 int
1145 slhci_supported_rev(uint8_t rev)
1146 {
1147 	return rev >= SLTYPE_SL811HS_R12 && rev <= SLTYPE_SL811HS_R15;
1148 }
1149 
1150 /*
1151  * Must be called before the ISR is registered. Interrupts can be shared so
1152  * slhci_intr could be called as soon as the ISR is registered.
1153  * Note max_current argument is actual current, but stored as current/2
1154  */
1155 void
1156 slhci_preinit(struct slhci_softc *sc, PowerFunc pow, bus_space_tag_t iot,
1157     bus_space_handle_t ioh, uint16_t max_current, uint32_t stride)
1158 {
1159 	struct slhci_transfers *t;
1160 	int i;
1161 
1162 	t = &sc->sc_transfers;
1163 
1164 #ifdef SLHCI_DEBUG
1165 	ssc = sc;
1166 #endif
1167 
1168 	mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_SOFTUSB);
1169 	mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_USB);
1170 
1171 	/* sc->sc_ier = 0;	*/
1172 	/* t->rootintr = NULL;	*/
1173 	t->flags = F_NODEV|F_UDISABLED;
1174 	t->pend = INT_MAX;
1175 	KASSERT(slhci_wait_time != INT_MAX);
1176 	t->len[0] = t->len[1] = -1;
1177 	if (max_current > 500)
1178 		max_current = 500;
1179 	t->max_current = (uint8_t)(max_current / 2);
1180 	sc->sc_enable_power = pow;
1181 	sc->sc_iot = iot;
1182 	sc->sc_ioh = ioh;
1183 	sc->sc_stride = stride;
1184 
1185 	KASSERT(Q_MAX+1 == sizeof(t->q) / sizeof(t->q[0]));
1186 
1187 	for (i = 0; i <= Q_MAX; i++)
1188 		gcq_init_head(&t->q[i]);
1189 	gcq_init_head(&t->timed);
1190 	gcq_init_head(&t->to);
1191 	gcq_init_head(&t->ap);
1192 	gcq_init_head(&sc->sc_waitq);
1193 }
1194 
1195 int
1196 slhci_attach(struct slhci_softc *sc)
1197 {
1198 	struct slhci_transfers *t;
1199 	const char *rev;
1200 
1201 	t = &sc->sc_transfers;
1202 
1203 	/* Detect and check the controller type */
1204 	t->sltype = SL11_GET_REV(slhci_read(sc, SL11_REV));
1205 
1206 	/* SL11H not supported */
1207 	if (!slhci_supported_rev(t->sltype)) {
1208 		if (t->sltype == SLTYPE_SL11H)
1209 			printf("%s: SL11H unsupported or bus error!\n",
1210 			    SC_NAME(sc));
1211 		else
1212 			printf("%s: Unknown chip revision!\n", SC_NAME(sc));
1213 		return -1;
1214 	}
1215 
1216 #ifdef SLHCI_DEBUG
1217 	if (slhci_memtest(sc)) {
1218 		printf("%s: memory/bus error!\n", SC_NAME(sc));
1219 		return -1;
1220 	}
1221 #endif
1222 
1223 	callout_init(&sc->sc_timer, CALLOUT_MPSAFE);
1224 	callout_setfunc(&sc->sc_timer, slhci_reset_entry, sc);
1225 
1226 	/*
1227 	 * It is not safe to call the soft interrupt directly as
1228 	 * usb_schedsoftintr does in the ub_usepolling case (due to locking).
1229 	 */
1230 	sc->sc_cb_softintr = softint_establish(SOFTINT_NET,
1231 	    slhci_callback_entry, sc);
1232 
1233 	if (t->sltype == SLTYPE_SL811HS_R12)
1234 		rev = "(rev 1.2)";
1235 	else if (t->sltype == SLTYPE_SL811HS_R14)
1236 		rev = "(rev 1.4 or 1.5)";
1237 	else
1238 		rev = "(unknown revision)";
1239 
1240 	aprint_normal("%s: ScanLogic SL811HS/T USB Host Controller %s\n",
1241 	    SC_NAME(sc), rev);
1242 
1243 	aprint_normal("%s: Max Current %u mA (value by code, not by probe)\n",
1244 	    SC_NAME(sc), t->max_current * 2);
1245 
1246 #if defined(SLHCI_DEBUG) || defined(SLHCI_NO_OVERTIME) || \
1247     defined(SLHCI_TRY_LSVH) || defined(SLHCI_PROFILE_TRANSFER)
1248 	aprint_normal("%s: driver options:"
1249 #ifdef SLHCI_DEBUG
1250 	" SLHCI_DEBUG"
1251 #endif
1252 #ifdef SLHCI_TRY_LSVH
1253 	" SLHCI_TRY_LSVH"
1254 #endif
1255 #ifdef SLHCI_NO_OVERTIME
1256 	" SLHCI_NO_OVERTIME"
1257 #endif
1258 #ifdef SLHCI_PROFILE_TRANSFER
1259 	" SLHCI_PROFILE_TRANSFER"
1260 #endif
1261 	"\n", SC_NAME(sc));
1262 #endif
1263 	sc->sc_bus.ub_revision = USBREV_1_1;
1264 	sc->sc_bus.ub_methods = __UNCONST(&slhci_bus_methods);
1265 	sc->sc_bus.ub_pipesize = sizeof(struct slhci_pipe);
1266 	sc->sc_bus.ub_usedma = false;
1267 
1268 	if (!sc->sc_enable_power)
1269 		t->flags |= F_REALPOWER;
1270 
1271 	t->flags |= F_ACTIVE;
1272 
1273 	/* Attach usb and uhub. */
1274 	sc->sc_child = config_found(SC_DEV(sc), &sc->sc_bus, usbctlprint);
1275 
1276 	if (!sc->sc_child)
1277 		return -1;
1278 	else
1279 		return 0;
1280 }
1281 
1282 int
1283 slhci_detach(struct slhci_softc *sc, int flags)
1284 {
1285 	struct slhci_transfers *t;
1286 	int ret;
1287 
1288 	t = &sc->sc_transfers;
1289 
1290 	/* By this point bus access is no longer allowed. */
1291 
1292 	KASSERT(!(t->flags & F_ACTIVE));
1293 
1294 	/*
1295 	 * To be MPSAFE is not sufficient to cancel callouts and soft
1296 	 * interrupts and assume they are dead since the code could already be
1297 	 * running or about to run.  Wait until they are known to be done.
1298 	 */
1299 	while (t->flags & (F_RESET|F_CALLBACK))
1300 		tsleep(&sc, PPAUSE, "slhci_detach", hz);
1301 
1302 	softint_disestablish(sc->sc_cb_softintr);
1303 
1304 	mutex_destroy(&sc->sc_lock);
1305 	mutex_destroy(&sc->sc_intr_lock);
1306 
1307 	ret = 0;
1308 
1309 	if (sc->sc_child)
1310 		ret = config_detach(sc->sc_child, flags);
1311 
1312 #ifdef SLHCI_MEM_ACCOUNTING
1313 	SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
1314 	if (sc->sc_mem_use) {
1315 		printf("%s: Memory still in use after detach! mem_use (count)"
1316 		    " = %d\n", SC_NAME(sc), sc->sc_mem_use);
1317 		DDOLOG("Memory still in use after detach! mem_use (count)"
1318 		    " = %d", sc->sc_mem_use, 0, 0, 0);
1319 	}
1320 #endif
1321 
1322 	return ret;
1323 }
1324 
1325 int
1326 slhci_activate(device_t self, enum devact act)
1327 {
1328 	struct slhci_softc *sc = device_private(self);
1329 
1330 	switch (act) {
1331 	case DVACT_DEACTIVATE:
1332 		slhci_lock_call(sc, &slhci_halt, NULL, NULL);
1333 		return 0;
1334 	default:
1335 		return EOPNOTSUPP;
1336 	}
1337 }
1338 
1339 void
1340 slhci_abort(struct usbd_xfer *xfer)
1341 {
1342 	SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
1343 	struct slhci_softc *sc;
1344 	struct slhci_pipe *spipe;
1345 
1346 	spipe = SLHCI_PIPE2SPIPE(xfer->ux_pipe);
1347 
1348 	if (spipe == NULL)
1349 		goto callback;
1350 
1351 	sc = SLHCI_XFER2SC(xfer);
1352 	KASSERT(mutex_owned(&sc->sc_lock));
1353 
1354 	DLOG(D_TRACE, "transfer type %jd abort xfer %#jx spipe %#jx "
1355 	    " spipe->xfer %#jx", spipe->ptype, (uintptr_t)xfer,
1356 	    (uintptr_t)spipe, (uintptr_t)spipe->xfer);
1357 
1358 	slhci_lock_call(sc, &slhci_do_abort, spipe, xfer);
1359 
1360 callback:
1361 	xfer->ux_status = USBD_CANCELLED;
1362 	usb_transfer_complete(xfer);
1363 }
1364 
1365 void
1366 slhci_close(struct usbd_pipe *pipe)
1367 {
1368 	SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
1369 	struct slhci_softc *sc;
1370 	struct slhci_pipe *spipe;
1371 
1372 	sc = SLHCI_PIPE2SC(pipe);
1373 	spipe = SLHCI_PIPE2SPIPE(pipe);
1374 
1375 	DLOG(D_TRACE, "transfer type %jd close spipe %#jx spipe->xfer %#jx",
1376 	    spipe->ptype, (uintptr_t)spipe, (uintptr_t)spipe->xfer, 0);
1377 
1378 	slhci_lock_call(sc, &slhci_close_pipe, spipe, NULL);
1379 }
1380 
1381 void
1382 slhci_clear_toggle(struct usbd_pipe *pipe)
1383 {
1384 	SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
1385 	struct slhci_pipe *spipe;
1386 
1387 	spipe = SLHCI_PIPE2SPIPE(pipe);
1388 
1389 	DLOG(D_TRACE, "transfer type %jd toggle spipe %#jx", spipe->ptype,
1390 	    (uintptr_t)spipe, 0, 0);
1391 
1392 	spipe->pflags &= ~PF_TOGGLE;
1393 
1394 #ifdef DIAGNOSTIC
1395 	if (spipe->xfer != NULL) {
1396 		struct slhci_softc *sc = (struct slhci_softc
1397 		    *)pipe->up_dev->ud_bus;
1398 
1399 		printf("%s: Clear toggle on transfer in progress! halted\n",
1400 		    SC_NAME(sc));
1401 		DDOLOG("Clear toggle on transfer in progress! halted",
1402 		    0, 0, 0, 0);
1403 		slhci_halt(sc, NULL, NULL);
1404 	}
1405 #endif
1406 }
1407 
1408 void
1409 slhci_poll(struct usbd_bus *bus) /* XXX necessary? */
1410 {
1411 	SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
1412 	struct slhci_softc *sc;
1413 
1414 	sc = SLHCI_BUS2SC(bus);
1415 
1416 	DLOG(D_TRACE, "slhci_poll", 0,0,0,0);
1417 
1418 	slhci_lock_call(sc, &slhci_do_poll, NULL, NULL);
1419 }
1420 
1421 void
1422 slhci_done(struct usbd_xfer *xfer)
1423 {
1424 }
1425 
1426 void
1427 slhci_void(void *v) {}
1428 
1429 /* End out of lock functions. Start lock entry functions. */
1430 
1431 #ifdef SLHCI_MEM_ACCOUNTING
1432 void
1433 slhci_mem_use(struct usbd_bus *bus, int val)
1434 {
1435 	struct slhci_softc *sc = SLHCI_BUS2SC(bus);
1436 
1437 	mutex_enter(&sc->sc_intr_lock);
1438 	sc->sc_mem_use += val;
1439 	mutex_exit(&sc->sc_intr_lock);
1440 }
1441 #endif
1442 
1443 void
1444 slhci_reset_entry(void *arg)
1445 {
1446 	SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
1447 	struct slhci_softc *sc = arg;
1448 
1449 	mutex_enter(&sc->sc_intr_lock);
1450 	slhci_reset(sc);
1451 	/*
1452 	 * We cannot call the callback directly since we could then be reset
1453 	 * again before finishing and need the callout delay for timing.
1454 	 * Scheduling the callout again before we exit would defeat the reap
1455 	 * mechanism since we could be unlocked while the reset flag is not
1456 	 * set. The callback code will check the wait queue.
1457 	 */
1458 	slhci_callback_schedule(sc);
1459 	mutex_exit(&sc->sc_intr_lock);
1460 }
1461 
1462 usbd_status
1463 slhci_lock_call(struct slhci_softc *sc, LockCallFunc lcf, struct slhci_pipe
1464     *spipe, struct usbd_xfer *xfer)
1465 {
1466 	usbd_status ret;
1467 
1468 	mutex_enter(&sc->sc_intr_lock);
1469 	ret = (*lcf)(sc, spipe, xfer);
1470 	slhci_main(sc);
1471 	mutex_exit(&sc->sc_intr_lock);
1472 
1473 	return ret;
1474 }
1475 
1476 void
1477 slhci_start_entry(struct slhci_softc *sc, struct slhci_pipe *spipe)
1478 {
1479 	struct slhci_transfers *t;
1480 
1481 	mutex_enter(&sc->sc_intr_lock);
1482 	t = &sc->sc_transfers;
1483 
1484 	if (!(t->flags & (F_AINPROG|F_BINPROG))) {
1485 		slhci_enter_xfer(sc, spipe);
1486 		slhci_dotransfer(sc);
1487 		slhci_main(sc);
1488 	} else {
1489 		enter_waitq(sc, spipe);
1490 	}
1491 	mutex_exit(&sc->sc_intr_lock);
1492 }
1493 
1494 void
1495 slhci_callback_entry(void *arg)
1496 {
1497 	SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
1498 	struct slhci_softc *sc;
1499 	struct slhci_transfers *t;
1500 
1501 	sc = (struct slhci_softc *)arg;
1502 
1503 	mutex_enter(&sc->sc_intr_lock);
1504 	t = &sc->sc_transfers;
1505 	DLOG(D_SOFT, "callback_entry flags %#jx", t->flags, 0,0,0);
1506 
1507 repeat:
1508 	slhci_callback(sc);
1509 
1510 	if (!gcq_empty(&sc->sc_waitq)) {
1511 		slhci_enter_xfers(sc);
1512 		slhci_dotransfer(sc);
1513 		slhci_waitintr(sc, 0);
1514 		goto repeat;
1515 	}
1516 
1517 	t->flags &= ~F_CALLBACK;
1518 	mutex_exit(&sc->sc_intr_lock);
1519 }
1520 
1521 void
1522 slhci_do_callback(struct slhci_softc *sc, struct usbd_xfer *xfer)
1523 {
1524 	SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
1525 	KASSERT(mutex_owned(&sc->sc_intr_lock));
1526 
1527 	start_cc_time(&t_callback, (u_int)xfer);
1528 	mutex_exit(&sc->sc_intr_lock);
1529 
1530 	mutex_enter(&sc->sc_lock);
1531 	usb_transfer_complete(xfer);
1532 	mutex_exit(&sc->sc_lock);
1533 
1534 	mutex_enter(&sc->sc_intr_lock);
1535 	stop_cc_time(&t_callback);
1536 }
1537 
1538 int
1539 slhci_intr(void *arg)
1540 {
1541 	SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
1542 	struct slhci_softc *sc = arg;
1543 	int ret = 0;
1544 	int irq;
1545 
1546 	start_cc_time(&t_hard_int, (unsigned int)arg);
1547 	mutex_enter(&sc->sc_intr_lock);
1548 
1549 	do {
1550 		irq = slhci_dointr(sc);
1551 		ret |= irq;
1552 		slhci_main(sc);
1553 	} while (irq);
1554 	mutex_exit(&sc->sc_intr_lock);
1555 
1556 	stop_cc_time(&t_hard_int);
1557 	return ret;
1558 }
1559 
1560 /* called with interrupt lock only held. */
1561 void
1562 slhci_main(struct slhci_softc *sc)
1563 {
1564 	SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
1565 	struct slhci_transfers *t;
1566 
1567 	t = &sc->sc_transfers;
1568 
1569 	KASSERT(mutex_owned(&sc->sc_intr_lock));
1570 
1571 waitcheck:
1572 	slhci_waitintr(sc, slhci_wait_time);
1573 
1574 	/*
1575 	 * The direct call is needed in the ub_usepolling and disabled cases
1576 	 * since the soft interrupt is not available.  In the disabled case,
1577 	 * this code can be reached from the usb detach, after the reaping of
1578 	 * the soft interrupt.  That test could be !F_ACTIVE, but there is no
1579 	 * reason not to make the callbacks directly in the other DISABLED
1580 	 * cases.
1581 	 */
1582 	if ((t->flags & F_ROOTINTR) || !gcq_empty(&t->q[Q_CALLBACKS])) {
1583 		if (__predict_false(sc->sc_bus.ub_usepolling ||
1584 		    t->flags & F_DISABLED))
1585 			slhci_callback(sc);
1586 		else
1587 			slhci_callback_schedule(sc);
1588 	}
1589 
1590 	if (!gcq_empty(&sc->sc_waitq)) {
1591 		slhci_enter_xfers(sc);
1592 		slhci_dotransfer(sc);
1593 		goto waitcheck;
1594 	}
1595 	DLOG(D_INTR, "... done", 0, 0, 0, 0);
1596 }
1597 
1598 /* End lock entry functions. Start in lock function. */
1599 
1600 /* Register read/write routines and barriers. */
1601 #ifdef SLHCI_BUS_SPACE_BARRIERS
1602 #define BSB(a, b, c, d, e) bus_space_barrier(a, b, c, d, BUS_SPACE_BARRIER_ # e)
1603 #define BSB_SYNC(a, b, c, d) bus_space_barrier(a, b, c, d, BUS_SPACE_BARRIER_READ|BUS_SPACE_BARRIER_WRITE)
1604 #else /* now !SLHCI_BUS_SPACE_BARRIERS */
1605 #define BSB(a, b, c, d, e) __USE(d)
1606 #define BSB_SYNC(a, b, c, d)
1607 #endif /* SLHCI_BUS_SPACE_BARRIERS */
1608 
1609 static void
1610 slhci_write(struct slhci_softc *sc, uint8_t addr, uint8_t data)
1611 {
1612 	bus_size_t paddr, pdata, pst, psz;
1613 	bus_space_tag_t iot;
1614 	bus_space_handle_t ioh;
1615 
1616 	paddr = pst = 0;
1617 	pdata = sc->sc_stride;
1618 	psz = pdata * 2;
1619 	iot = sc->sc_iot;
1620 	ioh = sc->sc_ioh;
1621 
1622 	bus_space_write_1(iot, ioh, paddr, addr);
1623 	BSB(iot, ioh, pst, psz, WRITE_BEFORE_WRITE);
1624 	bus_space_write_1(iot, ioh, pdata, data);
1625 	BSB(iot, ioh, pst, psz, WRITE_BEFORE_WRITE);
1626 }
1627 
1628 static uint8_t
1629 slhci_read(struct slhci_softc *sc, uint8_t addr)
1630 {
1631 	bus_size_t paddr, pdata, pst, psz;
1632 	bus_space_tag_t iot;
1633 	bus_space_handle_t ioh;
1634 	uint8_t data;
1635 
1636 	paddr = pst = 0;
1637 	pdata = sc->sc_stride;
1638 	psz = pdata * 2;
1639 	iot = sc->sc_iot;
1640 	ioh = sc->sc_ioh;
1641 
1642 	bus_space_write_1(iot, ioh, paddr, addr);
1643 	BSB(iot, ioh, pst, psz, WRITE_BEFORE_READ);
1644 	data = bus_space_read_1(iot, ioh, pdata);
1645 	BSB(iot, ioh, pst, psz, READ_BEFORE_WRITE);
1646 	return data;
1647 }
1648 
1649 #if 0 /* auto-increment mode broken, see errata doc */
1650 static void
1651 slhci_write_multi(struct slhci_softc *sc, uint8_t addr, uint8_t *buf, int l)
1652 {
1653 	bus_size_t paddr, pdata, pst, psz;
1654 	bus_space_tag_t iot;
1655 	bus_space_handle_t ioh;
1656 
1657 	paddr = pst = 0;
1658 	pdata = sc->sc_stride;
1659 	psz = pdata * 2;
1660 	iot = sc->sc_iot;
1661 	ioh = sc->sc_ioh;
1662 
1663 	bus_space_write_1(iot, ioh, paddr, addr);
1664 	BSB(iot, ioh, pst, psz, WRITE_BEFORE_WRITE);
1665 	bus_space_write_multi_1(iot, ioh, pdata, buf, l);
1666 	BSB(iot, ioh, pst, psz, WRITE_BEFORE_WRITE);
1667 }
1668 
1669 static void
1670 slhci_read_multi(struct slhci_softc *sc, uint8_t addr, uint8_t *buf, int l)
1671 {
1672 	bus_size_t paddr, pdata, pst, psz;
1673 	bus_space_tag_t iot;
1674 	bus_space_handle_t ioh;
1675 
1676 	paddr = pst = 0;
1677 	pdata = sc->sc_stride;
1678 	psz = pdata * 2;
1679 	iot = sc->sc_iot;
1680 	ioh = sc->sc_ioh;
1681 
1682 	bus_space_write_1(iot, ioh, paddr, addr);
1683 	BSB(iot, ioh, pst, psz, WRITE_BEFORE_READ);
1684 	bus_space_read_multi_1(iot, ioh, pdata, buf, l);
1685 	BSB(iot, ioh, pst, psz, READ_BEFORE_WRITE);
1686 }
1687 #else
1688 static void
1689 slhci_write_multi(struct slhci_softc *sc, uint8_t addr, uint8_t *buf, int l)
1690 {
1691 #if 1
1692 	for (; l; addr++, buf++, l--)
1693 		slhci_write(sc, addr, *buf);
1694 #else
1695 	bus_size_t paddr, pdata, pst, psz;
1696 	bus_space_tag_t iot;
1697 	bus_space_handle_t ioh;
1698 
1699 	paddr = pst = 0;
1700 	pdata = sc->sc_stride;
1701 	psz = pdata * 2;
1702 	iot = sc->sc_iot;
1703 	ioh = sc->sc_ioh;
1704 
1705 	for (; l; addr++, buf++, l--) {
1706 		bus_space_write_1(iot, ioh, paddr, addr);
1707 		BSB(iot, ioh, pst, psz, WRITE_BEFORE_WRITE);
1708 		bus_space_write_1(iot, ioh, pdata, *buf);
1709 		BSB(iot, ioh, pst, psz, WRITE_BEFORE_WRITE);
1710 	}
1711 #endif
1712 }
1713 
1714 static void
1715 slhci_read_multi(struct slhci_softc *sc, uint8_t addr, uint8_t *buf, int l)
1716 {
1717 #if 1
1718 	for (; l; addr++, buf++, l--)
1719 		*buf = slhci_read(sc, addr);
1720 #else
1721 	bus_size_t paddr, pdata, pst, psz;
1722 	bus_space_tag_t iot;
1723 	bus_space_handle_t ioh;
1724 
1725 	paddr = pst = 0;
1726 	pdata = sc->sc_stride;
1727 	psz = pdata * 2;
1728 	iot = sc->sc_iot;
1729 	ioh = sc->sc_ioh;
1730 
1731 	for (; l; addr++, buf++, l--) {
1732 		bus_space_write_1(iot, ioh, paddr, addr);
1733 		BSB(iot, ioh, pst, psz, WRITE_BEFORE_READ);
1734 		*buf = bus_space_read_1(iot, ioh, pdata);
1735 		BSB(iot, ioh, pst, psz, READ_BEFORE_WRITE);
1736 	}
1737 #endif
1738 }
1739 #endif
1740 
1741 /*
1742  * After calling waitintr it is necessary to either call slhci_callback or
1743  * schedule the callback if necessary.  The callback cannot be called directly
1744  * from the hard interrupt since it interrupts at a high IPL and callbacks
1745  * can do copyout and such.
1746  */
1747 static void
1748 slhci_waitintr(struct slhci_softc *sc, int wait_time)
1749 {
1750 	SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
1751 	struct slhci_transfers *t;
1752 
1753 	t = &sc->sc_transfers;
1754 
1755 	KASSERT(mutex_owned(&sc->sc_intr_lock));
1756 
1757 	if (__predict_false(sc->sc_bus.ub_usepolling))
1758 		wait_time = 12000;
1759 
1760 	while (t->pend <= wait_time) {
1761 		DLOG(D_WAIT, "waiting... frame %jd pend %jd flags %#jx",
1762 		    t->frame, t->pend, t->flags, 0);
1763 		LK_SLASSERT(t->flags & F_ACTIVE, sc, NULL, NULL, return);
1764 		LK_SLASSERT(t->flags & (F_AINPROG|F_BINPROG), sc, NULL, NULL,
1765 		    return);
1766 		slhci_dointr(sc);
1767 	}
1768 	DLOG(D_WAIT, "... done", 0, 0, 0, 0);
1769 }
1770 
1771 static int
1772 slhci_dointr(struct slhci_softc *sc)
1773 {
1774 	SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
1775 	struct slhci_transfers *t;
1776 	struct slhci_pipe *tosp;
1777 	uint8_t r;
1778 
1779 	t = &sc->sc_transfers;
1780 
1781 	KASSERT(mutex_owned(&sc->sc_intr_lock));
1782 
1783 	if (sc->sc_ier == 0) {
1784 		DLOG(D_INTR, "sc_ier is zero", 0, 0, 0, 0);
1785 		return 0;
1786 	}
1787 
1788 	r = slhci_read(sc, SL11_ISR);
1789 
1790 #ifdef SLHCI_DEBUG
1791 	if (slhcidebug & SLHCI_D_INTR && r & sc->sc_ier &&
1792 	    ((r & ~(SL11_ISR_SOF|SL11_ISR_DATA)) || slhcidebug & SLHCI_D_SOF)) {
1793 		uint8_t e, f;
1794 
1795 		e = slhci_read(sc, SL11_IER);
1796 		f = slhci_read(sc, SL11_CTRL);
1797 		DDOLOG("Flags=%#x IER=%#x ISR=%#x CTRL=%#x", t->flags, e, r, f);
1798 		DDOLOGCTRL(f);
1799 		DDOLOGISR(r);
1800 	}
1801 #endif
1802 
1803 	/*
1804 	 * check IER for corruption occasionally.  Assume that the above
1805 	 * sc_ier == 0 case works correctly.
1806 	 */
1807 	if (__predict_false(sc->sc_ier_check++ > SLHCI_IER_CHECK_FREQUENCY)) {
1808 		sc->sc_ier_check = 0;
1809 		if (sc->sc_ier != slhci_read(sc, SL11_IER)) {
1810 			printf("%s: IER value corrupted! halted\n",
1811 			    SC_NAME(sc));
1812 			DDOLOG("IER value corrupted! halted", 0, 0, 0, 0);
1813 			slhci_halt(sc, NULL, NULL);
1814 			return 1;
1815 		}
1816 	}
1817 
1818 	r &= sc->sc_ier;
1819 
1820 	if (r == 0) {
1821 		DLOG(D_INTR, "r is zero", 0, 0, 0, 0);
1822 		return 0;
1823 	}
1824 
1825 	sc->sc_ier_check = 0;
1826 
1827 	slhci_write(sc, SL11_ISR, r);
1828 	BSB_SYNC(sc->iot, sc->ioh, sc->pst, sc->psz);
1829 
1830 	/* If we have an insertion event we do not care about anything else. */
1831 	if (__predict_false(r & SL11_ISR_INSERT)) {
1832 		slhci_insert(sc);
1833 		DLOG(D_INTR, "... done", 0, 0, 0, 0);
1834 		return 1;
1835 	}
1836 
1837 	stop_cc_time(&t_intr);
1838 	start_cc_time(&t_intr, r);
1839 
1840 	if (r & SL11_ISR_SOF) {
1841 		t->frame++;
1842 
1843 		gcq_merge_tail(&t->q[Q_CB], &t->q[Q_NEXT_CB]);
1844 
1845 		/*
1846 		 * SOFCHECK flags are cleared in tstart.  Two flags are needed
1847 		 * since the first SOF interrupt processed after the transfer
1848 		 * is started might have been generated before the transfer
1849 		 * was started.
1850 		 */
1851 		if (__predict_false(t->flags & F_SOFCHECK2 && t->flags &
1852 		    (F_AINPROG|F_BINPROG))) {
1853 			printf("%s: Missed transfer completion. halted\n",
1854 			    SC_NAME(sc));
1855 			DDOLOG("Missed transfer completion. halted", 0, 0, 0,
1856 			    0);
1857 			slhci_halt(sc, NULL, NULL);
1858 			return 1;
1859 		} else if (t->flags & F_SOFCHECK1) {
1860 			t->flags |= F_SOFCHECK2;
1861 		} else
1862 			t->flags |= F_SOFCHECK1;
1863 
1864 		if (t->flags & F_CHANGE)
1865 			t->flags |= F_ROOTINTR;
1866 
1867 		while (__predict_true(GOT_FIRST_TO(tosp, t)) &&
1868 		    __predict_false(tosp->to_frame <= t->frame)) {
1869 			tosp->xfer->ux_status = USBD_TIMEOUT;
1870 			slhci_do_abort(sc, tosp, tosp->xfer);
1871 			enter_callback(t, tosp);
1872 		}
1873 
1874 		/*
1875 		 * Start any waiting transfers right away.  If none, we will
1876 		 * start any new transfers later.
1877 		 */
1878 		slhci_tstart(sc);
1879 	}
1880 
1881 	if (r & (SL11_ISR_USBA|SL11_ISR_USBB)) {
1882 		int ab;
1883 
1884 		if ((r & (SL11_ISR_USBA|SL11_ISR_USBB)) ==
1885 		    (SL11_ISR_USBA|SL11_ISR_USBB)) {
1886 			if (!(t->flags & (F_AINPROG|F_BINPROG)))
1887 				return 1; /* presume card pulled */
1888 
1889 			LK_SLASSERT((t->flags & (F_AINPROG|F_BINPROG)) !=
1890 			    (F_AINPROG|F_BINPROG), sc, NULL, NULL, return 1);
1891 
1892 			/*
1893 			 * This should never happen (unless card removal just
1894 			 * occurred) but appeared frequently when both
1895 			 * transfers were started at the same time and was
1896 			 * accompanied by data corruption.  It still happens
1897 			 * at times.  I have not seen data correption except
1898 			 * when the STATUS bit gets set, which now causes the
1899 			 * driver to halt, however this should still not
1900 			 * happen so the warning is kept.  See comment in
1901 			 * abdone, below.
1902 			 */
1903 			printf("%s: Transfer reported done but not started! "
1904 			    "Verify data integrity if not detaching. "
1905 			    " flags %#x r %x\n", SC_NAME(sc), t->flags, r);
1906 
1907 			if (!(t->flags & F_AINPROG))
1908 				r &= ~SL11_ISR_USBA;
1909 			else
1910 				r &= ~SL11_ISR_USBB;
1911 		}
1912 		t->pend = INT_MAX;
1913 
1914 		if (r & SL11_ISR_USBA)
1915 			ab = A;
1916 		else
1917 			ab = B;
1918 
1919 		/*
1920 		 * This happens when a low speed device is attached to
1921 		 * a hub with chip rev 1.5.  SOF stops, but a few transfers
1922 		 * still work before causing this error.
1923 		 */
1924 		if (!(t->flags & (ab ? F_BINPROG : F_AINPROG))) {
1925 			printf("%s: %s done but not in progress! halted\n",
1926 			    SC_NAME(sc), ab ? "B" : "A");
1927 			DDOLOG("AB=%d done but not in progress! halted", ab,
1928 			    0, 0, 0);
1929 			slhci_halt(sc, NULL, NULL);
1930 			return 1;
1931 		}
1932 
1933 		t->flags &= ~(ab ? F_BINPROG : F_AINPROG);
1934 		slhci_tstart(sc);
1935 		stop_cc_time(&t_ab[ab]);
1936 		start_cc_time(&t_abdone, t->flags);
1937 		slhci_abdone(sc, ab);
1938 		stop_cc_time(&t_abdone);
1939 	}
1940 
1941 	slhci_dotransfer(sc);
1942 
1943 	DLOG(D_INTR, "... done", 0, 0, 0, 0);
1944 
1945 	return 1;
1946 }
1947 
1948 static void
1949 slhci_abdone(struct slhci_softc *sc, int ab)
1950 {
1951 	SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
1952 	struct slhci_transfers *t;
1953 	struct slhci_pipe *spipe;
1954 	struct usbd_xfer *xfer;
1955 	uint8_t status, buf_start;
1956 	uint8_t *target_buf;
1957 	unsigned int actlen;
1958 	int head;
1959 
1960 	t = &sc->sc_transfers;
1961 
1962 	KASSERT(mutex_owned(&sc->sc_intr_lock));
1963 
1964 	DLOG(D_TRACE, "ABDONE flags %#jx", t->flags, 0,0,0);
1965 
1966 	DLOG(D_MSG, "DONE AB=%jd spipe %#jx len %jd xfer %#jx", ab,
1967 	    t->spipe[ab], (uintptr_t)t->len[ab],
1968 	    (uintptr_t)(t->spipe[ab] ? t->spipe[ab]->xfer : NULL));
1969 
1970 	spipe = t->spipe[ab];
1971 
1972 	/*
1973 	 * skip this one if aborted; do not call return from the rest of the
1974 	 * function unless halting, else t->len will not be cleared.
1975 	 */
1976 	if (spipe == NULL)
1977 		goto done;
1978 
1979 	t->spipe[ab] = NULL;
1980 
1981 	xfer = spipe->xfer;
1982 
1983 	gcq_remove(&spipe->to);
1984 
1985 	LK_SLASSERT(xfer != NULL, sc, spipe, NULL, return);
1986 
1987 	status = slhci_read(sc, slhci_tregs[ab][STAT]);
1988 
1989 	/*
1990 	 * I saw no status or remaining length greater than the requested
1991 	 * length in early driver versions in circumstances I assumed caused
1992 	 * excess power draw.  I am no longer able to reproduce this when
1993 	 * causing excess power draw circumstances.
1994 	 *
1995 	 * Disabling a power check and attaching aue to a keyboard and hub
1996 	 * that is directly attached (to CFU1U, 100mA max, aue 160mA, keyboard
1997 	 * 98mA) sometimes works and sometimes fails to configure.  After
1998 	 * removing the aue and attaching a self-powered umass dvd reader
1999 	 * (unknown if it draws power from the host also) soon a single Error
2000 	 * status occurs then only timeouts. The controller soon halts freeing
2001 	 * memory due to being ONQU instead of BUSY.  This may be the same
2002 	 * basic sequence that caused the no status/bad length errors.  The
2003 	 * umass device seems to work (better at least) with the keyboard hub
2004 	 * when not first attaching aue (tested once reading an approximately
2005 	 * 200MB file).
2006 	 *
2007 	 * Overflow can indicate that the device and host disagree about how
2008 	 * much data has been transferred.  This may indicate a problem at any
2009 	 * point during the transfer, not just when the error occurs.  It may
2010 	 * indicate data corruption.  A warning message is printed.
2011 	 *
2012 	 * Trying to use both A and B transfers at the same time results in
2013 	 * incorrect transfer completion ISR reports and the status will then
2014 	 * include SL11_EPSTAT_SETUP, which is apparently set while the
2015 	 * transfer is in progress.  I also noticed data corruption, even
2016 	 * after waiting for the transfer to complete. The driver now avoids
2017 	 * trying to start both at the same time.
2018 	 *
2019 	 * I had accidently initialized the B registers before they were valid
2020 	 * in some driver versions.  Since every other performance enhancing
2021 	 * feature has been confirmed buggy in the errata doc, I have not
2022 	 * tried both transfers at once again with the documented
2023 	 * initialization order.
2024 	 *
2025 	 * However, I have seen this problem again ("done but not started"
2026 	 * errors), which in some cases cases the SETUP status bit to remain
2027 	 * set on future transfers.  In other cases, the SETUP bit is not set
2028 	 * and no data corruption occurs.  This occured while using both umass
2029 	 * and aue on a powered hub (maybe triggered by some local activity
2030 	 * also) and needs several reads of the 200MB file to trigger.  The
2031 	 * driver now halts if SETUP is detected.
2032  	 */
2033 
2034 	actlen = 0;
2035 
2036 	if (__predict_false(!status)) {
2037 		DDOLOG("no status! xfer %p spipe %p", xfer, spipe, 0,0);
2038 		printf("%s: no status! halted\n", SC_NAME(sc));
2039 		slhci_halt(sc, spipe, xfer);
2040 		return;
2041 	}
2042 
2043 #ifdef SLHCI_DEBUG
2044 	if ((slhcidebug & SLHCI_D_NAK) ||
2045 	    (status & SL11_EPSTAT_ERRBITS) != SL11_EPSTAT_NAK) {
2046 	    	DDOLOG("USB Status = %#.2x", status, 0, 0, 0);
2047 		DDOLOGSTATUS(status);
2048 	}
2049 #endif
2050 
2051 	if (!(status & SL11_EPSTAT_ERRBITS)) {
2052 		unsigned int cont = slhci_read(sc, slhci_tregs[ab][CONT]);
2053 		unsigned int len = spipe->tregs[LEN];
2054 		DLOG(D_XFER, "cont %jd len %jd", cont, len, 0, 0);
2055 		if ((status & SL11_EPSTAT_OVERFLOW) || cont > len) {
2056 			DDOLOG("overflow - cont %d len %d xfer->ux_length %d "
2057 			    "xfer->actlen %d", cont, len, xfer->ux_length,
2058 			    xfer->ux_actlen);
2059 			printf("%s: overflow cont %d len %d xfer->ux_length"
2060 			    " %d xfer->ux_actlen %d\n", SC_NAME(sc), cont,
2061 			    len, xfer->ux_length, xfer->ux_actlen);
2062 			actlen = len;
2063 		} else {
2064 			actlen = len - cont;
2065 		}
2066 		spipe->nerrs = 0;
2067 	}
2068 
2069 	/* Actual copyin done after starting next transfer. */
2070 	if (actlen && (spipe->tregs[PID] & SL11_PID_BITS) == SL11_PID_IN) {
2071 		target_buf = spipe->buffer;
2072 		buf_start = spipe->tregs[ADR];
2073 	} else {
2074 		target_buf = NULL;
2075 		buf_start = 0; /* XXX gcc uninitialized warnings */
2076 	}
2077 
2078 	if (status & SL11_EPSTAT_ERRBITS) {
2079 		status &= SL11_EPSTAT_ERRBITS;
2080 		if (status & SL11_EPSTAT_SETUP) {
2081 			printf("%s: Invalid controller state detected! "
2082 			    "halted\n", SC_NAME(sc));
2083 			DDOLOG("Invalid controller state detected! "
2084 			    "halted", 0, 0, 0, 0);
2085 			slhci_halt(sc, spipe, xfer);
2086 			return;
2087 		} else if (__predict_false(sc->sc_bus.ub_usepolling)) {
2088 			head = Q_CALLBACKS;
2089 			if (status & SL11_EPSTAT_STALL)
2090 				xfer->ux_status = USBD_STALLED;
2091 			else if (status & SL11_EPSTAT_TIMEOUT)
2092 				xfer->ux_status = USBD_TIMEOUT;
2093 			else if (status & SL11_EPSTAT_NAK)
2094 				head = Q_NEXT_CB;
2095 			else
2096 				xfer->ux_status = USBD_IOERROR;
2097 		} else if (status & SL11_EPSTAT_NAK) {
2098 			int i = spipe->pipe.up_interval;
2099 			if (i == 0)
2100 				i = 1;
2101 			DDOLOG("xfer %p spipe %p NAK delay by %d", xfer, spipe,
2102 			    i, 0);
2103 			spipe->lastframe = spipe->frame = t->frame + i;
2104 			slhci_queue_timed(sc, spipe);
2105 			goto queued;
2106 		} else if (++spipe->nerrs > SLHCI_MAX_RETRIES ||
2107 		    (status & SL11_EPSTAT_STALL)) {
2108 			DDOLOG("xfer %p spipe %p nerrs %d", xfer, spipe,
2109 			    spipe->nerrs, 0);
2110 			if (status & SL11_EPSTAT_STALL)
2111 				xfer->ux_status = USBD_STALLED;
2112 			else if (status & SL11_EPSTAT_TIMEOUT)
2113 				xfer->ux_status = USBD_TIMEOUT;
2114 			else
2115 				xfer->ux_status = USBD_IOERROR;
2116 
2117 			DLOG(D_ERR, "Max retries reached! status %#jx "
2118 			    "xfer->ux_status %jd", status, xfer->ux_status, 0,
2119 			    0);
2120 			DDOLOGSTATUS(status);
2121 
2122 			head = Q_CALLBACKS;
2123 		} else {
2124 			head = Q_NEXT_CB;
2125 		}
2126 	} else if (spipe->ptype == PT_CTRL_SETUP) {
2127 		spipe->tregs[PID] = spipe->newpid;
2128 
2129 		if (xfer->ux_length) {
2130 			LK_SLASSERT(spipe->newlen[1] != 0, sc, spipe, xfer,
2131 			    return);
2132 			spipe->tregs[LEN] = spipe->newlen[1];
2133 			spipe->bustime = spipe->newbustime[1];
2134 			spipe->buffer = xfer->ux_buf;
2135 			spipe->ptype = PT_CTRL_DATA;
2136 		} else {
2137 status_setup:
2138 			/* CTRL_DATA swaps direction in PID then jumps here */
2139 			spipe->tregs[LEN] = 0;
2140 			if (spipe->pflags & PF_LS)
2141 				spipe->bustime = SLHCI_LS_CONST;
2142 			else
2143 				spipe->bustime = SLHCI_FS_CONST;
2144 			spipe->ptype = PT_CTRL_STATUS;
2145 			spipe->buffer = NULL;
2146 		}
2147 
2148 		/* Status or first data packet must be DATA1. */
2149 		spipe->control |= SL11_EPCTRL_DATATOGGLE;
2150 		if ((spipe->tregs[PID] & SL11_PID_BITS) == SL11_PID_IN)
2151 			spipe->control &= ~SL11_EPCTRL_DIRECTION;
2152 		else
2153 			spipe->control |= SL11_EPCTRL_DIRECTION;
2154 
2155 		head = Q_CB;
2156 	} else if (spipe->ptype == PT_CTRL_STATUS) {
2157 		head = Q_CALLBACKS;
2158 	} else { /* bulk, intr, control data */
2159 		xfer->ux_actlen += actlen;
2160 		spipe->control ^= SL11_EPCTRL_DATATOGGLE;
2161 
2162 		if (actlen == spipe->tregs[LEN] &&
2163 		    (xfer->ux_length > xfer->ux_actlen || spipe->wantshort)) {
2164 			spipe->buffer += actlen;
2165 			LK_SLASSERT(xfer->ux_length >= xfer->ux_actlen, sc,
2166 			    spipe, xfer, return);
2167 			if (xfer->ux_length - xfer->ux_actlen < actlen) {
2168 				spipe->wantshort = 0;
2169 				spipe->tregs[LEN] = spipe->newlen[0];
2170 				spipe->bustime = spipe->newbustime[0];
2171 				LK_SLASSERT(xfer->ux_actlen +
2172 				    spipe->tregs[LEN] == xfer->ux_length, sc,
2173 				    spipe, xfer, return);
2174 			}
2175 			head = Q_CB;
2176 		} else if (spipe->ptype == PT_CTRL_DATA) {
2177 			spipe->tregs[PID] ^= SLHCI_PID_SWAP_IN_OUT;
2178 			goto status_setup;
2179 		} else {
2180 			if (spipe->ptype == PT_INTR) {
2181 				spipe->lastframe +=
2182 				    spipe->pipe.up_interval;
2183 				/*
2184 				 * If ack, we try to keep the
2185 				 * interrupt rate by using lastframe
2186 				 * instead of the current frame.
2187 				 */
2188 				spipe->frame = spipe->lastframe +
2189 				    spipe->pipe.up_interval;
2190 			}
2191 
2192 			/*
2193 			 * Set the toggle for the next transfer.  It
2194 			 * has already been toggled above, so the
2195 			 * current setting will apply to the next
2196 			 * transfer.
2197 			 */
2198 			if (spipe->control & SL11_EPCTRL_DATATOGGLE)
2199 				spipe->pflags |= PF_TOGGLE;
2200 			else
2201 				spipe->pflags &= ~PF_TOGGLE;
2202 
2203 			head = Q_CALLBACKS;
2204 		}
2205 	}
2206 
2207 	if (head == Q_CALLBACKS) {
2208 		gcq_remove(&spipe->to);
2209 
2210 	 	if (xfer->ux_status == USBD_IN_PROGRESS) {
2211 			LK_SLASSERT(xfer->ux_actlen <= xfer->ux_length, sc,
2212 			    spipe, xfer, return);
2213 			xfer->ux_status = USBD_NORMAL_COMPLETION;
2214 		}
2215 	}
2216 
2217 	enter_q(t, spipe, head);
2218 
2219 queued:
2220 	if (target_buf != NULL) {
2221 		slhci_dotransfer(sc);
2222 		start_cc_time(&t_copy_from_dev, actlen);
2223 		slhci_read_multi(sc, buf_start, target_buf, actlen);
2224 		stop_cc_time(&t_copy_from_dev);
2225 		DLOGBUF(D_BUF, target_buf, actlen);
2226 		t->pend -= SLHCI_FS_CONST + SLHCI_FS_DATA_TIME(actlen);
2227 	}
2228 
2229 done:
2230 	t->len[ab] = -1;
2231 }
2232 
2233 static void
2234 slhci_tstart(struct slhci_softc *sc)
2235 {
2236 	struct slhci_transfers *t;
2237 	struct slhci_pipe *spipe;
2238 	int remaining_bustime;
2239 
2240 	t = &sc->sc_transfers;
2241 
2242 	KASSERT(mutex_owned(&sc->sc_intr_lock));
2243 
2244 	if (!(t->flags & (F_AREADY|F_BREADY)))
2245 		return;
2246 
2247 	if (t->flags & (F_AINPROG|F_BINPROG|F_DISABLED))
2248 		return;
2249 
2250 	/*
2251 	 * We have about 6 us to get from the bus time check to
2252 	 * starting the transfer or we might babble or the chip might fail to
2253 	 * signal transfer complete.  This leaves no time for any other
2254 	 * interrupts.
2255 	 */
2256 	remaining_bustime = (int)(slhci_read(sc, SL811_CSOF)) << 6;
2257 	remaining_bustime -= SLHCI_END_BUSTIME;
2258 
2259 	/*
2260 	 * Start one transfer only, clearing any aborted transfers that are
2261 	 * not yet in progress and skipping missed isoc. It is easier to copy
2262 	 * & paste most of the A/B sections than to make the logic work
2263 	 * otherwise and this allows better constant use.
2264 	 */
2265 	if (t->flags & F_AREADY) {
2266 		spipe = t->spipe[A];
2267 		if (spipe == NULL) {
2268 			t->flags &= ~F_AREADY;
2269 			t->len[A] = -1;
2270 		} else if (remaining_bustime >= spipe->bustime) {
2271 			t->flags &= ~(F_AREADY|F_SOFCHECK1|F_SOFCHECK2);
2272 			t->flags |= F_AINPROG;
2273 			start_cc_time(&t_ab[A], spipe->tregs[LEN]);
2274 			slhci_write(sc, SL11_E0CTRL, spipe->control);
2275 			goto pend;
2276 		}
2277 	}
2278 	if (t->flags & F_BREADY) {
2279 		spipe = t->spipe[B];
2280 		if (spipe == NULL) {
2281 			t->flags &= ~F_BREADY;
2282 			t->len[B] = -1;
2283 		} else if (remaining_bustime >= spipe->bustime) {
2284 			t->flags &= ~(F_BREADY|F_SOFCHECK1|F_SOFCHECK2);
2285 			t->flags |= F_BINPROG;
2286 			start_cc_time(&t_ab[B], spipe->tregs[LEN]);
2287 			slhci_write(sc, SL11_E1CTRL, spipe->control);
2288 pend:
2289 			t->pend = spipe->bustime;
2290 		}
2291 	}
2292 }
2293 
2294 static void
2295 slhci_dotransfer(struct slhci_softc *sc)
2296 {
2297 	SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
2298 	struct slhci_transfers *t;
2299 	struct slhci_pipe *spipe;
2300 	int ab, i;
2301 
2302 	t = &sc->sc_transfers;
2303 
2304 	KASSERT(mutex_owned(&sc->sc_intr_lock));
2305 
2306  	while ((t->len[A] == -1 || t->len[B] == -1) &&
2307 	    (GOT_FIRST_TIMED_COND(spipe, t, spipe->frame <= t->frame) ||
2308 	    GOT_FIRST_CB(spipe, t))) {
2309 		LK_SLASSERT(spipe->xfer != NULL, sc, spipe, NULL, return);
2310 		LK_SLASSERT(spipe->ptype != PT_ROOT_CTRL && spipe->ptype !=
2311 		    PT_ROOT_INTR, sc, spipe, NULL, return);
2312 
2313 		/* Check that this transfer can fit in the remaining memory. */
2314 		if (t->len[A] + t->len[B] + spipe->tregs[LEN] + 1 >
2315 		    SL11_MAX_PACKET_SIZE) {
2316 			DLOG(D_XFER, "Transfer does not fit. alen %jd blen %jd "
2317 			    "len %jd", t->len[A], t->len[B], spipe->tregs[LEN],
2318 			    0);
2319 			return;
2320 		}
2321 
2322 		gcq_remove(&spipe->xq);
2323 
2324 		if (t->len[A] == -1) {
2325 			ab = A;
2326 			spipe->tregs[ADR] = SL11_BUFFER_START;
2327 		} else {
2328 			ab = B;
2329 			spipe->tregs[ADR] = SL11_BUFFER_END -
2330 			    spipe->tregs[LEN];
2331 		}
2332 
2333 		t->len[ab] = spipe->tregs[LEN];
2334 
2335 		if (spipe->tregs[LEN] && (spipe->tregs[PID] & SL11_PID_BITS)
2336 		    != SL11_PID_IN) {
2337 			start_cc_time(&t_copy_to_dev,
2338 			    spipe->tregs[LEN]);
2339 			slhci_write_multi(sc, spipe->tregs[ADR],
2340 			    spipe->buffer, spipe->tregs[LEN]);
2341 			stop_cc_time(&t_copy_to_dev);
2342 			t->pend -= SLHCI_FS_CONST +
2343 			    SLHCI_FS_DATA_TIME(spipe->tregs[LEN]);
2344 		}
2345 
2346 		DLOG(D_MSG, "NEW TRANSFER AB=%jd flags %#jx alen %jd blen %jd",
2347 		    ab, t->flags, t->len[0], t->len[1]);
2348 
2349 		if (spipe->tregs[LEN])
2350 			i = 0;
2351 		else
2352 			i = 1;
2353 
2354 		for (; i <= 3; i++)
2355 			if (t->current_tregs[ab][i] != spipe->tregs[i]) {
2356 				t->current_tregs[ab][i] = spipe->tregs[i];
2357 				slhci_write(sc, slhci_tregs[ab][i],
2358 				    spipe->tregs[i]);
2359 			}
2360 
2361 		DLOG(D_SXFER, "Transfer len %jd pid %#jx dev %jd type %jd",
2362 		    spipe->tregs[LEN], spipe->tregs[PID], spipe->tregs[DEV],
2363 	    	    spipe->ptype);
2364 
2365 		t->spipe[ab] = spipe;
2366 		t->flags |= ab ? F_BREADY : F_AREADY;
2367 
2368 		slhci_tstart(sc);
2369 	}
2370 }
2371 
2372 /*
2373  * slhci_callback is called after the lock is taken.
2374  */
2375 static void
2376 slhci_callback(struct slhci_softc *sc)
2377 {
2378 	SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
2379 	struct slhci_transfers *t;
2380 	struct slhci_pipe *spipe;
2381 	struct usbd_xfer *xfer;
2382 
2383 	t = &sc->sc_transfers;
2384 
2385 	KASSERT(mutex_owned(&sc->sc_intr_lock));
2386 
2387 	DLOG(D_SOFT, "CB flags %#jx", t->flags, 0,0,0);
2388 	for (;;) {
2389 		if (__predict_false(t->flags & F_ROOTINTR)) {
2390 			t->flags &= ~F_ROOTINTR;
2391 			if (t->rootintr != NULL) {
2392 				u_char *p;
2393 
2394 				KASSERT(t->rootintr->ux_status ==
2395 				    USBD_IN_PROGRESS);
2396 				p = t->rootintr->ux_buf;
2397 				p[0] = 2;
2398 				t->rootintr->ux_actlen = 1;
2399 				t->rootintr->ux_status = USBD_NORMAL_COMPLETION;
2400 				xfer = t->rootintr;
2401 				goto do_callback;
2402 			}
2403 		}
2404 
2405 
2406 		if (!DEQUEUED_CALLBACK(spipe, t))
2407 			return;
2408 
2409 		xfer = spipe->xfer;
2410 		LK_SLASSERT(xfer != NULL, sc, spipe, NULL, return);
2411 		spipe->xfer = NULL;
2412 		DLOG(D_XFER, "xfer callback length %jd actlen %jd spipe %#jx "
2413 		    "type %jd", xfer->ux_length, (uintptr_t)xfer->ux_actlen,
2414 		    (uintptr_t)spipe, spipe->ptype);
2415 do_callback:
2416 		slhci_do_callback(sc, xfer);
2417 	}
2418 }
2419 
2420 static void
2421 slhci_enter_xfer(struct slhci_softc *sc, struct slhci_pipe *spipe)
2422 {
2423 	SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
2424 	struct slhci_transfers *t;
2425 
2426 	t = &sc->sc_transfers;
2427 
2428 	KASSERT(mutex_owned(&sc->sc_intr_lock));
2429 
2430 	if (__predict_false(t->flags & F_DISABLED) ||
2431 	    __predict_false(spipe->pflags & PF_GONE)) {
2432 		DLOG(D_MSG, "slhci_enter_xfer: DISABLED or GONE", 0,0,0,0);
2433 		spipe->xfer->ux_status = USBD_CANCELLED;
2434 	}
2435 
2436 	if (spipe->xfer->ux_status == USBD_IN_PROGRESS) {
2437 		if (spipe->xfer->ux_timeout) {
2438 			spipe->to_frame = t->frame + spipe->xfer->ux_timeout;
2439 			slhci_xfer_timer(sc, spipe);
2440 		}
2441 		if (spipe->pipe.up_interval)
2442 			slhci_queue_timed(sc, spipe);
2443 		else
2444 			enter_q(t, spipe, Q_CB);
2445 	} else
2446 		enter_callback(t, spipe);
2447 }
2448 
2449 static void
2450 slhci_enter_xfers(struct slhci_softc *sc)
2451 {
2452 	struct slhci_pipe *spipe;
2453 
2454 	KASSERT(mutex_owned(&sc->sc_intr_lock));
2455 
2456 	while (DEQUEUED_WAITQ(spipe, sc))
2457 		slhci_enter_xfer(sc, spipe);
2458 }
2459 
2460 static void
2461 slhci_queue_timed(struct slhci_softc *sc, struct slhci_pipe *spipe)
2462 {
2463 	struct slhci_transfers *t;
2464 	struct gcq *q;
2465 	struct slhci_pipe *spp;
2466 
2467 	t = &sc->sc_transfers;
2468 
2469 	KASSERT(mutex_owned(&sc->sc_intr_lock));
2470 
2471 	FIND_TIMED(q, t, spp, spp->frame > spipe->frame);
2472 	gcq_insert_before(q, &spipe->xq);
2473 }
2474 
2475 static void
2476 slhci_xfer_timer(struct slhci_softc *sc, struct slhci_pipe *spipe)
2477 {
2478 	struct slhci_transfers *t;
2479 	struct gcq *q;
2480 	struct slhci_pipe *spp;
2481 
2482 	t = &sc->sc_transfers;
2483 
2484 	KASSERT(mutex_owned(&sc->sc_intr_lock));
2485 
2486 	FIND_TO(q, t, spp, spp->to_frame >= spipe->to_frame);
2487 	gcq_insert_before(q, &spipe->to);
2488 }
2489 
2490 static void
2491 slhci_callback_schedule(struct slhci_softc *sc)
2492 {
2493 	SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
2494 	struct slhci_transfers *t;
2495 
2496 	t = &sc->sc_transfers;
2497 
2498 	KASSERT(mutex_owned(&sc->sc_intr_lock));
2499 
2500 	if (t->flags & F_ACTIVE)
2501 		slhci_do_callback_schedule(sc);
2502 }
2503 
2504 static void
2505 slhci_do_callback_schedule(struct slhci_softc *sc)
2506 {
2507 	SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
2508 	struct slhci_transfers *t;
2509 
2510 	t = &sc->sc_transfers;
2511 
2512 	KASSERT(mutex_owned(&sc->sc_intr_lock));
2513 
2514 	DLOG(D_MSG, "flags %#jx", t->flags, 0, 0, 0);
2515 	if (!(t->flags & F_CALLBACK)) {
2516 		t->flags |= F_CALLBACK;
2517 		softint_schedule(sc->sc_cb_softintr);
2518 	}
2519 }
2520 
2521 #if 0
2522 /* must be called with lock taken. */
2523 /* XXX static */ void
2524 slhci_pollxfer(struct slhci_softc *sc, struct usbd_xfer *xfer)
2525 {
2526 	KASSERT(mutex_owned(&sc->sc_intr_lock));
2527 	slhci_dotransfer(sc);
2528 	do {
2529 		slhci_dointr(sc);
2530 	} while (xfer->ux_status == USBD_IN_PROGRESS);
2531 	slhci_do_callback(sc, xfer);
2532 }
2533 #endif
2534 
2535 static usbd_status
2536 slhci_do_poll(struct slhci_softc *sc, struct slhci_pipe *spipe, struct
2537     usbd_xfer *xfer)
2538 {
2539 	slhci_waitintr(sc, 0);
2540 
2541 	return USBD_NORMAL_COMPLETION;
2542 }
2543 
2544 static usbd_status
2545 slhci_lsvh_warn(struct slhci_softc *sc, struct slhci_pipe *spipe, struct
2546     usbd_xfer *xfer)
2547 {
2548 	SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
2549 	struct slhci_transfers *t;
2550 
2551 	t = &sc->sc_transfers;
2552 
2553 	if (!(t->flags & F_LSVH_WARNED)) {
2554 		printf("%s: Low speed device via hub disabled, "
2555 		    "see slhci(4)\n", SC_NAME(sc));
2556 		DDOLOG("Low speed device via hub disabled, "
2557 		    "see slhci(4)", SC_NAME(sc), 0,0,0);
2558 		t->flags |= F_LSVH_WARNED;
2559 	}
2560 	return USBD_INVAL;
2561 }
2562 
2563 static usbd_status
2564 slhci_isoc_warn(struct slhci_softc *sc, struct slhci_pipe *spipe, struct
2565     usbd_xfer *xfer)
2566 {
2567 	SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
2568 	struct slhci_transfers *t;
2569 
2570 	t = &sc->sc_transfers;
2571 
2572 	if (!(t->flags & F_ISOC_WARNED)) {
2573 		printf("%s: ISOC transfer not supported "
2574 		    "(see slhci(4))\n", SC_NAME(sc));
2575 		DDOLOG("ISOC transfer not supported "
2576 		    "(see slhci(4))", 0, 0, 0, 0);
2577 		t->flags |= F_ISOC_WARNED;
2578 	}
2579 	return USBD_INVAL;
2580 }
2581 
2582 static usbd_status
2583 slhci_open_pipe(struct slhci_softc *sc, struct slhci_pipe *spipe, struct
2584     usbd_xfer *xfer)
2585 {
2586 	struct slhci_transfers *t;
2587 	struct usbd_pipe *pipe;
2588 
2589 	t = &sc->sc_transfers;
2590 	pipe = &spipe->pipe;
2591 
2592 	if (t->flags & F_DISABLED)
2593 		return USBD_CANCELLED;
2594 	else if (pipe->up_interval && !slhci_reserve_bustime(sc, spipe, 1))
2595 		return USBD_PENDING_REQUESTS;
2596 	else {
2597 		enter_all_pipes(t, spipe);
2598 		return USBD_NORMAL_COMPLETION;
2599 	}
2600 }
2601 
2602 static usbd_status
2603 slhci_close_pipe(struct slhci_softc *sc, struct slhci_pipe *spipe, struct
2604     usbd_xfer *xfer)
2605 {
2606 	struct usbd_pipe *pipe;
2607 
2608 	pipe = &spipe->pipe;
2609 
2610 	if (pipe->up_interval && spipe->ptype != PT_ROOT_INTR)
2611 		slhci_reserve_bustime(sc, spipe, 0);
2612 	gcq_remove(&spipe->ap);
2613 	return USBD_NORMAL_COMPLETION;
2614 }
2615 
2616 static usbd_status
2617 slhci_do_abort(struct slhci_softc *sc, struct slhci_pipe *spipe, struct
2618     usbd_xfer *xfer)
2619 {
2620 	struct slhci_transfers *t;
2621 
2622 	t = &sc->sc_transfers;
2623 
2624 	KASSERT(mutex_owned(&sc->sc_intr_lock));
2625 
2626 	if (spipe->xfer == xfer) {
2627 		if (spipe->ptype == PT_ROOT_INTR) {
2628 			if (t->rootintr == spipe->xfer) /* XXX assert? */
2629 				t->rootintr = NULL;
2630 		} else {
2631 			gcq_remove(&spipe->to);
2632 			gcq_remove(&spipe->xq);
2633 
2634 			if (t->spipe[A] == spipe) {
2635 				t->spipe[A] = NULL;
2636 				if (!(t->flags & F_AINPROG))
2637 					t->len[A] = -1;
2638 			} else if (t->spipe[B] == spipe) {
2639 					t->spipe[B] = NULL;
2640 				if (!(t->flags & F_BINPROG))
2641 					t->len[B] = -1;
2642 			}
2643 		}
2644 
2645 		if (xfer->ux_status != USBD_TIMEOUT) {
2646 			spipe->xfer = NULL;
2647 			spipe->pipe.up_repeat = 0; /* XXX timeout? */
2648 		}
2649 	}
2650 
2651 	return USBD_NORMAL_COMPLETION;
2652 }
2653 
2654 /*
2655  * Called to deactivate or stop use of the controller instead of panicking.
2656  * Will cancel the xfer correctly even when not on a list.
2657  */
2658 static usbd_status
2659 slhci_halt(struct slhci_softc *sc, struct slhci_pipe *spipe,
2660     struct usbd_xfer *xfer)
2661 {
2662 	SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
2663 	struct slhci_transfers *t;
2664 
2665 	KASSERT(mutex_owned(&sc->sc_intr_lock));
2666 
2667 	t = &sc->sc_transfers;
2668 
2669 	DDOLOG("Halt! sc %p spipe %p xfer %p", sc, spipe, xfer, 0);
2670 
2671 	if (spipe != NULL)
2672 		slhci_log_spipe(spipe);
2673 
2674 	if (xfer != NULL)
2675 		slhci_log_xfer(xfer);
2676 
2677 	if (spipe != NULL && xfer != NULL && spipe->xfer == xfer &&
2678 	    !gcq_onlist(&spipe->xq) && t->spipe[A] != spipe && t->spipe[B] !=
2679 	    spipe) {
2680 		xfer->ux_status = USBD_CANCELLED;
2681 		enter_callback(t, spipe);
2682 	}
2683 
2684 	if (t->flags & F_ACTIVE) {
2685 		slhci_intrchange(sc, 0);
2686 		/*
2687 		 * leave power on when halting in case flash devices or disks
2688 		 * are attached, which may be writing and could be damaged
2689 		 * by abrupt power loss.  The root hub clear power feature
2690 		 * should still work after halting.
2691 		 */
2692 	}
2693 
2694 	t->flags &= ~F_ACTIVE;
2695 	t->flags |= F_UDISABLED;
2696 	if (!(t->flags & F_NODEV))
2697 		t->flags |= F_NODEV|F_CCONNECT|F_ROOTINTR;
2698 	slhci_drain(sc);
2699 
2700 	/* One last callback for the drain and device removal. */
2701 	slhci_do_callback_schedule(sc);
2702 
2703 	return USBD_NORMAL_COMPLETION;
2704 }
2705 
2706 /*
2707  * There are three interrupt states: no interrupts during reset and after
2708  * device deactivation, INSERT only for no device present but power on, and
2709  * SOF, INSERT, ADONE, and BDONE when device is present.
2710  */
2711 static void
2712 slhci_intrchange(struct slhci_softc *sc, uint8_t new_ier)
2713 {
2714 	SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
2715 	KASSERT(mutex_owned(&sc->sc_intr_lock));
2716 	if (sc->sc_ier != new_ier) {
2717 		DLOG(D_INTR, "New IER %#jx", new_ier, 0, 0, 0);
2718 		sc->sc_ier = new_ier;
2719 		slhci_write(sc, SL11_IER, new_ier);
2720 		BSB_SYNC(sc->iot, sc->ioh, sc->pst, sc->psz);
2721 	}
2722 }
2723 
2724 /*
2725  * Drain: cancel all pending transfers and put them on the callback list and
2726  * set the UDISABLED flag.  UDISABLED is cleared only by reset.
2727  */
2728 static void
2729 slhci_drain(struct slhci_softc *sc)
2730 {
2731 	SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
2732 	struct slhci_transfers *t;
2733 	struct slhci_pipe *spipe;
2734 	struct gcq *q;
2735 	int i;
2736 
2737  	KASSERT(mutex_owned(&sc->sc_intr_lock));
2738 
2739 	t = &sc->sc_transfers;
2740 
2741 	DLOG(D_MSG, "DRAIN flags %#jx", t->flags, 0,0,0);
2742 
2743 	t->pend = INT_MAX;
2744 
2745 	for (i=0; i<=1; i++) {
2746 		t->len[i] = -1;
2747 		if (t->spipe[i] != NULL) {
2748 			enter_callback(t, t->spipe[i]);
2749 			t->spipe[i] = NULL;
2750 		}
2751 	}
2752 
2753 	/* Merge the queues into the callback queue. */
2754 	gcq_merge_tail(&t->q[Q_CALLBACKS], &t->q[Q_CB]);
2755 	gcq_merge_tail(&t->q[Q_CALLBACKS], &t->q[Q_NEXT_CB]);
2756 	gcq_merge_tail(&t->q[Q_CALLBACKS], &t->timed);
2757 
2758 	/*
2759 	 * Cancel all pipes.  Note that not all of these may be on the
2760 	 * callback queue yet; some could be in slhci_start, for example.
2761 	 */
2762 	FOREACH_AP(q, t, spipe) {
2763 		spipe->pflags |= PF_GONE;
2764 		spipe->pipe.up_repeat = 0;
2765 		spipe->pipe.up_aborting = 1;
2766 		if (spipe->xfer != NULL)
2767 			spipe->xfer->ux_status = USBD_CANCELLED;
2768 	}
2769 
2770 	gcq_remove_all(&t->to);
2771 
2772 	t->flags |= F_UDISABLED;
2773 	t->flags &= ~(F_AREADY|F_BREADY|F_AINPROG|F_BINPROG|F_LOWSPEED);
2774 }
2775 
2776 /*
2777  * RESET: SL11_CTRL_RESETENGINE=1 and SL11_CTRL_JKSTATE=0 for 50ms
2778  * reconfigure SOF after reset, must wait 2.5us before USB bus activity (SOF)
2779  * check attached device speed.
2780  * must wait 100ms before USB transaction according to app note, 10ms
2781  * by spec.  uhub does this delay
2782  *
2783  * Started from root hub set feature reset, which does step one.
2784  * ub_usepolling will call slhci_reset directly, otherwise the callout goes
2785  * through slhci_reset_entry.
2786  */
2787 void
2788 slhci_reset(struct slhci_softc *sc)
2789 {
2790 	SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
2791 	struct slhci_transfers *t;
2792 	struct slhci_pipe *spipe;
2793 	struct gcq *q;
2794 	uint8_t r, pol, ctrl;
2795 
2796 	t = &sc->sc_transfers;
2797 	KASSERT(mutex_owned(&sc->sc_intr_lock));
2798 
2799 	stop_cc_time(&t_delay);
2800 
2801 	KASSERT(t->flags & F_ACTIVE);
2802 
2803 	start_cc_time(&t_delay, 0);
2804 	stop_cc_time(&t_delay);
2805 
2806 	slhci_write(sc, SL11_CTRL, 0);
2807 	start_cc_time(&t_delay, 3);
2808 	DELAY(3);
2809 	stop_cc_time(&t_delay);
2810 	slhci_write(sc, SL11_ISR, 0xff);
2811 
2812 	r = slhci_read(sc, SL11_ISR);
2813 
2814 	if (r & SL11_ISR_INSERT)
2815 		slhci_write(sc, SL11_ISR, SL11_ISR_INSERT);
2816 
2817 	if (r & SL11_ISR_NODEV) {
2818 		DLOG(D_MSG, "NC", 0,0,0,0);
2819 		/*
2820 		 * Normally, the hard interrupt insert routine will issue
2821 		 * CCONNECT, however we need to do it here if the detach
2822 		 * happened during reset.
2823 		 */
2824 		if (!(t->flags & F_NODEV))
2825 			t->flags |= F_CCONNECT|F_ROOTINTR|F_NODEV;
2826 		slhci_intrchange(sc, SL11_IER_INSERT);
2827 	} else {
2828 		if (t->flags & F_NODEV)
2829 			t->flags |= F_CCONNECT;
2830 		t->flags &= ~(F_NODEV|F_LOWSPEED);
2831 		if (r & SL11_ISR_DATA) {
2832 			DLOG(D_MSG, "FS", 0,0,0,0);
2833 			pol = ctrl = 0;
2834 		} else {
2835 			DLOG(D_MSG, "LS", 0,0,0,0);
2836 			pol  = SL811_CSOF_POLARITY;
2837 			ctrl = SL11_CTRL_LOWSPEED;
2838 			t->flags |= F_LOWSPEED;
2839 		}
2840 
2841 		/* Enable SOF auto-generation */
2842 		t->frame = 0;	/* write to SL811_CSOF will reset frame */
2843 		slhci_write(sc, SL11_SOFTIME, 0xe0);
2844 		slhci_write(sc, SL811_CSOF, pol|SL811_CSOF_MASTER|0x2e);
2845 		slhci_write(sc, SL11_CTRL, ctrl|SL11_CTRL_ENABLESOF);
2846 
2847 		/*
2848 		 * According to the app note, ARM must be set
2849 		 * for SOF generation to work.  We initialize all
2850 		 * USBA registers here for current_tregs.
2851 		 */
2852 		slhci_write(sc, SL11_E0ADDR, SL11_BUFFER_START);
2853 		slhci_write(sc, SL11_E0LEN, 0);
2854 		slhci_write(sc, SL11_E0PID, SL11_PID_SOF);
2855 		slhci_write(sc, SL11_E0DEV, 0);
2856 		slhci_write(sc, SL11_E0CTRL, SL11_EPCTRL_ARM);
2857 
2858 		/*
2859 		 * Initialize B registers.  This can't be done earlier since
2860 		 * they are not valid until the SL811_CSOF register is written
2861 		 * above due to SL11H compatability.
2862 		 */
2863 		slhci_write(sc, SL11_E1ADDR, SL11_BUFFER_END - 8);
2864 		slhci_write(sc, SL11_E1LEN, 0);
2865 		slhci_write(sc, SL11_E1PID, 0);
2866 		slhci_write(sc, SL11_E1DEV, 0);
2867 
2868 		t->current_tregs[0][ADR] = SL11_BUFFER_START;
2869 		t->current_tregs[0][LEN] = 0;
2870 		t->current_tregs[0][PID] = SL11_PID_SOF;
2871 		t->current_tregs[0][DEV] = 0;
2872 		t->current_tregs[1][ADR] = SL11_BUFFER_END - 8;
2873 		t->current_tregs[1][LEN] = 0;
2874 		t->current_tregs[1][PID] = 0;
2875 		t->current_tregs[1][DEV] = 0;
2876 
2877 		/* SOF start will produce USBA interrupt */
2878 		t->len[A] = 0;
2879 		t->flags |= F_AINPROG;
2880 
2881 		slhci_intrchange(sc, SLHCI_NORMAL_INTERRUPTS);
2882 	}
2883 
2884 	t->flags &= ~(F_UDISABLED|F_RESET);
2885 	t->flags |= F_CRESET|F_ROOTINTR;
2886 	FOREACH_AP(q, t, spipe) {
2887 		spipe->pflags &= ~PF_GONE;
2888 		spipe->pipe.up_aborting = 0;
2889 	}
2890 	DLOG(D_MSG, "RESET done flags %#jx", t->flags, 0,0,0);
2891 }
2892 
2893 
2894 #ifdef SLHCI_DEBUG
2895 static int
2896 slhci_memtest(struct slhci_softc *sc)
2897 {
2898 	enum { ASC, DESC, EITHER = ASC };	/* direction */
2899 	enum { READ, WRITE };			/* operation */
2900 	const char *ptr, *elem;
2901 	size_t i;
2902 	const int low = SL11_BUFFER_START, high = SL11_BUFFER_END;
2903 	int addr = 0, dir = ASC, op = READ;
2904 	/* Extended March C- test algorithm (SOFs also) */
2905 	const char test[] = "E(w0) A(r0w1r1) A(r1w0r0) D(r0w1) D(r1w0) E(r0)";
2906 	char c;
2907 	const uint8_t dbs[] = { 0x00, 0x0f, 0x33, 0x55 }; /* data backgrounds */
2908 	uint8_t db;
2909 
2910 	/* Perform memory test for all data backgrounds. */
2911 	for (i = 0; i < __arraycount(dbs); i++) {
2912 		ptr = test;
2913 		elem = ptr;
2914 		/* Walk test algorithm string. */
2915 		while ((c = *ptr++) != '\0')
2916 			switch (tolower((int)c)) {
2917 			case 'a':
2918 				/* Address sequence is in ascending order. */
2919 				dir = ASC;
2920 				break;
2921 			case 'd':
2922 				/* Address sequence is in descending order. */
2923 				dir = DESC;
2924 				break;
2925 			case 'e':
2926 				/* Address sequence is in either order. */
2927 				dir = EITHER;
2928 				break;
2929 			case '(':
2930 				/* Start of test element (sequence). */
2931 				elem = ptr;
2932 				addr = (dir == ASC) ? low : high;
2933 				break;
2934 			case 'r':
2935 				/* read operation */
2936 				op = READ;
2937 				break;
2938 			case 'w':
2939 				/* write operation */
2940 				op = WRITE;
2941 				break;
2942 			case '0':
2943 			case '1':
2944 				/*
2945 				 * Execute previously set-up operation by
2946 				 * reading/writing non-inverted ('0') or
2947 				 * inverted ('1') data background.
2948 				 */
2949 				db = (c - '0') ? ~dbs[i] : dbs[i];
2950 				if (op == READ) {
2951 					if (slhci_read(sc, addr) != db)
2952 						return -1;
2953 				} else
2954 					slhci_write(sc, addr, db);
2955 				break;
2956 			case ')':
2957 				/*
2958 				 * End of element: Repeat same element with next
2959 				 * address or continue to next element.
2960 				 */
2961 				addr = (dir == ASC) ? addr + 1 : addr - 1;
2962 				if (addr >= low && addr <= high)
2963 					ptr = elem;
2964 				break;
2965 			default:
2966 				/* Do nothing. */
2967 				break;
2968 			}
2969 	}
2970 
2971 	return 0;
2972 }
2973 #endif
2974 
2975 /* returns 1 if succeeded, 0 if failed, reserve == 0 is unreserve */
2976 static int
2977 slhci_reserve_bustime(struct slhci_softc *sc, struct slhci_pipe *spipe, int
2978     reserve)
2979 {
2980 	SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
2981 	struct slhci_transfers *t;
2982 	int bustime, max_packet;
2983 
2984 	KASSERT(mutex_owned(&sc->sc_intr_lock));
2985 
2986 	t = &sc->sc_transfers;
2987 	max_packet = UGETW(spipe->pipe.up_endpoint->ue_edesc->wMaxPacketSize);
2988 
2989 	if (spipe->pflags & PF_LS)
2990 		bustime = SLHCI_LS_CONST + SLHCI_LS_DATA_TIME(max_packet);
2991 	else
2992 		bustime = SLHCI_FS_CONST + SLHCI_FS_DATA_TIME(max_packet);
2993 
2994 	if (!reserve) {
2995 		t->reserved_bustime -= bustime;
2996 #ifdef DIAGNOSTIC
2997 		if (t->reserved_bustime < 0) {
2998 			printf("%s: reserved_bustime %d < 0!\n",
2999 			    SC_NAME(sc), t->reserved_bustime);
3000 			DDOLOG("reserved_bustime %d < 0!",
3001 			    t->reserved_bustime, 0, 0, 0);
3002 			t->reserved_bustime = 0;
3003 		}
3004 #endif
3005 		return 1;
3006 	}
3007 
3008 	if (t->reserved_bustime + bustime > SLHCI_RESERVED_BUSTIME) {
3009 		if (ratecheck(&sc->sc_reserved_warn_rate,
3010 		    &reserved_warn_rate))
3011 #ifdef SLHCI_NO_OVERTIME
3012 		{
3013 			printf("%s: Max reserved bus time exceeded! "
3014 			    "Erroring request.\n", SC_NAME(sc));
3015 			DDOLOG("%s: Max reserved bus time exceeded! "
3016 			    "Erroring request.", 0, 0, 0, 0);
3017 		}
3018 		return 0;
3019 #else
3020 		{
3021 			printf("%s: Reserved bus time exceeds %d!\n",
3022 			    SC_NAME(sc), SLHCI_RESERVED_BUSTIME);
3023 			DDOLOG("Reserved bus time exceeds %d!",
3024 			    SLHCI_RESERVED_BUSTIME, 0, 0, 0);
3025 		}
3026 #endif
3027 	}
3028 
3029 	t->reserved_bustime += bustime;
3030 	return 1;
3031 }
3032 
3033 /* Device insertion/removal interrupt */
3034 static void
3035 slhci_insert(struct slhci_softc *sc)
3036 {
3037 	SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
3038 	struct slhci_transfers *t;
3039 
3040 	t = &sc->sc_transfers;
3041 
3042 	KASSERT(mutex_owned(&sc->sc_intr_lock));
3043 
3044 	if (t->flags & F_NODEV)
3045 		slhci_intrchange(sc, 0);
3046 	else {
3047 		slhci_drain(sc);
3048 		slhci_intrchange(sc, SL11_IER_INSERT);
3049 	}
3050 	t->flags ^= F_NODEV;
3051 	t->flags |= F_ROOTINTR|F_CCONNECT;
3052 	DLOG(D_MSG, "INSERT intr: flags after %#jx", t->flags, 0,0,0);
3053 }
3054 
3055 /*
3056  * Data structures and routines to emulate the root hub.
3057  */
3058 
3059 static usbd_status
3060 slhci_clear_feature(struct slhci_softc *sc, unsigned int what)
3061 {
3062 	SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
3063 	struct slhci_transfers *t;
3064 	usbd_status error;
3065 
3066 	t = &sc->sc_transfers;
3067 	error = USBD_NORMAL_COMPLETION;
3068 
3069 	KASSERT(mutex_owned(&sc->sc_intr_lock));
3070 
3071 	if (what == UHF_PORT_POWER) {
3072 		DLOG(D_MSG, "POWER_OFF", 0,0,0,0);
3073 		t->flags &= ~F_POWER;
3074 		if (!(t->flags & F_NODEV))
3075 			t->flags |= F_NODEV|F_CCONNECT|F_ROOTINTR;
3076 		/* for x68k Nereid USB controller */
3077 		if (sc->sc_enable_power && (t->flags & F_REALPOWER)) {
3078 			t->flags &= ~F_REALPOWER;
3079 			sc->sc_enable_power(sc, POWER_OFF);
3080 		}
3081 		slhci_intrchange(sc, 0);
3082 		slhci_drain(sc);
3083 	} else if (what == UHF_C_PORT_CONNECTION) {
3084 		t->flags &= ~F_CCONNECT;
3085 	} else if (what == UHF_C_PORT_RESET) {
3086 		t->flags &= ~F_CRESET;
3087 	} else if (what == UHF_PORT_ENABLE) {
3088 		slhci_drain(sc);
3089 	} else if (what != UHF_PORT_SUSPEND) {
3090 		DDOLOG("ClrPortFeatERR:value=%#.4x", what, 0,0,0);
3091 		error = USBD_IOERROR;
3092 	}
3093 
3094 	return error;
3095 }
3096 
3097 static usbd_status
3098 slhci_set_feature(struct slhci_softc *sc, unsigned int what)
3099 {
3100 	SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
3101 	struct slhci_transfers *t;
3102 	uint8_t r;
3103 
3104 	t = &sc->sc_transfers;
3105 
3106 	KASSERT(mutex_owned(&sc->sc_intr_lock));
3107 
3108 	if (what == UHF_PORT_RESET) {
3109 		if (!(t->flags & F_ACTIVE)) {
3110 			DDOLOG("SET PORT_RESET when not ACTIVE!",
3111 			    0,0,0,0);
3112 			return USBD_INVAL;
3113 		}
3114 		if (!(t->flags & F_POWER)) {
3115 			DDOLOG("SET PORT_RESET without PORT_POWER! flags %p",
3116 			    t->flags, 0,0,0);
3117 			return USBD_INVAL;
3118 		}
3119 		if (t->flags & F_RESET)
3120 			return USBD_NORMAL_COMPLETION;
3121 		DLOG(D_MSG, "RESET flags %#jx", t->flags, 0,0,0);
3122 		slhci_intrchange(sc, 0);
3123 		slhci_drain(sc);
3124 		slhci_write(sc, SL11_CTRL, SL11_CTRL_RESETENGINE);
3125 		/* usb spec says delay >= 10ms, app note 50ms */
3126  		start_cc_time(&t_delay, 50000);
3127 		if (sc->sc_bus.ub_usepolling) {
3128 			DELAY(50000);
3129 			slhci_reset(sc);
3130 		} else {
3131 			t->flags |= F_RESET;
3132 			callout_schedule(&sc->sc_timer, uimax(mstohz(50), 2));
3133 		}
3134 	} else if (what == UHF_PORT_SUSPEND) {
3135 		printf("%s: USB Suspend not implemented!\n", SC_NAME(sc));
3136 		DDOLOG("USB Suspend not implemented!", 0, 0, 0, 0);
3137 	} else if (what == UHF_PORT_POWER) {
3138 		DLOG(D_MSG, "PORT_POWER", 0,0,0,0);
3139 		/* for x68k Nereid USB controller */
3140 		if (!(t->flags & F_ACTIVE))
3141 			return USBD_INVAL;
3142 		if (t->flags & F_POWER)
3143 			return USBD_NORMAL_COMPLETION;
3144 		if (!(t->flags & F_REALPOWER)) {
3145 			if (sc->sc_enable_power)
3146 				sc->sc_enable_power(sc, POWER_ON);
3147 			t->flags |= F_REALPOWER;
3148 		}
3149 		t->flags |= F_POWER;
3150 		r = slhci_read(sc, SL11_ISR);
3151 		if (r & SL11_ISR_INSERT)
3152 			slhci_write(sc, SL11_ISR, SL11_ISR_INSERT);
3153 		if (r & SL11_ISR_NODEV) {
3154 			slhci_intrchange(sc, SL11_IER_INSERT);
3155 			t->flags |= F_NODEV;
3156 		} else {
3157 			t->flags &= ~F_NODEV;
3158 			t->flags |= F_CCONNECT|F_ROOTINTR;
3159 		}
3160 	} else {
3161 		DDOLOG("SetPortFeatERR=%#.8x", what, 0,0,0);
3162 		return USBD_IOERROR;
3163 	}
3164 
3165 	return USBD_NORMAL_COMPLETION;
3166 }
3167 
3168 static void
3169 slhci_get_status(struct slhci_softc *sc, usb_port_status_t *ps)
3170 {
3171 	SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
3172 	struct slhci_transfers *t;
3173 	unsigned int status, change;
3174 
3175 	t = &sc->sc_transfers;
3176 
3177 	KASSERT(mutex_owned(&sc->sc_intr_lock));
3178 
3179 	/*
3180 	 * We do not have a way to detect over current or babble and
3181 	 * suspend is currently not implemented, so connect and reset
3182 	 * are the only changes that need to be reported.
3183 	 */
3184 	change = 0;
3185 	if (t->flags & F_CCONNECT)
3186 		change |= UPS_C_CONNECT_STATUS;
3187 	if (t->flags & F_CRESET)
3188 		change |= UPS_C_PORT_RESET;
3189 
3190 	status = 0;
3191 	if (!(t->flags & F_NODEV))
3192 		status |= UPS_CURRENT_CONNECT_STATUS;
3193 	if (!(t->flags & F_UDISABLED))
3194 		status |= UPS_PORT_ENABLED;
3195 	if (t->flags & F_RESET)
3196 		status |= UPS_RESET;
3197 	if (t->flags & F_POWER)
3198 		status |= UPS_PORT_POWER;
3199 	if (t->flags & F_LOWSPEED)
3200 		status |= UPS_LOW_SPEED;
3201 	USETW(ps->wPortStatus, status);
3202 	USETW(ps->wPortChange, change);
3203 	DLOG(D_ROOT, "status=%#.4jx, change=%#.4jx", status, change, 0,0);
3204 }
3205 
3206 static int
3207 slhci_roothub_ctrl(struct usbd_bus *bus, usb_device_request_t *req,
3208     void *buf, int buflen)
3209 {
3210 	SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
3211 	struct slhci_softc *sc = SLHCI_BUS2SC(bus);
3212 	struct slhci_transfers *t = &sc->sc_transfers;
3213 	usbd_status error = USBD_IOERROR; /* XXX should be STALL */
3214 	uint16_t len, value, index;
3215 	uint8_t type;
3216 	int actlen = 0;
3217 
3218 	len = UGETW(req->wLength);
3219 	value = UGETW(req->wValue);
3220 	index = UGETW(req->wIndex);
3221 
3222 	type = req->bmRequestType;
3223 
3224 	SLHCI_DEXEC(D_TRACE, slhci_log_req(req));
3225 
3226 	/*
3227 	 * USB requests for hubs have two basic types, standard and class.
3228 	 * Each could potentially have recipients of device, interface,
3229 	 * endpoint, or other.  For the hub class, CLASS_OTHER means the port
3230 	 * and CLASS_DEVICE means the hub.  For standard requests, OTHER
3231 	 * is not used.  Standard request are described in section 9.4 of the
3232 	 * standard, hub class requests in 11.16.  Each request is either read
3233 	 * or write.
3234 	 *
3235 	 * Clear Feature, Set Feature, and Status are defined for each of the
3236 	 * used recipients.  Get Descriptor and Set Descriptor are defined for
3237 	 * both standard and hub class types with different descriptors.
3238 	 * Other requests have only one defined recipient and type.  These
3239 	 * include: Get/Set Address, Get/Set Configuration, Get/Set Interface,
3240 	 * and Synch Frame for standard requests and Get Bus State for hub
3241 	 * class.
3242 	 *
3243 	 * When a device is first powered up it has address 0 until the
3244 	 * address is set.
3245 	 *
3246 	 * Hubs are only allowed to support one interface and may not have
3247 	 * isochronous endpoints.  The results of the related requests are
3248 	 * undefined.
3249 	 *
3250 	 * The standard requires invalid or unsupported requests to return
3251 	 * STALL in the data stage, however this does not work well with
3252 	 * current error handling. XXX
3253 	 *
3254 	 * Some unsupported fields:
3255 	 * Clear Hub Feature is for C_HUB_LOCAL_POWER and C_HUB_OVER_CURRENT
3256 	 * Set Device Features is for ENDPOINT_HALT and DEVICE_REMOTE_WAKEUP
3257 	 * Get Bus State is optional sample of D- and D+ at EOF2
3258 	 */
3259 
3260 	switch (req->bRequest) {
3261 	/* Write Requests */
3262 	case UR_CLEAR_FEATURE:
3263 		if (type == UT_WRITE_CLASS_OTHER) {
3264 			if (index == 1 /* Port */) {
3265 				mutex_enter(&sc->sc_intr_lock);
3266 				error = slhci_clear_feature(sc, value);
3267 				mutex_exit(&sc->sc_intr_lock);
3268 			} else
3269 				DLOG(D_ROOT, "Clear Port Feature "
3270 				    "index = %#.4jx", index, 0,0,0);
3271 		}
3272 		break;
3273 	case UR_SET_FEATURE:
3274 		if (type == UT_WRITE_CLASS_OTHER) {
3275 			if (index == 1 /* Port */) {
3276 				mutex_enter(&sc->sc_intr_lock);
3277 				error = slhci_set_feature(sc, value);
3278 				mutex_exit(&sc->sc_intr_lock);
3279 			} else
3280 				DLOG(D_ROOT, "Set Port Feature "
3281 				    "index = %#.4jx", index, 0,0,0);
3282 		} else if (type != UT_WRITE_CLASS_DEVICE)
3283 			DLOG(D_ROOT, "Set Device Feature "
3284 			    "ENDPOINT_HALT or DEVICE_REMOTE_WAKEUP "
3285 			    "not supported", 0,0,0,0);
3286 		break;
3287 
3288 	/* Read Requests */
3289 	case UR_GET_STATUS:
3290 		if (type == UT_READ_CLASS_OTHER) {
3291 			if (index == 1 /* Port */ && len == /* XXX >=? */
3292 			    sizeof(usb_port_status_t)) {
3293 				mutex_enter(&sc->sc_intr_lock);
3294 				slhci_get_status(sc, (usb_port_status_t *)
3295 				    buf);
3296 				mutex_exit(&sc->sc_intr_lock);
3297 				actlen = sizeof(usb_port_status_t);
3298 				error = USBD_NORMAL_COMPLETION;
3299 			} else
3300 				DLOG(D_ROOT, "Get Port Status index = %#.4jx "
3301 				    "len = %#.4jx", index, len, 0,0);
3302 		} else if (type == UT_READ_CLASS_DEVICE) { /* XXX index? */
3303 			if (len == sizeof(usb_hub_status_t)) {
3304 				DLOG(D_ROOT, "Get Hub Status",
3305 				    0,0,0,0);
3306 				actlen = sizeof(usb_hub_status_t);
3307 				memset(buf, 0, actlen);
3308 				error = USBD_NORMAL_COMPLETION;
3309 			} else
3310 				DLOG(D_ROOT, "Get Hub Status bad len %#.4jx",
3311 				    len, 0,0,0);
3312 		}
3313 		break;
3314 	case UR_GET_DESCRIPTOR:
3315 		if (type == UT_READ_DEVICE) {
3316 			/* value is type (&0xff00) and index (0xff) */
3317 			if (value == (UDESC_DEVICE<<8)) {
3318 				actlen = buflen;
3319 				error = USBD_NORMAL_COMPLETION;
3320 			} else if (value == (UDESC_CONFIG<<8)) {
3321 				struct usb_roothub_descriptors confd;
3322 
3323 				actlen = uimin(buflen, sizeof(confd));
3324 				memcpy(&confd, buf, actlen);
3325 
3326 				/* 2 mA units */
3327 				confd.urh_confd.bMaxPower = t->max_current;
3328 				memcpy(buf, &confd, actlen);
3329 				error = USBD_NORMAL_COMPLETION;
3330 			} else if (value == ((UDESC_STRING<<8)|1)) {
3331 				/* Vendor */
3332 				actlen = buflen;
3333 				error = USBD_NORMAL_COMPLETION;
3334 			} else if (value == ((UDESC_STRING<<8)|2)) {
3335 				/* Product */
3336 				actlen = usb_makestrdesc((usb_string_descriptor_t *)
3337 				    buf, len, "SL811HS/T root hub");
3338 				error = USBD_NORMAL_COMPLETION;
3339 			} else
3340 				DDOLOG("Unknown Get Descriptor %#.4x",
3341 				    value, 0,0,0);
3342 		} else if (type == UT_READ_CLASS_DEVICE) {
3343 			/* Descriptor number is 0 */
3344 			if (value == (UDESC_HUB<<8)) {
3345 				usb_hub_descriptor_t hubd;
3346 
3347 				actlen = uimin(buflen, sizeof(hubd));
3348 				memcpy(&hubd, buf, actlen);
3349 				hubd.bHubContrCurrent =
3350 				    500 - t->max_current;
3351 				memcpy(buf, &hubd, actlen);
3352 				error = USBD_NORMAL_COMPLETION;
3353 			} else
3354 				DDOLOG("Unknown Get Hub Descriptor %#.4x",
3355 				    value, 0,0,0);
3356 		}
3357 		break;
3358 	default:
3359 		/* default from usbroothub */
3360 		return buflen;
3361 	}
3362 
3363 	if (error == USBD_NORMAL_COMPLETION)
3364 		return actlen;
3365 
3366 	return -1;
3367 }
3368 
3369 /* End in lock functions. Start debug functions. */
3370 
3371 #ifdef SLHCI_DEBUG
3372 void
3373 slhci_log_buffer(struct usbd_xfer *xfer)
3374 {
3375 	SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
3376 	u_char *buf;
3377 
3378 	if(xfer->ux_length > 0 &&
3379 	    UE_GET_DIR(xfer->ux_pipe->up_endpoint->ue_edesc->bEndpointAddress) ==
3380 	    UE_DIR_IN) {
3381 		buf = xfer->ux_buf;
3382 		DDOLOGBUF(buf, xfer->ux_actlen);
3383 		DDOLOG("len %d actlen %d short %d", xfer->ux_length,
3384 		    xfer->ux_actlen, xfer->ux_length - xfer->ux_actlen, 0);
3385 	}
3386 }
3387 
3388 void
3389 slhci_log_req(usb_device_request_t *r)
3390 {
3391 	SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
3392 	int req, type, value, index, len;
3393 
3394 	req   = r->bRequest;
3395 	type  = r->bmRequestType;
3396 	value = UGETW(r->wValue);
3397 	index = UGETW(r->wIndex);
3398 	len   = UGETW(r->wLength);
3399 
3400 	DDOLOG("request: type %#x", type, 0, 0, 0);
3401 	DDOLOG("request: r=%d,v=%d,i=%d,l=%d ", req, value, index, len);
3402 }
3403 
3404 void
3405 slhci_log_dumpreg(void)
3406 {
3407 	SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
3408 	uint8_t r;
3409 	unsigned int aaddr, alen, baddr, blen;
3410 	static u_char buf[240];
3411 
3412 	r = slhci_read(ssc, SL11_E0CTRL);
3413 	DDOLOG("USB A Host Control = %#.2x", r, 0, 0, 0);
3414 	DDOLOGEPCTRL(r);
3415 
3416 	aaddr = slhci_read(ssc, SL11_E0ADDR);
3417 	DDOLOG("USB A Base Address = %u", aaddr, 0,0,0);
3418 	alen = slhci_read(ssc, SL11_E0LEN);
3419 	DDOLOG("USB A Length = %u", alen, 0,0,0);
3420 	r = slhci_read(ssc, SL11_E0STAT);
3421 	DDOLOG("USB A Status = %#.2x", r, 0,0,0);
3422 	DDOLOGEPSTAT(r);
3423 
3424 	r = slhci_read(ssc, SL11_E0CONT);
3425 	DDOLOG("USB A Remaining or Overflow Length = %u", r, 0,0,0);
3426 	r = slhci_read(ssc, SL11_E1CTRL);
3427 	DDOLOG("USB B Host Control = %#.2x", r, 0,0,0);
3428 	DDOLOGEPCTRL(r);
3429 
3430 	baddr = slhci_read(ssc, SL11_E1ADDR);
3431 	DDOLOG("USB B Base Address = %u", baddr, 0,0,0);
3432 	blen = slhci_read(ssc, SL11_E1LEN);
3433 	DDOLOG("USB B Length = %u", blen, 0,0,0);
3434 	r = slhci_read(ssc, SL11_E1STAT);
3435 	DDOLOG("USB B Status = %#.2x", r, 0,0,0);
3436 	DDOLOGEPSTAT(r);
3437 
3438 	r = slhci_read(ssc, SL11_E1CONT);
3439 	DDOLOG("USB B Remaining or Overflow Length = %u", r, 0,0,0);
3440 
3441 	r = slhci_read(ssc, SL11_CTRL);
3442 	DDOLOG("Control = %#.2x", r, 0,0,0);
3443 	DDOLOGCTRL(r);
3444 
3445 	r = slhci_read(ssc, SL11_IER);
3446 	DDOLOG("Interrupt Enable = %#.2x", r, 0,0,0);
3447 	DDOLOGIER(r);
3448 
3449 	r = slhci_read(ssc, SL11_ISR);
3450 	DDOLOG("Interrupt Status = %#.2x", r, 0,0,0);
3451 	DDOLOGISR(r);
3452 
3453 	r = slhci_read(ssc, SL11_REV);
3454 	DDOLOG("Revision = %#.2x", r, 0,0,0);
3455 	r = slhci_read(ssc, SL811_CSOF);
3456 	DDOLOG("SOF Counter = %#.2x", r, 0,0,0);
3457 
3458 	if (alen && aaddr >= SL11_BUFFER_START && aaddr < SL11_BUFFER_END &&
3459 	    alen <= SL11_MAX_PACKET_SIZE && aaddr + alen <= SL11_BUFFER_END) {
3460 		slhci_read_multi(ssc, aaddr, buf, alen);
3461 		DDOLOG("USBA Buffer: start %u len %u", aaddr, alen, 0,0);
3462 		DDOLOGBUF(buf, alen);
3463 	} else if (alen)
3464 		DDOLOG("USBA Buffer Invalid", 0,0,0,0);
3465 
3466 	if (blen && baddr >= SL11_BUFFER_START && baddr < SL11_BUFFER_END &&
3467 	    blen <= SL11_MAX_PACKET_SIZE && baddr + blen <= SL11_BUFFER_END) {
3468 		slhci_read_multi(ssc, baddr, buf, blen);
3469 		DDOLOG("USBB Buffer: start %u len %u", baddr, blen, 0,0);
3470 		DDOLOGBUF(buf, blen);
3471 	} else if (blen)
3472 		DDOLOG("USBB Buffer Invalid", 0,0,0,0);
3473 }
3474 
3475 void
3476 slhci_log_xfer(struct usbd_xfer *xfer)
3477 {
3478 	SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
3479 	DDOLOG("xfer: length=%u, actlen=%u, flags=%#x, timeout=%u,",
3480 		xfer->ux_length, xfer->ux_actlen, xfer->ux_flags, xfer->ux_timeout);
3481 	DDOLOG("buffer=%p", xfer->ux_buf, 0,0,0);
3482 	slhci_log_req(&xfer->ux_request);
3483 }
3484 
3485 void
3486 slhci_log_spipe(struct slhci_pipe *spipe)
3487 {
3488 	SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
3489 	DDOLOG("spipe %p onlists: AP=%d TO=%d XQ=%d", spipe,
3490 	    gcq_onlist(&spipe->ap) ? 1 : 0,
3491 	    gcq_onlist(&spipe->to) ? 1 : 0,
3492 	    gcq_onlist(&spipe->xq) ? 1 : 0);
3493 	DDOLOG("spipe: xfer %p buffer %p pflags %#x ptype %d",
3494 	    spipe->xfer, spipe->buffer, spipe->pflags, spipe->ptype);
3495 }
3496 
3497 void
3498 slhci_print_intr(void)
3499 {
3500 	unsigned int ier, isr;
3501 	ier = slhci_read(ssc, SL11_IER);
3502 	isr = slhci_read(ssc, SL11_ISR);
3503 	printf("IER: %#x ISR: %#x \n", ier, isr);
3504 }
3505 
3506 #if 0
3507 void
3508 slhci_log_sc(void)
3509 {
3510 	SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
3511 
3512 	struct slhci_transfers *t;
3513 	int i;
3514 
3515 	t = &ssc->sc_transfers;
3516 
3517 	DDOLOG("Flags=%#x", t->flags, 0,0,0);
3518 	DDOLOG("a = %p Alen=%d b = %p Blen=%d", t->spipe[0], t->len[0],
3519 	    t->spipe[1], t->len[1]);
3520 
3521 	for (i=0; i<=Q_MAX; i++)
3522 		DDOLOG("Q %d: %p", i, gcq_hq(&t->q[i]), 0,0);
3523 
3524 	DDOLOG("TIMED: %p", GCQ_ITEM(gcq_hq(&t->to),
3525 	    struct slhci_pipe, to), 0,0,0);
3526 
3527 	DDOLOG("frame=%d rootintr=%p", t->frame, t->rootintr, 0,0);
3528 
3529 	DDOLOG("ub_usepolling=%d", ssc->sc_bus.ub_usepolling, 0, 0, 0);
3530 }
3531 
3532 void
3533 slhci_log_slreq(struct slhci_pipe *r)
3534 {
3535 	SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
3536 	DDOLOG("xfer: %p", r->xfer, 0,0,0);
3537 	DDOLOG("buffer: %p", r->buffer, 0,0,0);
3538 	DDOLOG("bustime: %u", r->bustime, 0,0,0);
3539 	DDOLOG("control: %#x", r->control, 0,0,0);
3540 	DDOLOGEPCTRL(r->control);
3541 
3542 	DDOLOG("pid: %#x", r->tregs[PID], 0,0,0);
3543 	DDOLOG("dev: %u", r->tregs[DEV], 0,0,0);
3544 	DDOLOG("len: %u", r->tregs[LEN], 0,0,0);
3545 
3546 	if (r->xfer)
3547 		slhci_log_xfer(r->xfer);
3548 }
3549 #endif
3550 #endif /* SLHCI_DEBUG */
3551 /* End debug functions. */
3552