1 /* $NetBSD: sl811hs.c,v 1.99 2018/04/09 16:21:10 jakllsch Exp $ */ 2 3 /* 4 * Not (c) 2007 Matthew Orgass 5 * This file is public domain, meaning anyone can make any use of part or all 6 * of this file including copying into other works without credit. Any use, 7 * modified or not, is solely the responsibility of the user. If this file is 8 * part of a collection then use in the collection is governed by the terms of 9 * the collection. 10 */ 11 12 /* 13 * Cypress/ScanLogic SL811HS/T USB Host Controller 14 * Datasheet, Errata, and App Note available at www.cypress.com 15 * 16 * Uses: Ratoc CFU1U PCMCIA USB Host Controller, Nereid X68k USB HC, ISA 17 * HCs. The Ratoc CFU2 uses a different chip. 18 * 19 * This chip puts the serial in USB. It implements USB by means of an eight 20 * bit I/O interface. It can be used for ISA, PCMCIA/CF, parallel port, 21 * serial port, or any eight bit interface. It has 256 bytes of memory, the 22 * first 16 of which are used for register access. There are two sets of 23 * registers for sending individual bus transactions. Because USB is polled, 24 * this organization means that some amount of card access must often be made 25 * when devices are attached, even if when they are not directly being used. 26 * A per-ms frame interrupt is necessary and many devices will poll with a 27 * per-frame bulk transfer. 28 * 29 * It is possible to write a little over two bytes to the chip (auto 30 * incremented) per full speed byte time on the USB. Unfortunately, 31 * auto-increment does not work reliably so write and bus speed is 32 * approximately the same for full speed devices. 33 * 34 * In addition to the 240 byte packet size limit for isochronous transfers, 35 * this chip has no means of determining the current frame number other than 36 * getting all 1ms SOF interrupts, which is not always possible even on a fast 37 * system. Isochronous transfers guarantee that transfers will never be 38 * retried in a later frame, so this can cause problems with devices beyond 39 * the difficulty in actually performing the transfer most frames. I tried 40 * implementing isoc transfers and was able to play CD-derrived audio via an 41 * iMic on a 2GHz PC, however it would still be interrupted at times and 42 * once interrupted, would stay out of sync. All isoc support has been 43 * removed. 44 * 45 * BUGS: all chip revisions have problems with low speed devices through hubs. 46 * The chip stops generating SOF with hubs that send SE0 during SOF. See 47 * comment in dointr(). All performance enhancing features of this chip seem 48 * not to work properly, most confirmed buggy in errata doc. 49 * 50 */ 51 52 /* 53 * The hard interrupt is the main entry point. Start, callbacks, and repeat 54 * are the only others called frequently. 55 * 56 * Since this driver attaches to pcmcia, card removal at any point should be 57 * expected and not cause panics or infinite loops. 58 */ 59 60 /* 61 * XXX TODO: 62 * copy next output packet while transfering 63 * usb suspend 64 * could keep track of known values of all buffer space? 65 * combined print/log function for errors 66 * 67 * ub_usepolling support is untested and may not work 68 */ 69 70 #include <sys/cdefs.h> 71 __KERNEL_RCSID(0, "$NetBSD: sl811hs.c,v 1.99 2018/04/09 16:21:10 jakllsch Exp $"); 72 73 #ifdef _KERNEL_OPT 74 #include "opt_slhci.h" 75 #include "opt_usb.h" 76 #endif 77 78 #include <sys/param.h> 79 80 #include <sys/bus.h> 81 #include <sys/cpu.h> 82 #include <sys/device.h> 83 #include <sys/gcq.h> 84 #include <sys/intr.h> 85 #include <sys/kernel.h> 86 #include <sys/kmem.h> 87 #include <sys/proc.h> 88 #include <sys/queue.h> 89 #include <sys/sysctl.h> 90 #include <sys/systm.h> 91 92 #include <dev/usb/usb.h> 93 #include <dev/usb/usbdi.h> 94 #include <dev/usb/usbdivar.h> 95 #include <dev/usb/usbhist.h> 96 #include <dev/usb/usb_mem.h> 97 #include <dev/usb/usbdevs.h> 98 #include <dev/usb/usbroothub.h> 99 100 #include <dev/ic/sl811hsreg.h> 101 #include <dev/ic/sl811hsvar.h> 102 103 #define Q_CB 0 /* Control/Bulk */ 104 #define Q_NEXT_CB 1 105 #define Q_MAX_XFER Q_CB 106 #define Q_CALLBACKS 2 107 #define Q_MAX Q_CALLBACKS 108 109 #define F_AREADY (0x00000001) 110 #define F_BREADY (0x00000002) 111 #define F_AINPROG (0x00000004) 112 #define F_BINPROG (0x00000008) 113 #define F_LOWSPEED (0x00000010) 114 #define F_UDISABLED (0x00000020) /* Consider disabled for USB */ 115 #define F_NODEV (0x00000040) 116 #define F_ROOTINTR (0x00000080) 117 #define F_REALPOWER (0x00000100) /* Actual power state */ 118 #define F_POWER (0x00000200) /* USB reported power state */ 119 #define F_ACTIVE (0x00000400) 120 #define F_CALLBACK (0x00000800) /* Callback scheduled */ 121 #define F_SOFCHECK1 (0x00001000) 122 #define F_SOFCHECK2 (0x00002000) 123 #define F_CRESET (0x00004000) /* Reset done not reported */ 124 #define F_CCONNECT (0x00008000) /* Connect change not reported */ 125 #define F_RESET (0x00010000) 126 #define F_ISOC_WARNED (0x00020000) 127 #define F_LSVH_WARNED (0x00040000) 128 129 #define F_DISABLED (F_NODEV|F_UDISABLED) 130 #define F_CHANGE (F_CRESET|F_CCONNECT) 131 132 #ifdef SLHCI_TRY_LSVH 133 unsigned int slhci_try_lsvh = 1; 134 #else 135 unsigned int slhci_try_lsvh = 0; 136 #endif 137 138 #define ADR 0 139 #define LEN 1 140 #define PID 2 141 #define DEV 3 142 #define STAT 2 143 #define CONT 3 144 145 #define A 0 146 #define B 1 147 148 static const uint8_t slhci_tregs[2][4] = 149 {{SL11_E0ADDR, SL11_E0LEN, SL11_E0PID, SL11_E0DEV }, 150 {SL11_E1ADDR, SL11_E1LEN, SL11_E1PID, SL11_E1DEV }}; 151 152 #define PT_ROOT_CTRL 0 153 #define PT_ROOT_INTR 1 154 #define PT_CTRL_SETUP 2 155 #define PT_CTRL_DATA 3 156 #define PT_CTRL_STATUS 4 157 #define PT_INTR 5 158 #define PT_BULK 6 159 #define PT_MAX 6 160 161 #ifdef SLHCI_DEBUG 162 #define SLHCI_MEM_ACCOUNTING 163 #endif 164 165 /* 166 * Maximum allowable reserved bus time. Since intr/isoc transfers have 167 * unconditional priority, this is all that ensures control and bulk transfers 168 * get a chance. It is a single value for all frames since all transfers can 169 * use multiple consecutive frames if an error is encountered. Note that it 170 * is not really possible to fill the bus with transfers, so this value should 171 * be on the low side. Defaults to giving a warning unless SLHCI_NO_OVERTIME 172 * is defined. Full time is 12000 - END_BUSTIME. 173 */ 174 #ifndef SLHCI_RESERVED_BUSTIME 175 #define SLHCI_RESERVED_BUSTIME 5000 176 #endif 177 178 /* 179 * Rate for "exceeds reserved bus time" warnings (default) or errors. 180 * Warnings only happen when an endpoint open causes the time to go above 181 * SLHCI_RESERVED_BUSTIME, not if it is already above. 182 */ 183 #ifndef SLHCI_OVERTIME_WARNING_RATE 184 #define SLHCI_OVERTIME_WARNING_RATE { 60, 0 } /* 60 seconds */ 185 #endif 186 static const struct timeval reserved_warn_rate = SLHCI_OVERTIME_WARNING_RATE; 187 188 /* 189 * For EOF, the spec says 42 bit times, plus (I think) a possible hub skew of 190 * 20 bit times. By default leave 66 bit times to start the transfer beyond 191 * the required time. Units are full-speed bit times (a bit over 5us per 64). 192 * Only multiples of 64 are significant. 193 */ 194 #define SLHCI_STANDARD_END_BUSTIME 128 195 #ifndef SLHCI_EXTRA_END_BUSTIME 196 #define SLHCI_EXTRA_END_BUSTIME 0 197 #endif 198 199 #define SLHCI_END_BUSTIME (SLHCI_STANDARD_END_BUSTIME+SLHCI_EXTRA_END_BUSTIME) 200 201 /* 202 * This is an approximation of the USB worst-case timings presented on p. 54 of 203 * the USB 1.1 spec translated to full speed bit times. 204 * FS = full speed with handshake, FSII = isoc in, FSIO = isoc out, 205 * FSI = isoc (worst case), LS = low speed 206 */ 207 #define SLHCI_FS_CONST 114 208 #define SLHCI_FSII_CONST 92 209 #define SLHCI_FSIO_CONST 80 210 #define SLHCI_FSI_CONST 92 211 #define SLHCI_LS_CONST 804 212 #ifndef SLHCI_PRECICE_BUSTIME 213 /* 214 * These values are < 3% too high (compared to the multiply and divide) for 215 * max sized packets. 216 */ 217 #define SLHCI_FS_DATA_TIME(len) (((u_int)(len)<<3)+(len)+((len)>>1)) 218 #define SLHCI_LS_DATA_TIME(len) (((u_int)(len)<<6)+((u_int)(len)<<4)) 219 #else 220 #define SLHCI_FS_DATA_TIME(len) (56*(len)/6) 221 #define SLHCI_LS_DATA_TIME(len) (449*(len)/6) 222 #endif 223 224 /* 225 * Set SLHCI_WAIT_SIZE to the desired maximum size of single FS transfer 226 * to poll for after starting a transfer. 64 gets all full speed transfers. 227 * Note that even if 0 polling will occur if data equal or greater than the 228 * transfer size is copied to the chip while the transfer is in progress. 229 * Setting SLHCI_WAIT_TIME to -12000 will disable polling. 230 */ 231 #ifndef SLHCI_WAIT_SIZE 232 #define SLHCI_WAIT_SIZE 8 233 #endif 234 #ifndef SLHCI_WAIT_TIME 235 #define SLHCI_WAIT_TIME (SLHCI_FS_CONST + \ 236 SLHCI_FS_DATA_TIME(SLHCI_WAIT_SIZE)) 237 #endif 238 const int slhci_wait_time = SLHCI_WAIT_TIME; 239 240 #ifndef SLHCI_MAX_RETRIES 241 #define SLHCI_MAX_RETRIES 3 242 #endif 243 244 /* Check IER values for corruption after this many unrecognized interrupts. */ 245 #ifndef SLHCI_IER_CHECK_FREQUENCY 246 #ifdef SLHCI_DEBUG 247 #define SLHCI_IER_CHECK_FREQUENCY 1 248 #else 249 #define SLHCI_IER_CHECK_FREQUENCY 100 250 #endif 251 #endif 252 253 /* Note that buffer points to the start of the buffer for this transfer. */ 254 struct slhci_pipe { 255 struct usbd_pipe pipe; 256 struct usbd_xfer *xfer; /* xfer in progress */ 257 uint8_t *buffer; /* I/O buffer (if needed) */ 258 struct gcq ap; /* All pipes */ 259 struct gcq to; /* Timeout list */ 260 struct gcq xq; /* Xfer queues */ 261 unsigned int pflags; /* Pipe flags */ 262 #define PF_GONE (0x01) /* Pipe is on disabled device */ 263 #define PF_TOGGLE (0x02) /* Data toggle status */ 264 #define PF_LS (0x04) /* Pipe is low speed */ 265 #define PF_PREAMBLE (0x08) /* Needs preamble */ 266 Frame to_frame; /* Frame number for timeout */ 267 Frame frame; /* Frame number for intr xfer */ 268 Frame lastframe; /* Previous frame number for intr */ 269 uint16_t bustime; /* Worst case bus time usage */ 270 uint16_t newbustime[2]; /* new bustimes (see index below) */ 271 uint8_t tregs[4]; /* ADR, LEN, PID, DEV */ 272 uint8_t newlen[2]; /* 0 = short data, 1 = ctrl data */ 273 uint8_t newpid; /* for ctrl */ 274 uint8_t wantshort; /* last xfer must be short */ 275 uint8_t control; /* Host control register settings */ 276 uint8_t nerrs; /* Current number of errors */ 277 uint8_t ptype; /* Pipe type */ 278 }; 279 280 #define SLHCI_BUS2SC(bus) ((bus)->ub_hcpriv) 281 #define SLHCI_PIPE2SC(pipe) SLHCI_BUS2SC((pipe)->up_dev->ud_bus) 282 #define SLHCI_XFER2SC(xfer) SLHCI_BUS2SC((xfer)->ux_bus) 283 284 #define SLHCI_PIPE2SPIPE(pipe) ((struct slhci_pipe *)(pipe)) 285 #define SLHCI_XFER2SPIPE(xfer) SLHCI_PIPE2SPIPE((xfer)->ux_pipe) 286 287 #define SLHCI_XFER_TYPE(x) (SLHCI_XFER2SPIPE(xfer)->ptype) 288 289 #ifdef SLHCI_PROFILE_TRANSFER 290 #if defined(__mips__) 291 /* 292 * MIPS cycle counter does not directly count cpu cycles but is a different 293 * fraction of cpu cycles depending on the cpu. 294 */ 295 typedef uint32_t cc_type; 296 #define CC_TYPE_FMT "%u" 297 #define slhci_cc_set(x) __asm volatile ("mfc0 %[cc], $9\n\tnop\n\tnop\n\tnop" \ 298 : [cc] "=r"(x)) 299 #elif defined(__i386__) 300 typedef uint64_t cc_type; 301 #define CC_TYPE_FMT "%llu" 302 #define slhci_cc_set(x) __asm volatile ("rdtsc" : "=A"(x)) 303 #else 304 #error "SLHCI_PROFILE_TRANSFER not implemented on this MACHINE_ARCH (see sys/dev/ic/sl811hs.c)" 305 #endif 306 struct slhci_cc_time { 307 cc_type start; 308 cc_type stop; 309 unsigned int miscdata; 310 }; 311 #ifndef SLHCI_N_TIMES 312 #define SLHCI_N_TIMES 200 313 #endif 314 struct slhci_cc_times { 315 struct slhci_cc_time times[SLHCI_N_TIMES]; 316 int current; 317 int wraparound; 318 }; 319 320 static struct slhci_cc_times t_ab[2]; 321 static struct slhci_cc_times t_abdone; 322 static struct slhci_cc_times t_copy_to_dev; 323 static struct slhci_cc_times t_copy_from_dev; 324 static struct slhci_cc_times t_intr; 325 static struct slhci_cc_times t_lock; 326 static struct slhci_cc_times t_delay; 327 static struct slhci_cc_times t_hard_int; 328 static struct slhci_cc_times t_callback; 329 330 static inline void 331 start_cc_time(struct slhci_cc_times *times, unsigned int misc) { 332 times->times[times->current].miscdata = misc; 333 slhci_cc_set(times->times[times->current].start); 334 } 335 static inline void 336 stop_cc_time(struct slhci_cc_times *times) { 337 slhci_cc_set(times->times[times->current].stop); 338 if (++times->current >= SLHCI_N_TIMES) { 339 times->current = 0; 340 times->wraparound = 1; 341 } 342 } 343 344 void slhci_dump_cc_times(int); 345 346 void 347 slhci_dump_cc_times(int n) { 348 struct slhci_cc_times *times; 349 int i; 350 351 switch (n) { 352 default: 353 case 0: 354 printf("USBA start transfer to intr:\n"); 355 times = &t_ab[A]; 356 break; 357 case 1: 358 printf("USBB start transfer to intr:\n"); 359 times = &t_ab[B]; 360 break; 361 case 2: 362 printf("abdone:\n"); 363 times = &t_abdone; 364 break; 365 case 3: 366 printf("copy to device:\n"); 367 times = &t_copy_to_dev; 368 break; 369 case 4: 370 printf("copy from device:\n"); 371 times = &t_copy_from_dev; 372 break; 373 case 5: 374 printf("intr to intr:\n"); 375 times = &t_intr; 376 break; 377 case 6: 378 printf("lock to release:\n"); 379 times = &t_lock; 380 break; 381 case 7: 382 printf("delay time:\n"); 383 times = &t_delay; 384 break; 385 case 8: 386 printf("hard interrupt enter to exit:\n"); 387 times = &t_hard_int; 388 break; 389 case 9: 390 printf("callback:\n"); 391 times = &t_callback; 392 break; 393 } 394 395 if (times->wraparound) 396 for (i = times->current + 1; i < SLHCI_N_TIMES; i++) 397 printf("start " CC_TYPE_FMT " stop " CC_TYPE_FMT 398 " difference %8i miscdata %#x\n", 399 times->times[i].start, times->times[i].stop, 400 (int)(times->times[i].stop - 401 times->times[i].start), times->times[i].miscdata); 402 403 for (i = 0; i < times->current; i++) 404 printf("start " CC_TYPE_FMT " stop " CC_TYPE_FMT 405 " difference %8i miscdata %#x\n", times->times[i].start, 406 times->times[i].stop, (int)(times->times[i].stop - 407 times->times[i].start), times->times[i].miscdata); 408 } 409 #else 410 #define start_cc_time(x, y) 411 #define stop_cc_time(x) 412 #endif /* SLHCI_PROFILE_TRANSFER */ 413 414 typedef usbd_status (*LockCallFunc)(struct slhci_softc *, struct slhci_pipe 415 *, struct usbd_xfer *); 416 417 struct usbd_xfer * slhci_allocx(struct usbd_bus *, unsigned int); 418 void slhci_freex(struct usbd_bus *, struct usbd_xfer *); 419 static void slhci_get_lock(struct usbd_bus *, kmutex_t **); 420 421 usbd_status slhci_transfer(struct usbd_xfer *); 422 usbd_status slhci_start(struct usbd_xfer *); 423 usbd_status slhci_root_start(struct usbd_xfer *); 424 usbd_status slhci_open(struct usbd_pipe *); 425 426 static int slhci_roothub_ctrl(struct usbd_bus *, usb_device_request_t *, 427 void *, int); 428 429 /* 430 * slhci_supported_rev, slhci_preinit, slhci_attach, slhci_detach, 431 * slhci_activate 432 */ 433 434 void slhci_abort(struct usbd_xfer *); 435 void slhci_close(struct usbd_pipe *); 436 void slhci_clear_toggle(struct usbd_pipe *); 437 void slhci_poll(struct usbd_bus *); 438 void slhci_done(struct usbd_xfer *); 439 void slhci_void(void *); 440 441 /* lock entry functions */ 442 443 #ifdef SLHCI_MEM_ACCOUNTING 444 void slhci_mem_use(struct usbd_bus *, int); 445 #endif 446 447 void slhci_reset_entry(void *); 448 usbd_status slhci_lock_call(struct slhci_softc *, LockCallFunc, 449 struct slhci_pipe *, struct usbd_xfer *); 450 void slhci_start_entry(struct slhci_softc *, struct slhci_pipe *); 451 void slhci_callback_entry(void *arg); 452 void slhci_do_callback(struct slhci_softc *, struct usbd_xfer *); 453 454 /* slhci_intr */ 455 456 void slhci_main(struct slhci_softc *); 457 458 /* in lock functions */ 459 460 static void slhci_write(struct slhci_softc *, uint8_t, uint8_t); 461 static uint8_t slhci_read(struct slhci_softc *, uint8_t); 462 static void slhci_write_multi(struct slhci_softc *, uint8_t, uint8_t *, int); 463 static void slhci_read_multi(struct slhci_softc *, uint8_t, uint8_t *, int); 464 465 static void slhci_waitintr(struct slhci_softc *, int); 466 static int slhci_dointr(struct slhci_softc *); 467 static void slhci_abdone(struct slhci_softc *, int); 468 static void slhci_tstart(struct slhci_softc *); 469 static void slhci_dotransfer(struct slhci_softc *); 470 471 static void slhci_callback(struct slhci_softc *); 472 static void slhci_enter_xfer(struct slhci_softc *, struct slhci_pipe *); 473 static void slhci_enter_xfers(struct slhci_softc *); 474 static void slhci_queue_timed(struct slhci_softc *, struct slhci_pipe *); 475 static void slhci_xfer_timer(struct slhci_softc *, struct slhci_pipe *); 476 477 static void slhci_callback_schedule(struct slhci_softc *); 478 static void slhci_do_callback_schedule(struct slhci_softc *); 479 #if 0 480 void slhci_pollxfer(struct slhci_softc *, struct usbd_xfer *); /* XXX */ 481 #endif 482 483 static usbd_status slhci_do_poll(struct slhci_softc *, struct slhci_pipe *, 484 struct usbd_xfer *); 485 static usbd_status slhci_lsvh_warn(struct slhci_softc *, struct slhci_pipe *, 486 struct usbd_xfer *); 487 static usbd_status slhci_isoc_warn(struct slhci_softc *, struct slhci_pipe *, 488 struct usbd_xfer *); 489 static usbd_status slhci_open_pipe(struct slhci_softc *, struct slhci_pipe *, 490 struct usbd_xfer *); 491 static usbd_status slhci_close_pipe(struct slhci_softc *, struct slhci_pipe *, 492 struct usbd_xfer *); 493 static usbd_status slhci_do_abort(struct slhci_softc *, struct slhci_pipe *, 494 struct usbd_xfer *); 495 static usbd_status slhci_halt(struct slhci_softc *, struct slhci_pipe *, 496 struct usbd_xfer *); 497 498 static void slhci_intrchange(struct slhci_softc *, uint8_t); 499 static void slhci_drain(struct slhci_softc *); 500 static void slhci_reset(struct slhci_softc *); 501 static int slhci_reserve_bustime(struct slhci_softc *, struct slhci_pipe *, 502 int); 503 static void slhci_insert(struct slhci_softc *); 504 505 static usbd_status slhci_clear_feature(struct slhci_softc *, unsigned int); 506 static usbd_status slhci_set_feature(struct slhci_softc *, unsigned int); 507 static void slhci_get_status(struct slhci_softc *, usb_port_status_t *); 508 509 #define SLHCIHIST_FUNC() USBHIST_FUNC() 510 #define SLHCIHIST_CALLED() USBHIST_CALLED(slhcidebug) 511 512 #ifdef SLHCI_DEBUG 513 static int slhci_memtest(struct slhci_softc *); 514 515 void slhci_log_buffer(struct usbd_xfer *); 516 void slhci_log_req(usb_device_request_t *); 517 void slhci_log_dumpreg(void); 518 void slhci_log_xfer(struct usbd_xfer *); 519 void slhci_log_spipe(struct slhci_pipe *); 520 void slhci_print_intr(void); 521 void slhci_log_sc(void); 522 void slhci_log_slreq(struct slhci_pipe *); 523 524 /* Constified so you can read the values from ddb */ 525 const int SLHCI_D_TRACE = 0x0001; 526 const int SLHCI_D_MSG = 0x0002; 527 const int SLHCI_D_XFER = 0x0004; 528 const int SLHCI_D_MEM = 0x0008; 529 const int SLHCI_D_INTR = 0x0010; 530 const int SLHCI_D_SXFER = 0x0020; 531 const int SLHCI_D_ERR = 0x0080; 532 const int SLHCI_D_BUF = 0x0100; 533 const int SLHCI_D_SOFT = 0x0200; 534 const int SLHCI_D_WAIT = 0x0400; 535 const int SLHCI_D_ROOT = 0x0800; 536 /* SOF/NAK alone normally ignored, SOF also needs D_INTR */ 537 const int SLHCI_D_SOF = 0x1000; 538 const int SLHCI_D_NAK = 0x2000; 539 540 int slhcidebug = 0x1cbc; /* 0xc8c; */ /* 0xffff; */ /* 0xd8c; */ 541 542 SYSCTL_SETUP(sysctl_hw_slhci_setup, "sysctl hw.slhci setup") 543 { 544 int err; 545 const struct sysctlnode *rnode; 546 const struct sysctlnode *cnode; 547 548 err = sysctl_createv(clog, 0, NULL, &rnode, 549 CTLFLAG_PERMANENT, CTLTYPE_NODE, "slhci", 550 SYSCTL_DESCR("slhci global controls"), 551 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL); 552 553 if (err) 554 goto fail; 555 556 /* control debugging printfs */ 557 err = sysctl_createv(clog, 0, &rnode, &cnode, 558 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, 559 "debug", SYSCTL_DESCR("Enable debugging output"), 560 NULL, 0, &slhcidebug, sizeof(slhcidebug), CTL_CREATE, CTL_EOL); 561 if (err) 562 goto fail; 563 564 return; 565 fail: 566 aprint_error("%s: sysctl_createv failed (err = %d)\n", __func__, err); 567 } 568 569 struct slhci_softc *ssc; 570 571 #define SLHCI_DEXEC(x, y) do { if ((slhcidebug & SLHCI_ ## x)) { y; } \ 572 } while (/*CONSTCOND*/ 0) 573 #define DDOLOG(f, a, b, c, d) do { KERNHIST_LOG(usbhist, f, a, b, c, d); \ 574 } while (/*CONSTCOND*/0) 575 #define DLOG(x, f, a, b, c, d) SLHCI_DEXEC(x, DDOLOG(f, a, b, c, d)) 576 577 /* 578 * DDOLOGBUF logs a buffer up to 8 bytes at a time. No identifier so that we 579 * can make it a real function. 580 */ 581 static void 582 DDOLOGBUF(uint8_t *buf, unsigned int length) 583 { 584 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 585 int i; 586 587 for(i=0; i+8 <= length; i+=8) 588 DDOLOG("%.4x %.4x %.4x %.4x", (buf[i] << 8) | buf[i+1], 589 (buf[i+2] << 8) | buf[i+3], (buf[i+4] << 8) | buf[i+5], 590 (buf[i+6] << 8) | buf[i+7]); 591 if (length == i+7) 592 DDOLOG("%.4x %.4x %.4x %.2x", (buf[i] << 8) | buf[i+1], 593 (buf[i+2] << 8) | buf[i+3], (buf[i+4] << 8) | buf[i+5], 594 buf[i+6]); 595 else if (length == i+6) 596 DDOLOG("%.4x %.4x %.4x", (buf[i] << 8) | buf[i+1], 597 (buf[i+2] << 8) | buf[i+3], (buf[i+4] << 8) | buf[i+5], 0); 598 else if (length == i+5) 599 DDOLOG("%.4x %.4x %.2x", (buf[i] << 8) | buf[i+1], 600 (buf[i+2] << 8) | buf[i+3], buf[i+4], 0); 601 else if (length == i+4) 602 DDOLOG("%.4x %.4x", (buf[i] << 8) | buf[i+1], 603 (buf[i+2] << 8) | buf[i+3], 0,0); 604 else if (length == i+3) 605 DDOLOG("%.4x %.2x", (buf[i] << 8) | buf[i+1], buf[i+2], 0,0); 606 else if (length == i+2) 607 DDOLOG("%.4x", (buf[i] << 8) | buf[i+1], 0,0,0); 608 else if (length == i+1) 609 DDOLOG("%.2x", buf[i], 0,0,0); 610 } 611 #define DLOGBUF(x, b, l) SLHCI_DEXEC(x, DDOLOGBUF(b, l)) 612 613 #define DDOLOGCTRL(x) do { \ 614 DDOLOG("CTRL suspend=%jd", !!((x) & SL11_CTRL_SUSPEND), 0, 0, 0); \ 615 DDOLOG("CTRL ls =%jd jk =%jd reset =%jd sof =%jd", \ 616 !!((x) & SL11_CTRL_LOWSPEED), !!((x) & SL11_CTRL_JKSTATE), \ 617 !!((x) & SL11_CTRL_RESETENGINE), !!((x) & SL11_CTRL_ENABLESOF));\ 618 } while (0) 619 620 #define DDOLOGISR(r) do { \ 621 DDOLOG("ISR data =%jd det/res=%jd insert =%jd sof =%jd", \ 622 !!((r) & SL11_ISR_DATA), !!((r) & SL11_ISR_RESUME), \ 623 !!((r) & SL11_ISR_INSERT), !!!!((r) & SL11_ISR_SOF)); \ 624 DDOLOG("ISR babble =%jd usbb =%jd usba =%jd", \ 625 !!((r) & SL11_ISR_BABBLE), !!((r) & SL11_ISR_USBB), \ 626 !!((r) & SL11_ISR_USBA), 0); \ 627 } while (0) 628 629 #define DDOLOGIER(r) do { \ 630 DDOLOG("IER det/res=%d insert =%d sof =%d", \ 631 !!((r) & SL11_IER_RESUME), \ 632 !!((r) & SL11_IER_INSERT), !!!!((r) & SL11_IER_SOF), 0); \ 633 DDOLOG("IER babble =%d usbb =%d usba =%d", \ 634 !!((r) & SL11_IER_BABBLE), !!((r) & SL11_IER_USBB), \ 635 !!((r) & SL11_IER_USBA), 0); \ 636 } while (0) 637 638 #define DDOLOGSTATUS(s) do { \ 639 DDOLOG("STAT stall =%d nak =%d overflow =%d setup =%d", \ 640 !!((s) & SL11_EPSTAT_STALL), !!((s) & SL11_EPSTAT_NAK), \ 641 !!((s) & SL11_EPSTAT_OVERFLOW), !!((s) & SL11_EPSTAT_SETUP)); \ 642 DDOLOG("STAT sequence=%d timeout =%d error =%d ack =%d", \ 643 !!((s) & SL11_EPSTAT_SEQUENCE), !!((s) & SL11_EPSTAT_TIMEOUT), \ 644 !!((s) & SL11_EPSTAT_ERROR), !!((s) & SL11_EPSTAT_ACK)); \ 645 } while (0) 646 647 #define DDOLOGEPCTRL(r) do { \ 648 DDOLOG("CTRL preamble=%d toggle =%d sof =%d iso =%d", \ 649 !!((r) & SL11_EPCTRL_PREAMBLE), !!((r) & SL11_EPCTRL_DATATOGGLE),\ 650 !!((r) & SL11_EPCTRL_SOF), !!((r) & SL11_EPCTRL_ISO)); \ 651 DDOLOG("CTRL out =%d enable =%d arm =%d", \ 652 !!((r) & SL11_EPCTRL_DIRECTION), \ 653 !!((r) & SL11_EPCTRL_ENABLE), !!((r) & SL11_EPCTRL_ARM), 0); \ 654 } while (0) 655 656 #define DDOLOGEPSTAT(r) do { \ 657 DDOLOG("STAT stall =%d nak =%d overflow =%d setup =%d", \ 658 !!((r) & SL11_EPSTAT_STALL), !!((r) & SL11_EPSTAT_NAK), \ 659 !!((r) & SL11_EPSTAT_OVERFLOW), !!((r) & SL11_EPSTAT_SETUP)); \ 660 DDOLOG("STAT sequence=%d timeout =%d error =%d ack =%d", \ 661 !!((r) & SL11_EPSTAT_SEQUENCE), !!((r) & SL11_EPSTAT_TIMEOUT), \ 662 !!((r) & SL11_EPSTAT_ERROR), !!((r) & SL11_EPSTAT_ACK)); \ 663 } while (0) 664 #else /* now !SLHCI_DEBUG */ 665 #define slhcidebug 0 666 #define slhci_log_spipe(spipe) ((void)0) 667 #define slhci_log_xfer(xfer) ((void)0) 668 #define SLHCI_DEXEC(x, y) ((void)0) 669 #define DDOLOG(f, a, b, c, d) ((void)0) 670 #define DLOG(x, f, a, b, c, d) ((void)0) 671 #define DDOLOGBUF(b, l) ((void)0) 672 #define DLOGBUF(x, b, l) ((void)0) 673 #define DDOLOGCTRL(x) ((void)0) 674 #define DDOLOGISR(r) ((void)0) 675 #define DDOLOGIER(r) ((void)0) 676 #define DDOLOGSTATUS(s) ((void)0) 677 #define DDOLOGEPCTRL(r) ((void)0) 678 #define DDOLOGEPSTAT(r) ((void)0) 679 #endif /* SLHCI_DEBUG */ 680 681 #ifdef DIAGNOSTIC 682 #define LK_SLASSERT(exp, sc, spipe, xfer, ext) do { \ 683 if (!(exp)) { \ 684 printf("%s: assertion %s failed line %u function %s!" \ 685 " halted\n", SC_NAME(sc), #exp, __LINE__, __func__);\ 686 slhci_halt(sc, spipe, xfer); \ 687 ext; \ 688 } \ 689 } while (/*CONSTCOND*/0) 690 #define UL_SLASSERT(exp, sc, spipe, xfer, ext) do { \ 691 if (!(exp)) { \ 692 printf("%s: assertion %s failed line %u function %s!" \ 693 " halted\n", SC_NAME(sc), #exp, __LINE__, __func__); \ 694 slhci_lock_call(sc, &slhci_halt, spipe, xfer); \ 695 ext; \ 696 } \ 697 } while (/*CONSTCOND*/0) 698 #else 699 #define LK_SLASSERT(exp, sc, spipe, xfer, ext) ((void)0) 700 #define UL_SLASSERT(exp, sc, spipe, xfer, ext) ((void)0) 701 #endif 702 703 const struct usbd_bus_methods slhci_bus_methods = { 704 .ubm_open = slhci_open, 705 .ubm_softint= slhci_void, 706 .ubm_dopoll = slhci_poll, 707 .ubm_allocx = slhci_allocx, 708 .ubm_freex = slhci_freex, 709 .ubm_getlock = slhci_get_lock, 710 .ubm_rhctrl = slhci_roothub_ctrl, 711 }; 712 713 const struct usbd_pipe_methods slhci_pipe_methods = { 714 .upm_transfer = slhci_transfer, 715 .upm_start = slhci_start, 716 .upm_abort = slhci_abort, 717 .upm_close = slhci_close, 718 .upm_cleartoggle = slhci_clear_toggle, 719 .upm_done = slhci_done, 720 }; 721 722 const struct usbd_pipe_methods slhci_root_methods = { 723 .upm_transfer = slhci_transfer, 724 .upm_start = slhci_root_start, 725 .upm_abort = slhci_abort, 726 .upm_close = (void (*)(struct usbd_pipe *))slhci_void, /* XXX safe? */ 727 .upm_cleartoggle = slhci_clear_toggle, 728 .upm_done = slhci_done, 729 }; 730 731 /* Queue inlines */ 732 733 #define GOT_FIRST_TO(tvar, t) \ 734 GCQ_GOT_FIRST_TYPED(tvar, &(t)->to, struct slhci_pipe, to) 735 736 #define FIND_TO(var, t, tvar, cond) \ 737 GCQ_FIND_TYPED(var, &(t)->to, tvar, struct slhci_pipe, to, cond) 738 739 #define FOREACH_AP(var, t, tvar) \ 740 GCQ_FOREACH_TYPED(var, &(t)->ap, tvar, struct slhci_pipe, ap) 741 742 #define GOT_FIRST_TIMED_COND(tvar, t, cond) \ 743 GCQ_GOT_FIRST_COND_TYPED(tvar, &(t)->timed, struct slhci_pipe, xq, cond) 744 745 #define GOT_FIRST_CB(tvar, t) \ 746 GCQ_GOT_FIRST_TYPED(tvar, &(t)->q[Q_CB], struct slhci_pipe, xq) 747 748 #define DEQUEUED_CALLBACK(tvar, t) \ 749 GCQ_DEQUEUED_FIRST_TYPED(tvar, &(t)->q[Q_CALLBACKS], struct slhci_pipe, xq) 750 751 #define FIND_TIMED(var, t, tvar, cond) \ 752 GCQ_FIND_TYPED(var, &(t)->timed, tvar, struct slhci_pipe, xq, cond) 753 754 #define DEQUEUED_WAITQ(tvar, sc) \ 755 GCQ_DEQUEUED_FIRST_TYPED(tvar, &(sc)->sc_waitq, struct slhci_pipe, xq) 756 757 static inline void 758 enter_waitq(struct slhci_softc *sc, struct slhci_pipe *spipe) 759 { 760 gcq_insert_tail(&sc->sc_waitq, &spipe->xq); 761 } 762 763 static inline void 764 enter_q(struct slhci_transfers *t, struct slhci_pipe *spipe, int i) 765 { 766 gcq_insert_tail(&t->q[i], &spipe->xq); 767 } 768 769 static inline void 770 enter_callback(struct slhci_transfers *t, struct slhci_pipe *spipe) 771 { 772 gcq_insert_tail(&t->q[Q_CALLBACKS], &spipe->xq); 773 } 774 775 static inline void 776 enter_all_pipes(struct slhci_transfers *t, struct slhci_pipe *spipe) 777 { 778 gcq_insert_tail(&t->ap, &spipe->ap); 779 } 780 781 /* Start out of lock functions. */ 782 783 struct usbd_xfer * 784 slhci_allocx(struct usbd_bus *bus, unsigned int nframes) 785 { 786 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 787 struct usbd_xfer *xfer; 788 789 xfer = kmem_zalloc(sizeof(*xfer), KM_SLEEP); 790 791 DLOG(D_MEM, "allocx %#jx", (uintptr_t)xfer, 0,0,0); 792 793 #ifdef SLHCI_MEM_ACCOUNTING 794 slhci_mem_use(bus, 1); 795 #endif 796 #ifdef DIAGNOSTIC 797 if (xfer != NULL) 798 xfer->ux_state = XFER_BUSY; 799 #endif 800 return xfer; 801 } 802 803 void 804 slhci_freex(struct usbd_bus *bus, struct usbd_xfer *xfer) 805 { 806 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 807 DLOG(D_MEM, "freex xfer %#jx spipe %#jx", 808 (uintptr_t)xfer, (uintptr_t)xfer->ux_pipe,0,0); 809 810 #ifdef SLHCI_MEM_ACCOUNTING 811 slhci_mem_use(bus, -1); 812 #endif 813 #ifdef DIAGNOSTIC 814 if (xfer->ux_state != XFER_BUSY) { 815 struct slhci_softc *sc = SLHCI_BUS2SC(bus); 816 printf("%s: slhci_freex: xfer=%p not busy, %#08x halted\n", 817 SC_NAME(sc), xfer, xfer->ux_state); 818 DDOLOG("xfer=%p not busy, %#08x halted\n", xfer, 819 xfer->ux_state, 0, 0); 820 slhci_lock_call(sc, &slhci_halt, NULL, NULL); 821 return; 822 } 823 xfer->ux_state = XFER_FREE; 824 #endif 825 826 kmem_free(xfer, sizeof(*xfer)); 827 } 828 829 static void 830 slhci_get_lock(struct usbd_bus *bus, kmutex_t **lock) 831 { 832 struct slhci_softc *sc = SLHCI_BUS2SC(bus); 833 834 *lock = &sc->sc_lock; 835 } 836 837 usbd_status 838 slhci_transfer(struct usbd_xfer *xfer) 839 { 840 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 841 struct slhci_softc *sc = SLHCI_XFER2SC(xfer); 842 usbd_status error; 843 844 DLOG(D_TRACE, "transfer type %jd xfer %#jx spipe %#jx ", 845 SLHCI_XFER_TYPE(xfer), (uintptr_t)xfer, (uintptr_t)xfer->ux_pipe, 846 0); 847 848 /* Insert last in queue */ 849 mutex_enter(&sc->sc_lock); 850 error = usb_insert_transfer(xfer); 851 mutex_exit(&sc->sc_lock); 852 if (error) { 853 if (error != USBD_IN_PROGRESS) 854 DLOG(D_ERR, "usb_insert_transfer returns %jd!", error, 855 0,0,0); 856 return error; 857 } 858 859 /* 860 * Pipe isn't running (otherwise error would be USBD_INPROG), 861 * so start it first. 862 */ 863 864 /* 865 * Start will take the lock. 866 */ 867 error = xfer->ux_pipe->up_methods->upm_start(SIMPLEQ_FIRST(&xfer->ux_pipe->up_queue)); 868 869 return error; 870 } 871 872 /* It is not safe for start to return anything other than USBD_INPROG. */ 873 usbd_status 874 slhci_start(struct usbd_xfer *xfer) 875 { 876 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 877 struct slhci_softc *sc = SLHCI_XFER2SC(xfer); 878 struct usbd_pipe *pipe = xfer->ux_pipe; 879 struct slhci_pipe *spipe = SLHCI_PIPE2SPIPE(pipe); 880 struct slhci_transfers *t = &sc->sc_transfers; 881 usb_endpoint_descriptor_t *ed = pipe->up_endpoint->ue_edesc; 882 unsigned int max_packet; 883 884 mutex_enter(&sc->sc_lock); 885 886 max_packet = UGETW(ed->wMaxPacketSize); 887 888 DLOG(D_TRACE, "transfer type %jd start xfer %#jx spipe %#jx length %jd", 889 spipe->ptype, (uintptr_t)xfer, (uintptr_t)spipe, xfer->ux_length); 890 891 /* root transfers use slhci_root_start */ 892 893 KASSERT(spipe->xfer == NULL); /* not SLASSERT */ 894 895 xfer->ux_actlen = 0; 896 xfer->ux_status = USBD_IN_PROGRESS; 897 898 spipe->xfer = xfer; 899 900 spipe->nerrs = 0; 901 spipe->frame = t->frame; 902 spipe->control = SL11_EPCTRL_ARM_ENABLE; 903 spipe->tregs[DEV] = pipe->up_dev->ud_addr; 904 spipe->tregs[PID] = spipe->newpid = UE_GET_ADDR(ed->bEndpointAddress) 905 | (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN ? SL11_PID_IN : 906 SL11_PID_OUT); 907 spipe->newlen[0] = xfer->ux_length % max_packet; 908 spipe->newlen[1] = min(xfer->ux_length, max_packet); 909 910 if (spipe->ptype == PT_BULK || spipe->ptype == PT_INTR) { 911 if (spipe->pflags & PF_TOGGLE) 912 spipe->control |= SL11_EPCTRL_DATATOGGLE; 913 spipe->tregs[LEN] = spipe->newlen[1]; 914 if (spipe->tregs[LEN]) 915 spipe->buffer = xfer->ux_buf; 916 else 917 spipe->buffer = NULL; 918 spipe->lastframe = t->frame; 919 if (spipe->ptype == PT_INTR) { 920 spipe->frame = spipe->lastframe + 921 spipe->pipe.up_interval; 922 } 923 924 #if defined(DEBUG) || defined(SLHCI_DEBUG) 925 if (__predict_false(spipe->ptype == PT_INTR && 926 xfer->ux_length > spipe->tregs[LEN])) { 927 printf("%s: Long INTR transfer not supported!\n", 928 SC_NAME(sc)); 929 DDOLOG("Long INTR transfer not supported!", 0, 0, 0, 0); 930 xfer->ux_status = USBD_INVAL; 931 } 932 #endif 933 } else { 934 /* ptype may be currently set to any control transfer type. */ 935 SLHCI_DEXEC(D_TRACE, slhci_log_xfer(xfer)); 936 937 /* SETUP contains IN/OUT bits also */ 938 spipe->tregs[PID] |= SL11_PID_SETUP; 939 spipe->tregs[LEN] = 8; 940 spipe->buffer = (uint8_t *)&xfer->ux_request; 941 DLOGBUF(D_XFER, spipe->buffer, spipe->tregs[LEN]); 942 spipe->ptype = PT_CTRL_SETUP; 943 spipe->newpid &= ~SL11_PID_BITS; 944 if (xfer->ux_length == 0 || 945 (xfer->ux_request.bmRequestType & UT_READ)) 946 spipe->newpid |= SL11_PID_IN; 947 else 948 spipe->newpid |= SL11_PID_OUT; 949 } 950 951 if (xfer->ux_flags & USBD_FORCE_SHORT_XFER && 952 spipe->tregs[LEN] == max_packet && 953 (spipe->newpid & SL11_PID_BITS) == SL11_PID_OUT) 954 spipe->wantshort = 1; 955 else 956 spipe->wantshort = 0; 957 958 /* 959 * The goal of newbustime and newlen is to avoid bustime calculation 960 * in the interrupt. The calculations are not too complex, but they 961 * complicate the conditional logic somewhat and doing them all in the 962 * same place shares constants. Index 0 is "short length" for bulk and 963 * ctrl data and 1 is "full length" for ctrl data (bulk/intr are 964 * already set to full length). 965 */ 966 if (spipe->pflags & PF_LS) { 967 /* 968 * Setting PREAMBLE for directly connected LS devices will 969 * lock up the chip. 970 */ 971 if (spipe->pflags & PF_PREAMBLE) 972 spipe->control |= SL11_EPCTRL_PREAMBLE; 973 if (max_packet <= 8) { 974 spipe->bustime = SLHCI_LS_CONST + 975 SLHCI_LS_DATA_TIME(spipe->tregs[LEN]); 976 spipe->newbustime[0] = SLHCI_LS_CONST + 977 SLHCI_LS_DATA_TIME(spipe->newlen[0]); 978 spipe->newbustime[1] = SLHCI_LS_CONST + 979 SLHCI_LS_DATA_TIME(spipe->newlen[1]); 980 } else 981 xfer->ux_status = USBD_INVAL; 982 } else { 983 UL_SLASSERT(pipe->up_dev->ud_speed == USB_SPEED_FULL, sc, 984 spipe, xfer, return USBD_IN_PROGRESS); 985 if (max_packet <= SL11_MAX_PACKET_SIZE) { 986 spipe->bustime = SLHCI_FS_CONST + 987 SLHCI_FS_DATA_TIME(spipe->tregs[LEN]); 988 spipe->newbustime[0] = SLHCI_FS_CONST + 989 SLHCI_FS_DATA_TIME(spipe->newlen[0]); 990 spipe->newbustime[1] = SLHCI_FS_CONST + 991 SLHCI_FS_DATA_TIME(spipe->newlen[1]); 992 } else 993 xfer->ux_status = USBD_INVAL; 994 } 995 996 /* 997 * The datasheet incorrectly indicates that DIRECTION is for 998 * "transmit to host". It is for OUT and SETUP. The app note 999 * describes its use correctly. 1000 */ 1001 if ((spipe->tregs[PID] & SL11_PID_BITS) != SL11_PID_IN) 1002 spipe->control |= SL11_EPCTRL_DIRECTION; 1003 1004 slhci_start_entry(sc, spipe); 1005 1006 mutex_exit(&sc->sc_lock); 1007 1008 return USBD_IN_PROGRESS; 1009 } 1010 1011 usbd_status 1012 slhci_root_start(struct usbd_xfer *xfer) 1013 { 1014 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 1015 struct slhci_softc *sc; 1016 struct slhci_pipe *spipe __diagused; 1017 1018 spipe = SLHCI_PIPE2SPIPE(xfer->ux_pipe); 1019 sc = SLHCI_XFER2SC(xfer); 1020 1021 struct slhci_transfers *t = &sc->sc_transfers; 1022 1023 LK_SLASSERT(spipe != NULL && xfer != NULL, sc, spipe, xfer, return 1024 USBD_CANCELLED); 1025 1026 DLOG(D_TRACE, "transfer type %jd start", 1027 SLHCI_XFER_TYPE(xfer), 0, 0, 0); 1028 1029 KASSERT(spipe->ptype == PT_ROOT_INTR); 1030 1031 mutex_enter(&sc->sc_intr_lock); 1032 t->rootintr = xfer; 1033 mutex_exit(&sc->sc_intr_lock); 1034 1035 return USBD_IN_PROGRESS; 1036 } 1037 1038 usbd_status 1039 slhci_open(struct usbd_pipe *pipe) 1040 { 1041 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 1042 struct usbd_device *dev; 1043 struct slhci_softc *sc; 1044 struct slhci_pipe *spipe; 1045 usb_endpoint_descriptor_t *ed; 1046 unsigned int max_packet, pmaxpkt; 1047 uint8_t rhaddr; 1048 1049 dev = pipe->up_dev; 1050 sc = SLHCI_PIPE2SC(pipe); 1051 spipe = SLHCI_PIPE2SPIPE(pipe); 1052 ed = pipe->up_endpoint->ue_edesc; 1053 rhaddr = dev->ud_bus->ub_rhaddr; 1054 1055 DLOG(D_TRACE, "slhci_open(addr=%jd,ep=%jd,rootaddr=%jd)", 1056 dev->ud_addr, ed->bEndpointAddress, rhaddr, 0); 1057 1058 spipe->pflags = 0; 1059 spipe->frame = 0; 1060 spipe->lastframe = 0; 1061 spipe->xfer = NULL; 1062 spipe->buffer = NULL; 1063 1064 gcq_init(&spipe->ap); 1065 gcq_init(&spipe->to); 1066 gcq_init(&spipe->xq); 1067 1068 /* 1069 * The endpoint descriptor will not have been set up yet in the case 1070 * of the standard control pipe, so the max packet checks are also 1071 * necessary in start. 1072 */ 1073 1074 max_packet = UGETW(ed->wMaxPacketSize); 1075 1076 if (dev->ud_speed == USB_SPEED_LOW) { 1077 spipe->pflags |= PF_LS; 1078 if (dev->ud_myhub->ud_addr != rhaddr) { 1079 spipe->pflags |= PF_PREAMBLE; 1080 if (!slhci_try_lsvh) 1081 return slhci_lock_call(sc, &slhci_lsvh_warn, 1082 spipe, NULL); 1083 } 1084 pmaxpkt = 8; 1085 } else 1086 pmaxpkt = SL11_MAX_PACKET_SIZE; 1087 1088 if (max_packet > pmaxpkt) { 1089 DLOG(D_ERR, "packet too large! size %jd spipe %#jx", max_packet, 1090 (uintptr_t)spipe, 0,0); 1091 return USBD_INVAL; 1092 } 1093 1094 if (dev->ud_addr == rhaddr) { 1095 switch (ed->bEndpointAddress) { 1096 case USB_CONTROL_ENDPOINT: 1097 spipe->ptype = PT_ROOT_CTRL; 1098 pipe->up_interval = 0; 1099 pipe->up_methods = &roothub_ctrl_methods; 1100 break; 1101 case UE_DIR_IN | USBROOTHUB_INTR_ENDPT: 1102 spipe->ptype = PT_ROOT_INTR; 1103 pipe->up_interval = 1; 1104 pipe->up_methods = &slhci_root_methods; 1105 break; 1106 default: 1107 printf("%s: Invalid root endpoint!\n", SC_NAME(sc)); 1108 DDOLOG("Invalid root endpoint", 0, 0, 0, 0); 1109 return USBD_INVAL; 1110 } 1111 return USBD_NORMAL_COMPLETION; 1112 } else { 1113 switch (ed->bmAttributes & UE_XFERTYPE) { 1114 case UE_CONTROL: 1115 spipe->ptype = PT_CTRL_SETUP; 1116 pipe->up_interval = 0; 1117 break; 1118 case UE_INTERRUPT: 1119 spipe->ptype = PT_INTR; 1120 if (pipe->up_interval == USBD_DEFAULT_INTERVAL) 1121 pipe->up_interval = ed->bInterval; 1122 break; 1123 case UE_ISOCHRONOUS: 1124 return slhci_lock_call(sc, &slhci_isoc_warn, spipe, 1125 NULL); 1126 case UE_BULK: 1127 spipe->ptype = PT_BULK; 1128 pipe->up_interval = 0; 1129 break; 1130 } 1131 1132 DLOG(D_MSG, "open pipe type %jd interval %jd", spipe->ptype, 1133 pipe->up_interval, 0,0); 1134 1135 pipe->up_methods = __UNCONST(&slhci_pipe_methods); 1136 1137 return slhci_lock_call(sc, &slhci_open_pipe, spipe, NULL); 1138 } 1139 } 1140 1141 int 1142 slhci_supported_rev(uint8_t rev) 1143 { 1144 return rev >= SLTYPE_SL811HS_R12 && rev <= SLTYPE_SL811HS_R15; 1145 } 1146 1147 /* 1148 * Must be called before the ISR is registered. Interrupts can be shared so 1149 * slhci_intr could be called as soon as the ISR is registered. 1150 * Note max_current argument is actual current, but stored as current/2 1151 */ 1152 void 1153 slhci_preinit(struct slhci_softc *sc, PowerFunc pow, bus_space_tag_t iot, 1154 bus_space_handle_t ioh, uint16_t max_current, uint32_t stride) 1155 { 1156 struct slhci_transfers *t; 1157 int i; 1158 1159 t = &sc->sc_transfers; 1160 1161 #ifdef SLHCI_DEBUG 1162 ssc = sc; 1163 #endif 1164 1165 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_SOFTUSB); 1166 mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_USB); 1167 1168 /* sc->sc_ier = 0; */ 1169 /* t->rootintr = NULL; */ 1170 t->flags = F_NODEV|F_UDISABLED; 1171 t->pend = INT_MAX; 1172 KASSERT(slhci_wait_time != INT_MAX); 1173 t->len[0] = t->len[1] = -1; 1174 if (max_current > 500) 1175 max_current = 500; 1176 t->max_current = (uint8_t)(max_current / 2); 1177 sc->sc_enable_power = pow; 1178 sc->sc_iot = iot; 1179 sc->sc_ioh = ioh; 1180 sc->sc_stride = stride; 1181 1182 KASSERT(Q_MAX+1 == sizeof(t->q) / sizeof(t->q[0])); 1183 1184 for (i = 0; i <= Q_MAX; i++) 1185 gcq_init_head(&t->q[i]); 1186 gcq_init_head(&t->timed); 1187 gcq_init_head(&t->to); 1188 gcq_init_head(&t->ap); 1189 gcq_init_head(&sc->sc_waitq); 1190 } 1191 1192 int 1193 slhci_attach(struct slhci_softc *sc) 1194 { 1195 struct slhci_transfers *t; 1196 const char *rev; 1197 1198 t = &sc->sc_transfers; 1199 1200 /* Detect and check the controller type */ 1201 t->sltype = SL11_GET_REV(slhci_read(sc, SL11_REV)); 1202 1203 /* SL11H not supported */ 1204 if (!slhci_supported_rev(t->sltype)) { 1205 if (t->sltype == SLTYPE_SL11H) 1206 printf("%s: SL11H unsupported or bus error!\n", 1207 SC_NAME(sc)); 1208 else 1209 printf("%s: Unknown chip revision!\n", SC_NAME(sc)); 1210 return -1; 1211 } 1212 1213 #ifdef SLHCI_DEBUG 1214 if (slhci_memtest(sc)) { 1215 printf("%s: memory/bus error!\n", SC_NAME(sc)); 1216 return -1; 1217 } 1218 #endif 1219 1220 callout_init(&sc->sc_timer, CALLOUT_MPSAFE); 1221 callout_setfunc(&sc->sc_timer, slhci_reset_entry, sc); 1222 1223 /* 1224 * It is not safe to call the soft interrupt directly as 1225 * usb_schedsoftintr does in the ub_usepolling case (due to locking). 1226 */ 1227 sc->sc_cb_softintr = softint_establish(SOFTINT_NET, 1228 slhci_callback_entry, sc); 1229 1230 if (t->sltype == SLTYPE_SL811HS_R12) 1231 rev = "(rev 1.2)"; 1232 else if (t->sltype == SLTYPE_SL811HS_R14) 1233 rev = "(rev 1.4 or 1.5)"; 1234 else 1235 rev = "(unknown revision)"; 1236 1237 aprint_normal("%s: ScanLogic SL811HS/T USB Host Controller %s\n", 1238 SC_NAME(sc), rev); 1239 1240 aprint_normal("%s: Max Current %u mA (value by code, not by probe)\n", 1241 SC_NAME(sc), t->max_current * 2); 1242 1243 #if defined(SLHCI_DEBUG) || defined(SLHCI_NO_OVERTIME) || \ 1244 defined(SLHCI_TRY_LSVH) || defined(SLHCI_PROFILE_TRANSFER) 1245 aprint_normal("%s: driver options:" 1246 #ifdef SLHCI_DEBUG 1247 " SLHCI_DEBUG" 1248 #endif 1249 #ifdef SLHCI_TRY_LSVH 1250 " SLHCI_TRY_LSVH" 1251 #endif 1252 #ifdef SLHCI_NO_OVERTIME 1253 " SLHCI_NO_OVERTIME" 1254 #endif 1255 #ifdef SLHCI_PROFILE_TRANSFER 1256 " SLHCI_PROFILE_TRANSFER" 1257 #endif 1258 "\n", SC_NAME(sc)); 1259 #endif 1260 sc->sc_bus.ub_revision = USBREV_1_1; 1261 sc->sc_bus.ub_methods = __UNCONST(&slhci_bus_methods); 1262 sc->sc_bus.ub_pipesize = sizeof(struct slhci_pipe); 1263 sc->sc_bus.ub_usedma = false; 1264 1265 if (!sc->sc_enable_power) 1266 t->flags |= F_REALPOWER; 1267 1268 t->flags |= F_ACTIVE; 1269 1270 /* Attach usb and uhub. */ 1271 sc->sc_child = config_found(SC_DEV(sc), &sc->sc_bus, usbctlprint); 1272 1273 if (!sc->sc_child) 1274 return -1; 1275 else 1276 return 0; 1277 } 1278 1279 int 1280 slhci_detach(struct slhci_softc *sc, int flags) 1281 { 1282 struct slhci_transfers *t; 1283 int ret; 1284 1285 t = &sc->sc_transfers; 1286 1287 /* By this point bus access is no longer allowed. */ 1288 1289 KASSERT(!(t->flags & F_ACTIVE)); 1290 1291 /* 1292 * To be MPSAFE is not sufficient to cancel callouts and soft 1293 * interrupts and assume they are dead since the code could already be 1294 * running or about to run. Wait until they are known to be done. 1295 */ 1296 while (t->flags & (F_RESET|F_CALLBACK)) 1297 tsleep(&sc, PPAUSE, "slhci_detach", hz); 1298 1299 softint_disestablish(sc->sc_cb_softintr); 1300 1301 mutex_destroy(&sc->sc_lock); 1302 mutex_destroy(&sc->sc_intr_lock); 1303 1304 ret = 0; 1305 1306 if (sc->sc_child) 1307 ret = config_detach(sc->sc_child, flags); 1308 1309 #ifdef SLHCI_MEM_ACCOUNTING 1310 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 1311 if (sc->sc_mem_use) { 1312 printf("%s: Memory still in use after detach! mem_use (count)" 1313 " = %d\n", SC_NAME(sc), sc->sc_mem_use); 1314 DDOLOG("Memory still in use after detach! mem_use (count)" 1315 " = %d", sc->sc_mem_use, 0, 0, 0); 1316 } 1317 #endif 1318 1319 return ret; 1320 } 1321 1322 int 1323 slhci_activate(device_t self, enum devact act) 1324 { 1325 struct slhci_softc *sc = device_private(self); 1326 1327 switch (act) { 1328 case DVACT_DEACTIVATE: 1329 slhci_lock_call(sc, &slhci_halt, NULL, NULL); 1330 return 0; 1331 default: 1332 return EOPNOTSUPP; 1333 } 1334 } 1335 1336 void 1337 slhci_abort(struct usbd_xfer *xfer) 1338 { 1339 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 1340 struct slhci_softc *sc; 1341 struct slhci_pipe *spipe; 1342 1343 spipe = SLHCI_PIPE2SPIPE(xfer->ux_pipe); 1344 1345 if (spipe == NULL) 1346 goto callback; 1347 1348 sc = SLHCI_XFER2SC(xfer); 1349 KASSERT(mutex_owned(&sc->sc_lock)); 1350 1351 DLOG(D_TRACE, "transfer type %jd abort xfer %#jx spipe %#jx " 1352 " spipe->xfer %#jx", spipe->ptype, (uintptr_t)xfer, 1353 (uintptr_t)spipe, (uintptr_t)spipe->xfer); 1354 1355 slhci_lock_call(sc, &slhci_do_abort, spipe, xfer); 1356 1357 callback: 1358 xfer->ux_status = USBD_CANCELLED; 1359 usb_transfer_complete(xfer); 1360 } 1361 1362 void 1363 slhci_close(struct usbd_pipe *pipe) 1364 { 1365 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 1366 struct slhci_softc *sc; 1367 struct slhci_pipe *spipe; 1368 1369 sc = SLHCI_PIPE2SC(pipe); 1370 spipe = SLHCI_PIPE2SPIPE(pipe); 1371 1372 DLOG(D_TRACE, "transfer type %jd close spipe %#jx spipe->xfer %#jx", 1373 spipe->ptype, (uintptr_t)spipe, (uintptr_t)spipe->xfer, 0); 1374 1375 slhci_lock_call(sc, &slhci_close_pipe, spipe, NULL); 1376 } 1377 1378 void 1379 slhci_clear_toggle(struct usbd_pipe *pipe) 1380 { 1381 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 1382 struct slhci_pipe *spipe; 1383 1384 spipe = SLHCI_PIPE2SPIPE(pipe); 1385 1386 DLOG(D_TRACE, "transfer type %jd toggle spipe %#jx", spipe->ptype, 1387 (uintptr_t)spipe, 0, 0); 1388 1389 spipe->pflags &= ~PF_TOGGLE; 1390 1391 #ifdef DIAGNOSTIC 1392 if (spipe->xfer != NULL) { 1393 struct slhci_softc *sc = (struct slhci_softc 1394 *)pipe->up_dev->ud_bus; 1395 1396 printf("%s: Clear toggle on transfer in progress! halted\n", 1397 SC_NAME(sc)); 1398 DDOLOG("Clear toggle on transfer in progress! halted", 1399 0, 0, 0, 0); 1400 slhci_halt(sc, NULL, NULL); 1401 } 1402 #endif 1403 } 1404 1405 void 1406 slhci_poll(struct usbd_bus *bus) /* XXX necessary? */ 1407 { 1408 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 1409 struct slhci_softc *sc; 1410 1411 sc = SLHCI_BUS2SC(bus); 1412 1413 DLOG(D_TRACE, "slhci_poll", 0,0,0,0); 1414 1415 slhci_lock_call(sc, &slhci_do_poll, NULL, NULL); 1416 } 1417 1418 void 1419 slhci_done(struct usbd_xfer *xfer) 1420 { 1421 } 1422 1423 void 1424 slhci_void(void *v) {} 1425 1426 /* End out of lock functions. Start lock entry functions. */ 1427 1428 #ifdef SLHCI_MEM_ACCOUNTING 1429 void 1430 slhci_mem_use(struct usbd_bus *bus, int val) 1431 { 1432 struct slhci_softc *sc = SLHCI_BUS2SC(bus); 1433 1434 mutex_enter(&sc->sc_intr_lock); 1435 sc->sc_mem_use += val; 1436 mutex_exit(&sc->sc_intr_lock); 1437 } 1438 #endif 1439 1440 void 1441 slhci_reset_entry(void *arg) 1442 { 1443 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 1444 struct slhci_softc *sc = arg; 1445 1446 mutex_enter(&sc->sc_intr_lock); 1447 slhci_reset(sc); 1448 /* 1449 * We cannot call the callback directly since we could then be reset 1450 * again before finishing and need the callout delay for timing. 1451 * Scheduling the callout again before we exit would defeat the reap 1452 * mechanism since we could be unlocked while the reset flag is not 1453 * set. The callback code will check the wait queue. 1454 */ 1455 slhci_callback_schedule(sc); 1456 mutex_exit(&sc->sc_intr_lock); 1457 } 1458 1459 usbd_status 1460 slhci_lock_call(struct slhci_softc *sc, LockCallFunc lcf, struct slhci_pipe 1461 *spipe, struct usbd_xfer *xfer) 1462 { 1463 usbd_status ret; 1464 1465 mutex_enter(&sc->sc_intr_lock); 1466 ret = (*lcf)(sc, spipe, xfer); 1467 slhci_main(sc); 1468 mutex_exit(&sc->sc_intr_lock); 1469 1470 return ret; 1471 } 1472 1473 void 1474 slhci_start_entry(struct slhci_softc *sc, struct slhci_pipe *spipe) 1475 { 1476 struct slhci_transfers *t; 1477 1478 mutex_enter(&sc->sc_intr_lock); 1479 t = &sc->sc_transfers; 1480 1481 if (!(t->flags & (F_AINPROG|F_BINPROG))) { 1482 slhci_enter_xfer(sc, spipe); 1483 slhci_dotransfer(sc); 1484 slhci_main(sc); 1485 } else { 1486 enter_waitq(sc, spipe); 1487 } 1488 mutex_exit(&sc->sc_intr_lock); 1489 } 1490 1491 void 1492 slhci_callback_entry(void *arg) 1493 { 1494 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 1495 struct slhci_softc *sc; 1496 struct slhci_transfers *t; 1497 1498 sc = (struct slhci_softc *)arg; 1499 1500 mutex_enter(&sc->sc_intr_lock); 1501 t = &sc->sc_transfers; 1502 DLOG(D_SOFT, "callback_entry flags %#jx", t->flags, 0,0,0); 1503 1504 repeat: 1505 slhci_callback(sc); 1506 1507 if (!gcq_empty(&sc->sc_waitq)) { 1508 slhci_enter_xfers(sc); 1509 slhci_dotransfer(sc); 1510 slhci_waitintr(sc, 0); 1511 goto repeat; 1512 } 1513 1514 t->flags &= ~F_CALLBACK; 1515 mutex_exit(&sc->sc_intr_lock); 1516 } 1517 1518 void 1519 slhci_do_callback(struct slhci_softc *sc, struct usbd_xfer *xfer) 1520 { 1521 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 1522 KASSERT(mutex_owned(&sc->sc_intr_lock)); 1523 1524 start_cc_time(&t_callback, (u_int)xfer); 1525 mutex_exit(&sc->sc_intr_lock); 1526 1527 mutex_enter(&sc->sc_lock); 1528 usb_transfer_complete(xfer); 1529 mutex_exit(&sc->sc_lock); 1530 1531 mutex_enter(&sc->sc_intr_lock); 1532 stop_cc_time(&t_callback); 1533 } 1534 1535 int 1536 slhci_intr(void *arg) 1537 { 1538 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 1539 struct slhci_softc *sc = arg; 1540 int ret = 0; 1541 int irq; 1542 1543 start_cc_time(&t_hard_int, (unsigned int)arg); 1544 mutex_enter(&sc->sc_intr_lock); 1545 1546 do { 1547 irq = slhci_dointr(sc); 1548 ret |= irq; 1549 slhci_main(sc); 1550 } while (irq); 1551 mutex_exit(&sc->sc_intr_lock); 1552 1553 stop_cc_time(&t_hard_int); 1554 return ret; 1555 } 1556 1557 /* called with interrupt lock only held. */ 1558 void 1559 slhci_main(struct slhci_softc *sc) 1560 { 1561 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 1562 struct slhci_transfers *t; 1563 1564 t = &sc->sc_transfers; 1565 1566 KASSERT(mutex_owned(&sc->sc_intr_lock)); 1567 1568 waitcheck: 1569 slhci_waitintr(sc, slhci_wait_time); 1570 1571 /* 1572 * The direct call is needed in the ub_usepolling and disabled cases 1573 * since the soft interrupt is not available. In the disabled case, 1574 * this code can be reached from the usb detach, after the reaping of 1575 * the soft interrupt. That test could be !F_ACTIVE, but there is no 1576 * reason not to make the callbacks directly in the other DISABLED 1577 * cases. 1578 */ 1579 if ((t->flags & F_ROOTINTR) || !gcq_empty(&t->q[Q_CALLBACKS])) { 1580 if (__predict_false(sc->sc_bus.ub_usepolling || 1581 t->flags & F_DISABLED)) 1582 slhci_callback(sc); 1583 else 1584 slhci_callback_schedule(sc); 1585 } 1586 1587 if (!gcq_empty(&sc->sc_waitq)) { 1588 slhci_enter_xfers(sc); 1589 slhci_dotransfer(sc); 1590 goto waitcheck; 1591 } 1592 DLOG(D_INTR, "... done", 0, 0, 0, 0); 1593 } 1594 1595 /* End lock entry functions. Start in lock function. */ 1596 1597 /* Register read/write routines and barriers. */ 1598 #ifdef SLHCI_BUS_SPACE_BARRIERS 1599 #define BSB(a, b, c, d, e) bus_space_barrier(a, b, c, d, BUS_SPACE_BARRIER_ # e) 1600 #define BSB_SYNC(a, b, c, d) bus_space_barrier(a, b, c, d, BUS_SPACE_BARRIER_READ|BUS_SPACE_BARRIER_WRITE) 1601 #else /* now !SLHCI_BUS_SPACE_BARRIERS */ 1602 #define BSB(a, b, c, d, e) __USE(d) 1603 #define BSB_SYNC(a, b, c, d) 1604 #endif /* SLHCI_BUS_SPACE_BARRIERS */ 1605 1606 static void 1607 slhci_write(struct slhci_softc *sc, uint8_t addr, uint8_t data) 1608 { 1609 bus_size_t paddr, pdata, pst, psz; 1610 bus_space_tag_t iot; 1611 bus_space_handle_t ioh; 1612 1613 paddr = pst = 0; 1614 pdata = sc->sc_stride; 1615 psz = pdata * 2; 1616 iot = sc->sc_iot; 1617 ioh = sc->sc_ioh; 1618 1619 bus_space_write_1(iot, ioh, paddr, addr); 1620 BSB(iot, ioh, pst, psz, WRITE_BEFORE_WRITE); 1621 bus_space_write_1(iot, ioh, pdata, data); 1622 BSB(iot, ioh, pst, psz, WRITE_BEFORE_WRITE); 1623 } 1624 1625 static uint8_t 1626 slhci_read(struct slhci_softc *sc, uint8_t addr) 1627 { 1628 bus_size_t paddr, pdata, pst, psz; 1629 bus_space_tag_t iot; 1630 bus_space_handle_t ioh; 1631 uint8_t data; 1632 1633 paddr = pst = 0; 1634 pdata = sc->sc_stride; 1635 psz = pdata * 2; 1636 iot = sc->sc_iot; 1637 ioh = sc->sc_ioh; 1638 1639 bus_space_write_1(iot, ioh, paddr, addr); 1640 BSB(iot, ioh, pst, psz, WRITE_BEFORE_READ); 1641 data = bus_space_read_1(iot, ioh, pdata); 1642 BSB(iot, ioh, pst, psz, READ_BEFORE_WRITE); 1643 return data; 1644 } 1645 1646 #if 0 /* auto-increment mode broken, see errata doc */ 1647 static void 1648 slhci_write_multi(struct slhci_softc *sc, uint8_t addr, uint8_t *buf, int l) 1649 { 1650 bus_size_t paddr, pdata, pst, psz; 1651 bus_space_tag_t iot; 1652 bus_space_handle_t ioh; 1653 1654 paddr = pst = 0; 1655 pdata = sc->sc_stride; 1656 psz = pdata * 2; 1657 iot = sc->sc_iot; 1658 ioh = sc->sc_ioh; 1659 1660 bus_space_write_1(iot, ioh, paddr, addr); 1661 BSB(iot, ioh, pst, psz, WRITE_BEFORE_WRITE); 1662 bus_space_write_multi_1(iot, ioh, pdata, buf, l); 1663 BSB(iot, ioh, pst, psz, WRITE_BEFORE_WRITE); 1664 } 1665 1666 static void 1667 slhci_read_multi(struct slhci_softc *sc, uint8_t addr, uint8_t *buf, int l) 1668 { 1669 bus_size_t paddr, pdata, pst, psz; 1670 bus_space_tag_t iot; 1671 bus_space_handle_t ioh; 1672 1673 paddr = pst = 0; 1674 pdata = sc->sc_stride; 1675 psz = pdata * 2; 1676 iot = sc->sc_iot; 1677 ioh = sc->sc_ioh; 1678 1679 bus_space_write_1(iot, ioh, paddr, addr); 1680 BSB(iot, ioh, pst, psz, WRITE_BEFORE_READ); 1681 bus_space_read_multi_1(iot, ioh, pdata, buf, l); 1682 BSB(iot, ioh, pst, psz, READ_BEFORE_WRITE); 1683 } 1684 #else 1685 static void 1686 slhci_write_multi(struct slhci_softc *sc, uint8_t addr, uint8_t *buf, int l) 1687 { 1688 #if 1 1689 for (; l; addr++, buf++, l--) 1690 slhci_write(sc, addr, *buf); 1691 #else 1692 bus_size_t paddr, pdata, pst, psz; 1693 bus_space_tag_t iot; 1694 bus_space_handle_t ioh; 1695 1696 paddr = pst = 0; 1697 pdata = sc->sc_stride; 1698 psz = pdata * 2; 1699 iot = sc->sc_iot; 1700 ioh = sc->sc_ioh; 1701 1702 for (; l; addr++, buf++, l--) { 1703 bus_space_write_1(iot, ioh, paddr, addr); 1704 BSB(iot, ioh, pst, psz, WRITE_BEFORE_WRITE); 1705 bus_space_write_1(iot, ioh, pdata, *buf); 1706 BSB(iot, ioh, pst, psz, WRITE_BEFORE_WRITE); 1707 } 1708 #endif 1709 } 1710 1711 static void 1712 slhci_read_multi(struct slhci_softc *sc, uint8_t addr, uint8_t *buf, int l) 1713 { 1714 #if 1 1715 for (; l; addr++, buf++, l--) 1716 *buf = slhci_read(sc, addr); 1717 #else 1718 bus_size_t paddr, pdata, pst, psz; 1719 bus_space_tag_t iot; 1720 bus_space_handle_t ioh; 1721 1722 paddr = pst = 0; 1723 pdata = sc->sc_stride; 1724 psz = pdata * 2; 1725 iot = sc->sc_iot; 1726 ioh = sc->sc_ioh; 1727 1728 for (; l; addr++, buf++, l--) { 1729 bus_space_write_1(iot, ioh, paddr, addr); 1730 BSB(iot, ioh, pst, psz, WRITE_BEFORE_READ); 1731 *buf = bus_space_read_1(iot, ioh, pdata); 1732 BSB(iot, ioh, pst, psz, READ_BEFORE_WRITE); 1733 } 1734 #endif 1735 } 1736 #endif 1737 1738 /* 1739 * After calling waitintr it is necessary to either call slhci_callback or 1740 * schedule the callback if necessary. The callback cannot be called directly 1741 * from the hard interrupt since it interrupts at a high IPL and callbacks 1742 * can do copyout and such. 1743 */ 1744 static void 1745 slhci_waitintr(struct slhci_softc *sc, int wait_time) 1746 { 1747 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 1748 struct slhci_transfers *t; 1749 1750 t = &sc->sc_transfers; 1751 1752 KASSERT(mutex_owned(&sc->sc_intr_lock)); 1753 1754 if (__predict_false(sc->sc_bus.ub_usepolling)) 1755 wait_time = 12000; 1756 1757 while (t->pend <= wait_time) { 1758 DLOG(D_WAIT, "waiting... frame %jd pend %jd flags %#jx", 1759 t->frame, t->pend, t->flags, 0); 1760 LK_SLASSERT(t->flags & F_ACTIVE, sc, NULL, NULL, return); 1761 LK_SLASSERT(t->flags & (F_AINPROG|F_BINPROG), sc, NULL, NULL, 1762 return); 1763 slhci_dointr(sc); 1764 } 1765 DLOG(D_WAIT, "... done", 0, 0, 0, 0); 1766 } 1767 1768 static int 1769 slhci_dointr(struct slhci_softc *sc) 1770 { 1771 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 1772 struct slhci_transfers *t; 1773 struct slhci_pipe *tosp; 1774 uint8_t r; 1775 1776 t = &sc->sc_transfers; 1777 1778 KASSERT(mutex_owned(&sc->sc_intr_lock)); 1779 1780 if (sc->sc_ier == 0) { 1781 DLOG(D_INTR, "sc_ier is zero", 0, 0, 0, 0); 1782 return 0; 1783 } 1784 1785 r = slhci_read(sc, SL11_ISR); 1786 1787 #ifdef SLHCI_DEBUG 1788 if (slhcidebug & SLHCI_D_INTR && r & sc->sc_ier && 1789 ((r & ~(SL11_ISR_SOF|SL11_ISR_DATA)) || slhcidebug & SLHCI_D_SOF)) { 1790 uint8_t e, f; 1791 1792 e = slhci_read(sc, SL11_IER); 1793 f = slhci_read(sc, SL11_CTRL); 1794 DDOLOG("Flags=%#x IER=%#x ISR=%#x CTRL=%#x", t->flags, e, r, f); 1795 DDOLOGCTRL(f); 1796 DDOLOGISR(r); 1797 } 1798 #endif 1799 1800 /* 1801 * check IER for corruption occasionally. Assume that the above 1802 * sc_ier == 0 case works correctly. 1803 */ 1804 if (__predict_false(sc->sc_ier_check++ > SLHCI_IER_CHECK_FREQUENCY)) { 1805 sc->sc_ier_check = 0; 1806 if (sc->sc_ier != slhci_read(sc, SL11_IER)) { 1807 printf("%s: IER value corrupted! halted\n", 1808 SC_NAME(sc)); 1809 DDOLOG("IER value corrupted! halted", 0, 0, 0, 0); 1810 slhci_halt(sc, NULL, NULL); 1811 return 1; 1812 } 1813 } 1814 1815 r &= sc->sc_ier; 1816 1817 if (r == 0) { 1818 DLOG(D_INTR, "r is zero", 0, 0, 0, 0); 1819 return 0; 1820 } 1821 1822 sc->sc_ier_check = 0; 1823 1824 slhci_write(sc, SL11_ISR, r); 1825 BSB_SYNC(sc->iot, sc->ioh, sc->pst, sc->psz); 1826 1827 /* If we have an insertion event we do not care about anything else. */ 1828 if (__predict_false(r & SL11_ISR_INSERT)) { 1829 slhci_insert(sc); 1830 DLOG(D_INTR, "... done", 0, 0, 0, 0); 1831 return 1; 1832 } 1833 1834 stop_cc_time(&t_intr); 1835 start_cc_time(&t_intr, r); 1836 1837 if (r & SL11_ISR_SOF) { 1838 t->frame++; 1839 1840 gcq_merge_tail(&t->q[Q_CB], &t->q[Q_NEXT_CB]); 1841 1842 /* 1843 * SOFCHECK flags are cleared in tstart. Two flags are needed 1844 * since the first SOF interrupt processed after the transfer 1845 * is started might have been generated before the transfer 1846 * was started. 1847 */ 1848 if (__predict_false(t->flags & F_SOFCHECK2 && t->flags & 1849 (F_AINPROG|F_BINPROG))) { 1850 printf("%s: Missed transfer completion. halted\n", 1851 SC_NAME(sc)); 1852 DDOLOG("Missed transfer completion. halted", 0, 0, 0, 1853 0); 1854 slhci_halt(sc, NULL, NULL); 1855 return 1; 1856 } else if (t->flags & F_SOFCHECK1) { 1857 t->flags |= F_SOFCHECK2; 1858 } else 1859 t->flags |= F_SOFCHECK1; 1860 1861 if (t->flags & F_CHANGE) 1862 t->flags |= F_ROOTINTR; 1863 1864 while (__predict_true(GOT_FIRST_TO(tosp, t)) && 1865 __predict_false(tosp->to_frame <= t->frame)) { 1866 tosp->xfer->ux_status = USBD_TIMEOUT; 1867 slhci_do_abort(sc, tosp, tosp->xfer); 1868 enter_callback(t, tosp); 1869 } 1870 1871 /* 1872 * Start any waiting transfers right away. If none, we will 1873 * start any new transfers later. 1874 */ 1875 slhci_tstart(sc); 1876 } 1877 1878 if (r & (SL11_ISR_USBA|SL11_ISR_USBB)) { 1879 int ab; 1880 1881 if ((r & (SL11_ISR_USBA|SL11_ISR_USBB)) == 1882 (SL11_ISR_USBA|SL11_ISR_USBB)) { 1883 if (!(t->flags & (F_AINPROG|F_BINPROG))) 1884 return 1; /* presume card pulled */ 1885 1886 LK_SLASSERT((t->flags & (F_AINPROG|F_BINPROG)) != 1887 (F_AINPROG|F_BINPROG), sc, NULL, NULL, return 1); 1888 1889 /* 1890 * This should never happen (unless card removal just 1891 * occurred) but appeared frequently when both 1892 * transfers were started at the same time and was 1893 * accompanied by data corruption. It still happens 1894 * at times. I have not seen data correption except 1895 * when the STATUS bit gets set, which now causes the 1896 * driver to halt, however this should still not 1897 * happen so the warning is kept. See comment in 1898 * abdone, below. 1899 */ 1900 printf("%s: Transfer reported done but not started! " 1901 "Verify data integrity if not detaching. " 1902 " flags %#x r %x\n", SC_NAME(sc), t->flags, r); 1903 1904 if (!(t->flags & F_AINPROG)) 1905 r &= ~SL11_ISR_USBA; 1906 else 1907 r &= ~SL11_ISR_USBB; 1908 } 1909 t->pend = INT_MAX; 1910 1911 if (r & SL11_ISR_USBA) 1912 ab = A; 1913 else 1914 ab = B; 1915 1916 /* 1917 * This happens when a low speed device is attached to 1918 * a hub with chip rev 1.5. SOF stops, but a few transfers 1919 * still work before causing this error. 1920 */ 1921 if (!(t->flags & (ab ? F_BINPROG : F_AINPROG))) { 1922 printf("%s: %s done but not in progress! halted\n", 1923 SC_NAME(sc), ab ? "B" : "A"); 1924 DDOLOG("AB=%d done but not in progress! halted", ab, 1925 0, 0, 0); 1926 slhci_halt(sc, NULL, NULL); 1927 return 1; 1928 } 1929 1930 t->flags &= ~(ab ? F_BINPROG : F_AINPROG); 1931 slhci_tstart(sc); 1932 stop_cc_time(&t_ab[ab]); 1933 start_cc_time(&t_abdone, t->flags); 1934 slhci_abdone(sc, ab); 1935 stop_cc_time(&t_abdone); 1936 } 1937 1938 slhci_dotransfer(sc); 1939 1940 DLOG(D_INTR, "... done", 0, 0, 0, 0); 1941 1942 return 1; 1943 } 1944 1945 static void 1946 slhci_abdone(struct slhci_softc *sc, int ab) 1947 { 1948 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 1949 struct slhci_transfers *t; 1950 struct slhci_pipe *spipe; 1951 struct usbd_xfer *xfer; 1952 uint8_t status, buf_start; 1953 uint8_t *target_buf; 1954 unsigned int actlen; 1955 int head; 1956 1957 t = &sc->sc_transfers; 1958 1959 KASSERT(mutex_owned(&sc->sc_intr_lock)); 1960 1961 DLOG(D_TRACE, "ABDONE flags %#jx", t->flags, 0,0,0); 1962 1963 DLOG(D_MSG, "DONE AB=%jd spipe %#jx len %jd xfer %#jx", ab, 1964 t->spipe[ab], (uintptr_t)t->len[ab], 1965 (uintptr_t)(t->spipe[ab] ? t->spipe[ab]->xfer : NULL)); 1966 1967 spipe = t->spipe[ab]; 1968 1969 /* 1970 * skip this one if aborted; do not call return from the rest of the 1971 * function unless halting, else t->len will not be cleared. 1972 */ 1973 if (spipe == NULL) 1974 goto done; 1975 1976 t->spipe[ab] = NULL; 1977 1978 xfer = spipe->xfer; 1979 1980 gcq_remove(&spipe->to); 1981 1982 LK_SLASSERT(xfer != NULL, sc, spipe, NULL, return); 1983 1984 status = slhci_read(sc, slhci_tregs[ab][STAT]); 1985 1986 /* 1987 * I saw no status or remaining length greater than the requested 1988 * length in early driver versions in circumstances I assumed caused 1989 * excess power draw. I am no longer able to reproduce this when 1990 * causing excess power draw circumstances. 1991 * 1992 * Disabling a power check and attaching aue to a keyboard and hub 1993 * that is directly attached (to CFU1U, 100mA max, aue 160mA, keyboard 1994 * 98mA) sometimes works and sometimes fails to configure. After 1995 * removing the aue and attaching a self-powered umass dvd reader 1996 * (unknown if it draws power from the host also) soon a single Error 1997 * status occurs then only timeouts. The controller soon halts freeing 1998 * memory due to being ONQU instead of BUSY. This may be the same 1999 * basic sequence that caused the no status/bad length errors. The 2000 * umass device seems to work (better at least) with the keyboard hub 2001 * when not first attaching aue (tested once reading an approximately 2002 * 200MB file). 2003 * 2004 * Overflow can indicate that the device and host disagree about how 2005 * much data has been transfered. This may indicate a problem at any 2006 * point during the transfer, not just when the error occurs. It may 2007 * indicate data corruption. A warning message is printed. 2008 * 2009 * Trying to use both A and B transfers at the same time results in 2010 * incorrect transfer completion ISR reports and the status will then 2011 * include SL11_EPSTAT_SETUP, which is apparently set while the 2012 * transfer is in progress. I also noticed data corruption, even 2013 * after waiting for the transfer to complete. The driver now avoids 2014 * trying to start both at the same time. 2015 * 2016 * I had accidently initialized the B registers before they were valid 2017 * in some driver versions. Since every other performance enhancing 2018 * feature has been confirmed buggy in the errata doc, I have not 2019 * tried both transfers at once again with the documented 2020 * initialization order. 2021 * 2022 * However, I have seen this problem again ("done but not started" 2023 * errors), which in some cases cases the SETUP status bit to remain 2024 * set on future transfers. In other cases, the SETUP bit is not set 2025 * and no data corruption occurs. This occured while using both umass 2026 * and aue on a powered hub (maybe triggered by some local activity 2027 * also) and needs several reads of the 200MB file to trigger. The 2028 * driver now halts if SETUP is detected. 2029 */ 2030 2031 actlen = 0; 2032 2033 if (__predict_false(!status)) { 2034 DDOLOG("no status! xfer %p spipe %p", xfer, spipe, 0,0); 2035 printf("%s: no status! halted\n", SC_NAME(sc)); 2036 slhci_halt(sc, spipe, xfer); 2037 return; 2038 } 2039 2040 #ifdef SLHCI_DEBUG 2041 if ((slhcidebug & SLHCI_D_NAK) || 2042 (status & SL11_EPSTAT_ERRBITS) != SL11_EPSTAT_NAK) { 2043 DDOLOG("USB Status = %#.2x", status, 0, 0, 0); 2044 DDOLOGSTATUS(status); 2045 } 2046 #endif 2047 2048 if (!(status & SL11_EPSTAT_ERRBITS)) { 2049 unsigned int cont = slhci_read(sc, slhci_tregs[ab][CONT]); 2050 unsigned int len = spipe->tregs[LEN]; 2051 DLOG(D_XFER, "cont %jd len %jd", cont, len, 0, 0); 2052 if ((status & SL11_EPSTAT_OVERFLOW) || cont > len) { 2053 DDOLOG("overflow - cont %d len %d xfer->ux_length %d " 2054 "xfer->actlen %d", cont, len, xfer->ux_length, 2055 xfer->ux_actlen); 2056 printf("%s: overflow cont %d len %d xfer->ux_length" 2057 " %d xfer->ux_actlen %d\n", SC_NAME(sc), cont, 2058 len, xfer->ux_length, xfer->ux_actlen); 2059 actlen = len; 2060 } else { 2061 actlen = len - cont; 2062 } 2063 spipe->nerrs = 0; 2064 } 2065 2066 /* Actual copyin done after starting next transfer. */ 2067 if (actlen && (spipe->tregs[PID] & SL11_PID_BITS) == SL11_PID_IN) { 2068 target_buf = spipe->buffer; 2069 buf_start = spipe->tregs[ADR]; 2070 } else { 2071 target_buf = NULL; 2072 buf_start = 0; /* XXX gcc uninitialized warnings */ 2073 } 2074 2075 if (status & SL11_EPSTAT_ERRBITS) { 2076 status &= SL11_EPSTAT_ERRBITS; 2077 if (status & SL11_EPSTAT_SETUP) { 2078 printf("%s: Invalid controller state detected! " 2079 "halted\n", SC_NAME(sc)); 2080 DDOLOG("Invalid controller state detected! " 2081 "halted", 0, 0, 0, 0); 2082 slhci_halt(sc, spipe, xfer); 2083 return; 2084 } else if (__predict_false(sc->sc_bus.ub_usepolling)) { 2085 head = Q_CALLBACKS; 2086 if (status & SL11_EPSTAT_STALL) 2087 xfer->ux_status = USBD_STALLED; 2088 else if (status & SL11_EPSTAT_TIMEOUT) 2089 xfer->ux_status = USBD_TIMEOUT; 2090 else if (status & SL11_EPSTAT_NAK) 2091 head = Q_NEXT_CB; 2092 else 2093 xfer->ux_status = USBD_IOERROR; 2094 } else if (status & SL11_EPSTAT_NAK) { 2095 int i = spipe->pipe.up_interval; 2096 if (i == 0) 2097 i = 1; 2098 DDOLOG("xfer %p spipe %p NAK delay by %d", xfer, spipe, 2099 i, 0); 2100 spipe->lastframe = spipe->frame = t->frame + i; 2101 slhci_queue_timed(sc, spipe); 2102 goto queued; 2103 } else if (++spipe->nerrs > SLHCI_MAX_RETRIES || 2104 (status & SL11_EPSTAT_STALL)) { 2105 DDOLOG("xfer %p spipe %p nerrs %d", xfer, spipe, 2106 spipe->nerrs, 0); 2107 if (status & SL11_EPSTAT_STALL) 2108 xfer->ux_status = USBD_STALLED; 2109 else if (status & SL11_EPSTAT_TIMEOUT) 2110 xfer->ux_status = USBD_TIMEOUT; 2111 else 2112 xfer->ux_status = USBD_IOERROR; 2113 2114 DLOG(D_ERR, "Max retries reached! status %#jx " 2115 "xfer->ux_status %jd", status, xfer->ux_status, 0, 2116 0); 2117 DDOLOGSTATUS(status); 2118 2119 head = Q_CALLBACKS; 2120 } else { 2121 head = Q_NEXT_CB; 2122 } 2123 } else if (spipe->ptype == PT_CTRL_SETUP) { 2124 spipe->tregs[PID] = spipe->newpid; 2125 2126 if (xfer->ux_length) { 2127 LK_SLASSERT(spipe->newlen[1] != 0, sc, spipe, xfer, 2128 return); 2129 spipe->tregs[LEN] = spipe->newlen[1]; 2130 spipe->bustime = spipe->newbustime[1]; 2131 spipe->buffer = xfer->ux_buf; 2132 spipe->ptype = PT_CTRL_DATA; 2133 } else { 2134 status_setup: 2135 /* CTRL_DATA swaps direction in PID then jumps here */ 2136 spipe->tregs[LEN] = 0; 2137 if (spipe->pflags & PF_LS) 2138 spipe->bustime = SLHCI_LS_CONST; 2139 else 2140 spipe->bustime = SLHCI_FS_CONST; 2141 spipe->ptype = PT_CTRL_STATUS; 2142 spipe->buffer = NULL; 2143 } 2144 2145 /* Status or first data packet must be DATA1. */ 2146 spipe->control |= SL11_EPCTRL_DATATOGGLE; 2147 if ((spipe->tregs[PID] & SL11_PID_BITS) == SL11_PID_IN) 2148 spipe->control &= ~SL11_EPCTRL_DIRECTION; 2149 else 2150 spipe->control |= SL11_EPCTRL_DIRECTION; 2151 2152 head = Q_CB; 2153 } else if (spipe->ptype == PT_CTRL_STATUS) { 2154 head = Q_CALLBACKS; 2155 } else { /* bulk, intr, control data */ 2156 xfer->ux_actlen += actlen; 2157 spipe->control ^= SL11_EPCTRL_DATATOGGLE; 2158 2159 if (actlen == spipe->tregs[LEN] && 2160 (xfer->ux_length > xfer->ux_actlen || spipe->wantshort)) { 2161 spipe->buffer += actlen; 2162 LK_SLASSERT(xfer->ux_length >= xfer->ux_actlen, sc, 2163 spipe, xfer, return); 2164 if (xfer->ux_length - xfer->ux_actlen < actlen) { 2165 spipe->wantshort = 0; 2166 spipe->tregs[LEN] = spipe->newlen[0]; 2167 spipe->bustime = spipe->newbustime[0]; 2168 LK_SLASSERT(xfer->ux_actlen + 2169 spipe->tregs[LEN] == xfer->ux_length, sc, 2170 spipe, xfer, return); 2171 } 2172 head = Q_CB; 2173 } else if (spipe->ptype == PT_CTRL_DATA) { 2174 spipe->tregs[PID] ^= SLHCI_PID_SWAP_IN_OUT; 2175 goto status_setup; 2176 } else { 2177 if (spipe->ptype == PT_INTR) { 2178 spipe->lastframe += 2179 spipe->pipe.up_interval; 2180 /* 2181 * If ack, we try to keep the 2182 * interrupt rate by using lastframe 2183 * instead of the current frame. 2184 */ 2185 spipe->frame = spipe->lastframe + 2186 spipe->pipe.up_interval; 2187 } 2188 2189 /* 2190 * Set the toggle for the next transfer. It 2191 * has already been toggled above, so the 2192 * current setting will apply to the next 2193 * transfer. 2194 */ 2195 if (spipe->control & SL11_EPCTRL_DATATOGGLE) 2196 spipe->pflags |= PF_TOGGLE; 2197 else 2198 spipe->pflags &= ~PF_TOGGLE; 2199 2200 head = Q_CALLBACKS; 2201 } 2202 } 2203 2204 if (head == Q_CALLBACKS) { 2205 gcq_remove(&spipe->to); 2206 2207 if (xfer->ux_status == USBD_IN_PROGRESS) { 2208 LK_SLASSERT(xfer->ux_actlen <= xfer->ux_length, sc, 2209 spipe, xfer, return); 2210 xfer->ux_status = USBD_NORMAL_COMPLETION; 2211 } 2212 } 2213 2214 enter_q(t, spipe, head); 2215 2216 queued: 2217 if (target_buf != NULL) { 2218 slhci_dotransfer(sc); 2219 start_cc_time(&t_copy_from_dev, actlen); 2220 slhci_read_multi(sc, buf_start, target_buf, actlen); 2221 stop_cc_time(&t_copy_from_dev); 2222 DLOGBUF(D_BUF, target_buf, actlen); 2223 t->pend -= SLHCI_FS_CONST + SLHCI_FS_DATA_TIME(actlen); 2224 } 2225 2226 done: 2227 t->len[ab] = -1; 2228 } 2229 2230 static void 2231 slhci_tstart(struct slhci_softc *sc) 2232 { 2233 struct slhci_transfers *t; 2234 struct slhci_pipe *spipe; 2235 int remaining_bustime; 2236 2237 t = &sc->sc_transfers; 2238 2239 KASSERT(mutex_owned(&sc->sc_intr_lock)); 2240 2241 if (!(t->flags & (F_AREADY|F_BREADY))) 2242 return; 2243 2244 if (t->flags & (F_AINPROG|F_BINPROG|F_DISABLED)) 2245 return; 2246 2247 /* 2248 * We have about 6 us to get from the bus time check to 2249 * starting the transfer or we might babble or the chip might fail to 2250 * signal transfer complete. This leaves no time for any other 2251 * interrupts. 2252 */ 2253 remaining_bustime = (int)(slhci_read(sc, SL811_CSOF)) << 6; 2254 remaining_bustime -= SLHCI_END_BUSTIME; 2255 2256 /* 2257 * Start one transfer only, clearing any aborted transfers that are 2258 * not yet in progress and skipping missed isoc. It is easier to copy 2259 * & paste most of the A/B sections than to make the logic work 2260 * otherwise and this allows better constant use. 2261 */ 2262 if (t->flags & F_AREADY) { 2263 spipe = t->spipe[A]; 2264 if (spipe == NULL) { 2265 t->flags &= ~F_AREADY; 2266 t->len[A] = -1; 2267 } else if (remaining_bustime >= spipe->bustime) { 2268 t->flags &= ~(F_AREADY|F_SOFCHECK1|F_SOFCHECK2); 2269 t->flags |= F_AINPROG; 2270 start_cc_time(&t_ab[A], spipe->tregs[LEN]); 2271 slhci_write(sc, SL11_E0CTRL, spipe->control); 2272 goto pend; 2273 } 2274 } 2275 if (t->flags & F_BREADY) { 2276 spipe = t->spipe[B]; 2277 if (spipe == NULL) { 2278 t->flags &= ~F_BREADY; 2279 t->len[B] = -1; 2280 } else if (remaining_bustime >= spipe->bustime) { 2281 t->flags &= ~(F_BREADY|F_SOFCHECK1|F_SOFCHECK2); 2282 t->flags |= F_BINPROG; 2283 start_cc_time(&t_ab[B], spipe->tregs[LEN]); 2284 slhci_write(sc, SL11_E1CTRL, spipe->control); 2285 pend: 2286 t->pend = spipe->bustime; 2287 } 2288 } 2289 } 2290 2291 static void 2292 slhci_dotransfer(struct slhci_softc *sc) 2293 { 2294 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 2295 struct slhci_transfers *t; 2296 struct slhci_pipe *spipe; 2297 int ab, i; 2298 2299 t = &sc->sc_transfers; 2300 2301 KASSERT(mutex_owned(&sc->sc_intr_lock)); 2302 2303 while ((t->len[A] == -1 || t->len[B] == -1) && 2304 (GOT_FIRST_TIMED_COND(spipe, t, spipe->frame <= t->frame) || 2305 GOT_FIRST_CB(spipe, t))) { 2306 LK_SLASSERT(spipe->xfer != NULL, sc, spipe, NULL, return); 2307 LK_SLASSERT(spipe->ptype != PT_ROOT_CTRL && spipe->ptype != 2308 PT_ROOT_INTR, sc, spipe, NULL, return); 2309 2310 /* Check that this transfer can fit in the remaining memory. */ 2311 if (t->len[A] + t->len[B] + spipe->tregs[LEN] + 1 > 2312 SL11_MAX_PACKET_SIZE) { 2313 DLOG(D_XFER, "Transfer does not fit. alen %jd blen %jd " 2314 "len %jd", t->len[A], t->len[B], spipe->tregs[LEN], 2315 0); 2316 return; 2317 } 2318 2319 gcq_remove(&spipe->xq); 2320 2321 if (t->len[A] == -1) { 2322 ab = A; 2323 spipe->tregs[ADR] = SL11_BUFFER_START; 2324 } else { 2325 ab = B; 2326 spipe->tregs[ADR] = SL11_BUFFER_END - 2327 spipe->tregs[LEN]; 2328 } 2329 2330 t->len[ab] = spipe->tregs[LEN]; 2331 2332 if (spipe->tregs[LEN] && (spipe->tregs[PID] & SL11_PID_BITS) 2333 != SL11_PID_IN) { 2334 start_cc_time(&t_copy_to_dev, 2335 spipe->tregs[LEN]); 2336 slhci_write_multi(sc, spipe->tregs[ADR], 2337 spipe->buffer, spipe->tregs[LEN]); 2338 stop_cc_time(&t_copy_to_dev); 2339 t->pend -= SLHCI_FS_CONST + 2340 SLHCI_FS_DATA_TIME(spipe->tregs[LEN]); 2341 } 2342 2343 DLOG(D_MSG, "NEW TRANSFER AB=%jd flags %#jx alen %jd blen %jd", 2344 ab, t->flags, t->len[0], t->len[1]); 2345 2346 if (spipe->tregs[LEN]) 2347 i = 0; 2348 else 2349 i = 1; 2350 2351 for (; i <= 3; i++) 2352 if (t->current_tregs[ab][i] != spipe->tregs[i]) { 2353 t->current_tregs[ab][i] = spipe->tregs[i]; 2354 slhci_write(sc, slhci_tregs[ab][i], 2355 spipe->tregs[i]); 2356 } 2357 2358 DLOG(D_SXFER, "Transfer len %jd pid %#jx dev %jd type %jd", 2359 spipe->tregs[LEN], spipe->tregs[PID], spipe->tregs[DEV], 2360 spipe->ptype); 2361 2362 t->spipe[ab] = spipe; 2363 t->flags |= ab ? F_BREADY : F_AREADY; 2364 2365 slhci_tstart(sc); 2366 } 2367 } 2368 2369 /* 2370 * slhci_callback is called after the lock is taken. 2371 */ 2372 static void 2373 slhci_callback(struct slhci_softc *sc) 2374 { 2375 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 2376 struct slhci_transfers *t; 2377 struct slhci_pipe *spipe; 2378 struct usbd_xfer *xfer; 2379 2380 t = &sc->sc_transfers; 2381 2382 KASSERT(mutex_owned(&sc->sc_intr_lock)); 2383 2384 DLOG(D_SOFT, "CB flags %#jx", t->flags, 0,0,0); 2385 for (;;) { 2386 if (__predict_false(t->flags & F_ROOTINTR)) { 2387 t->flags &= ~F_ROOTINTR; 2388 if (t->rootintr != NULL) { 2389 u_char *p; 2390 2391 p = t->rootintr->ux_buf; 2392 p[0] = 2; 2393 t->rootintr->ux_actlen = 1; 2394 t->rootintr->ux_status = USBD_NORMAL_COMPLETION; 2395 xfer = t->rootintr; 2396 goto do_callback; 2397 } 2398 } 2399 2400 2401 if (!DEQUEUED_CALLBACK(spipe, t)) 2402 return; 2403 2404 xfer = spipe->xfer; 2405 LK_SLASSERT(xfer != NULL, sc, spipe, NULL, return); 2406 spipe->xfer = NULL; 2407 DLOG(D_XFER, "xfer callback length %jd actlen %jd spipe %#jx " 2408 "type %jd", xfer->ux_length, (uintptr_t)xfer->ux_actlen, 2409 (uintptr_t)spipe, spipe->ptype); 2410 do_callback: 2411 slhci_do_callback(sc, xfer); 2412 } 2413 } 2414 2415 static void 2416 slhci_enter_xfer(struct slhci_softc *sc, struct slhci_pipe *spipe) 2417 { 2418 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 2419 struct slhci_transfers *t; 2420 2421 t = &sc->sc_transfers; 2422 2423 KASSERT(mutex_owned(&sc->sc_intr_lock)); 2424 2425 if (__predict_false(t->flags & F_DISABLED) || 2426 __predict_false(spipe->pflags & PF_GONE)) { 2427 DLOG(D_MSG, "slhci_enter_xfer: DISABLED or GONE", 0,0,0,0); 2428 spipe->xfer->ux_status = USBD_CANCELLED; 2429 } 2430 2431 if (spipe->xfer->ux_status == USBD_IN_PROGRESS) { 2432 if (spipe->xfer->ux_timeout) { 2433 spipe->to_frame = t->frame + spipe->xfer->ux_timeout; 2434 slhci_xfer_timer(sc, spipe); 2435 } 2436 if (spipe->pipe.up_interval) 2437 slhci_queue_timed(sc, spipe); 2438 else 2439 enter_q(t, spipe, Q_CB); 2440 } else 2441 enter_callback(t, spipe); 2442 } 2443 2444 static void 2445 slhci_enter_xfers(struct slhci_softc *sc) 2446 { 2447 struct slhci_pipe *spipe; 2448 2449 KASSERT(mutex_owned(&sc->sc_intr_lock)); 2450 2451 while (DEQUEUED_WAITQ(spipe, sc)) 2452 slhci_enter_xfer(sc, spipe); 2453 } 2454 2455 static void 2456 slhci_queue_timed(struct slhci_softc *sc, struct slhci_pipe *spipe) 2457 { 2458 struct slhci_transfers *t; 2459 struct gcq *q; 2460 struct slhci_pipe *spp; 2461 2462 t = &sc->sc_transfers; 2463 2464 KASSERT(mutex_owned(&sc->sc_intr_lock)); 2465 2466 FIND_TIMED(q, t, spp, spp->frame > spipe->frame); 2467 gcq_insert_before(q, &spipe->xq); 2468 } 2469 2470 static void 2471 slhci_xfer_timer(struct slhci_softc *sc, struct slhci_pipe *spipe) 2472 { 2473 struct slhci_transfers *t; 2474 struct gcq *q; 2475 struct slhci_pipe *spp; 2476 2477 t = &sc->sc_transfers; 2478 2479 KASSERT(mutex_owned(&sc->sc_intr_lock)); 2480 2481 FIND_TO(q, t, spp, spp->to_frame >= spipe->to_frame); 2482 gcq_insert_before(q, &spipe->to); 2483 } 2484 2485 static void 2486 slhci_callback_schedule(struct slhci_softc *sc) 2487 { 2488 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 2489 struct slhci_transfers *t; 2490 2491 t = &sc->sc_transfers; 2492 2493 KASSERT(mutex_owned(&sc->sc_intr_lock)); 2494 2495 if (t->flags & F_ACTIVE) 2496 slhci_do_callback_schedule(sc); 2497 } 2498 2499 static void 2500 slhci_do_callback_schedule(struct slhci_softc *sc) 2501 { 2502 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 2503 struct slhci_transfers *t; 2504 2505 t = &sc->sc_transfers; 2506 2507 KASSERT(mutex_owned(&sc->sc_intr_lock)); 2508 2509 DLOG(D_MSG, "flags %#jx", t->flags, 0, 0, 0); 2510 if (!(t->flags & F_CALLBACK)) { 2511 t->flags |= F_CALLBACK; 2512 softint_schedule(sc->sc_cb_softintr); 2513 } 2514 } 2515 2516 #if 0 2517 /* must be called with lock taken. */ 2518 /* XXX static */ void 2519 slhci_pollxfer(struct slhci_softc *sc, struct usbd_xfer *xfer) 2520 { 2521 KASSERT(mutex_owned(&sc->sc_intr_lock)); 2522 slhci_dotransfer(sc); 2523 do { 2524 slhci_dointr(sc); 2525 } while (xfer->ux_status == USBD_IN_PROGRESS); 2526 slhci_do_callback(sc, xfer); 2527 } 2528 #endif 2529 2530 static usbd_status 2531 slhci_do_poll(struct slhci_softc *sc, struct slhci_pipe *spipe, struct 2532 usbd_xfer *xfer) 2533 { 2534 slhci_waitintr(sc, 0); 2535 2536 return USBD_NORMAL_COMPLETION; 2537 } 2538 2539 static usbd_status 2540 slhci_lsvh_warn(struct slhci_softc *sc, struct slhci_pipe *spipe, struct 2541 usbd_xfer *xfer) 2542 { 2543 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 2544 struct slhci_transfers *t; 2545 2546 t = &sc->sc_transfers; 2547 2548 if (!(t->flags & F_LSVH_WARNED)) { 2549 printf("%s: Low speed device via hub disabled, " 2550 "see slhci(4)\n", SC_NAME(sc)); 2551 DDOLOG("Low speed device via hub disabled, " 2552 "see slhci(4)", SC_NAME(sc), 0,0,0); 2553 t->flags |= F_LSVH_WARNED; 2554 } 2555 return USBD_INVAL; 2556 } 2557 2558 static usbd_status 2559 slhci_isoc_warn(struct slhci_softc *sc, struct slhci_pipe *spipe, struct 2560 usbd_xfer *xfer) 2561 { 2562 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 2563 struct slhci_transfers *t; 2564 2565 t = &sc->sc_transfers; 2566 2567 if (!(t->flags & F_ISOC_WARNED)) { 2568 printf("%s: ISOC transfer not supported " 2569 "(see slhci(4))\n", SC_NAME(sc)); 2570 DDOLOG("ISOC transfer not supported " 2571 "(see slhci(4))", 0, 0, 0, 0); 2572 t->flags |= F_ISOC_WARNED; 2573 } 2574 return USBD_INVAL; 2575 } 2576 2577 static usbd_status 2578 slhci_open_pipe(struct slhci_softc *sc, struct slhci_pipe *spipe, struct 2579 usbd_xfer *xfer) 2580 { 2581 struct slhci_transfers *t; 2582 struct usbd_pipe *pipe; 2583 2584 t = &sc->sc_transfers; 2585 pipe = &spipe->pipe; 2586 2587 if (t->flags & F_DISABLED) 2588 return USBD_CANCELLED; 2589 else if (pipe->up_interval && !slhci_reserve_bustime(sc, spipe, 1)) 2590 return USBD_PENDING_REQUESTS; 2591 else { 2592 enter_all_pipes(t, spipe); 2593 return USBD_NORMAL_COMPLETION; 2594 } 2595 } 2596 2597 static usbd_status 2598 slhci_close_pipe(struct slhci_softc *sc, struct slhci_pipe *spipe, struct 2599 usbd_xfer *xfer) 2600 { 2601 struct usbd_pipe *pipe; 2602 2603 pipe = &spipe->pipe; 2604 2605 if (pipe->up_interval && spipe->ptype != PT_ROOT_INTR) 2606 slhci_reserve_bustime(sc, spipe, 0); 2607 gcq_remove(&spipe->ap); 2608 return USBD_NORMAL_COMPLETION; 2609 } 2610 2611 static usbd_status 2612 slhci_do_abort(struct slhci_softc *sc, struct slhci_pipe *spipe, struct 2613 usbd_xfer *xfer) 2614 { 2615 struct slhci_transfers *t; 2616 2617 t = &sc->sc_transfers; 2618 2619 KASSERT(mutex_owned(&sc->sc_intr_lock)); 2620 2621 if (spipe->xfer == xfer) { 2622 if (spipe->ptype == PT_ROOT_INTR) { 2623 if (t->rootintr == spipe->xfer) /* XXX assert? */ 2624 t->rootintr = NULL; 2625 } else { 2626 gcq_remove(&spipe->to); 2627 gcq_remove(&spipe->xq); 2628 2629 if (t->spipe[A] == spipe) { 2630 t->spipe[A] = NULL; 2631 if (!(t->flags & F_AINPROG)) 2632 t->len[A] = -1; 2633 } else if (t->spipe[B] == spipe) { 2634 t->spipe[B] = NULL; 2635 if (!(t->flags & F_BINPROG)) 2636 t->len[B] = -1; 2637 } 2638 } 2639 2640 if (xfer->ux_status != USBD_TIMEOUT) { 2641 spipe->xfer = NULL; 2642 spipe->pipe.up_repeat = 0; /* XXX timeout? */ 2643 } 2644 } 2645 2646 return USBD_NORMAL_COMPLETION; 2647 } 2648 2649 /* 2650 * Called to deactivate or stop use of the controller instead of panicking. 2651 * Will cancel the xfer correctly even when not on a list. 2652 */ 2653 static usbd_status 2654 slhci_halt(struct slhci_softc *sc, struct slhci_pipe *spipe, 2655 struct usbd_xfer *xfer) 2656 { 2657 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 2658 struct slhci_transfers *t; 2659 2660 KASSERT(mutex_owned(&sc->sc_intr_lock)); 2661 2662 t = &sc->sc_transfers; 2663 2664 DDOLOG("Halt! sc %p spipe %p xfer %p", sc, spipe, xfer, 0); 2665 2666 if (spipe != NULL) 2667 slhci_log_spipe(spipe); 2668 2669 if (xfer != NULL) 2670 slhci_log_xfer(xfer); 2671 2672 if (spipe != NULL && xfer != NULL && spipe->xfer == xfer && 2673 !gcq_onlist(&spipe->xq) && t->spipe[A] != spipe && t->spipe[B] != 2674 spipe) { 2675 xfer->ux_status = USBD_CANCELLED; 2676 enter_callback(t, spipe); 2677 } 2678 2679 if (t->flags & F_ACTIVE) { 2680 slhci_intrchange(sc, 0); 2681 /* 2682 * leave power on when halting in case flash devices or disks 2683 * are attached, which may be writing and could be damaged 2684 * by abrupt power loss. The root hub clear power feature 2685 * should still work after halting. 2686 */ 2687 } 2688 2689 t->flags &= ~F_ACTIVE; 2690 t->flags |= F_UDISABLED; 2691 if (!(t->flags & F_NODEV)) 2692 t->flags |= F_NODEV|F_CCONNECT|F_ROOTINTR; 2693 slhci_drain(sc); 2694 2695 /* One last callback for the drain and device removal. */ 2696 slhci_do_callback_schedule(sc); 2697 2698 return USBD_NORMAL_COMPLETION; 2699 } 2700 2701 /* 2702 * There are three interrupt states: no interrupts during reset and after 2703 * device deactivation, INSERT only for no device present but power on, and 2704 * SOF, INSERT, ADONE, and BDONE when device is present. 2705 */ 2706 static void 2707 slhci_intrchange(struct slhci_softc *sc, uint8_t new_ier) 2708 { 2709 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 2710 KASSERT(mutex_owned(&sc->sc_intr_lock)); 2711 if (sc->sc_ier != new_ier) { 2712 DLOG(D_INTR, "New IER %#jx", new_ier, 0, 0, 0); 2713 sc->sc_ier = new_ier; 2714 slhci_write(sc, SL11_IER, new_ier); 2715 BSB_SYNC(sc->iot, sc->ioh, sc->pst, sc->psz); 2716 } 2717 } 2718 2719 /* 2720 * Drain: cancel all pending transfers and put them on the callback list and 2721 * set the UDISABLED flag. UDISABLED is cleared only by reset. 2722 */ 2723 static void 2724 slhci_drain(struct slhci_softc *sc) 2725 { 2726 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 2727 struct slhci_transfers *t; 2728 struct slhci_pipe *spipe; 2729 struct gcq *q; 2730 int i; 2731 2732 KASSERT(mutex_owned(&sc->sc_intr_lock)); 2733 2734 t = &sc->sc_transfers; 2735 2736 DLOG(D_MSG, "DRAIN flags %#jx", t->flags, 0,0,0); 2737 2738 t->pend = INT_MAX; 2739 2740 for (i=0; i<=1; i++) { 2741 t->len[i] = -1; 2742 if (t->spipe[i] != NULL) { 2743 enter_callback(t, t->spipe[i]); 2744 t->spipe[i] = NULL; 2745 } 2746 } 2747 2748 /* Merge the queues into the callback queue. */ 2749 gcq_merge_tail(&t->q[Q_CALLBACKS], &t->q[Q_CB]); 2750 gcq_merge_tail(&t->q[Q_CALLBACKS], &t->q[Q_NEXT_CB]); 2751 gcq_merge_tail(&t->q[Q_CALLBACKS], &t->timed); 2752 2753 /* 2754 * Cancel all pipes. Note that not all of these may be on the 2755 * callback queue yet; some could be in slhci_start, for example. 2756 */ 2757 FOREACH_AP(q, t, spipe) { 2758 spipe->pflags |= PF_GONE; 2759 spipe->pipe.up_repeat = 0; 2760 spipe->pipe.up_aborting = 1; 2761 if (spipe->xfer != NULL) 2762 spipe->xfer->ux_status = USBD_CANCELLED; 2763 } 2764 2765 gcq_remove_all(&t->to); 2766 2767 t->flags |= F_UDISABLED; 2768 t->flags &= ~(F_AREADY|F_BREADY|F_AINPROG|F_BINPROG|F_LOWSPEED); 2769 } 2770 2771 /* 2772 * RESET: SL11_CTRL_RESETENGINE=1 and SL11_CTRL_JKSTATE=0 for 50ms 2773 * reconfigure SOF after reset, must wait 2.5us before USB bus activity (SOF) 2774 * check attached device speed. 2775 * must wait 100ms before USB transaction according to app note, 10ms 2776 * by spec. uhub does this delay 2777 * 2778 * Started from root hub set feature reset, which does step one. 2779 * ub_usepolling will call slhci_reset directly, otherwise the callout goes 2780 * through slhci_reset_entry. 2781 */ 2782 void 2783 slhci_reset(struct slhci_softc *sc) 2784 { 2785 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 2786 struct slhci_transfers *t; 2787 struct slhci_pipe *spipe; 2788 struct gcq *q; 2789 uint8_t r, pol, ctrl; 2790 2791 t = &sc->sc_transfers; 2792 KASSERT(mutex_owned(&sc->sc_intr_lock)); 2793 2794 stop_cc_time(&t_delay); 2795 2796 KASSERT(t->flags & F_ACTIVE); 2797 2798 start_cc_time(&t_delay, 0); 2799 stop_cc_time(&t_delay); 2800 2801 slhci_write(sc, SL11_CTRL, 0); 2802 start_cc_time(&t_delay, 3); 2803 DELAY(3); 2804 stop_cc_time(&t_delay); 2805 slhci_write(sc, SL11_ISR, 0xff); 2806 2807 r = slhci_read(sc, SL11_ISR); 2808 2809 if (r & SL11_ISR_INSERT) 2810 slhci_write(sc, SL11_ISR, SL11_ISR_INSERT); 2811 2812 if (r & SL11_ISR_NODEV) { 2813 DLOG(D_MSG, "NC", 0,0,0,0); 2814 /* 2815 * Normally, the hard interrupt insert routine will issue 2816 * CCONNECT, however we need to do it here if the detach 2817 * happened during reset. 2818 */ 2819 if (!(t->flags & F_NODEV)) 2820 t->flags |= F_CCONNECT|F_ROOTINTR|F_NODEV; 2821 slhci_intrchange(sc, SL11_IER_INSERT); 2822 } else { 2823 if (t->flags & F_NODEV) 2824 t->flags |= F_CCONNECT; 2825 t->flags &= ~(F_NODEV|F_LOWSPEED); 2826 if (r & SL11_ISR_DATA) { 2827 DLOG(D_MSG, "FS", 0,0,0,0); 2828 pol = ctrl = 0; 2829 } else { 2830 DLOG(D_MSG, "LS", 0,0,0,0); 2831 pol = SL811_CSOF_POLARITY; 2832 ctrl = SL11_CTRL_LOWSPEED; 2833 t->flags |= F_LOWSPEED; 2834 } 2835 2836 /* Enable SOF auto-generation */ 2837 t->frame = 0; /* write to SL811_CSOF will reset frame */ 2838 slhci_write(sc, SL11_SOFTIME, 0xe0); 2839 slhci_write(sc, SL811_CSOF, pol|SL811_CSOF_MASTER|0x2e); 2840 slhci_write(sc, SL11_CTRL, ctrl|SL11_CTRL_ENABLESOF); 2841 2842 /* 2843 * According to the app note, ARM must be set 2844 * for SOF generation to work. We initialize all 2845 * USBA registers here for current_tregs. 2846 */ 2847 slhci_write(sc, SL11_E0ADDR, SL11_BUFFER_START); 2848 slhci_write(sc, SL11_E0LEN, 0); 2849 slhci_write(sc, SL11_E0PID, SL11_PID_SOF); 2850 slhci_write(sc, SL11_E0DEV, 0); 2851 slhci_write(sc, SL11_E0CTRL, SL11_EPCTRL_ARM); 2852 2853 /* 2854 * Initialize B registers. This can't be done earlier since 2855 * they are not valid until the SL811_CSOF register is written 2856 * above due to SL11H compatability. 2857 */ 2858 slhci_write(sc, SL11_E1ADDR, SL11_BUFFER_END - 8); 2859 slhci_write(sc, SL11_E1LEN, 0); 2860 slhci_write(sc, SL11_E1PID, 0); 2861 slhci_write(sc, SL11_E1DEV, 0); 2862 2863 t->current_tregs[0][ADR] = SL11_BUFFER_START; 2864 t->current_tregs[0][LEN] = 0; 2865 t->current_tregs[0][PID] = SL11_PID_SOF; 2866 t->current_tregs[0][DEV] = 0; 2867 t->current_tregs[1][ADR] = SL11_BUFFER_END - 8; 2868 t->current_tregs[1][LEN] = 0; 2869 t->current_tregs[1][PID] = 0; 2870 t->current_tregs[1][DEV] = 0; 2871 2872 /* SOF start will produce USBA interrupt */ 2873 t->len[A] = 0; 2874 t->flags |= F_AINPROG; 2875 2876 slhci_intrchange(sc, SLHCI_NORMAL_INTERRUPTS); 2877 } 2878 2879 t->flags &= ~(F_UDISABLED|F_RESET); 2880 t->flags |= F_CRESET|F_ROOTINTR; 2881 FOREACH_AP(q, t, spipe) { 2882 spipe->pflags &= ~PF_GONE; 2883 spipe->pipe.up_aborting = 0; 2884 } 2885 DLOG(D_MSG, "RESET done flags %#jx", t->flags, 0,0,0); 2886 } 2887 2888 2889 #ifdef SLHCI_DEBUG 2890 static int 2891 slhci_memtest(struct slhci_softc *sc) 2892 { 2893 enum { ASC, DESC, EITHER = ASC }; /* direction */ 2894 enum { READ, WRITE }; /* operation */ 2895 const char *ptr, *elem; 2896 size_t i; 2897 const int low = SL11_BUFFER_START, high = SL11_BUFFER_END; 2898 int addr = 0, dir = ASC, op = READ; 2899 /* Extended March C- test algorithm (SOFs also) */ 2900 const char test[] = "E(w0) A(r0w1r1) A(r1w0r0) D(r0w1) D(r1w0) E(r0)"; 2901 char c; 2902 const uint8_t dbs[] = { 0x00, 0x0f, 0x33, 0x55 }; /* data backgrounds */ 2903 uint8_t db; 2904 2905 /* Perform memory test for all data backgrounds. */ 2906 for (i = 0; i < __arraycount(dbs); i++) { 2907 ptr = test; 2908 elem = ptr; 2909 /* Walk test algorithm string. */ 2910 while ((c = *ptr++) != '\0') 2911 switch (tolower((int)c)) { 2912 case 'a': 2913 /* Address sequence is in ascending order. */ 2914 dir = ASC; 2915 break; 2916 case 'd': 2917 /* Address sequence is in descending order. */ 2918 dir = DESC; 2919 break; 2920 case 'e': 2921 /* Address sequence is in either order. */ 2922 dir = EITHER; 2923 break; 2924 case '(': 2925 /* Start of test element (sequence). */ 2926 elem = ptr; 2927 addr = (dir == ASC) ? low : high; 2928 break; 2929 case 'r': 2930 /* read operation */ 2931 op = READ; 2932 break; 2933 case 'w': 2934 /* write operation */ 2935 op = WRITE; 2936 break; 2937 case '0': 2938 case '1': 2939 /* 2940 * Execute previously set-up operation by 2941 * reading/writing non-inverted ('0') or 2942 * inverted ('1') data background. 2943 */ 2944 db = (c - '0') ? ~dbs[i] : dbs[i]; 2945 if (op == READ) { 2946 if (slhci_read(sc, addr) != db) 2947 return -1; 2948 } else 2949 slhci_write(sc, addr, db); 2950 break; 2951 case ')': 2952 /* 2953 * End of element: Repeat same element with next 2954 * address or continue to next element. 2955 */ 2956 addr = (dir == ASC) ? addr + 1 : addr - 1; 2957 if (addr >= low && addr <= high) 2958 ptr = elem; 2959 break; 2960 default: 2961 /* Do nothing. */ 2962 break; 2963 } 2964 } 2965 2966 return 0; 2967 } 2968 #endif 2969 2970 /* returns 1 if succeeded, 0 if failed, reserve == 0 is unreserve */ 2971 static int 2972 slhci_reserve_bustime(struct slhci_softc *sc, struct slhci_pipe *spipe, int 2973 reserve) 2974 { 2975 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 2976 struct slhci_transfers *t; 2977 int bustime, max_packet; 2978 2979 KASSERT(mutex_owned(&sc->sc_intr_lock)); 2980 2981 t = &sc->sc_transfers; 2982 max_packet = UGETW(spipe->pipe.up_endpoint->ue_edesc->wMaxPacketSize); 2983 2984 if (spipe->pflags & PF_LS) 2985 bustime = SLHCI_LS_CONST + SLHCI_LS_DATA_TIME(max_packet); 2986 else 2987 bustime = SLHCI_FS_CONST + SLHCI_FS_DATA_TIME(max_packet); 2988 2989 if (!reserve) { 2990 t->reserved_bustime -= bustime; 2991 #ifdef DIAGNOSTIC 2992 if (t->reserved_bustime < 0) { 2993 printf("%s: reserved_bustime %d < 0!\n", 2994 SC_NAME(sc), t->reserved_bustime); 2995 DDOLOG("reserved_bustime %d < 0!", 2996 t->reserved_bustime, 0, 0, 0); 2997 t->reserved_bustime = 0; 2998 } 2999 #endif 3000 return 1; 3001 } 3002 3003 if (t->reserved_bustime + bustime > SLHCI_RESERVED_BUSTIME) { 3004 if (ratecheck(&sc->sc_reserved_warn_rate, 3005 &reserved_warn_rate)) 3006 #ifdef SLHCI_NO_OVERTIME 3007 { 3008 printf("%s: Max reserved bus time exceeded! " 3009 "Erroring request.\n", SC_NAME(sc)); 3010 DDOLOG("%s: Max reserved bus time exceeded! " 3011 "Erroring request.", 0, 0, 0, 0); 3012 } 3013 return 0; 3014 #else 3015 { 3016 printf("%s: Reserved bus time exceeds %d!\n", 3017 SC_NAME(sc), SLHCI_RESERVED_BUSTIME); 3018 DDOLOG("Reserved bus time exceeds %d!", 3019 SLHCI_RESERVED_BUSTIME, 0, 0, 0); 3020 } 3021 #endif 3022 } 3023 3024 t->reserved_bustime += bustime; 3025 return 1; 3026 } 3027 3028 /* Device insertion/removal interrupt */ 3029 static void 3030 slhci_insert(struct slhci_softc *sc) 3031 { 3032 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 3033 struct slhci_transfers *t; 3034 3035 t = &sc->sc_transfers; 3036 3037 KASSERT(mutex_owned(&sc->sc_intr_lock)); 3038 3039 if (t->flags & F_NODEV) 3040 slhci_intrchange(sc, 0); 3041 else { 3042 slhci_drain(sc); 3043 slhci_intrchange(sc, SL11_IER_INSERT); 3044 } 3045 t->flags ^= F_NODEV; 3046 t->flags |= F_ROOTINTR|F_CCONNECT; 3047 DLOG(D_MSG, "INSERT intr: flags after %#jx", t->flags, 0,0,0); 3048 } 3049 3050 /* 3051 * Data structures and routines to emulate the root hub. 3052 */ 3053 3054 static usbd_status 3055 slhci_clear_feature(struct slhci_softc *sc, unsigned int what) 3056 { 3057 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 3058 struct slhci_transfers *t; 3059 usbd_status error; 3060 3061 t = &sc->sc_transfers; 3062 error = USBD_NORMAL_COMPLETION; 3063 3064 KASSERT(mutex_owned(&sc->sc_intr_lock)); 3065 3066 if (what == UHF_PORT_POWER) { 3067 DLOG(D_MSG, "POWER_OFF", 0,0,0,0); 3068 t->flags &= ~F_POWER; 3069 if (!(t->flags & F_NODEV)) 3070 t->flags |= F_NODEV|F_CCONNECT|F_ROOTINTR; 3071 /* for x68k Nereid USB controller */ 3072 if (sc->sc_enable_power && (t->flags & F_REALPOWER)) { 3073 t->flags &= ~F_REALPOWER; 3074 sc->sc_enable_power(sc, POWER_OFF); 3075 } 3076 slhci_intrchange(sc, 0); 3077 slhci_drain(sc); 3078 } else if (what == UHF_C_PORT_CONNECTION) { 3079 t->flags &= ~F_CCONNECT; 3080 } else if (what == UHF_C_PORT_RESET) { 3081 t->flags &= ~F_CRESET; 3082 } else if (what == UHF_PORT_ENABLE) { 3083 slhci_drain(sc); 3084 } else if (what != UHF_PORT_SUSPEND) { 3085 DDOLOG("ClrPortFeatERR:value=%#.4x", what, 0,0,0); 3086 error = USBD_IOERROR; 3087 } 3088 3089 return error; 3090 } 3091 3092 static usbd_status 3093 slhci_set_feature(struct slhci_softc *sc, unsigned int what) 3094 { 3095 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 3096 struct slhci_transfers *t; 3097 uint8_t r; 3098 3099 t = &sc->sc_transfers; 3100 3101 KASSERT(mutex_owned(&sc->sc_intr_lock)); 3102 3103 if (what == UHF_PORT_RESET) { 3104 if (!(t->flags & F_ACTIVE)) { 3105 DDOLOG("SET PORT_RESET when not ACTIVE!", 3106 0,0,0,0); 3107 return USBD_INVAL; 3108 } 3109 if (!(t->flags & F_POWER)) { 3110 DDOLOG("SET PORT_RESET without PORT_POWER! flags %p", 3111 t->flags, 0,0,0); 3112 return USBD_INVAL; 3113 } 3114 if (t->flags & F_RESET) 3115 return USBD_NORMAL_COMPLETION; 3116 DLOG(D_MSG, "RESET flags %#jx", t->flags, 0,0,0); 3117 slhci_intrchange(sc, 0); 3118 slhci_drain(sc); 3119 slhci_write(sc, SL11_CTRL, SL11_CTRL_RESETENGINE); 3120 /* usb spec says delay >= 10ms, app note 50ms */ 3121 start_cc_time(&t_delay, 50000); 3122 if (sc->sc_bus.ub_usepolling) { 3123 DELAY(50000); 3124 slhci_reset(sc); 3125 } else { 3126 t->flags |= F_RESET; 3127 callout_schedule(&sc->sc_timer, max(mstohz(50), 2)); 3128 } 3129 } else if (what == UHF_PORT_SUSPEND) { 3130 printf("%s: USB Suspend not implemented!\n", SC_NAME(sc)); 3131 DDOLOG("USB Suspend not implemented!", 0, 0, 0, 0); 3132 } else if (what == UHF_PORT_POWER) { 3133 DLOG(D_MSG, "PORT_POWER", 0,0,0,0); 3134 /* for x68k Nereid USB controller */ 3135 if (!(t->flags & F_ACTIVE)) 3136 return USBD_INVAL; 3137 if (t->flags & F_POWER) 3138 return USBD_NORMAL_COMPLETION; 3139 if (!(t->flags & F_REALPOWER)) { 3140 if (sc->sc_enable_power) 3141 sc->sc_enable_power(sc, POWER_ON); 3142 t->flags |= F_REALPOWER; 3143 } 3144 t->flags |= F_POWER; 3145 r = slhci_read(sc, SL11_ISR); 3146 if (r & SL11_ISR_INSERT) 3147 slhci_write(sc, SL11_ISR, SL11_ISR_INSERT); 3148 if (r & SL11_ISR_NODEV) { 3149 slhci_intrchange(sc, SL11_IER_INSERT); 3150 t->flags |= F_NODEV; 3151 } else { 3152 t->flags &= ~F_NODEV; 3153 t->flags |= F_CCONNECT|F_ROOTINTR; 3154 } 3155 } else { 3156 DDOLOG("SetPortFeatERR=%#.8x", what, 0,0,0); 3157 return USBD_IOERROR; 3158 } 3159 3160 return USBD_NORMAL_COMPLETION; 3161 } 3162 3163 static void 3164 slhci_get_status(struct slhci_softc *sc, usb_port_status_t *ps) 3165 { 3166 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 3167 struct slhci_transfers *t; 3168 unsigned int status, change; 3169 3170 t = &sc->sc_transfers; 3171 3172 KASSERT(mutex_owned(&sc->sc_intr_lock)); 3173 3174 /* 3175 * We do not have a way to detect over current or babble and 3176 * suspend is currently not implemented, so connect and reset 3177 * are the only changes that need to be reported. 3178 */ 3179 change = 0; 3180 if (t->flags & F_CCONNECT) 3181 change |= UPS_C_CONNECT_STATUS; 3182 if (t->flags & F_CRESET) 3183 change |= UPS_C_PORT_RESET; 3184 3185 status = 0; 3186 if (!(t->flags & F_NODEV)) 3187 status |= UPS_CURRENT_CONNECT_STATUS; 3188 if (!(t->flags & F_UDISABLED)) 3189 status |= UPS_PORT_ENABLED; 3190 if (t->flags & F_RESET) 3191 status |= UPS_RESET; 3192 if (t->flags & F_POWER) 3193 status |= UPS_PORT_POWER; 3194 if (t->flags & F_LOWSPEED) 3195 status |= UPS_LOW_SPEED; 3196 USETW(ps->wPortStatus, status); 3197 USETW(ps->wPortChange, change); 3198 DLOG(D_ROOT, "status=%#.4jx, change=%#.4jx", status, change, 0,0); 3199 } 3200 3201 static int 3202 slhci_roothub_ctrl(struct usbd_bus *bus, usb_device_request_t *req, 3203 void *buf, int buflen) 3204 { 3205 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 3206 struct slhci_softc *sc = SLHCI_BUS2SC(bus); 3207 struct slhci_transfers *t = &sc->sc_transfers; 3208 usbd_status error = USBD_IOERROR; /* XXX should be STALL */ 3209 uint16_t len, value, index; 3210 uint8_t type; 3211 int actlen = 0; 3212 3213 len = UGETW(req->wLength); 3214 value = UGETW(req->wValue); 3215 index = UGETW(req->wIndex); 3216 3217 type = req->bmRequestType; 3218 3219 SLHCI_DEXEC(D_TRACE, slhci_log_req(req)); 3220 3221 /* 3222 * USB requests for hubs have two basic types, standard and class. 3223 * Each could potentially have recipients of device, interface, 3224 * endpoint, or other. For the hub class, CLASS_OTHER means the port 3225 * and CLASS_DEVICE means the hub. For standard requests, OTHER 3226 * is not used. Standard request are described in section 9.4 of the 3227 * standard, hub class requests in 11.16. Each request is either read 3228 * or write. 3229 * 3230 * Clear Feature, Set Feature, and Status are defined for each of the 3231 * used recipients. Get Descriptor and Set Descriptor are defined for 3232 * both standard and hub class types with different descriptors. 3233 * Other requests have only one defined recipient and type. These 3234 * include: Get/Set Address, Get/Set Configuration, Get/Set Interface, 3235 * and Synch Frame for standard requests and Get Bus State for hub 3236 * class. 3237 * 3238 * When a device is first powered up it has address 0 until the 3239 * address is set. 3240 * 3241 * Hubs are only allowed to support one interface and may not have 3242 * isochronous endpoints. The results of the related requests are 3243 * undefined. 3244 * 3245 * The standard requires invalid or unsupported requests to return 3246 * STALL in the data stage, however this does not work well with 3247 * current error handling. XXX 3248 * 3249 * Some unsupported fields: 3250 * Clear Hub Feature is for C_HUB_LOCAL_POWER and C_HUB_OVER_CURRENT 3251 * Set Device Features is for ENDPOINT_HALT and DEVICE_REMOTE_WAKEUP 3252 * Get Bus State is optional sample of D- and D+ at EOF2 3253 */ 3254 3255 switch (req->bRequest) { 3256 /* Write Requests */ 3257 case UR_CLEAR_FEATURE: 3258 if (type == UT_WRITE_CLASS_OTHER) { 3259 if (index == 1 /* Port */) { 3260 mutex_enter(&sc->sc_intr_lock); 3261 error = slhci_clear_feature(sc, value); 3262 mutex_exit(&sc->sc_intr_lock); 3263 } else 3264 DLOG(D_ROOT, "Clear Port Feature " 3265 "index = %#.4jx", index, 0,0,0); 3266 } 3267 break; 3268 case UR_SET_FEATURE: 3269 if (type == UT_WRITE_CLASS_OTHER) { 3270 if (index == 1 /* Port */) { 3271 mutex_enter(&sc->sc_intr_lock); 3272 error = slhci_set_feature(sc, value); 3273 mutex_exit(&sc->sc_intr_lock); 3274 } else 3275 DLOG(D_ROOT, "Set Port Feature " 3276 "index = %#.4jx", index, 0,0,0); 3277 } else if (type != UT_WRITE_CLASS_DEVICE) 3278 DLOG(D_ROOT, "Set Device Feature " 3279 "ENDPOINT_HALT or DEVICE_REMOTE_WAKEUP " 3280 "not supported", 0,0,0,0); 3281 break; 3282 3283 /* Read Requests */ 3284 case UR_GET_STATUS: 3285 if (type == UT_READ_CLASS_OTHER) { 3286 if (index == 1 /* Port */ && len == /* XXX >=? */ 3287 sizeof(usb_port_status_t)) { 3288 mutex_enter(&sc->sc_intr_lock); 3289 slhci_get_status(sc, (usb_port_status_t *) 3290 buf); 3291 mutex_exit(&sc->sc_intr_lock); 3292 actlen = sizeof(usb_port_status_t); 3293 error = USBD_NORMAL_COMPLETION; 3294 } else 3295 DLOG(D_ROOT, "Get Port Status index = %#.4jx " 3296 "len = %#.4jx", index, len, 0,0); 3297 } else if (type == UT_READ_CLASS_DEVICE) { /* XXX index? */ 3298 if (len == sizeof(usb_hub_status_t)) { 3299 DLOG(D_ROOT, "Get Hub Status", 3300 0,0,0,0); 3301 actlen = sizeof(usb_hub_status_t); 3302 memset(buf, 0, actlen); 3303 error = USBD_NORMAL_COMPLETION; 3304 } else 3305 DLOG(D_ROOT, "Get Hub Status bad len %#.4jx", 3306 len, 0,0,0); 3307 } 3308 break; 3309 case UR_GET_DESCRIPTOR: 3310 if (type == UT_READ_DEVICE) { 3311 /* value is type (&0xff00) and index (0xff) */ 3312 if (value == (UDESC_DEVICE<<8)) { 3313 actlen = buflen; 3314 error = USBD_NORMAL_COMPLETION; 3315 } else if (value == (UDESC_CONFIG<<8)) { 3316 struct usb_roothub_descriptors confd; 3317 3318 actlen = min(buflen, sizeof(confd)); 3319 memcpy(&confd, buf, actlen); 3320 3321 /* 2 mA units */ 3322 confd.urh_confd.bMaxPower = t->max_current; 3323 memcpy(buf, &confd, actlen); 3324 error = USBD_NORMAL_COMPLETION; 3325 } else if (value == ((UDESC_STRING<<8)|1)) { 3326 /* Vendor */ 3327 actlen = buflen; 3328 error = USBD_NORMAL_COMPLETION; 3329 } else if (value == ((UDESC_STRING<<8)|2)) { 3330 /* Product */ 3331 actlen = usb_makestrdesc((usb_string_descriptor_t *) 3332 buf, len, "SL811HS/T root hub"); 3333 error = USBD_NORMAL_COMPLETION; 3334 } else 3335 DDOLOG("Unknown Get Descriptor %#.4x", 3336 value, 0,0,0); 3337 } else if (type == UT_READ_CLASS_DEVICE) { 3338 /* Descriptor number is 0 */ 3339 if (value == (UDESC_HUB<<8)) { 3340 usb_hub_descriptor_t hubd; 3341 3342 actlen = min(buflen, sizeof(hubd)); 3343 memcpy(&hubd, buf, actlen); 3344 hubd.bHubContrCurrent = 3345 500 - t->max_current; 3346 memcpy(buf, &hubd, actlen); 3347 error = USBD_NORMAL_COMPLETION; 3348 } else 3349 DDOLOG("Unknown Get Hub Descriptor %#.4x", 3350 value, 0,0,0); 3351 } 3352 break; 3353 default: 3354 /* default from usbroothub */ 3355 return buflen; 3356 } 3357 3358 if (error == USBD_NORMAL_COMPLETION) 3359 return actlen; 3360 3361 return -1; 3362 } 3363 3364 /* End in lock functions. Start debug functions. */ 3365 3366 #ifdef SLHCI_DEBUG 3367 void 3368 slhci_log_buffer(struct usbd_xfer *xfer) 3369 { 3370 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 3371 u_char *buf; 3372 3373 if(xfer->ux_length > 0 && 3374 UE_GET_DIR(xfer->ux_pipe->up_endpoint->ue_edesc->bEndpointAddress) == 3375 UE_DIR_IN) { 3376 buf = xfer->ux_buf; 3377 DDOLOGBUF(buf, xfer->ux_actlen); 3378 DDOLOG("len %d actlen %d short %d", xfer->ux_length, 3379 xfer->ux_actlen, xfer->ux_length - xfer->ux_actlen, 0); 3380 } 3381 } 3382 3383 void 3384 slhci_log_req(usb_device_request_t *r) 3385 { 3386 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 3387 int req, type, value, index, len; 3388 3389 req = r->bRequest; 3390 type = r->bmRequestType; 3391 value = UGETW(r->wValue); 3392 index = UGETW(r->wIndex); 3393 len = UGETW(r->wLength); 3394 3395 DDOLOG("request: type %#x", type, 0, 0, 0); 3396 DDOLOG("request: r=%d,v=%d,i=%d,l=%d ", req, value, index, len); 3397 } 3398 3399 void 3400 slhci_log_dumpreg(void) 3401 { 3402 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 3403 uint8_t r; 3404 unsigned int aaddr, alen, baddr, blen; 3405 static u_char buf[240]; 3406 3407 r = slhci_read(ssc, SL11_E0CTRL); 3408 DDOLOG("USB A Host Control = %#.2x", r, 0, 0, 0); 3409 DDOLOGEPCTRL(r); 3410 3411 aaddr = slhci_read(ssc, SL11_E0ADDR); 3412 DDOLOG("USB A Base Address = %u", aaddr, 0,0,0); 3413 alen = slhci_read(ssc, SL11_E0LEN); 3414 DDOLOG("USB A Length = %u", alen, 0,0,0); 3415 r = slhci_read(ssc, SL11_E0STAT); 3416 DDOLOG("USB A Status = %#.2x", r, 0,0,0); 3417 DDOLOGEPSTAT(r); 3418 3419 r = slhci_read(ssc, SL11_E0CONT); 3420 DDOLOG("USB A Remaining or Overflow Length = %u", r, 0,0,0); 3421 r = slhci_read(ssc, SL11_E1CTRL); 3422 DDOLOG("USB B Host Control = %#.2x", r, 0,0,0); 3423 DDOLOGEPCTRL(r); 3424 3425 baddr = slhci_read(ssc, SL11_E1ADDR); 3426 DDOLOG("USB B Base Address = %u", baddr, 0,0,0); 3427 blen = slhci_read(ssc, SL11_E1LEN); 3428 DDOLOG("USB B Length = %u", blen, 0,0,0); 3429 r = slhci_read(ssc, SL11_E1STAT); 3430 DDOLOG("USB B Status = %#.2x", r, 0,0,0); 3431 DDOLOGEPSTAT(r); 3432 3433 r = slhci_read(ssc, SL11_E1CONT); 3434 DDOLOG("USB B Remaining or Overflow Length = %u", r, 0,0,0); 3435 3436 r = slhci_read(ssc, SL11_CTRL); 3437 DDOLOG("Control = %#.2x", r, 0,0,0); 3438 DDOLOGCTRL(r); 3439 3440 r = slhci_read(ssc, SL11_IER); 3441 DDOLOG("Interrupt Enable = %#.2x", r, 0,0,0); 3442 DDOLOGIER(r); 3443 3444 r = slhci_read(ssc, SL11_ISR); 3445 DDOLOG("Interrupt Status = %#.2x", r, 0,0,0); 3446 DDOLOGISR(r); 3447 3448 r = slhci_read(ssc, SL11_REV); 3449 DDOLOG("Revision = %#.2x", r, 0,0,0); 3450 r = slhci_read(ssc, SL811_CSOF); 3451 DDOLOG("SOF Counter = %#.2x", r, 0,0,0); 3452 3453 if (alen && aaddr >= SL11_BUFFER_START && aaddr < SL11_BUFFER_END && 3454 alen <= SL11_MAX_PACKET_SIZE && aaddr + alen <= SL11_BUFFER_END) { 3455 slhci_read_multi(ssc, aaddr, buf, alen); 3456 DDOLOG("USBA Buffer: start %u len %u", aaddr, alen, 0,0); 3457 DDOLOGBUF(buf, alen); 3458 } else if (alen) 3459 DDOLOG("USBA Buffer Invalid", 0,0,0,0); 3460 3461 if (blen && baddr >= SL11_BUFFER_START && baddr < SL11_BUFFER_END && 3462 blen <= SL11_MAX_PACKET_SIZE && baddr + blen <= SL11_BUFFER_END) { 3463 slhci_read_multi(ssc, baddr, buf, blen); 3464 DDOLOG("USBB Buffer: start %u len %u", baddr, blen, 0,0); 3465 DDOLOGBUF(buf, blen); 3466 } else if (blen) 3467 DDOLOG("USBB Buffer Invalid", 0,0,0,0); 3468 } 3469 3470 void 3471 slhci_log_xfer(struct usbd_xfer *xfer) 3472 { 3473 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 3474 DDOLOG("xfer: length=%u, actlen=%u, flags=%#x, timeout=%u,", 3475 xfer->ux_length, xfer->ux_actlen, xfer->ux_flags, xfer->ux_timeout); 3476 DDOLOG("buffer=%p", xfer->ux_buf, 0,0,0); 3477 slhci_log_req(&xfer->ux_request); 3478 } 3479 3480 void 3481 slhci_log_spipe(struct slhci_pipe *spipe) 3482 { 3483 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 3484 DDOLOG("spipe %p onlists: AP=%d TO=%d XQ=%d", spipe, 3485 gcq_onlist(&spipe->ap) ? 1 : 0, 3486 gcq_onlist(&spipe->to) ? 1 : 0, 3487 gcq_onlist(&spipe->xq) ? 1 : 0); 3488 DDOLOG("spipe: xfer %p buffer %p pflags %#x ptype %d", 3489 spipe->xfer, spipe->buffer, spipe->pflags, spipe->ptype); 3490 } 3491 3492 void 3493 slhci_print_intr(void) 3494 { 3495 unsigned int ier, isr; 3496 ier = slhci_read(ssc, SL11_IER); 3497 isr = slhci_read(ssc, SL11_ISR); 3498 printf("IER: %#x ISR: %#x \n", ier, isr); 3499 } 3500 3501 #if 0 3502 void 3503 slhci_log_sc(void) 3504 { 3505 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 3506 3507 struct slhci_transfers *t; 3508 int i; 3509 3510 t = &ssc->sc_transfers; 3511 3512 DDOLOG("Flags=%#x", t->flags, 0,0,0); 3513 DDOLOG("a = %p Alen=%d b = %p Blen=%d", t->spipe[0], t->len[0], 3514 t->spipe[1], t->len[1]); 3515 3516 for (i=0; i<=Q_MAX; i++) 3517 DDOLOG("Q %d: %p", i, gcq_hq(&t->q[i]), 0,0); 3518 3519 DDOLOG("TIMED: %p", GCQ_ITEM(gcq_hq(&t->to), 3520 struct slhci_pipe, to), 0,0,0); 3521 3522 DDOLOG("frame=%d rootintr=%p", t->frame, t->rootintr, 0,0); 3523 3524 DDOLOG("ub_usepolling=%d", ssc->sc_bus.ub_usepolling, 0, 0, 0); 3525 } 3526 3527 void 3528 slhci_log_slreq(struct slhci_pipe *r) 3529 { 3530 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 3531 DDOLOG("xfer: %p", r->xfer, 0,0,0); 3532 DDOLOG("buffer: %p", r->buffer, 0,0,0); 3533 DDOLOG("bustime: %u", r->bustime, 0,0,0); 3534 DDOLOG("control: %#x", r->control, 0,0,0); 3535 DDOLOGEPCTRL(r->control); 3536 3537 DDOLOG("pid: %#x", r->tregs[PID], 0,0,0); 3538 DDOLOG("dev: %u", r->tregs[DEV], 0,0,0); 3539 DDOLOG("len: %u", r->tregs[LEN], 0,0,0); 3540 3541 if (r->xfer) 3542 slhci_log_xfer(r->xfer); 3543 } 3544 #endif 3545 #endif /* SLHCI_DEBUG */ 3546 /* End debug functions. */ 3547