1 /* $NetBSD: sl811hs.c,v 1.112 2022/05/03 20:52:32 andvar Exp $ */ 2 3 /* 4 * Not (c) 2007 Matthew Orgass 5 * This file is public domain, meaning anyone can make any use of part or all 6 * of this file including copying into other works without credit. Any use, 7 * modified or not, is solely the responsibility of the user. If this file is 8 * part of a collection then use in the collection is governed by the terms of 9 * the collection. 10 */ 11 12 /* 13 * Cypress/ScanLogic SL811HS/T USB Host Controller 14 * Datasheet, Errata, and App Note available at www.cypress.com 15 * 16 * Uses: Ratoc CFU1U PCMCIA USB Host Controller, Nereid X68k USB HC, ISA 17 * HCs. The Ratoc CFU2 uses a different chip. 18 * 19 * This chip puts the serial in USB. It implements USB by means of an eight 20 * bit I/O interface. It can be used for ISA, PCMCIA/CF, parallel port, 21 * serial port, or any eight bit interface. It has 256 bytes of memory, the 22 * first 16 of which are used for register access. There are two sets of 23 * registers for sending individual bus transactions. Because USB is polled, 24 * this organization means that some amount of card access must often be made 25 * when devices are attached, even if when they are not directly being used. 26 * A per-ms frame interrupt is necessary and many devices will poll with a 27 * per-frame bulk transfer. 28 * 29 * It is possible to write a little over two bytes to the chip (auto 30 * incremented) per full speed byte time on the USB. Unfortunately, 31 * auto-increment does not work reliably so write and bus speed is 32 * approximately the same for full speed devices. 33 * 34 * In addition to the 240 byte packet size limit for isochronous transfers, 35 * this chip has no means of determining the current frame number other than 36 * getting all 1ms SOF interrupts, which is not always possible even on a fast 37 * system. Isochronous transfers guarantee that transfers will never be 38 * retried in a later frame, so this can cause problems with devices beyond 39 * the difficulty in actually performing the transfer most frames. I tried 40 * implementing isoc transfers and was able to play CD-derrived audio via an 41 * iMic on a 2GHz PC, however it would still be interrupted at times and 42 * once interrupted, would stay out of sync. All isoc support has been 43 * removed. 44 * 45 * BUGS: all chip revisions have problems with low speed devices through hubs. 46 * The chip stops generating SOF with hubs that send SE0 during SOF. See 47 * comment in dointr(). All performance enhancing features of this chip seem 48 * not to work properly, most confirmed buggy in errata doc. 49 * 50 */ 51 52 /* 53 * The hard interrupt is the main entry point. Start, callbacks, and repeat 54 * are the only others called frequently. 55 * 56 * Since this driver attaches to pcmcia, card removal at any point should be 57 * expected and not cause panics or infinite loops. 58 */ 59 60 /* 61 * XXX TODO: 62 * copy next output packet while transferring 63 * usb suspend 64 * could keep track of known values of all buffer space? 65 * combined print/log function for errors 66 * 67 * ub_usepolling support is untested and may not work 68 */ 69 70 #include <sys/cdefs.h> 71 __KERNEL_RCSID(0, "$NetBSD: sl811hs.c,v 1.112 2022/05/03 20:52:32 andvar Exp $"); 72 73 #ifdef _KERNEL_OPT 74 #include "opt_slhci.h" 75 #include "opt_usb.h" 76 #endif 77 78 #include <sys/param.h> 79 80 #include <sys/bus.h> 81 #include <sys/cpu.h> 82 #include <sys/device.h> 83 #include <sys/gcq.h> 84 #include <sys/intr.h> 85 #include <sys/kernel.h> 86 #include <sys/kmem.h> 87 #include <sys/proc.h> 88 #include <sys/queue.h> 89 #include <sys/sysctl.h> 90 #include <sys/systm.h> 91 92 #include <dev/usb/usb.h> 93 #include <dev/usb/usbdi.h> 94 #include <dev/usb/usbdivar.h> 95 #include <dev/usb/usbhist.h> 96 #include <dev/usb/usb_mem.h> 97 #include <dev/usb/usbdevs.h> 98 #include <dev/usb/usbroothub.h> 99 100 #include <dev/ic/sl811hsreg.h> 101 #include <dev/ic/sl811hsvar.h> 102 103 #define Q_CB 0 /* Control/Bulk */ 104 #define Q_NEXT_CB 1 105 #define Q_MAX_XFER Q_CB 106 #define Q_CALLBACKS 2 107 #define Q_MAX Q_CALLBACKS 108 109 #define F_AREADY (0x00000001) 110 #define F_BREADY (0x00000002) 111 #define F_AINPROG (0x00000004) 112 #define F_BINPROG (0x00000008) 113 #define F_LOWSPEED (0x00000010) 114 #define F_UDISABLED (0x00000020) /* Consider disabled for USB */ 115 #define F_NODEV (0x00000040) 116 #define F_ROOTINTR (0x00000080) 117 #define F_REALPOWER (0x00000100) /* Actual power state */ 118 #define F_POWER (0x00000200) /* USB reported power state */ 119 #define F_ACTIVE (0x00000400) 120 #define F_CALLBACK (0x00000800) /* Callback scheduled */ 121 #define F_SOFCHECK1 (0x00001000) 122 #define F_SOFCHECK2 (0x00002000) 123 #define F_CRESET (0x00004000) /* Reset done not reported */ 124 #define F_CCONNECT (0x00008000) /* Connect change not reported */ 125 #define F_RESET (0x00010000) 126 #define F_ISOC_WARNED (0x00020000) 127 #define F_LSVH_WARNED (0x00040000) 128 129 #define F_DISABLED (F_NODEV|F_UDISABLED) 130 #define F_CHANGE (F_CRESET|F_CCONNECT) 131 132 #ifdef SLHCI_TRY_LSVH 133 unsigned int slhci_try_lsvh = 1; 134 #else 135 unsigned int slhci_try_lsvh = 0; 136 #endif 137 138 #define ADR 0 139 #define LEN 1 140 #define PID 2 141 #define DEV 3 142 #define STAT 2 143 #define CONT 3 144 145 #define A 0 146 #define B 1 147 148 static const uint8_t slhci_tregs[2][4] = 149 {{SL11_E0ADDR, SL11_E0LEN, SL11_E0PID, SL11_E0DEV }, 150 {SL11_E1ADDR, SL11_E1LEN, SL11_E1PID, SL11_E1DEV }}; 151 152 #define PT_ROOT_CTRL 0 153 #define PT_ROOT_INTR 1 154 #define PT_CTRL_SETUP 2 155 #define PT_CTRL_DATA 3 156 #define PT_CTRL_STATUS 4 157 #define PT_INTR 5 158 #define PT_BULK 6 159 #define PT_MAX 6 160 161 #ifdef SLHCI_DEBUG 162 #define SLHCI_MEM_ACCOUNTING 163 #endif 164 165 /* 166 * Maximum allowable reserved bus time. Since intr/isoc transfers have 167 * unconditional priority, this is all that ensures control and bulk transfers 168 * get a chance. It is a single value for all frames since all transfers can 169 * use multiple consecutive frames if an error is encountered. Note that it 170 * is not really possible to fill the bus with transfers, so this value should 171 * be on the low side. Defaults to giving a warning unless SLHCI_NO_OVERTIME 172 * is defined. Full time is 12000 - END_BUSTIME. 173 */ 174 #ifndef SLHCI_RESERVED_BUSTIME 175 #define SLHCI_RESERVED_BUSTIME 5000 176 #endif 177 178 /* 179 * Rate for "exceeds reserved bus time" warnings (default) or errors. 180 * Warnings only happen when an endpoint open causes the time to go above 181 * SLHCI_RESERVED_BUSTIME, not if it is already above. 182 */ 183 #ifndef SLHCI_OVERTIME_WARNING_RATE 184 #define SLHCI_OVERTIME_WARNING_RATE { 60, 0 } /* 60 seconds */ 185 #endif 186 static const struct timeval reserved_warn_rate = SLHCI_OVERTIME_WARNING_RATE; 187 188 /* 189 * For EOF, the spec says 42 bit times, plus (I think) a possible hub skew of 190 * 20 bit times. By default leave 66 bit times to start the transfer beyond 191 * the required time. Units are full-speed bit times (a bit over 5us per 64). 192 * Only multiples of 64 are significant. 193 */ 194 #define SLHCI_STANDARD_END_BUSTIME 128 195 #ifndef SLHCI_EXTRA_END_BUSTIME 196 #define SLHCI_EXTRA_END_BUSTIME 0 197 #endif 198 199 #define SLHCI_END_BUSTIME (SLHCI_STANDARD_END_BUSTIME+SLHCI_EXTRA_END_BUSTIME) 200 201 /* 202 * This is an approximation of the USB worst-case timings presented on p. 54 of 203 * the USB 1.1 spec translated to full speed bit times. 204 * FS = full speed with handshake, FSII = isoc in, FSIO = isoc out, 205 * FSI = isoc (worst case), LS = low speed 206 */ 207 #define SLHCI_FS_CONST 114 208 #define SLHCI_FSII_CONST 92 209 #define SLHCI_FSIO_CONST 80 210 #define SLHCI_FSI_CONST 92 211 #define SLHCI_LS_CONST 804 212 #ifndef SLHCI_PRECICE_BUSTIME 213 /* 214 * These values are < 3% too high (compared to the multiply and divide) for 215 * max sized packets. 216 */ 217 #define SLHCI_FS_DATA_TIME(len) (((u_int)(len)<<3)+(len)+((len)>>1)) 218 #define SLHCI_LS_DATA_TIME(len) (((u_int)(len)<<6)+((u_int)(len)<<4)) 219 #else 220 #define SLHCI_FS_DATA_TIME(len) (56*(len)/6) 221 #define SLHCI_LS_DATA_TIME(len) (449*(len)/6) 222 #endif 223 224 /* 225 * Set SLHCI_WAIT_SIZE to the desired maximum size of single FS transfer 226 * to poll for after starting a transfer. 64 gets all full speed transfers. 227 * Note that even if 0 polling will occur if data equal or greater than the 228 * transfer size is copied to the chip while the transfer is in progress. 229 * Setting SLHCI_WAIT_TIME to -12000 will disable polling. 230 */ 231 #ifndef SLHCI_WAIT_SIZE 232 #define SLHCI_WAIT_SIZE 8 233 #endif 234 #ifndef SLHCI_WAIT_TIME 235 #define SLHCI_WAIT_TIME (SLHCI_FS_CONST + \ 236 SLHCI_FS_DATA_TIME(SLHCI_WAIT_SIZE)) 237 #endif 238 const int slhci_wait_time = SLHCI_WAIT_TIME; 239 240 #ifndef SLHCI_MAX_RETRIES 241 #define SLHCI_MAX_RETRIES 3 242 #endif 243 244 /* Check IER values for corruption after this many unrecognized interrupts. */ 245 #ifndef SLHCI_IER_CHECK_FREQUENCY 246 #ifdef SLHCI_DEBUG 247 #define SLHCI_IER_CHECK_FREQUENCY 1 248 #else 249 #define SLHCI_IER_CHECK_FREQUENCY 100 250 #endif 251 #endif 252 253 /* Note that buffer points to the start of the buffer for this transfer. */ 254 struct slhci_pipe { 255 struct usbd_pipe pipe; 256 struct usbd_xfer *xfer; /* xfer in progress */ 257 uint8_t *buffer; /* I/O buffer (if needed) */ 258 struct gcq ap; /* All pipes */ 259 struct gcq to; /* Timeout list */ 260 struct gcq xq; /* Xfer queues */ 261 unsigned int pflags; /* Pipe flags */ 262 #define PF_GONE (0x01) /* Pipe is on disabled device */ 263 #define PF_TOGGLE (0x02) /* Data toggle status */ 264 #define PF_LS (0x04) /* Pipe is low speed */ 265 #define PF_PREAMBLE (0x08) /* Needs preamble */ 266 Frame to_frame; /* Frame number for timeout */ 267 Frame frame; /* Frame number for intr xfer */ 268 Frame lastframe; /* Previous frame number for intr */ 269 uint16_t bustime; /* Worst case bus time usage */ 270 uint16_t newbustime[2]; /* new bustimes (see index below) */ 271 uint8_t tregs[4]; /* ADR, LEN, PID, DEV */ 272 uint8_t newlen[2]; /* 0 = short data, 1 = ctrl data */ 273 uint8_t newpid; /* for ctrl */ 274 uint8_t wantshort; /* last xfer must be short */ 275 uint8_t control; /* Host control register settings */ 276 uint8_t nerrs; /* Current number of errors */ 277 uint8_t ptype; /* Pipe type */ 278 }; 279 280 #define SLHCI_BUS2SC(bus) ((bus)->ub_hcpriv) 281 #define SLHCI_PIPE2SC(pipe) SLHCI_BUS2SC((pipe)->up_dev->ud_bus) 282 #define SLHCI_XFER2SC(xfer) SLHCI_BUS2SC((xfer)->ux_bus) 283 284 #define SLHCI_PIPE2SPIPE(pipe) ((struct slhci_pipe *)(pipe)) 285 #define SLHCI_XFER2SPIPE(xfer) SLHCI_PIPE2SPIPE((xfer)->ux_pipe) 286 287 #define SLHCI_XFER_TYPE(x) (SLHCI_XFER2SPIPE(xfer)->ptype) 288 289 #ifdef SLHCI_PROFILE_TRANSFER 290 #if defined(__mips__) 291 /* 292 * MIPS cycle counter does not directly count cpu cycles but is a different 293 * fraction of cpu cycles depending on the cpu. 294 */ 295 typedef uint32_t cc_type; 296 #define CC_TYPE_FMT "%u" 297 #define slhci_cc_set(x) __asm volatile ("mfc0 %[cc], $9\n\tnop\n\tnop\n\tnop" \ 298 : [cc] "=r"(x)) 299 #elif defined(__i386__) 300 typedef uint64_t cc_type; 301 #define CC_TYPE_FMT "%llu" 302 #define slhci_cc_set(x) __asm volatile ("rdtsc" : "=A"(x)) 303 #else 304 #error "SLHCI_PROFILE_TRANSFER not implemented on this MACHINE_ARCH (see sys/dev/ic/sl811hs.c)" 305 #endif 306 struct slhci_cc_time { 307 cc_type start; 308 cc_type stop; 309 unsigned int miscdata; 310 }; 311 #ifndef SLHCI_N_TIMES 312 #define SLHCI_N_TIMES 200 313 #endif 314 struct slhci_cc_times { 315 struct slhci_cc_time times[SLHCI_N_TIMES]; 316 int current; 317 int wraparound; 318 }; 319 320 static struct slhci_cc_times t_ab[2]; 321 static struct slhci_cc_times t_abdone; 322 static struct slhci_cc_times t_copy_to_dev; 323 static struct slhci_cc_times t_copy_from_dev; 324 static struct slhci_cc_times t_intr; 325 static struct slhci_cc_times t_lock; 326 static struct slhci_cc_times t_delay; 327 static struct slhci_cc_times t_hard_int; 328 static struct slhci_cc_times t_callback; 329 330 static inline void 331 start_cc_time(struct slhci_cc_times *times, unsigned int misc) { 332 times->times[times->current].miscdata = misc; 333 slhci_cc_set(times->times[times->current].start); 334 } 335 static inline void 336 stop_cc_time(struct slhci_cc_times *times) { 337 slhci_cc_set(times->times[times->current].stop); 338 if (++times->current >= SLHCI_N_TIMES) { 339 times->current = 0; 340 times->wraparound = 1; 341 } 342 } 343 344 void slhci_dump_cc_times(int); 345 346 void 347 slhci_dump_cc_times(int n) { 348 struct slhci_cc_times *times; 349 int i; 350 351 switch (n) { 352 default: 353 case 0: 354 printf("USBA start transfer to intr:\n"); 355 times = &t_ab[A]; 356 break; 357 case 1: 358 printf("USBB start transfer to intr:\n"); 359 times = &t_ab[B]; 360 break; 361 case 2: 362 printf("abdone:\n"); 363 times = &t_abdone; 364 break; 365 case 3: 366 printf("copy to device:\n"); 367 times = &t_copy_to_dev; 368 break; 369 case 4: 370 printf("copy from device:\n"); 371 times = &t_copy_from_dev; 372 break; 373 case 5: 374 printf("intr to intr:\n"); 375 times = &t_intr; 376 break; 377 case 6: 378 printf("lock to release:\n"); 379 times = &t_lock; 380 break; 381 case 7: 382 printf("delay time:\n"); 383 times = &t_delay; 384 break; 385 case 8: 386 printf("hard interrupt enter to exit:\n"); 387 times = &t_hard_int; 388 break; 389 case 9: 390 printf("callback:\n"); 391 times = &t_callback; 392 break; 393 } 394 395 if (times->wraparound) 396 for (i = times->current + 1; i < SLHCI_N_TIMES; i++) 397 printf("start " CC_TYPE_FMT " stop " CC_TYPE_FMT 398 " difference %8i miscdata %#x\n", 399 times->times[i].start, times->times[i].stop, 400 (int)(times->times[i].stop - 401 times->times[i].start), times->times[i].miscdata); 402 403 for (i = 0; i < times->current; i++) 404 printf("start " CC_TYPE_FMT " stop " CC_TYPE_FMT 405 " difference %8i miscdata %#x\n", times->times[i].start, 406 times->times[i].stop, (int)(times->times[i].stop - 407 times->times[i].start), times->times[i].miscdata); 408 } 409 #else 410 #define start_cc_time(x, y) 411 #define stop_cc_time(x) 412 #endif /* SLHCI_PROFILE_TRANSFER */ 413 414 typedef usbd_status (*LockCallFunc)(struct slhci_softc *, struct slhci_pipe 415 *, struct usbd_xfer *); 416 417 struct usbd_xfer * slhci_allocx(struct usbd_bus *, unsigned int); 418 void slhci_freex(struct usbd_bus *, struct usbd_xfer *); 419 static void slhci_get_lock(struct usbd_bus *, kmutex_t **); 420 421 usbd_status slhci_transfer(struct usbd_xfer *); 422 usbd_status slhci_start(struct usbd_xfer *); 423 usbd_status slhci_root_start(struct usbd_xfer *); 424 usbd_status slhci_open(struct usbd_pipe *); 425 426 static int slhci_roothub_ctrl(struct usbd_bus *, usb_device_request_t *, 427 void *, int); 428 429 /* 430 * slhci_supported_rev, slhci_preinit, slhci_attach, slhci_detach, 431 * slhci_activate 432 */ 433 434 void slhci_abort(struct usbd_xfer *); 435 void slhci_close(struct usbd_pipe *); 436 void slhci_clear_toggle(struct usbd_pipe *); 437 void slhci_poll(struct usbd_bus *); 438 void slhci_done(struct usbd_xfer *); 439 void slhci_void(void *); 440 441 /* lock entry functions */ 442 443 #ifdef SLHCI_MEM_ACCOUNTING 444 void slhci_mem_use(struct usbd_bus *, int); 445 #endif 446 447 void slhci_reset_entry(void *); 448 usbd_status slhci_lock_call(struct slhci_softc *, LockCallFunc, 449 struct slhci_pipe *, struct usbd_xfer *); 450 void slhci_start_entry(struct slhci_softc *, struct slhci_pipe *); 451 void slhci_callback_entry(void *arg); 452 void slhci_do_callback(struct slhci_softc *, struct usbd_xfer *); 453 454 /* slhci_intr */ 455 456 void slhci_main(struct slhci_softc *); 457 458 /* in lock functions */ 459 460 static void slhci_write(struct slhci_softc *, uint8_t, uint8_t); 461 static uint8_t slhci_read(struct slhci_softc *, uint8_t); 462 static void slhci_write_multi(struct slhci_softc *, uint8_t, uint8_t *, int); 463 static void slhci_read_multi(struct slhci_softc *, uint8_t, uint8_t *, int); 464 465 static void slhci_waitintr(struct slhci_softc *, int); 466 static int slhci_dointr(struct slhci_softc *); 467 static void slhci_abdone(struct slhci_softc *, int); 468 static void slhci_tstart(struct slhci_softc *); 469 static void slhci_dotransfer(struct slhci_softc *); 470 471 static void slhci_callback(struct slhci_softc *); 472 static void slhci_enter_xfer(struct slhci_softc *, struct slhci_pipe *); 473 static void slhci_enter_xfers(struct slhci_softc *); 474 static void slhci_queue_timed(struct slhci_softc *, struct slhci_pipe *); 475 static void slhci_xfer_timer(struct slhci_softc *, struct slhci_pipe *); 476 477 static void slhci_callback_schedule(struct slhci_softc *); 478 static void slhci_do_callback_schedule(struct slhci_softc *); 479 #if 0 480 void slhci_pollxfer(struct slhci_softc *, struct usbd_xfer *); /* XXX */ 481 #endif 482 483 static usbd_status slhci_do_poll(struct slhci_softc *, struct slhci_pipe *, 484 struct usbd_xfer *); 485 static usbd_status slhci_lsvh_warn(struct slhci_softc *, struct slhci_pipe *, 486 struct usbd_xfer *); 487 static usbd_status slhci_isoc_warn(struct slhci_softc *, struct slhci_pipe *, 488 struct usbd_xfer *); 489 static usbd_status slhci_open_pipe(struct slhci_softc *, struct slhci_pipe *, 490 struct usbd_xfer *); 491 static usbd_status slhci_close_pipe(struct slhci_softc *, struct slhci_pipe *, 492 struct usbd_xfer *); 493 static usbd_status slhci_do_abort(struct slhci_softc *, struct slhci_pipe *, 494 struct usbd_xfer *); 495 static usbd_status slhci_halt(struct slhci_softc *, struct slhci_pipe *, 496 struct usbd_xfer *); 497 498 static void slhci_intrchange(struct slhci_softc *, uint8_t); 499 static void slhci_drain(struct slhci_softc *); 500 static void slhci_reset(struct slhci_softc *); 501 static int slhci_reserve_bustime(struct slhci_softc *, struct slhci_pipe *, 502 int); 503 static void slhci_insert(struct slhci_softc *); 504 505 static usbd_status slhci_clear_feature(struct slhci_softc *, unsigned int); 506 static usbd_status slhci_set_feature(struct slhci_softc *, unsigned int); 507 static void slhci_get_status(struct slhci_softc *, usb_port_status_t *); 508 509 #define SLHCIHIST_FUNC() USBHIST_FUNC() 510 #define SLHCIHIST_CALLED() USBHIST_CALLED(slhcidebug) 511 512 #ifdef SLHCI_DEBUG 513 static int slhci_memtest(struct slhci_softc *); 514 515 void slhci_log_buffer(struct usbd_xfer *); 516 void slhci_log_req(usb_device_request_t *); 517 void slhci_log_dumpreg(void); 518 void slhci_log_xfer(struct usbd_xfer *); 519 void slhci_log_spipe(struct slhci_pipe *); 520 void slhci_print_intr(void); 521 void slhci_log_sc(void); 522 void slhci_log_slreq(struct slhci_pipe *); 523 524 /* Constified so you can read the values from ddb */ 525 const int SLHCI_D_TRACE = 0x0001; 526 const int SLHCI_D_MSG = 0x0002; 527 const int SLHCI_D_XFER = 0x0004; 528 const int SLHCI_D_MEM = 0x0008; 529 const int SLHCI_D_INTR = 0x0010; 530 const int SLHCI_D_SXFER = 0x0020; 531 const int SLHCI_D_ERR = 0x0080; 532 const int SLHCI_D_BUF = 0x0100; 533 const int SLHCI_D_SOFT = 0x0200; 534 const int SLHCI_D_WAIT = 0x0400; 535 const int SLHCI_D_ROOT = 0x0800; 536 /* SOF/NAK alone normally ignored, SOF also needs D_INTR */ 537 const int SLHCI_D_SOF = 0x1000; 538 const int SLHCI_D_NAK = 0x2000; 539 540 int slhcidebug = 0x1cbc; /* 0xc8c; */ /* 0xffff; */ /* 0xd8c; */ 541 542 SYSCTL_SETUP(sysctl_hw_slhci_setup, "sysctl hw.slhci setup") 543 { 544 int err; 545 const struct sysctlnode *rnode; 546 const struct sysctlnode *cnode; 547 548 err = sysctl_createv(clog, 0, NULL, &rnode, 549 CTLFLAG_PERMANENT, CTLTYPE_NODE, "slhci", 550 SYSCTL_DESCR("slhci global controls"), 551 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL); 552 553 if (err) 554 goto fail; 555 556 /* control debugging printfs */ 557 err = sysctl_createv(clog, 0, &rnode, &cnode, 558 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, 559 "debug", SYSCTL_DESCR("Enable debugging output"), 560 NULL, 0, &slhcidebug, sizeof(slhcidebug), CTL_CREATE, CTL_EOL); 561 if (err) 562 goto fail; 563 564 return; 565 fail: 566 aprint_error("%s: sysctl_createv failed (err = %d)\n", __func__, err); 567 } 568 569 struct slhci_softc *ssc; 570 571 #define SLHCI_DEXEC(x, y) do { if ((slhcidebug & SLHCI_ ## x)) { y; } \ 572 } while (/*CONSTCOND*/ 0) 573 #define DDOLOG(f, a, b, c, d) do { KERNHIST_LOG(usbhist, f, a, b, c, d); \ 574 } while (/*CONSTCOND*/0) 575 #define DLOG(x, f, a, b, c, d) SLHCI_DEXEC(x, DDOLOG(f, a, b, c, d)) 576 577 /* 578 * DDOLOGBUF logs a buffer up to 8 bytes at a time. No identifier so that we 579 * can make it a real function. 580 */ 581 static void 582 DDOLOGBUF(uint8_t *buf, unsigned int length) 583 { 584 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 585 int i; 586 587 for(i = 0; i + 8 <= length; i += 8) 588 DDOLOG("%.4x %.4x %.4x %.4x", (buf[i] << 8) | buf[i+1], 589 (buf[i+2] << 8) | buf[i+3], (buf[i+4] << 8) | buf[i+5], 590 (buf[i+6] << 8) | buf[i+7]); 591 if (length == i + 7) 592 DDOLOG("%.4x %.4x %.4x %.2x", (buf[i] << 8) | buf[i+1], 593 (buf[i+2] << 8) | buf[i+3], (buf[i+4] << 8) | buf[i+5], 594 buf[i+6]); 595 else if (length == i + 6) 596 DDOLOG("%.4x %.4x %.4x", (buf[i] << 8) | buf[i+1], 597 (buf[i+2] << 8) | buf[i+3], (buf[i+4] << 8) | buf[i+5], 0); 598 else if (length == i + 5) 599 DDOLOG("%.4x %.4x %.2x", (buf[i] << 8) | buf[i+1], 600 (buf[i+2] << 8) | buf[i+3], buf[i+4], 0); 601 else if (length == i + 4) 602 DDOLOG("%.4x %.4x", (buf[i] << 8) | buf[i+1], 603 (buf[i+2] << 8) | buf[i+3], 0,0); 604 else if (length == i + 3) 605 DDOLOG("%.4x %.2x", (buf[i] << 8) | buf[i+1], buf[i+2], 0,0); 606 else if (length == i + 2) 607 DDOLOG("%.4x", (buf[i] << 8) | buf[i+1], 0,0,0); 608 else if (length == i + 1) 609 DDOLOG("%.2x", buf[i], 0,0,0); 610 } 611 #define DLOGBUF(x, b, l) SLHCI_DEXEC(x, DDOLOGBUF(b, l)) 612 613 #define DDOLOGCTRL(x) do { \ 614 DDOLOG("CTRL suspend=%jd", !!((x) & SL11_CTRL_SUSPEND), 0, 0, 0); \ 615 DDOLOG("CTRL ls =%jd jk =%jd reset =%jd sof =%jd", \ 616 !!((x) & SL11_CTRL_LOWSPEED), !!((x) & SL11_CTRL_JKSTATE), \ 617 !!((x) & SL11_CTRL_RESETENGINE), !!((x) & SL11_CTRL_ENABLESOF));\ 618 } while (0) 619 620 #define DDOLOGISR(r) do { \ 621 DDOLOG("ISR data =%jd det/res=%jd insert =%jd sof =%jd", \ 622 !!((r) & SL11_ISR_DATA), !!((r) & SL11_ISR_RESUME), \ 623 !!((r) & SL11_ISR_INSERT), !!!!((r) & SL11_ISR_SOF)); \ 624 DDOLOG("ISR babble =%jd usbb =%jd usba =%jd", \ 625 !!((r) & SL11_ISR_BABBLE), !!((r) & SL11_ISR_USBB), \ 626 !!((r) & SL11_ISR_USBA), 0); \ 627 } while (0) 628 629 #define DDOLOGIER(r) do { \ 630 DDOLOG("IER det/res=%d insert =%d sof =%d", \ 631 !!((r) & SL11_IER_RESUME), \ 632 !!((r) & SL11_IER_INSERT), !!!!((r) & SL11_IER_SOF), 0); \ 633 DDOLOG("IER babble =%d usbb =%d usba =%d", \ 634 !!((r) & SL11_IER_BABBLE), !!((r) & SL11_IER_USBB), \ 635 !!((r) & SL11_IER_USBA), 0); \ 636 } while (0) 637 638 #define DDOLOGSTATUS(s) do { \ 639 DDOLOG("STAT stall =%d nak =%d overflow =%d setup =%d", \ 640 !!((s) & SL11_EPSTAT_STALL), !!((s) & SL11_EPSTAT_NAK), \ 641 !!((s) & SL11_EPSTAT_OVERFLOW), !!((s) & SL11_EPSTAT_SETUP)); \ 642 DDOLOG("STAT sequence=%d timeout =%d error =%d ack =%d", \ 643 !!((s) & SL11_EPSTAT_SEQUENCE), !!((s) & SL11_EPSTAT_TIMEOUT), \ 644 !!((s) & SL11_EPSTAT_ERROR), !!((s) & SL11_EPSTAT_ACK)); \ 645 } while (0) 646 647 #define DDOLOGEPCTRL(r) do { \ 648 DDOLOG("CTRL preamble=%d toggle =%d sof =%d iso =%d", \ 649 !!((r) & SL11_EPCTRL_PREAMBLE), !!((r) & SL11_EPCTRL_DATATOGGLE),\ 650 !!((r) & SL11_EPCTRL_SOF), !!((r) & SL11_EPCTRL_ISO)); \ 651 DDOLOG("CTRL out =%d enable =%d arm =%d", \ 652 !!((r) & SL11_EPCTRL_DIRECTION), \ 653 !!((r) & SL11_EPCTRL_ENABLE), !!((r) & SL11_EPCTRL_ARM), 0); \ 654 } while (0) 655 656 #define DDOLOGEPSTAT(r) do { \ 657 DDOLOG("STAT stall =%d nak =%d overflow =%d setup =%d", \ 658 !!((r) & SL11_EPSTAT_STALL), !!((r) & SL11_EPSTAT_NAK), \ 659 !!((r) & SL11_EPSTAT_OVERFLOW), !!((r) & SL11_EPSTAT_SETUP)); \ 660 DDOLOG("STAT sequence=%d timeout =%d error =%d ack =%d", \ 661 !!((r) & SL11_EPSTAT_SEQUENCE), !!((r) & SL11_EPSTAT_TIMEOUT), \ 662 !!((r) & SL11_EPSTAT_ERROR), !!((r) & SL11_EPSTAT_ACK)); \ 663 } while (0) 664 #else /* now !SLHCI_DEBUG */ 665 #define slhcidebug 0 666 #define slhci_log_spipe(spipe) ((void)0) 667 #define slhci_log_xfer(xfer) ((void)0) 668 #define SLHCI_DEXEC(x, y) ((void)0) 669 #define DDOLOG(f, a, b, c, d) ((void)0) 670 #define DLOG(x, f, a, b, c, d) ((void)0) 671 #define DDOLOGBUF(b, l) ((void)0) 672 #define DLOGBUF(x, b, l) ((void)0) 673 #define DDOLOGCTRL(x) ((void)0) 674 #define DDOLOGISR(r) ((void)0) 675 #define DDOLOGIER(r) ((void)0) 676 #define DDOLOGSTATUS(s) ((void)0) 677 #define DDOLOGEPCTRL(r) ((void)0) 678 #define DDOLOGEPSTAT(r) ((void)0) 679 #endif /* SLHCI_DEBUG */ 680 681 #ifdef DIAGNOSTIC 682 #define LK_SLASSERT(exp, sc, spipe, xfer, ext) do { \ 683 if (!(exp)) { \ 684 printf("%s: assertion %s failed line %u function %s!" \ 685 " halted\n", SC_NAME(sc), #exp, __LINE__, __func__);\ 686 slhci_halt(sc, spipe, xfer); \ 687 ext; \ 688 } \ 689 } while (/*CONSTCOND*/0) 690 #define UL_SLASSERT(exp, sc, spipe, xfer, ext) do { \ 691 if (!(exp)) { \ 692 printf("%s: assertion %s failed line %u function %s!" \ 693 " halted\n", SC_NAME(sc), #exp, __LINE__, __func__); \ 694 slhci_lock_call(sc, &slhci_halt, spipe, xfer); \ 695 ext; \ 696 } \ 697 } while (/*CONSTCOND*/0) 698 #else 699 #define LK_SLASSERT(exp, sc, spipe, xfer, ext) ((void)0) 700 #define UL_SLASSERT(exp, sc, spipe, xfer, ext) ((void)0) 701 #endif 702 703 const struct usbd_bus_methods slhci_bus_methods = { 704 .ubm_open = slhci_open, 705 .ubm_softint = slhci_void, 706 .ubm_dopoll = slhci_poll, 707 .ubm_allocx = slhci_allocx, 708 .ubm_freex = slhci_freex, 709 .ubm_getlock = slhci_get_lock, 710 .ubm_rhctrl = slhci_roothub_ctrl, 711 }; 712 713 const struct usbd_pipe_methods slhci_pipe_methods = { 714 .upm_transfer = slhci_transfer, 715 .upm_start = slhci_start, 716 .upm_abort = slhci_abort, 717 .upm_close = slhci_close, 718 .upm_cleartoggle = slhci_clear_toggle, 719 .upm_done = slhci_done, 720 }; 721 722 const struct usbd_pipe_methods slhci_root_methods = { 723 .upm_transfer = slhci_transfer, 724 .upm_start = slhci_root_start, 725 .upm_abort = slhci_abort, 726 .upm_close = (void (*)(struct usbd_pipe *))slhci_void, /* XXX safe? */ 727 .upm_cleartoggle = slhci_clear_toggle, 728 .upm_done = slhci_done, 729 }; 730 731 /* Queue inlines */ 732 733 #define GOT_FIRST_TO(tvar, t) \ 734 GCQ_GOT_FIRST_TYPED(tvar, &(t)->to, struct slhci_pipe, to) 735 736 #define FIND_TO(var, t, tvar, cond) \ 737 GCQ_FIND_TYPED(var, &(t)->to, tvar, struct slhci_pipe, to, cond) 738 739 #define FOREACH_AP(var, t, tvar) \ 740 GCQ_FOREACH_TYPED(var, &(t)->ap, tvar, struct slhci_pipe, ap) 741 742 #define GOT_FIRST_TIMED_COND(tvar, t, cond) \ 743 GCQ_GOT_FIRST_COND_TYPED(tvar, &(t)->timed, struct slhci_pipe, xq, cond) 744 745 #define GOT_FIRST_CB(tvar, t) \ 746 GCQ_GOT_FIRST_TYPED(tvar, &(t)->q[Q_CB], struct slhci_pipe, xq) 747 748 #define DEQUEUED_CALLBACK(tvar, t) \ 749 GCQ_DEQUEUED_FIRST_TYPED(tvar, &(t)->q[Q_CALLBACKS], struct slhci_pipe, xq) 750 751 #define FIND_TIMED(var, t, tvar, cond) \ 752 GCQ_FIND_TYPED(var, &(t)->timed, tvar, struct slhci_pipe, xq, cond) 753 754 #define DEQUEUED_WAITQ(tvar, sc) \ 755 GCQ_DEQUEUED_FIRST_TYPED(tvar, &(sc)->sc_waitq, struct slhci_pipe, xq) 756 757 static inline void 758 enter_waitq(struct slhci_softc *sc, struct slhci_pipe *spipe) 759 { 760 gcq_insert_tail(&sc->sc_waitq, &spipe->xq); 761 } 762 763 static inline void 764 enter_q(struct slhci_transfers *t, struct slhci_pipe *spipe, int i) 765 { 766 gcq_insert_tail(&t->q[i], &spipe->xq); 767 } 768 769 static inline void 770 enter_callback(struct slhci_transfers *t, struct slhci_pipe *spipe) 771 { 772 gcq_insert_tail(&t->q[Q_CALLBACKS], &spipe->xq); 773 } 774 775 static inline void 776 enter_all_pipes(struct slhci_transfers *t, struct slhci_pipe *spipe) 777 { 778 gcq_insert_tail(&t->ap, &spipe->ap); 779 } 780 781 /* Start out of lock functions. */ 782 783 struct usbd_xfer * 784 slhci_allocx(struct usbd_bus *bus, unsigned int nframes) 785 { 786 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 787 struct usbd_xfer *xfer; 788 789 xfer = kmem_zalloc(sizeof(*xfer), KM_SLEEP); 790 791 DLOG(D_MEM, "allocx %#jx", (uintptr_t)xfer, 0,0,0); 792 793 #ifdef SLHCI_MEM_ACCOUNTING 794 slhci_mem_use(bus, 1); 795 #endif 796 #ifdef DIAGNOSTIC 797 if (xfer != NULL) 798 xfer->ux_state = XFER_BUSY; 799 #endif 800 return xfer; 801 } 802 803 void 804 slhci_freex(struct usbd_bus *bus, struct usbd_xfer *xfer) 805 { 806 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 807 DLOG(D_MEM, "freex xfer %#jx spipe %#jx", 808 (uintptr_t)xfer, (uintptr_t)xfer->ux_pipe,0,0); 809 810 #ifdef SLHCI_MEM_ACCOUNTING 811 slhci_mem_use(bus, -1); 812 #endif 813 #ifdef DIAGNOSTIC 814 if (xfer->ux_state != XFER_BUSY && 815 xfer->ux_status != USBD_NOT_STARTED) { 816 struct slhci_softc *sc = SLHCI_BUS2SC(bus); 817 printf("%s: slhci_freex: xfer=%p not busy, %#08x halted\n", 818 SC_NAME(sc), xfer, xfer->ux_state); 819 DDOLOG("xfer=%p not busy, %#08x halted\n", xfer, 820 xfer->ux_state, 0, 0); 821 slhci_lock_call(sc, &slhci_halt, NULL, NULL); 822 return; 823 } 824 xfer->ux_state = XFER_FREE; 825 #endif 826 827 kmem_free(xfer, sizeof(*xfer)); 828 } 829 830 static void 831 slhci_get_lock(struct usbd_bus *bus, kmutex_t **lock) 832 { 833 struct slhci_softc *sc = SLHCI_BUS2SC(bus); 834 835 *lock = &sc->sc_lock; 836 } 837 838 usbd_status 839 slhci_transfer(struct usbd_xfer *xfer) 840 { 841 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 842 usbd_status error; 843 844 DLOG(D_TRACE, "transfer type %jd xfer %#jx spipe %#jx ", 845 SLHCI_XFER_TYPE(xfer), (uintptr_t)xfer, (uintptr_t)xfer->ux_pipe, 846 0); 847 848 /* Pipe isn't running, so start it first. */ 849 error = xfer->ux_pipe->up_methods->upm_start(SIMPLEQ_FIRST(&xfer->ux_pipe->up_queue)); 850 851 return error; 852 } 853 854 /* It is not safe for start to return anything other than USBD_INPROG. */ 855 usbd_status 856 slhci_start(struct usbd_xfer *xfer) 857 { 858 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 859 struct slhci_softc *sc = SLHCI_XFER2SC(xfer); 860 struct usbd_pipe *pipe = xfer->ux_pipe; 861 struct slhci_pipe *spipe = SLHCI_PIPE2SPIPE(pipe); 862 struct slhci_transfers *t = &sc->sc_transfers; 863 usb_endpoint_descriptor_t *ed = pipe->up_endpoint->ue_edesc; 864 unsigned int max_packet; 865 866 KASSERT(sc->sc_bus.ub_usepolling || mutex_owned(&sc->sc_lock)); 867 868 max_packet = UGETW(ed->wMaxPacketSize); 869 870 DLOG(D_TRACE, "transfer type %jd start xfer %#jx spipe %#jx length %jd", 871 spipe->ptype, (uintptr_t)xfer, (uintptr_t)spipe, xfer->ux_length); 872 873 /* root transfers use slhci_root_start */ 874 875 KASSERT(spipe->xfer == NULL); /* not SLASSERT */ 876 877 xfer->ux_actlen = 0; 878 xfer->ux_status = USBD_IN_PROGRESS; 879 880 spipe->xfer = xfer; 881 882 spipe->nerrs = 0; 883 spipe->frame = t->frame; 884 spipe->control = SL11_EPCTRL_ARM_ENABLE; 885 spipe->tregs[DEV] = pipe->up_dev->ud_addr; 886 spipe->tregs[PID] = spipe->newpid = UE_GET_ADDR(ed->bEndpointAddress) 887 | (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN ? SL11_PID_IN : 888 SL11_PID_OUT); 889 spipe->newlen[0] = xfer->ux_length % max_packet; 890 spipe->newlen[1] = uimin(xfer->ux_length, max_packet); 891 892 if (spipe->ptype == PT_BULK || spipe->ptype == PT_INTR) { 893 if (spipe->pflags & PF_TOGGLE) 894 spipe->control |= SL11_EPCTRL_DATATOGGLE; 895 spipe->tregs[LEN] = spipe->newlen[1]; 896 if (spipe->tregs[LEN]) 897 spipe->buffer = xfer->ux_buf; 898 else 899 spipe->buffer = NULL; 900 spipe->lastframe = t->frame; 901 if (spipe->ptype == PT_INTR) { 902 spipe->frame = spipe->lastframe + 903 spipe->pipe.up_interval; 904 } 905 906 #if defined(DEBUG) || defined(SLHCI_DEBUG) 907 if (__predict_false(spipe->ptype == PT_INTR && 908 xfer->ux_length > spipe->tregs[LEN])) { 909 printf("%s: Long INTR transfer not supported!\n", 910 SC_NAME(sc)); 911 DDOLOG("Long INTR transfer not supported!", 0, 0, 0, 0); 912 xfer->ux_status = USBD_INVAL; 913 } 914 #endif 915 } else { 916 /* ptype may be currently set to any control transfer type. */ 917 SLHCI_DEXEC(D_TRACE, slhci_log_xfer(xfer)); 918 919 /* SETUP contains IN/OUT bits also */ 920 spipe->tregs[PID] |= SL11_PID_SETUP; 921 spipe->tregs[LEN] = 8; 922 spipe->buffer = (uint8_t *)&xfer->ux_request; 923 DLOGBUF(D_XFER, spipe->buffer, spipe->tregs[LEN]); 924 spipe->ptype = PT_CTRL_SETUP; 925 spipe->newpid &= ~SL11_PID_BITS; 926 if (xfer->ux_length == 0 || 927 (xfer->ux_request.bmRequestType & UT_READ)) 928 spipe->newpid |= SL11_PID_IN; 929 else 930 spipe->newpid |= SL11_PID_OUT; 931 } 932 933 if (xfer->ux_flags & USBD_FORCE_SHORT_XFER && 934 spipe->tregs[LEN] == max_packet && 935 (spipe->newpid & SL11_PID_BITS) == SL11_PID_OUT) 936 spipe->wantshort = 1; 937 else 938 spipe->wantshort = 0; 939 940 /* 941 * The goal of newbustime and newlen is to avoid bustime calculation 942 * in the interrupt. The calculations are not too complex, but they 943 * complicate the conditional logic somewhat and doing them all in the 944 * same place shares constants. Index 0 is "short length" for bulk and 945 * ctrl data and 1 is "full length" for ctrl data (bulk/intr are 946 * already set to full length). 947 */ 948 if (spipe->pflags & PF_LS) { 949 /* 950 * Setting PREAMBLE for directly connected LS devices will 951 * lock up the chip. 952 */ 953 if (spipe->pflags & PF_PREAMBLE) 954 spipe->control |= SL11_EPCTRL_PREAMBLE; 955 if (max_packet <= 8) { 956 spipe->bustime = SLHCI_LS_CONST + 957 SLHCI_LS_DATA_TIME(spipe->tregs[LEN]); 958 spipe->newbustime[0] = SLHCI_LS_CONST + 959 SLHCI_LS_DATA_TIME(spipe->newlen[0]); 960 spipe->newbustime[1] = SLHCI_LS_CONST + 961 SLHCI_LS_DATA_TIME(spipe->newlen[1]); 962 } else 963 xfer->ux_status = USBD_INVAL; 964 } else { 965 UL_SLASSERT(pipe->up_dev->ud_speed == USB_SPEED_FULL, sc, 966 spipe, xfer, return USBD_IN_PROGRESS); 967 if (max_packet <= SL11_MAX_PACKET_SIZE) { 968 spipe->bustime = SLHCI_FS_CONST + 969 SLHCI_FS_DATA_TIME(spipe->tregs[LEN]); 970 spipe->newbustime[0] = SLHCI_FS_CONST + 971 SLHCI_FS_DATA_TIME(spipe->newlen[0]); 972 spipe->newbustime[1] = SLHCI_FS_CONST + 973 SLHCI_FS_DATA_TIME(spipe->newlen[1]); 974 } else 975 xfer->ux_status = USBD_INVAL; 976 } 977 978 /* 979 * The datasheet incorrectly indicates that DIRECTION is for 980 * "transmit to host". It is for OUT and SETUP. The app note 981 * describes its use correctly. 982 */ 983 if ((spipe->tregs[PID] & SL11_PID_BITS) != SL11_PID_IN) 984 spipe->control |= SL11_EPCTRL_DIRECTION; 985 986 slhci_start_entry(sc, spipe); 987 988 return USBD_IN_PROGRESS; 989 } 990 991 usbd_status 992 slhci_root_start(struct usbd_xfer *xfer) 993 { 994 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 995 struct slhci_softc *sc; 996 struct slhci_pipe *spipe __diagused; 997 998 spipe = SLHCI_PIPE2SPIPE(xfer->ux_pipe); 999 sc = SLHCI_XFER2SC(xfer); 1000 1001 struct slhci_transfers *t = &sc->sc_transfers; 1002 1003 LK_SLASSERT(spipe != NULL && xfer != NULL, sc, spipe, xfer, return 1004 USBD_CANCELLED); 1005 1006 DLOG(D_TRACE, "transfer type %jd start", 1007 SLHCI_XFER_TYPE(xfer), 0, 0, 0); 1008 1009 KASSERT(sc->sc_bus.ub_usepolling || mutex_owned(&sc->sc_lock)); 1010 1011 KASSERT(spipe->ptype == PT_ROOT_INTR); 1012 1013 KASSERT(t->rootintr == NULL); 1014 t->rootintr = xfer; 1015 xfer->ux_status = USBD_IN_PROGRESS; 1016 1017 return USBD_IN_PROGRESS; 1018 } 1019 1020 usbd_status 1021 slhci_open(struct usbd_pipe *pipe) 1022 { 1023 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 1024 struct usbd_device *dev; 1025 struct slhci_softc *sc; 1026 struct slhci_pipe *spipe; 1027 usb_endpoint_descriptor_t *ed; 1028 unsigned int max_packet, pmaxpkt; 1029 uint8_t rhaddr; 1030 1031 dev = pipe->up_dev; 1032 sc = SLHCI_PIPE2SC(pipe); 1033 spipe = SLHCI_PIPE2SPIPE(pipe); 1034 ed = pipe->up_endpoint->ue_edesc; 1035 rhaddr = dev->ud_bus->ub_rhaddr; 1036 1037 DLOG(D_TRACE, "slhci_open(addr=%jd,ep=%jd,rootaddr=%jd)", 1038 dev->ud_addr, ed->bEndpointAddress, rhaddr, 0); 1039 1040 spipe->pflags = 0; 1041 spipe->frame = 0; 1042 spipe->lastframe = 0; 1043 spipe->xfer = NULL; 1044 spipe->buffer = NULL; 1045 1046 gcq_init(&spipe->ap); 1047 gcq_init(&spipe->to); 1048 gcq_init(&spipe->xq); 1049 1050 /* 1051 * The endpoint descriptor will not have been set up yet in the case 1052 * of the standard control pipe, so the max packet checks are also 1053 * necessary in start. 1054 */ 1055 1056 max_packet = UGETW(ed->wMaxPacketSize); 1057 1058 if (dev->ud_speed == USB_SPEED_LOW) { 1059 spipe->pflags |= PF_LS; 1060 if (dev->ud_myhub->ud_addr != rhaddr) { 1061 spipe->pflags |= PF_PREAMBLE; 1062 if (!slhci_try_lsvh) 1063 return slhci_lock_call(sc, &slhci_lsvh_warn, 1064 spipe, NULL); 1065 } 1066 pmaxpkt = 8; 1067 } else 1068 pmaxpkt = SL11_MAX_PACKET_SIZE; 1069 1070 if (max_packet > pmaxpkt) { 1071 DLOG(D_ERR, "packet too large! size %jd spipe %#jx", max_packet, 1072 (uintptr_t)spipe, 0,0); 1073 return USBD_INVAL; 1074 } 1075 1076 if (dev->ud_addr == rhaddr) { 1077 switch (ed->bEndpointAddress) { 1078 case USB_CONTROL_ENDPOINT: 1079 spipe->ptype = PT_ROOT_CTRL; 1080 pipe->up_interval = 0; 1081 pipe->up_methods = &roothub_ctrl_methods; 1082 break; 1083 case UE_DIR_IN | USBROOTHUB_INTR_ENDPT: 1084 spipe->ptype = PT_ROOT_INTR; 1085 pipe->up_interval = 1; 1086 pipe->up_methods = &slhci_root_methods; 1087 break; 1088 default: 1089 printf("%s: Invalid root endpoint!\n", SC_NAME(sc)); 1090 DDOLOG("Invalid root endpoint", 0, 0, 0, 0); 1091 return USBD_INVAL; 1092 } 1093 return USBD_NORMAL_COMPLETION; 1094 } else { 1095 switch (ed->bmAttributes & UE_XFERTYPE) { 1096 case UE_CONTROL: 1097 spipe->ptype = PT_CTRL_SETUP; 1098 pipe->up_interval = 0; 1099 break; 1100 case UE_INTERRUPT: 1101 spipe->ptype = PT_INTR; 1102 if (pipe->up_interval == USBD_DEFAULT_INTERVAL) 1103 pipe->up_interval = ed->bInterval; 1104 break; 1105 case UE_ISOCHRONOUS: 1106 return slhci_lock_call(sc, &slhci_isoc_warn, spipe, 1107 NULL); 1108 case UE_BULK: 1109 spipe->ptype = PT_BULK; 1110 pipe->up_interval = 0; 1111 break; 1112 } 1113 1114 DLOG(D_MSG, "open pipe type %jd interval %jd", spipe->ptype, 1115 pipe->up_interval, 0,0); 1116 1117 pipe->up_methods = __UNCONST(&slhci_pipe_methods); 1118 1119 return slhci_lock_call(sc, &slhci_open_pipe, spipe, NULL); 1120 } 1121 } 1122 1123 int 1124 slhci_supported_rev(uint8_t rev) 1125 { 1126 return rev >= SLTYPE_SL811HS_R12 && rev <= SLTYPE_SL811HS_R15; 1127 } 1128 1129 /* 1130 * Must be called before the ISR is registered. Interrupts can be shared so 1131 * slhci_intr could be called as soon as the ISR is registered. 1132 * Note max_current argument is actual current, but stored as current/2 1133 */ 1134 void 1135 slhci_preinit(struct slhci_softc *sc, PowerFunc pow, bus_space_tag_t iot, 1136 bus_space_handle_t ioh, uint16_t max_current, uint32_t stride) 1137 { 1138 struct slhci_transfers *t; 1139 int i; 1140 1141 t = &sc->sc_transfers; 1142 1143 #ifdef SLHCI_DEBUG 1144 ssc = sc; 1145 #endif 1146 1147 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_SOFTUSB); 1148 mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_USB); 1149 1150 /* sc->sc_ier = 0; */ 1151 /* t->rootintr = NULL; */ 1152 t->flags = F_NODEV|F_UDISABLED; 1153 t->pend = INT_MAX; 1154 KASSERT(slhci_wait_time != INT_MAX); 1155 t->len[0] = t->len[1] = -1; 1156 if (max_current > 500) 1157 max_current = 500; 1158 t->max_current = (uint8_t)(max_current / 2); 1159 sc->sc_enable_power = pow; 1160 sc->sc_iot = iot; 1161 sc->sc_ioh = ioh; 1162 sc->sc_stride = stride; 1163 1164 KASSERT(Q_MAX+1 == sizeof(t->q) / sizeof(t->q[0])); 1165 1166 for (i = 0; i <= Q_MAX; i++) 1167 gcq_init_head(&t->q[i]); 1168 gcq_init_head(&t->timed); 1169 gcq_init_head(&t->to); 1170 gcq_init_head(&t->ap); 1171 gcq_init_head(&sc->sc_waitq); 1172 } 1173 1174 int 1175 slhci_attach(struct slhci_softc *sc) 1176 { 1177 struct slhci_transfers *t; 1178 const char *rev; 1179 1180 t = &sc->sc_transfers; 1181 1182 /* Detect and check the controller type */ 1183 t->sltype = SL11_GET_REV(slhci_read(sc, SL11_REV)); 1184 1185 /* SL11H not supported */ 1186 if (!slhci_supported_rev(t->sltype)) { 1187 if (t->sltype == SLTYPE_SL11H) 1188 printf("%s: SL11H unsupported or bus error!\n", 1189 SC_NAME(sc)); 1190 else 1191 printf("%s: Unknown chip revision!\n", SC_NAME(sc)); 1192 return -1; 1193 } 1194 1195 #ifdef SLHCI_DEBUG 1196 if (slhci_memtest(sc)) { 1197 printf("%s: memory/bus error!\n", SC_NAME(sc)); 1198 return -1; 1199 } 1200 #endif 1201 1202 callout_init(&sc->sc_timer, CALLOUT_MPSAFE); 1203 callout_setfunc(&sc->sc_timer, slhci_reset_entry, sc); 1204 1205 /* 1206 * It is not safe to call the soft interrupt directly as 1207 * usb_schedsoftintr does in the ub_usepolling case (due to locking). 1208 */ 1209 sc->sc_cb_softintr = softint_establish(SOFTINT_NET, 1210 slhci_callback_entry, sc); 1211 1212 if (t->sltype == SLTYPE_SL811HS_R12) 1213 rev = "(rev 1.2)"; 1214 else if (t->sltype == SLTYPE_SL811HS_R14) 1215 rev = "(rev 1.4 or 1.5)"; 1216 else 1217 rev = "(unknown revision)"; 1218 1219 aprint_normal("%s: ScanLogic SL811HS/T USB Host Controller %s\n", 1220 SC_NAME(sc), rev); 1221 1222 aprint_normal("%s: Max Current %u mA (value by code, not by probe)\n", 1223 SC_NAME(sc), t->max_current * 2); 1224 1225 #if defined(SLHCI_DEBUG) || defined(SLHCI_NO_OVERTIME) || \ 1226 defined(SLHCI_TRY_LSVH) || defined(SLHCI_PROFILE_TRANSFER) 1227 aprint_normal("%s: driver options:" 1228 #ifdef SLHCI_DEBUG 1229 " SLHCI_DEBUG" 1230 #endif 1231 #ifdef SLHCI_TRY_LSVH 1232 " SLHCI_TRY_LSVH" 1233 #endif 1234 #ifdef SLHCI_NO_OVERTIME 1235 " SLHCI_NO_OVERTIME" 1236 #endif 1237 #ifdef SLHCI_PROFILE_TRANSFER 1238 " SLHCI_PROFILE_TRANSFER" 1239 #endif 1240 "\n", SC_NAME(sc)); 1241 #endif 1242 sc->sc_bus.ub_revision = USBREV_1_1; 1243 sc->sc_bus.ub_methods = __UNCONST(&slhci_bus_methods); 1244 sc->sc_bus.ub_pipesize = sizeof(struct slhci_pipe); 1245 sc->sc_bus.ub_usedma = false; 1246 1247 if (!sc->sc_enable_power) 1248 t->flags |= F_REALPOWER; 1249 1250 t->flags |= F_ACTIVE; 1251 1252 /* Attach usb and uhub. */ 1253 sc->sc_child = config_found(SC_DEV(sc), &sc->sc_bus, usbctlprint, 1254 CFARGS_NONE); 1255 1256 if (!sc->sc_child) 1257 return -1; 1258 else 1259 return 0; 1260 } 1261 1262 int 1263 slhci_detach(struct slhci_softc *sc, int flags) 1264 { 1265 struct slhci_transfers *t; 1266 int ret; 1267 1268 t = &sc->sc_transfers; 1269 1270 /* By this point bus access is no longer allowed. */ 1271 1272 KASSERT(!(t->flags & F_ACTIVE)); 1273 1274 /* 1275 * To be MPSAFE is not sufficient to cancel callouts and soft 1276 * interrupts and assume they are dead since the code could already be 1277 * running or about to run. Wait until they are known to be done. 1278 */ 1279 while (t->flags & (F_RESET|F_CALLBACK)) 1280 tsleep(&sc, PPAUSE, "slhci_detach", hz); 1281 1282 softint_disestablish(sc->sc_cb_softintr); 1283 1284 mutex_destroy(&sc->sc_lock); 1285 mutex_destroy(&sc->sc_intr_lock); 1286 1287 ret = 0; 1288 1289 if (sc->sc_child) 1290 ret = config_detach(sc->sc_child, flags); 1291 1292 #ifdef SLHCI_MEM_ACCOUNTING 1293 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 1294 if (sc->sc_mem_use) { 1295 printf("%s: Memory still in use after detach! mem_use (count)" 1296 " = %d\n", SC_NAME(sc), sc->sc_mem_use); 1297 DDOLOG("Memory still in use after detach! mem_use (count)" 1298 " = %d", sc->sc_mem_use, 0, 0, 0); 1299 } 1300 #endif 1301 1302 return ret; 1303 } 1304 1305 int 1306 slhci_activate(device_t self, enum devact act) 1307 { 1308 struct slhci_softc *sc = device_private(self); 1309 1310 switch (act) { 1311 case DVACT_DEACTIVATE: 1312 slhci_lock_call(sc, &slhci_halt, NULL, NULL); 1313 return 0; 1314 default: 1315 return EOPNOTSUPP; 1316 } 1317 } 1318 1319 void 1320 slhci_abort(struct usbd_xfer *xfer) 1321 { 1322 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 1323 struct slhci_softc *sc; 1324 struct slhci_pipe *spipe; 1325 1326 spipe = SLHCI_PIPE2SPIPE(xfer->ux_pipe); 1327 1328 if (spipe == NULL) 1329 goto callback; 1330 1331 sc = SLHCI_XFER2SC(xfer); 1332 KASSERT(mutex_owned(&sc->sc_lock)); 1333 1334 DLOG(D_TRACE, "transfer type %jd abort xfer %#jx spipe %#jx " 1335 " spipe->xfer %#jx", spipe->ptype, (uintptr_t)xfer, 1336 (uintptr_t)spipe, (uintptr_t)spipe->xfer); 1337 1338 slhci_lock_call(sc, &slhci_do_abort, spipe, xfer); 1339 1340 callback: 1341 xfer->ux_status = USBD_CANCELLED; 1342 usb_transfer_complete(xfer); 1343 } 1344 1345 void 1346 slhci_close(struct usbd_pipe *pipe) 1347 { 1348 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 1349 struct slhci_softc *sc; 1350 struct slhci_pipe *spipe; 1351 1352 sc = SLHCI_PIPE2SC(pipe); 1353 spipe = SLHCI_PIPE2SPIPE(pipe); 1354 1355 DLOG(D_TRACE, "transfer type %jd close spipe %#jx spipe->xfer %#jx", 1356 spipe->ptype, (uintptr_t)spipe, (uintptr_t)spipe->xfer, 0); 1357 1358 slhci_lock_call(sc, &slhci_close_pipe, spipe, NULL); 1359 } 1360 1361 void 1362 slhci_clear_toggle(struct usbd_pipe *pipe) 1363 { 1364 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 1365 struct slhci_pipe *spipe; 1366 1367 spipe = SLHCI_PIPE2SPIPE(pipe); 1368 1369 DLOG(D_TRACE, "transfer type %jd toggle spipe %#jx", spipe->ptype, 1370 (uintptr_t)spipe, 0, 0); 1371 1372 spipe->pflags &= ~PF_TOGGLE; 1373 1374 #ifdef DIAGNOSTIC 1375 if (spipe->xfer != NULL) { 1376 struct slhci_softc *sc = (struct slhci_softc 1377 *)pipe->up_dev->ud_bus; 1378 1379 printf("%s: Clear toggle on transfer in progress! halted\n", 1380 SC_NAME(sc)); 1381 DDOLOG("Clear toggle on transfer in progress! halted", 1382 0, 0, 0, 0); 1383 slhci_halt(sc, NULL, NULL); 1384 } 1385 #endif 1386 } 1387 1388 void 1389 slhci_poll(struct usbd_bus *bus) /* XXX necessary? */ 1390 { 1391 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 1392 struct slhci_softc *sc; 1393 1394 sc = SLHCI_BUS2SC(bus); 1395 1396 DLOG(D_TRACE, "slhci_poll", 0,0,0,0); 1397 1398 slhci_lock_call(sc, &slhci_do_poll, NULL, NULL); 1399 } 1400 1401 void 1402 slhci_done(struct usbd_xfer *xfer) 1403 { 1404 } 1405 1406 void 1407 slhci_void(void *v) {} 1408 1409 /* End out of lock functions. Start lock entry functions. */ 1410 1411 #ifdef SLHCI_MEM_ACCOUNTING 1412 void 1413 slhci_mem_use(struct usbd_bus *bus, int val) 1414 { 1415 struct slhci_softc *sc = SLHCI_BUS2SC(bus); 1416 1417 mutex_enter(&sc->sc_intr_lock); 1418 sc->sc_mem_use += val; 1419 mutex_exit(&sc->sc_intr_lock); 1420 } 1421 #endif 1422 1423 void 1424 slhci_reset_entry(void *arg) 1425 { 1426 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 1427 struct slhci_softc *sc = arg; 1428 1429 mutex_enter(&sc->sc_intr_lock); 1430 slhci_reset(sc); 1431 /* 1432 * We cannot call the callback directly since we could then be reset 1433 * again before finishing and need the callout delay for timing. 1434 * Scheduling the callout again before we exit would defeat the reap 1435 * mechanism since we could be unlocked while the reset flag is not 1436 * set. The callback code will check the wait queue. 1437 */ 1438 slhci_callback_schedule(sc); 1439 mutex_exit(&sc->sc_intr_lock); 1440 } 1441 1442 usbd_status 1443 slhci_lock_call(struct slhci_softc *sc, LockCallFunc lcf, struct slhci_pipe 1444 *spipe, struct usbd_xfer *xfer) 1445 { 1446 usbd_status ret; 1447 1448 mutex_enter(&sc->sc_intr_lock); 1449 ret = (*lcf)(sc, spipe, xfer); 1450 slhci_main(sc); 1451 mutex_exit(&sc->sc_intr_lock); 1452 1453 return ret; 1454 } 1455 1456 void 1457 slhci_start_entry(struct slhci_softc *sc, struct slhci_pipe *spipe) 1458 { 1459 struct slhci_transfers *t; 1460 1461 mutex_enter(&sc->sc_intr_lock); 1462 t = &sc->sc_transfers; 1463 1464 if (!(t->flags & (F_AINPROG|F_BINPROG))) { 1465 slhci_enter_xfer(sc, spipe); 1466 slhci_dotransfer(sc); 1467 slhci_main(sc); 1468 } else { 1469 enter_waitq(sc, spipe); 1470 } 1471 mutex_exit(&sc->sc_intr_lock); 1472 } 1473 1474 void 1475 slhci_callback_entry(void *arg) 1476 { 1477 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 1478 struct slhci_softc *sc; 1479 struct slhci_transfers *t; 1480 1481 sc = (struct slhci_softc *)arg; 1482 1483 mutex_enter(&sc->sc_intr_lock); 1484 t = &sc->sc_transfers; 1485 DLOG(D_SOFT, "callback_entry flags %#jx", t->flags, 0,0,0); 1486 1487 repeat: 1488 slhci_callback(sc); 1489 1490 if (!gcq_empty(&sc->sc_waitq)) { 1491 slhci_enter_xfers(sc); 1492 slhci_dotransfer(sc); 1493 slhci_waitintr(sc, 0); 1494 goto repeat; 1495 } 1496 1497 t->flags &= ~F_CALLBACK; 1498 mutex_exit(&sc->sc_intr_lock); 1499 } 1500 1501 void 1502 slhci_do_callback(struct slhci_softc *sc, struct usbd_xfer *xfer) 1503 { 1504 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 1505 KASSERT(mutex_owned(&sc->sc_intr_lock)); 1506 1507 start_cc_time(&t_callback, (u_int)xfer); 1508 mutex_exit(&sc->sc_intr_lock); 1509 1510 mutex_enter(&sc->sc_lock); 1511 usb_transfer_complete(xfer); 1512 mutex_exit(&sc->sc_lock); 1513 1514 mutex_enter(&sc->sc_intr_lock); 1515 stop_cc_time(&t_callback); 1516 } 1517 1518 int 1519 slhci_intr(void *arg) 1520 { 1521 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 1522 struct slhci_softc *sc = arg; 1523 int ret = 0; 1524 int irq; 1525 1526 start_cc_time(&t_hard_int, (unsigned int)arg); 1527 mutex_enter(&sc->sc_intr_lock); 1528 1529 do { 1530 irq = slhci_dointr(sc); 1531 ret |= irq; 1532 slhci_main(sc); 1533 } while (irq); 1534 mutex_exit(&sc->sc_intr_lock); 1535 1536 stop_cc_time(&t_hard_int); 1537 return ret; 1538 } 1539 1540 /* called with interrupt lock only held. */ 1541 void 1542 slhci_main(struct slhci_softc *sc) 1543 { 1544 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 1545 struct slhci_transfers *t; 1546 1547 t = &sc->sc_transfers; 1548 1549 KASSERT(mutex_owned(&sc->sc_intr_lock)); 1550 1551 waitcheck: 1552 slhci_waitintr(sc, slhci_wait_time); 1553 1554 /* 1555 * The direct call is needed in the ub_usepolling and disabled cases 1556 * since the soft interrupt is not available. In the disabled case, 1557 * this code can be reached from the usb detach, after the reaping of 1558 * the soft interrupt. That test could be !F_ACTIVE, but there is no 1559 * reason not to make the callbacks directly in the other DISABLED 1560 * cases. 1561 */ 1562 if ((t->flags & F_ROOTINTR) || !gcq_empty(&t->q[Q_CALLBACKS])) { 1563 if (__predict_false(sc->sc_bus.ub_usepolling || 1564 t->flags & F_DISABLED)) 1565 slhci_callback(sc); 1566 else 1567 slhci_callback_schedule(sc); 1568 } 1569 1570 if (!gcq_empty(&sc->sc_waitq)) { 1571 slhci_enter_xfers(sc); 1572 slhci_dotransfer(sc); 1573 goto waitcheck; 1574 } 1575 DLOG(D_INTR, "... done", 0, 0, 0, 0); 1576 } 1577 1578 /* End lock entry functions. Start in lock function. */ 1579 1580 /* Register read/write routines and barriers. */ 1581 #ifdef SLHCI_BUS_SPACE_BARRIERS 1582 #define BSB(a, b, c, d, e) bus_space_barrier(a, b, c, d, BUS_SPACE_BARRIER_ # e) 1583 #define BSB_SYNC(a, b, c, d) bus_space_barrier(a, b, c, d, BUS_SPACE_BARRIER_READ|BUS_SPACE_BARRIER_WRITE) 1584 #else /* now !SLHCI_BUS_SPACE_BARRIERS */ 1585 #define BSB(a, b, c, d, e) __USE(d) 1586 #define BSB_SYNC(a, b, c, d) 1587 #endif /* SLHCI_BUS_SPACE_BARRIERS */ 1588 1589 static void 1590 slhci_write(struct slhci_softc *sc, uint8_t addr, uint8_t data) 1591 { 1592 bus_size_t paddr, pdata, pst, psz; 1593 bus_space_tag_t iot; 1594 bus_space_handle_t ioh; 1595 1596 paddr = pst = 0; 1597 pdata = sc->sc_stride; 1598 psz = pdata * 2; 1599 iot = sc->sc_iot; 1600 ioh = sc->sc_ioh; 1601 1602 bus_space_write_1(iot, ioh, paddr, addr); 1603 BSB(iot, ioh, pst, psz, WRITE_BEFORE_WRITE); 1604 bus_space_write_1(iot, ioh, pdata, data); 1605 BSB(iot, ioh, pst, psz, WRITE_BEFORE_WRITE); 1606 } 1607 1608 static uint8_t 1609 slhci_read(struct slhci_softc *sc, uint8_t addr) 1610 { 1611 bus_size_t paddr, pdata, pst, psz; 1612 bus_space_tag_t iot; 1613 bus_space_handle_t ioh; 1614 uint8_t data; 1615 1616 paddr = pst = 0; 1617 pdata = sc->sc_stride; 1618 psz = pdata * 2; 1619 iot = sc->sc_iot; 1620 ioh = sc->sc_ioh; 1621 1622 bus_space_write_1(iot, ioh, paddr, addr); 1623 BSB(iot, ioh, pst, psz, WRITE_BEFORE_READ); 1624 data = bus_space_read_1(iot, ioh, pdata); 1625 BSB(iot, ioh, pst, psz, READ_BEFORE_WRITE); 1626 return data; 1627 } 1628 1629 #if 0 /* auto-increment mode broken, see errata doc */ 1630 static void 1631 slhci_write_multi(struct slhci_softc *sc, uint8_t addr, uint8_t *buf, int l) 1632 { 1633 bus_size_t paddr, pdata, pst, psz; 1634 bus_space_tag_t iot; 1635 bus_space_handle_t ioh; 1636 1637 paddr = pst = 0; 1638 pdata = sc->sc_stride; 1639 psz = pdata * 2; 1640 iot = sc->sc_iot; 1641 ioh = sc->sc_ioh; 1642 1643 bus_space_write_1(iot, ioh, paddr, addr); 1644 BSB(iot, ioh, pst, psz, WRITE_BEFORE_WRITE); 1645 bus_space_write_multi_1(iot, ioh, pdata, buf, l); 1646 BSB(iot, ioh, pst, psz, WRITE_BEFORE_WRITE); 1647 } 1648 1649 static void 1650 slhci_read_multi(struct slhci_softc *sc, uint8_t addr, uint8_t *buf, int l) 1651 { 1652 bus_size_t paddr, pdata, pst, psz; 1653 bus_space_tag_t iot; 1654 bus_space_handle_t ioh; 1655 1656 paddr = pst = 0; 1657 pdata = sc->sc_stride; 1658 psz = pdata * 2; 1659 iot = sc->sc_iot; 1660 ioh = sc->sc_ioh; 1661 1662 bus_space_write_1(iot, ioh, paddr, addr); 1663 BSB(iot, ioh, pst, psz, WRITE_BEFORE_READ); 1664 bus_space_read_multi_1(iot, ioh, pdata, buf, l); 1665 BSB(iot, ioh, pst, psz, READ_BEFORE_WRITE); 1666 } 1667 #else 1668 static void 1669 slhci_write_multi(struct slhci_softc *sc, uint8_t addr, uint8_t *buf, int l) 1670 { 1671 #if 1 1672 for (; l; addr++, buf++, l--) 1673 slhci_write(sc, addr, *buf); 1674 #else 1675 bus_size_t paddr, pdata, pst, psz; 1676 bus_space_tag_t iot; 1677 bus_space_handle_t ioh; 1678 1679 paddr = pst = 0; 1680 pdata = sc->sc_stride; 1681 psz = pdata * 2; 1682 iot = sc->sc_iot; 1683 ioh = sc->sc_ioh; 1684 1685 for (; l; addr++, buf++, l--) { 1686 bus_space_write_1(iot, ioh, paddr, addr); 1687 BSB(iot, ioh, pst, psz, WRITE_BEFORE_WRITE); 1688 bus_space_write_1(iot, ioh, pdata, *buf); 1689 BSB(iot, ioh, pst, psz, WRITE_BEFORE_WRITE); 1690 } 1691 #endif 1692 } 1693 1694 static void 1695 slhci_read_multi(struct slhci_softc *sc, uint8_t addr, uint8_t *buf, int l) 1696 { 1697 #if 1 1698 for (; l; addr++, buf++, l--) 1699 *buf = slhci_read(sc, addr); 1700 #else 1701 bus_size_t paddr, pdata, pst, psz; 1702 bus_space_tag_t iot; 1703 bus_space_handle_t ioh; 1704 1705 paddr = pst = 0; 1706 pdata = sc->sc_stride; 1707 psz = pdata * 2; 1708 iot = sc->sc_iot; 1709 ioh = sc->sc_ioh; 1710 1711 for (; l; addr++, buf++, l--) { 1712 bus_space_write_1(iot, ioh, paddr, addr); 1713 BSB(iot, ioh, pst, psz, WRITE_BEFORE_READ); 1714 *buf = bus_space_read_1(iot, ioh, pdata); 1715 BSB(iot, ioh, pst, psz, READ_BEFORE_WRITE); 1716 } 1717 #endif 1718 } 1719 #endif 1720 1721 /* 1722 * After calling waitintr it is necessary to either call slhci_callback or 1723 * schedule the callback if necessary. The callback cannot be called directly 1724 * from the hard interrupt since it interrupts at a high IPL and callbacks 1725 * can do copyout and such. 1726 */ 1727 static void 1728 slhci_waitintr(struct slhci_softc *sc, int wait_time) 1729 { 1730 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 1731 struct slhci_transfers *t; 1732 1733 t = &sc->sc_transfers; 1734 1735 KASSERT(mutex_owned(&sc->sc_intr_lock)); 1736 1737 if (__predict_false(sc->sc_bus.ub_usepolling)) 1738 wait_time = 12000; 1739 1740 while (t->pend <= wait_time) { 1741 DLOG(D_WAIT, "waiting... frame %jd pend %jd flags %#jx", 1742 t->frame, t->pend, t->flags, 0); 1743 LK_SLASSERT(t->flags & F_ACTIVE, sc, NULL, NULL, return); 1744 LK_SLASSERT(t->flags & (F_AINPROG|F_BINPROG), sc, NULL, NULL, 1745 return); 1746 slhci_dointr(sc); 1747 } 1748 DLOG(D_WAIT, "... done", 0, 0, 0, 0); 1749 } 1750 1751 static int 1752 slhci_dointr(struct slhci_softc *sc) 1753 { 1754 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 1755 struct slhci_transfers *t; 1756 struct slhci_pipe *tosp; 1757 uint8_t r; 1758 1759 t = &sc->sc_transfers; 1760 1761 KASSERT(mutex_owned(&sc->sc_intr_lock)); 1762 1763 if (sc->sc_ier == 0) { 1764 DLOG(D_INTR, "sc_ier is zero", 0, 0, 0, 0); 1765 return 0; 1766 } 1767 1768 r = slhci_read(sc, SL11_ISR); 1769 1770 #ifdef SLHCI_DEBUG 1771 if (slhcidebug & SLHCI_D_INTR && r & sc->sc_ier && 1772 ((r & ~(SL11_ISR_SOF|SL11_ISR_DATA)) || slhcidebug & SLHCI_D_SOF)) { 1773 uint8_t e, f; 1774 1775 e = slhci_read(sc, SL11_IER); 1776 f = slhci_read(sc, SL11_CTRL); 1777 DDOLOG("Flags=%#x IER=%#x ISR=%#x CTRL=%#x", t->flags, e, r, f); 1778 DDOLOGCTRL(f); 1779 DDOLOGISR(r); 1780 } 1781 #endif 1782 1783 /* 1784 * check IER for corruption occasionally. Assume that the above 1785 * sc_ier == 0 case works correctly. 1786 */ 1787 if (__predict_false(sc->sc_ier_check++ > SLHCI_IER_CHECK_FREQUENCY)) { 1788 sc->sc_ier_check = 0; 1789 if (sc->sc_ier != slhci_read(sc, SL11_IER)) { 1790 printf("%s: IER value corrupted! halted\n", 1791 SC_NAME(sc)); 1792 DDOLOG("IER value corrupted! halted", 0, 0, 0, 0); 1793 slhci_halt(sc, NULL, NULL); 1794 return 1; 1795 } 1796 } 1797 1798 r &= sc->sc_ier; 1799 1800 if (r == 0) { 1801 DLOG(D_INTR, "r is zero", 0, 0, 0, 0); 1802 return 0; 1803 } 1804 1805 sc->sc_ier_check = 0; 1806 1807 slhci_write(sc, SL11_ISR, r); 1808 BSB_SYNC(sc->iot, sc->ioh, sc->pst, sc->psz); 1809 1810 /* If we have an insertion event we do not care about anything else. */ 1811 if (__predict_false(r & SL11_ISR_INSERT)) { 1812 slhci_insert(sc); 1813 DLOG(D_INTR, "... done", 0, 0, 0, 0); 1814 return 1; 1815 } 1816 1817 stop_cc_time(&t_intr); 1818 start_cc_time(&t_intr, r); 1819 1820 if (r & SL11_ISR_SOF) { 1821 t->frame++; 1822 1823 gcq_merge_tail(&t->q[Q_CB], &t->q[Q_NEXT_CB]); 1824 1825 /* 1826 * SOFCHECK flags are cleared in tstart. Two flags are needed 1827 * since the first SOF interrupt processed after the transfer 1828 * is started might have been generated before the transfer 1829 * was started. 1830 */ 1831 if (__predict_false(t->flags & F_SOFCHECK2 && t->flags & 1832 (F_AINPROG|F_BINPROG))) { 1833 printf("%s: Missed transfer completion. halted\n", 1834 SC_NAME(sc)); 1835 DDOLOG("Missed transfer completion. halted", 0, 0, 0, 1836 0); 1837 slhci_halt(sc, NULL, NULL); 1838 return 1; 1839 } else if (t->flags & F_SOFCHECK1) { 1840 t->flags |= F_SOFCHECK2; 1841 } else 1842 t->flags |= F_SOFCHECK1; 1843 1844 if (t->flags & F_CHANGE) 1845 t->flags |= F_ROOTINTR; 1846 1847 while (__predict_true(GOT_FIRST_TO(tosp, t)) && 1848 __predict_false(tosp->to_frame <= t->frame)) { 1849 tosp->xfer->ux_status = USBD_TIMEOUT; 1850 slhci_do_abort(sc, tosp, tosp->xfer); 1851 enter_callback(t, tosp); 1852 } 1853 1854 /* 1855 * Start any waiting transfers right away. If none, we will 1856 * start any new transfers later. 1857 */ 1858 slhci_tstart(sc); 1859 } 1860 1861 if (r & (SL11_ISR_USBA|SL11_ISR_USBB)) { 1862 int ab; 1863 1864 if ((r & (SL11_ISR_USBA|SL11_ISR_USBB)) == 1865 (SL11_ISR_USBA|SL11_ISR_USBB)) { 1866 if (!(t->flags & (F_AINPROG|F_BINPROG))) 1867 return 1; /* presume card pulled */ 1868 1869 LK_SLASSERT((t->flags & (F_AINPROG|F_BINPROG)) != 1870 (F_AINPROG|F_BINPROG), sc, NULL, NULL, return 1); 1871 1872 /* 1873 * This should never happen (unless card removal just 1874 * occurred) but appeared frequently when both 1875 * transfers were started at the same time and was 1876 * accompanied by data corruption. It still happens 1877 * at times. I have not seen data correption except 1878 * when the STATUS bit gets set, which now causes the 1879 * driver to halt, however this should still not 1880 * happen so the warning is kept. See comment in 1881 * abdone, below. 1882 */ 1883 printf("%s: Transfer reported done but not started! " 1884 "Verify data integrity if not detaching. " 1885 " flags %#x r %x\n", SC_NAME(sc), t->flags, r); 1886 1887 if (!(t->flags & F_AINPROG)) 1888 r &= ~SL11_ISR_USBA; 1889 else 1890 r &= ~SL11_ISR_USBB; 1891 } 1892 t->pend = INT_MAX; 1893 1894 if (r & SL11_ISR_USBA) 1895 ab = A; 1896 else 1897 ab = B; 1898 1899 /* 1900 * This happens when a low speed device is attached to 1901 * a hub with chip rev 1.5. SOF stops, but a few transfers 1902 * still work before causing this error. 1903 */ 1904 if (!(t->flags & (ab ? F_BINPROG : F_AINPROG))) { 1905 printf("%s: %s done but not in progress! halted\n", 1906 SC_NAME(sc), ab ? "B" : "A"); 1907 DDOLOG("AB=%d done but not in progress! halted", ab, 1908 0, 0, 0); 1909 slhci_halt(sc, NULL, NULL); 1910 return 1; 1911 } 1912 1913 t->flags &= ~(ab ? F_BINPROG : F_AINPROG); 1914 slhci_tstart(sc); 1915 stop_cc_time(&t_ab[ab]); 1916 start_cc_time(&t_abdone, t->flags); 1917 slhci_abdone(sc, ab); 1918 stop_cc_time(&t_abdone); 1919 } 1920 1921 slhci_dotransfer(sc); 1922 1923 DLOG(D_INTR, "... done", 0, 0, 0, 0); 1924 1925 return 1; 1926 } 1927 1928 static void 1929 slhci_abdone(struct slhci_softc *sc, int ab) 1930 { 1931 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 1932 struct slhci_transfers *t; 1933 struct slhci_pipe *spipe; 1934 struct usbd_xfer *xfer; 1935 uint8_t status, buf_start; 1936 uint8_t *target_buf; 1937 unsigned int actlen; 1938 int head; 1939 1940 t = &sc->sc_transfers; 1941 1942 KASSERT(mutex_owned(&sc->sc_intr_lock)); 1943 1944 DLOG(D_TRACE, "ABDONE flags %#jx", t->flags, 0,0,0); 1945 1946 DLOG(D_MSG, "DONE AB=%jd spipe %#jx len %jd xfer %#jx", ab, 1947 t->spipe[ab], (uintptr_t)t->len[ab], 1948 (uintptr_t)(t->spipe[ab] ? t->spipe[ab]->xfer : NULL)); 1949 1950 spipe = t->spipe[ab]; 1951 1952 /* 1953 * skip this one if aborted; do not call return from the rest of the 1954 * function unless halting, else t->len will not be cleared. 1955 */ 1956 if (spipe == NULL) 1957 goto done; 1958 1959 t->spipe[ab] = NULL; 1960 1961 xfer = spipe->xfer; 1962 1963 gcq_remove(&spipe->to); 1964 1965 LK_SLASSERT(xfer != NULL, sc, spipe, NULL, return); 1966 1967 status = slhci_read(sc, slhci_tregs[ab][STAT]); 1968 1969 /* 1970 * I saw no status or remaining length greater than the requested 1971 * length in early driver versions in circumstances I assumed caused 1972 * excess power draw. I am no longer able to reproduce this when 1973 * causing excess power draw circumstances. 1974 * 1975 * Disabling a power check and attaching aue to a keyboard and hub 1976 * that is directly attached (to CFU1U, 100mA max, aue 160mA, keyboard 1977 * 98mA) sometimes works and sometimes fails to configure. After 1978 * removing the aue and attaching a self-powered umass dvd reader 1979 * (unknown if it draws power from the host also) soon a single Error 1980 * status occurs then only timeouts. The controller soon halts freeing 1981 * memory due to being ONQU instead of BUSY. This may be the same 1982 * basic sequence that caused the no status/bad length errors. The 1983 * umass device seems to work (better at least) with the keyboard hub 1984 * when not first attaching aue (tested once reading an approximately 1985 * 200MB file). 1986 * 1987 * Overflow can indicate that the device and host disagree about how 1988 * much data has been transferred. This may indicate a problem at any 1989 * point during the transfer, not just when the error occurs. It may 1990 * indicate data corruption. A warning message is printed. 1991 * 1992 * Trying to use both A and B transfers at the same time results in 1993 * incorrect transfer completion ISR reports and the status will then 1994 * include SL11_EPSTAT_SETUP, which is apparently set while the 1995 * transfer is in progress. I also noticed data corruption, even 1996 * after waiting for the transfer to complete. The driver now avoids 1997 * trying to start both at the same time. 1998 * 1999 * I had accidently initialized the B registers before they were valid 2000 * in some driver versions. Since every other performance enhancing 2001 * feature has been confirmed buggy in the errata doc, I have not 2002 * tried both transfers at once again with the documented 2003 * initialization order. 2004 * 2005 * However, I have seen this problem again ("done but not started" 2006 * errors), which in some cases cases the SETUP status bit to remain 2007 * set on future transfers. In other cases, the SETUP bit is not set 2008 * and no data corruption occurs. This occurred while using both umass 2009 * and aue on a powered hub (maybe triggered by some local activity 2010 * also) and needs several reads of the 200MB file to trigger. The 2011 * driver now halts if SETUP is detected. 2012 */ 2013 2014 actlen = 0; 2015 2016 if (__predict_false(!status)) { 2017 DDOLOG("no status! xfer %p spipe %p", xfer, spipe, 0,0); 2018 printf("%s: no status! halted\n", SC_NAME(sc)); 2019 slhci_halt(sc, spipe, xfer); 2020 return; 2021 } 2022 2023 #ifdef SLHCI_DEBUG 2024 if ((slhcidebug & SLHCI_D_NAK) || 2025 (status & SL11_EPSTAT_ERRBITS) != SL11_EPSTAT_NAK) { 2026 DDOLOG("USB Status = %#.2x", status, 0, 0, 0); 2027 DDOLOGSTATUS(status); 2028 } 2029 #endif 2030 2031 if (!(status & SL11_EPSTAT_ERRBITS)) { 2032 unsigned int cont = slhci_read(sc, slhci_tregs[ab][CONT]); 2033 unsigned int len = spipe->tregs[LEN]; 2034 DLOG(D_XFER, "cont %jd len %jd", cont, len, 0, 0); 2035 if ((status & SL11_EPSTAT_OVERFLOW) || cont > len) { 2036 DDOLOG("overflow - cont %d len %d xfer->ux_length %d " 2037 "xfer->actlen %d", cont, len, xfer->ux_length, 2038 xfer->ux_actlen); 2039 printf("%s: overflow cont %d len %d xfer->ux_length" 2040 " %d xfer->ux_actlen %d\n", SC_NAME(sc), cont, 2041 len, xfer->ux_length, xfer->ux_actlen); 2042 actlen = len; 2043 } else { 2044 actlen = len - cont; 2045 } 2046 spipe->nerrs = 0; 2047 } 2048 2049 /* Actual copyin done after starting next transfer. */ 2050 if (actlen && (spipe->tregs[PID] & SL11_PID_BITS) == SL11_PID_IN) { 2051 target_buf = spipe->buffer; 2052 buf_start = spipe->tregs[ADR]; 2053 } else { 2054 target_buf = NULL; 2055 buf_start = 0; /* XXX gcc uninitialized warnings */ 2056 } 2057 2058 if (status & SL11_EPSTAT_ERRBITS) { 2059 status &= SL11_EPSTAT_ERRBITS; 2060 if (status & SL11_EPSTAT_SETUP) { 2061 printf("%s: Invalid controller state detected! " 2062 "halted\n", SC_NAME(sc)); 2063 DDOLOG("Invalid controller state detected! " 2064 "halted", 0, 0, 0, 0); 2065 slhci_halt(sc, spipe, xfer); 2066 return; 2067 } else if (__predict_false(sc->sc_bus.ub_usepolling)) { 2068 head = Q_CALLBACKS; 2069 if (status & SL11_EPSTAT_STALL) 2070 xfer->ux_status = USBD_STALLED; 2071 else if (status & SL11_EPSTAT_TIMEOUT) 2072 xfer->ux_status = USBD_TIMEOUT; 2073 else if (status & SL11_EPSTAT_NAK) 2074 head = Q_NEXT_CB; 2075 else 2076 xfer->ux_status = USBD_IOERROR; 2077 } else if (status & SL11_EPSTAT_NAK) { 2078 int i = spipe->pipe.up_interval; 2079 if (i == 0) 2080 i = 1; 2081 DDOLOG("xfer %p spipe %p NAK delay by %d", xfer, spipe, 2082 i, 0); 2083 spipe->lastframe = spipe->frame = t->frame + i; 2084 slhci_queue_timed(sc, spipe); 2085 goto queued; 2086 } else if (++spipe->nerrs > SLHCI_MAX_RETRIES || 2087 (status & SL11_EPSTAT_STALL)) { 2088 DDOLOG("xfer %p spipe %p nerrs %d", xfer, spipe, 2089 spipe->nerrs, 0); 2090 if (status & SL11_EPSTAT_STALL) 2091 xfer->ux_status = USBD_STALLED; 2092 else if (status & SL11_EPSTAT_TIMEOUT) 2093 xfer->ux_status = USBD_TIMEOUT; 2094 else 2095 xfer->ux_status = USBD_IOERROR; 2096 2097 DLOG(D_ERR, "Max retries reached! status %#jx " 2098 "xfer->ux_status %jd", status, xfer->ux_status, 0, 2099 0); 2100 DDOLOGSTATUS(status); 2101 2102 head = Q_CALLBACKS; 2103 } else { 2104 head = Q_NEXT_CB; 2105 } 2106 } else if (spipe->ptype == PT_CTRL_SETUP) { 2107 spipe->tregs[PID] = spipe->newpid; 2108 2109 if (xfer->ux_length) { 2110 LK_SLASSERT(spipe->newlen[1] != 0, sc, spipe, xfer, 2111 return); 2112 spipe->tregs[LEN] = spipe->newlen[1]; 2113 spipe->bustime = spipe->newbustime[1]; 2114 spipe->buffer = xfer->ux_buf; 2115 spipe->ptype = PT_CTRL_DATA; 2116 } else { 2117 status_setup: 2118 /* CTRL_DATA swaps direction in PID then jumps here */ 2119 spipe->tregs[LEN] = 0; 2120 if (spipe->pflags & PF_LS) 2121 spipe->bustime = SLHCI_LS_CONST; 2122 else 2123 spipe->bustime = SLHCI_FS_CONST; 2124 spipe->ptype = PT_CTRL_STATUS; 2125 spipe->buffer = NULL; 2126 } 2127 2128 /* Status or first data packet must be DATA1. */ 2129 spipe->control |= SL11_EPCTRL_DATATOGGLE; 2130 if ((spipe->tregs[PID] & SL11_PID_BITS) == SL11_PID_IN) 2131 spipe->control &= ~SL11_EPCTRL_DIRECTION; 2132 else 2133 spipe->control |= SL11_EPCTRL_DIRECTION; 2134 2135 head = Q_CB; 2136 } else if (spipe->ptype == PT_CTRL_STATUS) { 2137 head = Q_CALLBACKS; 2138 } else { /* bulk, intr, control data */ 2139 xfer->ux_actlen += actlen; 2140 spipe->control ^= SL11_EPCTRL_DATATOGGLE; 2141 2142 if (actlen == spipe->tregs[LEN] && 2143 (xfer->ux_length > xfer->ux_actlen || spipe->wantshort)) { 2144 spipe->buffer += actlen; 2145 LK_SLASSERT(xfer->ux_length >= xfer->ux_actlen, sc, 2146 spipe, xfer, return); 2147 if (xfer->ux_length - xfer->ux_actlen < actlen) { 2148 spipe->wantshort = 0; 2149 spipe->tregs[LEN] = spipe->newlen[0]; 2150 spipe->bustime = spipe->newbustime[0]; 2151 LK_SLASSERT(xfer->ux_actlen + 2152 spipe->tregs[LEN] == xfer->ux_length, sc, 2153 spipe, xfer, return); 2154 } 2155 head = Q_CB; 2156 } else if (spipe->ptype == PT_CTRL_DATA) { 2157 spipe->tregs[PID] ^= SLHCI_PID_SWAP_IN_OUT; 2158 goto status_setup; 2159 } else { 2160 if (spipe->ptype == PT_INTR) { 2161 spipe->lastframe += 2162 spipe->pipe.up_interval; 2163 /* 2164 * If ack, we try to keep the 2165 * interrupt rate by using lastframe 2166 * instead of the current frame. 2167 */ 2168 spipe->frame = spipe->lastframe + 2169 spipe->pipe.up_interval; 2170 } 2171 2172 /* 2173 * Set the toggle for the next transfer. It 2174 * has already been toggled above, so the 2175 * current setting will apply to the next 2176 * transfer. 2177 */ 2178 if (spipe->control & SL11_EPCTRL_DATATOGGLE) 2179 spipe->pflags |= PF_TOGGLE; 2180 else 2181 spipe->pflags &= ~PF_TOGGLE; 2182 2183 head = Q_CALLBACKS; 2184 } 2185 } 2186 2187 if (head == Q_CALLBACKS) { 2188 gcq_remove(&spipe->to); 2189 2190 if (xfer->ux_status == USBD_IN_PROGRESS) { 2191 LK_SLASSERT(xfer->ux_actlen <= xfer->ux_length, sc, 2192 spipe, xfer, return); 2193 xfer->ux_status = USBD_NORMAL_COMPLETION; 2194 } 2195 } 2196 2197 enter_q(t, spipe, head); 2198 2199 queued: 2200 if (target_buf != NULL) { 2201 slhci_dotransfer(sc); 2202 start_cc_time(&t_copy_from_dev, actlen); 2203 slhci_read_multi(sc, buf_start, target_buf, actlen); 2204 stop_cc_time(&t_copy_from_dev); 2205 DLOGBUF(D_BUF, target_buf, actlen); 2206 t->pend -= SLHCI_FS_CONST + SLHCI_FS_DATA_TIME(actlen); 2207 } 2208 2209 done: 2210 t->len[ab] = -1; 2211 } 2212 2213 static void 2214 slhci_tstart(struct slhci_softc *sc) 2215 { 2216 struct slhci_transfers *t; 2217 struct slhci_pipe *spipe; 2218 int remaining_bustime; 2219 2220 t = &sc->sc_transfers; 2221 2222 KASSERT(mutex_owned(&sc->sc_intr_lock)); 2223 2224 if (!(t->flags & (F_AREADY|F_BREADY))) 2225 return; 2226 2227 if (t->flags & (F_AINPROG|F_BINPROG|F_DISABLED)) 2228 return; 2229 2230 /* 2231 * We have about 6 us to get from the bus time check to 2232 * starting the transfer or we might babble or the chip might fail to 2233 * signal transfer complete. This leaves no time for any other 2234 * interrupts. 2235 */ 2236 remaining_bustime = (int)(slhci_read(sc, SL811_CSOF)) << 6; 2237 remaining_bustime -= SLHCI_END_BUSTIME; 2238 2239 /* 2240 * Start one transfer only, clearing any aborted transfers that are 2241 * not yet in progress and skipping missed isoc. It is easier to copy 2242 * & paste most of the A/B sections than to make the logic work 2243 * otherwise and this allows better constant use. 2244 */ 2245 if (t->flags & F_AREADY) { 2246 spipe = t->spipe[A]; 2247 if (spipe == NULL) { 2248 t->flags &= ~F_AREADY; 2249 t->len[A] = -1; 2250 } else if (remaining_bustime >= spipe->bustime) { 2251 t->flags &= ~(F_AREADY|F_SOFCHECK1|F_SOFCHECK2); 2252 t->flags |= F_AINPROG; 2253 start_cc_time(&t_ab[A], spipe->tregs[LEN]); 2254 slhci_write(sc, SL11_E0CTRL, spipe->control); 2255 goto pend; 2256 } 2257 } 2258 if (t->flags & F_BREADY) { 2259 spipe = t->spipe[B]; 2260 if (spipe == NULL) { 2261 t->flags &= ~F_BREADY; 2262 t->len[B] = -1; 2263 } else if (remaining_bustime >= spipe->bustime) { 2264 t->flags &= ~(F_BREADY|F_SOFCHECK1|F_SOFCHECK2); 2265 t->flags |= F_BINPROG; 2266 start_cc_time(&t_ab[B], spipe->tregs[LEN]); 2267 slhci_write(sc, SL11_E1CTRL, spipe->control); 2268 pend: 2269 t->pend = spipe->bustime; 2270 } 2271 } 2272 } 2273 2274 static void 2275 slhci_dotransfer(struct slhci_softc *sc) 2276 { 2277 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 2278 struct slhci_transfers *t; 2279 struct slhci_pipe *spipe; 2280 int ab, i; 2281 2282 t = &sc->sc_transfers; 2283 2284 KASSERT(mutex_owned(&sc->sc_intr_lock)); 2285 2286 while ((t->len[A] == -1 || t->len[B] == -1) && 2287 (GOT_FIRST_TIMED_COND(spipe, t, spipe->frame <= t->frame) || 2288 GOT_FIRST_CB(spipe, t))) { 2289 LK_SLASSERT(spipe->xfer != NULL, sc, spipe, NULL, return); 2290 LK_SLASSERT(spipe->ptype != PT_ROOT_CTRL && spipe->ptype != 2291 PT_ROOT_INTR, sc, spipe, NULL, return); 2292 2293 /* Check that this transfer can fit in the remaining memory. */ 2294 if (t->len[A] + t->len[B] + spipe->tregs[LEN] + 1 > 2295 SL11_MAX_PACKET_SIZE) { 2296 DLOG(D_XFER, "Transfer does not fit. alen %jd blen %jd " 2297 "len %jd", t->len[A], t->len[B], spipe->tregs[LEN], 2298 0); 2299 return; 2300 } 2301 2302 gcq_remove(&spipe->xq); 2303 2304 if (t->len[A] == -1) { 2305 ab = A; 2306 spipe->tregs[ADR] = SL11_BUFFER_START; 2307 } else { 2308 ab = B; 2309 spipe->tregs[ADR] = SL11_BUFFER_END - 2310 spipe->tregs[LEN]; 2311 } 2312 2313 t->len[ab] = spipe->tregs[LEN]; 2314 2315 if (spipe->tregs[LEN] && (spipe->tregs[PID] & SL11_PID_BITS) 2316 != SL11_PID_IN) { 2317 start_cc_time(&t_copy_to_dev, 2318 spipe->tregs[LEN]); 2319 slhci_write_multi(sc, spipe->tregs[ADR], 2320 spipe->buffer, spipe->tregs[LEN]); 2321 stop_cc_time(&t_copy_to_dev); 2322 t->pend -= SLHCI_FS_CONST + 2323 SLHCI_FS_DATA_TIME(spipe->tregs[LEN]); 2324 } 2325 2326 DLOG(D_MSG, "NEW TRANSFER AB=%jd flags %#jx alen %jd blen %jd", 2327 ab, t->flags, t->len[0], t->len[1]); 2328 2329 if (spipe->tregs[LEN]) 2330 i = 0; 2331 else 2332 i = 1; 2333 2334 for (; i <= 3; i++) 2335 if (t->current_tregs[ab][i] != spipe->tregs[i]) { 2336 t->current_tregs[ab][i] = spipe->tregs[i]; 2337 slhci_write(sc, slhci_tregs[ab][i], 2338 spipe->tregs[i]); 2339 } 2340 2341 DLOG(D_SXFER, "Transfer len %jd pid %#jx dev %jd type %jd", 2342 spipe->tregs[LEN], spipe->tregs[PID], spipe->tregs[DEV], 2343 spipe->ptype); 2344 2345 t->spipe[ab] = spipe; 2346 t->flags |= ab ? F_BREADY : F_AREADY; 2347 2348 slhci_tstart(sc); 2349 } 2350 } 2351 2352 /* 2353 * slhci_callback is called after the lock is taken. 2354 */ 2355 static void 2356 slhci_callback(struct slhci_softc *sc) 2357 { 2358 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 2359 struct slhci_transfers *t; 2360 struct slhci_pipe *spipe; 2361 struct usbd_xfer *xfer; 2362 2363 t = &sc->sc_transfers; 2364 2365 KASSERT(mutex_owned(&sc->sc_intr_lock)); 2366 2367 DLOG(D_SOFT, "CB flags %#jx", t->flags, 0,0,0); 2368 for (;;) { 2369 if (__predict_false(t->flags & F_ROOTINTR)) { 2370 t->flags &= ~F_ROOTINTR; 2371 if (t->rootintr != NULL) { 2372 u_char *p; 2373 2374 KASSERT(t->rootintr->ux_status == 2375 USBD_IN_PROGRESS); 2376 p = t->rootintr->ux_buf; 2377 p[0] = 2; 2378 t->rootintr->ux_actlen = 1; 2379 t->rootintr->ux_status = USBD_NORMAL_COMPLETION; 2380 xfer = t->rootintr; 2381 goto do_callback; 2382 } 2383 } 2384 2385 2386 if (!DEQUEUED_CALLBACK(spipe, t)) 2387 return; 2388 2389 xfer = spipe->xfer; 2390 LK_SLASSERT(xfer != NULL, sc, spipe, NULL, return); 2391 spipe->xfer = NULL; 2392 DLOG(D_XFER, "xfer callback length %jd actlen %jd spipe %#jx " 2393 "type %jd", xfer->ux_length, (uintptr_t)xfer->ux_actlen, 2394 (uintptr_t)spipe, spipe->ptype); 2395 do_callback: 2396 slhci_do_callback(sc, xfer); 2397 } 2398 } 2399 2400 static void 2401 slhci_enter_xfer(struct slhci_softc *sc, struct slhci_pipe *spipe) 2402 { 2403 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 2404 struct slhci_transfers *t; 2405 2406 t = &sc->sc_transfers; 2407 2408 KASSERT(mutex_owned(&sc->sc_intr_lock)); 2409 2410 if (__predict_false(t->flags & F_DISABLED) || 2411 __predict_false(spipe->pflags & PF_GONE)) { 2412 DLOG(D_MSG, "slhci_enter_xfer: DISABLED or GONE", 0,0,0,0); 2413 spipe->xfer->ux_status = USBD_CANCELLED; 2414 } 2415 2416 if (spipe->xfer->ux_status == USBD_IN_PROGRESS) { 2417 if (spipe->xfer->ux_timeout) { 2418 spipe->to_frame = t->frame + spipe->xfer->ux_timeout; 2419 slhci_xfer_timer(sc, spipe); 2420 } 2421 if (spipe->pipe.up_interval) 2422 slhci_queue_timed(sc, spipe); 2423 else 2424 enter_q(t, spipe, Q_CB); 2425 } else 2426 enter_callback(t, spipe); 2427 } 2428 2429 static void 2430 slhci_enter_xfers(struct slhci_softc *sc) 2431 { 2432 struct slhci_pipe *spipe; 2433 2434 KASSERT(mutex_owned(&sc->sc_intr_lock)); 2435 2436 while (DEQUEUED_WAITQ(spipe, sc)) 2437 slhci_enter_xfer(sc, spipe); 2438 } 2439 2440 static void 2441 slhci_queue_timed(struct slhci_softc *sc, struct slhci_pipe *spipe) 2442 { 2443 struct slhci_transfers *t; 2444 struct gcq *q; 2445 struct slhci_pipe *spp; 2446 2447 t = &sc->sc_transfers; 2448 2449 KASSERT(mutex_owned(&sc->sc_intr_lock)); 2450 2451 FIND_TIMED(q, t, spp, spp->frame > spipe->frame); 2452 gcq_insert_before(q, &spipe->xq); 2453 } 2454 2455 static void 2456 slhci_xfer_timer(struct slhci_softc *sc, struct slhci_pipe *spipe) 2457 { 2458 struct slhci_transfers *t; 2459 struct gcq *q; 2460 struct slhci_pipe *spp; 2461 2462 t = &sc->sc_transfers; 2463 2464 KASSERT(mutex_owned(&sc->sc_intr_lock)); 2465 2466 FIND_TO(q, t, spp, spp->to_frame >= spipe->to_frame); 2467 gcq_insert_before(q, &spipe->to); 2468 } 2469 2470 static void 2471 slhci_callback_schedule(struct slhci_softc *sc) 2472 { 2473 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 2474 struct slhci_transfers *t; 2475 2476 t = &sc->sc_transfers; 2477 2478 KASSERT(mutex_owned(&sc->sc_intr_lock)); 2479 2480 if (t->flags & F_ACTIVE) 2481 slhci_do_callback_schedule(sc); 2482 } 2483 2484 static void 2485 slhci_do_callback_schedule(struct slhci_softc *sc) 2486 { 2487 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 2488 struct slhci_transfers *t; 2489 2490 t = &sc->sc_transfers; 2491 2492 KASSERT(mutex_owned(&sc->sc_intr_lock)); 2493 2494 DLOG(D_MSG, "flags %#jx", t->flags, 0, 0, 0); 2495 if (!(t->flags & F_CALLBACK)) { 2496 t->flags |= F_CALLBACK; 2497 softint_schedule(sc->sc_cb_softintr); 2498 } 2499 } 2500 2501 #if 0 2502 /* must be called with lock taken. */ 2503 /* XXX static */ void 2504 slhci_pollxfer(struct slhci_softc *sc, struct usbd_xfer *xfer) 2505 { 2506 KASSERT(mutex_owned(&sc->sc_intr_lock)); 2507 slhci_dotransfer(sc); 2508 do { 2509 slhci_dointr(sc); 2510 } while (xfer->ux_status == USBD_IN_PROGRESS); 2511 slhci_do_callback(sc, xfer); 2512 } 2513 #endif 2514 2515 static usbd_status 2516 slhci_do_poll(struct slhci_softc *sc, struct slhci_pipe *spipe, struct 2517 usbd_xfer *xfer) 2518 { 2519 slhci_waitintr(sc, 0); 2520 2521 return USBD_NORMAL_COMPLETION; 2522 } 2523 2524 static usbd_status 2525 slhci_lsvh_warn(struct slhci_softc *sc, struct slhci_pipe *spipe, struct 2526 usbd_xfer *xfer) 2527 { 2528 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 2529 struct slhci_transfers *t; 2530 2531 t = &sc->sc_transfers; 2532 2533 if (!(t->flags & F_LSVH_WARNED)) { 2534 printf("%s: Low speed device via hub disabled, " 2535 "see slhci(4)\n", SC_NAME(sc)); 2536 DDOLOG("Low speed device via hub disabled, " 2537 "see slhci(4)", SC_NAME(sc), 0,0,0); 2538 t->flags |= F_LSVH_WARNED; 2539 } 2540 return USBD_INVAL; 2541 } 2542 2543 static usbd_status 2544 slhci_isoc_warn(struct slhci_softc *sc, struct slhci_pipe *spipe, struct 2545 usbd_xfer *xfer) 2546 { 2547 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 2548 struct slhci_transfers *t; 2549 2550 t = &sc->sc_transfers; 2551 2552 if (!(t->flags & F_ISOC_WARNED)) { 2553 printf("%s: ISOC transfer not supported " 2554 "(see slhci(4))\n", SC_NAME(sc)); 2555 DDOLOG("ISOC transfer not supported " 2556 "(see slhci(4))", 0, 0, 0, 0); 2557 t->flags |= F_ISOC_WARNED; 2558 } 2559 return USBD_INVAL; 2560 } 2561 2562 static usbd_status 2563 slhci_open_pipe(struct slhci_softc *sc, struct slhci_pipe *spipe, struct 2564 usbd_xfer *xfer) 2565 { 2566 struct slhci_transfers *t; 2567 struct usbd_pipe *pipe; 2568 2569 t = &sc->sc_transfers; 2570 pipe = &spipe->pipe; 2571 2572 if (t->flags & F_DISABLED) 2573 return USBD_CANCELLED; 2574 else if (pipe->up_interval && !slhci_reserve_bustime(sc, spipe, 1)) 2575 return USBD_PENDING_REQUESTS; 2576 else { 2577 enter_all_pipes(t, spipe); 2578 return USBD_NORMAL_COMPLETION; 2579 } 2580 } 2581 2582 static usbd_status 2583 slhci_close_pipe(struct slhci_softc *sc, struct slhci_pipe *spipe, struct 2584 usbd_xfer *xfer) 2585 { 2586 struct usbd_pipe *pipe; 2587 2588 pipe = &spipe->pipe; 2589 2590 if (pipe->up_interval && spipe->ptype != PT_ROOT_INTR) 2591 slhci_reserve_bustime(sc, spipe, 0); 2592 gcq_remove(&spipe->ap); 2593 return USBD_NORMAL_COMPLETION; 2594 } 2595 2596 static usbd_status 2597 slhci_do_abort(struct slhci_softc *sc, struct slhci_pipe *spipe, struct 2598 usbd_xfer *xfer) 2599 { 2600 struct slhci_transfers *t; 2601 2602 t = &sc->sc_transfers; 2603 2604 KASSERT(mutex_owned(&sc->sc_intr_lock)); 2605 2606 if (spipe->xfer == xfer) { 2607 if (spipe->ptype == PT_ROOT_INTR) { 2608 if (t->rootintr == spipe->xfer) /* XXX assert? */ 2609 t->rootintr = NULL; 2610 } else { 2611 gcq_remove(&spipe->to); 2612 gcq_remove(&spipe->xq); 2613 2614 if (t->spipe[A] == spipe) { 2615 t->spipe[A] = NULL; 2616 if (!(t->flags & F_AINPROG)) 2617 t->len[A] = -1; 2618 } else if (t->spipe[B] == spipe) { 2619 t->spipe[B] = NULL; 2620 if (!(t->flags & F_BINPROG)) 2621 t->len[B] = -1; 2622 } 2623 } 2624 2625 if (xfer->ux_status != USBD_TIMEOUT) { 2626 spipe->xfer = NULL; 2627 spipe->pipe.up_repeat = 0; /* XXX timeout? */ 2628 } 2629 } 2630 2631 return USBD_NORMAL_COMPLETION; 2632 } 2633 2634 /* 2635 * Called to deactivate or stop use of the controller instead of panicking. 2636 * Will cancel the xfer correctly even when not on a list. 2637 */ 2638 static usbd_status 2639 slhci_halt(struct slhci_softc *sc, struct slhci_pipe *spipe, 2640 struct usbd_xfer *xfer) 2641 { 2642 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 2643 struct slhci_transfers *t; 2644 2645 KASSERT(mutex_owned(&sc->sc_intr_lock)); 2646 2647 t = &sc->sc_transfers; 2648 2649 DDOLOG("Halt! sc %p spipe %p xfer %p", sc, spipe, xfer, 0); 2650 2651 if (spipe != NULL) 2652 slhci_log_spipe(spipe); 2653 2654 if (xfer != NULL) 2655 slhci_log_xfer(xfer); 2656 2657 if (spipe != NULL && xfer != NULL && spipe->xfer == xfer && 2658 !gcq_onlist(&spipe->xq) && t->spipe[A] != spipe && t->spipe[B] != 2659 spipe) { 2660 xfer->ux_status = USBD_CANCELLED; 2661 enter_callback(t, spipe); 2662 } 2663 2664 if (t->flags & F_ACTIVE) { 2665 slhci_intrchange(sc, 0); 2666 /* 2667 * leave power on when halting in case flash devices or disks 2668 * are attached, which may be writing and could be damaged 2669 * by abrupt power loss. The root hub clear power feature 2670 * should still work after halting. 2671 */ 2672 } 2673 2674 t->flags &= ~F_ACTIVE; 2675 t->flags |= F_UDISABLED; 2676 if (!(t->flags & F_NODEV)) 2677 t->flags |= F_NODEV|F_CCONNECT|F_ROOTINTR; 2678 slhci_drain(sc); 2679 2680 /* One last callback for the drain and device removal. */ 2681 slhci_do_callback_schedule(sc); 2682 2683 return USBD_NORMAL_COMPLETION; 2684 } 2685 2686 /* 2687 * There are three interrupt states: no interrupts during reset and after 2688 * device deactivation, INSERT only for no device present but power on, and 2689 * SOF, INSERT, ADONE, and BDONE when device is present. 2690 */ 2691 static void 2692 slhci_intrchange(struct slhci_softc *sc, uint8_t new_ier) 2693 { 2694 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 2695 KASSERT(mutex_owned(&sc->sc_intr_lock)); 2696 if (sc->sc_ier != new_ier) { 2697 DLOG(D_INTR, "New IER %#jx", new_ier, 0, 0, 0); 2698 sc->sc_ier = new_ier; 2699 slhci_write(sc, SL11_IER, new_ier); 2700 BSB_SYNC(sc->iot, sc->ioh, sc->pst, sc->psz); 2701 } 2702 } 2703 2704 /* 2705 * Drain: cancel all pending transfers and put them on the callback list and 2706 * set the UDISABLED flag. UDISABLED is cleared only by reset. 2707 */ 2708 static void 2709 slhci_drain(struct slhci_softc *sc) 2710 { 2711 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 2712 struct slhci_transfers *t; 2713 struct slhci_pipe *spipe; 2714 struct gcq *q; 2715 int i; 2716 2717 KASSERT(mutex_owned(&sc->sc_intr_lock)); 2718 2719 t = &sc->sc_transfers; 2720 2721 DLOG(D_MSG, "DRAIN flags %#jx", t->flags, 0,0,0); 2722 2723 t->pend = INT_MAX; 2724 2725 for (i = 0; i <= 1; i++) { 2726 t->len[i] = -1; 2727 if (t->spipe[i] != NULL) { 2728 enter_callback(t, t->spipe[i]); 2729 t->spipe[i] = NULL; 2730 } 2731 } 2732 2733 /* Merge the queues into the callback queue. */ 2734 gcq_merge_tail(&t->q[Q_CALLBACKS], &t->q[Q_CB]); 2735 gcq_merge_tail(&t->q[Q_CALLBACKS], &t->q[Q_NEXT_CB]); 2736 gcq_merge_tail(&t->q[Q_CALLBACKS], &t->timed); 2737 2738 /* 2739 * Cancel all pipes. Note that not all of these may be on the 2740 * callback queue yet; some could be in slhci_start, for example. 2741 */ 2742 FOREACH_AP(q, t, spipe) { 2743 spipe->pflags |= PF_GONE; 2744 spipe->pipe.up_repeat = 0; 2745 spipe->pipe.up_aborting = 1; 2746 if (spipe->xfer != NULL) 2747 spipe->xfer->ux_status = USBD_CANCELLED; 2748 } 2749 2750 gcq_remove_all(&t->to); 2751 2752 t->flags |= F_UDISABLED; 2753 t->flags &= ~(F_AREADY|F_BREADY|F_AINPROG|F_BINPROG|F_LOWSPEED); 2754 } 2755 2756 /* 2757 * RESET: SL11_CTRL_RESETENGINE=1 and SL11_CTRL_JKSTATE=0 for 50ms 2758 * reconfigure SOF after reset, must wait 2.5us before USB bus activity (SOF) 2759 * check attached device speed. 2760 * must wait 100ms before USB transaction according to app note, 10ms 2761 * by spec. uhub does this delay 2762 * 2763 * Started from root hub set feature reset, which does step one. 2764 * ub_usepolling will call slhci_reset directly, otherwise the callout goes 2765 * through slhci_reset_entry. 2766 */ 2767 void 2768 slhci_reset(struct slhci_softc *sc) 2769 { 2770 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 2771 struct slhci_transfers *t; 2772 struct slhci_pipe *spipe; 2773 struct gcq *q; 2774 uint8_t r, pol, ctrl; 2775 2776 t = &sc->sc_transfers; 2777 KASSERT(mutex_owned(&sc->sc_intr_lock)); 2778 2779 stop_cc_time(&t_delay); 2780 2781 KASSERT(t->flags & F_ACTIVE); 2782 2783 start_cc_time(&t_delay, 0); 2784 stop_cc_time(&t_delay); 2785 2786 slhci_write(sc, SL11_CTRL, 0); 2787 start_cc_time(&t_delay, 3); 2788 DELAY(3); 2789 stop_cc_time(&t_delay); 2790 slhci_write(sc, SL11_ISR, 0xff); 2791 2792 r = slhci_read(sc, SL11_ISR); 2793 2794 if (r & SL11_ISR_INSERT) 2795 slhci_write(sc, SL11_ISR, SL11_ISR_INSERT); 2796 2797 if (r & SL11_ISR_NODEV) { 2798 DLOG(D_MSG, "NC", 0,0,0,0); 2799 /* 2800 * Normally, the hard interrupt insert routine will issue 2801 * CCONNECT, however we need to do it here if the detach 2802 * happened during reset. 2803 */ 2804 if (!(t->flags & F_NODEV)) 2805 t->flags |= F_CCONNECT|F_ROOTINTR|F_NODEV; 2806 slhci_intrchange(sc, SL11_IER_INSERT); 2807 } else { 2808 if (t->flags & F_NODEV) 2809 t->flags |= F_CCONNECT; 2810 t->flags &= ~(F_NODEV|F_LOWSPEED); 2811 if (r & SL11_ISR_DATA) { 2812 DLOG(D_MSG, "FS", 0,0,0,0); 2813 pol = ctrl = 0; 2814 } else { 2815 DLOG(D_MSG, "LS", 0,0,0,0); 2816 pol = SL811_CSOF_POLARITY; 2817 ctrl = SL11_CTRL_LOWSPEED; 2818 t->flags |= F_LOWSPEED; 2819 } 2820 2821 /* Enable SOF auto-generation */ 2822 t->frame = 0; /* write to SL811_CSOF will reset frame */ 2823 slhci_write(sc, SL11_SOFTIME, 0xe0); 2824 slhci_write(sc, SL811_CSOF, pol|SL811_CSOF_MASTER|0x2e); 2825 slhci_write(sc, SL11_CTRL, ctrl|SL11_CTRL_ENABLESOF); 2826 2827 /* 2828 * According to the app note, ARM must be set 2829 * for SOF generation to work. We initialize all 2830 * USBA registers here for current_tregs. 2831 */ 2832 slhci_write(sc, SL11_E0ADDR, SL11_BUFFER_START); 2833 slhci_write(sc, SL11_E0LEN, 0); 2834 slhci_write(sc, SL11_E0PID, SL11_PID_SOF); 2835 slhci_write(sc, SL11_E0DEV, 0); 2836 slhci_write(sc, SL11_E0CTRL, SL11_EPCTRL_ARM); 2837 2838 /* 2839 * Initialize B registers. This can't be done earlier since 2840 * they are not valid until the SL811_CSOF register is written 2841 * above due to SL11H compatibility. 2842 */ 2843 slhci_write(sc, SL11_E1ADDR, SL11_BUFFER_END - 8); 2844 slhci_write(sc, SL11_E1LEN, 0); 2845 slhci_write(sc, SL11_E1PID, 0); 2846 slhci_write(sc, SL11_E1DEV, 0); 2847 2848 t->current_tregs[0][ADR] = SL11_BUFFER_START; 2849 t->current_tregs[0][LEN] = 0; 2850 t->current_tregs[0][PID] = SL11_PID_SOF; 2851 t->current_tregs[0][DEV] = 0; 2852 t->current_tregs[1][ADR] = SL11_BUFFER_END - 8; 2853 t->current_tregs[1][LEN] = 0; 2854 t->current_tregs[1][PID] = 0; 2855 t->current_tregs[1][DEV] = 0; 2856 2857 /* SOF start will produce USBA interrupt */ 2858 t->len[A] = 0; 2859 t->flags |= F_AINPROG; 2860 2861 slhci_intrchange(sc, SLHCI_NORMAL_INTERRUPTS); 2862 } 2863 2864 t->flags &= ~(F_UDISABLED|F_RESET); 2865 t->flags |= F_CRESET|F_ROOTINTR; 2866 FOREACH_AP(q, t, spipe) { 2867 spipe->pflags &= ~PF_GONE; 2868 spipe->pipe.up_aborting = 0; 2869 } 2870 DLOG(D_MSG, "RESET done flags %#jx", t->flags, 0,0,0); 2871 } 2872 2873 2874 #ifdef SLHCI_DEBUG 2875 static int 2876 slhci_memtest(struct slhci_softc *sc) 2877 { 2878 enum { ASC, DESC, EITHER = ASC }; /* direction */ 2879 enum { READ, WRITE }; /* operation */ 2880 const char *ptr, *elem; 2881 size_t i; 2882 const int low = SL11_BUFFER_START, high = SL11_BUFFER_END; 2883 int addr = 0, dir = ASC, op = READ; 2884 /* Extended March C- test algorithm (SOFs also) */ 2885 const char test[] = "E(w0) A(r0w1r1) A(r1w0r0) D(r0w1) D(r1w0) E(r0)"; 2886 char c; 2887 const uint8_t dbs[] = { 0x00, 0x0f, 0x33, 0x55 }; /* data backgrounds */ 2888 uint8_t db; 2889 2890 /* Perform memory test for all data backgrounds. */ 2891 for (i = 0; i < __arraycount(dbs); i++) { 2892 ptr = test; 2893 elem = ptr; 2894 /* Walk test algorithm string. */ 2895 while ((c = *ptr++) != '\0') 2896 switch (tolower((int)c)) { 2897 case 'a': 2898 /* Address sequence is in ascending order. */ 2899 dir = ASC; 2900 break; 2901 case 'd': 2902 /* Address sequence is in descending order. */ 2903 dir = DESC; 2904 break; 2905 case 'e': 2906 /* Address sequence is in either order. */ 2907 dir = EITHER; 2908 break; 2909 case '(': 2910 /* Start of test element (sequence). */ 2911 elem = ptr; 2912 addr = (dir == ASC) ? low : high; 2913 break; 2914 case 'r': 2915 /* read operation */ 2916 op = READ; 2917 break; 2918 case 'w': 2919 /* write operation */ 2920 op = WRITE; 2921 break; 2922 case '0': 2923 case '1': 2924 /* 2925 * Execute previously set-up operation by 2926 * reading/writing non-inverted ('0') or 2927 * inverted ('1') data background. 2928 */ 2929 db = (c - '0') ? ~dbs[i] : dbs[i]; 2930 if (op == READ) { 2931 if (slhci_read(sc, addr) != db) 2932 return -1; 2933 } else 2934 slhci_write(sc, addr, db); 2935 break; 2936 case ')': 2937 /* 2938 * End of element: Repeat same element with next 2939 * address or continue to next element. 2940 */ 2941 addr = (dir == ASC) ? addr + 1 : addr - 1; 2942 if (addr >= low && addr <= high) 2943 ptr = elem; 2944 break; 2945 default: 2946 /* Do nothing. */ 2947 break; 2948 } 2949 } 2950 2951 return 0; 2952 } 2953 #endif 2954 2955 /* returns 1 if succeeded, 0 if failed, reserve == 0 is unreserve */ 2956 static int 2957 slhci_reserve_bustime(struct slhci_softc *sc, struct slhci_pipe *spipe, int 2958 reserve) 2959 { 2960 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 2961 struct slhci_transfers *t; 2962 int bustime, max_packet; 2963 2964 KASSERT(mutex_owned(&sc->sc_intr_lock)); 2965 2966 t = &sc->sc_transfers; 2967 max_packet = UGETW(spipe->pipe.up_endpoint->ue_edesc->wMaxPacketSize); 2968 2969 if (spipe->pflags & PF_LS) 2970 bustime = SLHCI_LS_CONST + SLHCI_LS_DATA_TIME(max_packet); 2971 else 2972 bustime = SLHCI_FS_CONST + SLHCI_FS_DATA_TIME(max_packet); 2973 2974 if (!reserve) { 2975 t->reserved_bustime -= bustime; 2976 #ifdef DIAGNOSTIC 2977 if (t->reserved_bustime < 0) { 2978 printf("%s: reserved_bustime %d < 0!\n", 2979 SC_NAME(sc), t->reserved_bustime); 2980 DDOLOG("reserved_bustime %d < 0!", 2981 t->reserved_bustime, 0, 0, 0); 2982 t->reserved_bustime = 0; 2983 } 2984 #endif 2985 return 1; 2986 } 2987 2988 if (t->reserved_bustime + bustime > SLHCI_RESERVED_BUSTIME) { 2989 if (ratecheck(&sc->sc_reserved_warn_rate, 2990 &reserved_warn_rate)) 2991 #ifdef SLHCI_NO_OVERTIME 2992 { 2993 printf("%s: Max reserved bus time exceeded! " 2994 "Erroring request.\n", SC_NAME(sc)); 2995 DDOLOG("%s: Max reserved bus time exceeded! " 2996 "Erroring request.", 0, 0, 0, 0); 2997 } 2998 return 0; 2999 #else 3000 { 3001 printf("%s: Reserved bus time exceeds %d!\n", 3002 SC_NAME(sc), SLHCI_RESERVED_BUSTIME); 3003 DDOLOG("Reserved bus time exceeds %d!", 3004 SLHCI_RESERVED_BUSTIME, 0, 0, 0); 3005 } 3006 #endif 3007 } 3008 3009 t->reserved_bustime += bustime; 3010 return 1; 3011 } 3012 3013 /* Device insertion/removal interrupt */ 3014 static void 3015 slhci_insert(struct slhci_softc *sc) 3016 { 3017 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 3018 struct slhci_transfers *t; 3019 3020 t = &sc->sc_transfers; 3021 3022 KASSERT(mutex_owned(&sc->sc_intr_lock)); 3023 3024 if (t->flags & F_NODEV) 3025 slhci_intrchange(sc, 0); 3026 else { 3027 slhci_drain(sc); 3028 slhci_intrchange(sc, SL11_IER_INSERT); 3029 } 3030 t->flags ^= F_NODEV; 3031 t->flags |= F_ROOTINTR|F_CCONNECT; 3032 DLOG(D_MSG, "INSERT intr: flags after %#jx", t->flags, 0,0,0); 3033 } 3034 3035 /* 3036 * Data structures and routines to emulate the root hub. 3037 */ 3038 3039 static usbd_status 3040 slhci_clear_feature(struct slhci_softc *sc, unsigned int what) 3041 { 3042 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 3043 struct slhci_transfers *t; 3044 usbd_status error; 3045 3046 t = &sc->sc_transfers; 3047 error = USBD_NORMAL_COMPLETION; 3048 3049 KASSERT(mutex_owned(&sc->sc_intr_lock)); 3050 3051 if (what == UHF_PORT_POWER) { 3052 DLOG(D_MSG, "POWER_OFF", 0,0,0,0); 3053 t->flags &= ~F_POWER; 3054 if (!(t->flags & F_NODEV)) 3055 t->flags |= F_NODEV|F_CCONNECT|F_ROOTINTR; 3056 /* for x68k Nereid USB controller */ 3057 if (sc->sc_enable_power && (t->flags & F_REALPOWER)) { 3058 t->flags &= ~F_REALPOWER; 3059 sc->sc_enable_power(sc, POWER_OFF); 3060 } 3061 slhci_intrchange(sc, 0); 3062 slhci_drain(sc); 3063 } else if (what == UHF_C_PORT_CONNECTION) { 3064 t->flags &= ~F_CCONNECT; 3065 } else if (what == UHF_C_PORT_RESET) { 3066 t->flags &= ~F_CRESET; 3067 } else if (what == UHF_PORT_ENABLE) { 3068 slhci_drain(sc); 3069 } else if (what != UHF_PORT_SUSPEND) { 3070 DDOLOG("ClrPortFeatERR:value=%#.4x", what, 0,0,0); 3071 error = USBD_IOERROR; 3072 } 3073 3074 return error; 3075 } 3076 3077 static usbd_status 3078 slhci_set_feature(struct slhci_softc *sc, unsigned int what) 3079 { 3080 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 3081 struct slhci_transfers *t; 3082 uint8_t r; 3083 3084 t = &sc->sc_transfers; 3085 3086 KASSERT(mutex_owned(&sc->sc_intr_lock)); 3087 3088 if (what == UHF_PORT_RESET) { 3089 if (!(t->flags & F_ACTIVE)) { 3090 DDOLOG("SET PORT_RESET when not ACTIVE!", 3091 0,0,0,0); 3092 return USBD_INVAL; 3093 } 3094 if (!(t->flags & F_POWER)) { 3095 DDOLOG("SET PORT_RESET without PORT_POWER! flags %p", 3096 t->flags, 0,0,0); 3097 return USBD_INVAL; 3098 } 3099 if (t->flags & F_RESET) 3100 return USBD_NORMAL_COMPLETION; 3101 DLOG(D_MSG, "RESET flags %#jx", t->flags, 0,0,0); 3102 slhci_intrchange(sc, 0); 3103 slhci_drain(sc); 3104 slhci_write(sc, SL11_CTRL, SL11_CTRL_RESETENGINE); 3105 /* usb spec says delay >= 10ms, app note 50ms */ 3106 start_cc_time(&t_delay, 50000); 3107 if (sc->sc_bus.ub_usepolling) { 3108 DELAY(50000); 3109 slhci_reset(sc); 3110 } else { 3111 t->flags |= F_RESET; 3112 callout_schedule(&sc->sc_timer, uimax(mstohz(50), 2)); 3113 } 3114 } else if (what == UHF_PORT_SUSPEND) { 3115 printf("%s: USB Suspend not implemented!\n", SC_NAME(sc)); 3116 DDOLOG("USB Suspend not implemented!", 0, 0, 0, 0); 3117 } else if (what == UHF_PORT_POWER) { 3118 DLOG(D_MSG, "PORT_POWER", 0,0,0,0); 3119 /* for x68k Nereid USB controller */ 3120 if (!(t->flags & F_ACTIVE)) 3121 return USBD_INVAL; 3122 if (t->flags & F_POWER) 3123 return USBD_NORMAL_COMPLETION; 3124 if (!(t->flags & F_REALPOWER)) { 3125 if (sc->sc_enable_power) 3126 sc->sc_enable_power(sc, POWER_ON); 3127 t->flags |= F_REALPOWER; 3128 } 3129 t->flags |= F_POWER; 3130 r = slhci_read(sc, SL11_ISR); 3131 if (r & SL11_ISR_INSERT) 3132 slhci_write(sc, SL11_ISR, SL11_ISR_INSERT); 3133 if (r & SL11_ISR_NODEV) { 3134 slhci_intrchange(sc, SL11_IER_INSERT); 3135 t->flags |= F_NODEV; 3136 } else { 3137 t->flags &= ~F_NODEV; 3138 t->flags |= F_CCONNECT|F_ROOTINTR; 3139 } 3140 } else { 3141 DDOLOG("SetPortFeatERR=%#.8x", what, 0,0,0); 3142 return USBD_IOERROR; 3143 } 3144 3145 return USBD_NORMAL_COMPLETION; 3146 } 3147 3148 static void 3149 slhci_get_status(struct slhci_softc *sc, usb_port_status_t *ps) 3150 { 3151 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 3152 struct slhci_transfers *t; 3153 unsigned int status, change; 3154 3155 t = &sc->sc_transfers; 3156 3157 KASSERT(mutex_owned(&sc->sc_intr_lock)); 3158 3159 /* 3160 * We do not have a way to detect over current or babble and 3161 * suspend is currently not implemented, so connect and reset 3162 * are the only changes that need to be reported. 3163 */ 3164 change = 0; 3165 if (t->flags & F_CCONNECT) 3166 change |= UPS_C_CONNECT_STATUS; 3167 if (t->flags & F_CRESET) 3168 change |= UPS_C_PORT_RESET; 3169 3170 status = 0; 3171 if (!(t->flags & F_NODEV)) 3172 status |= UPS_CURRENT_CONNECT_STATUS; 3173 if (!(t->flags & F_UDISABLED)) 3174 status |= UPS_PORT_ENABLED; 3175 if (t->flags & F_RESET) 3176 status |= UPS_RESET; 3177 if (t->flags & F_POWER) 3178 status |= UPS_PORT_POWER; 3179 if (t->flags & F_LOWSPEED) 3180 status |= UPS_LOW_SPEED; 3181 USETW(ps->wPortStatus, status); 3182 USETW(ps->wPortChange, change); 3183 DLOG(D_ROOT, "status=%#.4jx, change=%#.4jx", status, change, 0,0); 3184 } 3185 3186 static int 3187 slhci_roothub_ctrl(struct usbd_bus *bus, usb_device_request_t *req, 3188 void *buf, int buflen) 3189 { 3190 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 3191 struct slhci_softc *sc = SLHCI_BUS2SC(bus); 3192 struct slhci_transfers *t = &sc->sc_transfers; 3193 usbd_status error = USBD_IOERROR; /* XXX should be STALL */ 3194 uint16_t len, value, index; 3195 uint8_t type; 3196 int actlen = 0; 3197 3198 len = UGETW(req->wLength); 3199 value = UGETW(req->wValue); 3200 index = UGETW(req->wIndex); 3201 3202 type = req->bmRequestType; 3203 3204 SLHCI_DEXEC(D_TRACE, slhci_log_req(req)); 3205 3206 /* 3207 * USB requests for hubs have two basic types, standard and class. 3208 * Each could potentially have recipients of device, interface, 3209 * endpoint, or other. For the hub class, CLASS_OTHER means the port 3210 * and CLASS_DEVICE means the hub. For standard requests, OTHER 3211 * is not used. Standard request are described in section 9.4 of the 3212 * standard, hub class requests in 11.16. Each request is either read 3213 * or write. 3214 * 3215 * Clear Feature, Set Feature, and Status are defined for each of the 3216 * used recipients. Get Descriptor and Set Descriptor are defined for 3217 * both standard and hub class types with different descriptors. 3218 * Other requests have only one defined recipient and type. These 3219 * include: Get/Set Address, Get/Set Configuration, Get/Set Interface, 3220 * and Synch Frame for standard requests and Get Bus State for hub 3221 * class. 3222 * 3223 * When a device is first powered up it has address 0 until the 3224 * address is set. 3225 * 3226 * Hubs are only allowed to support one interface and may not have 3227 * isochronous endpoints. The results of the related requests are 3228 * undefined. 3229 * 3230 * The standard requires invalid or unsupported requests to return 3231 * STALL in the data stage, however this does not work well with 3232 * current error handling. XXX 3233 * 3234 * Some unsupported fields: 3235 * Clear Hub Feature is for C_HUB_LOCAL_POWER and C_HUB_OVER_CURRENT 3236 * Set Device Features is for ENDPOINT_HALT and DEVICE_REMOTE_WAKEUP 3237 * Get Bus State is optional sample of D- and D+ at EOF2 3238 */ 3239 3240 switch (req->bRequest) { 3241 /* Write Requests */ 3242 case UR_CLEAR_FEATURE: 3243 if (type == UT_WRITE_CLASS_OTHER) { 3244 if (index == 1 /* Port */) { 3245 mutex_enter(&sc->sc_intr_lock); 3246 error = slhci_clear_feature(sc, value); 3247 mutex_exit(&sc->sc_intr_lock); 3248 } else 3249 DLOG(D_ROOT, "Clear Port Feature " 3250 "index = %#.4jx", index, 0,0,0); 3251 } 3252 break; 3253 case UR_SET_FEATURE: 3254 if (type == UT_WRITE_CLASS_OTHER) { 3255 if (index == 1 /* Port */) { 3256 mutex_enter(&sc->sc_intr_lock); 3257 error = slhci_set_feature(sc, value); 3258 mutex_exit(&sc->sc_intr_lock); 3259 } else 3260 DLOG(D_ROOT, "Set Port Feature " 3261 "index = %#.4jx", index, 0,0,0); 3262 } else if (type != UT_WRITE_CLASS_DEVICE) 3263 DLOG(D_ROOT, "Set Device Feature " 3264 "ENDPOINT_HALT or DEVICE_REMOTE_WAKEUP " 3265 "not supported", 0,0,0,0); 3266 break; 3267 3268 /* Read Requests */ 3269 case UR_GET_STATUS: 3270 if (type == UT_READ_CLASS_OTHER) { 3271 if (index == 1 /* Port */ && len == /* XXX >=? */ 3272 sizeof(usb_port_status_t)) { 3273 mutex_enter(&sc->sc_intr_lock); 3274 slhci_get_status(sc, (usb_port_status_t *) 3275 buf); 3276 mutex_exit(&sc->sc_intr_lock); 3277 actlen = sizeof(usb_port_status_t); 3278 error = USBD_NORMAL_COMPLETION; 3279 } else 3280 DLOG(D_ROOT, "Get Port Status index = %#.4jx " 3281 "len = %#.4jx", index, len, 0,0); 3282 } else if (type == UT_READ_CLASS_DEVICE) { /* XXX index? */ 3283 if (len == sizeof(usb_hub_status_t)) { 3284 DLOG(D_ROOT, "Get Hub Status", 3285 0,0,0,0); 3286 actlen = sizeof(usb_hub_status_t); 3287 memset(buf, 0, actlen); 3288 error = USBD_NORMAL_COMPLETION; 3289 } else 3290 DLOG(D_ROOT, "Get Hub Status bad len %#.4jx", 3291 len, 0,0,0); 3292 } 3293 break; 3294 case UR_GET_DESCRIPTOR: 3295 if (type == UT_READ_DEVICE) { 3296 /* value is type (&0xff00) and index (0xff) */ 3297 if (value == (UDESC_DEVICE<<8)) { 3298 actlen = buflen; 3299 error = USBD_NORMAL_COMPLETION; 3300 } else if (value == (UDESC_CONFIG<<8)) { 3301 struct usb_roothub_descriptors confd; 3302 3303 actlen = uimin(buflen, sizeof(confd)); 3304 memcpy(&confd, buf, actlen); 3305 3306 /* 2 mA units */ 3307 confd.urh_confd.bMaxPower = t->max_current; 3308 memcpy(buf, &confd, actlen); 3309 error = USBD_NORMAL_COMPLETION; 3310 } else if (value == ((UDESC_STRING<<8)|1)) { 3311 /* Vendor */ 3312 actlen = buflen; 3313 error = USBD_NORMAL_COMPLETION; 3314 } else if (value == ((UDESC_STRING<<8)|2)) { 3315 /* Product */ 3316 actlen = usb_makestrdesc((usb_string_descriptor_t *) 3317 buf, len, "SL811HS/T root hub"); 3318 error = USBD_NORMAL_COMPLETION; 3319 } else 3320 DDOLOG("Unknown Get Descriptor %#.4x", 3321 value, 0,0,0); 3322 } else if (type == UT_READ_CLASS_DEVICE) { 3323 /* Descriptor number is 0 */ 3324 if (value == (UDESC_HUB<<8)) { 3325 usb_hub_descriptor_t hubd; 3326 3327 actlen = uimin(buflen, sizeof(hubd)); 3328 memcpy(&hubd, buf, actlen); 3329 hubd.bHubContrCurrent = 3330 500 - t->max_current; 3331 memcpy(buf, &hubd, actlen); 3332 error = USBD_NORMAL_COMPLETION; 3333 } else 3334 DDOLOG("Unknown Get Hub Descriptor %#.4x", 3335 value, 0,0,0); 3336 } 3337 break; 3338 default: 3339 /* default from usbroothub */ 3340 return buflen; 3341 } 3342 3343 if (error == USBD_NORMAL_COMPLETION) 3344 return actlen; 3345 3346 return -1; 3347 } 3348 3349 /* End in lock functions. Start debug functions. */ 3350 3351 #ifdef SLHCI_DEBUG 3352 void 3353 slhci_log_buffer(struct usbd_xfer *xfer) 3354 { 3355 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 3356 u_char *buf; 3357 3358 if(xfer->ux_length > 0 && 3359 UE_GET_DIR(xfer->ux_pipe->up_endpoint->ue_edesc->bEndpointAddress) == 3360 UE_DIR_IN) { 3361 buf = xfer->ux_buf; 3362 DDOLOGBUF(buf, xfer->ux_actlen); 3363 DDOLOG("len %d actlen %d short %d", xfer->ux_length, 3364 xfer->ux_actlen, xfer->ux_length - xfer->ux_actlen, 0); 3365 } 3366 } 3367 3368 void 3369 slhci_log_req(usb_device_request_t *r) 3370 { 3371 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 3372 int req, type, value, index, len; 3373 3374 req = r->bRequest; 3375 type = r->bmRequestType; 3376 value = UGETW(r->wValue); 3377 index = UGETW(r->wIndex); 3378 len = UGETW(r->wLength); 3379 3380 DDOLOG("request: type %#x", type, 0, 0, 0); 3381 DDOLOG("request: r=%d,v=%d,i=%d,l=%d ", req, value, index, len); 3382 } 3383 3384 void 3385 slhci_log_dumpreg(void) 3386 { 3387 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 3388 uint8_t r; 3389 unsigned int aaddr, alen, baddr, blen; 3390 static u_char buf[240]; 3391 3392 r = slhci_read(ssc, SL11_E0CTRL); 3393 DDOLOG("USB A Host Control = %#.2x", r, 0, 0, 0); 3394 DDOLOGEPCTRL(r); 3395 3396 aaddr = slhci_read(ssc, SL11_E0ADDR); 3397 DDOLOG("USB A Base Address = %u", aaddr, 0,0,0); 3398 alen = slhci_read(ssc, SL11_E0LEN); 3399 DDOLOG("USB A Length = %u", alen, 0,0,0); 3400 r = slhci_read(ssc, SL11_E0STAT); 3401 DDOLOG("USB A Status = %#.2x", r, 0,0,0); 3402 DDOLOGEPSTAT(r); 3403 3404 r = slhci_read(ssc, SL11_E0CONT); 3405 DDOLOG("USB A Remaining or Overflow Length = %u", r, 0,0,0); 3406 r = slhci_read(ssc, SL11_E1CTRL); 3407 DDOLOG("USB B Host Control = %#.2x", r, 0,0,0); 3408 DDOLOGEPCTRL(r); 3409 3410 baddr = slhci_read(ssc, SL11_E1ADDR); 3411 DDOLOG("USB B Base Address = %u", baddr, 0,0,0); 3412 blen = slhci_read(ssc, SL11_E1LEN); 3413 DDOLOG("USB B Length = %u", blen, 0,0,0); 3414 r = slhci_read(ssc, SL11_E1STAT); 3415 DDOLOG("USB B Status = %#.2x", r, 0,0,0); 3416 DDOLOGEPSTAT(r); 3417 3418 r = slhci_read(ssc, SL11_E1CONT); 3419 DDOLOG("USB B Remaining or Overflow Length = %u", r, 0,0,0); 3420 3421 r = slhci_read(ssc, SL11_CTRL); 3422 DDOLOG("Control = %#.2x", r, 0,0,0); 3423 DDOLOGCTRL(r); 3424 3425 r = slhci_read(ssc, SL11_IER); 3426 DDOLOG("Interrupt Enable = %#.2x", r, 0,0,0); 3427 DDOLOGIER(r); 3428 3429 r = slhci_read(ssc, SL11_ISR); 3430 DDOLOG("Interrupt Status = %#.2x", r, 0,0,0); 3431 DDOLOGISR(r); 3432 3433 r = slhci_read(ssc, SL11_REV); 3434 DDOLOG("Revision = %#.2x", r, 0,0,0); 3435 r = slhci_read(ssc, SL811_CSOF); 3436 DDOLOG("SOF Counter = %#.2x", r, 0,0,0); 3437 3438 if (alen && aaddr >= SL11_BUFFER_START && aaddr < SL11_BUFFER_END && 3439 alen <= SL11_MAX_PACKET_SIZE && aaddr + alen <= SL11_BUFFER_END) { 3440 slhci_read_multi(ssc, aaddr, buf, alen); 3441 DDOLOG("USBA Buffer: start %u len %u", aaddr, alen, 0,0); 3442 DDOLOGBUF(buf, alen); 3443 } else if (alen) 3444 DDOLOG("USBA Buffer Invalid", 0,0,0,0); 3445 3446 if (blen && baddr >= SL11_BUFFER_START && baddr < SL11_BUFFER_END && 3447 blen <= SL11_MAX_PACKET_SIZE && baddr + blen <= SL11_BUFFER_END) { 3448 slhci_read_multi(ssc, baddr, buf, blen); 3449 DDOLOG("USBB Buffer: start %u len %u", baddr, blen, 0,0); 3450 DDOLOGBUF(buf, blen); 3451 } else if (blen) 3452 DDOLOG("USBB Buffer Invalid", 0,0,0,0); 3453 } 3454 3455 void 3456 slhci_log_xfer(struct usbd_xfer *xfer) 3457 { 3458 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 3459 DDOLOG("xfer: length=%u, actlen=%u, flags=%#x, timeout=%u,", 3460 xfer->ux_length, xfer->ux_actlen, xfer->ux_flags, xfer->ux_timeout); 3461 DDOLOG("buffer=%p", xfer->ux_buf, 0,0,0); 3462 slhci_log_req(&xfer->ux_request); 3463 } 3464 3465 void 3466 slhci_log_spipe(struct slhci_pipe *spipe) 3467 { 3468 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 3469 DDOLOG("spipe %p onlists: AP=%d TO=%d XQ=%d", spipe, 3470 gcq_onlist(&spipe->ap) ? 1 : 0, 3471 gcq_onlist(&spipe->to) ? 1 : 0, 3472 gcq_onlist(&spipe->xq) ? 1 : 0); 3473 DDOLOG("spipe: xfer %p buffer %p pflags %#x ptype %d", 3474 spipe->xfer, spipe->buffer, spipe->pflags, spipe->ptype); 3475 } 3476 3477 void 3478 slhci_print_intr(void) 3479 { 3480 unsigned int ier, isr; 3481 ier = slhci_read(ssc, SL11_IER); 3482 isr = slhci_read(ssc, SL11_ISR); 3483 printf("IER: %#x ISR: %#x \n", ier, isr); 3484 } 3485 3486 #if 0 3487 void 3488 slhci_log_sc(void) 3489 { 3490 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 3491 3492 struct slhci_transfers *t; 3493 int i; 3494 3495 t = &ssc->sc_transfers; 3496 3497 DDOLOG("Flags=%#x", t->flags, 0,0,0); 3498 DDOLOG("a = %p Alen=%d b = %p Blen=%d", t->spipe[0], t->len[0], 3499 t->spipe[1], t->len[1]); 3500 3501 for (i = 0; i <= Q_MAX; i++) 3502 DDOLOG("Q %d: %p", i, gcq_hq(&t->q[i]), 0,0); 3503 3504 DDOLOG("TIMED: %p", GCQ_ITEM(gcq_hq(&t->to), 3505 struct slhci_pipe, to), 0,0,0); 3506 3507 DDOLOG("frame=%d rootintr=%p", t->frame, t->rootintr, 0,0); 3508 3509 DDOLOG("ub_usepolling=%d", ssc->sc_bus.ub_usepolling, 0, 0, 0); 3510 } 3511 3512 void 3513 slhci_log_slreq(struct slhci_pipe *r) 3514 { 3515 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 3516 DDOLOG("xfer: %p", r->xfer, 0,0,0); 3517 DDOLOG("buffer: %p", r->buffer, 0,0,0); 3518 DDOLOG("bustime: %u", r->bustime, 0,0,0); 3519 DDOLOG("control: %#x", r->control, 0,0,0); 3520 DDOLOGEPCTRL(r->control); 3521 3522 DDOLOG("pid: %#x", r->tregs[PID], 0,0,0); 3523 DDOLOG("dev: %u", r->tregs[DEV], 0,0,0); 3524 DDOLOG("len: %u", r->tregs[LEN], 0,0,0); 3525 3526 if (r->xfer) 3527 slhci_log_xfer(r->xfer); 3528 } 3529 #endif 3530 #endif /* SLHCI_DEBUG */ 3531 /* End debug functions. */ 3532