1 /* $NetBSD: sl811hs.c,v 1.97 2016/10/01 13:46:52 christos Exp $ */ 2 3 /* 4 * Not (c) 2007 Matthew Orgass 5 * This file is public domain, meaning anyone can make any use of part or all 6 * of this file including copying into other works without credit. Any use, 7 * modified or not, is solely the responsibility of the user. If this file is 8 * part of a collection then use in the collection is governed by the terms of 9 * the collection. 10 */ 11 12 /* 13 * Cypress/ScanLogic SL811HS/T USB Host Controller 14 * Datasheet, Errata, and App Note available at www.cypress.com 15 * 16 * Uses: Ratoc CFU1U PCMCIA USB Host Controller, Nereid X68k USB HC, ISA 17 * HCs. The Ratoc CFU2 uses a different chip. 18 * 19 * This chip puts the serial in USB. It implements USB by means of an eight 20 * bit I/O interface. It can be used for ISA, PCMCIA/CF, parallel port, 21 * serial port, or any eight bit interface. It has 256 bytes of memory, the 22 * first 16 of which are used for register access. There are two sets of 23 * registers for sending individual bus transactions. Because USB is polled, 24 * this organization means that some amount of card access must often be made 25 * when devices are attached, even if when they are not directly being used. 26 * A per-ms frame interrupt is necessary and many devices will poll with a 27 * per-frame bulk transfer. 28 * 29 * It is possible to write a little over two bytes to the chip (auto 30 * incremented) per full speed byte time on the USB. Unfortunately, 31 * auto-increment does not work reliably so write and bus speed is 32 * approximately the same for full speed devices. 33 * 34 * In addition to the 240 byte packet size limit for isochronous transfers, 35 * this chip has no means of determining the current frame number other than 36 * getting all 1ms SOF interrupts, which is not always possible even on a fast 37 * system. Isochronous transfers guarantee that transfers will never be 38 * retried in a later frame, so this can cause problems with devices beyond 39 * the difficulty in actually performing the transfer most frames. I tried 40 * implementing isoc transfers and was able to play CD-derrived audio via an 41 * iMic on a 2GHz PC, however it would still be interrupted at times and 42 * once interrupted, would stay out of sync. All isoc support has been 43 * removed. 44 * 45 * BUGS: all chip revisions have problems with low speed devices through hubs. 46 * The chip stops generating SOF with hubs that send SE0 during SOF. See 47 * comment in dointr(). All performance enhancing features of this chip seem 48 * not to work properly, most confirmed buggy in errata doc. 49 * 50 */ 51 52 /* 53 * The hard interrupt is the main entry point. Start, callbacks, and repeat 54 * are the only others called frequently. 55 * 56 * Since this driver attaches to pcmcia, card removal at any point should be 57 * expected and not cause panics or infinite loops. 58 */ 59 60 /* 61 * XXX TODO: 62 * copy next output packet while transfering 63 * usb suspend 64 * could keep track of known values of all buffer space? 65 * combined print/log function for errors 66 * 67 * ub_usepolling support is untested and may not work 68 */ 69 70 #include <sys/cdefs.h> 71 __KERNEL_RCSID(0, "$NetBSD: sl811hs.c,v 1.97 2016/10/01 13:46:52 christos Exp $"); 72 73 #ifdef _KERNEL_OPT 74 #include "opt_slhci.h" 75 #include "opt_usb.h" 76 #endif 77 78 #include <sys/param.h> 79 80 #include <sys/bus.h> 81 #include <sys/cpu.h> 82 #include <sys/device.h> 83 #include <sys/gcq.h> 84 #include <sys/intr.h> 85 #include <sys/kernel.h> 86 #include <sys/kmem.h> 87 #include <sys/proc.h> 88 #include <sys/queue.h> 89 #include <sys/sysctl.h> 90 #include <sys/systm.h> 91 92 #include <dev/usb/usb.h> 93 #include <dev/usb/usbdi.h> 94 #include <dev/usb/usbdivar.h> 95 #include <dev/usb/usbhist.h> 96 #include <dev/usb/usb_mem.h> 97 #include <dev/usb/usbdevs.h> 98 #include <dev/usb/usbroothub.h> 99 100 #include <dev/ic/sl811hsreg.h> 101 #include <dev/ic/sl811hsvar.h> 102 103 #define Q_CB 0 /* Control/Bulk */ 104 #define Q_NEXT_CB 1 105 #define Q_MAX_XFER Q_CB 106 #define Q_CALLBACKS 2 107 #define Q_MAX Q_CALLBACKS 108 109 #define F_AREADY (0x00000001) 110 #define F_BREADY (0x00000002) 111 #define F_AINPROG (0x00000004) 112 #define F_BINPROG (0x00000008) 113 #define F_LOWSPEED (0x00000010) 114 #define F_UDISABLED (0x00000020) /* Consider disabled for USB */ 115 #define F_NODEV (0x00000040) 116 #define F_ROOTINTR (0x00000080) 117 #define F_REALPOWER (0x00000100) /* Actual power state */ 118 #define F_POWER (0x00000200) /* USB reported power state */ 119 #define F_ACTIVE (0x00000400) 120 #define F_CALLBACK (0x00000800) /* Callback scheduled */ 121 #define F_SOFCHECK1 (0x00001000) 122 #define F_SOFCHECK2 (0x00002000) 123 #define F_CRESET (0x00004000) /* Reset done not reported */ 124 #define F_CCONNECT (0x00008000) /* Connect change not reported */ 125 #define F_RESET (0x00010000) 126 #define F_ISOC_WARNED (0x00020000) 127 #define F_LSVH_WARNED (0x00040000) 128 129 #define F_DISABLED (F_NODEV|F_UDISABLED) 130 #define F_CHANGE (F_CRESET|F_CCONNECT) 131 132 #ifdef SLHCI_TRY_LSVH 133 unsigned int slhci_try_lsvh = 1; 134 #else 135 unsigned int slhci_try_lsvh = 0; 136 #endif 137 138 #define ADR 0 139 #define LEN 1 140 #define PID 2 141 #define DEV 3 142 #define STAT 2 143 #define CONT 3 144 145 #define A 0 146 #define B 1 147 148 static const uint8_t slhci_tregs[2][4] = 149 {{SL11_E0ADDR, SL11_E0LEN, SL11_E0PID, SL11_E0DEV }, 150 {SL11_E1ADDR, SL11_E1LEN, SL11_E1PID, SL11_E1DEV }}; 151 152 #define PT_ROOT_CTRL 0 153 #define PT_ROOT_INTR 1 154 #define PT_CTRL_SETUP 2 155 #define PT_CTRL_DATA 3 156 #define PT_CTRL_STATUS 4 157 #define PT_INTR 5 158 #define PT_BULK 6 159 #define PT_MAX 6 160 161 #ifdef SLHCI_DEBUG 162 #define SLHCI_MEM_ACCOUNTING 163 #endif 164 165 /* 166 * Maximum allowable reserved bus time. Since intr/isoc transfers have 167 * unconditional priority, this is all that ensures control and bulk transfers 168 * get a chance. It is a single value for all frames since all transfers can 169 * use multiple consecutive frames if an error is encountered. Note that it 170 * is not really possible to fill the bus with transfers, so this value should 171 * be on the low side. Defaults to giving a warning unless SLHCI_NO_OVERTIME 172 * is defined. Full time is 12000 - END_BUSTIME. 173 */ 174 #ifndef SLHCI_RESERVED_BUSTIME 175 #define SLHCI_RESERVED_BUSTIME 5000 176 #endif 177 178 /* 179 * Rate for "exceeds reserved bus time" warnings (default) or errors. 180 * Warnings only happen when an endpoint open causes the time to go above 181 * SLHCI_RESERVED_BUSTIME, not if it is already above. 182 */ 183 #ifndef SLHCI_OVERTIME_WARNING_RATE 184 #define SLHCI_OVERTIME_WARNING_RATE { 60, 0 } /* 60 seconds */ 185 #endif 186 static const struct timeval reserved_warn_rate = SLHCI_OVERTIME_WARNING_RATE; 187 188 /* 189 * For EOF, the spec says 42 bit times, plus (I think) a possible hub skew of 190 * 20 bit times. By default leave 66 bit times to start the transfer beyond 191 * the required time. Units are full-speed bit times (a bit over 5us per 64). 192 * Only multiples of 64 are significant. 193 */ 194 #define SLHCI_STANDARD_END_BUSTIME 128 195 #ifndef SLHCI_EXTRA_END_BUSTIME 196 #define SLHCI_EXTRA_END_BUSTIME 0 197 #endif 198 199 #define SLHCI_END_BUSTIME (SLHCI_STANDARD_END_BUSTIME+SLHCI_EXTRA_END_BUSTIME) 200 201 /* 202 * This is an approximation of the USB worst-case timings presented on p. 54 of 203 * the USB 1.1 spec translated to full speed bit times. 204 * FS = full speed with handshake, FSII = isoc in, FSIO = isoc out, 205 * FSI = isoc (worst case), LS = low speed 206 */ 207 #define SLHCI_FS_CONST 114 208 #define SLHCI_FSII_CONST 92 209 #define SLHCI_FSIO_CONST 80 210 #define SLHCI_FSI_CONST 92 211 #define SLHCI_LS_CONST 804 212 #ifndef SLHCI_PRECICE_BUSTIME 213 /* 214 * These values are < 3% too high (compared to the multiply and divide) for 215 * max sized packets. 216 */ 217 #define SLHCI_FS_DATA_TIME(len) (((u_int)(len)<<3)+(len)+((len)>>1)) 218 #define SLHCI_LS_DATA_TIME(len) (((u_int)(len)<<6)+((u_int)(len)<<4)) 219 #else 220 #define SLHCI_FS_DATA_TIME(len) (56*(len)/6) 221 #define SLHCI_LS_DATA_TIME(len) (449*(len)/6) 222 #endif 223 224 /* 225 * Set SLHCI_WAIT_SIZE to the desired maximum size of single FS transfer 226 * to poll for after starting a transfer. 64 gets all full speed transfers. 227 * Note that even if 0 polling will occur if data equal or greater than the 228 * transfer size is copied to the chip while the transfer is in progress. 229 * Setting SLHCI_WAIT_TIME to -12000 will disable polling. 230 */ 231 #ifndef SLHCI_WAIT_SIZE 232 #define SLHCI_WAIT_SIZE 8 233 #endif 234 #ifndef SLHCI_WAIT_TIME 235 #define SLHCI_WAIT_TIME (SLHCI_FS_CONST + \ 236 SLHCI_FS_DATA_TIME(SLHCI_WAIT_SIZE)) 237 #endif 238 const int slhci_wait_time = SLHCI_WAIT_TIME; 239 240 #ifndef SLHCI_MAX_RETRIES 241 #define SLHCI_MAX_RETRIES 3 242 #endif 243 244 /* Check IER values for corruption after this many unrecognized interrupts. */ 245 #ifndef SLHCI_IER_CHECK_FREQUENCY 246 #ifdef SLHCI_DEBUG 247 #define SLHCI_IER_CHECK_FREQUENCY 1 248 #else 249 #define SLHCI_IER_CHECK_FREQUENCY 100 250 #endif 251 #endif 252 253 /* Note that buffer points to the start of the buffer for this transfer. */ 254 struct slhci_pipe { 255 struct usbd_pipe pipe; 256 struct usbd_xfer *xfer; /* xfer in progress */ 257 uint8_t *buffer; /* I/O buffer (if needed) */ 258 struct gcq ap; /* All pipes */ 259 struct gcq to; /* Timeout list */ 260 struct gcq xq; /* Xfer queues */ 261 unsigned int pflags; /* Pipe flags */ 262 #define PF_GONE (0x01) /* Pipe is on disabled device */ 263 #define PF_TOGGLE (0x02) /* Data toggle status */ 264 #define PF_LS (0x04) /* Pipe is low speed */ 265 #define PF_PREAMBLE (0x08) /* Needs preamble */ 266 Frame to_frame; /* Frame number for timeout */ 267 Frame frame; /* Frame number for intr xfer */ 268 Frame lastframe; /* Previous frame number for intr */ 269 uint16_t bustime; /* Worst case bus time usage */ 270 uint16_t newbustime[2]; /* new bustimes (see index below) */ 271 uint8_t tregs[4]; /* ADR, LEN, PID, DEV */ 272 uint8_t newlen[2]; /* 0 = short data, 1 = ctrl data */ 273 uint8_t newpid; /* for ctrl */ 274 uint8_t wantshort; /* last xfer must be short */ 275 uint8_t control; /* Host control register settings */ 276 uint8_t nerrs; /* Current number of errors */ 277 uint8_t ptype; /* Pipe type */ 278 }; 279 280 #define SLHCI_BUS2SC(bus) ((bus)->ub_hcpriv) 281 #define SLHCI_PIPE2SC(pipe) SLHCI_BUS2SC((pipe)->up_dev->ud_bus) 282 #define SLHCI_XFER2SC(xfer) SLHCI_BUS2SC((xfer)->ux_bus) 283 284 #define SLHCI_PIPE2SPIPE(pipe) ((struct slhci_pipe *)(pipe)) 285 #define SLHCI_XFER2SPIPE(xfer) SLHCI_PIPE2SPIPE((xfer)->ux_pipe) 286 287 #define SLHCI_XFER_TYPE(x) (SLHCI_XFER2SPIPE(xfer)->ptype) 288 289 #ifdef SLHCI_PROFILE_TRANSFER 290 #if defined(__mips__) 291 /* 292 * MIPS cycle counter does not directly count cpu cycles but is a different 293 * fraction of cpu cycles depending on the cpu. 294 */ 295 typedef uint32_t cc_type; 296 #define CC_TYPE_FMT "%u" 297 #define slhci_cc_set(x) __asm volatile ("mfc0 %[cc], $9\n\tnop\n\tnop\n\tnop" \ 298 : [cc] "=r"(x)) 299 #elif defined(__i386__) 300 typedef uint64_t cc_type; 301 #define CC_TYPE_FMT "%llu" 302 #define slhci_cc_set(x) __asm volatile ("rdtsc" : "=A"(x)) 303 #else 304 #error "SLHCI_PROFILE_TRANSFER not implemented on this MACHINE_ARCH (see sys/dev/ic/sl811hs.c)" 305 #endif 306 struct slhci_cc_time { 307 cc_type start; 308 cc_type stop; 309 unsigned int miscdata; 310 }; 311 #ifndef SLHCI_N_TIMES 312 #define SLHCI_N_TIMES 200 313 #endif 314 struct slhci_cc_times { 315 struct slhci_cc_time times[SLHCI_N_TIMES]; 316 int current; 317 int wraparound; 318 }; 319 320 static struct slhci_cc_times t_ab[2]; 321 static struct slhci_cc_times t_abdone; 322 static struct slhci_cc_times t_copy_to_dev; 323 static struct slhci_cc_times t_copy_from_dev; 324 static struct slhci_cc_times t_intr; 325 static struct slhci_cc_times t_lock; 326 static struct slhci_cc_times t_delay; 327 static struct slhci_cc_times t_hard_int; 328 static struct slhci_cc_times t_callback; 329 330 static inline void 331 start_cc_time(struct slhci_cc_times *times, unsigned int misc) { 332 times->times[times->current].miscdata = misc; 333 slhci_cc_set(times->times[times->current].start); 334 } 335 static inline void 336 stop_cc_time(struct slhci_cc_times *times) { 337 slhci_cc_set(times->times[times->current].stop); 338 if (++times->current >= SLHCI_N_TIMES) { 339 times->current = 0; 340 times->wraparound = 1; 341 } 342 } 343 344 void slhci_dump_cc_times(int); 345 346 void 347 slhci_dump_cc_times(int n) { 348 struct slhci_cc_times *times; 349 int i; 350 351 switch (n) { 352 default: 353 case 0: 354 printf("USBA start transfer to intr:\n"); 355 times = &t_ab[A]; 356 break; 357 case 1: 358 printf("USBB start transfer to intr:\n"); 359 times = &t_ab[B]; 360 break; 361 case 2: 362 printf("abdone:\n"); 363 times = &t_abdone; 364 break; 365 case 3: 366 printf("copy to device:\n"); 367 times = &t_copy_to_dev; 368 break; 369 case 4: 370 printf("copy from device:\n"); 371 times = &t_copy_from_dev; 372 break; 373 case 5: 374 printf("intr to intr:\n"); 375 times = &t_intr; 376 break; 377 case 6: 378 printf("lock to release:\n"); 379 times = &t_lock; 380 break; 381 case 7: 382 printf("delay time:\n"); 383 times = &t_delay; 384 break; 385 case 8: 386 printf("hard interrupt enter to exit:\n"); 387 times = &t_hard_int; 388 break; 389 case 9: 390 printf("callback:\n"); 391 times = &t_callback; 392 break; 393 } 394 395 if (times->wraparound) 396 for (i = times->current + 1; i < SLHCI_N_TIMES; i++) 397 printf("start " CC_TYPE_FMT " stop " CC_TYPE_FMT 398 " difference %8i miscdata %#x\n", 399 times->times[i].start, times->times[i].stop, 400 (int)(times->times[i].stop - 401 times->times[i].start), times->times[i].miscdata); 402 403 for (i = 0; i < times->current; i++) 404 printf("start " CC_TYPE_FMT " stop " CC_TYPE_FMT 405 " difference %8i miscdata %#x\n", times->times[i].start, 406 times->times[i].stop, (int)(times->times[i].stop - 407 times->times[i].start), times->times[i].miscdata); 408 } 409 #else 410 #define start_cc_time(x, y) 411 #define stop_cc_time(x) 412 #endif /* SLHCI_PROFILE_TRANSFER */ 413 414 typedef usbd_status (*LockCallFunc)(struct slhci_softc *, struct slhci_pipe 415 *, struct usbd_xfer *); 416 417 struct usbd_xfer * slhci_allocx(struct usbd_bus *, unsigned int); 418 void slhci_freex(struct usbd_bus *, struct usbd_xfer *); 419 static void slhci_get_lock(struct usbd_bus *, kmutex_t **); 420 421 usbd_status slhci_transfer(struct usbd_xfer *); 422 usbd_status slhci_start(struct usbd_xfer *); 423 usbd_status slhci_root_start(struct usbd_xfer *); 424 usbd_status slhci_open(struct usbd_pipe *); 425 426 static int slhci_roothub_ctrl(struct usbd_bus *, usb_device_request_t *, 427 void *, int); 428 429 /* 430 * slhci_supported_rev, slhci_preinit, slhci_attach, slhci_detach, 431 * slhci_activate 432 */ 433 434 void slhci_abort(struct usbd_xfer *); 435 void slhci_close(struct usbd_pipe *); 436 void slhci_clear_toggle(struct usbd_pipe *); 437 void slhci_poll(struct usbd_bus *); 438 void slhci_done(struct usbd_xfer *); 439 void slhci_void(void *); 440 441 /* lock entry functions */ 442 443 #ifdef SLHCI_MEM_ACCOUNTING 444 void slhci_mem_use(struct usbd_bus *, int); 445 #endif 446 447 void slhci_reset_entry(void *); 448 usbd_status slhci_lock_call(struct slhci_softc *, LockCallFunc, 449 struct slhci_pipe *, struct usbd_xfer *); 450 void slhci_start_entry(struct slhci_softc *, struct slhci_pipe *); 451 void slhci_callback_entry(void *arg); 452 void slhci_do_callback(struct slhci_softc *, struct usbd_xfer *); 453 454 /* slhci_intr */ 455 456 void slhci_main(struct slhci_softc *); 457 458 /* in lock functions */ 459 460 static void slhci_write(struct slhci_softc *, uint8_t, uint8_t); 461 static uint8_t slhci_read(struct slhci_softc *, uint8_t); 462 static void slhci_write_multi(struct slhci_softc *, uint8_t, uint8_t *, int); 463 static void slhci_read_multi(struct slhci_softc *, uint8_t, uint8_t *, int); 464 465 static void slhci_waitintr(struct slhci_softc *, int); 466 static int slhci_dointr(struct slhci_softc *); 467 static void slhci_abdone(struct slhci_softc *, int); 468 static void slhci_tstart(struct slhci_softc *); 469 static void slhci_dotransfer(struct slhci_softc *); 470 471 static void slhci_callback(struct slhci_softc *); 472 static void slhci_enter_xfer(struct slhci_softc *, struct slhci_pipe *); 473 static void slhci_enter_xfers(struct slhci_softc *); 474 static void slhci_queue_timed(struct slhci_softc *, struct slhci_pipe *); 475 static void slhci_xfer_timer(struct slhci_softc *, struct slhci_pipe *); 476 477 static void slhci_callback_schedule(struct slhci_softc *); 478 static void slhci_do_callback_schedule(struct slhci_softc *); 479 #if 0 480 void slhci_pollxfer(struct slhci_softc *, struct usbd_xfer *); /* XXX */ 481 #endif 482 483 static usbd_status slhci_do_poll(struct slhci_softc *, struct slhci_pipe *, 484 struct usbd_xfer *); 485 static usbd_status slhci_lsvh_warn(struct slhci_softc *, struct slhci_pipe *, 486 struct usbd_xfer *); 487 static usbd_status slhci_isoc_warn(struct slhci_softc *, struct slhci_pipe *, 488 struct usbd_xfer *); 489 static usbd_status slhci_open_pipe(struct slhci_softc *, struct slhci_pipe *, 490 struct usbd_xfer *); 491 static usbd_status slhci_close_pipe(struct slhci_softc *, struct slhci_pipe *, 492 struct usbd_xfer *); 493 static usbd_status slhci_do_abort(struct slhci_softc *, struct slhci_pipe *, 494 struct usbd_xfer *); 495 static usbd_status slhci_halt(struct slhci_softc *, struct slhci_pipe *, 496 struct usbd_xfer *); 497 498 static void slhci_intrchange(struct slhci_softc *, uint8_t); 499 static void slhci_drain(struct slhci_softc *); 500 static void slhci_reset(struct slhci_softc *); 501 static int slhci_reserve_bustime(struct slhci_softc *, struct slhci_pipe *, 502 int); 503 static void slhci_insert(struct slhci_softc *); 504 505 static usbd_status slhci_clear_feature(struct slhci_softc *, unsigned int); 506 static usbd_status slhci_set_feature(struct slhci_softc *, unsigned int); 507 static void slhci_get_status(struct slhci_softc *, usb_port_status_t *); 508 509 #define SLHCIHIST_FUNC() USBHIST_FUNC() 510 #define SLHCIHIST_CALLED() USBHIST_CALLED(slhcidebug) 511 512 #ifdef SLHCI_DEBUG 513 static int slhci_memtest(struct slhci_softc *); 514 515 void slhci_log_buffer(struct usbd_xfer *); 516 void slhci_log_req(usb_device_request_t *); 517 void slhci_log_dumpreg(void); 518 void slhci_log_xfer(struct usbd_xfer *); 519 void slhci_log_spipe(struct slhci_pipe *); 520 void slhci_print_intr(void); 521 void slhci_log_sc(void); 522 void slhci_log_slreq(struct slhci_pipe *); 523 524 /* Constified so you can read the values from ddb */ 525 const int SLHCI_D_TRACE = 0x0001; 526 const int SLHCI_D_MSG = 0x0002; 527 const int SLHCI_D_XFER = 0x0004; 528 const int SLHCI_D_MEM = 0x0008; 529 const int SLHCI_D_INTR = 0x0010; 530 const int SLHCI_D_SXFER = 0x0020; 531 const int SLHCI_D_ERR = 0x0080; 532 const int SLHCI_D_BUF = 0x0100; 533 const int SLHCI_D_SOFT = 0x0200; 534 const int SLHCI_D_WAIT = 0x0400; 535 const int SLHCI_D_ROOT = 0x0800; 536 /* SOF/NAK alone normally ignored, SOF also needs D_INTR */ 537 const int SLHCI_D_SOF = 0x1000; 538 const int SLHCI_D_NAK = 0x2000; 539 540 int slhcidebug = 0x1cbc; /* 0xc8c; */ /* 0xffff; */ /* 0xd8c; */ 541 542 SYSCTL_SETUP(sysctl_hw_slhci_setup, "sysctl hw.slhci setup") 543 { 544 int err; 545 const struct sysctlnode *rnode; 546 const struct sysctlnode *cnode; 547 548 err = sysctl_createv(clog, 0, NULL, &rnode, 549 CTLFLAG_PERMANENT, CTLTYPE_NODE, "slhci", 550 SYSCTL_DESCR("slhci global controls"), 551 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL); 552 553 if (err) 554 goto fail; 555 556 /* control debugging printfs */ 557 err = sysctl_createv(clog, 0, &rnode, &cnode, 558 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, 559 "debug", SYSCTL_DESCR("Enable debugging output"), 560 NULL, 0, &slhcidebug, sizeof(slhcidebug), CTL_CREATE, CTL_EOL); 561 if (err) 562 goto fail; 563 564 return; 565 fail: 566 aprint_error("%s: sysctl_createv failed (err = %d)\n", __func__, err); 567 } 568 569 struct slhci_softc *ssc; 570 571 #define SLHCI_DEXEC(x, y) do { if ((slhcidebug & SLHCI_ ## x)) { y; } \ 572 } while (/*CONSTCOND*/ 0) 573 #define DDOLOG(f, a, b, c, d) do { KERNHIST_LOG(usbhist, f, a, b, c, d); \ 574 } while (/*CONSTCOND*/0) 575 #define DLOG(x, f, a, b, c, d) SLHCI_DEXEC(x, DDOLOG(f, a, b, c, d)) 576 577 /* 578 * DDOLOGBUF logs a buffer up to 8 bytes at a time. No identifier so that we 579 * can make it a real function. 580 */ 581 static void 582 DDOLOGBUF(uint8_t *buf, unsigned int length) 583 { 584 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 585 int i; 586 587 for(i=0; i+8 <= length; i+=8) 588 DDOLOG("%.4x %.4x %.4x %.4x", (buf[i] << 8) | buf[i+1], 589 (buf[i+2] << 8) | buf[i+3], (buf[i+4] << 8) | buf[i+5], 590 (buf[i+6] << 8) | buf[i+7]); 591 if (length == i+7) 592 DDOLOG("%.4x %.4x %.4x %.2x", (buf[i] << 8) | buf[i+1], 593 (buf[i+2] << 8) | buf[i+3], (buf[i+4] << 8) | buf[i+5], 594 buf[i+6]); 595 else if (length == i+6) 596 DDOLOG("%.4x %.4x %.4x", (buf[i] << 8) | buf[i+1], 597 (buf[i+2] << 8) | buf[i+3], (buf[i+4] << 8) | buf[i+5], 0); 598 else if (length == i+5) 599 DDOLOG("%.4x %.4x %.2x", (buf[i] << 8) | buf[i+1], 600 (buf[i+2] << 8) | buf[i+3], buf[i+4], 0); 601 else if (length == i+4) 602 DDOLOG("%.4x %.4x", (buf[i] << 8) | buf[i+1], 603 (buf[i+2] << 8) | buf[i+3], 0,0); 604 else if (length == i+3) 605 DDOLOG("%.4x %.2x", (buf[i] << 8) | buf[i+1], buf[i+2], 0,0); 606 else if (length == i+2) 607 DDOLOG("%.4x", (buf[i] << 8) | buf[i+1], 0,0,0); 608 else if (length == i+1) 609 DDOLOG("%.2x", buf[i], 0,0,0); 610 } 611 #define DLOGBUF(x, b, l) SLHCI_DEXEC(x, DDOLOGBUF(b, l)) 612 613 #define DDOLOGCTRL(x) do { \ 614 DDOLOG("CTRL suspend=%d", !!((x) & SL11_CTRL_SUSPEND), 0, 0, 0); \ 615 DDOLOG("CTRL ls =%d jk =%d reset =%d sof =%d", \ 616 !!((x) & SL11_CTRL_LOWSPEED), !!((x) & SL11_CTRL_JKSTATE), \ 617 !!((x) & SL11_CTRL_RESETENGINE), !!((x) & SL11_CTRL_ENABLESOF));\ 618 } while (0) 619 620 #define DDOLOGISR(r) do { \ 621 DDOLOG("ISR data =%d det/res=%d insert =%d sof =%d", \ 622 !!((r) & SL11_ISR_DATA), !!((r) & SL11_ISR_RESUME), \ 623 !!((r) & SL11_ISR_INSERT), !!!!((r) & SL11_ISR_SOF)); \ 624 DDOLOG("ISR babble =%d usbb =%d usba =%d", \ 625 !!((r) & SL11_ISR_BABBLE), !!((r) & SL11_ISR_USBB), \ 626 !!((r) & SL11_ISR_USBA), 0); \ 627 } while (0) 628 629 #define DDOLOGIER(r) do { \ 630 DDOLOG("IER det/res=%d insert =%d sof =%d", \ 631 !!((r) & SL11_IER_RESUME), \ 632 !!((r) & SL11_IER_INSERT), !!!!((r) & SL11_IER_SOF), 0); \ 633 DDOLOG("IER babble =%d usbb =%d usba =%d", \ 634 !!((r) & SL11_IER_BABBLE), !!((r) & SL11_IER_USBB), \ 635 !!((r) & SL11_IER_USBA), 0); \ 636 } while (0) 637 638 #define DDOLOGSTATUS(s) do { \ 639 DDOLOG("STAT stall =%d nak =%d overflow =%d setup =%d", \ 640 !!((s) & SL11_EPSTAT_STALL), !!((s) & SL11_EPSTAT_NAK), \ 641 !!((s) & SL11_EPSTAT_OVERFLOW), !!((s) & SL11_EPSTAT_SETUP)); \ 642 DDOLOG("STAT sequence=%d timeout =%d error =%d ack =%d", \ 643 !!((s) & SL11_EPSTAT_SEQUENCE), !!((s) & SL11_EPSTAT_TIMEOUT), \ 644 !!((s) & SL11_EPSTAT_ERROR), !!((s) & SL11_EPSTAT_ACK)); \ 645 } while (0) 646 647 #define DDOLOGEPCTRL(r) do { \ 648 DDOLOG("CTRL preamble=%d toggle =%d sof =%d iso =%d", \ 649 !!((r) & SL11_EPCTRL_PREAMBLE), !!((r) & SL11_EPCTRL_DATATOGGLE),\ 650 !!((r) & SL11_EPCTRL_SOF), !!((r) & SL11_EPCTRL_ISO)); \ 651 DDOLOG("CTRL out =%d enable =%d arm =%d", \ 652 !!((r) & SL11_EPCTRL_DIRECTION), \ 653 !!((r) & SL11_EPCTRL_ENABLE), !!((r) & SL11_EPCTRL_ARM), 0); \ 654 } while (0) 655 656 #define DDOLOGEPSTAT(r) do { \ 657 DDOLOG("STAT stall =%d nak =%d overflow =%d setup =%d", \ 658 !!((r) & SL11_EPSTAT_STALL), !!((r) & SL11_EPSTAT_NAK), \ 659 !!((r) & SL11_EPSTAT_OVERFLOW), !!((r) & SL11_EPSTAT_SETUP)); \ 660 DDOLOG("STAT sequence=%d timeout =%d error =%d ack =%d", \ 661 !!((r) & SL11_EPSTAT_SEQUENCE), !!((r) & SL11_EPSTAT_TIMEOUT), \ 662 !!((r) & SL11_EPSTAT_ERROR), !!((r) & SL11_EPSTAT_ACK)); \ 663 } while (0) 664 #else /* now !SLHCI_DEBUG */ 665 #define slhcidebug 0 666 #define slhci_log_spipe(spipe) ((void)0) 667 #define slhci_log_xfer(xfer) ((void)0) 668 #define SLHCI_DEXEC(x, y) ((void)0) 669 #define DDOLOG(f, a, b, c, d) ((void)0) 670 #define DLOG(x, f, a, b, c, d) ((void)0) 671 #define DDOLOGBUF(b, l) ((void)0) 672 #define DLOGBUF(x, b, l) ((void)0) 673 #define DDOLOGCTRL(x) ((void)0) 674 #define DDOLOGISR(r) ((void)0) 675 #define DDOLOGIER(r) ((void)0) 676 #define DDOLOGSTATUS(s) ((void)0) 677 #define DDOLOGEPCTRL(r) ((void)0) 678 #define DDOLOGEPSTAT(r) ((void)0) 679 #endif /* SLHCI_DEBUG */ 680 681 #ifdef DIAGNOSTIC 682 #define LK_SLASSERT(exp, sc, spipe, xfer, ext) do { \ 683 if (!(exp)) { \ 684 printf("%s: assertion %s failed line %u function %s!" \ 685 " halted\n", SC_NAME(sc), #exp, __LINE__, __func__);\ 686 slhci_halt(sc, spipe, xfer); \ 687 ext; \ 688 } \ 689 } while (/*CONSTCOND*/0) 690 #define UL_SLASSERT(exp, sc, spipe, xfer, ext) do { \ 691 if (!(exp)) { \ 692 printf("%s: assertion %s failed line %u function %s!" \ 693 " halted\n", SC_NAME(sc), #exp, __LINE__, __func__); \ 694 slhci_lock_call(sc, &slhci_halt, spipe, xfer); \ 695 ext; \ 696 } \ 697 } while (/*CONSTCOND*/0) 698 #else 699 #define LK_SLASSERT(exp, sc, spipe, xfer, ext) ((void)0) 700 #define UL_SLASSERT(exp, sc, spipe, xfer, ext) ((void)0) 701 #endif 702 703 const struct usbd_bus_methods slhci_bus_methods = { 704 .ubm_open = slhci_open, 705 .ubm_softint= slhci_void, 706 .ubm_dopoll = slhci_poll, 707 .ubm_allocx = slhci_allocx, 708 .ubm_freex = slhci_freex, 709 .ubm_getlock = slhci_get_lock, 710 .ubm_rhctrl = slhci_roothub_ctrl, 711 }; 712 713 const struct usbd_pipe_methods slhci_pipe_methods = { 714 .upm_transfer = slhci_transfer, 715 .upm_start = slhci_start, 716 .upm_abort = slhci_abort, 717 .upm_close = slhci_close, 718 .upm_cleartoggle = slhci_clear_toggle, 719 .upm_done = slhci_done, 720 }; 721 722 const struct usbd_pipe_methods slhci_root_methods = { 723 .upm_transfer = slhci_transfer, 724 .upm_start = slhci_root_start, 725 .upm_abort = slhci_abort, 726 .upm_close = (void (*)(struct usbd_pipe *))slhci_void, /* XXX safe? */ 727 .upm_cleartoggle = slhci_clear_toggle, 728 .upm_done = slhci_done, 729 }; 730 731 /* Queue inlines */ 732 733 #define GOT_FIRST_TO(tvar, t) \ 734 GCQ_GOT_FIRST_TYPED(tvar, &(t)->to, struct slhci_pipe, to) 735 736 #define FIND_TO(var, t, tvar, cond) \ 737 GCQ_FIND_TYPED(var, &(t)->to, tvar, struct slhci_pipe, to, cond) 738 739 #define FOREACH_AP(var, t, tvar) \ 740 GCQ_FOREACH_TYPED(var, &(t)->ap, tvar, struct slhci_pipe, ap) 741 742 #define GOT_FIRST_TIMED_COND(tvar, t, cond) \ 743 GCQ_GOT_FIRST_COND_TYPED(tvar, &(t)->timed, struct slhci_pipe, xq, cond) 744 745 #define GOT_FIRST_CB(tvar, t) \ 746 GCQ_GOT_FIRST_TYPED(tvar, &(t)->q[Q_CB], struct slhci_pipe, xq) 747 748 #define DEQUEUED_CALLBACK(tvar, t) \ 749 GCQ_DEQUEUED_FIRST_TYPED(tvar, &(t)->q[Q_CALLBACKS], struct slhci_pipe, xq) 750 751 #define FIND_TIMED(var, t, tvar, cond) \ 752 GCQ_FIND_TYPED(var, &(t)->timed, tvar, struct slhci_pipe, xq, cond) 753 754 #define DEQUEUED_WAITQ(tvar, sc) \ 755 GCQ_DEQUEUED_FIRST_TYPED(tvar, &(sc)->sc_waitq, struct slhci_pipe, xq) 756 757 static inline void 758 enter_waitq(struct slhci_softc *sc, struct slhci_pipe *spipe) 759 { 760 gcq_insert_tail(&sc->sc_waitq, &spipe->xq); 761 } 762 763 static inline void 764 enter_q(struct slhci_transfers *t, struct slhci_pipe *spipe, int i) 765 { 766 gcq_insert_tail(&t->q[i], &spipe->xq); 767 } 768 769 static inline void 770 enter_callback(struct slhci_transfers *t, struct slhci_pipe *spipe) 771 { 772 gcq_insert_tail(&t->q[Q_CALLBACKS], &spipe->xq); 773 } 774 775 static inline void 776 enter_all_pipes(struct slhci_transfers *t, struct slhci_pipe *spipe) 777 { 778 gcq_insert_tail(&t->ap, &spipe->ap); 779 } 780 781 /* Start out of lock functions. */ 782 783 struct usbd_xfer * 784 slhci_allocx(struct usbd_bus *bus, unsigned int nframes) 785 { 786 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 787 struct usbd_xfer *xfer; 788 789 xfer = kmem_zalloc(sizeof(*xfer), KM_SLEEP); 790 791 DLOG(D_MEM, "allocx %p", xfer, 0,0,0); 792 793 #ifdef SLHCI_MEM_ACCOUNTING 794 slhci_mem_use(bus, 1); 795 #endif 796 #ifdef DIAGNOSTIC 797 if (xfer != NULL) 798 xfer->ux_state = XFER_BUSY; 799 #endif 800 return xfer; 801 } 802 803 void 804 slhci_freex(struct usbd_bus *bus, struct usbd_xfer *xfer) 805 { 806 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 807 DLOG(D_MEM, "freex xfer %p spipe %p", xfer, xfer->ux_pipe,0,0); 808 809 #ifdef SLHCI_MEM_ACCOUNTING 810 slhci_mem_use(bus, -1); 811 #endif 812 #ifdef DIAGNOSTIC 813 if (xfer->ux_state != XFER_BUSY) { 814 struct slhci_softc *sc = SLHCI_BUS2SC(bus); 815 printf("%s: slhci_freex: xfer=%p not busy, %#08x halted\n", 816 SC_NAME(sc), xfer, xfer->ux_state); 817 DDOLOG("xfer=%p not busy, %#08x halted\n", xfer, 818 xfer->ux_state, 0, 0); 819 slhci_lock_call(sc, &slhci_halt, NULL, NULL); 820 return; 821 } 822 xfer->ux_state = XFER_FREE; 823 #endif 824 825 kmem_free(xfer, sizeof(*xfer)); 826 } 827 828 static void 829 slhci_get_lock(struct usbd_bus *bus, kmutex_t **lock) 830 { 831 struct slhci_softc *sc = SLHCI_BUS2SC(bus); 832 833 *lock = &sc->sc_lock; 834 } 835 836 usbd_status 837 slhci_transfer(struct usbd_xfer *xfer) 838 { 839 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 840 struct slhci_softc *sc = SLHCI_XFER2SC(xfer); 841 usbd_status error; 842 843 DLOG(D_TRACE, "transfer type %d xfer %p spipe %p ", 844 SLHCI_XFER_TYPE(xfer), xfer, xfer->ux_pipe, 0); 845 846 /* Insert last in queue */ 847 mutex_enter(&sc->sc_lock); 848 error = usb_insert_transfer(xfer); 849 mutex_exit(&sc->sc_lock); 850 if (error) { 851 if (error != USBD_IN_PROGRESS) 852 DLOG(D_ERR, "usb_insert_transfer returns %d!", error, 853 0,0,0); 854 return error; 855 } 856 857 /* 858 * Pipe isn't running (otherwise error would be USBD_INPROG), 859 * so start it first. 860 */ 861 862 /* 863 * Start will take the lock. 864 */ 865 error = xfer->ux_pipe->up_methods->upm_start(SIMPLEQ_FIRST(&xfer->ux_pipe->up_queue)); 866 867 return error; 868 } 869 870 /* It is not safe for start to return anything other than USBD_INPROG. */ 871 usbd_status 872 slhci_start(struct usbd_xfer *xfer) 873 { 874 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 875 struct slhci_softc *sc = SLHCI_XFER2SC(xfer); 876 struct usbd_pipe *pipe = xfer->ux_pipe; 877 struct slhci_pipe *spipe = SLHCI_PIPE2SPIPE(pipe); 878 struct slhci_transfers *t = &sc->sc_transfers; 879 usb_endpoint_descriptor_t *ed = pipe->up_endpoint->ue_edesc; 880 unsigned int max_packet; 881 882 mutex_enter(&sc->sc_lock); 883 884 max_packet = UGETW(ed->wMaxPacketSize); 885 886 DLOG(D_TRACE, "transfer type %d start xfer %p spipe %p length %d", 887 spipe->ptype, xfer, spipe, xfer->ux_length); 888 889 /* root transfers use slhci_root_start */ 890 891 KASSERT(spipe->xfer == NULL); /* not SLASSERT */ 892 893 xfer->ux_actlen = 0; 894 xfer->ux_status = USBD_IN_PROGRESS; 895 896 spipe->xfer = xfer; 897 898 spipe->nerrs = 0; 899 spipe->frame = t->frame; 900 spipe->control = SL11_EPCTRL_ARM_ENABLE; 901 spipe->tregs[DEV] = pipe->up_dev->ud_addr; 902 spipe->tregs[PID] = spipe->newpid = UE_GET_ADDR(ed->bEndpointAddress) 903 | (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN ? SL11_PID_IN : 904 SL11_PID_OUT); 905 spipe->newlen[0] = xfer->ux_length % max_packet; 906 spipe->newlen[1] = min(xfer->ux_length, max_packet); 907 908 if (spipe->ptype == PT_BULK || spipe->ptype == PT_INTR) { 909 if (spipe->pflags & PF_TOGGLE) 910 spipe->control |= SL11_EPCTRL_DATATOGGLE; 911 spipe->tregs[LEN] = spipe->newlen[1]; 912 if (spipe->tregs[LEN]) 913 spipe->buffer = xfer->ux_buf; 914 else 915 spipe->buffer = NULL; 916 spipe->lastframe = t->frame; 917 if (spipe->ptype == PT_INTR) { 918 spipe->frame = spipe->lastframe + 919 spipe->pipe.up_interval; 920 } 921 922 #if defined(DEBUG) || defined(SLHCI_DEBUG) 923 if (__predict_false(spipe->ptype == PT_INTR && 924 xfer->ux_length > spipe->tregs[LEN])) { 925 printf("%s: Long INTR transfer not supported!\n", 926 SC_NAME(sc)); 927 DDOLOG("Long INTR transfer not supported!", 0, 0, 0, 0); 928 xfer->ux_status = USBD_INVAL; 929 } 930 #endif 931 } else { 932 /* ptype may be currently set to any control transfer type. */ 933 SLHCI_DEXEC(D_TRACE, slhci_log_xfer(xfer)); 934 935 /* SETUP contains IN/OUT bits also */ 936 spipe->tregs[PID] |= SL11_PID_SETUP; 937 spipe->tregs[LEN] = 8; 938 spipe->buffer = (uint8_t *)&xfer->ux_request; 939 DLOGBUF(D_XFER, spipe->buffer, spipe->tregs[LEN]); 940 spipe->ptype = PT_CTRL_SETUP; 941 spipe->newpid &= ~SL11_PID_BITS; 942 if (xfer->ux_length == 0 || 943 (xfer->ux_request.bmRequestType & UT_READ)) 944 spipe->newpid |= SL11_PID_IN; 945 else 946 spipe->newpid |= SL11_PID_OUT; 947 } 948 949 if (xfer->ux_flags & USBD_FORCE_SHORT_XFER && 950 spipe->tregs[LEN] == max_packet && 951 (spipe->newpid & SL11_PID_BITS) == SL11_PID_OUT) 952 spipe->wantshort = 1; 953 else 954 spipe->wantshort = 0; 955 956 /* 957 * The goal of newbustime and newlen is to avoid bustime calculation 958 * in the interrupt. The calculations are not too complex, but they 959 * complicate the conditional logic somewhat and doing them all in the 960 * same place shares constants. Index 0 is "short length" for bulk and 961 * ctrl data and 1 is "full length" for ctrl data (bulk/intr are 962 * already set to full length). 963 */ 964 if (spipe->pflags & PF_LS) { 965 /* 966 * Setting PREAMBLE for directly connected LS devices will 967 * lock up the chip. 968 */ 969 if (spipe->pflags & PF_PREAMBLE) 970 spipe->control |= SL11_EPCTRL_PREAMBLE; 971 if (max_packet <= 8) { 972 spipe->bustime = SLHCI_LS_CONST + 973 SLHCI_LS_DATA_TIME(spipe->tregs[LEN]); 974 spipe->newbustime[0] = SLHCI_LS_CONST + 975 SLHCI_LS_DATA_TIME(spipe->newlen[0]); 976 spipe->newbustime[1] = SLHCI_LS_CONST + 977 SLHCI_LS_DATA_TIME(spipe->newlen[1]); 978 } else 979 xfer->ux_status = USBD_INVAL; 980 } else { 981 UL_SLASSERT(pipe->up_dev->ud_speed == USB_SPEED_FULL, sc, 982 spipe, xfer, return USBD_IN_PROGRESS); 983 if (max_packet <= SL11_MAX_PACKET_SIZE) { 984 spipe->bustime = SLHCI_FS_CONST + 985 SLHCI_FS_DATA_TIME(spipe->tregs[LEN]); 986 spipe->newbustime[0] = SLHCI_FS_CONST + 987 SLHCI_FS_DATA_TIME(spipe->newlen[0]); 988 spipe->newbustime[1] = SLHCI_FS_CONST + 989 SLHCI_FS_DATA_TIME(spipe->newlen[1]); 990 } else 991 xfer->ux_status = USBD_INVAL; 992 } 993 994 /* 995 * The datasheet incorrectly indicates that DIRECTION is for 996 * "transmit to host". It is for OUT and SETUP. The app note 997 * describes its use correctly. 998 */ 999 if ((spipe->tregs[PID] & SL11_PID_BITS) != SL11_PID_IN) 1000 spipe->control |= SL11_EPCTRL_DIRECTION; 1001 1002 slhci_start_entry(sc, spipe); 1003 1004 mutex_exit(&sc->sc_lock); 1005 1006 return USBD_IN_PROGRESS; 1007 } 1008 1009 usbd_status 1010 slhci_root_start(struct usbd_xfer *xfer) 1011 { 1012 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 1013 struct slhci_softc *sc; 1014 struct slhci_pipe *spipe __diagused; 1015 1016 spipe = SLHCI_PIPE2SPIPE(xfer->ux_pipe); 1017 sc = SLHCI_XFER2SC(xfer); 1018 1019 struct slhci_transfers *t = &sc->sc_transfers; 1020 1021 LK_SLASSERT(spipe != NULL && xfer != NULL, sc, spipe, xfer, return 1022 USBD_CANCELLED); 1023 1024 DLOG(D_TRACE, "transfer type %d start", SLHCI_XFER_TYPE(xfer), 0, 0, 0); 1025 1026 KASSERT(spipe->ptype == PT_ROOT_INTR); 1027 1028 mutex_enter(&sc->sc_intr_lock); 1029 t->rootintr = xfer; 1030 mutex_exit(&sc->sc_intr_lock); 1031 1032 return USBD_IN_PROGRESS; 1033 } 1034 1035 usbd_status 1036 slhci_open(struct usbd_pipe *pipe) 1037 { 1038 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 1039 struct usbd_device *dev; 1040 struct slhci_softc *sc; 1041 struct slhci_pipe *spipe; 1042 usb_endpoint_descriptor_t *ed; 1043 unsigned int max_packet, pmaxpkt; 1044 uint8_t rhaddr; 1045 1046 dev = pipe->up_dev; 1047 sc = SLHCI_PIPE2SC(pipe); 1048 spipe = SLHCI_PIPE2SPIPE(pipe); 1049 ed = pipe->up_endpoint->ue_edesc; 1050 rhaddr = dev->ud_bus->ub_rhaddr; 1051 1052 DLOG(D_TRACE, "slhci_open(addr=%d,ep=%d,rootaddr=%d)", 1053 dev->ud_addr, ed->bEndpointAddress, rhaddr, 0); 1054 1055 spipe->pflags = 0; 1056 spipe->frame = 0; 1057 spipe->lastframe = 0; 1058 spipe->xfer = NULL; 1059 spipe->buffer = NULL; 1060 1061 gcq_init(&spipe->ap); 1062 gcq_init(&spipe->to); 1063 gcq_init(&spipe->xq); 1064 1065 /* 1066 * The endpoint descriptor will not have been set up yet in the case 1067 * of the standard control pipe, so the max packet checks are also 1068 * necessary in start. 1069 */ 1070 1071 max_packet = UGETW(ed->wMaxPacketSize); 1072 1073 if (dev->ud_speed == USB_SPEED_LOW) { 1074 spipe->pflags |= PF_LS; 1075 if (dev->ud_myhub->ud_addr != rhaddr) { 1076 spipe->pflags |= PF_PREAMBLE; 1077 if (!slhci_try_lsvh) 1078 return slhci_lock_call(sc, &slhci_lsvh_warn, 1079 spipe, NULL); 1080 } 1081 pmaxpkt = 8; 1082 } else 1083 pmaxpkt = SL11_MAX_PACKET_SIZE; 1084 1085 if (max_packet > pmaxpkt) { 1086 DLOG(D_ERR, "packet too large! size %d spipe %p", max_packet, 1087 spipe, 0,0); 1088 return USBD_INVAL; 1089 } 1090 1091 if (dev->ud_addr == rhaddr) { 1092 switch (ed->bEndpointAddress) { 1093 case USB_CONTROL_ENDPOINT: 1094 spipe->ptype = PT_ROOT_CTRL; 1095 pipe->up_interval = 0; 1096 pipe->up_methods = &roothub_ctrl_methods; 1097 break; 1098 case UE_DIR_IN | USBROOTHUB_INTR_ENDPT: 1099 spipe->ptype = PT_ROOT_INTR; 1100 pipe->up_interval = 1; 1101 pipe->up_methods = &slhci_root_methods; 1102 break; 1103 default: 1104 printf("%s: Invalid root endpoint!\n", SC_NAME(sc)); 1105 DDOLOG("Invalid root endpoint", 0, 0, 0, 0); 1106 return USBD_INVAL; 1107 } 1108 return USBD_NORMAL_COMPLETION; 1109 } else { 1110 switch (ed->bmAttributes & UE_XFERTYPE) { 1111 case UE_CONTROL: 1112 spipe->ptype = PT_CTRL_SETUP; 1113 pipe->up_interval = 0; 1114 break; 1115 case UE_INTERRUPT: 1116 spipe->ptype = PT_INTR; 1117 if (pipe->up_interval == USBD_DEFAULT_INTERVAL) 1118 pipe->up_interval = ed->bInterval; 1119 break; 1120 case UE_ISOCHRONOUS: 1121 return slhci_lock_call(sc, &slhci_isoc_warn, spipe, 1122 NULL); 1123 case UE_BULK: 1124 spipe->ptype = PT_BULK; 1125 pipe->up_interval = 0; 1126 break; 1127 } 1128 1129 DLOG(D_MSG, "open pipe type %d interval %d", spipe->ptype, 1130 pipe->up_interval, 0,0); 1131 1132 pipe->up_methods = __UNCONST(&slhci_pipe_methods); 1133 1134 return slhci_lock_call(sc, &slhci_open_pipe, spipe, NULL); 1135 } 1136 } 1137 1138 int 1139 slhci_supported_rev(uint8_t rev) 1140 { 1141 return rev >= SLTYPE_SL811HS_R12 && rev <= SLTYPE_SL811HS_R15; 1142 } 1143 1144 /* 1145 * Must be called before the ISR is registered. Interrupts can be shared so 1146 * slhci_intr could be called as soon as the ISR is registered. 1147 * Note max_current argument is actual current, but stored as current/2 1148 */ 1149 void 1150 slhci_preinit(struct slhci_softc *sc, PowerFunc pow, bus_space_tag_t iot, 1151 bus_space_handle_t ioh, uint16_t max_current, uint32_t stride) 1152 { 1153 struct slhci_transfers *t; 1154 int i; 1155 1156 t = &sc->sc_transfers; 1157 1158 #ifdef SLHCI_DEBUG 1159 ssc = sc; 1160 #endif 1161 1162 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_SOFTUSB); 1163 mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_USB); 1164 1165 /* sc->sc_ier = 0; */ 1166 /* t->rootintr = NULL; */ 1167 t->flags = F_NODEV|F_UDISABLED; 1168 t->pend = INT_MAX; 1169 KASSERT(slhci_wait_time != INT_MAX); 1170 t->len[0] = t->len[1] = -1; 1171 if (max_current > 500) 1172 max_current = 500; 1173 t->max_current = (uint8_t)(max_current / 2); 1174 sc->sc_enable_power = pow; 1175 sc->sc_iot = iot; 1176 sc->sc_ioh = ioh; 1177 sc->sc_stride = stride; 1178 1179 KASSERT(Q_MAX+1 == sizeof(t->q) / sizeof(t->q[0])); 1180 1181 for (i = 0; i <= Q_MAX; i++) 1182 gcq_init_head(&t->q[i]); 1183 gcq_init_head(&t->timed); 1184 gcq_init_head(&t->to); 1185 gcq_init_head(&t->ap); 1186 gcq_init_head(&sc->sc_waitq); 1187 } 1188 1189 int 1190 slhci_attach(struct slhci_softc *sc) 1191 { 1192 struct slhci_transfers *t; 1193 const char *rev; 1194 1195 t = &sc->sc_transfers; 1196 1197 /* Detect and check the controller type */ 1198 t->sltype = SL11_GET_REV(slhci_read(sc, SL11_REV)); 1199 1200 /* SL11H not supported */ 1201 if (!slhci_supported_rev(t->sltype)) { 1202 if (t->sltype == SLTYPE_SL11H) 1203 printf("%s: SL11H unsupported or bus error!\n", 1204 SC_NAME(sc)); 1205 else 1206 printf("%s: Unknown chip revision!\n", SC_NAME(sc)); 1207 return -1; 1208 } 1209 1210 #ifdef SLHCI_DEBUG 1211 if (slhci_memtest(sc)) { 1212 printf("%s: memory/bus error!\n", SC_NAME(sc)); 1213 return -1; 1214 } 1215 #endif 1216 1217 callout_init(&sc->sc_timer, CALLOUT_MPSAFE); 1218 callout_setfunc(&sc->sc_timer, slhci_reset_entry, sc); 1219 1220 /* 1221 * It is not safe to call the soft interrupt directly as 1222 * usb_schedsoftintr does in the ub_usepolling case (due to locking). 1223 */ 1224 sc->sc_cb_softintr = softint_establish(SOFTINT_NET, 1225 slhci_callback_entry, sc); 1226 1227 if (t->sltype == SLTYPE_SL811HS_R12) 1228 rev = "(rev 1.2)"; 1229 else if (t->sltype == SLTYPE_SL811HS_R14) 1230 rev = "(rev 1.4 or 1.5)"; 1231 else 1232 rev = "(unknown revision)"; 1233 1234 aprint_normal("%s: ScanLogic SL811HS/T USB Host Controller %s\n", 1235 SC_NAME(sc), rev); 1236 1237 aprint_normal("%s: Max Current %u mA (value by code, not by probe)\n", 1238 SC_NAME(sc), t->max_current * 2); 1239 1240 #if defined(SLHCI_DEBUG) || defined(SLHCI_NO_OVERTIME) || \ 1241 defined(SLHCI_TRY_LSVH) || defined(SLHCI_PROFILE_TRANSFER) 1242 aprint_normal("%s: driver options:" 1243 #ifdef SLHCI_DEBUG 1244 " SLHCI_DEBUG" 1245 #endif 1246 #ifdef SLHCI_TRY_LSVH 1247 " SLHCI_TRY_LSVH" 1248 #endif 1249 #ifdef SLHCI_NO_OVERTIME 1250 " SLHCI_NO_OVERTIME" 1251 #endif 1252 #ifdef SLHCI_PROFILE_TRANSFER 1253 " SLHCI_PROFILE_TRANSFER" 1254 #endif 1255 "\n", SC_NAME(sc)); 1256 #endif 1257 sc->sc_bus.ub_revision = USBREV_1_1; 1258 sc->sc_bus.ub_methods = __UNCONST(&slhci_bus_methods); 1259 sc->sc_bus.ub_pipesize = sizeof(struct slhci_pipe); 1260 sc->sc_bus.ub_usedma = false; 1261 1262 if (!sc->sc_enable_power) 1263 t->flags |= F_REALPOWER; 1264 1265 t->flags |= F_ACTIVE; 1266 1267 /* Attach usb and uhub. */ 1268 sc->sc_child = config_found(SC_DEV(sc), &sc->sc_bus, usbctlprint); 1269 1270 if (!sc->sc_child) 1271 return -1; 1272 else 1273 return 0; 1274 } 1275 1276 int 1277 slhci_detach(struct slhci_softc *sc, int flags) 1278 { 1279 struct slhci_transfers *t; 1280 int ret; 1281 1282 t = &sc->sc_transfers; 1283 1284 /* By this point bus access is no longer allowed. */ 1285 1286 KASSERT(!(t->flags & F_ACTIVE)); 1287 1288 /* 1289 * To be MPSAFE is not sufficient to cancel callouts and soft 1290 * interrupts and assume they are dead since the code could already be 1291 * running or about to run. Wait until they are known to be done. 1292 */ 1293 while (t->flags & (F_RESET|F_CALLBACK)) 1294 tsleep(&sc, PPAUSE, "slhci_detach", hz); 1295 1296 softint_disestablish(sc->sc_cb_softintr); 1297 1298 mutex_destroy(&sc->sc_lock); 1299 mutex_destroy(&sc->sc_intr_lock); 1300 1301 ret = 0; 1302 1303 if (sc->sc_child) 1304 ret = config_detach(sc->sc_child, flags); 1305 1306 #ifdef SLHCI_MEM_ACCOUNTING 1307 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 1308 if (sc->sc_mem_use) { 1309 printf("%s: Memory still in use after detach! mem_use (count)" 1310 " = %d\n", SC_NAME(sc), sc->sc_mem_use); 1311 DDOLOG("Memory still in use after detach! mem_use (count)" 1312 " = %d", sc->sc_mem_use, 0, 0, 0); 1313 } 1314 #endif 1315 1316 return ret; 1317 } 1318 1319 int 1320 slhci_activate(device_t self, enum devact act) 1321 { 1322 struct slhci_softc *sc = device_private(self); 1323 1324 switch (act) { 1325 case DVACT_DEACTIVATE: 1326 slhci_lock_call(sc, &slhci_halt, NULL, NULL); 1327 return 0; 1328 default: 1329 return EOPNOTSUPP; 1330 } 1331 } 1332 1333 void 1334 slhci_abort(struct usbd_xfer *xfer) 1335 { 1336 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 1337 struct slhci_softc *sc; 1338 struct slhci_pipe *spipe; 1339 1340 spipe = SLHCI_PIPE2SPIPE(xfer->ux_pipe); 1341 1342 if (spipe == NULL) 1343 goto callback; 1344 1345 sc = SLHCI_XFER2SC(xfer); 1346 KASSERT(mutex_owned(&sc->sc_lock)); 1347 1348 DLOG(D_TRACE, "transfer type %d abort xfer %p spipe %p spipe->xfer %p", 1349 spipe->ptype, xfer, spipe, spipe->xfer); 1350 1351 slhci_lock_call(sc, &slhci_do_abort, spipe, xfer); 1352 1353 callback: 1354 xfer->ux_status = USBD_CANCELLED; 1355 usb_transfer_complete(xfer); 1356 } 1357 1358 void 1359 slhci_close(struct usbd_pipe *pipe) 1360 { 1361 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 1362 struct slhci_softc *sc; 1363 struct slhci_pipe *spipe; 1364 1365 sc = SLHCI_PIPE2SC(pipe); 1366 spipe = SLHCI_PIPE2SPIPE(pipe); 1367 1368 DLOG(D_TRACE, "transfer type %d close spipe %p spipe->xfer %p", 1369 spipe->ptype, spipe, spipe->xfer, 0); 1370 1371 slhci_lock_call(sc, &slhci_close_pipe, spipe, NULL); 1372 } 1373 1374 void 1375 slhci_clear_toggle(struct usbd_pipe *pipe) 1376 { 1377 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 1378 struct slhci_pipe *spipe; 1379 1380 spipe = SLHCI_PIPE2SPIPE(pipe); 1381 1382 DLOG(D_TRACE, "transfer type %d toggle spipe %p", spipe->ptype, 1383 spipe,0,0); 1384 1385 spipe->pflags &= ~PF_TOGGLE; 1386 1387 #ifdef DIAGNOSTIC 1388 if (spipe->xfer != NULL) { 1389 struct slhci_softc *sc = (struct slhci_softc 1390 *)pipe->up_dev->ud_bus; 1391 1392 printf("%s: Clear toggle on transfer in progress! halted\n", 1393 SC_NAME(sc)); 1394 DDOLOG("Clear toggle on transfer in progress! halted", 1395 0, 0, 0, 0); 1396 slhci_halt(sc, NULL, NULL); 1397 } 1398 #endif 1399 } 1400 1401 void 1402 slhci_poll(struct usbd_bus *bus) /* XXX necessary? */ 1403 { 1404 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 1405 struct slhci_softc *sc; 1406 1407 sc = SLHCI_BUS2SC(bus); 1408 1409 DLOG(D_TRACE, "slhci_poll", 0,0,0,0); 1410 1411 slhci_lock_call(sc, &slhci_do_poll, NULL, NULL); 1412 } 1413 1414 void 1415 slhci_done(struct usbd_xfer *xfer) 1416 { 1417 } 1418 1419 void 1420 slhci_void(void *v) {} 1421 1422 /* End out of lock functions. Start lock entry functions. */ 1423 1424 #ifdef SLHCI_MEM_ACCOUNTING 1425 void 1426 slhci_mem_use(struct usbd_bus *bus, int val) 1427 { 1428 struct slhci_softc *sc = SLHCI_BUS2SC(bus); 1429 1430 mutex_enter(&sc->sc_intr_lock); 1431 sc->sc_mem_use += val; 1432 mutex_exit(&sc->sc_intr_lock); 1433 } 1434 #endif 1435 1436 void 1437 slhci_reset_entry(void *arg) 1438 { 1439 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 1440 struct slhci_softc *sc = arg; 1441 1442 mutex_enter(&sc->sc_intr_lock); 1443 slhci_reset(sc); 1444 /* 1445 * We cannot call the callback directly since we could then be reset 1446 * again before finishing and need the callout delay for timing. 1447 * Scheduling the callout again before we exit would defeat the reap 1448 * mechanism since we could be unlocked while the reset flag is not 1449 * set. The callback code will check the wait queue. 1450 */ 1451 slhci_callback_schedule(sc); 1452 mutex_exit(&sc->sc_intr_lock); 1453 } 1454 1455 usbd_status 1456 slhci_lock_call(struct slhci_softc *sc, LockCallFunc lcf, struct slhci_pipe 1457 *spipe, struct usbd_xfer *xfer) 1458 { 1459 usbd_status ret; 1460 1461 mutex_enter(&sc->sc_intr_lock); 1462 ret = (*lcf)(sc, spipe, xfer); 1463 slhci_main(sc); 1464 mutex_exit(&sc->sc_intr_lock); 1465 1466 return ret; 1467 } 1468 1469 void 1470 slhci_start_entry(struct slhci_softc *sc, struct slhci_pipe *spipe) 1471 { 1472 struct slhci_transfers *t; 1473 1474 mutex_enter(&sc->sc_intr_lock); 1475 t = &sc->sc_transfers; 1476 1477 if (!(t->flags & (F_AINPROG|F_BINPROG))) { 1478 slhci_enter_xfer(sc, spipe); 1479 slhci_dotransfer(sc); 1480 slhci_main(sc); 1481 } else { 1482 enter_waitq(sc, spipe); 1483 } 1484 mutex_exit(&sc->sc_intr_lock); 1485 } 1486 1487 void 1488 slhci_callback_entry(void *arg) 1489 { 1490 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 1491 struct slhci_softc *sc; 1492 struct slhci_transfers *t; 1493 1494 sc = (struct slhci_softc *)arg; 1495 1496 mutex_enter(&sc->sc_intr_lock); 1497 t = &sc->sc_transfers; 1498 DLOG(D_SOFT, "callback_entry flags %#x", t->flags, 0,0,0); 1499 1500 repeat: 1501 slhci_callback(sc); 1502 1503 if (!gcq_empty(&sc->sc_waitq)) { 1504 slhci_enter_xfers(sc); 1505 slhci_dotransfer(sc); 1506 slhci_waitintr(sc, 0); 1507 goto repeat; 1508 } 1509 1510 t->flags &= ~F_CALLBACK; 1511 mutex_exit(&sc->sc_intr_lock); 1512 } 1513 1514 void 1515 slhci_do_callback(struct slhci_softc *sc, struct usbd_xfer *xfer) 1516 { 1517 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 1518 KASSERT(mutex_owned(&sc->sc_intr_lock)); 1519 1520 start_cc_time(&t_callback, (u_int)xfer); 1521 mutex_exit(&sc->sc_intr_lock); 1522 1523 mutex_enter(&sc->sc_lock); 1524 usb_transfer_complete(xfer); 1525 mutex_exit(&sc->sc_lock); 1526 1527 mutex_enter(&sc->sc_intr_lock); 1528 stop_cc_time(&t_callback); 1529 } 1530 1531 int 1532 slhci_intr(void *arg) 1533 { 1534 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 1535 struct slhci_softc *sc = arg; 1536 int ret = 0; 1537 int irq; 1538 1539 start_cc_time(&t_hard_int, (unsigned int)arg); 1540 mutex_enter(&sc->sc_intr_lock); 1541 1542 do { 1543 irq = slhci_dointr(sc); 1544 ret |= irq; 1545 slhci_main(sc); 1546 } while (irq); 1547 mutex_exit(&sc->sc_intr_lock); 1548 1549 stop_cc_time(&t_hard_int); 1550 return ret; 1551 } 1552 1553 /* called with interrupt lock only held. */ 1554 void 1555 slhci_main(struct slhci_softc *sc) 1556 { 1557 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 1558 struct slhci_transfers *t; 1559 1560 t = &sc->sc_transfers; 1561 1562 KASSERT(mutex_owned(&sc->sc_intr_lock)); 1563 1564 waitcheck: 1565 slhci_waitintr(sc, slhci_wait_time); 1566 1567 /* 1568 * The direct call is needed in the ub_usepolling and disabled cases 1569 * since the soft interrupt is not available. In the disabled case, 1570 * this code can be reached from the usb detach, after the reaping of 1571 * the soft interrupt. That test could be !F_ACTIVE, but there is no 1572 * reason not to make the callbacks directly in the other DISABLED 1573 * cases. 1574 */ 1575 if ((t->flags & F_ROOTINTR) || !gcq_empty(&t->q[Q_CALLBACKS])) { 1576 if (__predict_false(sc->sc_bus.ub_usepolling || 1577 t->flags & F_DISABLED)) 1578 slhci_callback(sc); 1579 else 1580 slhci_callback_schedule(sc); 1581 } 1582 1583 if (!gcq_empty(&sc->sc_waitq)) { 1584 slhci_enter_xfers(sc); 1585 slhci_dotransfer(sc); 1586 goto waitcheck; 1587 } 1588 DLOG(D_INTR, "... done", 0, 0, 0, 0); 1589 } 1590 1591 /* End lock entry functions. Start in lock function. */ 1592 1593 /* Register read/write routines and barriers. */ 1594 #ifdef SLHCI_BUS_SPACE_BARRIERS 1595 #define BSB(a, b, c, d, e) bus_space_barrier(a, b, c, d, BUS_SPACE_BARRIER_ # e) 1596 #define BSB_SYNC(a, b, c, d) bus_space_barrier(a, b, c, d, BUS_SPACE_BARRIER_READ|BUS_SPACE_BARRIER_WRITE) 1597 #else /* now !SLHCI_BUS_SPACE_BARRIERS */ 1598 #define BSB(a, b, c, d, e) __USE(d) 1599 #define BSB_SYNC(a, b, c, d) 1600 #endif /* SLHCI_BUS_SPACE_BARRIERS */ 1601 1602 static void 1603 slhci_write(struct slhci_softc *sc, uint8_t addr, uint8_t data) 1604 { 1605 bus_size_t paddr, pdata, pst, psz; 1606 bus_space_tag_t iot; 1607 bus_space_handle_t ioh; 1608 1609 paddr = pst = 0; 1610 pdata = sc->sc_stride; 1611 psz = pdata * 2; 1612 iot = sc->sc_iot; 1613 ioh = sc->sc_ioh; 1614 1615 bus_space_write_1(iot, ioh, paddr, addr); 1616 BSB(iot, ioh, pst, psz, WRITE_BEFORE_WRITE); 1617 bus_space_write_1(iot, ioh, pdata, data); 1618 BSB(iot, ioh, pst, psz, WRITE_BEFORE_WRITE); 1619 } 1620 1621 static uint8_t 1622 slhci_read(struct slhci_softc *sc, uint8_t addr) 1623 { 1624 bus_size_t paddr, pdata, pst, psz; 1625 bus_space_tag_t iot; 1626 bus_space_handle_t ioh; 1627 uint8_t data; 1628 1629 paddr = pst = 0; 1630 pdata = sc->sc_stride; 1631 psz = pdata * 2; 1632 iot = sc->sc_iot; 1633 ioh = sc->sc_ioh; 1634 1635 bus_space_write_1(iot, ioh, paddr, addr); 1636 BSB(iot, ioh, pst, psz, WRITE_BEFORE_READ); 1637 data = bus_space_read_1(iot, ioh, pdata); 1638 BSB(iot, ioh, pst, psz, READ_BEFORE_WRITE); 1639 return data; 1640 } 1641 1642 #if 0 /* auto-increment mode broken, see errata doc */ 1643 static void 1644 slhci_write_multi(struct slhci_softc *sc, uint8_t addr, uint8_t *buf, int l) 1645 { 1646 bus_size_t paddr, pdata, pst, psz; 1647 bus_space_tag_t iot; 1648 bus_space_handle_t ioh; 1649 1650 paddr = pst = 0; 1651 pdata = sc->sc_stride; 1652 psz = pdata * 2; 1653 iot = sc->sc_iot; 1654 ioh = sc->sc_ioh; 1655 1656 bus_space_write_1(iot, ioh, paddr, addr); 1657 BSB(iot, ioh, pst, psz, WRITE_BEFORE_WRITE); 1658 bus_space_write_multi_1(iot, ioh, pdata, buf, l); 1659 BSB(iot, ioh, pst, psz, WRITE_BEFORE_WRITE); 1660 } 1661 1662 static void 1663 slhci_read_multi(struct slhci_softc *sc, uint8_t addr, uint8_t *buf, int l) 1664 { 1665 bus_size_t paddr, pdata, pst, psz; 1666 bus_space_tag_t iot; 1667 bus_space_handle_t ioh; 1668 1669 paddr = pst = 0; 1670 pdata = sc->sc_stride; 1671 psz = pdata * 2; 1672 iot = sc->sc_iot; 1673 ioh = sc->sc_ioh; 1674 1675 bus_space_write_1(iot, ioh, paddr, addr); 1676 BSB(iot, ioh, pst, psz, WRITE_BEFORE_READ); 1677 bus_space_read_multi_1(iot, ioh, pdata, buf, l); 1678 BSB(iot, ioh, pst, psz, READ_BEFORE_WRITE); 1679 } 1680 #else 1681 static void 1682 slhci_write_multi(struct slhci_softc *sc, uint8_t addr, uint8_t *buf, int l) 1683 { 1684 #if 1 1685 for (; l; addr++, buf++, l--) 1686 slhci_write(sc, addr, *buf); 1687 #else 1688 bus_size_t paddr, pdata, pst, psz; 1689 bus_space_tag_t iot; 1690 bus_space_handle_t ioh; 1691 1692 paddr = pst = 0; 1693 pdata = sc->sc_stride; 1694 psz = pdata * 2; 1695 iot = sc->sc_iot; 1696 ioh = sc->sc_ioh; 1697 1698 for (; l; addr++, buf++, l--) { 1699 bus_space_write_1(iot, ioh, paddr, addr); 1700 BSB(iot, ioh, pst, psz, WRITE_BEFORE_WRITE); 1701 bus_space_write_1(iot, ioh, pdata, *buf); 1702 BSB(iot, ioh, pst, psz, WRITE_BEFORE_WRITE); 1703 } 1704 #endif 1705 } 1706 1707 static void 1708 slhci_read_multi(struct slhci_softc *sc, uint8_t addr, uint8_t *buf, int l) 1709 { 1710 #if 1 1711 for (; l; addr++, buf++, l--) 1712 *buf = slhci_read(sc, addr); 1713 #else 1714 bus_size_t paddr, pdata, pst, psz; 1715 bus_space_tag_t iot; 1716 bus_space_handle_t ioh; 1717 1718 paddr = pst = 0; 1719 pdata = sc->sc_stride; 1720 psz = pdata * 2; 1721 iot = sc->sc_iot; 1722 ioh = sc->sc_ioh; 1723 1724 for (; l; addr++, buf++, l--) { 1725 bus_space_write_1(iot, ioh, paddr, addr); 1726 BSB(iot, ioh, pst, psz, WRITE_BEFORE_READ); 1727 *buf = bus_space_read_1(iot, ioh, pdata); 1728 BSB(iot, ioh, pst, psz, READ_BEFORE_WRITE); 1729 } 1730 #endif 1731 } 1732 #endif 1733 1734 /* 1735 * After calling waitintr it is necessary to either call slhci_callback or 1736 * schedule the callback if necessary. The callback cannot be called directly 1737 * from the hard interrupt since it interrupts at a high IPL and callbacks 1738 * can do copyout and such. 1739 */ 1740 static void 1741 slhci_waitintr(struct slhci_softc *sc, int wait_time) 1742 { 1743 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 1744 struct slhci_transfers *t; 1745 1746 t = &sc->sc_transfers; 1747 1748 KASSERT(mutex_owned(&sc->sc_intr_lock)); 1749 1750 if (__predict_false(sc->sc_bus.ub_usepolling)) 1751 wait_time = 12000; 1752 1753 while (t->pend <= wait_time) { 1754 DLOG(D_WAIT, "waiting... frame %d pend %d flags %#x", 1755 t->frame, t->pend, t->flags, 0); 1756 LK_SLASSERT(t->flags & F_ACTIVE, sc, NULL, NULL, return); 1757 LK_SLASSERT(t->flags & (F_AINPROG|F_BINPROG), sc, NULL, NULL, 1758 return); 1759 slhci_dointr(sc); 1760 } 1761 DLOG(D_WAIT, "... done", 0, 0, 0, 0); 1762 } 1763 1764 static int 1765 slhci_dointr(struct slhci_softc *sc) 1766 { 1767 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 1768 struct slhci_transfers *t; 1769 struct slhci_pipe *tosp; 1770 uint8_t r; 1771 1772 t = &sc->sc_transfers; 1773 1774 KASSERT(mutex_owned(&sc->sc_intr_lock)); 1775 1776 if (sc->sc_ier == 0) { 1777 DLOG(D_INTR, "sc_ier is zero", 0, 0, 0, 0); 1778 return 0; 1779 } 1780 1781 r = slhci_read(sc, SL11_ISR); 1782 1783 #ifdef SLHCI_DEBUG 1784 if (slhcidebug & SLHCI_D_INTR && r & sc->sc_ier && 1785 ((r & ~(SL11_ISR_SOF|SL11_ISR_DATA)) || slhcidebug & SLHCI_D_SOF)) { 1786 uint8_t e, f; 1787 1788 e = slhci_read(sc, SL11_IER); 1789 f = slhci_read(sc, SL11_CTRL); 1790 DDOLOG("Flags=%#x IER=%#x ISR=%#x CTRL=%#x", t->flags, e, r, f); 1791 DDOLOGCTRL(f); 1792 DDOLOGISR(r); 1793 } 1794 #endif 1795 1796 /* 1797 * check IER for corruption occasionally. Assume that the above 1798 * sc_ier == 0 case works correctly. 1799 */ 1800 if (__predict_false(sc->sc_ier_check++ > SLHCI_IER_CHECK_FREQUENCY)) { 1801 sc->sc_ier_check = 0; 1802 if (sc->sc_ier != slhci_read(sc, SL11_IER)) { 1803 printf("%s: IER value corrupted! halted\n", 1804 SC_NAME(sc)); 1805 DDOLOG("IER value corrupted! halted", 0, 0, 0, 0); 1806 slhci_halt(sc, NULL, NULL); 1807 return 1; 1808 } 1809 } 1810 1811 r &= sc->sc_ier; 1812 1813 if (r == 0) { 1814 DLOG(D_INTR, "r is zero", 0, 0, 0, 0); 1815 return 0; 1816 } 1817 1818 sc->sc_ier_check = 0; 1819 1820 slhci_write(sc, SL11_ISR, r); 1821 BSB_SYNC(sc->iot, sc->ioh, sc->pst, sc->psz); 1822 1823 /* If we have an insertion event we do not care about anything else. */ 1824 if (__predict_false(r & SL11_ISR_INSERT)) { 1825 slhci_insert(sc); 1826 DLOG(D_INTR, "... done", 0, 0, 0, 0); 1827 return 1; 1828 } 1829 1830 stop_cc_time(&t_intr); 1831 start_cc_time(&t_intr, r); 1832 1833 if (r & SL11_ISR_SOF) { 1834 t->frame++; 1835 1836 gcq_merge_tail(&t->q[Q_CB], &t->q[Q_NEXT_CB]); 1837 1838 /* 1839 * SOFCHECK flags are cleared in tstart. Two flags are needed 1840 * since the first SOF interrupt processed after the transfer 1841 * is started might have been generated before the transfer 1842 * was started. 1843 */ 1844 if (__predict_false(t->flags & F_SOFCHECK2 && t->flags & 1845 (F_AINPROG|F_BINPROG))) { 1846 printf("%s: Missed transfer completion. halted\n", 1847 SC_NAME(sc)); 1848 DDOLOG("Missed transfer completion. halted", 0, 0, 0, 1849 0); 1850 slhci_halt(sc, NULL, NULL); 1851 return 1; 1852 } else if (t->flags & F_SOFCHECK1) { 1853 t->flags |= F_SOFCHECK2; 1854 } else 1855 t->flags |= F_SOFCHECK1; 1856 1857 if (t->flags & F_CHANGE) 1858 t->flags |= F_ROOTINTR; 1859 1860 while (__predict_true(GOT_FIRST_TO(tosp, t)) && 1861 __predict_false(tosp->to_frame <= t->frame)) { 1862 tosp->xfer->ux_status = USBD_TIMEOUT; 1863 slhci_do_abort(sc, tosp, tosp->xfer); 1864 enter_callback(t, tosp); 1865 } 1866 1867 /* 1868 * Start any waiting transfers right away. If none, we will 1869 * start any new transfers later. 1870 */ 1871 slhci_tstart(sc); 1872 } 1873 1874 if (r & (SL11_ISR_USBA|SL11_ISR_USBB)) { 1875 int ab; 1876 1877 if ((r & (SL11_ISR_USBA|SL11_ISR_USBB)) == 1878 (SL11_ISR_USBA|SL11_ISR_USBB)) { 1879 if (!(t->flags & (F_AINPROG|F_BINPROG))) 1880 return 1; /* presume card pulled */ 1881 1882 LK_SLASSERT((t->flags & (F_AINPROG|F_BINPROG)) != 1883 (F_AINPROG|F_BINPROG), sc, NULL, NULL, return 1); 1884 1885 /* 1886 * This should never happen (unless card removal just 1887 * occurred) but appeared frequently when both 1888 * transfers were started at the same time and was 1889 * accompanied by data corruption. It still happens 1890 * at times. I have not seen data correption except 1891 * when the STATUS bit gets set, which now causes the 1892 * driver to halt, however this should still not 1893 * happen so the warning is kept. See comment in 1894 * abdone, below. 1895 */ 1896 printf("%s: Transfer reported done but not started! " 1897 "Verify data integrity if not detaching. " 1898 " flags %#x r %x\n", SC_NAME(sc), t->flags, r); 1899 1900 if (!(t->flags & F_AINPROG)) 1901 r &= ~SL11_ISR_USBA; 1902 else 1903 r &= ~SL11_ISR_USBB; 1904 } 1905 t->pend = INT_MAX; 1906 1907 if (r & SL11_ISR_USBA) 1908 ab = A; 1909 else 1910 ab = B; 1911 1912 /* 1913 * This happens when a low speed device is attached to 1914 * a hub with chip rev 1.5. SOF stops, but a few transfers 1915 * still work before causing this error. 1916 */ 1917 if (!(t->flags & (ab ? F_BINPROG : F_AINPROG))) { 1918 printf("%s: %s done but not in progress! halted\n", 1919 SC_NAME(sc), ab ? "B" : "A"); 1920 DDOLOG("AB=%d done but not in progress! halted", ab, 1921 0, 0, 0); 1922 slhci_halt(sc, NULL, NULL); 1923 return 1; 1924 } 1925 1926 t->flags &= ~(ab ? F_BINPROG : F_AINPROG); 1927 slhci_tstart(sc); 1928 stop_cc_time(&t_ab[ab]); 1929 start_cc_time(&t_abdone, t->flags); 1930 slhci_abdone(sc, ab); 1931 stop_cc_time(&t_abdone); 1932 } 1933 1934 slhci_dotransfer(sc); 1935 1936 DLOG(D_INTR, "... done", 0, 0, 0, 0); 1937 1938 return 1; 1939 } 1940 1941 static void 1942 slhci_abdone(struct slhci_softc *sc, int ab) 1943 { 1944 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 1945 struct slhci_transfers *t; 1946 struct slhci_pipe *spipe; 1947 struct usbd_xfer *xfer; 1948 uint8_t status, buf_start; 1949 uint8_t *target_buf; 1950 unsigned int actlen; 1951 int head; 1952 1953 t = &sc->sc_transfers; 1954 1955 KASSERT(mutex_owned(&sc->sc_intr_lock)); 1956 1957 DLOG(D_TRACE, "ABDONE flags %#x", t->flags, 0,0,0); 1958 1959 DLOG(D_MSG, "DONE AB=%d spipe %p len %d xfer %p", ab, t->spipe[ab], 1960 t->len[ab], t->spipe[ab] ? t->spipe[ab]->xfer : NULL); 1961 1962 spipe = t->spipe[ab]; 1963 1964 /* 1965 * skip this one if aborted; do not call return from the rest of the 1966 * function unless halting, else t->len will not be cleared. 1967 */ 1968 if (spipe == NULL) 1969 goto done; 1970 1971 t->spipe[ab] = NULL; 1972 1973 xfer = spipe->xfer; 1974 1975 gcq_remove(&spipe->to); 1976 1977 LK_SLASSERT(xfer != NULL, sc, spipe, NULL, return); 1978 1979 status = slhci_read(sc, slhci_tregs[ab][STAT]); 1980 1981 /* 1982 * I saw no status or remaining length greater than the requested 1983 * length in early driver versions in circumstances I assumed caused 1984 * excess power draw. I am no longer able to reproduce this when 1985 * causing excess power draw circumstances. 1986 * 1987 * Disabling a power check and attaching aue to a keyboard and hub 1988 * that is directly attached (to CFU1U, 100mA max, aue 160mA, keyboard 1989 * 98mA) sometimes works and sometimes fails to configure. After 1990 * removing the aue and attaching a self-powered umass dvd reader 1991 * (unknown if it draws power from the host also) soon a single Error 1992 * status occurs then only timeouts. The controller soon halts freeing 1993 * memory due to being ONQU instead of BUSY. This may be the same 1994 * basic sequence that caused the no status/bad length errors. The 1995 * umass device seems to work (better at least) with the keyboard hub 1996 * when not first attaching aue (tested once reading an approximately 1997 * 200MB file). 1998 * 1999 * Overflow can indicate that the device and host disagree about how 2000 * much data has been transfered. This may indicate a problem at any 2001 * point during the transfer, not just when the error occurs. It may 2002 * indicate data corruption. A warning message is printed. 2003 * 2004 * Trying to use both A and B transfers at the same time results in 2005 * incorrect transfer completion ISR reports and the status will then 2006 * include SL11_EPSTAT_SETUP, which is apparently set while the 2007 * transfer is in progress. I also noticed data corruption, even 2008 * after waiting for the transfer to complete. The driver now avoids 2009 * trying to start both at the same time. 2010 * 2011 * I had accidently initialized the B registers before they were valid 2012 * in some driver versions. Since every other performance enhancing 2013 * feature has been confirmed buggy in the errata doc, I have not 2014 * tried both transfers at once again with the documented 2015 * initialization order. 2016 * 2017 * However, I have seen this problem again ("done but not started" 2018 * errors), which in some cases cases the SETUP status bit to remain 2019 * set on future transfers. In other cases, the SETUP bit is not set 2020 * and no data corruption occurs. This occured while using both umass 2021 * and aue on a powered hub (maybe triggered by some local activity 2022 * also) and needs several reads of the 200MB file to trigger. The 2023 * driver now halts if SETUP is detected. 2024 */ 2025 2026 actlen = 0; 2027 2028 if (__predict_false(!status)) { 2029 DDOLOG("no status! xfer %p spipe %p", xfer, spipe, 0,0); 2030 printf("%s: no status! halted\n", SC_NAME(sc)); 2031 slhci_halt(sc, spipe, xfer); 2032 return; 2033 } 2034 2035 #ifdef SLHCI_DEBUG 2036 if ((slhcidebug & SLHCI_D_NAK) || 2037 (status & SL11_EPSTAT_ERRBITS) != SL11_EPSTAT_NAK) { 2038 DDOLOG("USB Status = %#.2x", status, 0, 0, 0); 2039 DDOLOGSTATUS(status); 2040 } 2041 #endif 2042 2043 if (!(status & SL11_EPSTAT_ERRBITS)) { 2044 unsigned int cont = slhci_read(sc, slhci_tregs[ab][CONT]); 2045 unsigned int len = spipe->tregs[LEN]; 2046 DLOG(D_XFER, "cont %d len %d", cont, len, 0, 0); 2047 if ((status & SL11_EPSTAT_OVERFLOW) || cont > len) { 2048 DDOLOG("overflow - cont %d len %d xfer->ux_length %d " 2049 "xfer->actlen %d", cont, len, xfer->ux_length, 2050 xfer->ux_actlen); 2051 printf("%s: overflow cont %d len %d xfer->ux_length" 2052 " %d xfer->ux_actlen %d\n", SC_NAME(sc), cont, 2053 len, xfer->ux_length, xfer->ux_actlen); 2054 actlen = len; 2055 } else { 2056 actlen = len - cont; 2057 } 2058 spipe->nerrs = 0; 2059 } 2060 2061 /* Actual copyin done after starting next transfer. */ 2062 if (actlen && (spipe->tregs[PID] & SL11_PID_BITS) == SL11_PID_IN) { 2063 target_buf = spipe->buffer; 2064 buf_start = spipe->tregs[ADR]; 2065 } else { 2066 target_buf = NULL; 2067 buf_start = 0; /* XXX gcc uninitialized warnings */ 2068 } 2069 2070 if (status & SL11_EPSTAT_ERRBITS) { 2071 status &= SL11_EPSTAT_ERRBITS; 2072 if (status & SL11_EPSTAT_SETUP) { 2073 printf("%s: Invalid controller state detected! " 2074 "halted\n", SC_NAME(sc)); 2075 DDOLOG("Invalid controller state detected! " 2076 "halted", 0, 0, 0, 0); 2077 slhci_halt(sc, spipe, xfer); 2078 return; 2079 } else if (__predict_false(sc->sc_bus.ub_usepolling)) { 2080 head = Q_CALLBACKS; 2081 if (status & SL11_EPSTAT_STALL) 2082 xfer->ux_status = USBD_STALLED; 2083 else if (status & SL11_EPSTAT_TIMEOUT) 2084 xfer->ux_status = USBD_TIMEOUT; 2085 else if (status & SL11_EPSTAT_NAK) 2086 head = Q_NEXT_CB; 2087 else 2088 xfer->ux_status = USBD_IOERROR; 2089 } else if (status & SL11_EPSTAT_NAK) { 2090 int i = spipe->pipe.up_interval; 2091 if (i == 0) 2092 i = 1; 2093 DDOLOG("xfer %p spipe %p NAK delay by %d", xfer, spipe, 2094 i, 0); 2095 spipe->lastframe = spipe->frame = t->frame + i; 2096 slhci_queue_timed(sc, spipe); 2097 goto queued; 2098 } else if (++spipe->nerrs > SLHCI_MAX_RETRIES || 2099 (status & SL11_EPSTAT_STALL)) { 2100 DDOLOG("xfer %p spipe %p nerrs %d", xfer, spipe, 2101 spipe->nerrs, 0); 2102 if (status & SL11_EPSTAT_STALL) 2103 xfer->ux_status = USBD_STALLED; 2104 else if (status & SL11_EPSTAT_TIMEOUT) 2105 xfer->ux_status = USBD_TIMEOUT; 2106 else 2107 xfer->ux_status = USBD_IOERROR; 2108 2109 DLOG(D_ERR, "Max retries reached! status %#x " 2110 "xfer->ux_status %d", status, xfer->ux_status, 0, 2111 0); 2112 DDOLOGSTATUS(status); 2113 2114 head = Q_CALLBACKS; 2115 } else { 2116 head = Q_NEXT_CB; 2117 } 2118 } else if (spipe->ptype == PT_CTRL_SETUP) { 2119 spipe->tregs[PID] = spipe->newpid; 2120 2121 if (xfer->ux_length) { 2122 LK_SLASSERT(spipe->newlen[1] != 0, sc, spipe, xfer, 2123 return); 2124 spipe->tregs[LEN] = spipe->newlen[1]; 2125 spipe->bustime = spipe->newbustime[1]; 2126 spipe->buffer = xfer->ux_buf; 2127 spipe->ptype = PT_CTRL_DATA; 2128 } else { 2129 status_setup: 2130 /* CTRL_DATA swaps direction in PID then jumps here */ 2131 spipe->tregs[LEN] = 0; 2132 if (spipe->pflags & PF_LS) 2133 spipe->bustime = SLHCI_LS_CONST; 2134 else 2135 spipe->bustime = SLHCI_FS_CONST; 2136 spipe->ptype = PT_CTRL_STATUS; 2137 spipe->buffer = NULL; 2138 } 2139 2140 /* Status or first data packet must be DATA1. */ 2141 spipe->control |= SL11_EPCTRL_DATATOGGLE; 2142 if ((spipe->tregs[PID] & SL11_PID_BITS) == SL11_PID_IN) 2143 spipe->control &= ~SL11_EPCTRL_DIRECTION; 2144 else 2145 spipe->control |= SL11_EPCTRL_DIRECTION; 2146 2147 head = Q_CB; 2148 } else if (spipe->ptype == PT_CTRL_STATUS) { 2149 head = Q_CALLBACKS; 2150 } else { /* bulk, intr, control data */ 2151 xfer->ux_actlen += actlen; 2152 spipe->control ^= SL11_EPCTRL_DATATOGGLE; 2153 2154 if (actlen == spipe->tregs[LEN] && 2155 (xfer->ux_length > xfer->ux_actlen || spipe->wantshort)) { 2156 spipe->buffer += actlen; 2157 LK_SLASSERT(xfer->ux_length >= xfer->ux_actlen, sc, 2158 spipe, xfer, return); 2159 if (xfer->ux_length - xfer->ux_actlen < actlen) { 2160 spipe->wantshort = 0; 2161 spipe->tregs[LEN] = spipe->newlen[0]; 2162 spipe->bustime = spipe->newbustime[0]; 2163 LK_SLASSERT(xfer->ux_actlen + 2164 spipe->tregs[LEN] == xfer->ux_length, sc, 2165 spipe, xfer, return); 2166 } 2167 head = Q_CB; 2168 } else if (spipe->ptype == PT_CTRL_DATA) { 2169 spipe->tregs[PID] ^= SLHCI_PID_SWAP_IN_OUT; 2170 goto status_setup; 2171 } else { 2172 if (spipe->ptype == PT_INTR) { 2173 spipe->lastframe += 2174 spipe->pipe.up_interval; 2175 /* 2176 * If ack, we try to keep the 2177 * interrupt rate by using lastframe 2178 * instead of the current frame. 2179 */ 2180 spipe->frame = spipe->lastframe + 2181 spipe->pipe.up_interval; 2182 } 2183 2184 /* 2185 * Set the toggle for the next transfer. It 2186 * has already been toggled above, so the 2187 * current setting will apply to the next 2188 * transfer. 2189 */ 2190 if (spipe->control & SL11_EPCTRL_DATATOGGLE) 2191 spipe->pflags |= PF_TOGGLE; 2192 else 2193 spipe->pflags &= ~PF_TOGGLE; 2194 2195 head = Q_CALLBACKS; 2196 } 2197 } 2198 2199 if (head == Q_CALLBACKS) { 2200 gcq_remove(&spipe->to); 2201 2202 if (xfer->ux_status == USBD_IN_PROGRESS) { 2203 LK_SLASSERT(xfer->ux_actlen <= xfer->ux_length, sc, 2204 spipe, xfer, return); 2205 xfer->ux_status = USBD_NORMAL_COMPLETION; 2206 } 2207 } 2208 2209 enter_q(t, spipe, head); 2210 2211 queued: 2212 if (target_buf != NULL) { 2213 slhci_dotransfer(sc); 2214 start_cc_time(&t_copy_from_dev, actlen); 2215 slhci_read_multi(sc, buf_start, target_buf, actlen); 2216 stop_cc_time(&t_copy_from_dev); 2217 DLOGBUF(D_BUF, target_buf, actlen); 2218 t->pend -= SLHCI_FS_CONST + SLHCI_FS_DATA_TIME(actlen); 2219 } 2220 2221 done: 2222 t->len[ab] = -1; 2223 } 2224 2225 static void 2226 slhci_tstart(struct slhci_softc *sc) 2227 { 2228 struct slhci_transfers *t; 2229 struct slhci_pipe *spipe; 2230 int remaining_bustime; 2231 2232 t = &sc->sc_transfers; 2233 2234 KASSERT(mutex_owned(&sc->sc_intr_lock)); 2235 2236 if (!(t->flags & (F_AREADY|F_BREADY))) 2237 return; 2238 2239 if (t->flags & (F_AINPROG|F_BINPROG|F_DISABLED)) 2240 return; 2241 2242 /* 2243 * We have about 6 us to get from the bus time check to 2244 * starting the transfer or we might babble or the chip might fail to 2245 * signal transfer complete. This leaves no time for any other 2246 * interrupts. 2247 */ 2248 remaining_bustime = (int)(slhci_read(sc, SL811_CSOF)) << 6; 2249 remaining_bustime -= SLHCI_END_BUSTIME; 2250 2251 /* 2252 * Start one transfer only, clearing any aborted transfers that are 2253 * not yet in progress and skipping missed isoc. It is easier to copy 2254 * & paste most of the A/B sections than to make the logic work 2255 * otherwise and this allows better constant use. 2256 */ 2257 if (t->flags & F_AREADY) { 2258 spipe = t->spipe[A]; 2259 if (spipe == NULL) { 2260 t->flags &= ~F_AREADY; 2261 t->len[A] = -1; 2262 } else if (remaining_bustime >= spipe->bustime) { 2263 t->flags &= ~(F_AREADY|F_SOFCHECK1|F_SOFCHECK2); 2264 t->flags |= F_AINPROG; 2265 start_cc_time(&t_ab[A], spipe->tregs[LEN]); 2266 slhci_write(sc, SL11_E0CTRL, spipe->control); 2267 goto pend; 2268 } 2269 } 2270 if (t->flags & F_BREADY) { 2271 spipe = t->spipe[B]; 2272 if (spipe == NULL) { 2273 t->flags &= ~F_BREADY; 2274 t->len[B] = -1; 2275 } else if (remaining_bustime >= spipe->bustime) { 2276 t->flags &= ~(F_BREADY|F_SOFCHECK1|F_SOFCHECK2); 2277 t->flags |= F_BINPROG; 2278 start_cc_time(&t_ab[B], spipe->tregs[LEN]); 2279 slhci_write(sc, SL11_E1CTRL, spipe->control); 2280 pend: 2281 t->pend = spipe->bustime; 2282 } 2283 } 2284 } 2285 2286 static void 2287 slhci_dotransfer(struct slhci_softc *sc) 2288 { 2289 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 2290 struct slhci_transfers *t; 2291 struct slhci_pipe *spipe; 2292 int ab, i; 2293 2294 t = &sc->sc_transfers; 2295 2296 KASSERT(mutex_owned(&sc->sc_intr_lock)); 2297 2298 while ((t->len[A] == -1 || t->len[B] == -1) && 2299 (GOT_FIRST_TIMED_COND(spipe, t, spipe->frame <= t->frame) || 2300 GOT_FIRST_CB(spipe, t))) { 2301 LK_SLASSERT(spipe->xfer != NULL, sc, spipe, NULL, return); 2302 LK_SLASSERT(spipe->ptype != PT_ROOT_CTRL && spipe->ptype != 2303 PT_ROOT_INTR, sc, spipe, NULL, return); 2304 2305 /* Check that this transfer can fit in the remaining memory. */ 2306 if (t->len[A] + t->len[B] + spipe->tregs[LEN] + 1 > 2307 SL11_MAX_PACKET_SIZE) { 2308 DLOG(D_XFER, "Transfer does not fit. alen %d blen %d " 2309 "len %d", t->len[A], t->len[B], spipe->tregs[LEN], 2310 0); 2311 return; 2312 } 2313 2314 gcq_remove(&spipe->xq); 2315 2316 if (t->len[A] == -1) { 2317 ab = A; 2318 spipe->tregs[ADR] = SL11_BUFFER_START; 2319 } else { 2320 ab = B; 2321 spipe->tregs[ADR] = SL11_BUFFER_END - 2322 spipe->tregs[LEN]; 2323 } 2324 2325 t->len[ab] = spipe->tregs[LEN]; 2326 2327 if (spipe->tregs[LEN] && (spipe->tregs[PID] & SL11_PID_BITS) 2328 != SL11_PID_IN) { 2329 start_cc_time(&t_copy_to_dev, 2330 spipe->tregs[LEN]); 2331 slhci_write_multi(sc, spipe->tregs[ADR], 2332 spipe->buffer, spipe->tregs[LEN]); 2333 stop_cc_time(&t_copy_to_dev); 2334 t->pend -= SLHCI_FS_CONST + 2335 SLHCI_FS_DATA_TIME(spipe->tregs[LEN]); 2336 } 2337 2338 DLOG(D_MSG, "NEW TRANSFER AB=%d flags %#x alen %d blen %d", 2339 ab, t->flags, t->len[0], t->len[1]); 2340 2341 if (spipe->tregs[LEN]) 2342 i = 0; 2343 else 2344 i = 1; 2345 2346 for (; i <= 3; i++) 2347 if (t->current_tregs[ab][i] != spipe->tregs[i]) { 2348 t->current_tregs[ab][i] = spipe->tregs[i]; 2349 slhci_write(sc, slhci_tregs[ab][i], 2350 spipe->tregs[i]); 2351 } 2352 2353 DLOG(D_SXFER, "Transfer len %d pid %#x dev %d type %d", 2354 spipe->tregs[LEN], spipe->tregs[PID], spipe->tregs[DEV], 2355 spipe->ptype); 2356 2357 t->spipe[ab] = spipe; 2358 t->flags |= ab ? F_BREADY : F_AREADY; 2359 2360 slhci_tstart(sc); 2361 } 2362 } 2363 2364 /* 2365 * slhci_callback is called after the lock is taken. 2366 */ 2367 static void 2368 slhci_callback(struct slhci_softc *sc) 2369 { 2370 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 2371 struct slhci_transfers *t; 2372 struct slhci_pipe *spipe; 2373 struct usbd_xfer *xfer; 2374 2375 t = &sc->sc_transfers; 2376 2377 KASSERT(mutex_owned(&sc->sc_intr_lock)); 2378 2379 DLOG(D_SOFT, "CB flags %#x", t->flags, 0,0,0); 2380 for (;;) { 2381 if (__predict_false(t->flags & F_ROOTINTR)) { 2382 t->flags &= ~F_ROOTINTR; 2383 if (t->rootintr != NULL) { 2384 u_char *p; 2385 2386 p = t->rootintr->ux_buf; 2387 p[0] = 2; 2388 t->rootintr->ux_actlen = 1; 2389 t->rootintr->ux_status = USBD_NORMAL_COMPLETION; 2390 xfer = t->rootintr; 2391 goto do_callback; 2392 } 2393 } 2394 2395 2396 if (!DEQUEUED_CALLBACK(spipe, t)) 2397 return; 2398 2399 xfer = spipe->xfer; 2400 LK_SLASSERT(xfer != NULL, sc, spipe, NULL, return); 2401 spipe->xfer = NULL; 2402 DLOG(D_XFER, "xfer callback length %d actlen %d spipe %p " 2403 "type %d", xfer->ux_length, xfer->ux_actlen, spipe, 2404 spipe->ptype); 2405 do_callback: 2406 slhci_do_callback(sc, xfer); 2407 } 2408 } 2409 2410 static void 2411 slhci_enter_xfer(struct slhci_softc *sc, struct slhci_pipe *spipe) 2412 { 2413 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 2414 struct slhci_transfers *t; 2415 2416 t = &sc->sc_transfers; 2417 2418 KASSERT(mutex_owned(&sc->sc_intr_lock)); 2419 2420 if (__predict_false(t->flags & F_DISABLED) || 2421 __predict_false(spipe->pflags & PF_GONE)) { 2422 DLOG(D_MSG, "slhci_enter_xfer: DISABLED or GONE", 0,0,0,0); 2423 spipe->xfer->ux_status = USBD_CANCELLED; 2424 } 2425 2426 if (spipe->xfer->ux_status == USBD_IN_PROGRESS) { 2427 if (spipe->xfer->ux_timeout) { 2428 spipe->to_frame = t->frame + spipe->xfer->ux_timeout; 2429 slhci_xfer_timer(sc, spipe); 2430 } 2431 if (spipe->pipe.up_interval) 2432 slhci_queue_timed(sc, spipe); 2433 else 2434 enter_q(t, spipe, Q_CB); 2435 } else 2436 enter_callback(t, spipe); 2437 } 2438 2439 static void 2440 slhci_enter_xfers(struct slhci_softc *sc) 2441 { 2442 struct slhci_pipe *spipe; 2443 2444 KASSERT(mutex_owned(&sc->sc_intr_lock)); 2445 2446 while (DEQUEUED_WAITQ(spipe, sc)) 2447 slhci_enter_xfer(sc, spipe); 2448 } 2449 2450 static void 2451 slhci_queue_timed(struct slhci_softc *sc, struct slhci_pipe *spipe) 2452 { 2453 struct slhci_transfers *t; 2454 struct gcq *q; 2455 struct slhci_pipe *spp; 2456 2457 t = &sc->sc_transfers; 2458 2459 KASSERT(mutex_owned(&sc->sc_intr_lock)); 2460 2461 FIND_TIMED(q, t, spp, spp->frame > spipe->frame); 2462 gcq_insert_before(q, &spipe->xq); 2463 } 2464 2465 static void 2466 slhci_xfer_timer(struct slhci_softc *sc, struct slhci_pipe *spipe) 2467 { 2468 struct slhci_transfers *t; 2469 struct gcq *q; 2470 struct slhci_pipe *spp; 2471 2472 t = &sc->sc_transfers; 2473 2474 KASSERT(mutex_owned(&sc->sc_intr_lock)); 2475 2476 FIND_TO(q, t, spp, spp->to_frame >= spipe->to_frame); 2477 gcq_insert_before(q, &spipe->to); 2478 } 2479 2480 static void 2481 slhci_callback_schedule(struct slhci_softc *sc) 2482 { 2483 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 2484 struct slhci_transfers *t; 2485 2486 t = &sc->sc_transfers; 2487 2488 KASSERT(mutex_owned(&sc->sc_intr_lock)); 2489 2490 if (t->flags & F_ACTIVE) 2491 slhci_do_callback_schedule(sc); 2492 } 2493 2494 static void 2495 slhci_do_callback_schedule(struct slhci_softc *sc) 2496 { 2497 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 2498 struct slhci_transfers *t; 2499 2500 t = &sc->sc_transfers; 2501 2502 KASSERT(mutex_owned(&sc->sc_intr_lock)); 2503 2504 DLOG(D_MSG, "flags %#x", t->flags, 0, 0, 0); 2505 if (!(t->flags & F_CALLBACK)) { 2506 t->flags |= F_CALLBACK; 2507 softint_schedule(sc->sc_cb_softintr); 2508 } 2509 } 2510 2511 #if 0 2512 /* must be called with lock taken. */ 2513 /* XXX static */ void 2514 slhci_pollxfer(struct slhci_softc *sc, struct usbd_xfer *xfer) 2515 { 2516 KASSERT(mutex_owned(&sc->sc_intr_lock)); 2517 slhci_dotransfer(sc); 2518 do { 2519 slhci_dointr(sc); 2520 } while (xfer->ux_status == USBD_IN_PROGRESS); 2521 slhci_do_callback(sc, xfer); 2522 } 2523 #endif 2524 2525 static usbd_status 2526 slhci_do_poll(struct slhci_softc *sc, struct slhci_pipe *spipe, struct 2527 usbd_xfer *xfer) 2528 { 2529 slhci_waitintr(sc, 0); 2530 2531 return USBD_NORMAL_COMPLETION; 2532 } 2533 2534 static usbd_status 2535 slhci_lsvh_warn(struct slhci_softc *sc, struct slhci_pipe *spipe, struct 2536 usbd_xfer *xfer) 2537 { 2538 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 2539 struct slhci_transfers *t; 2540 2541 t = &sc->sc_transfers; 2542 2543 if (!(t->flags & F_LSVH_WARNED)) { 2544 printf("%s: Low speed device via hub disabled, " 2545 "see slhci(4)\n", SC_NAME(sc)); 2546 DDOLOG("Low speed device via hub disabled, " 2547 "see slhci(4)", SC_NAME(sc), 0,0,0); 2548 t->flags |= F_LSVH_WARNED; 2549 } 2550 return USBD_INVAL; 2551 } 2552 2553 static usbd_status 2554 slhci_isoc_warn(struct slhci_softc *sc, struct slhci_pipe *spipe, struct 2555 usbd_xfer *xfer) 2556 { 2557 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 2558 struct slhci_transfers *t; 2559 2560 t = &sc->sc_transfers; 2561 2562 if (!(t->flags & F_ISOC_WARNED)) { 2563 printf("%s: ISOC transfer not supported " 2564 "(see slhci(4))\n", SC_NAME(sc)); 2565 DDOLOG("ISOC transfer not supported " 2566 "(see slhci(4))", 0, 0, 0, 0); 2567 t->flags |= F_ISOC_WARNED; 2568 } 2569 return USBD_INVAL; 2570 } 2571 2572 static usbd_status 2573 slhci_open_pipe(struct slhci_softc *sc, struct slhci_pipe *spipe, struct 2574 usbd_xfer *xfer) 2575 { 2576 struct slhci_transfers *t; 2577 struct usbd_pipe *pipe; 2578 2579 t = &sc->sc_transfers; 2580 pipe = &spipe->pipe; 2581 2582 if (t->flags & F_DISABLED) 2583 return USBD_CANCELLED; 2584 else if (pipe->up_interval && !slhci_reserve_bustime(sc, spipe, 1)) 2585 return USBD_PENDING_REQUESTS; 2586 else { 2587 enter_all_pipes(t, spipe); 2588 return USBD_NORMAL_COMPLETION; 2589 } 2590 } 2591 2592 static usbd_status 2593 slhci_close_pipe(struct slhci_softc *sc, struct slhci_pipe *spipe, struct 2594 usbd_xfer *xfer) 2595 { 2596 struct usbd_pipe *pipe; 2597 2598 pipe = &spipe->pipe; 2599 2600 if (pipe->up_interval && spipe->ptype != PT_ROOT_INTR) 2601 slhci_reserve_bustime(sc, spipe, 0); 2602 gcq_remove(&spipe->ap); 2603 return USBD_NORMAL_COMPLETION; 2604 } 2605 2606 static usbd_status 2607 slhci_do_abort(struct slhci_softc *sc, struct slhci_pipe *spipe, struct 2608 usbd_xfer *xfer) 2609 { 2610 struct slhci_transfers *t; 2611 2612 t = &sc->sc_transfers; 2613 2614 KASSERT(mutex_owned(&sc->sc_intr_lock)); 2615 2616 if (spipe->xfer == xfer) { 2617 if (spipe->ptype == PT_ROOT_INTR) { 2618 if (t->rootintr == spipe->xfer) /* XXX assert? */ 2619 t->rootintr = NULL; 2620 } else { 2621 gcq_remove(&spipe->to); 2622 gcq_remove(&spipe->xq); 2623 2624 if (t->spipe[A] == spipe) { 2625 t->spipe[A] = NULL; 2626 if (!(t->flags & F_AINPROG)) 2627 t->len[A] = -1; 2628 } else if (t->spipe[B] == spipe) { 2629 t->spipe[B] = NULL; 2630 if (!(t->flags & F_BINPROG)) 2631 t->len[B] = -1; 2632 } 2633 } 2634 2635 if (xfer->ux_status != USBD_TIMEOUT) { 2636 spipe->xfer = NULL; 2637 spipe->pipe.up_repeat = 0; /* XXX timeout? */ 2638 } 2639 } 2640 2641 return USBD_NORMAL_COMPLETION; 2642 } 2643 2644 /* 2645 * Called to deactivate or stop use of the controller instead of panicking. 2646 * Will cancel the xfer correctly even when not on a list. 2647 */ 2648 static usbd_status 2649 slhci_halt(struct slhci_softc *sc, struct slhci_pipe *spipe, 2650 struct usbd_xfer *xfer) 2651 { 2652 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 2653 struct slhci_transfers *t; 2654 2655 KASSERT(mutex_owned(&sc->sc_intr_lock)); 2656 2657 t = &sc->sc_transfers; 2658 2659 DDOLOG("Halt! sc %p spipe %p xfer %p", sc, spipe, xfer, 0); 2660 2661 if (spipe != NULL) 2662 slhci_log_spipe(spipe); 2663 2664 if (xfer != NULL) 2665 slhci_log_xfer(xfer); 2666 2667 if (spipe != NULL && xfer != NULL && spipe->xfer == xfer && 2668 !gcq_onlist(&spipe->xq) && t->spipe[A] != spipe && t->spipe[B] != 2669 spipe) { 2670 xfer->ux_status = USBD_CANCELLED; 2671 enter_callback(t, spipe); 2672 } 2673 2674 if (t->flags & F_ACTIVE) { 2675 slhci_intrchange(sc, 0); 2676 /* 2677 * leave power on when halting in case flash devices or disks 2678 * are attached, which may be writing and could be damaged 2679 * by abrupt power loss. The root hub clear power feature 2680 * should still work after halting. 2681 */ 2682 } 2683 2684 t->flags &= ~F_ACTIVE; 2685 t->flags |= F_UDISABLED; 2686 if (!(t->flags & F_NODEV)) 2687 t->flags |= F_NODEV|F_CCONNECT|F_ROOTINTR; 2688 slhci_drain(sc); 2689 2690 /* One last callback for the drain and device removal. */ 2691 slhci_do_callback_schedule(sc); 2692 2693 return USBD_NORMAL_COMPLETION; 2694 } 2695 2696 /* 2697 * There are three interrupt states: no interrupts during reset and after 2698 * device deactivation, INSERT only for no device present but power on, and 2699 * SOF, INSERT, ADONE, and BDONE when device is present. 2700 */ 2701 static void 2702 slhci_intrchange(struct slhci_softc *sc, uint8_t new_ier) 2703 { 2704 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 2705 KASSERT(mutex_owned(&sc->sc_intr_lock)); 2706 if (sc->sc_ier != new_ier) { 2707 DLOG(D_INTR, "New IER %#x", new_ier, 0, 0, 0); 2708 sc->sc_ier = new_ier; 2709 slhci_write(sc, SL11_IER, new_ier); 2710 BSB_SYNC(sc->iot, sc->ioh, sc->pst, sc->psz); 2711 } 2712 } 2713 2714 /* 2715 * Drain: cancel all pending transfers and put them on the callback list and 2716 * set the UDISABLED flag. UDISABLED is cleared only by reset. 2717 */ 2718 static void 2719 slhci_drain(struct slhci_softc *sc) 2720 { 2721 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 2722 struct slhci_transfers *t; 2723 struct slhci_pipe *spipe; 2724 struct gcq *q; 2725 int i; 2726 2727 KASSERT(mutex_owned(&sc->sc_intr_lock)); 2728 2729 t = &sc->sc_transfers; 2730 2731 DLOG(D_MSG, "DRAIN flags %#x", t->flags, 0,0,0); 2732 2733 t->pend = INT_MAX; 2734 2735 for (i=0; i<=1; i++) { 2736 t->len[i] = -1; 2737 if (t->spipe[i] != NULL) { 2738 enter_callback(t, t->spipe[i]); 2739 t->spipe[i] = NULL; 2740 } 2741 } 2742 2743 /* Merge the queues into the callback queue. */ 2744 gcq_merge_tail(&t->q[Q_CALLBACKS], &t->q[Q_CB]); 2745 gcq_merge_tail(&t->q[Q_CALLBACKS], &t->q[Q_NEXT_CB]); 2746 gcq_merge_tail(&t->q[Q_CALLBACKS], &t->timed); 2747 2748 /* 2749 * Cancel all pipes. Note that not all of these may be on the 2750 * callback queue yet; some could be in slhci_start, for example. 2751 */ 2752 FOREACH_AP(q, t, spipe) { 2753 spipe->pflags |= PF_GONE; 2754 spipe->pipe.up_repeat = 0; 2755 spipe->pipe.up_aborting = 1; 2756 if (spipe->xfer != NULL) 2757 spipe->xfer->ux_status = USBD_CANCELLED; 2758 } 2759 2760 gcq_remove_all(&t->to); 2761 2762 t->flags |= F_UDISABLED; 2763 t->flags &= ~(F_AREADY|F_BREADY|F_AINPROG|F_BINPROG|F_LOWSPEED); 2764 } 2765 2766 /* 2767 * RESET: SL11_CTRL_RESETENGINE=1 and SL11_CTRL_JKSTATE=0 for 50ms 2768 * reconfigure SOF after reset, must wait 2.5us before USB bus activity (SOF) 2769 * check attached device speed. 2770 * must wait 100ms before USB transaction according to app note, 10ms 2771 * by spec. uhub does this delay 2772 * 2773 * Started from root hub set feature reset, which does step one. 2774 * ub_usepolling will call slhci_reset directly, otherwise the callout goes 2775 * through slhci_reset_entry. 2776 */ 2777 void 2778 slhci_reset(struct slhci_softc *sc) 2779 { 2780 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 2781 struct slhci_transfers *t; 2782 struct slhci_pipe *spipe; 2783 struct gcq *q; 2784 uint8_t r, pol, ctrl; 2785 2786 t = &sc->sc_transfers; 2787 KASSERT(mutex_owned(&sc->sc_intr_lock)); 2788 2789 stop_cc_time(&t_delay); 2790 2791 KASSERT(t->flags & F_ACTIVE); 2792 2793 start_cc_time(&t_delay, 0); 2794 stop_cc_time(&t_delay); 2795 2796 slhci_write(sc, SL11_CTRL, 0); 2797 start_cc_time(&t_delay, 3); 2798 DELAY(3); 2799 stop_cc_time(&t_delay); 2800 slhci_write(sc, SL11_ISR, 0xff); 2801 2802 r = slhci_read(sc, SL11_ISR); 2803 2804 if (r & SL11_ISR_INSERT) 2805 slhci_write(sc, SL11_ISR, SL11_ISR_INSERT); 2806 2807 if (r & SL11_ISR_NODEV) { 2808 DLOG(D_MSG, "NC", 0,0,0,0); 2809 /* 2810 * Normally, the hard interrupt insert routine will issue 2811 * CCONNECT, however we need to do it here if the detach 2812 * happened during reset. 2813 */ 2814 if (!(t->flags & F_NODEV)) 2815 t->flags |= F_CCONNECT|F_ROOTINTR|F_NODEV; 2816 slhci_intrchange(sc, SL11_IER_INSERT); 2817 } else { 2818 if (t->flags & F_NODEV) 2819 t->flags |= F_CCONNECT; 2820 t->flags &= ~(F_NODEV|F_LOWSPEED); 2821 if (r & SL11_ISR_DATA) { 2822 DLOG(D_MSG, "FS", 0,0,0,0); 2823 pol = ctrl = 0; 2824 } else { 2825 DLOG(D_MSG, "LS", 0,0,0,0); 2826 pol = SL811_CSOF_POLARITY; 2827 ctrl = SL11_CTRL_LOWSPEED; 2828 t->flags |= F_LOWSPEED; 2829 } 2830 2831 /* Enable SOF auto-generation */ 2832 t->frame = 0; /* write to SL811_CSOF will reset frame */ 2833 slhci_write(sc, SL11_SOFTIME, 0xe0); 2834 slhci_write(sc, SL811_CSOF, pol|SL811_CSOF_MASTER|0x2e); 2835 slhci_write(sc, SL11_CTRL, ctrl|SL11_CTRL_ENABLESOF); 2836 2837 /* 2838 * According to the app note, ARM must be set 2839 * for SOF generation to work. We initialize all 2840 * USBA registers here for current_tregs. 2841 */ 2842 slhci_write(sc, SL11_E0ADDR, SL11_BUFFER_START); 2843 slhci_write(sc, SL11_E0LEN, 0); 2844 slhci_write(sc, SL11_E0PID, SL11_PID_SOF); 2845 slhci_write(sc, SL11_E0DEV, 0); 2846 slhci_write(sc, SL11_E0CTRL, SL11_EPCTRL_ARM); 2847 2848 /* 2849 * Initialize B registers. This can't be done earlier since 2850 * they are not valid until the SL811_CSOF register is written 2851 * above due to SL11H compatability. 2852 */ 2853 slhci_write(sc, SL11_E1ADDR, SL11_BUFFER_END - 8); 2854 slhci_write(sc, SL11_E1LEN, 0); 2855 slhci_write(sc, SL11_E1PID, 0); 2856 slhci_write(sc, SL11_E1DEV, 0); 2857 2858 t->current_tregs[0][ADR] = SL11_BUFFER_START; 2859 t->current_tregs[0][LEN] = 0; 2860 t->current_tregs[0][PID] = SL11_PID_SOF; 2861 t->current_tregs[0][DEV] = 0; 2862 t->current_tregs[1][ADR] = SL11_BUFFER_END - 8; 2863 t->current_tregs[1][LEN] = 0; 2864 t->current_tregs[1][PID] = 0; 2865 t->current_tregs[1][DEV] = 0; 2866 2867 /* SOF start will produce USBA interrupt */ 2868 t->len[A] = 0; 2869 t->flags |= F_AINPROG; 2870 2871 slhci_intrchange(sc, SLHCI_NORMAL_INTERRUPTS); 2872 } 2873 2874 t->flags &= ~(F_UDISABLED|F_RESET); 2875 t->flags |= F_CRESET|F_ROOTINTR; 2876 FOREACH_AP(q, t, spipe) { 2877 spipe->pflags &= ~PF_GONE; 2878 spipe->pipe.up_aborting = 0; 2879 } 2880 DLOG(D_MSG, "RESET done flags %#x", t->flags, 0,0,0); 2881 } 2882 2883 2884 #ifdef SLHCI_DEBUG 2885 static int 2886 slhci_memtest(struct slhci_softc *sc) 2887 { 2888 enum { ASC, DESC, EITHER = ASC }; /* direction */ 2889 enum { READ, WRITE }; /* operation */ 2890 const char *ptr, *elem; 2891 size_t i; 2892 const int low = SL11_BUFFER_START, high = SL11_BUFFER_END; 2893 int addr = 0, dir = ASC, op = READ; 2894 /* Extended March C- test algorithm (SOFs also) */ 2895 const char test[] = "E(w0) A(r0w1r1) A(r1w0r0) D(r0w1) D(r1w0) E(r0)"; 2896 char c; 2897 const uint8_t dbs[] = { 0x00, 0x0f, 0x33, 0x55 }; /* data backgrounds */ 2898 uint8_t db; 2899 2900 /* Perform memory test for all data backgrounds. */ 2901 for (i = 0; i < __arraycount(dbs); i++) { 2902 ptr = test; 2903 elem = ptr; 2904 /* Walk test algorithm string. */ 2905 while ((c = *ptr++) != '\0') 2906 switch (tolower((int)c)) { 2907 case 'a': 2908 /* Address sequence is in ascending order. */ 2909 dir = ASC; 2910 break; 2911 case 'd': 2912 /* Address sequence is in descending order. */ 2913 dir = DESC; 2914 break; 2915 case 'e': 2916 /* Address sequence is in either order. */ 2917 dir = EITHER; 2918 break; 2919 case '(': 2920 /* Start of test element (sequence). */ 2921 elem = ptr; 2922 addr = (dir == ASC) ? low : high; 2923 break; 2924 case 'r': 2925 /* read operation */ 2926 op = READ; 2927 break; 2928 case 'w': 2929 /* write operation */ 2930 op = WRITE; 2931 break; 2932 case '0': 2933 case '1': 2934 /* 2935 * Execute previously set-up operation by 2936 * reading/writing non-inverted ('0') or 2937 * inverted ('1') data background. 2938 */ 2939 db = (c - '0') ? ~dbs[i] : dbs[i]; 2940 if (op == READ) { 2941 if (slhci_read(sc, addr) != db) 2942 return -1; 2943 } else 2944 slhci_write(sc, addr, db); 2945 break; 2946 case ')': 2947 /* 2948 * End of element: Repeat same element with next 2949 * address or continue to next element. 2950 */ 2951 addr = (dir == ASC) ? addr + 1 : addr - 1; 2952 if (addr >= low && addr <= high) 2953 ptr = elem; 2954 break; 2955 default: 2956 /* Do nothing. */ 2957 break; 2958 } 2959 } 2960 2961 return 0; 2962 } 2963 #endif 2964 2965 /* returns 1 if succeeded, 0 if failed, reserve == 0 is unreserve */ 2966 static int 2967 slhci_reserve_bustime(struct slhci_softc *sc, struct slhci_pipe *spipe, int 2968 reserve) 2969 { 2970 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 2971 struct slhci_transfers *t; 2972 int bustime, max_packet; 2973 2974 KASSERT(mutex_owned(&sc->sc_intr_lock)); 2975 2976 t = &sc->sc_transfers; 2977 max_packet = UGETW(spipe->pipe.up_endpoint->ue_edesc->wMaxPacketSize); 2978 2979 if (spipe->pflags & PF_LS) 2980 bustime = SLHCI_LS_CONST + SLHCI_LS_DATA_TIME(max_packet); 2981 else 2982 bustime = SLHCI_FS_CONST + SLHCI_FS_DATA_TIME(max_packet); 2983 2984 if (!reserve) { 2985 t->reserved_bustime -= bustime; 2986 #ifdef DIAGNOSTIC 2987 if (t->reserved_bustime < 0) { 2988 printf("%s: reserved_bustime %d < 0!\n", 2989 SC_NAME(sc), t->reserved_bustime); 2990 DDOLOG("reserved_bustime %d < 0!", 2991 t->reserved_bustime, 0, 0, 0); 2992 t->reserved_bustime = 0; 2993 } 2994 #endif 2995 return 1; 2996 } 2997 2998 if (t->reserved_bustime + bustime > SLHCI_RESERVED_BUSTIME) { 2999 if (ratecheck(&sc->sc_reserved_warn_rate, 3000 &reserved_warn_rate)) 3001 #ifdef SLHCI_NO_OVERTIME 3002 { 3003 printf("%s: Max reserved bus time exceeded! " 3004 "Erroring request.\n", SC_NAME(sc)); 3005 DDOLOG("%s: Max reserved bus time exceeded! " 3006 "Erroring request.", 0, 0, 0, 0); 3007 } 3008 return 0; 3009 #else 3010 { 3011 printf("%s: Reserved bus time exceeds %d!\n", 3012 SC_NAME(sc), SLHCI_RESERVED_BUSTIME); 3013 DDOLOG("Reserved bus time exceeds %d!", 3014 SLHCI_RESERVED_BUSTIME, 0, 0, 0); 3015 } 3016 #endif 3017 } 3018 3019 t->reserved_bustime += bustime; 3020 return 1; 3021 } 3022 3023 /* Device insertion/removal interrupt */ 3024 static void 3025 slhci_insert(struct slhci_softc *sc) 3026 { 3027 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 3028 struct slhci_transfers *t; 3029 3030 t = &sc->sc_transfers; 3031 3032 KASSERT(mutex_owned(&sc->sc_intr_lock)); 3033 3034 if (t->flags & F_NODEV) 3035 slhci_intrchange(sc, 0); 3036 else { 3037 slhci_drain(sc); 3038 slhci_intrchange(sc, SL11_IER_INSERT); 3039 } 3040 t->flags ^= F_NODEV; 3041 t->flags |= F_ROOTINTR|F_CCONNECT; 3042 DLOG(D_MSG, "INSERT intr: flags after %#x", t->flags, 0,0,0); 3043 } 3044 3045 /* 3046 * Data structures and routines to emulate the root hub. 3047 */ 3048 3049 static usbd_status 3050 slhci_clear_feature(struct slhci_softc *sc, unsigned int what) 3051 { 3052 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 3053 struct slhci_transfers *t; 3054 usbd_status error; 3055 3056 t = &sc->sc_transfers; 3057 error = USBD_NORMAL_COMPLETION; 3058 3059 KASSERT(mutex_owned(&sc->sc_intr_lock)); 3060 3061 if (what == UHF_PORT_POWER) { 3062 DLOG(D_MSG, "POWER_OFF", 0,0,0,0); 3063 t->flags &= ~F_POWER; 3064 if (!(t->flags & F_NODEV)) 3065 t->flags |= F_NODEV|F_CCONNECT|F_ROOTINTR; 3066 /* for x68k Nereid USB controller */ 3067 if (sc->sc_enable_power && (t->flags & F_REALPOWER)) { 3068 t->flags &= ~F_REALPOWER; 3069 sc->sc_enable_power(sc, POWER_OFF); 3070 } 3071 slhci_intrchange(sc, 0); 3072 slhci_drain(sc); 3073 } else if (what == UHF_C_PORT_CONNECTION) { 3074 t->flags &= ~F_CCONNECT; 3075 } else if (what == UHF_C_PORT_RESET) { 3076 t->flags &= ~F_CRESET; 3077 } else if (what == UHF_PORT_ENABLE) { 3078 slhci_drain(sc); 3079 } else if (what != UHF_PORT_SUSPEND) { 3080 DDOLOG("ClrPortFeatERR:value=%#.4x", what, 0,0,0); 3081 error = USBD_IOERROR; 3082 } 3083 3084 return error; 3085 } 3086 3087 static usbd_status 3088 slhci_set_feature(struct slhci_softc *sc, unsigned int what) 3089 { 3090 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 3091 struct slhci_transfers *t; 3092 uint8_t r; 3093 3094 t = &sc->sc_transfers; 3095 3096 KASSERT(mutex_owned(&sc->sc_intr_lock)); 3097 3098 if (what == UHF_PORT_RESET) { 3099 if (!(t->flags & F_ACTIVE)) { 3100 DDOLOG("SET PORT_RESET when not ACTIVE!", 3101 0,0,0,0); 3102 return USBD_INVAL; 3103 } 3104 if (!(t->flags & F_POWER)) { 3105 DDOLOG("SET PORT_RESET without PORT_POWER! flags %p", 3106 t->flags, 0,0,0); 3107 return USBD_INVAL; 3108 } 3109 if (t->flags & F_RESET) 3110 return USBD_NORMAL_COMPLETION; 3111 DLOG(D_MSG, "RESET flags %#x", t->flags, 0,0,0); 3112 slhci_intrchange(sc, 0); 3113 slhci_drain(sc); 3114 slhci_write(sc, SL11_CTRL, SL11_CTRL_RESETENGINE); 3115 /* usb spec says delay >= 10ms, app note 50ms */ 3116 start_cc_time(&t_delay, 50000); 3117 if (sc->sc_bus.ub_usepolling) { 3118 DELAY(50000); 3119 slhci_reset(sc); 3120 } else { 3121 t->flags |= F_RESET; 3122 callout_schedule(&sc->sc_timer, max(mstohz(50), 2)); 3123 } 3124 } else if (what == UHF_PORT_SUSPEND) { 3125 printf("%s: USB Suspend not implemented!\n", SC_NAME(sc)); 3126 DDOLOG("USB Suspend not implemented!", 0, 0, 0, 0); 3127 } else if (what == UHF_PORT_POWER) { 3128 DLOG(D_MSG, "PORT_POWER", 0,0,0,0); 3129 /* for x68k Nereid USB controller */ 3130 if (!(t->flags & F_ACTIVE)) 3131 return USBD_INVAL; 3132 if (t->flags & F_POWER) 3133 return USBD_NORMAL_COMPLETION; 3134 if (!(t->flags & F_REALPOWER)) { 3135 if (sc->sc_enable_power) 3136 sc->sc_enable_power(sc, POWER_ON); 3137 t->flags |= F_REALPOWER; 3138 } 3139 t->flags |= F_POWER; 3140 r = slhci_read(sc, SL11_ISR); 3141 if (r & SL11_ISR_INSERT) 3142 slhci_write(sc, SL11_ISR, SL11_ISR_INSERT); 3143 if (r & SL11_ISR_NODEV) { 3144 slhci_intrchange(sc, SL11_IER_INSERT); 3145 t->flags |= F_NODEV; 3146 } else { 3147 t->flags &= ~F_NODEV; 3148 t->flags |= F_CCONNECT|F_ROOTINTR; 3149 } 3150 } else { 3151 DDOLOG("SetPortFeatERR=%#.8x", what, 0,0,0); 3152 return USBD_IOERROR; 3153 } 3154 3155 return USBD_NORMAL_COMPLETION; 3156 } 3157 3158 static void 3159 slhci_get_status(struct slhci_softc *sc, usb_port_status_t *ps) 3160 { 3161 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 3162 struct slhci_transfers *t; 3163 unsigned int status, change; 3164 3165 t = &sc->sc_transfers; 3166 3167 KASSERT(mutex_owned(&sc->sc_intr_lock)); 3168 3169 /* 3170 * We do not have a way to detect over current or babble and 3171 * suspend is currently not implemented, so connect and reset 3172 * are the only changes that need to be reported. 3173 */ 3174 change = 0; 3175 if (t->flags & F_CCONNECT) 3176 change |= UPS_C_CONNECT_STATUS; 3177 if (t->flags & F_CRESET) 3178 change |= UPS_C_PORT_RESET; 3179 3180 status = 0; 3181 if (!(t->flags & F_NODEV)) 3182 status |= UPS_CURRENT_CONNECT_STATUS; 3183 if (!(t->flags & F_UDISABLED)) 3184 status |= UPS_PORT_ENABLED; 3185 if (t->flags & F_RESET) 3186 status |= UPS_RESET; 3187 if (t->flags & F_POWER) 3188 status |= UPS_PORT_POWER; 3189 if (t->flags & F_LOWSPEED) 3190 status |= UPS_LOW_SPEED; 3191 USETW(ps->wPortStatus, status); 3192 USETW(ps->wPortChange, change); 3193 DLOG(D_ROOT, "status=%#.4x, change=%#.4x", status, change, 0,0); 3194 } 3195 3196 static int 3197 slhci_roothub_ctrl(struct usbd_bus *bus, usb_device_request_t *req, 3198 void *buf, int buflen) 3199 { 3200 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 3201 struct slhci_softc *sc = SLHCI_BUS2SC(bus); 3202 struct slhci_transfers *t = &sc->sc_transfers; 3203 usbd_status error = USBD_IOERROR; /* XXX should be STALL */ 3204 uint16_t len, value, index; 3205 uint8_t type; 3206 int actlen = 0; 3207 3208 len = UGETW(req->wLength); 3209 value = UGETW(req->wValue); 3210 index = UGETW(req->wIndex); 3211 3212 type = req->bmRequestType; 3213 3214 SLHCI_DEXEC(D_TRACE, slhci_log_req(req)); 3215 3216 /* 3217 * USB requests for hubs have two basic types, standard and class. 3218 * Each could potentially have recipients of device, interface, 3219 * endpoint, or other. For the hub class, CLASS_OTHER means the port 3220 * and CLASS_DEVICE means the hub. For standard requests, OTHER 3221 * is not used. Standard request are described in section 9.4 of the 3222 * standard, hub class requests in 11.16. Each request is either read 3223 * or write. 3224 * 3225 * Clear Feature, Set Feature, and Status are defined for each of the 3226 * used recipients. Get Descriptor and Set Descriptor are defined for 3227 * both standard and hub class types with different descriptors. 3228 * Other requests have only one defined recipient and type. These 3229 * include: Get/Set Address, Get/Set Configuration, Get/Set Interface, 3230 * and Synch Frame for standard requests and Get Bus State for hub 3231 * class. 3232 * 3233 * When a device is first powered up it has address 0 until the 3234 * address is set. 3235 * 3236 * Hubs are only allowed to support one interface and may not have 3237 * isochronous endpoints. The results of the related requests are 3238 * undefined. 3239 * 3240 * The standard requires invalid or unsupported requests to return 3241 * STALL in the data stage, however this does not work well with 3242 * current error handling. XXX 3243 * 3244 * Some unsupported fields: 3245 * Clear Hub Feature is for C_HUB_LOCAL_POWER and C_HUB_OVER_CURRENT 3246 * Set Device Features is for ENDPOINT_HALT and DEVICE_REMOTE_WAKEUP 3247 * Get Bus State is optional sample of D- and D+ at EOF2 3248 */ 3249 3250 switch (req->bRequest) { 3251 /* Write Requests */ 3252 case UR_CLEAR_FEATURE: 3253 if (type == UT_WRITE_CLASS_OTHER) { 3254 if (index == 1 /* Port */) { 3255 mutex_enter(&sc->sc_intr_lock); 3256 error = slhci_clear_feature(sc, value); 3257 mutex_exit(&sc->sc_intr_lock); 3258 } else 3259 DLOG(D_ROOT, "Clear Port Feature " 3260 "index = %#.4x", index, 0,0,0); 3261 } 3262 break; 3263 case UR_SET_FEATURE: 3264 if (type == UT_WRITE_CLASS_OTHER) { 3265 if (index == 1 /* Port */) { 3266 mutex_enter(&sc->sc_intr_lock); 3267 error = slhci_set_feature(sc, value); 3268 mutex_exit(&sc->sc_intr_lock); 3269 } else 3270 DLOG(D_ROOT, "Set Port Feature " 3271 "index = %#.4x", index, 0,0,0); 3272 } else if (type != UT_WRITE_CLASS_DEVICE) 3273 DLOG(D_ROOT, "Set Device Feature " 3274 "ENDPOINT_HALT or DEVICE_REMOTE_WAKEUP " 3275 "not supported", 0,0,0,0); 3276 break; 3277 3278 /* Read Requests */ 3279 case UR_GET_STATUS: 3280 if (type == UT_READ_CLASS_OTHER) { 3281 if (index == 1 /* Port */ && len == /* XXX >=? */ 3282 sizeof(usb_port_status_t)) { 3283 mutex_enter(&sc->sc_intr_lock); 3284 slhci_get_status(sc, (usb_port_status_t *) 3285 buf); 3286 mutex_exit(&sc->sc_intr_lock); 3287 actlen = sizeof(usb_port_status_t); 3288 error = USBD_NORMAL_COMPLETION; 3289 } else 3290 DLOG(D_ROOT, "Get Port Status index = %#.4x " 3291 "len = %#.4x", index, len, 0,0); 3292 } else if (type == UT_READ_CLASS_DEVICE) { /* XXX index? */ 3293 if (len == sizeof(usb_hub_status_t)) { 3294 DLOG(D_ROOT, "Get Hub Status", 3295 0,0,0,0); 3296 actlen = sizeof(usb_hub_status_t); 3297 memset(buf, 0, actlen); 3298 error = USBD_NORMAL_COMPLETION; 3299 } else 3300 DLOG(D_ROOT, "Get Hub Status bad len %#.4x", 3301 len, 0,0,0); 3302 } 3303 break; 3304 case UR_GET_DESCRIPTOR: 3305 if (type == UT_READ_DEVICE) { 3306 /* value is type (&0xff00) and index (0xff) */ 3307 if (value == (UDESC_DEVICE<<8)) { 3308 usb_device_descriptor_t devd; 3309 3310 actlen = min(buflen, sizeof(devd)); 3311 memcpy(&devd, buf, actlen); 3312 USETW(devd.idVendor, USB_VENDOR_SCANLOGIC); 3313 memcpy(buf, &devd, actlen); 3314 error = USBD_NORMAL_COMPLETION; 3315 } else if (value == (UDESC_CONFIG<<8)) { 3316 struct usb_roothub_descriptors confd; 3317 3318 actlen = min(buflen, sizeof(confd)); 3319 memcpy(&confd, buf, actlen); 3320 3321 /* 2 mA units */ 3322 confd.urh_confd.bMaxPower = t->max_current; 3323 memcpy(buf, &confd, actlen); 3324 error = USBD_NORMAL_COMPLETION; 3325 } else if (value == ((UDESC_STRING<<8)|1)) { 3326 /* Vendor */ 3327 actlen = usb_makestrdesc((usb_string_descriptor_t *) 3328 buf, len, "ScanLogic/Cypress"); 3329 error = USBD_NORMAL_COMPLETION; 3330 } else if (value == ((UDESC_STRING<<8)|2)) { 3331 /* Product */ 3332 actlen = usb_makestrdesc((usb_string_descriptor_t *) 3333 buf, len, "SL811HS/T root hub"); 3334 error = USBD_NORMAL_COMPLETION; 3335 } else 3336 DDOLOG("Unknown Get Descriptor %#.4x", 3337 value, 0,0,0); 3338 } else if (type == UT_READ_CLASS_DEVICE) { 3339 /* Descriptor number is 0 */ 3340 if (value == (UDESC_HUB<<8)) { 3341 usb_hub_descriptor_t hubd; 3342 3343 actlen = min(buflen, sizeof(hubd)); 3344 memcpy(&hubd, buf, actlen); 3345 hubd.bHubContrCurrent = 3346 500 - t->max_current; 3347 memcpy(buf, &hubd, actlen); 3348 error = USBD_NORMAL_COMPLETION; 3349 } else 3350 DDOLOG("Unknown Get Hub Descriptor %#.4x", 3351 value, 0,0,0); 3352 } 3353 break; 3354 default: 3355 /* default from usbroothub */ 3356 return buflen; 3357 } 3358 3359 if (error == USBD_NORMAL_COMPLETION) 3360 return actlen; 3361 3362 return -1; 3363 } 3364 3365 /* End in lock functions. Start debug functions. */ 3366 3367 #ifdef SLHCI_DEBUG 3368 void 3369 slhci_log_buffer(struct usbd_xfer *xfer) 3370 { 3371 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 3372 u_char *buf; 3373 3374 if(xfer->ux_length > 0 && 3375 UE_GET_DIR(xfer->ux_pipe->up_endpoint->ue_edesc->bEndpointAddress) == 3376 UE_DIR_IN) { 3377 buf = xfer->ux_buf; 3378 DDOLOGBUF(buf, xfer->ux_actlen); 3379 DDOLOG("len %d actlen %d short %d", xfer->ux_length, 3380 xfer->ux_actlen, xfer->ux_length - xfer->ux_actlen, 0); 3381 } 3382 } 3383 3384 void 3385 slhci_log_req(usb_device_request_t *r) 3386 { 3387 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 3388 int req, type, value, index, len; 3389 3390 req = r->bRequest; 3391 type = r->bmRequestType; 3392 value = UGETW(r->wValue); 3393 index = UGETW(r->wIndex); 3394 len = UGETW(r->wLength); 3395 3396 DDOLOG("request: type %#x", type, 0, 0, 0); 3397 DDOLOG("request: r=%d,v=%d,i=%d,l=%d ", req, value, index, len); 3398 } 3399 3400 void 3401 slhci_log_dumpreg(void) 3402 { 3403 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 3404 uint8_t r; 3405 unsigned int aaddr, alen, baddr, blen; 3406 static u_char buf[240]; 3407 3408 r = slhci_read(ssc, SL11_E0CTRL); 3409 DDOLOG("USB A Host Control = %#.2x", r, 0, 0, 0); 3410 DDOLOGEPCTRL(r); 3411 3412 aaddr = slhci_read(ssc, SL11_E0ADDR); 3413 DDOLOG("USB A Base Address = %u", aaddr, 0,0,0); 3414 alen = slhci_read(ssc, SL11_E0LEN); 3415 DDOLOG("USB A Length = %u", alen, 0,0,0); 3416 r = slhci_read(ssc, SL11_E0STAT); 3417 DDOLOG("USB A Status = %#.2x", r, 0,0,0); 3418 DDOLOGEPSTAT(r); 3419 3420 r = slhci_read(ssc, SL11_E0CONT); 3421 DDOLOG("USB A Remaining or Overflow Length = %u", r, 0,0,0); 3422 r = slhci_read(ssc, SL11_E1CTRL); 3423 DDOLOG("USB B Host Control = %#.2x", r, 0,0,0); 3424 DDOLOGEPCTRL(r); 3425 3426 baddr = slhci_read(ssc, SL11_E1ADDR); 3427 DDOLOG("USB B Base Address = %u", baddr, 0,0,0); 3428 blen = slhci_read(ssc, SL11_E1LEN); 3429 DDOLOG("USB B Length = %u", blen, 0,0,0); 3430 r = slhci_read(ssc, SL11_E1STAT); 3431 DDOLOG("USB B Status = %#.2x", r, 0,0,0); 3432 DDOLOGEPSTAT(r); 3433 3434 r = slhci_read(ssc, SL11_E1CONT); 3435 DDOLOG("USB B Remaining or Overflow Length = %u", r, 0,0,0); 3436 3437 r = slhci_read(ssc, SL11_CTRL); 3438 DDOLOG("Control = %#.2x", r, 0,0,0); 3439 DDOLOGCTRL(r); 3440 3441 r = slhci_read(ssc, SL11_IER); 3442 DDOLOG("Interrupt Enable = %#.2x", r, 0,0,0); 3443 DDOLOGIER(r); 3444 3445 r = slhci_read(ssc, SL11_ISR); 3446 DDOLOG("Interrupt Status = %#.2x", r, 0,0,0); 3447 DDOLOGISR(r); 3448 3449 r = slhci_read(ssc, SL11_REV); 3450 DDOLOG("Revision = %#.2x", r, 0,0,0); 3451 r = slhci_read(ssc, SL811_CSOF); 3452 DDOLOG("SOF Counter = %#.2x", r, 0,0,0); 3453 3454 if (alen && aaddr >= SL11_BUFFER_START && aaddr < SL11_BUFFER_END && 3455 alen <= SL11_MAX_PACKET_SIZE && aaddr + alen <= SL11_BUFFER_END) { 3456 slhci_read_multi(ssc, aaddr, buf, alen); 3457 DDOLOG("USBA Buffer: start %u len %u", aaddr, alen, 0,0); 3458 DDOLOGBUF(buf, alen); 3459 } else if (alen) 3460 DDOLOG("USBA Buffer Invalid", 0,0,0,0); 3461 3462 if (blen && baddr >= SL11_BUFFER_START && baddr < SL11_BUFFER_END && 3463 blen <= SL11_MAX_PACKET_SIZE && baddr + blen <= SL11_BUFFER_END) { 3464 slhci_read_multi(ssc, baddr, buf, blen); 3465 DDOLOG("USBB Buffer: start %u len %u", baddr, blen, 0,0); 3466 DDOLOGBUF(buf, blen); 3467 } else if (blen) 3468 DDOLOG("USBB Buffer Invalid", 0,0,0,0); 3469 } 3470 3471 void 3472 slhci_log_xfer(struct usbd_xfer *xfer) 3473 { 3474 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 3475 DDOLOG("xfer: length=%u, actlen=%u, flags=%#x, timeout=%u,", 3476 xfer->ux_length, xfer->ux_actlen, xfer->ux_flags, xfer->ux_timeout); 3477 DDOLOG("buffer=%p", xfer->ux_buf, 0,0,0); 3478 slhci_log_req(&xfer->ux_request); 3479 } 3480 3481 void 3482 slhci_log_spipe(struct slhci_pipe *spipe) 3483 { 3484 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 3485 DDOLOG("spipe %p onlists: AP=%d TO=%d XQ=%d", spipe, 3486 gcq_onlist(&spipe->ap) ? 1 : 0, 3487 gcq_onlist(&spipe->to) ? 1 : 0, 3488 gcq_onlist(&spipe->xq) ? 1 : 0); 3489 DDOLOG("spipe: xfer %p buffer %p pflags %#x ptype %d", 3490 spipe->xfer, spipe->buffer, spipe->pflags, spipe->ptype); 3491 } 3492 3493 void 3494 slhci_print_intr(void) 3495 { 3496 unsigned int ier, isr; 3497 ier = slhci_read(ssc, SL11_IER); 3498 isr = slhci_read(ssc, SL11_ISR); 3499 printf("IER: %#x ISR: %#x \n", ier, isr); 3500 } 3501 3502 #if 0 3503 void 3504 slhci_log_sc(void) 3505 { 3506 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 3507 3508 struct slhci_transfers *t; 3509 int i; 3510 3511 t = &ssc->sc_transfers; 3512 3513 DDOLOG("Flags=%#x", t->flags, 0,0,0); 3514 DDOLOG("a = %p Alen=%d b = %p Blen=%d", t->spipe[0], t->len[0], 3515 t->spipe[1], t->len[1]); 3516 3517 for (i=0; i<=Q_MAX; i++) 3518 DDOLOG("Q %d: %p", i, gcq_hq(&t->q[i]), 0,0); 3519 3520 DDOLOG("TIMED: %p", GCQ_ITEM(gcq_hq(&t->to), 3521 struct slhci_pipe, to), 0,0,0); 3522 3523 DDOLOG("frame=%d rootintr=%p", t->frame, t->rootintr, 0,0); 3524 3525 DDOLOG("ub_usepolling=%d", ssc->sc_bus.ub_usepolling, 0, 0, 0); 3526 } 3527 3528 void 3529 slhci_log_slreq(struct slhci_pipe *r) 3530 { 3531 SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); 3532 DDOLOG("xfer: %p", r->xfer, 0,0,0); 3533 DDOLOG("buffer: %p", r->buffer, 0,0,0); 3534 DDOLOG("bustime: %u", r->bustime, 0,0,0); 3535 DDOLOG("control: %#x", r->control, 0,0,0); 3536 DDOLOGEPCTRL(r->control); 3537 3538 DDOLOG("pid: %#x", r->tregs[PID], 0,0,0); 3539 DDOLOG("dev: %u", r->tregs[DEV], 0,0,0); 3540 DDOLOG("len: %u", r->tregs[LEN], 0,0,0); 3541 3542 if (r->xfer) 3543 slhci_log_xfer(r->xfer); 3544 } 3545 #endif 3546 #endif /* SLHCI_DEBUG */ 3547 /* End debug functions. */ 3548