1 /* $NetBSD: sl811hs.c,v 1.33 2012/06/10 06:15:52 mrg Exp $ */ 2 3 /* 4 * Not (c) 2007 Matthew Orgass 5 * This file is public domain, meaning anyone can make any use of part or all 6 * of this file including copying into other works without credit. Any use, 7 * modified or not, is solely the responsibility of the user. If this file is 8 * part of a collection then use in the collection is governed by the terms of 9 * the collection. 10 */ 11 12 /* 13 * Cypress/ScanLogic SL811HS/T USB Host Controller 14 * Datasheet, Errata, and App Note available at www.cypress.com 15 * 16 * Uses: Ratoc CFU1U PCMCIA USB Host Controller, Nereid X68k USB HC, ISA 17 * HCs. The Ratoc CFU2 uses a different chip. 18 * 19 * This chip puts the serial in USB. It implements USB by means of an eight 20 * bit I/O interface. It can be used for ISA, PCMCIA/CF, parallel port, 21 * serial port, or any eight bit interface. It has 256 bytes of memory, the 22 * first 16 of which are used for register access. There are two sets of 23 * registers for sending individual bus transactions. Because USB is polled, 24 * this organization means that some amount of card access must often be made 25 * when devices are attached, even if when they are not directly being used. 26 * A per-ms frame interrupt is necessary and many devices will poll with a 27 * per-frame bulk transfer. 28 * 29 * It is possible to write a little over two bytes to the chip (auto 30 * incremented) per full speed byte time on the USB. Unfortunately, 31 * auto-increment does not work reliably so write and bus speed is 32 * approximately the same for full speed devices. 33 * 34 * In addition to the 240 byte packet size limit for isochronous transfers, 35 * this chip has no means of determining the current frame number other than 36 * getting all 1ms SOF interrupts, which is not always possible even on a fast 37 * system. Isochronous transfers guarantee that transfers will never be 38 * retried in a later frame, so this can cause problems with devices beyond 39 * the difficulty in actually performing the transfer most frames. I tried 40 * implementing isoc transfers and was able to play CD-derrived audio via an 41 * iMic on a 2GHz PC, however it would still be interrupted at times and 42 * once interrupted, would stay out of sync. All isoc support has been 43 * removed. 44 * 45 * BUGS: all chip revisions have problems with low speed devices through hubs. 46 * The chip stops generating SOF with hubs that send SE0 during SOF. See 47 * comment in dointr(). All performance enhancing features of this chip seem 48 * not to work properly, most confirmed buggy in errata doc. 49 * 50 */ 51 52 /* 53 * The hard interrupt is the main entry point. Start, callbacks, and repeat 54 * are the only others called frequently. 55 * 56 * Since this driver attaches to pcmcia, card removal at any point should be 57 * expected and not cause panics or infinite loops. 58 * 59 * This driver does fine grained locking for its own data structures, however 60 * the general USB code does not yet have locks, some of which would need to 61 * be used in this driver. This is mostly for debug use on single processor 62 * systems. 63 * 64 * The theory of the wait lock is that start is the only function that would 65 * be frequently called from arbitrary processors, so it should not need to 66 * wait for the rest to be completed. However, once entering the lock as much 67 * device access as possible is done, so any other CPU that tries to service 68 * an interrupt would be blocked. Ideally, the hard and soft interrupt could 69 * be assigned to the same CPU and start would normally just put work on the 70 * wait queue and generate a soft interrupt. 71 * 72 * Any use of the main lock must check the wait lock before returning. The 73 * aquisition order is main lock then wait lock, but the wait lock must be 74 * released last when clearing the wait queue. 75 */ 76 77 /* XXX TODO: 78 * copy next output packet while transfering 79 * usb suspend 80 * could keep track of known values of all buffer space? 81 * combined print/log function for errors 82 * 83 * use_polling support is untested and may not work 84 */ 85 86 #include <sys/cdefs.h> 87 __KERNEL_RCSID(0, "$NetBSD: sl811hs.c,v 1.33 2012/06/10 06:15:52 mrg Exp $"); 88 89 #include "opt_slhci.h" 90 91 #include <sys/cdefs.h> 92 #include <sys/param.h> 93 #include <sys/systm.h> 94 #include <sys/kernel.h> 95 #include <sys/proc.h> 96 #include <sys/device.h> 97 #include <sys/malloc.h> 98 #include <sys/queue.h> 99 #include <sys/gcq.h> 100 #include <sys/simplelock.h> 101 #include <sys/intr.h> 102 #include <sys/cpu.h> 103 #include <sys/bus.h> 104 105 #include <dev/usb/usb.h> 106 #include <dev/usb/usbdi.h> 107 #include <dev/usb/usbdivar.h> 108 #include <dev/usb/usb_mem.h> 109 #include <dev/usb/usbdevs.h> 110 #include <dev/usb/usbroothub_subr.h> 111 112 #include <dev/ic/sl811hsreg.h> 113 #include <dev/ic/sl811hsvar.h> 114 115 #define Q_CB 0 /* Control/Bulk */ 116 #define Q_NEXT_CB 1 117 #define Q_MAX_XFER Q_CB 118 #define Q_CALLBACKS 2 119 #define Q_MAX Q_CALLBACKS 120 121 #define F_AREADY (0x00000001) 122 #define F_BREADY (0x00000002) 123 #define F_AINPROG (0x00000004) 124 #define F_BINPROG (0x00000008) 125 #define F_LOWSPEED (0x00000010) 126 #define F_UDISABLED (0x00000020) /* Consider disabled for USB */ 127 #define F_NODEV (0x00000040) 128 #define F_ROOTINTR (0x00000080) 129 #define F_REALPOWER (0x00000100) /* Actual power state */ 130 #define F_POWER (0x00000200) /* USB reported power state */ 131 #define F_ACTIVE (0x00000400) 132 #define F_CALLBACK (0x00000800) /* Callback scheduled */ 133 #define F_SOFCHECK1 (0x00001000) 134 #define F_SOFCHECK2 (0x00002000) 135 #define F_CRESET (0x00004000) /* Reset done not reported */ 136 #define F_CCONNECT (0x00008000) /* Connect change not reported */ 137 #define F_RESET (0x00010000) 138 #define F_ISOC_WARNED (0x00020000) 139 #define F_LSVH_WARNED (0x00040000) 140 141 #define F_DISABLED (F_NODEV|F_UDISABLED) 142 #define F_CHANGE (F_CRESET|F_CCONNECT) 143 144 #ifdef SLHCI_TRY_LSVH 145 unsigned int slhci_try_lsvh = 1; 146 #else 147 unsigned int slhci_try_lsvh = 0; 148 #endif 149 150 #define ADR 0 151 #define LEN 1 152 #define PID 2 153 #define DEV 3 154 #define STAT 2 155 #define CONT 3 156 157 #define A 0 158 #define B 1 159 160 static const uint8_t slhci_tregs[2][4] = 161 {{SL11_E0ADDR, SL11_E0LEN, SL11_E0PID, SL11_E0DEV }, 162 {SL11_E1ADDR, SL11_E1LEN, SL11_E1PID, SL11_E1DEV }}; 163 164 #define PT_ROOT_CTRL 0 165 #define PT_ROOT_INTR 1 166 #define PT_CTRL_SETUP 2 167 #define PT_CTRL_DATA 3 168 #define PT_CTRL_STATUS 4 169 #define PT_INTR 5 170 #define PT_BULK 6 171 #define PT_MAX 6 172 173 #ifdef SLHCI_DEBUG 174 #define SLHCI_MEM_ACCOUNTING 175 static const char * 176 pnames(int ptype) 177 { 178 static const char * const names[] = { "ROOT Ctrl", "ROOT Intr", 179 "Control (setup)", "Control (data)", "Control (status)", 180 "Interrupt", "Bulk", "BAD PTYPE" }; 181 182 KASSERT(sizeof(names) / sizeof(names[0]) == PT_MAX + 2); 183 if (ptype > PT_MAX) 184 ptype = PT_MAX + 1; 185 return names[ptype]; 186 } 187 #endif 188 189 #define SLHCI_XFER_TYPE(x) (((struct slhci_pipe *)((x)->pipe))->ptype) 190 191 /* Maximum allowable reserved bus time. Since intr/isoc transfers have 192 * unconditional priority, this is all that ensures control and bulk transfers 193 * get a chance. It is a single value for all frames since all transfers can 194 * use multiple consecutive frames if an error is encountered. Note that it 195 * is not really possible to fill the bus with transfers, so this value should 196 * be on the low side. Defaults to giving a warning unless SLHCI_NO_OVERTIME 197 * is defined. Full time is 12000 - END_BUSTIME. */ 198 #ifndef SLHCI_RESERVED_BUSTIME 199 #define SLHCI_RESERVED_BUSTIME 5000 200 #endif 201 202 /* Rate for "exceeds reserved bus time" warnings (default) or errors. 203 * Warnings only happen when an endpoint open causes the time to go above 204 * SLHCI_RESERVED_BUSTIME, not if it is already above. */ 205 #ifndef SLHCI_OVERTIME_WARNING_RATE 206 #define SLHCI_OVERTIME_WARNING_RATE { 60, 0 } /* 60 seconds */ 207 #endif 208 static const struct timeval reserved_warn_rate = SLHCI_OVERTIME_WARNING_RATE; 209 210 /* Rate for overflow warnings */ 211 #ifndef SLHCI_OVERFLOW_WARNING_RATE 212 #define SLHCI_OVERFLOW_WARNING_RATE { 60, 0 } /* 60 seconds */ 213 #endif 214 static const struct timeval overflow_warn_rate = SLHCI_OVERFLOW_WARNING_RATE; 215 216 /* For EOF, the spec says 42 bit times, plus (I think) a possible hub skew of 217 * 20 bit times. By default leave 66 bit times to start the transfer beyond 218 * the required time. Units are full-speed bit times (a bit over 5us per 64). 219 * Only multiples of 64 are significant. */ 220 #define SLHCI_STANDARD_END_BUSTIME 128 221 #ifndef SLHCI_EXTRA_END_BUSTIME 222 #define SLHCI_EXTRA_END_BUSTIME 0 223 #endif 224 225 #define SLHCI_END_BUSTIME (SLHCI_STANDARD_END_BUSTIME+SLHCI_EXTRA_END_BUSTIME) 226 227 /* This is an approximation of the USB worst-case timings presented on p. 54 of 228 * the USB 1.1 spec translated to full speed bit times. 229 * FS = full speed with handshake, FSII = isoc in, FSIO = isoc out, 230 * FSI = isoc (worst case), LS = low speed */ 231 #define SLHCI_FS_CONST 114 232 #define SLHCI_FSII_CONST 92 233 #define SLHCI_FSIO_CONST 80 234 #define SLHCI_FSI_CONST 92 235 #define SLHCI_LS_CONST 804 236 #ifndef SLHCI_PRECICE_BUSTIME 237 /* These values are < 3% too high (compared to the multiply and divide) for 238 * max sized packets. */ 239 #define SLHCI_FS_DATA_TIME(len) (((u_int)(len)<<3)+(len)+((len)>>1)) 240 #define SLHCI_LS_DATA_TIME(len) (((u_int)(len)<<6)+((u_int)(len)<<4)) 241 #else 242 #define SLHCI_FS_DATA_TIME(len) (56*(len)/6) 243 #define SLHCI_LS_DATA_TIME(len) (449*(len)/6) 244 #endif 245 246 /* Set SLHCI_WAIT_SIZE to the desired maximum size of single FS transfer 247 * to poll for after starting a transfer. 64 gets all full speed transfers. 248 * Note that even if 0 polling will occur if data equal or greater than the 249 * transfer size is copied to the chip while the transfer is in progress. 250 * Setting SLHCI_WAIT_TIME to -12000 will disable polling. 251 */ 252 #ifndef SLHCI_WAIT_SIZE 253 #define SLHCI_WAIT_SIZE 8 254 #endif 255 #ifndef SLHCI_WAIT_TIME 256 #define SLHCI_WAIT_TIME (SLHCI_FS_CONST + \ 257 SLHCI_FS_DATA_TIME(SLHCI_WAIT_SIZE)) 258 #endif 259 const int slhci_wait_time = SLHCI_WAIT_TIME; 260 261 /* Root hub intr endpoint */ 262 #define ROOT_INTR_ENDPT 1 263 264 #ifndef SLHCI_MAX_RETRIES 265 #define SLHCI_MAX_RETRIES 3 266 #endif 267 268 /* Check IER values for corruption after this many unrecognized interrupts. */ 269 #ifndef SLHCI_IER_CHECK_FREQUENCY 270 #ifdef SLHCI_DEBUG 271 #define SLHCI_IER_CHECK_FREQUENCY 1 272 #else 273 #define SLHCI_IER_CHECK_FREQUENCY 100 274 #endif 275 #endif 276 277 /* Note that buffer points to the start of the buffer for this transfer. */ 278 struct slhci_pipe { 279 struct usbd_pipe pipe; 280 struct usbd_xfer *xfer; /* xfer in progress */ 281 uint8_t *buffer; /* I/O buffer (if needed) */ 282 struct gcq ap; /* All pipes */ 283 struct gcq to; /* Timeout list */ 284 struct gcq xq; /* Xfer queues */ 285 unsigned int pflags; /* Pipe flags */ 286 #define PF_GONE (0x01) /* Pipe is on disabled device */ 287 #define PF_TOGGLE (0x02) /* Data toggle status */ 288 #define PF_LS (0x04) /* Pipe is low speed */ 289 #define PF_PREAMBLE (0x08) /* Needs preamble */ 290 Frame to_frame; /* Frame number for timeout */ 291 Frame frame; /* Frame number for intr xfer */ 292 Frame lastframe; /* Previous frame number for intr */ 293 uint16_t bustime; /* Worst case bus time usage */ 294 uint16_t newbustime[2]; /* new bustimes (see index below) */ 295 uint8_t tregs[4]; /* ADR, LEN, PID, DEV */ 296 uint8_t newlen[2]; /* 0 = short data, 1 = ctrl data */ 297 uint8_t newpid; /* for ctrl */ 298 uint8_t wantshort; /* last xfer must be short */ 299 uint8_t control; /* Host control register settings */ 300 uint8_t nerrs; /* Current number of errors */ 301 uint8_t ptype; /* Pipe type */ 302 }; 303 304 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG) 305 #define SLHCI_WAITLOCK 1 306 #endif 307 308 #ifdef SLHCI_PROFILE_TRANSFER 309 #if defined(__mips__) 310 /* MIPS cycle counter does not directly count cpu cycles but is a different 311 * fraction of cpu cycles depending on the cpu. */ 312 typedef u_int32_t cc_type; 313 #define CC_TYPE_FMT "%u" 314 #define slhci_cc_set(x) __asm volatile ("mfc0 %[cc], $9\n\tnop\n\tnop\n\tnop" \ 315 : [cc] "=r"(x)) 316 #elif defined(__i386__) 317 typedef u_int64_t cc_type; 318 #define CC_TYPE_FMT "%llu" 319 #define slhci_cc_set(x) __asm volatile ("rdtsc" : "=A"(x)) 320 #else 321 #error "SLHCI_PROFILE_TRANSFER not implemented on this MACHINE_ARCH (see sys/dev/ic/sl811hs.c)" 322 #endif 323 struct slhci_cc_time { 324 cc_type start; 325 cc_type stop; 326 unsigned int miscdata; 327 }; 328 #ifndef SLHCI_N_TIMES 329 #define SLHCI_N_TIMES 200 330 #endif 331 struct slhci_cc_times { 332 struct slhci_cc_time times[SLHCI_N_TIMES]; 333 int current; 334 int wraparound; 335 }; 336 337 static struct slhci_cc_times t_ab[2]; 338 static struct slhci_cc_times t_abdone; 339 static struct slhci_cc_times t_copy_to_dev; 340 static struct slhci_cc_times t_copy_from_dev; 341 static struct slhci_cc_times t_intr; 342 static struct slhci_cc_times t_lock; 343 static struct slhci_cc_times t_delay; 344 static struct slhci_cc_times t_hard_int; 345 static struct slhci_cc_times t_callback; 346 347 static inline void 348 start_cc_time(struct slhci_cc_times *times, unsigned int misc) { 349 times->times[times->current].miscdata = misc; 350 slhci_cc_set(times->times[times->current].start); 351 } 352 static inline void 353 stop_cc_time(struct slhci_cc_times *times) { 354 slhci_cc_set(times->times[times->current].stop); 355 if (++times->current >= SLHCI_N_TIMES) { 356 times->current = 0; 357 times->wraparound = 1; 358 } 359 } 360 361 void slhci_dump_cc_times(int); 362 363 void 364 slhci_dump_cc_times(int n) { 365 struct slhci_cc_times *times; 366 int i; 367 368 switch (n) { 369 default: 370 case 0: 371 printf("USBA start transfer to intr:\n"); 372 times = &t_ab[A]; 373 break; 374 case 1: 375 printf("USBB start transfer to intr:\n"); 376 times = &t_ab[B]; 377 break; 378 case 2: 379 printf("abdone:\n"); 380 times = &t_abdone; 381 break; 382 case 3: 383 printf("copy to device:\n"); 384 times = &t_copy_to_dev; 385 break; 386 case 4: 387 printf("copy from device:\n"); 388 times = &t_copy_from_dev; 389 break; 390 case 5: 391 printf("intr to intr:\n"); 392 times = &t_intr; 393 break; 394 case 6: 395 printf("lock to release:\n"); 396 times = &t_lock; 397 break; 398 case 7: 399 printf("delay time:\n"); 400 times = &t_delay; 401 break; 402 case 8: 403 printf("hard interrupt enter to exit:\n"); 404 times = &t_hard_int; 405 break; 406 case 9: 407 printf("callback:\n"); 408 times = &t_callback; 409 break; 410 } 411 412 if (times->wraparound) 413 for (i = times->current + 1; i < SLHCI_N_TIMES; i++) 414 printf("start " CC_TYPE_FMT " stop " CC_TYPE_FMT 415 " difference %8i miscdata %#x\n", 416 times->times[i].start, times->times[i].stop, 417 (int)(times->times[i].stop - 418 times->times[i].start), times->times[i].miscdata); 419 420 for (i = 0; i < times->current; i++) 421 printf("start " CC_TYPE_FMT " stop " CC_TYPE_FMT 422 " difference %8i miscdata %#x\n", times->times[i].start, 423 times->times[i].stop, (int)(times->times[i].stop - 424 times->times[i].start), times->times[i].miscdata); 425 } 426 #else 427 #define start_cc_time(x, y) 428 #define stop_cc_time(x) 429 #endif /* SLHCI_PROFILE_TRANSFER */ 430 431 typedef usbd_status (*LockCallFunc)(struct slhci_softc *, struct slhci_pipe 432 *, struct usbd_xfer *); 433 434 usbd_status slhci_allocm(struct usbd_bus *, usb_dma_t *, u_int32_t); 435 void slhci_freem(struct usbd_bus *, usb_dma_t *); 436 struct usbd_xfer * slhci_allocx(struct usbd_bus *); 437 void slhci_freex(struct usbd_bus *, struct usbd_xfer *); 438 439 usbd_status slhci_transfer(struct usbd_xfer *); 440 usbd_status slhci_start(struct usbd_xfer *); 441 usbd_status slhci_root_start(struct usbd_xfer *); 442 usbd_status slhci_open(struct usbd_pipe *); 443 444 /* slhci_supported_rev, slhci_preinit, slhci_attach, slhci_detach, 445 * slhci_activate */ 446 447 void slhci_abort(struct usbd_xfer *); 448 void slhci_close(struct usbd_pipe *); 449 void slhci_clear_toggle(struct usbd_pipe *); 450 void slhci_poll(struct usbd_bus *); 451 void slhci_done(struct usbd_xfer *); 452 void slhci_void(void *); 453 454 /* lock entry functions */ 455 456 #ifdef SLHCI_MEM_ACCOUNTING 457 void slhci_mem_use(struct usbd_bus *, int); 458 #endif 459 460 void slhci_reset_entry(void *); 461 usbd_status slhci_lock_call(struct slhci_softc *, LockCallFunc, 462 struct slhci_pipe *, struct usbd_xfer *); 463 void slhci_start_entry(struct slhci_softc *, struct slhci_pipe *); 464 void slhci_callback_entry(void *arg); 465 void slhci_do_callback(struct slhci_softc *, struct usbd_xfer *, int *); 466 467 /* slhci_intr */ 468 469 void slhci_main(struct slhci_softc *, int *); 470 471 /* in lock functions */ 472 473 static void slhci_write(struct slhci_softc *, uint8_t, uint8_t); 474 static uint8_t slhci_read(struct slhci_softc *, uint8_t); 475 static void slhci_write_multi(struct slhci_softc *, uint8_t, uint8_t *, int); 476 static void slhci_read_multi(struct slhci_softc *, uint8_t, uint8_t *, int); 477 478 static void slhci_waitintr(struct slhci_softc *, int); 479 static int slhci_dointr(struct slhci_softc *); 480 static void slhci_abdone(struct slhci_softc *, int); 481 static void slhci_tstart(struct slhci_softc *); 482 static void slhci_dotransfer(struct slhci_softc *); 483 484 static void slhci_callback(struct slhci_softc *, int *); 485 static void slhci_enter_xfer(struct slhci_softc *, struct slhci_pipe *); 486 #ifdef SLHCI_WAITLOCK 487 static void slhci_enter_xfers(struct slhci_softc *); 488 #endif 489 static void slhci_queue_timed(struct slhci_softc *, struct slhci_pipe *); 490 static void slhci_xfer_timer(struct slhci_softc *, struct slhci_pipe *); 491 492 static void slhci_do_repeat(struct slhci_softc *, struct usbd_xfer *); 493 static void slhci_callback_schedule(struct slhci_softc *); 494 static void slhci_do_callback_schedule(struct slhci_softc *); 495 #if 0 496 void slhci_pollxfer(struct slhci_softc *, struct usbd_xfer *, int *); /* XXX */ 497 #endif 498 499 static usbd_status slhci_do_poll(struct slhci_softc *, struct slhci_pipe *, 500 struct usbd_xfer *); 501 static usbd_status slhci_lsvh_warn(struct slhci_softc *, struct slhci_pipe *, 502 struct usbd_xfer *); 503 static usbd_status slhci_isoc_warn(struct slhci_softc *, struct slhci_pipe *, 504 struct usbd_xfer *); 505 static usbd_status slhci_open_pipe(struct slhci_softc *, struct slhci_pipe *, 506 struct usbd_xfer *); 507 static usbd_status slhci_close_pipe(struct slhci_softc *, struct slhci_pipe *, 508 struct usbd_xfer *); 509 static usbd_status slhci_do_abort(struct slhci_softc *, struct slhci_pipe *, 510 struct usbd_xfer *); 511 static usbd_status slhci_do_attach(struct slhci_softc *, struct slhci_pipe *, 512 struct usbd_xfer *); 513 static usbd_status slhci_halt(struct slhci_softc *, struct slhci_pipe *, 514 struct usbd_xfer *); 515 516 static void slhci_intrchange(struct slhci_softc *, uint8_t); 517 static void slhci_drain(struct slhci_softc *); 518 static void slhci_reset(struct slhci_softc *); 519 static int slhci_reserve_bustime(struct slhci_softc *, struct slhci_pipe *, 520 int); 521 static void slhci_insert(struct slhci_softc *); 522 523 static usbd_status slhci_clear_feature(struct slhci_softc *, unsigned int); 524 static usbd_status slhci_set_feature(struct slhci_softc *, unsigned int); 525 static void slhci_get_status(struct slhci_softc *, usb_port_status_t *); 526 static usbd_status slhci_root(struct slhci_softc *, struct slhci_pipe *, 527 struct usbd_xfer *); 528 529 #ifdef SLHCI_DEBUG 530 void slhci_log_buffer(struct usbd_xfer *); 531 void slhci_log_req(usb_device_request_t *); 532 void slhci_log_req_hub(usb_device_request_t *); 533 void slhci_log_dumpreg(void); 534 void slhci_log_xfer(struct usbd_xfer *); 535 void slhci_log_spipe(struct slhci_pipe *); 536 void slhci_print_intr(void); 537 void slhci_log_sc(void); 538 void slhci_log_slreq(struct slhci_pipe *); 539 540 extern int usbdebug; 541 542 /* Constified so you can read the values from ddb */ 543 const int SLHCI_D_TRACE = 0x0001; 544 const int SLHCI_D_MSG = 0x0002; 545 const int SLHCI_D_XFER = 0x0004; 546 const int SLHCI_D_MEM = 0x0008; 547 const int SLHCI_D_INTR = 0x0010; 548 const int SLHCI_D_SXFER = 0x0020; 549 const int SLHCI_D_ERR = 0x0080; 550 const int SLHCI_D_BUF = 0x0100; 551 const int SLHCI_D_SOFT = 0x0200; 552 const int SLHCI_D_WAIT = 0x0400; 553 const int SLHCI_D_ROOT = 0x0800; 554 /* SOF/NAK alone normally ignored, SOF also needs D_INTR */ 555 const int SLHCI_D_SOF = 0x1000; 556 const int SLHCI_D_NAK = 0x2000; 557 558 int slhci_debug = 0x1cbc; /* 0xc8c; */ /* 0xffff; */ /* 0xd8c; */ 559 struct slhci_softc *ssc; 560 #ifdef USB_DEBUG 561 int slhci_usbdebug = -1; /* value to set usbdebug on attach, -1 = leave alone */ 562 #endif 563 564 /* 565 * XXXMRG the SLHCI UVMHIST code has been converted to KERNHIST, but it has 566 * not been tested. the extra instructions to enable it can probably be 567 * commited to the kernhist code, and these instructions reduced to simply 568 * enabling SLHCI_DEBUG. 569 */ 570 571 /* Add KERNHIST history for debugging: 572 * 573 * Before kern_hist in sys/kern/subr_kernhist.c add: 574 * KERNHIST_DECL(slhcihist); 575 * 576 * In kern_hist add: 577 * if ((bitmask & KERNHIST_SLHCI)) 578 * hists[i++] = &slhcihist; 579 * 580 * In sys/sys/kernhist.h add KERNHIST_SLHCI define. 581 */ 582 583 #include <sys/kernhist.h> 584 KERNHIST_DECL(slhcihist); 585 586 #if !defined(KERNHIST) || !defined(KERNHIST_SLHCI) 587 #error "SLHCI_DEBUG requires KERNHIST (with modifications, see sys/dev/ic/sl81hs.c)" 588 #endif 589 590 #ifndef SLHCI_NHIST 591 #define SLHCI_NHIST 409600 592 #endif 593 const unsigned int SLHCI_HISTMASK = KERNHIST_SLHCI; 594 struct kern_history_ent slhci_he[SLHCI_NHIST]; 595 596 #define SLHCI_DEXEC(x, y) do { if ((slhci_debug & SLHCI_ ## x)) { y; } \ 597 } while (/*CONSTCOND*/ 0) 598 #define DDOLOG(f, a, b, c, d) do { const char *_kernhist_name = __func__; \ 599 u_long _kernhist_call = 0; KERNHIST_LOG(slhcihist, f, a, b, c, d); \ 600 } while (/*CONSTCOND*/0) 601 #define DLOG(x, f, a, b, c, d) SLHCI_DEXEC(x, DDOLOG(f, a, b, c, d)) 602 /* DLOGFLAG8 is a macro not a function so that flag name expressions are not 603 * evaluated unless the flag bit is set (which could save a register read). 604 * x is debug mask, y is flag identifier, z is flag variable, 605 * a-h are flag names (must evaluate to string constants, msb first). */ 606 #define DDOLOGFLAG8(y, z, a, b, c, d, e, f, g, h) do { uint8_t _DLF8 = (z); \ 607 const char *_kernhist_name = __func__; u_long _kernhist_call = 0; \ 608 if (_DLF8 & 0xf0) KERNHIST_LOG(slhcihist, y " %s %s %s %s", _DLF8 & 0x80 ? \ 609 (a) : "", _DLF8 & 0x40 ? (b) : "", _DLF8 & 0x20 ? (c) : "", _DLF8 & 0x10 ? \ 610 (d) : ""); if (_DLF8 & 0x0f) KERNHIST_LOG(slhcihist, y " %s %s %s %s", \ 611 _DLF8 & 0x08 ? (e) : "", _DLF8 & 0x04 ? (f) : "", _DLF8 & 0x02 ? (g) : "", \ 612 _DLF8 & 0x01 ? (h) : ""); \ 613 } while (/*CONSTCOND*/ 0) 614 #define DLOGFLAG8(x, y, z, a, b, c, d, e, f, g, h) \ 615 SLHCI_DEXEC(x, DDOLOGFLAG8(y, z, a, b, c, d, e, f, g, h)) 616 /* DDOLOGBUF logs a buffer up to 8 bytes at a time. No identifier so that we 617 * can make it a real function. */ 618 static void 619 DDOLOGBUF(uint8_t *buf, unsigned int length) 620 { 621 int i; 622 623 for(i=0; i+8 <= length; i+=8) 624 DDOLOG("%.4x %.4x %.4x %.4x", (buf[i] << 8) | buf[i+1], 625 (buf[i+2] << 8) | buf[i+3], (buf[i+4] << 8) | buf[i+5], 626 (buf[i+6] << 8) | buf[i+7]); 627 if (length == i+7) 628 DDOLOG("%.4x %.4x %.4x %.2x", (buf[i] << 8) | buf[i+1], 629 (buf[i+2] << 8) | buf[i+3], (buf[i+4] << 8) | buf[i+5], 630 buf[i+6]); 631 else if (length == i+6) 632 DDOLOG("%.4x %.4x %.4x", (buf[i] << 8) | buf[i+1], 633 (buf[i+2] << 8) | buf[i+3], (buf[i+4] << 8) | buf[i+5], 0); 634 else if (length == i+5) 635 DDOLOG("%.4x %.4x %.2x", (buf[i] << 8) | buf[i+1], 636 (buf[i+2] << 8) | buf[i+3], buf[i+4], 0); 637 else if (length == i+4) 638 DDOLOG("%.4x %.4x", (buf[i] << 8) | buf[i+1], 639 (buf[i+2] << 8) | buf[i+3], 0,0); 640 else if (length == i+3) 641 DDOLOG("%.4x %.2x", (buf[i] << 8) | buf[i+1], buf[i+2], 0,0); 642 else if (length == i+2) 643 DDOLOG("%.4x", (buf[i] << 8) | buf[i+1], 0,0,0); 644 else if (length == i+1) 645 DDOLOG("%.2x", buf[i], 0,0,0); 646 } 647 #define DLOGBUF(x, b, l) SLHCI_DEXEC(x, DDOLOGBUF(b, l)) 648 #else /* now !SLHCI_DEBUG */ 649 #define slhci_log_spipe(spipe) ((void)0) 650 #define slhci_log_xfer(xfer) ((void)0) 651 #define SLHCI_DEXEC(x, y) ((void)0) 652 #define DDOLOG(f, a, b, c, d) ((void)0) 653 #define DLOG(x, f, a, b, c, d) ((void)0) 654 #define DDOLOGFLAG8(y, z, a, b, c, d, e, f, g, h) ((void)0) 655 #define DLOGFLAG8(x, y, z, a, b, c, d, e, f, g, h) ((void)0) 656 #define DDOLOGBUF(b, l) ((void)0) 657 #define DLOGBUF(x, b, l) ((void)0) 658 #endif /* SLHCI_DEBUG */ 659 660 #define SLHCI_MAINLOCKASSERT(sc) ((void)0) 661 #define SLHCI_LOCKASSERT(sc, main, wait) ((void)0) 662 663 #ifdef DIAGNOSTIC 664 #define LK_SLASSERT(exp, sc, spipe, xfer, ext) do { \ 665 if (!(exp)) { \ 666 printf("%s: assertion %s failed line %u function %s!" \ 667 " halted\n", SC_NAME(sc), #exp, __LINE__, __func__);\ 668 DDOLOG("%s: assertion %s failed line %u function %s!" \ 669 " halted\n", SC_NAME(sc), #exp, __LINE__, __func__);\ 670 slhci_halt(sc, spipe, xfer); \ 671 ext; \ 672 } \ 673 } while (/*CONSTCOND*/0) 674 #define UL_SLASSERT(exp, sc, spipe, xfer, ext) do { \ 675 if (!(exp)) { \ 676 printf("%s: assertion %s failed line %u function %s!" \ 677 " halted\n", SC_NAME(sc), #exp, __LINE__, __func__); \ 678 DDOLOG("%s: assertion %s failed line %u function %s!" \ 679 " halted\n", SC_NAME(sc), #exp, __LINE__, __func__); \ 680 slhci_lock_call(sc, &slhci_halt, spipe, xfer); \ 681 ext; \ 682 } \ 683 } while (/*CONSTCOND*/0) 684 #else 685 #define LK_SLASSERT(exp, sc, spipe, xfer, ext) ((void)0) 686 #define UL_SLASSERT(exp, sc, spipe, xfer, ext) ((void)0) 687 #endif 688 689 const struct usbd_bus_methods slhci_bus_methods = { 690 slhci_open, 691 slhci_void, 692 slhci_poll, 693 slhci_allocm, 694 slhci_freem, 695 slhci_allocx, 696 slhci_freex, 697 NULL, /* slhci_get_lock */ 698 }; 699 700 const struct usbd_pipe_methods slhci_pipe_methods = { 701 slhci_transfer, 702 slhci_start, 703 slhci_abort, 704 slhci_close, 705 slhci_clear_toggle, 706 slhci_done, 707 }; 708 709 const struct usbd_pipe_methods slhci_root_methods = { 710 slhci_transfer, 711 slhci_root_start, 712 slhci_abort, 713 (void (*)(struct usbd_pipe *))slhci_void, /* XXX safe? */ 714 slhci_clear_toggle, 715 slhci_done, 716 }; 717 718 /* Queue inlines */ 719 720 #define GOT_FIRST_TO(tvar, t) \ 721 GCQ_GOT_FIRST_TYPED(tvar, &(t)->to, struct slhci_pipe, to) 722 723 #define FIND_TO(var, t, tvar, cond) \ 724 GCQ_FIND_TYPED(var, &(t)->to, tvar, struct slhci_pipe, to, cond) 725 726 #define FOREACH_AP(var, t, tvar) \ 727 GCQ_FOREACH_TYPED(var, &(t)->ap, tvar, struct slhci_pipe, ap) 728 729 #define GOT_FIRST_TIMED_COND(tvar, t, cond) \ 730 GCQ_GOT_FIRST_COND_TYPED(tvar, &(t)->timed, struct slhci_pipe, xq, cond) 731 732 #define GOT_FIRST_CB(tvar, t) \ 733 GCQ_GOT_FIRST_TYPED(tvar, &(t)->q[Q_CB], struct slhci_pipe, xq) 734 735 #define DEQUEUED_CALLBACK(tvar, t) \ 736 GCQ_DEQUEUED_FIRST_TYPED(tvar, &(t)->q[Q_CALLBACKS], struct slhci_pipe, xq) 737 738 #define FIND_TIMED(var, t, tvar, cond) \ 739 GCQ_FIND_TYPED(var, &(t)->timed, tvar, struct slhci_pipe, xq, cond) 740 741 #ifdef SLHCI_WAITLOCK 742 #define DEQUEUED_WAITQ(tvar, sc) \ 743 GCQ_DEQUEUED_FIRST_TYPED(tvar, &(sc)->sc_waitq, struct slhci_pipe, xq) 744 745 static inline void 746 enter_waitq(struct slhci_softc *sc, struct slhci_pipe *spipe) 747 { 748 gcq_insert_tail(&sc->sc_waitq, &spipe->xq); 749 } 750 #endif 751 752 static inline void 753 enter_q(struct slhci_transfers *t, struct slhci_pipe *spipe, int i) 754 { 755 gcq_insert_tail(&t->q[i], &spipe->xq); 756 } 757 758 static inline void 759 enter_callback(struct slhci_transfers *t, struct slhci_pipe *spipe) 760 { 761 gcq_insert_tail(&t->q[Q_CALLBACKS], &spipe->xq); 762 } 763 764 static inline void 765 enter_all_pipes(struct slhci_transfers *t, struct slhci_pipe *spipe) 766 { 767 gcq_insert_tail(&t->ap, &spipe->ap); 768 } 769 770 /* Start out of lock functions. */ 771 772 struct slhci_mem { 773 usb_dma_block_t block; 774 uint8_t data[]; 775 }; 776 777 /* The SL811HS does not do DMA as a host controller, but NetBSD's USB interface 778 * assumes DMA is used. So we fake the DMA block. */ 779 usbd_status 780 slhci_allocm(struct usbd_bus *bus, usb_dma_t *dma, u_int32_t size) 781 { 782 struct slhci_mem *mem; 783 784 mem = malloc(sizeof(struct slhci_mem) + size, M_USB, M_NOWAIT|M_ZERO); 785 786 DLOG(D_MEM, "allocm %p", mem, 0,0,0); 787 788 if (mem == NULL) 789 return USBD_NOMEM; 790 791 dma->block = &mem->block; 792 dma->block->kaddr = mem->data; 793 794 /* dma->offs = 0; */ 795 dma->block->nsegs = 1; 796 dma->block->size = size; 797 dma->block->align = size; 798 dma->block->flags |= USB_DMA_FULLBLOCK; 799 800 #ifdef SLHCI_MEM_ACCOUNTING 801 slhci_mem_use(bus, 1); 802 #endif 803 804 return USBD_NORMAL_COMPLETION; 805 } 806 807 void 808 slhci_freem(struct usbd_bus *bus, usb_dma_t *dma) 809 { 810 DLOG(D_MEM, "freem %p", dma->block, 0,0,0); 811 812 #ifdef SLHCI_MEM_ACCOUNTING 813 slhci_mem_use(bus, -1); 814 #endif 815 816 free(dma->block, M_USB); 817 } 818 819 struct usbd_xfer * 820 slhci_allocx(struct usbd_bus *bus) 821 { 822 struct usbd_xfer *xfer; 823 824 xfer = malloc(sizeof(*xfer), M_USB, M_NOWAIT|M_ZERO); 825 826 DLOG(D_MEM, "allocx %p", xfer, 0,0,0); 827 828 #ifdef SLHCI_MEM_ACCOUNTING 829 slhci_mem_use(bus, 1); 830 #endif 831 #ifdef DIAGNOSTIC 832 if (xfer != NULL) 833 xfer->busy_free = XFER_BUSY; 834 #endif 835 return xfer; 836 } 837 838 void 839 slhci_freex(struct usbd_bus *bus, struct usbd_xfer *xfer) 840 { 841 DLOG(D_MEM, "freex xfer %p spipe %p", xfer, xfer->pipe,0,0); 842 843 #ifdef SLHCI_MEM_ACCOUNTING 844 slhci_mem_use(bus, -1); 845 #endif 846 #ifdef DIAGNOSTIC 847 if (xfer->busy_free != XFER_BUSY) { 848 struct slhci_softc *sc = bus->hci_private; 849 printf("%s: slhci_freex: xfer=%p not busy, %#08x halted\n", 850 SC_NAME(sc), xfer, xfer->busy_free); 851 DDOLOG("%s: slhci_freex: xfer=%p not busy, %#08x halted\n", 852 SC_NAME(sc), xfer, xfer->busy_free, 0); 853 slhci_lock_call(sc, &slhci_halt, NULL, NULL); 854 return; 855 } 856 xfer->busy_free = XFER_FREE; 857 #endif 858 859 free(xfer, M_USB); 860 } 861 862 usbd_status 863 slhci_transfer(struct usbd_xfer *xfer) 864 { 865 usbd_status error; 866 int s; 867 868 DLOG(D_TRACE, "%s transfer xfer %p spipe %p ", 869 pnames(SLHCI_XFER_TYPE(xfer)), xfer, xfer->pipe,0); 870 871 /* Insert last in queue */ 872 error = usb_insert_transfer(xfer); 873 if (error) { 874 if (error != USBD_IN_PROGRESS) 875 DLOG(D_ERR, "usb_insert_transfer returns %d!", error, 876 0,0,0); 877 return error; 878 } 879 880 /* 881 * Pipe isn't running (otherwise error would be USBD_INPROG), 882 * so start it first. 883 */ 884 885 /* Start next is always done at splusb, so we do this here so 886 * start functions are always called at softusb. XXX */ 887 s = splusb(); 888 error = xfer->pipe->methods->start(SIMPLEQ_FIRST(&xfer->pipe->queue)); 889 splx(s); 890 891 return error; 892 } 893 894 /* It is not safe for start to return anything other than USBD_INPROG. */ 895 usbd_status 896 slhci_start(struct usbd_xfer *xfer) 897 { 898 struct slhci_softc *sc; 899 struct usbd_pipe *pipe; 900 struct slhci_pipe *spipe; 901 struct slhci_transfers *t; 902 usb_endpoint_descriptor_t *ed; 903 unsigned int max_packet; 904 905 pipe = xfer->pipe; 906 sc = pipe->device->bus->hci_private; 907 spipe = (struct slhci_pipe *)xfer->pipe; 908 t = &sc->sc_transfers; 909 ed = pipe->endpoint->edesc; 910 911 max_packet = UGETW(ed->wMaxPacketSize); 912 913 DLOG(D_TRACE, "%s start xfer %p spipe %p length %d", 914 pnames(spipe->ptype), xfer, spipe, xfer->length); 915 916 /* root transfers use slhci_root_start */ 917 918 KASSERT(spipe->xfer == NULL); /* not SLASSERT */ 919 920 xfer->actlen = 0; 921 xfer->status = USBD_IN_PROGRESS; 922 923 spipe->xfer = xfer; 924 925 spipe->nerrs = 0; 926 spipe->frame = t->frame; 927 spipe->control = SL11_EPCTRL_ARM_ENABLE; 928 spipe->tregs[DEV] = pipe->device->address; 929 spipe->tregs[PID] = spipe->newpid = UE_GET_ADDR(ed->bEndpointAddress) 930 | (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN ? SL11_PID_IN : 931 SL11_PID_OUT); 932 spipe->newlen[0] = xfer->length % max_packet; 933 spipe->newlen[1] = min(xfer->length, max_packet); 934 935 if (spipe->ptype == PT_BULK || spipe->ptype == PT_INTR) { 936 if (spipe->pflags & PF_TOGGLE) 937 spipe->control |= SL11_EPCTRL_DATATOGGLE; 938 spipe->tregs[LEN] = spipe->newlen[1]; 939 if (spipe->tregs[LEN]) 940 spipe->buffer = KERNADDR(&xfer->dmabuf, 0); 941 else 942 spipe->buffer = NULL; 943 spipe->lastframe = t->frame; 944 #if defined(DEBUG) || defined(SLHCI_DEBUG) 945 if (__predict_false(spipe->ptype == PT_INTR && 946 xfer->length > spipe->tregs[LEN])) { 947 printf("%s: Long INTR transfer not supported!\n", 948 SC_NAME(sc)); 949 DDOLOG("%s: Long INTR transfer not supported!\n", 950 SC_NAME(sc), 0,0,0); 951 xfer->status = USBD_INVAL; 952 } 953 #endif 954 } else { 955 /* ptype may be currently set to any control transfer type. */ 956 SLHCI_DEXEC(D_TRACE, slhci_log_xfer(xfer)); 957 958 /* SETUP contains IN/OUT bits also */ 959 spipe->tregs[PID] |= SL11_PID_SETUP; 960 spipe->tregs[LEN] = 8; 961 spipe->buffer = (uint8_t *)&xfer->request; 962 DLOGBUF(D_XFER, spipe->buffer, spipe->tregs[LEN]); 963 spipe->ptype = PT_CTRL_SETUP; 964 spipe->newpid &= ~SL11_PID_BITS; 965 if (xfer->length == 0 || (xfer->request.bmRequestType & 966 UT_READ)) 967 spipe->newpid |= SL11_PID_IN; 968 else 969 spipe->newpid |= SL11_PID_OUT; 970 } 971 972 if (xfer->flags & USBD_FORCE_SHORT_XFER && spipe->tregs[LEN] == 973 max_packet && (spipe->newpid & SL11_PID_BITS) == SL11_PID_OUT) 974 spipe->wantshort = 1; 975 else 976 spipe->wantshort = 0; 977 978 /* The goal of newbustime and newlen is to avoid bustime calculation 979 * in the interrupt. The calculations are not too complex, but they 980 * complicate the conditional logic somewhat and doing them all in the 981 * same place shares constants. Index 0 is "short length" for bulk and 982 * ctrl data and 1 is "full length" for ctrl data (bulk/intr are 983 * already set to full length). */ 984 if (spipe->pflags & PF_LS) { 985 /* Setting PREAMBLE for directly connnected LS devices will 986 * lock up the chip. */ 987 if (spipe->pflags & PF_PREAMBLE) 988 spipe->control |= SL11_EPCTRL_PREAMBLE; 989 if (max_packet <= 8) { 990 spipe->bustime = SLHCI_LS_CONST + 991 SLHCI_LS_DATA_TIME(spipe->tregs[LEN]); 992 spipe->newbustime[0] = SLHCI_LS_CONST + 993 SLHCI_LS_DATA_TIME(spipe->newlen[0]); 994 spipe->newbustime[1] = SLHCI_LS_CONST + 995 SLHCI_LS_DATA_TIME(spipe->newlen[1]); 996 } else 997 xfer->status = USBD_INVAL; 998 } else { 999 UL_SLASSERT(pipe->device->speed == USB_SPEED_FULL, sc, 1000 spipe, xfer, return USBD_IN_PROGRESS); 1001 if (max_packet <= SL11_MAX_PACKET_SIZE) { 1002 spipe->bustime = SLHCI_FS_CONST + 1003 SLHCI_FS_DATA_TIME(spipe->tregs[LEN]); 1004 spipe->newbustime[0] = SLHCI_FS_CONST + 1005 SLHCI_FS_DATA_TIME(spipe->newlen[0]); 1006 spipe->newbustime[1] = SLHCI_FS_CONST + 1007 SLHCI_FS_DATA_TIME(spipe->newlen[1]); 1008 } else 1009 xfer->status = USBD_INVAL; 1010 } 1011 1012 /* The datasheet incorrectly indicates that DIRECTION is for 1013 * "transmit to host". It is for OUT and SETUP. The app note 1014 * describes its use correctly. */ 1015 if ((spipe->tregs[PID] & SL11_PID_BITS) != SL11_PID_IN) 1016 spipe->control |= SL11_EPCTRL_DIRECTION; 1017 1018 slhci_start_entry(sc, spipe); 1019 1020 return USBD_IN_PROGRESS; 1021 } 1022 1023 usbd_status 1024 slhci_root_start(struct usbd_xfer *xfer) 1025 { 1026 struct slhci_softc *sc; 1027 struct slhci_pipe *spipe; 1028 1029 spipe = (struct slhci_pipe *)xfer->pipe; 1030 sc = xfer->pipe->device->bus->hci_private; 1031 1032 return slhci_lock_call(sc, &slhci_root, spipe, xfer); 1033 } 1034 1035 usbd_status 1036 slhci_open(struct usbd_pipe *pipe) 1037 { 1038 struct usbd_device *dev; 1039 struct slhci_softc *sc; 1040 struct slhci_pipe *spipe; 1041 usb_endpoint_descriptor_t *ed; 1042 struct slhci_transfers *t; 1043 unsigned int max_packet, pmaxpkt; 1044 1045 dev = pipe->device; 1046 sc = dev->bus->hci_private; 1047 spipe = (struct slhci_pipe *)pipe; 1048 ed = pipe->endpoint->edesc; 1049 t = &sc->sc_transfers; 1050 1051 DLOG(D_TRACE, "slhci_open(addr=%d,ep=%d,rootaddr=%d)", 1052 dev->address, ed->bEndpointAddress, t->rootaddr, 0); 1053 1054 spipe->pflags = 0; 1055 spipe->frame = 0; 1056 spipe->lastframe = 0; 1057 spipe->xfer = NULL; 1058 spipe->buffer = NULL; 1059 1060 gcq_init(&spipe->ap); 1061 gcq_init(&spipe->to); 1062 gcq_init(&spipe->xq); 1063 1064 /* The endpoint descriptor will not have been set up yet in the case 1065 * of the standard control pipe, so the max packet checks are also 1066 * necessary in start. */ 1067 1068 max_packet = UGETW(ed->wMaxPacketSize); 1069 1070 if (dev->speed == USB_SPEED_LOW) { 1071 spipe->pflags |= PF_LS; 1072 if (dev->myhub->address != t->rootaddr) { 1073 spipe->pflags |= PF_PREAMBLE; 1074 if (!slhci_try_lsvh) 1075 return slhci_lock_call(sc, &slhci_lsvh_warn, 1076 spipe, NULL); 1077 } 1078 pmaxpkt = 8; 1079 } else 1080 pmaxpkt = SL11_MAX_PACKET_SIZE; 1081 1082 if (max_packet > pmaxpkt) { 1083 DLOG(D_ERR, "packet too large! size %d spipe %p", max_packet, 1084 spipe, 0,0); 1085 return USBD_INVAL; 1086 } 1087 1088 if (dev->address == t->rootaddr) { 1089 switch (ed->bEndpointAddress) { 1090 case USB_CONTROL_ENDPOINT: 1091 spipe->ptype = PT_ROOT_CTRL; 1092 pipe->interval = 0; 1093 break; 1094 case UE_DIR_IN | ROOT_INTR_ENDPT: 1095 spipe->ptype = PT_ROOT_INTR; 1096 pipe->interval = 1; 1097 break; 1098 default: 1099 printf("%s: Invalid root endpoint!\n", SC_NAME(sc)); 1100 DDOLOG("%s: Invalid root endpoint!\n", SC_NAME(sc), 1101 0,0,0); 1102 return USBD_INVAL; 1103 } 1104 pipe->methods = __UNCONST(&slhci_root_methods); 1105 return USBD_NORMAL_COMPLETION; 1106 } else { 1107 switch (ed->bmAttributes & UE_XFERTYPE) { 1108 case UE_CONTROL: 1109 spipe->ptype = PT_CTRL_SETUP; 1110 pipe->interval = 0; 1111 break; 1112 case UE_INTERRUPT: 1113 spipe->ptype = PT_INTR; 1114 if (pipe->interval == USBD_DEFAULT_INTERVAL) 1115 pipe->interval = ed->bInterval; 1116 break; 1117 case UE_ISOCHRONOUS: 1118 return slhci_lock_call(sc, &slhci_isoc_warn, spipe, 1119 NULL); 1120 case UE_BULK: 1121 spipe->ptype = PT_BULK; 1122 pipe->interval = 0; 1123 break; 1124 } 1125 1126 DLOG(D_MSG, "open pipe %s interval %d", pnames(spipe->ptype), 1127 pipe->interval, 0,0); 1128 1129 pipe->methods = __UNCONST(&slhci_pipe_methods); 1130 1131 return slhci_lock_call(sc, &slhci_open_pipe, spipe, NULL); 1132 } 1133 } 1134 1135 int 1136 slhci_supported_rev(uint8_t rev) 1137 { 1138 return (rev >= SLTYPE_SL811HS_R12 && rev <= SLTYPE_SL811HS_R15); 1139 } 1140 1141 /* Must be called before the ISR is registered. Interrupts can be shared so 1142 * slhci_intr could be called as soon as the ISR is registered. 1143 * Note max_current argument is actual current, but stored as current/2 */ 1144 void 1145 slhci_preinit(struct slhci_softc *sc, PowerFunc pow, bus_space_tag_t iot, 1146 bus_space_handle_t ioh, uint16_t max_current, uint32_t stride) 1147 { 1148 struct slhci_transfers *t; 1149 int i; 1150 1151 t = &sc->sc_transfers; 1152 1153 #ifdef SLHCI_DEBUG 1154 KERNHIST_INIT_STATIC(slhcihist, slhci_he); 1155 #endif 1156 simple_lock_init(&sc->sc_lock); 1157 #ifdef SLHCI_WAITLOCK 1158 simple_lock_init(&sc->sc_wait_lock); 1159 #endif 1160 /* sc->sc_ier = 0; */ 1161 /* t->rootintr = NULL; */ 1162 t->flags = F_NODEV|F_UDISABLED; 1163 t->pend = INT_MAX; 1164 KASSERT(slhci_wait_time != INT_MAX); 1165 t->len[0] = t->len[1] = -1; 1166 if (max_current > 500) 1167 max_current = 500; 1168 t->max_current = (uint8_t)(max_current / 2); 1169 sc->sc_enable_power = pow; 1170 sc->sc_iot = iot; 1171 sc->sc_ioh = ioh; 1172 sc->sc_stride = stride; 1173 1174 KASSERT(Q_MAX+1 == sizeof(t->q) / sizeof(t->q[0])); 1175 1176 for (i = 0; i <= Q_MAX; i++) 1177 gcq_init_head(&t->q[i]); 1178 gcq_init_head(&t->timed); 1179 gcq_init_head(&t->to); 1180 gcq_init_head(&t->ap); 1181 #ifdef SLHCI_WAITLOCK 1182 gcq_init_head(&sc->sc_waitq); 1183 #endif 1184 } 1185 1186 int 1187 slhci_attach(struct slhci_softc *sc) 1188 { 1189 if (slhci_lock_call(sc, &slhci_do_attach, NULL, NULL) != 1190 USBD_NORMAL_COMPLETION) 1191 return -1; 1192 1193 /* Attach usb and uhub. */ 1194 sc->sc_child = config_found(SC_DEV(sc), &sc->sc_bus, usbctlprint); 1195 1196 if (!sc->sc_child) 1197 return -1; 1198 else 1199 return 0; 1200 } 1201 1202 int 1203 slhci_detach(struct slhci_softc *sc, int flags) 1204 { 1205 struct slhci_transfers *t; 1206 int ret; 1207 1208 t = &sc->sc_transfers; 1209 1210 /* By this point bus access is no longer allowed. */ 1211 1212 KASSERT(!(t->flags & F_ACTIVE)); 1213 1214 /* To be MPSAFE is not sufficient to cancel callouts and soft 1215 * interrupts and assume they are dead since the code could already be 1216 * running or about to run. Wait until they are known to be done. */ 1217 while (t->flags & (F_RESET|F_CALLBACK)) 1218 tsleep(&sc, PPAUSE, "slhci_detach", hz); 1219 1220 softint_disestablish(sc->sc_cb_softintr); 1221 1222 ret = 0; 1223 1224 if (sc->sc_child) 1225 ret = config_detach(sc->sc_child, flags); 1226 1227 #ifdef SLHCI_MEM_ACCOUNTING 1228 if (sc->sc_mem_use) { 1229 printf("%s: Memory still in use after detach! mem_use (count)" 1230 " = %d\n", SC_NAME(sc), sc->sc_mem_use); 1231 DDOLOG("%s: Memory still in use after detach! mem_use (count)" 1232 " = %d\n", SC_NAME(sc), sc->sc_mem_use, 0,0); 1233 } 1234 #endif 1235 1236 return ret; 1237 } 1238 1239 int 1240 slhci_activate(device_t self, enum devact act) 1241 { 1242 struct slhci_softc *sc = device_private(self); 1243 1244 switch (act) { 1245 case DVACT_DEACTIVATE: 1246 slhci_lock_call(sc, &slhci_halt, NULL, NULL); 1247 return 0; 1248 default: 1249 return EOPNOTSUPP; 1250 } 1251 } 1252 1253 void 1254 slhci_abort(struct usbd_xfer *xfer) 1255 { 1256 struct slhci_softc *sc; 1257 struct slhci_pipe *spipe; 1258 1259 spipe = (struct slhci_pipe *)xfer->pipe; 1260 1261 if (spipe == NULL) 1262 goto callback; 1263 1264 sc = spipe->pipe.device->bus->hci_private; 1265 1266 DLOG(D_TRACE, "%s abort xfer %p spipe %p spipe->xfer %p", 1267 pnames(spipe->ptype), xfer, spipe, spipe->xfer); 1268 1269 slhci_lock_call(sc, &slhci_do_abort, spipe, xfer); 1270 1271 callback: 1272 xfer->status = USBD_CANCELLED; 1273 /* Abort happens at splusb. */ 1274 usb_transfer_complete(xfer); 1275 } 1276 1277 void 1278 slhci_close(struct usbd_pipe *pipe) 1279 { 1280 struct slhci_softc *sc; 1281 struct slhci_pipe *spipe; 1282 struct slhci_transfers *t; 1283 1284 sc = pipe->device->bus->hci_private; 1285 spipe = (struct slhci_pipe *)pipe; 1286 t = &sc->sc_transfers; 1287 1288 DLOG(D_TRACE, "%s close spipe %p spipe->xfer %p", 1289 pnames(spipe->ptype), spipe, spipe->xfer, 0); 1290 1291 slhci_lock_call(sc, &slhci_close_pipe, spipe, NULL); 1292 } 1293 1294 void 1295 slhci_clear_toggle(struct usbd_pipe *pipe) 1296 { 1297 struct slhci_pipe *spipe; 1298 1299 spipe = (struct slhci_pipe *)pipe; 1300 1301 DLOG(D_TRACE, "%s toggle spipe %p", pnames(spipe->ptype), 1302 spipe,0,0); 1303 1304 spipe->pflags &= ~PF_TOGGLE; 1305 1306 #ifdef DIAGNOSTIC 1307 if (spipe->xfer != NULL) { 1308 struct slhci_softc *sc = (struct slhci_softc 1309 *)pipe->device->bus; 1310 1311 printf("%s: Clear toggle on transfer in progress! halted\n", 1312 SC_NAME(sc)); 1313 DDOLOG("%s: Clear toggle on transfer in progress! halted\n", 1314 SC_NAME(sc), 0,0,0); 1315 slhci_halt(sc, NULL, NULL); 1316 } 1317 #endif 1318 } 1319 1320 void 1321 slhci_poll(struct usbd_bus *bus) /* XXX necessary? */ 1322 { 1323 struct slhci_softc *sc; 1324 1325 sc = bus->hci_private; 1326 1327 DLOG(D_TRACE, "slhci_poll", 0,0,0,0); 1328 1329 slhci_lock_call(sc, &slhci_do_poll, NULL, NULL); 1330 } 1331 1332 void 1333 slhci_done(struct usbd_xfer *xfer) 1334 { 1335 /* xfer may not be valid here */ 1336 } 1337 1338 void 1339 slhci_void(void *v) {} 1340 1341 /* End out of lock functions. Start lock entry functions. */ 1342 1343 #ifdef SLHCI_MEM_ACCOUNTING 1344 void 1345 slhci_mem_use(struct usbd_bus *bus, int val) 1346 { 1347 struct slhci_softc *sc = bus->hci_private; 1348 int s; 1349 1350 s = splhardusb(); 1351 simple_lock(&sc->sc_wait_lock); 1352 sc->sc_mem_use += val; 1353 simple_unlock(&sc->sc_wait_lock); 1354 splx(s); 1355 } 1356 #endif 1357 1358 void 1359 slhci_reset_entry(void *arg) 1360 { 1361 struct slhci_softc *sc; 1362 int s; 1363 1364 sc = (struct slhci_softc *)arg; 1365 1366 s = splhardusb(); 1367 simple_lock(&sc->sc_lock); 1368 slhci_reset(sc); 1369 /* We cannot call the calback directly since we could then be reset 1370 * again before finishing and need the callout delay for timing. 1371 * Scheduling the callout again before we exit would defeat the reap 1372 * mechanism since we could be unlocked while the reset flag is not 1373 * set. The callback code will check the wait queue. */ 1374 slhci_callback_schedule(sc); 1375 simple_unlock(&sc->sc_lock); 1376 splx(s); 1377 } 1378 1379 usbd_status 1380 slhci_lock_call(struct slhci_softc *sc, LockCallFunc lcf, struct slhci_pipe 1381 *spipe, struct usbd_xfer *xfer) 1382 { 1383 usbd_status ret; 1384 int x, s; 1385 1386 x = splusb(); 1387 s = splhardusb(); 1388 simple_lock(&sc->sc_lock); 1389 ret = (*lcf)(sc, spipe, xfer); 1390 slhci_main(sc, &s); 1391 splx(s); 1392 splx(x); 1393 1394 return ret; 1395 } 1396 1397 void 1398 slhci_start_entry(struct slhci_softc *sc, struct slhci_pipe *spipe) 1399 { 1400 struct slhci_transfers *t; 1401 int s; 1402 1403 t = &sc->sc_transfers; 1404 1405 s = splhardusb(); 1406 #ifdef SLHCI_WAITLOCK 1407 if (simple_lock_try(&sc->sc_lock)) 1408 #else 1409 simple_lock(&sc->sc_lock); 1410 #endif 1411 { 1412 slhci_enter_xfer(sc, spipe); 1413 slhci_dotransfer(sc); 1414 slhci_main(sc, &s); 1415 #ifdef SLHCI_WAITLOCK 1416 } else { 1417 simple_lock(&sc->sc_wait_lock); 1418 enter_waitq(sc, spipe); 1419 simple_unlock(&sc->sc_wait_lock); 1420 #endif 1421 } 1422 splx(s); 1423 } 1424 1425 void 1426 slhci_callback_entry(void *arg) 1427 { 1428 struct slhci_softc *sc; 1429 struct slhci_transfers *t; 1430 int s, x; 1431 1432 1433 sc = (struct slhci_softc *)arg; 1434 1435 x = splusb(); 1436 s = splhardusb(); 1437 simple_lock(&sc->sc_lock); 1438 t = &sc->sc_transfers; 1439 DLOG(D_SOFT, "callback_entry flags %#x", t->flags, 0,0,0); 1440 1441 #ifdef SLHCI_WAITLOCK 1442 repeat: 1443 #endif 1444 slhci_callback(sc, &s); 1445 1446 #ifdef SLHCI_WAITLOCK 1447 simple_lock(&sc->sc_wait_lock); 1448 if (!gcq_empty(&sc->sc_waitq)) { 1449 slhci_enter_xfers(sc); 1450 simple_unlock(&sc->sc_wait_lock); 1451 slhci_dotransfer(sc); 1452 slhci_waitintr(sc, 0); 1453 goto repeat; 1454 } 1455 1456 t->flags &= ~F_CALLBACK; 1457 simple_unlock(&sc->sc_lock); 1458 simple_unlock(&sc->sc_wait_lock); 1459 #else 1460 t->flags &= ~F_CALLBACK; 1461 simple_unlock(&sc->sc_lock); 1462 #endif 1463 splx(s); 1464 splx(x); 1465 } 1466 1467 void 1468 slhci_do_callback(struct slhci_softc *sc, struct usbd_xfer *xfer, int *s) 1469 { 1470 SLHCI_LOCKASSERT(sc, locked, unlocked); 1471 1472 int repeat; 1473 1474 start_cc_time(&t_callback, (u_int)xfer); 1475 simple_unlock(&sc->sc_lock); 1476 splx(*s); 1477 1478 repeat = xfer->pipe->repeat; 1479 1480 usb_transfer_complete(xfer); 1481 1482 *s = splhardusb(); 1483 simple_lock(&sc->sc_lock); 1484 stop_cc_time(&t_callback); 1485 1486 if (repeat && !sc->sc_bus.use_polling) 1487 slhci_do_repeat(sc, xfer); 1488 } 1489 1490 int 1491 slhci_intr(void *arg) 1492 { 1493 struct slhci_softc *sc; 1494 int ret; 1495 1496 sc = (struct slhci_softc *)arg; 1497 1498 start_cc_time(&t_hard_int, (unsigned int)arg); 1499 simple_lock(&sc->sc_lock); 1500 1501 ret = slhci_dointr(sc); 1502 slhci_main(sc, NULL); 1503 1504 stop_cc_time(&t_hard_int); 1505 return ret; 1506 } 1507 1508 /* called with main lock only held, returns with locks released. */ 1509 void 1510 slhci_main(struct slhci_softc *sc, int *s) 1511 { 1512 struct slhci_transfers *t; 1513 1514 t = &sc->sc_transfers; 1515 1516 SLHCI_LOCKASSERT(sc, locked, unlocked); 1517 1518 #ifdef SLHCI_WAITLOCK 1519 waitcheck: 1520 #endif 1521 slhci_waitintr(sc, slhci_wait_time); 1522 1523 1524 /* 1525 * XXX Directly calling the callback anytime s != NULL 1526 * causes panic:sbdrop with aue (simultaneously using umass). 1527 * Doing that affects process accounting, but is supposed to work as 1528 * far as I can tell. 1529 * 1530 * The direct call is needed in the use_polling and disabled cases 1531 * since the soft interrupt is not available. In the disabled case, 1532 * this code can be reached from the usb detach, after the reaping of 1533 * the soft interrupt. That test could be !F_ACTIVE (in which case 1534 * s != NULL could be an assertion), but there is no reason not to 1535 * make the callbacks directly in the other DISABLED cases. 1536 */ 1537 if ((t->flags & F_ROOTINTR) || !gcq_empty(&t->q[Q_CALLBACKS])) { 1538 if (__predict_false(sc->sc_bus.use_polling || t->flags & 1539 F_DISABLED) && s != NULL) 1540 slhci_callback(sc, s); 1541 else 1542 slhci_callback_schedule(sc); 1543 } 1544 1545 #ifdef SLHCI_WAITLOCK 1546 simple_lock(&sc->sc_wait_lock); 1547 1548 if (!gcq_empty(&sc->sc_waitq)) { 1549 slhci_enter_xfers(sc); 1550 simple_unlock(&sc->sc_wait_lock); 1551 slhci_dotransfer(sc); 1552 goto waitcheck; 1553 } 1554 1555 simple_unlock(&sc->sc_lock); 1556 simple_unlock(&sc->sc_wait_lock); 1557 #else 1558 simple_unlock(&sc->sc_lock); 1559 #endif 1560 } 1561 1562 /* End lock entry functions. Start in lock function. */ 1563 1564 /* Register read/write routines and barriers. */ 1565 #ifdef SLHCI_BUS_SPACE_BARRIERS 1566 #define BSB(a, b, c, d, e) bus_space_barrier(a, b, c, d, BUS_SPACE_BARRIER_ # e) 1567 #define BSB_SYNC(a, b, c, d) bus_space_barrier(a, b, c, d, BUS_SPACE_BARRIER_SYNC) 1568 #else /* now !SLHCI_BUS_SPACE_BARRIERS */ 1569 #define BSB(a, b, c, d, e) 1570 #define BSB_SYNC(a, b, c, d) 1571 #endif /* SLHCI_BUS_SPACE_BARRIERS */ 1572 1573 static void 1574 slhci_write(struct slhci_softc *sc, uint8_t addr, uint8_t data) 1575 { 1576 bus_size_t paddr, pdata, pst, psz; 1577 bus_space_tag_t iot; 1578 bus_space_handle_t ioh; 1579 1580 paddr = pst = 0; 1581 pdata = sc->sc_stride; 1582 psz = pdata * 2; 1583 iot = sc->sc_iot; 1584 ioh = sc->sc_ioh; 1585 1586 bus_space_write_1(iot, ioh, paddr, addr); 1587 BSB(iot, ioh, pst, psz, WRITE_BEFORE_WRITE); 1588 bus_space_write_1(iot, ioh, pdata, data); 1589 BSB(iot, ioh, pst, psz, WRITE_BEFORE_WRITE); 1590 } 1591 1592 static uint8_t 1593 slhci_read(struct slhci_softc *sc, uint8_t addr) 1594 { 1595 bus_size_t paddr, pdata, pst, psz; 1596 bus_space_tag_t iot; 1597 bus_space_handle_t ioh; 1598 uint8_t data; 1599 1600 paddr = pst = 0; 1601 pdata = sc->sc_stride; 1602 psz = pdata * 2; 1603 iot = sc->sc_iot; 1604 ioh = sc->sc_ioh; 1605 1606 bus_space_write_1(iot, ioh, paddr, addr); 1607 BSB(iot, ioh, pst, psz, WRITE_BEFORE_READ); 1608 data = bus_space_read_1(iot, ioh, pdata); 1609 BSB(iot, ioh, pst, psz, READ_BEFORE_WRITE); 1610 return data; 1611 } 1612 1613 #if 0 /* auto-increment mode broken, see errata doc */ 1614 static void 1615 slhci_write_multi(struct slhci_softc *sc, uint8_t addr, uint8_t *buf, int l) 1616 { 1617 bus_size_t paddr, pdata, pst, psz; 1618 bus_space_tag_t iot; 1619 bus_space_handle_t ioh; 1620 1621 paddr = pst = 0; 1622 pdata = sc->sc_stride; 1623 psz = pdata * 2; 1624 iot = sc->sc_iot; 1625 ioh = sc->sc_ioh; 1626 1627 bus_space_write_1(iot, ioh, paddr, addr); 1628 BSB(iot, ioh, pst, psz, WRITE_BEFORE_WRITE); 1629 bus_space_write_multi_1(iot, ioh, pdata, buf, l); 1630 BSB(iot, ioh, pst, psz, WRITE_BEFORE_WRITE); 1631 } 1632 1633 static void 1634 slhci_read_multi(struct slhci_softc *sc, uint8_t addr, uint8_t *buf, int l) 1635 { 1636 bus_size_t paddr, pdata, pst, psz; 1637 bus_space_tag_t iot; 1638 bus_space_handle_t ioh; 1639 1640 paddr = pst = 0; 1641 pdata = sc->sc_stride; 1642 psz = pdata * 2; 1643 iot = sc->sc_iot; 1644 ioh = sc->sc_ioh; 1645 1646 bus_space_write_1(iot, ioh, paddr, addr); 1647 BSB(iot, ioh, pst, psz, WRITE_BEFORE_READ); 1648 bus_space_read_multi_1(iot, ioh, pdata, buf, l); 1649 BSB(iot, ioh, pst, psz, READ_BEFORE_WRITE); 1650 } 1651 #else 1652 static void 1653 slhci_write_multi(struct slhci_softc *sc, uint8_t addr, uint8_t *buf, int l) 1654 { 1655 #if 1 1656 for (; l; addr++, buf++, l--) 1657 slhci_write(sc, addr, *buf); 1658 #else 1659 bus_size_t paddr, pdata, pst, psz; 1660 bus_space_tag_t iot; 1661 bus_space_handle_t ioh; 1662 1663 paddr = pst = 0; 1664 pdata = sc->sc_stride; 1665 psz = pdata * 2; 1666 iot = sc->sc_iot; 1667 ioh = sc->sc_ioh; 1668 1669 for (; l; addr++, buf++, l--) { 1670 bus_space_write_1(iot, ioh, paddr, addr); 1671 BSB(iot, ioh, pst, psz, WRITE_BEFORE_WRITE); 1672 bus_space_write_1(iot, ioh, pdata, *buf); 1673 BSB(iot, ioh, pst, psz, WRITE_BEFORE_WRITE); 1674 } 1675 #endif 1676 } 1677 1678 static void 1679 slhci_read_multi(struct slhci_softc *sc, uint8_t addr, uint8_t *buf, int l) 1680 { 1681 #if 1 1682 for (; l; addr++, buf++, l--) 1683 *buf = slhci_read(sc, addr); 1684 #else 1685 bus_size_t paddr, pdata, pst, psz; 1686 bus_space_tag_t iot; 1687 bus_space_handle_t ioh; 1688 1689 paddr = pst = 0; 1690 pdata = sc->sc_stride; 1691 psz = pdata * 2; 1692 iot = sc->sc_iot; 1693 ioh = sc->sc_ioh; 1694 1695 for (; l; addr++, buf++, l--) { 1696 bus_space_write_1(iot, ioh, paddr, addr); 1697 BSB(iot, ioh, pst, psz, WRITE_BEFORE_READ); 1698 *buf = bus_space_read_1(iot, ioh, pdata); 1699 BSB(iot, ioh, pst, psz, READ_BEFORE_WRITE); 1700 } 1701 #endif 1702 } 1703 #endif 1704 1705 /* After calling waitintr it is necessary to either call slhci_callback or 1706 * schedule the callback if necessary. The callback cannot be called directly 1707 * from the hard interrupt since it interrupts at a high IPL and callbacks 1708 * can do copyout and such. */ 1709 static void 1710 slhci_waitintr(struct slhci_softc *sc, int wait_time) 1711 { 1712 struct slhci_transfers *t; 1713 1714 t = &sc->sc_transfers; 1715 1716 SLHCI_LOCKASSERT(sc, locked, unlocked); 1717 1718 if (__predict_false(sc->sc_bus.use_polling)) 1719 wait_time = 12000; 1720 1721 while (t->pend <= wait_time) { 1722 DLOG(D_WAIT, "waiting... frame %d pend %d flags %#x", 1723 t->frame, t->pend, t->flags, 0); 1724 LK_SLASSERT(t->flags & F_ACTIVE, sc, NULL, NULL, return); 1725 LK_SLASSERT(t->flags & (F_AINPROG|F_BINPROG), sc, NULL, NULL, 1726 return); 1727 slhci_dointr(sc); 1728 } 1729 } 1730 1731 static int 1732 slhci_dointr(struct slhci_softc *sc) 1733 { 1734 struct slhci_transfers *t; 1735 struct slhci_pipe *tosp; 1736 uint8_t r; 1737 1738 t = &sc->sc_transfers; 1739 1740 SLHCI_LOCKASSERT(sc, locked, unlocked); 1741 1742 if (sc->sc_ier == 0) 1743 return 0; 1744 1745 r = slhci_read(sc, SL11_ISR); 1746 1747 #ifdef SLHCI_DEBUG 1748 if (slhci_debug & SLHCI_D_INTR && r & sc->sc_ier && 1749 ((r & ~(SL11_ISR_SOF|SL11_ISR_DATA)) || slhci_debug & 1750 SLHCI_D_SOF)) { 1751 uint8_t e, f; 1752 1753 e = slhci_read(sc, SL11_IER); 1754 f = slhci_read(sc, SL11_CTRL); 1755 DDOLOG("Flags=%#x IER=%#x ISR=%#x", t->flags, e, r, 0); 1756 DDOLOGFLAG8("Status=", r, "D+", (f & SL11_CTRL_SUSPEND) ? 1757 "RESUME" : "NODEV", "INSERT", "SOF", "res", "BABBLE", 1758 "USBB", "USBA"); 1759 } 1760 #endif 1761 1762 /* check IER for corruption occasionally. Assume that the above 1763 * sc_ier == 0 case works correctly. */ 1764 if (__predict_false(sc->sc_ier_check++ > SLHCI_IER_CHECK_FREQUENCY)) { 1765 sc->sc_ier_check = 0; 1766 if (sc->sc_ier != slhci_read(sc, SL11_IER)) { 1767 printf("%s: IER value corrupted! halted\n", 1768 SC_NAME(sc)); 1769 DDOLOG("%s: IER value corrupted! halted\n", 1770 SC_NAME(sc), 0,0,0); 1771 slhci_halt(sc, NULL, NULL); 1772 return 1; 1773 } 1774 } 1775 1776 r &= sc->sc_ier; 1777 1778 if (r == 0) 1779 return 0; 1780 1781 sc->sc_ier_check = 0; 1782 1783 slhci_write(sc, SL11_ISR, r); 1784 BSB_SYNC(sc->iot, sc->ioh, sc->pst, sc->psz); 1785 1786 1787 /* If we have an insertion event we do not care about anything else. */ 1788 if (__predict_false(r & SL11_ISR_INSERT)) { 1789 slhci_insert(sc); 1790 return 1; 1791 } 1792 1793 stop_cc_time(&t_intr); 1794 start_cc_time(&t_intr, r); 1795 1796 if (r & SL11_ISR_SOF) { 1797 t->frame++; 1798 1799 gcq_merge_tail(&t->q[Q_CB], &t->q[Q_NEXT_CB]); 1800 1801 /* SOFCHECK flags are cleared in tstart. Two flags are needed 1802 * since the first SOF interrupt processed after the transfer 1803 * is started might have been generated before the transfer 1804 * was started. */ 1805 if (__predict_false(t->flags & F_SOFCHECK2 && t->flags & 1806 (F_AINPROG|F_BINPROG))) { 1807 printf("%s: Missed transfer completion. halted\n", 1808 SC_NAME(sc)); 1809 DDOLOG("%s: Missed transfer completion. halted\n", 1810 SC_NAME(sc), 0,0,0); 1811 slhci_halt(sc, NULL, NULL); 1812 return 1; 1813 } else if (t->flags & F_SOFCHECK1) { 1814 t->flags |= F_SOFCHECK2; 1815 } else 1816 t->flags |= F_SOFCHECK1; 1817 1818 if (t->flags & F_CHANGE) 1819 t->flags |= F_ROOTINTR; 1820 1821 while (__predict_true(GOT_FIRST_TO(tosp, t)) && 1822 __predict_false(tosp->to_frame <= t->frame)) { 1823 tosp->xfer->status = USBD_TIMEOUT; 1824 slhci_do_abort(sc, tosp, tosp->xfer); 1825 enter_callback(t, tosp); 1826 } 1827 1828 /* Start any waiting transfers right away. If none, we will 1829 * start any new transfers later. */ 1830 slhci_tstart(sc); 1831 } 1832 1833 if (r & (SL11_ISR_USBA|SL11_ISR_USBB)) { 1834 int ab; 1835 1836 if ((r & (SL11_ISR_USBA|SL11_ISR_USBB)) == 1837 (SL11_ISR_USBA|SL11_ISR_USBB)) { 1838 if (!(t->flags & (F_AINPROG|F_BINPROG))) 1839 return 1; /* presume card pulled */ 1840 1841 LK_SLASSERT((t->flags & (F_AINPROG|F_BINPROG)) != 1842 (F_AINPROG|F_BINPROG), sc, NULL, NULL, return 1); 1843 1844 /* This should never happen (unless card removal just 1845 * occurred) but appeared frequently when both 1846 * transfers were started at the same time and was 1847 * accompanied by data corruption. It still happens 1848 * at times. I have not seen data correption except 1849 * when the STATUS bit gets set, which now causes the 1850 * driver to halt, however this should still not 1851 * happen so the warning is kept. See comment in 1852 * abdone, below. 1853 */ 1854 printf("%s: Transfer reported done but not started! " 1855 "Verify data integrity if not detaching. " 1856 " flags %#x r %x\n", SC_NAME(sc), t->flags, r); 1857 1858 if (!(t->flags & F_AINPROG)) 1859 r &= ~SL11_ISR_USBA; 1860 else 1861 r &= ~SL11_ISR_USBB; 1862 } 1863 t->pend = INT_MAX; 1864 1865 if (r & SL11_ISR_USBA) 1866 ab = A; 1867 else 1868 ab = B; 1869 1870 /* This happens when a low speed device is attached to 1871 * a hub with chip rev 1.5. SOF stops, but a few transfers 1872 * still work before causing this error. 1873 */ 1874 if (!(t->flags & (ab ? F_BINPROG : F_AINPROG))) { 1875 printf("%s: %s done but not in progress! halted\n", 1876 SC_NAME(sc), ab ? "B" : "A"); 1877 DDOLOG("%s: %s done but not in progress! halted\n", 1878 SC_NAME(sc), ab ? "B" : "A", 0,0); 1879 slhci_halt(sc, NULL, NULL); 1880 return 1; 1881 } 1882 1883 t->flags &= ~(ab ? F_BINPROG : F_AINPROG); 1884 slhci_tstart(sc); 1885 stop_cc_time(&t_ab[ab]); 1886 start_cc_time(&t_abdone, t->flags); 1887 slhci_abdone(sc, ab); 1888 stop_cc_time(&t_abdone); 1889 } 1890 1891 slhci_dotransfer(sc); 1892 1893 return 1; 1894 } 1895 1896 static void 1897 slhci_abdone(struct slhci_softc *sc, int ab) 1898 { 1899 struct slhci_transfers *t; 1900 struct slhci_pipe *spipe; 1901 struct usbd_xfer *xfer; 1902 uint8_t status, buf_start; 1903 uint8_t *target_buf; 1904 unsigned int actlen; 1905 int head; 1906 1907 t = &sc->sc_transfers; 1908 1909 SLHCI_LOCKASSERT(sc, locked, unlocked); 1910 1911 DLOG(D_TRACE, "ABDONE flags %#x", t->flags, 0,0,0); 1912 1913 DLOG(D_MSG, "DONE %s spipe %p len %d xfer %p", ab ? "B" : "A", 1914 t->spipe[ab], t->len[ab], t->spipe[ab] ? 1915 t->spipe[ab]->xfer : NULL); 1916 1917 spipe = t->spipe[ab]; 1918 1919 /* skip this one if aborted; do not call return from the rest of the 1920 * function unless halting, else t->len will not be cleared. */ 1921 if (spipe == NULL) 1922 goto done; 1923 1924 t->spipe[ab] = NULL; 1925 1926 xfer = spipe->xfer; 1927 1928 gcq_remove(&spipe->to); 1929 1930 LK_SLASSERT(xfer != NULL, sc, spipe, NULL, return); 1931 1932 status = slhci_read(sc, slhci_tregs[ab][STAT]); 1933 1934 /* 1935 * I saw no status or remaining length greater than the requested 1936 * length in early driver versions in circumstances I assumed caused 1937 * excess power draw. I am no longer able to reproduce this when 1938 * causing excess power draw circumstances. 1939 * 1940 * Disabling a power check and attaching aue to a keyboard and hub 1941 * that is directly attached (to CFU1U, 100mA max, aue 160mA, keyboard 1942 * 98mA) sometimes works and sometimes fails to configure. After 1943 * removing the aue and attaching a self-powered umass dvd reader 1944 * (unknown if it draws power from the host also) soon a single Error 1945 * status occurs then only timeouts. The controller soon halts freeing 1946 * memory due to being ONQU instead of BUSY. This may be the same 1947 * basic sequence that caused the no status/bad length errors. The 1948 * umass device seems to work (better at least) with the keyboard hub 1949 * when not first attaching aue (tested once reading an approximately 1950 * 200MB file). 1951 * 1952 * Overflow can indicate that the device and host disagree about how 1953 * much data has been transfered. This may indicate a problem at any 1954 * point during the transfer, not just when the error occurs. It may 1955 * indicate data corruption. A warning message is printed. 1956 * 1957 * Trying to use both A and B transfers at the same time results in 1958 * incorrect transfer completion ISR reports and the status will then 1959 * include SL11_EPSTAT_SETUP, which is apparently set while the 1960 * transfer is in progress. I also noticed data corruption, even 1961 * after waiting for the transfer to complete. The driver now avoids 1962 * trying to start both at the same time. 1963 * 1964 * I had accidently initialized the B registers before they were valid 1965 * in some driver versions. Since every other performance enhancing 1966 * feature has been confirmed buggy in the errata doc, I have not 1967 * tried both transfers at once again with the documented 1968 * initialization order. 1969 * 1970 * However, I have seen this problem again ("done but not started" 1971 * errors), which in some cases cases the SETUP status bit to remain 1972 * set on future transfers. In other cases, the SETUP bit is not set 1973 * and no data corruption occurs. This occured while using both umass 1974 * and aue on a powered hub (maybe triggered by some local activity 1975 * also) and needs several reads of the 200MB file to trigger. The 1976 * driver now halts if SETUP is detected. 1977 */ 1978 1979 actlen = 0; 1980 1981 if (__predict_false(!status)) { 1982 DDOLOG("no status! xfer %p spipe %p", xfer, spipe, 0,0); 1983 printf("%s: no status! halted\n", SC_NAME(sc)); 1984 slhci_halt(sc, spipe, xfer); 1985 return; 1986 } 1987 1988 #ifdef SLHCI_DEBUG 1989 if (slhci_debug & SLHCI_D_NAK || (status & SL11_EPSTAT_ERRBITS) != 1990 SL11_EPSTAT_NAK) 1991 DLOGFLAG8(D_XFER, "STATUS=", status, "STALL", "NAK", 1992 "Overflow", "Setup", "Data Toggle", "Timeout", "Error", 1993 "ACK"); 1994 #endif 1995 1996 if (!(status & SL11_EPSTAT_ERRBITS)) { 1997 unsigned int cont; 1998 cont = slhci_read(sc, slhci_tregs[ab][CONT]); 1999 if (cont != 0) 2000 DLOG(D_XFER, "cont %d len %d", cont, 2001 spipe->tregs[LEN], 0,0); 2002 if (__predict_false(cont > spipe->tregs[LEN])) { 2003 DDOLOG("cont > len! cont %d len %d xfer->length %d " 2004 "spipe %p", cont, spipe->tregs[LEN], xfer->length, 2005 spipe); 2006 printf("%s: cont > len! cont %d len %d xfer->length " 2007 "%d", SC_NAME(sc), cont, spipe->tregs[LEN], 2008 xfer->length); 2009 slhci_halt(sc, spipe, xfer); 2010 return; 2011 } else { 2012 spipe->nerrs = 0; 2013 actlen = spipe->tregs[LEN] - cont; 2014 } 2015 } 2016 2017 /* Actual copyin done after starting next transfer. */ 2018 if (actlen && (spipe->tregs[PID] & SL11_PID_BITS) == SL11_PID_IN) { 2019 target_buf = spipe->buffer; 2020 buf_start = spipe->tregs[ADR]; 2021 } else { 2022 target_buf = NULL; 2023 buf_start = 0; /* XXX gcc uninitialized warnings */ 2024 } 2025 2026 if (status & SL11_EPSTAT_ERRBITS) { 2027 status &= SL11_EPSTAT_ERRBITS; 2028 if (status & SL11_EPSTAT_SETUP) { 2029 printf("%s: Invalid controller state detected! " 2030 "halted\n", SC_NAME(sc)); 2031 DDOLOG("%s: Invalid controller state detected! " 2032 "halted\n", SC_NAME(sc), 0,0,0); 2033 slhci_halt(sc, spipe, xfer); 2034 return; 2035 } else if (__predict_false(sc->sc_bus.use_polling)) { 2036 if (status == SL11_EPSTAT_STALL) 2037 xfer->status = USBD_STALLED; 2038 else if (status == SL11_EPSTAT_TIMEOUT) 2039 xfer->status = USBD_TIMEOUT; 2040 else if (status == SL11_EPSTAT_NAK) 2041 xfer->status = USBD_TIMEOUT; /*XXX*/ 2042 else 2043 xfer->status = USBD_IOERROR; 2044 head = Q_CALLBACKS; 2045 } else if (status == SL11_EPSTAT_NAK) { 2046 if (spipe->pipe.interval) { 2047 spipe->lastframe = spipe->frame = 2048 t->frame + spipe->pipe.interval; 2049 slhci_queue_timed(sc, spipe); 2050 goto queued; 2051 } 2052 head = Q_NEXT_CB; 2053 } else if (++spipe->nerrs > SLHCI_MAX_RETRIES || 2054 status == SL11_EPSTAT_STALL) { 2055 if (status == SL11_EPSTAT_STALL) 2056 xfer->status = USBD_STALLED; 2057 else if (status == SL11_EPSTAT_TIMEOUT) 2058 xfer->status = USBD_TIMEOUT; 2059 else 2060 xfer->status = USBD_IOERROR; 2061 2062 DLOG(D_ERR, "Max retries reached! status %#x " 2063 "xfer->status %#x", status, xfer->status, 0,0); 2064 DLOGFLAG8(D_ERR, "STATUS=", status, "STALL", 2065 "NAK", "Overflow", "Setup", "Data Toggle", 2066 "Timeout", "Error", "ACK"); 2067 2068 if (status == SL11_EPSTAT_OVERFLOW && 2069 ratecheck(&sc->sc_overflow_warn_rate, 2070 &overflow_warn_rate)) { 2071 printf("%s: Overflow condition: " 2072 "data corruption possible\n", 2073 SC_NAME(sc)); 2074 DDOLOG("%s: Overflow condition: " 2075 "data corruption possible\n", 2076 SC_NAME(sc), 0,0,0); 2077 } 2078 head = Q_CALLBACKS; 2079 } else { 2080 head = Q_NEXT_CB; 2081 } 2082 } else if (spipe->ptype == PT_CTRL_SETUP) { 2083 spipe->tregs[PID] = spipe->newpid; 2084 2085 if (xfer->length) { 2086 LK_SLASSERT(spipe->newlen[1] != 0, sc, spipe, xfer, 2087 return); 2088 spipe->tregs[LEN] = spipe->newlen[1]; 2089 spipe->bustime = spipe->newbustime[1]; 2090 spipe->buffer = KERNADDR(&xfer->dmabuf, 0); 2091 spipe->ptype = PT_CTRL_DATA; 2092 } else { 2093 status_setup: 2094 /* CTRL_DATA swaps direction in PID then jumps here */ 2095 spipe->tregs[LEN] = 0; 2096 if (spipe->pflags & PF_LS) 2097 spipe->bustime = SLHCI_LS_CONST; 2098 else 2099 spipe->bustime = SLHCI_FS_CONST; 2100 spipe->ptype = PT_CTRL_STATUS; 2101 spipe->buffer = NULL; 2102 } 2103 2104 /* Status or first data packet must be DATA1. */ 2105 spipe->control |= SL11_EPCTRL_DATATOGGLE; 2106 if ((spipe->tregs[PID] & SL11_PID_BITS) == SL11_PID_IN) 2107 spipe->control &= ~SL11_EPCTRL_DIRECTION; 2108 else 2109 spipe->control |= SL11_EPCTRL_DIRECTION; 2110 2111 head = Q_CB; 2112 } else if (spipe->ptype == PT_CTRL_STATUS) { 2113 head = Q_CALLBACKS; 2114 } else { /* bulk, intr, control data */ 2115 xfer->actlen += actlen; 2116 spipe->control ^= SL11_EPCTRL_DATATOGGLE; 2117 2118 if (actlen == spipe->tregs[LEN] && (xfer->length > 2119 xfer->actlen || spipe->wantshort)) { 2120 spipe->buffer += actlen; 2121 LK_SLASSERT(xfer->length >= xfer->actlen, sc, 2122 spipe, xfer, return); 2123 if (xfer->length - xfer->actlen < actlen) { 2124 spipe->wantshort = 0; 2125 spipe->tregs[LEN] = spipe->newlen[0]; 2126 spipe->bustime = spipe->newbustime[0]; 2127 LK_SLASSERT(xfer->actlen + 2128 spipe->tregs[LEN] == xfer->length, sc, 2129 spipe, xfer, return); 2130 } 2131 head = Q_CB; 2132 } else if (spipe->ptype == PT_CTRL_DATA) { 2133 spipe->tregs[PID] ^= SLHCI_PID_SWAP_IN_OUT; 2134 goto status_setup; 2135 } else { 2136 if (spipe->ptype == PT_INTR) { 2137 spipe->lastframe += 2138 spipe->pipe.interval; 2139 /* If ack, we try to keep the 2140 * interrupt rate by using lastframe 2141 * instead of the current frame. */ 2142 spipe->frame = spipe->lastframe + 2143 spipe->pipe.interval; 2144 } 2145 2146 /* Set the toggle for the next transfer. It 2147 * has already been toggled above, so the 2148 * current setting will apply to the next 2149 * transfer. */ 2150 if (spipe->control & SL11_EPCTRL_DATATOGGLE) 2151 spipe->pflags |= PF_TOGGLE; 2152 else 2153 spipe->pflags &= ~PF_TOGGLE; 2154 2155 head = Q_CALLBACKS; 2156 } 2157 } 2158 2159 if (head == Q_CALLBACKS) { 2160 gcq_remove(&spipe->to); 2161 2162 if (xfer->status == USBD_IN_PROGRESS) { 2163 LK_SLASSERT(xfer->actlen <= xfer->length, sc, 2164 spipe, xfer, return); 2165 xfer->status = USBD_NORMAL_COMPLETION; 2166 #if 0 /* usb_transfer_complete will do this */ 2167 if (xfer->length == xfer->actlen || xfer->flags & 2168 USBD_SHORT_XFER_OK) 2169 xfer->status = USBD_NORMAL_COMPLETION; 2170 else 2171 xfer->status = USBD_SHORT_XFER; 2172 #endif 2173 } 2174 } 2175 2176 enter_q(t, spipe, head); 2177 2178 queued: 2179 if (target_buf != NULL) { 2180 slhci_dotransfer(sc); 2181 start_cc_time(&t_copy_from_dev, actlen); 2182 slhci_read_multi(sc, buf_start, target_buf, actlen); 2183 stop_cc_time(&t_copy_from_dev); 2184 DLOGBUF(D_BUF, target_buf, actlen); 2185 t->pend -= SLHCI_FS_CONST + SLHCI_FS_DATA_TIME(actlen); 2186 } 2187 2188 done: 2189 t->len[ab] = -1; 2190 } 2191 2192 static void 2193 slhci_tstart(struct slhci_softc *sc) 2194 { 2195 struct slhci_transfers *t; 2196 struct slhci_pipe *spipe; 2197 int remaining_bustime; 2198 int s; 2199 2200 t = &sc->sc_transfers; 2201 2202 SLHCI_LOCKASSERT(sc, locked, unlocked); 2203 2204 if (!(t->flags & (F_AREADY|F_BREADY))) 2205 return; 2206 2207 if (t->flags & (F_AINPROG|F_BINPROG|F_DISABLED)) 2208 return; 2209 2210 /* We have about 6 us to get from the bus time check to 2211 * starting the transfer or we might babble or the chip might fail to 2212 * signal transfer complete. This leaves no time for any other 2213 * interrupts. 2214 */ 2215 s = splhigh(); 2216 remaining_bustime = (int)(slhci_read(sc, SL811_CSOF)) << 6; 2217 remaining_bustime -= SLHCI_END_BUSTIME; 2218 2219 /* Start one transfer only, clearing any aborted transfers that are 2220 * not yet in progress and skipping missed isoc. It is easier to copy 2221 * & paste most of the A/B sections than to make the logic work 2222 * otherwise and this allows better constant use. */ 2223 if (t->flags & F_AREADY) { 2224 spipe = t->spipe[A]; 2225 if (spipe == NULL) { 2226 t->flags &= ~F_AREADY; 2227 t->len[A] = -1; 2228 } else if (remaining_bustime >= spipe->bustime) { 2229 t->flags &= ~(F_AREADY|F_SOFCHECK1|F_SOFCHECK2); 2230 t->flags |= F_AINPROG; 2231 start_cc_time(&t_ab[A], spipe->tregs[LEN]); 2232 slhci_write(sc, SL11_E0CTRL, spipe->control); 2233 goto pend; 2234 } 2235 } 2236 if (t->flags & F_BREADY) { 2237 spipe = t->spipe[B]; 2238 if (spipe == NULL) { 2239 t->flags &= ~F_BREADY; 2240 t->len[B] = -1; 2241 } else if (remaining_bustime >= spipe->bustime) { 2242 t->flags &= ~(F_BREADY|F_SOFCHECK1|F_SOFCHECK2); 2243 t->flags |= F_BINPROG; 2244 start_cc_time(&t_ab[B], spipe->tregs[LEN]); 2245 slhci_write(sc, SL11_E1CTRL, spipe->control); 2246 pend: 2247 t->pend = spipe->bustime; 2248 } 2249 } 2250 splx(s); 2251 } 2252 2253 static void 2254 slhci_dotransfer(struct slhci_softc *sc) 2255 { 2256 struct slhci_transfers *t; 2257 struct slhci_pipe *spipe; 2258 int ab, i; 2259 2260 t = &sc->sc_transfers; 2261 2262 SLHCI_LOCKASSERT(sc, locked, unlocked); 2263 2264 while ((t->len[A] == -1 || t->len[B] == -1) && 2265 (GOT_FIRST_TIMED_COND(spipe, t, spipe->frame <= t->frame) || 2266 GOT_FIRST_CB(spipe, t))) { 2267 LK_SLASSERT(spipe->xfer != NULL, sc, spipe, NULL, return); 2268 LK_SLASSERT(spipe->ptype != PT_ROOT_CTRL && spipe->ptype != 2269 PT_ROOT_INTR, sc, spipe, NULL, return); 2270 2271 /* Check that this transfer can fit in the remaining memory. */ 2272 if (t->len[A] + t->len[B] + spipe->tregs[LEN] + 1 > 2273 SL11_MAX_PACKET_SIZE) { 2274 DLOG(D_XFER, "Transfer does not fit. alen %d blen %d " 2275 "len %d", t->len[A], t->len[B], spipe->tregs[LEN], 2276 0); 2277 return; 2278 } 2279 2280 gcq_remove(&spipe->xq); 2281 2282 if (t->len[A] == -1) { 2283 ab = A; 2284 spipe->tregs[ADR] = SL11_BUFFER_START; 2285 } else { 2286 ab = B; 2287 spipe->tregs[ADR] = SL11_BUFFER_END - 2288 spipe->tregs[LEN]; 2289 } 2290 2291 t->len[ab] = spipe->tregs[LEN]; 2292 2293 if (spipe->tregs[LEN] && (spipe->tregs[PID] & SL11_PID_BITS) 2294 != SL11_PID_IN) { 2295 start_cc_time(&t_copy_to_dev, 2296 spipe->tregs[LEN]); 2297 slhci_write_multi(sc, spipe->tregs[ADR], 2298 spipe->buffer, spipe->tregs[LEN]); 2299 stop_cc_time(&t_copy_to_dev); 2300 t->pend -= SLHCI_FS_CONST + 2301 SLHCI_FS_DATA_TIME(spipe->tregs[LEN]); 2302 } 2303 2304 DLOG(D_MSG, "NEW TRANSFER %s flags %#x alen %d blen %d", 2305 ab ? "B" : "A", t->flags, t->len[0], t->len[1]); 2306 2307 if (spipe->tregs[LEN]) 2308 i = 0; 2309 else 2310 i = 1; 2311 2312 for (; i <= 3; i++) 2313 if (t->current_tregs[ab][i] != spipe->tregs[i]) { 2314 t->current_tregs[ab][i] = spipe->tregs[i]; 2315 slhci_write(sc, slhci_tregs[ab][i], 2316 spipe->tregs[i]); 2317 } 2318 2319 DLOG(D_SXFER, "Transfer len %d pid %#x dev %d type %s", 2320 spipe->tregs[LEN], spipe->tregs[PID], spipe->tregs[DEV], 2321 pnames(spipe->ptype)); 2322 2323 t->spipe[ab] = spipe; 2324 t->flags |= ab ? F_BREADY : F_AREADY; 2325 2326 slhci_tstart(sc); 2327 } 2328 } 2329 2330 /* slhci_callback is called after the lock is taken from splusb. 2331 * s is pointer to old spl (splusb). */ 2332 static void 2333 slhci_callback(struct slhci_softc *sc, int *s) 2334 { 2335 struct slhci_transfers *t; 2336 struct slhci_pipe *spipe; 2337 struct usbd_xfer *xfer; 2338 2339 t = &sc->sc_transfers; 2340 2341 SLHCI_LOCKASSERT(sc, locked, unlocked); 2342 2343 DLOG(D_SOFT, "CB flags %#x", t->flags, 0,0,0); 2344 for (;;) { 2345 if (__predict_false(t->flags & F_ROOTINTR)) { 2346 t->flags &= ~F_ROOTINTR; 2347 if (t->rootintr != NULL) { 2348 u_char *p; 2349 2350 p = KERNADDR(&t->rootintr->dmabuf, 0); 2351 p[0] = 2; 2352 t->rootintr->actlen = 1; 2353 t->rootintr->status = USBD_NORMAL_COMPLETION; 2354 xfer = t->rootintr; 2355 goto do_callback; 2356 } 2357 } 2358 2359 2360 if (!DEQUEUED_CALLBACK(spipe, t)) 2361 return; 2362 2363 xfer = spipe->xfer; 2364 LK_SLASSERT(xfer != NULL, sc, spipe, NULL, return); 2365 spipe->xfer = NULL; 2366 DLOG(D_XFER, "xfer callback length %d actlen %d spipe %x " 2367 "type %s", xfer->length, xfer->actlen, spipe, 2368 pnames(spipe->ptype)); 2369 do_callback: 2370 slhci_do_callback(sc, xfer, s); 2371 } 2372 } 2373 2374 static void 2375 slhci_enter_xfer(struct slhci_softc *sc, struct slhci_pipe *spipe) 2376 { 2377 struct slhci_transfers *t; 2378 2379 t = &sc->sc_transfers; 2380 2381 SLHCI_MAINLOCKASSERT(sc); 2382 2383 if (__predict_false(t->flags & F_DISABLED) || 2384 __predict_false(spipe->pflags & PF_GONE)) { 2385 DLOG(D_MSG, "slhci_enter_xfer: DISABLED or GONE", 0,0,0,0); 2386 spipe->xfer->status = USBD_CANCELLED; 2387 } 2388 2389 if (spipe->xfer->status == USBD_IN_PROGRESS) { 2390 if (spipe->xfer->timeout) { 2391 spipe->to_frame = t->frame + spipe->xfer->timeout; 2392 slhci_xfer_timer(sc, spipe); 2393 } 2394 if (spipe->pipe.interval) 2395 slhci_queue_timed(sc, spipe); 2396 else 2397 enter_q(t, spipe, Q_CB); 2398 } else 2399 enter_callback(t, spipe); 2400 } 2401 2402 #ifdef SLHCI_WAITLOCK 2403 static void 2404 slhci_enter_xfers(struct slhci_softc *sc) 2405 { 2406 struct slhci_pipe *spipe; 2407 2408 SLHCI_LOCKASSERT(sc, locked, locked); 2409 2410 while (DEQUEUED_WAITQ(spipe, sc)) 2411 slhci_enter_xfer(sc, spipe); 2412 } 2413 #endif 2414 2415 static void 2416 slhci_queue_timed(struct slhci_softc *sc, struct slhci_pipe *spipe) 2417 { 2418 struct slhci_transfers *t; 2419 struct gcq *q; 2420 struct slhci_pipe *spp; 2421 2422 t = &sc->sc_transfers; 2423 2424 SLHCI_MAINLOCKASSERT(sc); 2425 2426 FIND_TIMED(q, t, spp, spp->frame > spipe->frame); 2427 gcq_insert_before(q, &spipe->xq); 2428 } 2429 2430 static void 2431 slhci_xfer_timer(struct slhci_softc *sc, struct slhci_pipe *spipe) 2432 { 2433 struct slhci_transfers *t; 2434 struct gcq *q; 2435 struct slhci_pipe *spp; 2436 2437 t = &sc->sc_transfers; 2438 2439 SLHCI_MAINLOCKASSERT(sc); 2440 2441 FIND_TO(q, t, spp, spp->to_frame >= spipe->to_frame); 2442 gcq_insert_before(q, &spipe->to); 2443 } 2444 2445 static void 2446 slhci_do_repeat(struct slhci_softc *sc, struct usbd_xfer *xfer) 2447 { 2448 struct slhci_transfers *t; 2449 struct slhci_pipe *spipe; 2450 2451 t = &sc->sc_transfers; 2452 spipe = (struct slhci_pipe *)xfer->pipe; 2453 2454 if (xfer == t->rootintr) 2455 return; 2456 2457 DLOG(D_TRACE, "REPEAT: xfer %p actlen %d frame %u now %u", 2458 xfer, xfer->actlen, spipe->frame, sc->sc_transfers.frame); 2459 2460 xfer->actlen = 0; 2461 spipe->xfer = xfer; 2462 if (spipe->tregs[LEN]) 2463 KASSERT(spipe->buffer == KERNADDR(&xfer->dmabuf, 0)); 2464 slhci_queue_timed(sc, spipe); 2465 slhci_dotransfer(sc); 2466 } 2467 2468 static void 2469 slhci_callback_schedule(struct slhci_softc *sc) 2470 { 2471 struct slhci_transfers *t; 2472 2473 t = &sc->sc_transfers; 2474 2475 SLHCI_LOCKASSERT(sc, locked, unlocked); 2476 2477 if (t->flags & F_ACTIVE) 2478 slhci_do_callback_schedule(sc); 2479 } 2480 2481 static void 2482 slhci_do_callback_schedule(struct slhci_softc *sc) 2483 { 2484 struct slhci_transfers *t; 2485 2486 t = &sc->sc_transfers; 2487 2488 SLHCI_LOCKASSERT(sc, locked, unlocked); 2489 2490 if (!(t->flags & F_CALLBACK)) { 2491 t->flags |= F_CALLBACK; 2492 softint_schedule(sc->sc_cb_softintr); 2493 } 2494 } 2495 2496 #if 0 2497 /* must be called with lock taken from splusb */ 2498 /* XXX static */ void 2499 slhci_pollxfer(struct slhci_softc *sc, struct usbd_xfer *xfer, int *s) 2500 { 2501 SLHCI_LOCKASSERT(sc, locked, unlocked); 2502 slhci_dotransfer(sc); 2503 do { 2504 slhci_dointr(sc); 2505 } while (xfer->status == USBD_IN_PROGRESS); 2506 slhci_do_callback(sc, xfer, s); 2507 } 2508 #endif 2509 2510 static usbd_status 2511 slhci_do_poll(struct slhci_softc *sc, struct slhci_pipe *spipe, struct 2512 usbd_xfer *xfer) 2513 { 2514 slhci_waitintr(sc, 0); 2515 2516 return USBD_NORMAL_COMPLETION; 2517 } 2518 2519 static usbd_status 2520 slhci_lsvh_warn(struct slhci_softc *sc, struct slhci_pipe *spipe, struct 2521 usbd_xfer *xfer) 2522 { 2523 struct slhci_transfers *t; 2524 2525 t = &sc->sc_transfers; 2526 2527 if (!(t->flags & F_LSVH_WARNED)) { 2528 printf("%s: Low speed device via hub disabled, " 2529 "see slhci(4)\n", SC_NAME(sc)); 2530 DDOLOG("%s: Low speed device via hub disabled, " 2531 "see slhci(4)\n", SC_NAME(sc), 0,0,0); 2532 t->flags |= F_LSVH_WARNED; 2533 } 2534 return USBD_INVAL; 2535 } 2536 2537 static usbd_status 2538 slhci_isoc_warn(struct slhci_softc *sc, struct slhci_pipe *spipe, struct 2539 usbd_xfer *xfer) 2540 { 2541 struct slhci_transfers *t; 2542 2543 t = &sc->sc_transfers; 2544 2545 if (!(t->flags & F_ISOC_WARNED)) { 2546 printf("%s: ISOC transfer not supported " 2547 "(see slhci(4))\n", SC_NAME(sc)); 2548 DDOLOG("%s: ISOC transfer not supported " 2549 "(see slhci(4))\n", SC_NAME(sc), 0,0,0); 2550 t->flags |= F_ISOC_WARNED; 2551 } 2552 return USBD_INVAL; 2553 } 2554 2555 static usbd_status 2556 slhci_open_pipe(struct slhci_softc *sc, struct slhci_pipe *spipe, struct 2557 usbd_xfer *xfer) 2558 { 2559 struct slhci_transfers *t; 2560 struct usbd_pipe *pipe; 2561 2562 t = &sc->sc_transfers; 2563 pipe = &spipe->pipe; 2564 2565 if (t->flags & F_DISABLED) 2566 return USBD_CANCELLED; 2567 else if (pipe->interval && !slhci_reserve_bustime(sc, spipe, 1)) 2568 return USBD_PENDING_REQUESTS; 2569 else { 2570 enter_all_pipes(t, spipe); 2571 return USBD_NORMAL_COMPLETION; 2572 } 2573 } 2574 2575 static usbd_status 2576 slhci_close_pipe(struct slhci_softc *sc, struct slhci_pipe *spipe, struct 2577 usbd_xfer *xfer) 2578 { 2579 struct slhci_transfers *t; 2580 struct usbd_pipe *pipe; 2581 2582 t = &sc->sc_transfers; 2583 pipe = &spipe->pipe; 2584 2585 if (pipe->interval && spipe->ptype != PT_ROOT_INTR) 2586 slhci_reserve_bustime(sc, spipe, 0); 2587 gcq_remove(&spipe->ap); 2588 return USBD_NORMAL_COMPLETION; 2589 } 2590 2591 static usbd_status 2592 slhci_do_abort(struct slhci_softc *sc, struct slhci_pipe *spipe, struct 2593 usbd_xfer *xfer) 2594 { 2595 struct slhci_transfers *t; 2596 2597 t = &sc->sc_transfers; 2598 2599 SLHCI_MAINLOCKASSERT(sc); 2600 2601 if (spipe->xfer == xfer) { 2602 if (spipe->ptype == PT_ROOT_INTR) { 2603 if (t->rootintr == spipe->xfer) /* XXX assert? */ 2604 t->rootintr = NULL; 2605 } else { 2606 gcq_remove(&spipe->to); 2607 gcq_remove(&spipe->xq); 2608 2609 if (t->spipe[A] == spipe) { 2610 t->spipe[A] = NULL; 2611 if (!(t->flags & F_AINPROG)) 2612 t->len[A] = -1; 2613 } else if (t->spipe[B] == spipe) { 2614 t->spipe[B] = NULL; 2615 if (!(t->flags & F_BINPROG)) 2616 t->len[B] = -1; 2617 } 2618 } 2619 2620 if (xfer->status != USBD_TIMEOUT) { 2621 spipe->xfer = NULL; 2622 spipe->pipe.repeat = 0; /* XXX timeout? */ 2623 } 2624 } 2625 2626 return USBD_NORMAL_COMPLETION; 2627 } 2628 2629 static usbd_status 2630 slhci_do_attach(struct slhci_softc *sc, struct slhci_pipe *spipe, struct 2631 usbd_xfer *xfer) 2632 { 2633 struct slhci_transfers *t; 2634 const char *rev; 2635 2636 t = &sc->sc_transfers; 2637 2638 SLHCI_LOCKASSERT(sc, locked, unlocked); 2639 2640 /* Detect and check the controller type */ 2641 t->sltype = SL11_GET_REV(slhci_read(sc, SL11_REV)); 2642 2643 /* SL11H not supported */ 2644 if (!slhci_supported_rev(t->sltype)) { 2645 if (t->sltype == SLTYPE_SL11H) 2646 printf("%s: SL11H unsupported or bus error!\n", 2647 SC_NAME(sc)); 2648 else 2649 printf("%s: Unknown chip revision!\n", SC_NAME(sc)); 2650 return USBD_INVAL; 2651 } 2652 2653 callout_init(&sc->sc_timer, CALLOUT_MPSAFE); 2654 callout_setfunc(&sc->sc_timer, slhci_reset_entry, sc); 2655 2656 /* It is not safe to call the soft interrupt directly as 2657 * usb_schedsoftintr does in the use_polling case (due to locking). 2658 */ 2659 sc->sc_cb_softintr = softint_establish(SOFTINT_NET, 2660 slhci_callback_entry, sc); 2661 2662 #ifdef SLHCI_DEBUG 2663 ssc = sc; 2664 #ifdef USB_DEBUG 2665 if (slhci_usbdebug >= 0) 2666 usbdebug = slhci_usbdebug; 2667 #endif 2668 #endif 2669 2670 if (t->sltype == SLTYPE_SL811HS_R12) 2671 rev = " (rev 1.2)"; 2672 else if (t->sltype == SLTYPE_SL811HS_R14) 2673 rev = " (rev 1.4 or 1.5)"; 2674 else 2675 rev = " (unknown revision)"; 2676 2677 aprint_normal("%s: ScanLogic SL811HS/T USB Host Controller %s\n", 2678 SC_NAME(sc), rev); 2679 2680 aprint_normal("%s: Max Current %u mA (value by code, not by probe)\n", 2681 SC_NAME(sc), t->max_current * 2); 2682 2683 #if defined(SLHCI_DEBUG) || defined(SLHCI_NO_OVERTIME) || \ 2684 defined(SLHCI_TRY_LSVH) || defined(SLHCI_PROFILE_TRANSFER) 2685 aprint_normal("%s: driver options:" 2686 #ifdef SLHCI_DEBUG 2687 " SLHCI_DEBUG" 2688 #endif 2689 #ifdef SLHCI_TRY_LSVH 2690 " SLHCI_TRY_LSVH" 2691 #endif 2692 #ifdef SLHCI_NO_OVERTIME 2693 " SLHCI_NO_OVERTIME" 2694 #endif 2695 #ifdef SLHCI_PROFILE_TRANSFER 2696 " SLHCI_PROFILE_TRANSFER" 2697 #endif 2698 "\n", SC_NAME(sc)); 2699 #endif 2700 sc->sc_bus.usbrev = USBREV_1_1; 2701 sc->sc_bus.methods = __UNCONST(&slhci_bus_methods); 2702 sc->sc_bus.pipe_size = sizeof(struct slhci_pipe); 2703 2704 if (!sc->sc_enable_power) 2705 t->flags |= F_REALPOWER; 2706 2707 t->flags |= F_ACTIVE; 2708 2709 return USBD_NORMAL_COMPLETION; 2710 } 2711 2712 /* Called to deactivate or stop use of the controller instead of panicing. 2713 * Will cancel the xfer correctly even when not on a list. 2714 */ 2715 static usbd_status 2716 slhci_halt(struct slhci_softc *sc, struct slhci_pipe *spipe, struct usbd_xfer 2717 *xfer) 2718 { 2719 struct slhci_transfers *t; 2720 2721 SLHCI_LOCKASSERT(sc, locked, unlocked); 2722 2723 t = &sc->sc_transfers; 2724 2725 DDOLOG("Halt! sc %p spipe %p xfer %p", sc, spipe, xfer, 0); 2726 2727 if (spipe != NULL) 2728 slhci_log_spipe(spipe); 2729 2730 if (xfer != NULL) 2731 slhci_log_xfer(xfer); 2732 2733 if (spipe != NULL && xfer != NULL && spipe->xfer == xfer && 2734 !gcq_onlist(&spipe->xq) && t->spipe[A] != spipe && t->spipe[B] != 2735 spipe) { 2736 xfer->status = USBD_CANCELLED; 2737 enter_callback(t, spipe); 2738 } 2739 2740 if (t->flags & F_ACTIVE) { 2741 slhci_intrchange(sc, 0); 2742 /* leave power on when halting in case flash devices or disks 2743 * are attached, which may be writing and could be damaged 2744 * by abrupt power loss. The root hub clear power feature 2745 * should still work after halting. 2746 */ 2747 } 2748 2749 t->flags &= ~F_ACTIVE; 2750 t->flags |= F_UDISABLED; 2751 if (!(t->flags & F_NODEV)) 2752 t->flags |= F_NODEV|F_CCONNECT|F_ROOTINTR; 2753 slhci_drain(sc); 2754 2755 /* One last callback for the drain and device removal. */ 2756 slhci_do_callback_schedule(sc); 2757 2758 return USBD_NORMAL_COMPLETION; 2759 } 2760 2761 /* There are three interrupt states: no interrupts during reset and after 2762 * device deactivation, INSERT only for no device present but power on, and 2763 * SOF, INSERT, ADONE, and BDONE when device is present. 2764 */ 2765 static void 2766 slhci_intrchange(struct slhci_softc *sc, uint8_t new_ier) 2767 { 2768 SLHCI_MAINLOCKASSERT(sc); 2769 if (sc->sc_ier != new_ier) { 2770 sc->sc_ier = new_ier; 2771 slhci_write(sc, SL11_IER, new_ier); 2772 BSB_SYNC(sc->iot, sc->ioh, sc->pst, sc->psz); 2773 } 2774 } 2775 2776 /* Drain: cancel all pending transfers and put them on the callback list and 2777 * set the UDISABLED flag. UDISABLED is cleared only by reset. */ 2778 static void 2779 slhci_drain(struct slhci_softc *sc) 2780 { 2781 struct slhci_transfers *t; 2782 struct slhci_pipe *spipe; 2783 struct gcq *q; 2784 int i; 2785 2786 SLHCI_LOCKASSERT(sc, locked, unlocked); 2787 2788 t = &sc->sc_transfers; 2789 2790 DLOG(D_MSG, "DRAIN flags %#x", t->flags, 0,0,0); 2791 2792 t->pend = INT_MAX; 2793 2794 for (i=0; i<=1; i++) { 2795 t->len[i] = -1; 2796 if (t->spipe[i] != NULL) { 2797 enter_callback(t, t->spipe[i]); 2798 t->spipe[i] = NULL; 2799 } 2800 } 2801 2802 /* Merge the queues into the callback queue. */ 2803 gcq_merge_tail(&t->q[Q_CALLBACKS], &t->q[Q_CB]); 2804 gcq_merge_tail(&t->q[Q_CALLBACKS], &t->q[Q_NEXT_CB]); 2805 gcq_merge_tail(&t->q[Q_CALLBACKS], &t->timed); 2806 2807 /* Cancel all pipes. Note that not all of these may be on the 2808 * callback queue yet; some could be in slhci_start, for example. */ 2809 FOREACH_AP(q, t, spipe) { 2810 spipe->pflags |= PF_GONE; 2811 spipe->pipe.repeat = 0; 2812 spipe->pipe.aborting = 1; 2813 if (spipe->xfer != NULL) 2814 spipe->xfer->status = USBD_CANCELLED; 2815 } 2816 2817 gcq_remove_all(&t->to); 2818 2819 t->flags |= F_UDISABLED; 2820 t->flags &= ~(F_AREADY|F_BREADY|F_AINPROG|F_BINPROG|F_LOWSPEED); 2821 } 2822 2823 /* RESET: SL11_CTRL_RESETENGINE=1 and SL11_CTRL_JKSTATE=0 for 50ms 2824 * reconfigure SOF after reset, must wait 2.5us before USB bus activity (SOF) 2825 * check attached device speed. 2826 * must wait 100ms before USB transaction according to app note, 10ms 2827 * by spec. uhub does this delay 2828 * 2829 * Started from root hub set feature reset, which does step one. 2830 * use_polling will call slhci_reset directly, otherwise the callout goes 2831 * through slhci_reset_entry. 2832 */ 2833 void 2834 slhci_reset(struct slhci_softc *sc) 2835 { 2836 struct slhci_transfers *t; 2837 struct slhci_pipe *spipe; 2838 struct gcq *q; 2839 uint8_t r, pol, ctrl; 2840 2841 t = &sc->sc_transfers; 2842 SLHCI_MAINLOCKASSERT(sc); 2843 2844 stop_cc_time(&t_delay); 2845 2846 KASSERT(t->flags & F_ACTIVE); 2847 2848 start_cc_time(&t_delay, 0); 2849 stop_cc_time(&t_delay); 2850 2851 slhci_write(sc, SL11_CTRL, 0); 2852 start_cc_time(&t_delay, 3); 2853 DELAY(3); 2854 stop_cc_time(&t_delay); 2855 slhci_write(sc, SL11_ISR, 0xff); 2856 2857 r = slhci_read(sc, SL11_ISR); 2858 2859 if (r & SL11_ISR_INSERT) 2860 slhci_write(sc, SL11_ISR, SL11_ISR_INSERT); 2861 2862 if (r & SL11_ISR_NODEV) { 2863 DLOG(D_MSG, "NC", 0,0,0,0); 2864 /* Normally, the hard interrupt insert routine will issue 2865 * CCONNECT, however we need to do it here if the detach 2866 * happened during reset. */ 2867 if (!(t->flags & F_NODEV)) 2868 t->flags |= F_CCONNECT|F_ROOTINTR|F_NODEV; 2869 slhci_intrchange(sc, SL11_IER_INSERT); 2870 } else { 2871 if (t->flags & F_NODEV) 2872 t->flags |= F_CCONNECT; 2873 t->flags &= ~(F_NODEV|F_LOWSPEED); 2874 if (r & SL11_ISR_DATA) { 2875 DLOG(D_MSG, "FS", 0,0,0,0); 2876 pol = ctrl = 0; 2877 } else { 2878 DLOG(D_MSG, "LS", 0,0,0,0); 2879 pol = SL811_CSOF_POLARITY; 2880 ctrl = SL11_CTRL_LOWSPEED; 2881 t->flags |= F_LOWSPEED; 2882 } 2883 2884 /* Enable SOF auto-generation */ 2885 t->frame = 0; /* write to SL811_CSOF will reset frame */ 2886 slhci_write(sc, SL11_SOFTIME, 0xe0); 2887 slhci_write(sc, SL811_CSOF, pol|SL811_CSOF_MASTER|0x2e); 2888 slhci_write(sc, SL11_CTRL, ctrl|SL11_CTRL_ENABLESOF); 2889 2890 /* According to the app note, ARM must be set 2891 * for SOF generation to work. We initialize all 2892 * USBA registers here for current_tregs. */ 2893 slhci_write(sc, SL11_E0ADDR, SL11_BUFFER_START); 2894 slhci_write(sc, SL11_E0LEN, 0); 2895 slhci_write(sc, SL11_E0PID, SL11_PID_SOF); 2896 slhci_write(sc, SL11_E0DEV, 0); 2897 slhci_write(sc, SL11_E0CTRL, SL11_EPCTRL_ARM); 2898 2899 /* Initialize B registers. This can't be done earlier since 2900 * they are not valid until the SL811_CSOF register is written 2901 * above due to SL11H compatability. */ 2902 slhci_write(sc, SL11_E1ADDR, SL11_BUFFER_END - 8); 2903 slhci_write(sc, SL11_E1LEN, 0); 2904 slhci_write(sc, SL11_E1PID, 0); 2905 slhci_write(sc, SL11_E1DEV, 0); 2906 2907 t->current_tregs[0][ADR] = SL11_BUFFER_START; 2908 t->current_tregs[0][LEN] = 0; 2909 t->current_tregs[0][PID] = SL11_PID_SOF; 2910 t->current_tregs[0][DEV] = 0; 2911 t->current_tregs[1][ADR] = SL11_BUFFER_END - 8; 2912 t->current_tregs[1][LEN] = 0; 2913 t->current_tregs[1][PID] = 0; 2914 t->current_tregs[1][DEV] = 0; 2915 2916 /* SOF start will produce USBA interrupt */ 2917 t->len[A] = 0; 2918 t->flags |= F_AINPROG; 2919 2920 slhci_intrchange(sc, SLHCI_NORMAL_INTERRUPTS); 2921 } 2922 2923 t->flags &= ~(F_UDISABLED|F_RESET); 2924 t->flags |= F_CRESET|F_ROOTINTR; 2925 FOREACH_AP(q, t, spipe) { 2926 spipe->pflags &= ~PF_GONE; 2927 spipe->pipe.aborting = 0; 2928 } 2929 DLOG(D_MSG, "RESET done flags %#x", t->flags, 0,0,0); 2930 } 2931 2932 /* returns 1 if succeeded, 0 if failed, reserve == 0 is unreserve */ 2933 static int 2934 slhci_reserve_bustime(struct slhci_softc *sc, struct slhci_pipe *spipe, int 2935 reserve) 2936 { 2937 struct slhci_transfers *t; 2938 int bustime, max_packet; 2939 2940 SLHCI_LOCKASSERT(sc, locked, unlocked); 2941 2942 t = &sc->sc_transfers; 2943 max_packet = UGETW(spipe->pipe.endpoint->edesc->wMaxPacketSize); 2944 2945 if (spipe->pflags & PF_LS) 2946 bustime = SLHCI_LS_CONST + SLHCI_LS_DATA_TIME(max_packet); 2947 else 2948 bustime = SLHCI_FS_CONST + SLHCI_FS_DATA_TIME(max_packet); 2949 2950 if (!reserve) { 2951 t->reserved_bustime -= bustime; 2952 #ifdef DIAGNOSTIC 2953 if (t->reserved_bustime < 0) { 2954 printf("%s: reserved_bustime %d < 0!\n", 2955 SC_NAME(sc), t->reserved_bustime); 2956 DDOLOG("%s: reserved_bustime %d < 0!\n", 2957 SC_NAME(sc), t->reserved_bustime, 0,0); 2958 t->reserved_bustime = 0; 2959 } 2960 #endif 2961 return 1; 2962 } 2963 2964 if (t->reserved_bustime + bustime > SLHCI_RESERVED_BUSTIME) { 2965 if (ratecheck(&sc->sc_reserved_warn_rate, 2966 &reserved_warn_rate)) 2967 #ifdef SLHCI_NO_OVERTIME 2968 { 2969 printf("%s: Max reserved bus time exceeded! " 2970 "Erroring request.\n", SC_NAME(sc)); 2971 DDOLOG("%s: Max reserved bus time exceeded! " 2972 "Erroring request.\n", SC_NAME(sc), 0,0,0); 2973 } 2974 return 0; 2975 #else 2976 { 2977 printf("%s: Reserved bus time exceeds %d!\n", 2978 SC_NAME(sc), SLHCI_RESERVED_BUSTIME); 2979 DDOLOG("%s: Reserved bus time exceeds %d!\n", 2980 SC_NAME(sc), SLHCI_RESERVED_BUSTIME, 0,0); 2981 } 2982 #endif 2983 } 2984 2985 t->reserved_bustime += bustime; 2986 return 1; 2987 } 2988 2989 /* Device insertion/removal interrupt */ 2990 static void 2991 slhci_insert(struct slhci_softc *sc) 2992 { 2993 struct slhci_transfers *t; 2994 2995 t = &sc->sc_transfers; 2996 2997 SLHCI_LOCKASSERT(sc, locked, unlocked); 2998 2999 if (t->flags & F_NODEV) 3000 slhci_intrchange(sc, 0); 3001 else { 3002 slhci_drain(sc); 3003 slhci_intrchange(sc, SL11_IER_INSERT); 3004 } 3005 t->flags ^= F_NODEV; 3006 t->flags |= F_ROOTINTR|F_CCONNECT; 3007 DLOG(D_MSG, "INSERT intr: flags after %#x", t->flags, 0,0,0); 3008 } 3009 3010 /* 3011 * Data structures and routines to emulate the root hub. 3012 */ 3013 static const usb_device_descriptor_t slhci_devd = { 3014 USB_DEVICE_DESCRIPTOR_SIZE, 3015 UDESC_DEVICE, /* type */ 3016 {0x01, 0x01}, /* USB version */ 3017 UDCLASS_HUB, /* class */ 3018 UDSUBCLASS_HUB, /* subclass */ 3019 0, /* protocol */ 3020 64, /* max packet */ 3021 {USB_VENDOR_SCANLOGIC & 0xff, /* vendor ID (low) */ 3022 USB_VENDOR_SCANLOGIC >> 8 }, /* vendor ID (high) */ 3023 {0} /* ? */, /* product ID */ 3024 {0}, /* device */ 3025 1, /* index to manufacturer */ 3026 2, /* index to product */ 3027 0, /* index to serial number */ 3028 1 /* number of configurations */ 3029 }; 3030 3031 static const struct slhci_confd_t { 3032 const usb_config_descriptor_t confd; 3033 const usb_interface_descriptor_t ifcd; 3034 const usb_endpoint_descriptor_t endpd; 3035 } UPACKED slhci_confd = { 3036 { /* Configuration */ 3037 USB_CONFIG_DESCRIPTOR_SIZE, 3038 UDESC_CONFIG, 3039 {USB_CONFIG_DESCRIPTOR_SIZE + 3040 USB_INTERFACE_DESCRIPTOR_SIZE + 3041 USB_ENDPOINT_DESCRIPTOR_SIZE}, 3042 1, /* number of interfaces */ 3043 1, /* configuration value */ 3044 0, /* index to configuration */ 3045 UC_SELF_POWERED, /* attributes */ 3046 0 /* max current, filled in later */ 3047 }, { /* Interface */ 3048 USB_INTERFACE_DESCRIPTOR_SIZE, 3049 UDESC_INTERFACE, 3050 0, /* interface number */ 3051 0, /* alternate setting */ 3052 1, /* number of endpoint */ 3053 UICLASS_HUB, /* class */ 3054 UISUBCLASS_HUB, /* subclass */ 3055 0, /* protocol */ 3056 0 /* index to interface */ 3057 }, { /* Endpoint */ 3058 USB_ENDPOINT_DESCRIPTOR_SIZE, 3059 UDESC_ENDPOINT, 3060 UE_DIR_IN | ROOT_INTR_ENDPT, /* endpoint address */ 3061 UE_INTERRUPT, /* attributes */ 3062 {240, 0}, /* max packet size */ 3063 255 /* interval */ 3064 } 3065 }; 3066 3067 static const usb_hub_descriptor_t slhci_hubd = { 3068 USB_HUB_DESCRIPTOR_SIZE, 3069 UDESC_HUB, 3070 1, /* number of ports */ 3071 {UHD_PWR_INDIVIDUAL | UHD_OC_NONE, 0}, /* hub characteristics */ 3072 50, /* 5:power on to power good, units of 2ms */ 3073 0, /* 6:maximum current, filled in later */ 3074 { 0x00 }, /* port is removable */ 3075 { 0x00 } /* port power control mask */ 3076 }; 3077 3078 static usbd_status 3079 slhci_clear_feature(struct slhci_softc *sc, unsigned int what) 3080 { 3081 struct slhci_transfers *t; 3082 usbd_status error; 3083 3084 t = &sc->sc_transfers; 3085 error = USBD_NORMAL_COMPLETION; 3086 3087 SLHCI_LOCKASSERT(sc, locked, unlocked); 3088 3089 if (what == UHF_PORT_POWER) { 3090 DLOG(D_MSG, "POWER_OFF", 0,0,0,0); 3091 t->flags &= ~F_POWER; 3092 if (!(t->flags & F_NODEV)) 3093 t->flags |= F_NODEV|F_CCONNECT|F_ROOTINTR; 3094 /* for x68k Nereid USB controller */ 3095 if (sc->sc_enable_power && (t->flags & F_REALPOWER)) { 3096 t->flags &= ~F_REALPOWER; 3097 sc->sc_enable_power(sc, POWER_OFF); 3098 } 3099 slhci_intrchange(sc, 0); 3100 slhci_drain(sc); 3101 } else if (what == UHF_C_PORT_CONNECTION) { 3102 t->flags &= ~F_CCONNECT; 3103 } else if (what == UHF_C_PORT_RESET) { 3104 t->flags &= ~F_CRESET; 3105 } else if (what == UHF_PORT_ENABLE) { 3106 slhci_drain(sc); 3107 } else if (what != UHF_PORT_SUSPEND) { 3108 DDOLOG("ClrPortFeatERR:value=%#.4x", what, 0,0,0); 3109 error = USBD_IOERROR; 3110 } 3111 3112 return error; 3113 } 3114 3115 static usbd_status 3116 slhci_set_feature(struct slhci_softc *sc, unsigned int what) 3117 { 3118 struct slhci_transfers *t; 3119 uint8_t r; 3120 3121 t = &sc->sc_transfers; 3122 3123 SLHCI_LOCKASSERT(sc, locked, unlocked); 3124 3125 if (what == UHF_PORT_RESET) { 3126 if (!(t->flags & F_ACTIVE)) { 3127 DDOLOG("SET PORT_RESET when not ACTIVE!", 3128 0,0,0,0); 3129 return USBD_INVAL; 3130 } 3131 if (!(t->flags & F_POWER)) { 3132 DDOLOG("SET PORT_RESET without PORT_POWER! flags %p", 3133 t->flags, 0,0,0); 3134 return USBD_INVAL; 3135 } 3136 if (t->flags & F_RESET) 3137 return USBD_NORMAL_COMPLETION; 3138 DLOG(D_MSG, "RESET flags %#x", t->flags, 0,0,0); 3139 slhci_intrchange(sc, 0); 3140 slhci_drain(sc); 3141 slhci_write(sc, SL11_CTRL, SL11_CTRL_RESETENGINE); 3142 /* usb spec says delay >= 10ms, app note 50ms */ 3143 start_cc_time(&t_delay, 50000); 3144 if (sc->sc_bus.use_polling) { 3145 DELAY(50000); 3146 slhci_reset(sc); 3147 } else { 3148 t->flags |= F_RESET; 3149 callout_schedule(&sc->sc_timer, max(mstohz(50), 2)); 3150 } 3151 } else if (what == UHF_PORT_SUSPEND) { 3152 printf("%s: USB Suspend not implemented!\n", SC_NAME(sc)); 3153 DDOLOG("%s: USB Suspend not implemented!\n", SC_NAME(sc), 3154 0,0,0); 3155 } else if (what == UHF_PORT_POWER) { 3156 DLOG(D_MSG, "PORT_POWER", 0,0,0,0); 3157 /* for x68k Nereid USB controller */ 3158 if (!(t->flags & F_ACTIVE)) 3159 return USBD_INVAL; 3160 if (t->flags & F_POWER) 3161 return USBD_NORMAL_COMPLETION; 3162 if (!(t->flags & F_REALPOWER)) { 3163 if (sc->sc_enable_power) 3164 sc->sc_enable_power(sc, POWER_ON); 3165 t->flags |= F_REALPOWER; 3166 } 3167 t->flags |= F_POWER; 3168 r = slhci_read(sc, SL11_ISR); 3169 if (r & SL11_ISR_INSERT) 3170 slhci_write(sc, SL11_ISR, SL11_ISR_INSERT); 3171 if (r & SL11_ISR_NODEV) { 3172 slhci_intrchange(sc, SL11_IER_INSERT); 3173 t->flags |= F_NODEV; 3174 } else { 3175 t->flags &= ~F_NODEV; 3176 t->flags |= F_CCONNECT|F_ROOTINTR; 3177 } 3178 } else { 3179 DDOLOG("SetPortFeatERR=%#.8x", what, 0,0,0); 3180 return USBD_IOERROR; 3181 } 3182 3183 return USBD_NORMAL_COMPLETION; 3184 } 3185 3186 static void 3187 slhci_get_status(struct slhci_softc *sc, usb_port_status_t *ps) 3188 { 3189 struct slhci_transfers *t; 3190 unsigned int status, change; 3191 3192 t = &sc->sc_transfers; 3193 3194 SLHCI_LOCKASSERT(sc, locked, unlocked); 3195 3196 /* We do not have a way to detect over current or bable and 3197 * suspend is currently not implemented, so connect and reset 3198 * are the only changes that need to be reported. */ 3199 change = 0; 3200 if (t->flags & F_CCONNECT) 3201 change |= UPS_C_CONNECT_STATUS; 3202 if (t->flags & F_CRESET) 3203 change |= UPS_C_PORT_RESET; 3204 3205 status = 0; 3206 if (!(t->flags & F_NODEV)) 3207 status |= UPS_CURRENT_CONNECT_STATUS; 3208 if (!(t->flags & F_UDISABLED)) 3209 status |= UPS_PORT_ENABLED; 3210 if (t->flags & F_RESET) 3211 status |= UPS_RESET; 3212 if (t->flags & F_POWER) 3213 status |= UPS_PORT_POWER; 3214 if (t->flags & F_LOWSPEED) 3215 status |= UPS_LOW_SPEED; 3216 USETW(ps->wPortStatus, status); 3217 USETW(ps->wPortChange, change); 3218 DLOG(D_ROOT, "status=%#.4x, change=%#.4x", status, change, 0,0); 3219 } 3220 3221 static usbd_status 3222 slhci_root(struct slhci_softc *sc, struct slhci_pipe *spipe, struct usbd_xfer 3223 *xfer) 3224 { 3225 struct slhci_transfers *t; 3226 usb_device_request_t *req; 3227 unsigned int len, value, index, actlen, type; 3228 uint8_t *buf; 3229 usbd_status error; 3230 3231 t = &sc->sc_transfers; 3232 buf = NULL; 3233 3234 LK_SLASSERT(spipe != NULL && xfer != NULL, sc, spipe, xfer, return 3235 USBD_CANCELLED); 3236 3237 DLOG(D_TRACE, "%s start", pnames(SLHCI_XFER_TYPE(xfer)), 0,0,0); 3238 SLHCI_LOCKASSERT(sc, locked, unlocked); 3239 3240 if (spipe->ptype == PT_ROOT_INTR) { 3241 LK_SLASSERT(t->rootintr == NULL, sc, spipe, xfer, return 3242 USBD_CANCELLED); 3243 t->rootintr = xfer; 3244 if (t->flags & F_CHANGE) 3245 t->flags |= F_ROOTINTR; 3246 return USBD_IN_PROGRESS; 3247 } 3248 3249 error = USBD_IOERROR; /* XXX should be STALL */ 3250 actlen = 0; 3251 req = &xfer->request; 3252 3253 len = UGETW(req->wLength); 3254 value = UGETW(req->wValue); 3255 index = UGETW(req->wIndex); 3256 3257 type = req->bmRequestType; 3258 3259 if (len) 3260 buf = KERNADDR(&xfer->dmabuf, 0); 3261 3262 SLHCI_DEXEC(D_TRACE, slhci_log_req_hub(req)); 3263 3264 /* 3265 * USB requests for hubs have two basic types, standard and class. 3266 * Each could potentially have recipients of device, interface, 3267 * endpoint, or other. For the hub class, CLASS_OTHER means the port 3268 * and CLASS_DEVICE means the hub. For standard requests, OTHER 3269 * is not used. Standard request are described in section 9.4 of the 3270 * standard, hub class requests in 11.16. Each request is either read 3271 * or write. 3272 * 3273 * Clear Feature, Set Feature, and Status are defined for each of the 3274 * used recipients. Get Descriptor and Set Descriptor are defined for 3275 * both standard and hub class types with different descriptors. 3276 * Other requests have only one defined recipient and type. These 3277 * include: Get/Set Address, Get/Set Configuration, Get/Set Interface, 3278 * and Synch Frame for standard requests and Get Bus State for hub 3279 * class. 3280 * 3281 * When a device is first powered up it has address 0 until the 3282 * address is set. 3283 * 3284 * Hubs are only allowed to support one interface and may not have 3285 * isochronous endpoints. The results of the related requests are 3286 * undefined. 3287 * 3288 * The standard requires invalid or unsupported requests to return 3289 * STALL in the data stage, however this does not work well with 3290 * current error handling. XXX 3291 * 3292 * Some unsupported fields: 3293 * Clear Hub Feature is for C_HUB_LOCAL_POWER and C_HUB_OVER_CURRENT 3294 * Set Device Features is for ENDPOINT_HALT and DEVICE_REMOTE_WAKEUP 3295 * Get Bus State is optional sample of D- and D+ at EOF2 3296 */ 3297 3298 switch (req->bRequest) { 3299 /* Write Requests */ 3300 case UR_CLEAR_FEATURE: 3301 if (type == UT_WRITE_CLASS_OTHER) { 3302 if (index == 1 /* Port */) 3303 error = slhci_clear_feature(sc, value); 3304 else 3305 DLOG(D_ROOT, "Clear Port Feature " 3306 "index = %#.4x", index, 0,0,0); 3307 } 3308 break; 3309 case UR_SET_FEATURE: 3310 if (type == UT_WRITE_CLASS_OTHER) { 3311 if (index == 1 /* Port */) 3312 error = slhci_set_feature(sc, value); 3313 else 3314 DLOG(D_ROOT, "Set Port Feature " 3315 "index = %#.4x", index, 0,0,0); 3316 } else if (type != UT_WRITE_CLASS_DEVICE) 3317 DLOG(D_ROOT, "Set Device Feature " 3318 "ENDPOINT_HALT or DEVICE_REMOTE_WAKEUP " 3319 "not supported", 0,0,0,0); 3320 break; 3321 case UR_SET_ADDRESS: 3322 if (type == UT_WRITE_DEVICE) { 3323 DLOG(D_ROOT, "Set Address %#.4x", value, 0,0,0); 3324 if (value < USB_MAX_DEVICES) { 3325 t->rootaddr = value; 3326 error = USBD_NORMAL_COMPLETION; 3327 } 3328 } 3329 break; 3330 case UR_SET_CONFIG: 3331 if (type == UT_WRITE_DEVICE) { 3332 DLOG(D_ROOT, "Set Config %#.4x", value, 0,0,0); 3333 if (value == 0 || value == 1) { 3334 t->rootconf = value; 3335 error = USBD_NORMAL_COMPLETION; 3336 } 3337 } 3338 break; 3339 /* Read Requests */ 3340 case UR_GET_STATUS: 3341 if (type == UT_READ_CLASS_OTHER) { 3342 if (index == 1 /* Port */ && len == /* XXX >=? */ 3343 sizeof(usb_port_status_t)) { 3344 slhci_get_status(sc, (usb_port_status_t *) 3345 buf); 3346 actlen = sizeof(usb_port_status_t); 3347 error = USBD_NORMAL_COMPLETION; 3348 } else 3349 DLOG(D_ROOT, "Get Port Status index = %#.4x " 3350 "len = %#.4x", index, len, 0,0); 3351 } else if (type == UT_READ_CLASS_DEVICE) { /* XXX index? */ 3352 if (len == sizeof(usb_hub_status_t)) { 3353 DLOG(D_ROOT, "Get Hub Status", 3354 0,0,0,0); 3355 actlen = sizeof(usb_hub_status_t); 3356 memset(buf, 0, actlen); 3357 error = USBD_NORMAL_COMPLETION; 3358 } else 3359 DLOG(D_ROOT, "Get Hub Status bad len %#.4x", 3360 len, 0,0,0); 3361 } else if (type == UT_READ_DEVICE) { 3362 if (len >= 2) { 3363 USETW(((usb_status_t *)buf)->wStatus, UDS_SELF_POWERED); 3364 actlen = 2; 3365 error = USBD_NORMAL_COMPLETION; 3366 } 3367 } else if (type == (UT_READ_INTERFACE|UT_READ_ENDPOINT)) { 3368 if (len >= 2) { 3369 USETW(((usb_status_t *)buf)->wStatus, 0); 3370 actlen = 2; 3371 error = USBD_NORMAL_COMPLETION; 3372 } 3373 } 3374 break; 3375 case UR_GET_CONFIG: 3376 if (type == UT_READ_DEVICE) { 3377 DLOG(D_ROOT, "Get Config", 0,0,0,0); 3378 if (len > 0) { 3379 *buf = t->rootconf; 3380 actlen = 1; 3381 error = USBD_NORMAL_COMPLETION; 3382 } 3383 } 3384 break; 3385 case UR_GET_INTERFACE: 3386 if (type == UT_READ_INTERFACE) { 3387 if (len > 0) { 3388 *buf = 0; 3389 actlen = 1; 3390 error = USBD_NORMAL_COMPLETION; 3391 } 3392 } 3393 break; 3394 case UR_GET_DESCRIPTOR: 3395 if (type == UT_READ_DEVICE) { 3396 /* value is type (&0xff00) and index (0xff) */ 3397 if (value == (UDESC_DEVICE<<8)) { 3398 actlen = min(len, sizeof(slhci_devd)); 3399 memcpy(buf, &slhci_devd, actlen); 3400 error = USBD_NORMAL_COMPLETION; 3401 } else if (value == (UDESC_CONFIG<<8)) { 3402 actlen = min(len, sizeof(slhci_confd)); 3403 memcpy(buf, &slhci_confd, actlen); 3404 if (actlen > offsetof(usb_config_descriptor_t, 3405 bMaxPower)) 3406 ((usb_config_descriptor_t *) 3407 buf)->bMaxPower = t->max_current; 3408 /* 2 mA units */ 3409 error = USBD_NORMAL_COMPLETION; 3410 } else if (value == (UDESC_STRING<<8)) { 3411 /* language table XXX */ 3412 } else if (value == ((UDESC_STRING<<8)|1)) { 3413 /* Vendor */ 3414 actlen = usb_makestrdesc((usb_string_descriptor_t *) 3415 buf, len, "ScanLogic/Cypress"); 3416 error = USBD_NORMAL_COMPLETION; 3417 } else if (value == ((UDESC_STRING<<8)|2)) { 3418 /* Product */ 3419 actlen = usb_makestrdesc((usb_string_descriptor_t *) 3420 buf, len, "SL811HS/T root hub"); 3421 error = USBD_NORMAL_COMPLETION; 3422 } else 3423 DDOLOG("Unknown Get Descriptor %#.4x", 3424 value, 0,0,0); 3425 } else if (type == UT_READ_CLASS_DEVICE) { 3426 /* Descriptor number is 0 */ 3427 if (value == (UDESC_HUB<<8)) { 3428 actlen = min(len, sizeof(slhci_hubd)); 3429 memcpy(buf, &slhci_hubd, actlen); 3430 if (actlen > offsetof(usb_config_descriptor_t, 3431 bMaxPower)) 3432 ((usb_hub_descriptor_t *) 3433 buf)->bHubContrCurrent = 500 - 3434 t->max_current; 3435 error = USBD_NORMAL_COMPLETION; 3436 } else 3437 DDOLOG("Unknown Get Hub Descriptor %#.4x", 3438 value, 0,0,0); 3439 } 3440 break; 3441 } 3442 3443 if (error == USBD_NORMAL_COMPLETION) 3444 xfer->actlen = actlen; 3445 xfer->status = error; 3446 KASSERT(spipe->xfer == NULL); 3447 spipe->xfer = xfer; 3448 enter_callback(t, spipe); 3449 3450 return USBD_IN_PROGRESS; 3451 } 3452 3453 /* End in lock functions. Start debug functions. */ 3454 3455 #ifdef SLHCI_DEBUG 3456 void 3457 slhci_log_buffer(struct usbd_xfer *xfer) 3458 { 3459 u_char *buf; 3460 3461 if(xfer->length > 0 && 3462 UE_GET_DIR(xfer->pipe->endpoint->edesc->bEndpointAddress) == 3463 UE_DIR_IN) { 3464 buf = KERNADDR(&xfer->dmabuf, 0); 3465 DDOLOGBUF(buf, xfer->actlen); 3466 DDOLOG("len %d actlen %d short %d", xfer->length, 3467 xfer->actlen, xfer->length - xfer->actlen, 0); 3468 } 3469 } 3470 3471 void 3472 slhci_log_req(usb_device_request_t *r) 3473 { 3474 static const char *xmes[]={ 3475 "GETSTAT", 3476 "CLRFEAT", 3477 "res", 3478 "SETFEAT", 3479 "res", 3480 "SETADDR", 3481 "GETDESC", 3482 "SETDESC", 3483 "GETCONF", 3484 "SETCONF", 3485 "GETIN/F", 3486 "SETIN/F", 3487 "SYNC_FR", 3488 "UNKNOWN" 3489 }; 3490 int req, mreq, type, value, index, len; 3491 3492 req = r->bRequest; 3493 mreq = (req > 13) ? 13 : req; 3494 type = r->bmRequestType; 3495 value = UGETW(r->wValue); 3496 index = UGETW(r->wIndex); 3497 len = UGETW(r->wLength); 3498 3499 DDOLOG("request: %s %#x", xmes[mreq], type, 0,0); 3500 DDOLOG("request: r=%d,v=%d,i=%d,l=%d ", req, value, index, len); 3501 } 3502 3503 void 3504 slhci_log_req_hub(usb_device_request_t *r) 3505 { 3506 static const struct { 3507 int req; 3508 int type; 3509 const char *str; 3510 } conf[] = { 3511 { 1, 0x20, "ClrHubFeat" }, 3512 { 1, 0x23, "ClrPortFeat" }, 3513 { 2, 0xa3, "GetBusState" }, 3514 { 6, 0xa0, "GetHubDesc" }, 3515 { 0, 0xa0, "GetHubStat" }, 3516 { 0, 0xa3, "GetPortStat" }, 3517 { 7, 0x20, "SetHubDesc" }, 3518 { 3, 0x20, "SetHubFeat" }, 3519 { 3, 0x23, "SetPortFeat" }, 3520 {-1, 0, NULL}, 3521 }; 3522 int i; 3523 int value, index, len; 3524 const char *str; 3525 3526 value = UGETW(r->wValue); 3527 index = UGETW(r->wIndex); 3528 len = UGETW(r->wLength); 3529 for (i = 0; ; i++) { 3530 if (conf[i].req == -1 ) { 3531 slhci_log_req(r); 3532 return; 3533 } 3534 if (r->bmRequestType == conf[i].type && r->bRequest == conf[i].req) { 3535 str = conf[i].str; 3536 break; 3537 } 3538 } 3539 DDOLOG("hub request: %s v=%d,i=%d,l=%d ", str, value, index, len); 3540 } 3541 3542 void 3543 slhci_log_dumpreg(void) 3544 { 3545 uint8_t r; 3546 unsigned int aaddr, alen, baddr, blen; 3547 static u_char buf[240]; 3548 3549 r = slhci_read(ssc, SL11_E0CTRL); 3550 DDOLOG("USB A Host Control = %#.2x", r, 0,0,0); 3551 DDOLOGFLAG8("E0CTRL=", r, "Preamble", "Data Toggle", "SOF Sync", 3552 "ISOC", "res", "Out", "Enable", "Arm"); 3553 aaddr = slhci_read(ssc, SL11_E0ADDR); 3554 DDOLOG("USB A Base Address = %u", aaddr, 0,0,0); 3555 alen = slhci_read(ssc, SL11_E0LEN); 3556 DDOLOG("USB A Length = %u", alen, 0,0,0); 3557 r = slhci_read(ssc, SL11_E0STAT); 3558 DDOLOG("USB A Status = %#.2x", r, 0,0,0); 3559 DDOLOGFLAG8("E0STAT=", r, "STALL", "NAK", "Overflow", "Setup", 3560 "Data Toggle", "Timeout", "Error", "ACK"); 3561 r = slhci_read(ssc, SL11_E0CONT); 3562 DDOLOG("USB A Remaining or Overflow Length = %u", r, 0,0,0); 3563 r = slhci_read(ssc, SL11_E1CTRL); 3564 DDOLOG("USB B Host Control = %#.2x", r, 0,0,0); 3565 DDOLOGFLAG8("E1CTRL=", r, "Preamble", "Data Toggle", "SOF Sync", 3566 "ISOC", "res", "Out", "Enable", "Arm"); 3567 baddr = slhci_read(ssc, SL11_E1ADDR); 3568 DDOLOG("USB B Base Address = %u", baddr, 0,0,0); 3569 blen = slhci_read(ssc, SL11_E1LEN); 3570 DDOLOG("USB B Length = %u", blen, 0,0,0); 3571 r = slhci_read(ssc, SL11_E1STAT); 3572 DDOLOG("USB B Status = %#.2x", r, 0,0,0); 3573 DDOLOGFLAG8("E1STAT=", r, "STALL", "NAK", "Overflow", "Setup", 3574 "Data Toggle", "Timeout", "Error", "ACK"); 3575 r = slhci_read(ssc, SL11_E1CONT); 3576 DDOLOG("USB B Remaining or Overflow Length = %u", r, 0,0,0); 3577 3578 r = slhci_read(ssc, SL11_CTRL); 3579 DDOLOG("Control = %#.2x", r, 0,0,0); 3580 DDOLOGFLAG8("CTRL=", r, "res", "Suspend", "LOW Speed", 3581 "J-K State Force", "Reset", "res", "res", "SOF"); 3582 r = slhci_read(ssc, SL11_IER); 3583 DDOLOG("Interrupt Enable = %#.2x", r, 0,0,0); 3584 DDOLOGFLAG8("IER=", r, "D+ **IER!**", "Device Detect/Resume", 3585 "Insert/Remove", "SOF", "res", "res", "USBB", "USBA"); 3586 r = slhci_read(ssc, SL11_ISR); 3587 DDOLOG("Interrupt Status = %#.2x", r, 0,0,0); 3588 DDOLOGFLAG8("ISR=", r, "D+", "Device Detect/Resume", 3589 "Insert/Remove", "SOF", "res", "res", "USBB", "USBA"); 3590 r = slhci_read(ssc, SL11_REV); 3591 DDOLOG("Revision = %#.2x", r, 0,0,0); 3592 r = slhci_read(ssc, SL811_CSOF); 3593 DDOLOG("SOF Counter = %#.2x", r, 0,0,0); 3594 3595 if (alen && aaddr >= SL11_BUFFER_START && aaddr < SL11_BUFFER_END && 3596 alen <= SL11_MAX_PACKET_SIZE && aaddr + alen <= SL11_BUFFER_END) { 3597 slhci_read_multi(ssc, aaddr, buf, alen); 3598 DDOLOG("USBA Buffer: start %u len %u", aaddr, alen, 0,0); 3599 DDOLOGBUF(buf, alen); 3600 } else if (alen) 3601 DDOLOG("USBA Buffer Invalid", 0,0,0,0); 3602 3603 if (blen && baddr >= SL11_BUFFER_START && baddr < SL11_BUFFER_END && 3604 blen <= SL11_MAX_PACKET_SIZE && baddr + blen <= SL11_BUFFER_END) { 3605 slhci_read_multi(ssc, baddr, buf, blen); 3606 DDOLOG("USBB Buffer: start %u len %u", baddr, blen, 0,0); 3607 DDOLOGBUF(buf, blen); 3608 } else if (blen) 3609 DDOLOG("USBB Buffer Invalid", 0,0,0,0); 3610 } 3611 3612 void 3613 slhci_log_xfer(struct usbd_xfer *xfer) 3614 { 3615 DDOLOG("xfer: length=%u, actlen=%u, flags=%#x, timeout=%u,", 3616 xfer->length, xfer->actlen, xfer->flags, xfer->timeout); 3617 if (xfer->dmabuf.block) 3618 DDOLOG("buffer=%p", KERNADDR(&xfer->dmabuf, 0), 0,0,0); 3619 slhci_log_req_hub(&xfer->request); 3620 } 3621 3622 void 3623 slhci_log_spipe(struct slhci_pipe *spipe) 3624 { 3625 DDOLOG("spipe %p onlists: %s %s %s", spipe, gcq_onlist(&spipe->ap) ? 3626 "AP" : "", gcq_onlist(&spipe->to) ? "TO" : "", 3627 gcq_onlist(&spipe->xq) ? "XQ" : ""); 3628 DDOLOG("spipe: xfer %p buffer %p pflags %#x ptype %s", 3629 spipe->xfer, spipe->buffer, spipe->pflags, pnames(spipe->ptype)); 3630 } 3631 3632 void 3633 slhci_print_intr(void) 3634 { 3635 unsigned int ier, isr; 3636 ier = slhci_read(ssc, SL11_IER); 3637 isr = slhci_read(ssc, SL11_ISR); 3638 printf("IER: %#x ISR: %#x \n", ier, isr); 3639 } 3640 3641 #if 0 3642 void 3643 slhci_log_sc(void) 3644 { 3645 struct slhci_transfers *t; 3646 int i; 3647 3648 t = &ssc->sc_transfers; 3649 3650 DDOLOG("Flags=%#x", t->flags, 0,0,0); 3651 DDOLOG("a = %p Alen=%d b = %p Blen=%d", t->spipe[0], t->len[0], 3652 t->spipe[1], t->len[1]); 3653 3654 for (i=0; i<=Q_MAX; i++) 3655 DDOLOG("Q %d: %p", i, gcq_first(&t->q[i]), 0,0); 3656 3657 DDOLOG("TIMED: %p", GCQ_ITEM(gcq_first(&t->to), 3658 struct slhci_pipe, to), 0,0,0); 3659 3660 DDOLOG("frame=%d rootintr=%p", t->frame, t->rootintr, 0,0); 3661 3662 DDOLOG("use_polling=%d", ssc->sc_bus.use_polling, 0, 0, 0); 3663 } 3664 3665 void 3666 slhci_log_slreq(struct slhci_pipe *r) 3667 { 3668 DDOLOG("next: %p", r->q.next.sqe_next, 0,0,0); 3669 DDOLOG("xfer: %p", r->xfer, 0,0,0); 3670 DDOLOG("buffer: %p", r->buffer, 0,0,0); 3671 DDOLOG("bustime: %u", r->bustime, 0,0,0); 3672 DDOLOG("control: %#x", r->control, 0,0,0); 3673 DDOLOGFLAG8("control=", r->control, "Preamble", "Data Toggle", 3674 "SOF Sync", "ISOC", "res", "Out", "Enable", "Arm"); 3675 DDOLOG("pid: %#x", r->tregs[PID], 0,0,0); 3676 DDOLOG("dev: %u", r->tregs[DEV], 0,0,0); 3677 DDOLOG("len: %u", r->tregs[LEN], 0,0,0); 3678 3679 if (r->xfer) 3680 slhci_log_xfer(r->xfer); 3681 } 3682 #endif 3683 #endif /* SLHCI_DEBUG */ 3684 /* End debug functions. */ 3685