xref: /netbsd-src/sys/dev/ic/sl811hs.c (revision 6a493d6bc668897c91594964a732d38505b70cbb)
1 /*	$NetBSD: sl811hs.c,v 1.47 2013/10/17 21:24:24 christos Exp $	*/
2 
3 /*
4  * Not (c) 2007 Matthew Orgass
5  * This file is public domain, meaning anyone can make any use of part or all
6  * of this file including copying into other works without credit.  Any use,
7  * modified or not, is solely the responsibility of the user.  If this file is
8  * part of a collection then use in the collection is governed by the terms of
9  * the collection.
10  */
11 
12 /*
13  * Cypress/ScanLogic SL811HS/T USB Host Controller
14  * Datasheet, Errata, and App Note available at www.cypress.com
15  *
16  * Uses: Ratoc CFU1U PCMCIA USB Host Controller, Nereid X68k USB HC, ISA
17  * HCs.  The Ratoc CFU2 uses a different chip.
18  *
19  * This chip puts the serial in USB.  It implements USB by means of an eight
20  * bit I/O interface.  It can be used for ISA, PCMCIA/CF, parallel port,
21  * serial port, or any eight bit interface.  It has 256 bytes of memory, the
22  * first 16 of which are used for register access.  There are two sets of
23  * registers for sending individual bus transactions.  Because USB is polled,
24  * this organization means that some amount of card access must often be made
25  * when devices are attached, even if when they are not directly being used.
26  * A per-ms frame interrupt is necessary and many devices will poll with a
27  * per-frame bulk transfer.
28  *
29  * It is possible to write a little over two bytes to the chip (auto
30  * incremented) per full speed byte time on the USB.  Unfortunately,
31  * auto-increment does not work reliably so write and bus speed is
32  * approximately the same for full speed devices.
33  *
34  * In addition to the 240 byte packet size limit for isochronous transfers,
35  * this chip has no means of determining the current frame number other than
36  * getting all 1ms SOF interrupts, which is not always possible even on a fast
37  * system.  Isochronous transfers guarantee that transfers will never be
38  * retried in a later frame, so this can cause problems with devices beyond
39  * the difficulty in actually performing the transfer most frames.  I tried
40  * implementing isoc transfers and was able to play CD-derrived audio via an
41  * iMic on a 2GHz PC, however it would still be interrupted at times and
42  * once interrupted, would stay out of sync.  All isoc support has been
43  * removed.
44  *
45  * BUGS: all chip revisions have problems with low speed devices through hubs.
46  * The chip stops generating SOF with hubs that send SE0 during SOF.  See
47  * comment in dointr().  All performance enhancing features of this chip seem
48  * not to work properly, most confirmed buggy in errata doc.
49  *
50  */
51 
52 /*
53  * The hard interrupt is the main entry point.  Start, callbacks, and repeat
54  * are the only others called frequently.
55  *
56  * Since this driver attaches to pcmcia, card removal at any point should be
57  * expected and not cause panics or infinite loops.
58  */
59 
60 /*
61  * XXX TODO:
62  *   copy next output packet while transfering
63  *   usb suspend
64  *   could keep track of known values of all buffer space?
65  *   combined print/log function for errors
66  *
67  *   use_polling support is untested and may not work
68  */
69 
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: sl811hs.c,v 1.47 2013/10/17 21:24:24 christos Exp $");
72 
73 #include "opt_slhci.h"
74 
75 #include <sys/cdefs.h>
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/kernel.h>
79 #include <sys/proc.h>
80 #include <sys/device.h>
81 #include <sys/malloc.h>
82 #include <sys/queue.h>
83 #include <sys/gcq.h>
84 #include <sys/intr.h>
85 #include <sys/cpu.h>
86 #include <sys/bus.h>
87 
88 #include <dev/usb/usb.h>
89 #include <dev/usb/usbdi.h>
90 #include <dev/usb/usbdivar.h>
91 #include <dev/usb/usb_mem.h>
92 #include <dev/usb/usbdevs.h>
93 #include <dev/usb/usbroothub_subr.h>
94 
95 #include <dev/ic/sl811hsreg.h>
96 #include <dev/ic/sl811hsvar.h>
97 
98 #define Q_CB 0				/* Control/Bulk */
99 #define Q_NEXT_CB 1
100 #define Q_MAX_XFER Q_CB
101 #define Q_CALLBACKS 2
102 #define Q_MAX Q_CALLBACKS
103 
104 #define F_AREADY		(0x00000001)
105 #define F_BREADY		(0x00000002)
106 #define F_AINPROG		(0x00000004)
107 #define F_BINPROG		(0x00000008)
108 #define F_LOWSPEED		(0x00000010)
109 #define F_UDISABLED		(0x00000020) /* Consider disabled for USB */
110 #define F_NODEV			(0x00000040)
111 #define F_ROOTINTR		(0x00000080)
112 #define F_REALPOWER		(0x00000100) /* Actual power state */
113 #define F_POWER			(0x00000200) /* USB reported power state */
114 #define F_ACTIVE		(0x00000400)
115 #define F_CALLBACK		(0x00000800) /* Callback scheduled */
116 #define F_SOFCHECK1		(0x00001000)
117 #define F_SOFCHECK2		(0x00002000)
118 #define F_CRESET		(0x00004000) /* Reset done not reported */
119 #define F_CCONNECT		(0x00008000) /* Connect change not reported */
120 #define F_RESET			(0x00010000)
121 #define F_ISOC_WARNED		(0x00020000)
122 #define F_LSVH_WARNED		(0x00040000)
123 
124 #define F_DISABLED		(F_NODEV|F_UDISABLED)
125 #define F_CHANGE		(F_CRESET|F_CCONNECT)
126 
127 #ifdef SLHCI_TRY_LSVH
128 unsigned int slhci_try_lsvh = 1;
129 #else
130 unsigned int slhci_try_lsvh = 0;
131 #endif
132 
133 #define ADR 0
134 #define LEN 1
135 #define PID 2
136 #define DEV 3
137 #define STAT 2
138 #define CONT 3
139 
140 #define A 0
141 #define B 1
142 
143 static const uint8_t slhci_tregs[2][4] =
144 {{SL11_E0ADDR, SL11_E0LEN, SL11_E0PID, SL11_E0DEV },
145  {SL11_E1ADDR, SL11_E1LEN, SL11_E1PID, SL11_E1DEV }};
146 
147 #define PT_ROOT_CTRL	0
148 #define PT_ROOT_INTR	1
149 #define PT_CTRL_SETUP	2
150 #define PT_CTRL_DATA	3
151 #define PT_CTRL_STATUS	4
152 #define PT_INTR		5
153 #define PT_BULK		6
154 #define PT_MAX		6
155 
156 #ifdef SLHCI_DEBUG
157 #define SLHCI_MEM_ACCOUNTING
158 static const char *
159 pnames(int ptype)
160 {
161 	static const char * const names[] = { "ROOT Ctrl", "ROOT Intr",
162 	    "Control (setup)", "Control (data)", "Control (status)",
163 	    "Interrupt", "Bulk", "BAD PTYPE" };
164 
165 	KASSERT(sizeof(names) / sizeof(names[0]) == PT_MAX + 2);
166 	if (ptype > PT_MAX)
167 		ptype = PT_MAX + 1;
168 	return names[ptype];
169 }
170 #endif
171 
172 #define SLHCI_XFER_TYPE(x) (((struct slhci_pipe *)((x)->pipe))->ptype)
173 
174 /*
175  * Maximum allowable reserved bus time.  Since intr/isoc transfers have
176  * unconditional priority, this is all that ensures control and bulk transfers
177  * get a chance.  It is a single value for all frames since all transfers can
178  * use multiple consecutive frames if an error is encountered.  Note that it
179  * is not really possible to fill the bus with transfers, so this value should
180  * be on the low side.  Defaults to giving a warning unless SLHCI_NO_OVERTIME
181  * is defined.  Full time is 12000 - END_BUSTIME.
182  */
183 #ifndef SLHCI_RESERVED_BUSTIME
184 #define SLHCI_RESERVED_BUSTIME 5000
185 #endif
186 
187 /*
188  * Rate for "exceeds reserved bus time" warnings (default) or errors.
189  * Warnings only happen when an endpoint open causes the time to go above
190  * SLHCI_RESERVED_BUSTIME, not if it is already above.
191  */
192 #ifndef SLHCI_OVERTIME_WARNING_RATE
193 #define SLHCI_OVERTIME_WARNING_RATE { 60, 0 } /* 60 seconds */
194 #endif
195 static const struct timeval reserved_warn_rate = SLHCI_OVERTIME_WARNING_RATE;
196 
197 /* Rate for overflow warnings */
198 #ifndef SLHCI_OVERFLOW_WARNING_RATE
199 #define SLHCI_OVERFLOW_WARNING_RATE { 60, 0 } /* 60 seconds */
200 #endif
201 static const struct timeval overflow_warn_rate = SLHCI_OVERFLOW_WARNING_RATE;
202 
203 /*
204  * For EOF, the spec says 42 bit times, plus (I think) a possible hub skew of
205  * 20 bit times.  By default leave 66 bit times to start the transfer beyond
206  * the required time.  Units are full-speed bit times (a bit over 5us per 64).
207  * Only multiples of 64 are significant.
208  */
209 #define SLHCI_STANDARD_END_BUSTIME 128
210 #ifndef SLHCI_EXTRA_END_BUSTIME
211 #define SLHCI_EXTRA_END_BUSTIME 0
212 #endif
213 
214 #define SLHCI_END_BUSTIME (SLHCI_STANDARD_END_BUSTIME+SLHCI_EXTRA_END_BUSTIME)
215 
216 /*
217  * This is an approximation of the USB worst-case timings presented on p. 54 of
218  * the USB 1.1 spec translated to full speed bit times.
219  * FS = full speed with handshake, FSII = isoc in, FSIO = isoc out,
220  * FSI = isoc (worst case), LS = low speed
221  */
222 #define SLHCI_FS_CONST		114
223 #define SLHCI_FSII_CONST	92
224 #define SLHCI_FSIO_CONST	80
225 #define SLHCI_FSI_CONST		92
226 #define SLHCI_LS_CONST		804
227 #ifndef SLHCI_PRECICE_BUSTIME
228 /*
229  * These values are < 3% too high (compared to the multiply and divide) for
230  * max sized packets.
231  */
232 #define SLHCI_FS_DATA_TIME(len) (((u_int)(len)<<3)+(len)+((len)>>1))
233 #define SLHCI_LS_DATA_TIME(len) (((u_int)(len)<<6)+((u_int)(len)<<4))
234 #else
235 #define SLHCI_FS_DATA_TIME(len) (56*(len)/6)
236 #define SLHCI_LS_DATA_TIME(len) (449*(len)/6)
237 #endif
238 
239 /*
240  * Set SLHCI_WAIT_SIZE to the desired maximum size of single FS transfer
241  * to poll for after starting a transfer.  64 gets all full speed transfers.
242  * Note that even if 0 polling will occur if data equal or greater than the
243  * transfer size is copied to the chip while the transfer is in progress.
244  * Setting SLHCI_WAIT_TIME to -12000 will disable polling.
245  */
246 #ifndef SLHCI_WAIT_SIZE
247 #define SLHCI_WAIT_SIZE 8
248 #endif
249 #ifndef SLHCI_WAIT_TIME
250 #define SLHCI_WAIT_TIME (SLHCI_FS_CONST + \
251     SLHCI_FS_DATA_TIME(SLHCI_WAIT_SIZE))
252 #endif
253 const int slhci_wait_time = SLHCI_WAIT_TIME;
254 
255 /* Root hub intr endpoint */
256 #define ROOT_INTR_ENDPT        1
257 
258 #ifndef SLHCI_MAX_RETRIES
259 #define SLHCI_MAX_RETRIES 3
260 #endif
261 
262 /* Check IER values for corruption after this many unrecognized interrupts. */
263 #ifndef SLHCI_IER_CHECK_FREQUENCY
264 #ifdef SLHCI_DEBUG
265 #define SLHCI_IER_CHECK_FREQUENCY 1
266 #else
267 #define SLHCI_IER_CHECK_FREQUENCY 100
268 #endif
269 #endif
270 
271 /* Note that buffer points to the start of the buffer for this transfer.  */
272 struct slhci_pipe {
273 	struct usbd_pipe pipe;
274 	struct usbd_xfer *xfer;		/* xfer in progress */
275 	uint8_t		*buffer;	/* I/O buffer (if needed) */
276 	struct gcq 	ap;		/* All pipes */
277 	struct gcq 	to;		/* Timeout list */
278 	struct gcq 	xq;		/* Xfer queues */
279 	unsigned int	pflags;		/* Pipe flags */
280 #define PF_GONE		(0x01)		/* Pipe is on disabled device */
281 #define PF_TOGGLE 	(0x02)		/* Data toggle status */
282 #define PF_LS		(0x04)		/* Pipe is low speed */
283 #define PF_PREAMBLE	(0x08)		/* Needs preamble */
284 	Frame		to_frame;	/* Frame number for timeout */
285 	Frame		frame;		/* Frame number for intr xfer */
286 	Frame		lastframe;	/* Previous frame number for intr */
287 	uint16_t	bustime;	/* Worst case bus time usage */
288 	uint16_t	newbustime[2];	/* new bustimes (see index below) */
289 	uint8_t		tregs[4];	/* ADR, LEN, PID, DEV */
290 	uint8_t		newlen[2];	/* 0 = short data, 1 = ctrl data */
291 	uint8_t		newpid;		/* for ctrl */
292 	uint8_t		wantshort;	/* last xfer must be short */
293 	uint8_t		control;	/* Host control register settings */
294 	uint8_t		nerrs;		/* Current number of errors */
295 	uint8_t 	ptype;		/* Pipe type */
296 };
297 
298 #ifdef SLHCI_PROFILE_TRANSFER
299 #if defined(__mips__)
300 /*
301  * MIPS cycle counter does not directly count cpu cycles but is a different
302  * fraction of cpu cycles depending on the cpu.
303  */
304 typedef u_int32_t cc_type;
305 #define CC_TYPE_FMT "%u"
306 #define slhci_cc_set(x) __asm volatile ("mfc0 %[cc], $9\n\tnop\n\tnop\n\tnop" \
307     : [cc] "=r"(x))
308 #elif defined(__i386__)
309 typedef u_int64_t cc_type;
310 #define CC_TYPE_FMT "%llu"
311 #define slhci_cc_set(x) __asm volatile ("rdtsc" : "=A"(x))
312 #else
313 #error "SLHCI_PROFILE_TRANSFER not implemented on this MACHINE_ARCH (see sys/dev/ic/sl811hs.c)"
314 #endif
315 struct slhci_cc_time {
316 	cc_type start;
317 	cc_type stop;
318 	unsigned int miscdata;
319 };
320 #ifndef SLHCI_N_TIMES
321 #define SLHCI_N_TIMES 200
322 #endif
323 struct slhci_cc_times {
324 	struct slhci_cc_time times[SLHCI_N_TIMES];
325 	int current;
326 	int wraparound;
327 };
328 
329 static struct slhci_cc_times t_ab[2];
330 static struct slhci_cc_times t_abdone;
331 static struct slhci_cc_times t_copy_to_dev;
332 static struct slhci_cc_times t_copy_from_dev;
333 static struct slhci_cc_times t_intr;
334 static struct slhci_cc_times t_lock;
335 static struct slhci_cc_times t_delay;
336 static struct slhci_cc_times t_hard_int;
337 static struct slhci_cc_times t_callback;
338 
339 static inline void
340 start_cc_time(struct slhci_cc_times *times, unsigned int misc) {
341 	times->times[times->current].miscdata = misc;
342 	slhci_cc_set(times->times[times->current].start);
343 }
344 static inline void
345 stop_cc_time(struct slhci_cc_times *times) {
346 	slhci_cc_set(times->times[times->current].stop);
347 	if (++times->current >= SLHCI_N_TIMES) {
348 		times->current = 0;
349 		times->wraparound = 1;
350 	}
351 }
352 
353 void slhci_dump_cc_times(int);
354 
355 void
356 slhci_dump_cc_times(int n) {
357 	struct slhci_cc_times *times;
358 	int i;
359 
360 	switch (n) {
361 	default:
362 	case 0:
363 		printf("USBA start transfer to intr:\n");
364 		times = &t_ab[A];
365 		break;
366 	case 1:
367 		printf("USBB start transfer to intr:\n");
368 		times = &t_ab[B];
369 		break;
370 	case 2:
371 		printf("abdone:\n");
372 		times = &t_abdone;
373 		break;
374 	case 3:
375 		printf("copy to device:\n");
376 		times = &t_copy_to_dev;
377 		break;
378 	case 4:
379 		printf("copy from device:\n");
380 		times = &t_copy_from_dev;
381 		break;
382 	case 5:
383 		printf("intr to intr:\n");
384 		times = &t_intr;
385 		break;
386 	case 6:
387 		printf("lock to release:\n");
388 		times = &t_lock;
389 		break;
390 	case 7:
391 		printf("delay time:\n");
392 		times = &t_delay;
393 		break;
394 	case 8:
395 		printf("hard interrupt enter to exit:\n");
396 		times = &t_hard_int;
397 		break;
398 	case 9:
399 		printf("callback:\n");
400 		times = &t_callback;
401 		break;
402 	}
403 
404 	if (times->wraparound)
405 		for (i = times->current + 1; i < SLHCI_N_TIMES; i++)
406 			printf("start " CC_TYPE_FMT " stop " CC_TYPE_FMT
407 			    " difference %8i miscdata %#x\n",
408 			    times->times[i].start, times->times[i].stop,
409 			    (int)(times->times[i].stop -
410 			    times->times[i].start), times->times[i].miscdata);
411 
412 	for (i = 0; i < times->current; i++)
413 		printf("start " CC_TYPE_FMT " stop " CC_TYPE_FMT
414 		    " difference %8i miscdata %#x\n", times->times[i].start,
415 		    times->times[i].stop, (int)(times->times[i].stop -
416 		    times->times[i].start), times->times[i].miscdata);
417 }
418 #else
419 #define start_cc_time(x, y)
420 #define stop_cc_time(x)
421 #endif /* SLHCI_PROFILE_TRANSFER */
422 
423 typedef usbd_status (*LockCallFunc)(struct slhci_softc *, struct slhci_pipe
424     *, struct usbd_xfer *);
425 
426 usbd_status slhci_allocm(struct usbd_bus *, usb_dma_t *, u_int32_t);
427 void slhci_freem(struct usbd_bus *, usb_dma_t *);
428 struct usbd_xfer * slhci_allocx(struct usbd_bus *);
429 void slhci_freex(struct usbd_bus *, struct usbd_xfer *);
430 static void slhci_get_lock(struct usbd_bus *, kmutex_t **);
431 
432 usbd_status slhci_transfer(struct usbd_xfer *);
433 usbd_status slhci_start(struct usbd_xfer *);
434 usbd_status slhci_root_start(struct usbd_xfer *);
435 usbd_status slhci_open(struct usbd_pipe *);
436 
437 /*
438  * slhci_supported_rev, slhci_preinit, slhci_attach, slhci_detach,
439  * slhci_activate
440  */
441 
442 void slhci_abort(struct usbd_xfer *);
443 void slhci_close(struct usbd_pipe *);
444 void slhci_clear_toggle(struct usbd_pipe *);
445 void slhci_poll(struct usbd_bus *);
446 void slhci_done(struct usbd_xfer *);
447 void slhci_void(void *);
448 
449 /* lock entry functions */
450 
451 #ifdef SLHCI_MEM_ACCOUNTING
452 void slhci_mem_use(struct usbd_bus *, int);
453 #endif
454 
455 void slhci_reset_entry(void *);
456 usbd_status slhci_lock_call(struct slhci_softc *, LockCallFunc,
457     struct slhci_pipe *, struct usbd_xfer *);
458 void slhci_start_entry(struct slhci_softc *, struct slhci_pipe *);
459 void slhci_callback_entry(void *arg);
460 void slhci_do_callback(struct slhci_softc *, struct usbd_xfer *);
461 
462 /* slhci_intr */
463 
464 void slhci_main(struct slhci_softc *);
465 
466 /* in lock functions */
467 
468 static void slhci_write(struct slhci_softc *, uint8_t, uint8_t);
469 static uint8_t slhci_read(struct slhci_softc *, uint8_t);
470 static void slhci_write_multi(struct slhci_softc *, uint8_t, uint8_t *, int);
471 static void slhci_read_multi(struct slhci_softc *, uint8_t, uint8_t *, int);
472 
473 static void slhci_waitintr(struct slhci_softc *, int);
474 static int slhci_dointr(struct slhci_softc *);
475 static void slhci_abdone(struct slhci_softc *, int);
476 static void slhci_tstart(struct slhci_softc *);
477 static void slhci_dotransfer(struct slhci_softc *);
478 
479 static void slhci_callback(struct slhci_softc *);
480 static void slhci_enter_xfer(struct slhci_softc *, struct slhci_pipe *);
481 static void slhci_enter_xfers(struct slhci_softc *);
482 static void slhci_queue_timed(struct slhci_softc *, struct slhci_pipe *);
483 static void slhci_xfer_timer(struct slhci_softc *, struct slhci_pipe *);
484 
485 static void slhci_do_repeat(struct slhci_softc *, struct usbd_xfer *);
486 static void slhci_callback_schedule(struct slhci_softc *);
487 static void slhci_do_callback_schedule(struct slhci_softc *);
488 #if 0
489 void slhci_pollxfer(struct slhci_softc *, struct usbd_xfer *); /* XXX */
490 #endif
491 
492 static usbd_status slhci_do_poll(struct slhci_softc *, struct slhci_pipe *,
493     struct usbd_xfer *);
494 static usbd_status slhci_lsvh_warn(struct slhci_softc *, struct slhci_pipe *,
495     struct usbd_xfer *);
496 static usbd_status slhci_isoc_warn(struct slhci_softc *, struct slhci_pipe *,
497     struct usbd_xfer *);
498 static usbd_status slhci_open_pipe(struct slhci_softc *, struct slhci_pipe *,
499     struct usbd_xfer *);
500 static usbd_status slhci_close_pipe(struct slhci_softc *, struct slhci_pipe *,
501     struct usbd_xfer *);
502 static usbd_status slhci_do_abort(struct slhci_softc *, struct slhci_pipe *,
503     struct usbd_xfer *);
504 static usbd_status slhci_halt(struct slhci_softc *, struct slhci_pipe *,
505     struct usbd_xfer *);
506 
507 static void slhci_intrchange(struct slhci_softc *, uint8_t);
508 static void slhci_drain(struct slhci_softc *);
509 static void slhci_reset(struct slhci_softc *);
510 static int slhci_reserve_bustime(struct slhci_softc *, struct slhci_pipe *,
511     int);
512 static void slhci_insert(struct slhci_softc *);
513 
514 static usbd_status slhci_clear_feature(struct slhci_softc *, unsigned int);
515 static usbd_status slhci_set_feature(struct slhci_softc *, unsigned int);
516 static void slhci_get_status(struct slhci_softc *, usb_port_status_t *);
517 static usbd_status slhci_root(struct slhci_softc *, struct slhci_pipe *,
518     struct usbd_xfer *);
519 
520 #ifdef SLHCI_DEBUG
521 void slhci_log_buffer(struct usbd_xfer *);
522 void slhci_log_req(usb_device_request_t *);
523 void slhci_log_req_hub(usb_device_request_t *);
524 void slhci_log_dumpreg(void);
525 void slhci_log_xfer(struct usbd_xfer *);
526 void slhci_log_spipe(struct slhci_pipe *);
527 void slhci_print_intr(void);
528 void slhci_log_sc(void);
529 void slhci_log_slreq(struct slhci_pipe *);
530 
531 extern int usbdebug;
532 
533 /* Constified so you can read the values from ddb */
534 const int SLHCI_D_TRACE =	0x0001;
535 const int SLHCI_D_MSG = 	0x0002;
536 const int SLHCI_D_XFER =	0x0004;
537 const int SLHCI_D_MEM = 	0x0008;
538 const int SLHCI_D_INTR =	0x0010;
539 const int SLHCI_D_SXFER =	0x0020;
540 const int SLHCI_D_ERR = 	0x0080;
541 const int SLHCI_D_BUF = 	0x0100;
542 const int SLHCI_D_SOFT =	0x0200;
543 const int SLHCI_D_WAIT =	0x0400;
544 const int SLHCI_D_ROOT =	0x0800;
545 /* SOF/NAK alone normally ignored, SOF also needs D_INTR */
546 const int SLHCI_D_SOF =		0x1000;
547 const int SLHCI_D_NAK =		0x2000;
548 
549 int slhci_debug = 0x1cbc; /* 0xc8c; */ /* 0xffff; */ /* 0xd8c; */
550 struct slhci_softc *ssc;
551 #ifdef USB_DEBUG
552 int slhci_usbdebug = -1; /* value to set usbdebug on attach, -1 = leave alone */
553 #endif
554 
555 /*
556  * XXXMRG the SLHCI UVMHIST code has been converted to KERNHIST, but it has
557  * not been tested.  the extra instructions to enable it can probably be
558  * commited to the kernhist code, and these instructions reduced to simply
559  * enabling SLHCI_DEBUG.
560  */
561 
562 /*
563  * Add KERNHIST history for debugging:
564  *
565  *   Before kern_hist in sys/kern/subr_kernhist.c add:
566  *      KERNHIST_DECL(slhcihist);
567  *
568  *   In kern_hist add:
569  *      if ((bitmask & KERNHIST_SLHCI))
570  *              hists[i++] = &slhcihist;
571  *
572  *   In sys/sys/kernhist.h add KERNHIST_SLHCI define.
573  */
574 
575 #include <sys/kernhist.h>
576 KERNHIST_DECL(slhcihist);
577 
578 #if !defined(KERNHIST) || !defined(KERNHIST_SLHCI)
579 #error "SLHCI_DEBUG requires KERNHIST (with modifications, see sys/dev/ic/sl81hs.c)"
580 #endif
581 
582 #ifndef SLHCI_NHIST
583 #define SLHCI_NHIST 409600
584 #endif
585 const unsigned int SLHCI_HISTMASK = KERNHIST_SLHCI;
586 struct kern_history_ent slhci_he[SLHCI_NHIST];
587 
588 #define SLHCI_DEXEC(x, y) do { if ((slhci_debug & SLHCI_ ## x)) { y; } \
589 } while (/*CONSTCOND*/ 0)
590 #define DDOLOG(f, a, b, c, d) do { const char *_kernhist_name = __func__; \
591     u_long _kernhist_call = 0; KERNHIST_LOG(slhcihist, f, a, b, c, d);	     \
592 } while (/*CONSTCOND*/0)
593 #define DLOG(x, f, a, b, c, d) SLHCI_DEXEC(x, DDOLOG(f, a, b, c, d))
594 /*
595  * DLOGFLAG8 is a macro not a function so that flag name expressions are not
596  * evaluated unless the flag bit is set (which could save a register read).
597  * x is debug mask, y is flag identifier, z is flag variable,
598  * a-h are flag names (must evaluate to string constants, msb first).
599  */
600 #define DDOLOGFLAG8(y, z, a, b, c, d, e, f, g, h) do { uint8_t _DLF8 = (z);   \
601     const char *_kernhist_name = __func__; u_long _kernhist_call = 0;	      \
602     if (_DLF8 & 0xf0) KERNHIST_LOG(slhcihist, y " %s %s %s %s", _DLF8 & 0x80 ?  \
603     (a) : "", _DLF8 & 0x40 ? (b) : "", _DLF8 & 0x20 ? (c) : "", _DLF8 & 0x10 ? \
604     (d) : ""); if (_DLF8 & 0x0f) KERNHIST_LOG(slhcihist, y " %s %s %s %s",      \
605     _DLF8 & 0x08 ? (e) : "", _DLF8 & 0x04 ? (f) : "", _DLF8 & 0x02 ? (g) : "", \
606     _DLF8 & 0x01 ? (h) : "");		      				       \
607 } while (/*CONSTCOND*/ 0)
608 #define DLOGFLAG8(x, y, z, a, b, c, d, e, f, g, h) \
609     SLHCI_DEXEC(x, DDOLOGFLAG8(y, z, a, b, c, d, e, f, g, h))
610 /*
611  * DDOLOGBUF logs a buffer up to 8 bytes at a time. No identifier so that we
612  * can make it a real function.
613  */
614 static void
615 DDOLOGBUF(uint8_t *buf, unsigned int length)
616 {
617 	int i;
618 
619 	for(i=0; i+8 <= length; i+=8)
620 		DDOLOG("%.4x %.4x %.4x %.4x", (buf[i] << 8) | buf[i+1],
621 		    (buf[i+2] << 8) | buf[i+3], (buf[i+4] << 8) | buf[i+5],
622 		    (buf[i+6] << 8) | buf[i+7]);
623 	if (length == i+7)
624 		DDOLOG("%.4x %.4x %.4x %.2x", (buf[i] << 8) | buf[i+1],
625 		    (buf[i+2] << 8) | buf[i+3], (buf[i+4] << 8) | buf[i+5],
626 		    buf[i+6]);
627 	else if (length == i+6)
628 		DDOLOG("%.4x %.4x %.4x", (buf[i] << 8) | buf[i+1],
629 		    (buf[i+2] << 8) | buf[i+3], (buf[i+4] << 8) | buf[i+5], 0);
630 	else if (length == i+5)
631 		DDOLOG("%.4x %.4x %.2x", (buf[i] << 8) | buf[i+1],
632 		    (buf[i+2] << 8) | buf[i+3], buf[i+4], 0);
633 	else if (length == i+4)
634 		DDOLOG("%.4x %.4x", (buf[i] << 8) | buf[i+1],
635 		    (buf[i+2] << 8) | buf[i+3], 0,0);
636 	else if (length == i+3)
637 		DDOLOG("%.4x %.2x", (buf[i] << 8) | buf[i+1], buf[i+2], 0,0);
638 	else if (length == i+2)
639 		DDOLOG("%.4x", (buf[i] << 8) | buf[i+1], 0,0,0);
640 	else if (length == i+1)
641 		DDOLOG("%.2x", buf[i], 0,0,0);
642 }
643 #define DLOGBUF(x, b, l) SLHCI_DEXEC(x, DDOLOGBUF(b, l))
644 #else /* now !SLHCI_DEBUG */
645 #define slhci_log_spipe(spipe) ((void)0)
646 #define slhci_log_xfer(xfer) ((void)0)
647 #define SLHCI_DEXEC(x, y) ((void)0)
648 #define DDOLOG(f, a, b, c, d) ((void)0)
649 #define DLOG(x, f, a, b, c, d) ((void)0)
650 #define DDOLOGFLAG8(y, z, a, b, c, d, e, f, g, h) ((void)0)
651 #define DLOGFLAG8(x, y, z, a, b, c, d, e, f, g, h) ((void)0)
652 #define DDOLOGBUF(b, l) ((void)0)
653 #define DLOGBUF(x, b, l) ((void)0)
654 #endif /* SLHCI_DEBUG */
655 
656 #ifdef DIAGNOSTIC
657 #define LK_SLASSERT(exp, sc, spipe, xfer, ext) do {			\
658 	if (!(exp)) {							\
659 		printf("%s: assertion %s failed line %u function %s!"	\
660 		" halted\n", SC_NAME(sc), #exp, __LINE__, __func__);\
661 		DDOLOG("%s: assertion %s failed line %u function %s!"	\
662 		" halted\n", SC_NAME(sc), #exp, __LINE__, __func__);\
663 		slhci_halt(sc, spipe, xfer);				\
664 		ext;							\
665 	}								\
666 } while (/*CONSTCOND*/0)
667 #define UL_SLASSERT(exp, sc, spipe, xfer, ext) do {			\
668 	if (!(exp)) {							\
669 		printf("%s: assertion %s failed line %u function %s!"	\
670 		" halted\n", SC_NAME(sc), #exp, __LINE__, __func__);	\
671 		DDOLOG("%s: assertion %s failed line %u function %s!"	\
672 		" halted\n", SC_NAME(sc), #exp, __LINE__, __func__);	\
673 		slhci_lock_call(sc, &slhci_halt, spipe, xfer);		\
674 		ext;							\
675 	}								\
676 } while (/*CONSTCOND*/0)
677 #else
678 #define LK_SLASSERT(exp, sc, spipe, xfer, ext) ((void)0)
679 #define UL_SLASSERT(exp, sc, spipe, xfer, ext) ((void)0)
680 #endif
681 
682 const struct usbd_bus_methods slhci_bus_methods = {
683 	.open_pipe = slhci_open,
684 	.soft_intr = slhci_void,
685 	.do_poll = slhci_poll,
686 	.allocm = slhci_allocm,
687 	.freem = slhci_freem,
688 	.allocx = slhci_allocx,
689 	.freex = slhci_freex,
690 	.get_lock = slhci_get_lock,
691 	NULL, /* new_device */
692 };
693 
694 const struct usbd_pipe_methods slhci_pipe_methods = {
695 	.transfer = slhci_transfer,
696 	.start = slhci_start,
697 	.abort = slhci_abort,
698 	.close = slhci_close,
699 	.cleartoggle = slhci_clear_toggle,
700 	.done = slhci_done,
701 };
702 
703 const struct usbd_pipe_methods slhci_root_methods = {
704 	.transfer = slhci_transfer,
705 	.start = slhci_root_start,
706 	.abort = slhci_abort,
707 	.close = (void (*)(struct usbd_pipe *))slhci_void, /* XXX safe? */
708 	.cleartoggle = slhci_clear_toggle,
709 	.done = slhci_done,
710 };
711 
712 /* Queue inlines */
713 
714 #define GOT_FIRST_TO(tvar, t) \
715     GCQ_GOT_FIRST_TYPED(tvar, &(t)->to, struct slhci_pipe, to)
716 
717 #define FIND_TO(var, t, tvar, cond) \
718     GCQ_FIND_TYPED(var, &(t)->to, tvar, struct slhci_pipe, to, cond)
719 
720 #define FOREACH_AP(var, t, tvar) \
721     GCQ_FOREACH_TYPED(var, &(t)->ap, tvar, struct slhci_pipe, ap)
722 
723 #define GOT_FIRST_TIMED_COND(tvar, t, cond) \
724     GCQ_GOT_FIRST_COND_TYPED(tvar, &(t)->timed, struct slhci_pipe, xq, cond)
725 
726 #define GOT_FIRST_CB(tvar, t) \
727     GCQ_GOT_FIRST_TYPED(tvar, &(t)->q[Q_CB], struct slhci_pipe, xq)
728 
729 #define DEQUEUED_CALLBACK(tvar, t) \
730     GCQ_DEQUEUED_FIRST_TYPED(tvar, &(t)->q[Q_CALLBACKS], struct slhci_pipe, xq)
731 
732 #define FIND_TIMED(var, t, tvar, cond) \
733    GCQ_FIND_TYPED(var, &(t)->timed, tvar, struct slhci_pipe, xq, cond)
734 
735 #define DEQUEUED_WAITQ(tvar, sc) \
736     GCQ_DEQUEUED_FIRST_TYPED(tvar, &(sc)->sc_waitq, struct slhci_pipe, xq)
737 
738 static inline void
739 enter_waitq(struct slhci_softc *sc, struct slhci_pipe *spipe)
740 {
741 	gcq_insert_tail(&sc->sc_waitq, &spipe->xq);
742 }
743 
744 static inline void
745 enter_q(struct slhci_transfers *t, struct slhci_pipe *spipe, int i)
746 {
747 	gcq_insert_tail(&t->q[i], &spipe->xq);
748 }
749 
750 static inline void
751 enter_callback(struct slhci_transfers *t, struct slhci_pipe *spipe)
752 {
753 	gcq_insert_tail(&t->q[Q_CALLBACKS], &spipe->xq);
754 }
755 
756 static inline void
757 enter_all_pipes(struct slhci_transfers *t, struct slhci_pipe *spipe)
758 {
759 	gcq_insert_tail(&t->ap, &spipe->ap);
760 }
761 
762 /* Start out of lock functions. */
763 
764 struct slhci_mem {
765 	usb_dma_block_t block;
766 	uint8_t data[];
767 };
768 
769 /*
770  * The SL811HS does not do DMA as a host controller, but NetBSD's USB interface
771  * assumes DMA is used.  So we fake the DMA block.
772  */
773 usbd_status
774 slhci_allocm(struct usbd_bus *bus, usb_dma_t *dma, u_int32_t size)
775 {
776 	struct slhci_mem *mem;
777 
778 	mem = malloc(sizeof(struct slhci_mem) + size, M_USB, M_NOWAIT|M_ZERO);
779 
780 	DLOG(D_MEM, "allocm %p", mem, 0,0,0);
781 
782 	if (mem == NULL)
783 		return USBD_NOMEM;
784 
785 	dma->block = &mem->block;
786 	dma->block->kaddr = mem->data;
787 
788 	/* dma->offs = 0; */
789 	dma->block->nsegs = 1;
790 	dma->block->size = size;
791 	dma->block->align = size;
792 	dma->block->flags |= USB_DMA_FULLBLOCK;
793 
794 #ifdef SLHCI_MEM_ACCOUNTING
795 	slhci_mem_use(bus, 1);
796 #endif
797 
798 	return USBD_NORMAL_COMPLETION;
799 }
800 
801 void
802 slhci_freem(struct usbd_bus *bus, usb_dma_t *dma)
803 {
804 	DLOG(D_MEM, "freem %p", dma->block, 0,0,0);
805 
806 #ifdef SLHCI_MEM_ACCOUNTING
807 	slhci_mem_use(bus, -1);
808 #endif
809 
810 	free(dma->block, M_USB);
811 }
812 
813 struct usbd_xfer *
814 slhci_allocx(struct usbd_bus *bus)
815 {
816 	struct usbd_xfer *xfer;
817 
818 	xfer = malloc(sizeof(*xfer), M_USB, M_NOWAIT|M_ZERO);
819 
820 	DLOG(D_MEM, "allocx %p", xfer, 0,0,0);
821 
822 #ifdef SLHCI_MEM_ACCOUNTING
823 	slhci_mem_use(bus, 1);
824 #endif
825 #ifdef DIAGNOSTIC
826 	if (xfer != NULL)
827 		xfer->busy_free = XFER_BUSY;
828 #endif
829 	return xfer;
830 }
831 
832 void
833 slhci_freex(struct usbd_bus *bus, struct usbd_xfer *xfer)
834 {
835 	DLOG(D_MEM, "freex xfer %p spipe %p", xfer, xfer->pipe,0,0);
836 
837 #ifdef SLHCI_MEM_ACCOUNTING
838 	slhci_mem_use(bus, -1);
839 #endif
840 #ifdef DIAGNOSTIC
841 	if (xfer->busy_free != XFER_BUSY) {
842 		struct slhci_softc *sc = bus->hci_private;
843 		printf("%s: slhci_freex: xfer=%p not busy, %#08x halted\n",
844 		    SC_NAME(sc), xfer, xfer->busy_free);
845 		DDOLOG("%s: slhci_freex: xfer=%p not busy, %#08x halted\n",
846 		    SC_NAME(sc), xfer, xfer->busy_free, 0);
847 		slhci_lock_call(sc, &slhci_halt, NULL, NULL);
848 		return;
849 	}
850 	xfer->busy_free = XFER_FREE;
851 #endif
852 
853 	free(xfer, M_USB);
854 }
855 
856 static void
857 slhci_get_lock(struct usbd_bus *bus, kmutex_t **lock)
858 {
859 	struct slhci_softc *sc = bus->hci_private;
860 
861 	*lock = &sc->sc_lock;
862 }
863 
864 usbd_status
865 slhci_transfer(struct usbd_xfer *xfer)
866 {
867 	struct slhci_softc *sc = xfer->pipe->device->bus->hci_private;
868 	usbd_status error;
869 
870 	DLOG(D_TRACE, "%s transfer xfer %p spipe %p ",
871 	    pnames(SLHCI_XFER_TYPE(xfer)), xfer, xfer->pipe,0);
872 
873 	/* Insert last in queue */
874 	mutex_enter(&sc->sc_lock);
875 	error = usb_insert_transfer(xfer);
876 	mutex_exit(&sc->sc_lock);
877 	if (error) {
878 		if (error != USBD_IN_PROGRESS)
879 			DLOG(D_ERR, "usb_insert_transfer returns %d!", error,
880 			    0,0,0);
881 		return error;
882 	}
883 
884 	/*
885 	 * Pipe isn't running (otherwise error would be USBD_INPROG),
886 	 * so start it first.
887 	 */
888 
889 	/*
890 	 * Start will take the lock.
891 	 */
892 	error = xfer->pipe->methods->start(SIMPLEQ_FIRST(&xfer->pipe->queue));
893 
894 	return error;
895 }
896 
897 /* It is not safe for start to return anything other than USBD_INPROG. */
898 usbd_status
899 slhci_start(struct usbd_xfer *xfer)
900 {
901 	struct slhci_softc *sc = xfer->pipe->device->bus->hci_private;
902 	struct usbd_pipe *pipe = xfer->pipe;
903 	struct slhci_pipe *spipe = (struct slhci_pipe *)pipe;
904 	struct slhci_transfers *t = &sc->sc_transfers;
905 ;	usb_endpoint_descriptor_t *ed = pipe->endpoint->edesc;
906 	unsigned int max_packet;
907 
908 	mutex_enter(&sc->sc_lock);
909 
910 	max_packet = UGETW(ed->wMaxPacketSize);
911 
912 	DLOG(D_TRACE, "%s start xfer %p spipe %p length %d",
913 	    pnames(spipe->ptype), xfer, spipe, xfer->length);
914 
915 	/* root transfers use slhci_root_start */
916 
917 	KASSERT(spipe->xfer == NULL); /* not SLASSERT */
918 
919 	xfer->actlen = 0;
920 	xfer->status = USBD_IN_PROGRESS;
921 
922 	spipe->xfer = xfer;
923 
924 	spipe->nerrs = 0;
925 	spipe->frame = t->frame;
926 	spipe->control = SL11_EPCTRL_ARM_ENABLE;
927 	spipe->tregs[DEV] = pipe->device->address;
928 	spipe->tregs[PID] = spipe->newpid = UE_GET_ADDR(ed->bEndpointAddress)
929 	    | (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN ? SL11_PID_IN :
930 	    SL11_PID_OUT);
931 	spipe->newlen[0] = xfer->length % max_packet;
932 	spipe->newlen[1] = min(xfer->length, max_packet);
933 
934 	if (spipe->ptype == PT_BULK || spipe->ptype == PT_INTR) {
935 		if (spipe->pflags & PF_TOGGLE)
936 			spipe->control |= SL11_EPCTRL_DATATOGGLE;
937 		spipe->tregs[LEN] = spipe->newlen[1];
938 		if (spipe->tregs[LEN])
939 			spipe->buffer = KERNADDR(&xfer->dmabuf, 0);
940 		else
941 			spipe->buffer = NULL;
942 		spipe->lastframe = t->frame;
943 #if defined(DEBUG) || defined(SLHCI_DEBUG)
944 		if (__predict_false(spipe->ptype == PT_INTR &&
945 		    xfer->length > spipe->tregs[LEN])) {
946 			printf("%s: Long INTR transfer not supported!\n",
947 			    SC_NAME(sc));
948 			DDOLOG("%s: Long INTR transfer not supported!\n",
949 			    SC_NAME(sc), 0,0,0);
950 			xfer->status = USBD_INVAL;
951 		}
952 #endif
953 	} else {
954 		/* ptype may be currently set to any control transfer type. */
955 		SLHCI_DEXEC(D_TRACE, slhci_log_xfer(xfer));
956 
957 		/* SETUP contains IN/OUT bits also */
958 		spipe->tregs[PID] |= SL11_PID_SETUP;
959 		spipe->tregs[LEN] = 8;
960 		spipe->buffer = (uint8_t *)&xfer->request;
961 		DLOGBUF(D_XFER, spipe->buffer, spipe->tregs[LEN]);
962 		spipe->ptype = PT_CTRL_SETUP;
963 		spipe->newpid &= ~SL11_PID_BITS;
964 		if (xfer->length == 0 || (xfer->request.bmRequestType &
965 		    UT_READ))
966 			spipe->newpid |= SL11_PID_IN;
967 		else
968 			spipe->newpid |= SL11_PID_OUT;
969 	}
970 
971 	if (xfer->flags & USBD_FORCE_SHORT_XFER && spipe->tregs[LEN] ==
972 	    max_packet && (spipe->newpid & SL11_PID_BITS) == SL11_PID_OUT)
973 		spipe->wantshort = 1;
974 	else
975 		spipe->wantshort = 0;
976 
977 	/*
978 	 * The goal of newbustime and newlen is to avoid bustime calculation
979 	 * in the interrupt.  The calculations are not too complex, but they
980 	 * complicate the conditional logic somewhat and doing them all in the
981 	 * same place shares constants. Index 0 is "short length" for bulk and
982 	 * ctrl data and 1 is "full length" for ctrl data (bulk/intr are
983 	 * already set to full length).
984 	 */
985 	if (spipe->pflags & PF_LS) {
986 		/*
987 		 * Setting PREAMBLE for directly connnected LS devices will
988 		 * lock up the chip.
989 		 */
990 		if (spipe->pflags & PF_PREAMBLE)
991 			spipe->control |= SL11_EPCTRL_PREAMBLE;
992 		if (max_packet <= 8) {
993 			spipe->bustime = SLHCI_LS_CONST +
994 			    SLHCI_LS_DATA_TIME(spipe->tregs[LEN]);
995 			spipe->newbustime[0] = SLHCI_LS_CONST +
996 			    SLHCI_LS_DATA_TIME(spipe->newlen[0]);
997 			spipe->newbustime[1] = SLHCI_LS_CONST +
998 			    SLHCI_LS_DATA_TIME(spipe->newlen[1]);
999 		} else
1000 			xfer->status = USBD_INVAL;
1001 	} else {
1002 		UL_SLASSERT(pipe->device->speed == USB_SPEED_FULL, sc,
1003 		    spipe, xfer, return USBD_IN_PROGRESS);
1004 		if (max_packet <= SL11_MAX_PACKET_SIZE) {
1005 			spipe->bustime = SLHCI_FS_CONST +
1006 			    SLHCI_FS_DATA_TIME(spipe->tregs[LEN]);
1007 			spipe->newbustime[0] = SLHCI_FS_CONST +
1008 			    SLHCI_FS_DATA_TIME(spipe->newlen[0]);
1009 			spipe->newbustime[1] = SLHCI_FS_CONST +
1010 			    SLHCI_FS_DATA_TIME(spipe->newlen[1]);
1011 		} else
1012 			xfer->status = USBD_INVAL;
1013 	}
1014 
1015 	/*
1016 	 * The datasheet incorrectly indicates that DIRECTION is for
1017 	 * "transmit to host".  It is for OUT and SETUP.  The app note
1018 	 * describes its use correctly.
1019 	 */
1020 	if ((spipe->tregs[PID] & SL11_PID_BITS) != SL11_PID_IN)
1021 		spipe->control |= SL11_EPCTRL_DIRECTION;
1022 
1023 	slhci_start_entry(sc, spipe);
1024 
1025 	mutex_exit(&sc->sc_lock);
1026 
1027 	return USBD_IN_PROGRESS;
1028 }
1029 
1030 usbd_status
1031 slhci_root_start(struct usbd_xfer *xfer)
1032 {
1033 	struct slhci_softc *sc;
1034 	struct slhci_pipe *spipe;
1035 
1036 	spipe = (struct slhci_pipe *)xfer->pipe;
1037 	sc = xfer->pipe->device->bus->hci_private;
1038 
1039 	return slhci_lock_call(sc, &slhci_root, spipe, xfer);
1040 }
1041 
1042 usbd_status
1043 slhci_open(struct usbd_pipe *pipe)
1044 {
1045 	struct usbd_device *dev;
1046 	struct slhci_softc *sc;
1047 	struct slhci_pipe *spipe;
1048 	usb_endpoint_descriptor_t *ed;
1049 	struct slhci_transfers *t;
1050 	unsigned int max_packet, pmaxpkt;
1051 
1052 	dev = pipe->device;
1053 	sc = dev->bus->hci_private;
1054 	spipe = (struct slhci_pipe *)pipe;
1055 	ed = pipe->endpoint->edesc;
1056 	t = &sc->sc_transfers;
1057 
1058 	DLOG(D_TRACE, "slhci_open(addr=%d,ep=%d,rootaddr=%d)",
1059 		dev->address, ed->bEndpointAddress, t->rootaddr, 0);
1060 
1061 	spipe->pflags = 0;
1062 	spipe->frame = 0;
1063 	spipe->lastframe = 0;
1064 	spipe->xfer = NULL;
1065 	spipe->buffer = NULL;
1066 
1067 	gcq_init(&spipe->ap);
1068 	gcq_init(&spipe->to);
1069 	gcq_init(&spipe->xq);
1070 
1071 	/*
1072 	 * The endpoint descriptor will not have been set up yet in the case
1073 	 * of the standard control pipe, so the max packet checks are also
1074 	 * necessary in start.
1075 	 */
1076 
1077 	max_packet = UGETW(ed->wMaxPacketSize);
1078 
1079 	if (dev->speed == USB_SPEED_LOW) {
1080 		spipe->pflags |= PF_LS;
1081 		if (dev->myhub->address != t->rootaddr) {
1082 			spipe->pflags |= PF_PREAMBLE;
1083 			if (!slhci_try_lsvh)
1084 				return slhci_lock_call(sc, &slhci_lsvh_warn,
1085 				    spipe, NULL);
1086 		}
1087 		pmaxpkt = 8;
1088 	} else
1089 		pmaxpkt = SL11_MAX_PACKET_SIZE;
1090 
1091 	if (max_packet > pmaxpkt) {
1092 		DLOG(D_ERR, "packet too large! size %d spipe %p", max_packet,
1093 		    spipe, 0,0);
1094 		return USBD_INVAL;
1095 	}
1096 
1097 	if (dev->address == t->rootaddr) {
1098 		switch (ed->bEndpointAddress) {
1099 		case USB_CONTROL_ENDPOINT:
1100 			spipe->ptype = PT_ROOT_CTRL;
1101 			pipe->interval = 0;
1102 			break;
1103 		case UE_DIR_IN | ROOT_INTR_ENDPT:
1104 			spipe->ptype = PT_ROOT_INTR;
1105 			pipe->interval = 1;
1106 			break;
1107 		default:
1108 			printf("%s: Invalid root endpoint!\n", SC_NAME(sc));
1109 			DDOLOG("%s: Invalid root endpoint!\n", SC_NAME(sc),
1110 			    0,0,0);
1111 			return USBD_INVAL;
1112 		}
1113 		pipe->methods = __UNCONST(&slhci_root_methods);
1114 		return USBD_NORMAL_COMPLETION;
1115 	} else {
1116 		switch (ed->bmAttributes & UE_XFERTYPE) {
1117 		case UE_CONTROL:
1118 			spipe->ptype = PT_CTRL_SETUP;
1119 			pipe->interval = 0;
1120 			break;
1121 		case UE_INTERRUPT:
1122 			spipe->ptype = PT_INTR;
1123 			if (pipe->interval == USBD_DEFAULT_INTERVAL)
1124 				pipe->interval = ed->bInterval;
1125 			break;
1126 		case UE_ISOCHRONOUS:
1127 			return slhci_lock_call(sc, &slhci_isoc_warn, spipe,
1128 			    NULL);
1129 		case UE_BULK:
1130 			spipe->ptype = PT_BULK;
1131 			pipe->interval = 0;
1132 			break;
1133 		}
1134 
1135 		DLOG(D_MSG, "open pipe %s interval %d", pnames(spipe->ptype),
1136 		    pipe->interval, 0,0);
1137 
1138 		pipe->methods = __UNCONST(&slhci_pipe_methods);
1139 
1140 		return slhci_lock_call(sc, &slhci_open_pipe, spipe, NULL);
1141 	}
1142 }
1143 
1144 int
1145 slhci_supported_rev(uint8_t rev)
1146 {
1147 	return (rev >= SLTYPE_SL811HS_R12 && rev <= SLTYPE_SL811HS_R15);
1148 }
1149 
1150 /*
1151  * Must be called before the ISR is registered. Interrupts can be shared so
1152  * slhci_intr could be called as soon as the ISR is registered.
1153  * Note max_current argument is actual current, but stored as current/2
1154  */
1155 void
1156 slhci_preinit(struct slhci_softc *sc, PowerFunc pow, bus_space_tag_t iot,
1157     bus_space_handle_t ioh, uint16_t max_current, uint32_t stride)
1158 {
1159 	struct slhci_transfers *t;
1160 	int i;
1161 
1162 	t = &sc->sc_transfers;
1163 
1164 #ifdef SLHCI_DEBUG
1165 	KERNHIST_INIT_STATIC(slhcihist, slhci_he);
1166 #endif
1167 	mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_SOFTUSB);
1168 	mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_SCHED);
1169 
1170 	/* sc->sc_ier = 0;	*/
1171 	/* t->rootintr = NULL;	*/
1172 	t->flags = F_NODEV|F_UDISABLED;
1173 	t->pend = INT_MAX;
1174 	KASSERT(slhci_wait_time != INT_MAX);
1175 	t->len[0] = t->len[1] = -1;
1176 	if (max_current > 500)
1177 		max_current = 500;
1178 	t->max_current = (uint8_t)(max_current / 2);
1179 	sc->sc_enable_power = pow;
1180 	sc->sc_iot = iot;
1181 	sc->sc_ioh = ioh;
1182 	sc->sc_stride = stride;
1183 
1184 	KASSERT(Q_MAX+1 == sizeof(t->q) / sizeof(t->q[0]));
1185 
1186 	for (i = 0; i <= Q_MAX; i++)
1187 		gcq_init_head(&t->q[i]);
1188 	gcq_init_head(&t->timed);
1189 	gcq_init_head(&t->to);
1190 	gcq_init_head(&t->ap);
1191 	gcq_init_head(&sc->sc_waitq);
1192 }
1193 
1194 int
1195 slhci_attach(struct slhci_softc *sc)
1196 {
1197 	struct slhci_transfers *t;
1198 	const char *rev;
1199 
1200 	t = &sc->sc_transfers;
1201 
1202 	/* Detect and check the controller type */
1203 	t->sltype = SL11_GET_REV(slhci_read(sc, SL11_REV));
1204 
1205 	/* SL11H not supported */
1206 	if (!slhci_supported_rev(t->sltype)) {
1207 		if (t->sltype == SLTYPE_SL11H)
1208 			printf("%s: SL11H unsupported or bus error!\n",
1209 			    SC_NAME(sc));
1210 		else
1211 			printf("%s: Unknown chip revision!\n", SC_NAME(sc));
1212 		return -1;
1213 	}
1214 
1215 	callout_init(&sc->sc_timer, CALLOUT_MPSAFE);
1216 	callout_setfunc(&sc->sc_timer, slhci_reset_entry, sc);
1217 
1218 	/*
1219 	 * It is not safe to call the soft interrupt directly as
1220 	 * usb_schedsoftintr does in the use_polling case (due to locking).
1221 	 */
1222 	sc->sc_cb_softintr = softint_establish(SOFTINT_NET,
1223 	    slhci_callback_entry, sc);
1224 
1225 #ifdef SLHCI_DEBUG
1226 	ssc = sc;
1227 #ifdef USB_DEBUG
1228 	if (slhci_usbdebug >= 0)
1229 		usbdebug = slhci_usbdebug;
1230 #endif
1231 #endif
1232 
1233 	if (t->sltype == SLTYPE_SL811HS_R12)
1234 		rev = " (rev 1.2)";
1235 	else if (t->sltype == SLTYPE_SL811HS_R14)
1236 		rev = " (rev 1.4 or 1.5)";
1237 	else
1238 		rev = " (unknown revision)";
1239 
1240 	aprint_normal("%s: ScanLogic SL811HS/T USB Host Controller %s\n",
1241 	    SC_NAME(sc), rev);
1242 
1243 	aprint_normal("%s: Max Current %u mA (value by code, not by probe)\n",
1244 	    SC_NAME(sc), t->max_current * 2);
1245 
1246 #if defined(SLHCI_DEBUG) || defined(SLHCI_NO_OVERTIME) || \
1247     defined(SLHCI_TRY_LSVH) || defined(SLHCI_PROFILE_TRANSFER)
1248 	aprint_normal("%s: driver options:"
1249 #ifdef SLHCI_DEBUG
1250 	" SLHCI_DEBUG"
1251 #endif
1252 #ifdef SLHCI_TRY_LSVH
1253 	" SLHCI_TRY_LSVH"
1254 #endif
1255 #ifdef SLHCI_NO_OVERTIME
1256 	" SLHCI_NO_OVERTIME"
1257 #endif
1258 #ifdef SLHCI_PROFILE_TRANSFER
1259 	" SLHCI_PROFILE_TRANSFER"
1260 #endif
1261 	"\n", SC_NAME(sc));
1262 #endif
1263 	sc->sc_bus.usbrev = USBREV_1_1;
1264 	sc->sc_bus.methods = __UNCONST(&slhci_bus_methods);
1265 	sc->sc_bus.pipe_size = sizeof(struct slhci_pipe);
1266 
1267 	if (!sc->sc_enable_power)
1268 		t->flags |= F_REALPOWER;
1269 
1270 	t->flags |= F_ACTIVE;
1271 
1272 	/* Attach usb and uhub. */
1273 	sc->sc_child = config_found(SC_DEV(sc), &sc->sc_bus, usbctlprint);
1274 
1275 	if (!sc->sc_child)
1276 		return -1;
1277 	else
1278 		return 0;
1279 }
1280 
1281 int
1282 slhci_detach(struct slhci_softc *sc, int flags)
1283 {
1284 	struct slhci_transfers *t;
1285 	int ret;
1286 
1287 	t = &sc->sc_transfers;
1288 
1289 	/* By this point bus access is no longer allowed. */
1290 
1291 	KASSERT(!(t->flags & F_ACTIVE));
1292 
1293 	/*
1294 	 * To be MPSAFE is not sufficient to cancel callouts and soft
1295 	 * interrupts and assume they are dead since the code could already be
1296 	 * running or about to run.  Wait until they are known to be done.
1297 	 */
1298 	while (t->flags & (F_RESET|F_CALLBACK))
1299 		tsleep(&sc, PPAUSE, "slhci_detach", hz);
1300 
1301 	softint_disestablish(sc->sc_cb_softintr);
1302 
1303 	mutex_destroy(&sc->sc_lock);
1304 	mutex_destroy(&sc->sc_intr_lock);
1305 
1306 	ret = 0;
1307 
1308 	if (sc->sc_child)
1309 		ret = config_detach(sc->sc_child, flags);
1310 
1311 #ifdef SLHCI_MEM_ACCOUNTING
1312 	if (sc->sc_mem_use) {
1313 		printf("%s: Memory still in use after detach! mem_use (count)"
1314 		    " = %d\n", SC_NAME(sc), sc->sc_mem_use);
1315 		DDOLOG("%s: Memory still in use after detach! mem_use (count)"
1316 		    " = %d\n", SC_NAME(sc), sc->sc_mem_use, 0,0);
1317 	}
1318 #endif
1319 
1320 	return ret;
1321 }
1322 
1323 int
1324 slhci_activate(device_t self, enum devact act)
1325 {
1326 	struct slhci_softc *sc = device_private(self);
1327 
1328 	switch (act) {
1329 	case DVACT_DEACTIVATE:
1330 		slhci_lock_call(sc, &slhci_halt, NULL, NULL);
1331 		return 0;
1332 	default:
1333 		return EOPNOTSUPP;
1334 	}
1335 }
1336 
1337 void
1338 slhci_abort(struct usbd_xfer *xfer)
1339 {
1340 	struct slhci_softc *sc;
1341 	struct slhci_pipe *spipe;
1342 
1343 	spipe = (struct slhci_pipe *)xfer->pipe;
1344 
1345 	if (spipe == NULL)
1346 		goto callback;
1347 
1348 	sc = spipe->pipe.device->bus->hci_private;
1349 
1350 	KASSERT(mutex_owned(&sc->sc_lock));
1351 
1352 	DLOG(D_TRACE, "%s abort xfer %p spipe %p spipe->xfer %p",
1353 	    pnames(spipe->ptype), xfer, spipe, spipe->xfer);
1354 
1355 	slhci_lock_call(sc, &slhci_do_abort, spipe, xfer);
1356 
1357 callback:
1358 	xfer->status = USBD_CANCELLED;
1359 	/* Abort happens at IPL_USB. */
1360 	usb_transfer_complete(xfer);
1361 }
1362 
1363 void
1364 slhci_close(struct usbd_pipe *pipe)
1365 {
1366 	struct slhci_softc *sc;
1367 	struct slhci_pipe *spipe;
1368 
1369 	sc = pipe->device->bus->hci_private;
1370 	spipe = (struct slhci_pipe *)pipe;
1371 
1372 	DLOG(D_TRACE, "%s close spipe %p spipe->xfer %p",
1373 	    pnames(spipe->ptype), spipe, spipe->xfer, 0);
1374 
1375 	slhci_lock_call(sc, &slhci_close_pipe, spipe, NULL);
1376 }
1377 
1378 void
1379 slhci_clear_toggle(struct usbd_pipe *pipe)
1380 {
1381 	struct slhci_pipe *spipe;
1382 
1383 	spipe = (struct slhci_pipe *)pipe;
1384 
1385 	DLOG(D_TRACE, "%s toggle spipe %p", pnames(spipe->ptype),
1386 	    spipe,0,0);
1387 
1388 	spipe->pflags &= ~PF_TOGGLE;
1389 
1390 #ifdef DIAGNOSTIC
1391 	if (spipe->xfer != NULL) {
1392 		struct slhci_softc *sc = (struct slhci_softc
1393 		    *)pipe->device->bus;
1394 
1395 		printf("%s: Clear toggle on transfer in progress! halted\n",
1396 		    SC_NAME(sc));
1397 		DDOLOG("%s: Clear toggle on transfer in progress! halted\n",
1398 		    SC_NAME(sc), 0,0,0);
1399 		slhci_halt(sc, NULL, NULL);
1400 	}
1401 #endif
1402 }
1403 
1404 void
1405 slhci_poll(struct usbd_bus *bus) /* XXX necessary? */
1406 {
1407 	struct slhci_softc *sc;
1408 
1409 	sc = bus->hci_private;
1410 
1411 	DLOG(D_TRACE, "slhci_poll", 0,0,0,0);
1412 
1413 	slhci_lock_call(sc, &slhci_do_poll, NULL, NULL);
1414 }
1415 
1416 void
1417 slhci_done(struct usbd_xfer *xfer)
1418 {
1419 	/* xfer may not be valid here */
1420 }
1421 
1422 void
1423 slhci_void(void *v) {}
1424 
1425 /* End out of lock functions. Start lock entry functions. */
1426 
1427 #ifdef SLHCI_MEM_ACCOUNTING
1428 void
1429 slhci_mem_use(struct usbd_bus *bus, int val)
1430 {
1431 	struct slhci_softc *sc = bus->hci_private;
1432 	int s;
1433 
1434 	mutex_enter(&sc->sc_intr_lock);
1435 	sc->sc_mem_use += val;
1436 	mutex_exit(&sc->sc_intr_lock);
1437 }
1438 #endif
1439 
1440 void
1441 slhci_reset_entry(void *arg)
1442 {
1443 	struct slhci_softc *sc = arg;
1444 
1445 	mutex_enter(&sc->sc_intr_lock);
1446 	slhci_reset(sc);
1447 	/*
1448 	 * We cannot call the callback directly since we could then be reset
1449 	 * again before finishing and need the callout delay for timing.
1450 	 * Scheduling the callout again before we exit would defeat the reap
1451 	 * mechanism since we could be unlocked while the reset flag is not
1452 	 * set. The callback code will check the wait queue.
1453 	 */
1454 	slhci_callback_schedule(sc);
1455 	mutex_exit(&sc->sc_intr_lock);
1456 }
1457 
1458 usbd_status
1459 slhci_lock_call(struct slhci_softc *sc, LockCallFunc lcf, struct slhci_pipe
1460     *spipe, struct usbd_xfer *xfer)
1461 {
1462 	usbd_status ret;
1463 
1464 	mutex_enter(&sc->sc_intr_lock);
1465 	ret = (*lcf)(sc, spipe, xfer);
1466 	slhci_main(sc);
1467 	mutex_exit(&sc->sc_intr_lock);
1468 
1469 	return ret;
1470 }
1471 
1472 void
1473 slhci_start_entry(struct slhci_softc *sc, struct slhci_pipe *spipe)
1474 {
1475 	struct slhci_transfers *t;
1476 
1477 	mutex_enter(&sc->sc_intr_lock);
1478 	t = &sc->sc_transfers;
1479 
1480 	if (!(t->flags & (F_AINPROG|F_BINPROG))) {
1481 		slhci_enter_xfer(sc, spipe);
1482 		slhci_dotransfer(sc);
1483 		slhci_main(sc);
1484 	} else {
1485 		enter_waitq(sc, spipe);
1486 	}
1487 	mutex_exit(&sc->sc_intr_lock);
1488 }
1489 
1490 void
1491 slhci_callback_entry(void *arg)
1492 {
1493 	struct slhci_softc *sc;
1494 	struct slhci_transfers *t;
1495 
1496 	sc = (struct slhci_softc *)arg;
1497 
1498 	mutex_enter(&sc->sc_intr_lock);
1499 	t = &sc->sc_transfers;
1500 	DLOG(D_SOFT, "callback_entry flags %#x", t->flags, 0,0,0);
1501 
1502 repeat:
1503 	slhci_callback(sc);
1504 
1505 	if (!gcq_empty(&sc->sc_waitq)) {
1506 		slhci_enter_xfers(sc);
1507 		slhci_dotransfer(sc);
1508 		slhci_waitintr(sc, 0);
1509 		goto repeat;
1510 	}
1511 
1512 	t->flags &= ~F_CALLBACK;
1513 	mutex_exit(&sc->sc_intr_lock);
1514 }
1515 
1516 void
1517 slhci_do_callback(struct slhci_softc *sc, struct usbd_xfer *xfer)
1518 {
1519 	KASSERT(mutex_owned(&sc->sc_intr_lock));
1520 
1521 	int repeat;
1522 
1523 	start_cc_time(&t_callback, (u_int)xfer);
1524 	mutex_exit(&sc->sc_intr_lock);
1525 
1526 	mutex_enter(&sc->sc_lock);
1527 	repeat = xfer->pipe->repeat;
1528 	usb_transfer_complete(xfer);
1529 	mutex_exit(&sc->sc_lock);
1530 
1531 	mutex_enter(&sc->sc_intr_lock);
1532 	stop_cc_time(&t_callback);
1533 
1534 	if (repeat && !sc->sc_bus.use_polling)
1535 		slhci_do_repeat(sc, xfer);
1536 }
1537 
1538 int
1539 slhci_intr(void *arg)
1540 {
1541 	struct slhci_softc *sc = arg;
1542 	int ret;
1543 
1544 	start_cc_time(&t_hard_int, (unsigned int)arg);
1545 	mutex_enter(&sc->sc_intr_lock);
1546 
1547 	ret = slhci_dointr(sc);
1548 	slhci_main(sc);
1549 	mutex_exit(&sc->sc_intr_lock);
1550 
1551 	stop_cc_time(&t_hard_int);
1552 	return ret;
1553 }
1554 
1555 /* called with main lock only held, returns with locks released. */
1556 void
1557 slhci_main(struct slhci_softc *sc)
1558 {
1559 	struct slhci_transfers *t;
1560 
1561 	t = &sc->sc_transfers;
1562 
1563 	KASSERT(mutex_owned(&sc->sc_intr_lock));
1564 
1565 waitcheck:
1566 	slhci_waitintr(sc, slhci_wait_time);
1567 
1568 	/*
1569 	 * The direct call is needed in the use_polling and disabled cases
1570 	 * since the soft interrupt is not available.  In the disabled case,
1571 	 * this code can be reached from the usb detach, after the reaping of
1572 	 * the soft interrupt.  That test could be !F_ACTIVE, but there is no
1573 	 * reason not to make the callbacks directly in the other DISABLED
1574 	 * cases.
1575 	 */
1576 	if ((t->flags & F_ROOTINTR) || !gcq_empty(&t->q[Q_CALLBACKS])) {
1577 		if (__predict_false(sc->sc_bus.use_polling ||
1578 		    t->flags & F_DISABLED))
1579 			slhci_callback(sc);
1580 		else
1581 			slhci_callback_schedule(sc);
1582 	}
1583 
1584 	if (!gcq_empty(&sc->sc_waitq)) {
1585 		slhci_enter_xfers(sc);
1586 		slhci_dotransfer(sc);
1587 		goto waitcheck;
1588 	}
1589 }
1590 
1591 /* End lock entry functions. Start in lock function. */
1592 
1593 /* Register read/write routines and barriers. */
1594 #ifdef SLHCI_BUS_SPACE_BARRIERS
1595 #define BSB(a, b, c, d, e) bus_space_barrier(a, b, c, d, BUS_SPACE_BARRIER_ # e)
1596 #define BSB_SYNC(a, b, c, d) bus_space_barrier(a, b, c, d, BUS_SPACE_BARRIER_SYNC)
1597 #else /* now !SLHCI_BUS_SPACE_BARRIERS */
1598 #define BSB(a, b, c, d, e) __USE(d)
1599 #define BSB_SYNC(a, b, c, d)
1600 #endif /* SLHCI_BUS_SPACE_BARRIERS */
1601 
1602 static void
1603 slhci_write(struct slhci_softc *sc, uint8_t addr, uint8_t data)
1604 {
1605 	bus_size_t paddr, pdata, pst, psz;
1606 	bus_space_tag_t iot;
1607 	bus_space_handle_t ioh;
1608 
1609 	paddr = pst = 0;
1610 	pdata = sc->sc_stride;
1611 	psz = pdata * 2;
1612 	iot = sc->sc_iot;
1613 	ioh = sc->sc_ioh;
1614 
1615 	bus_space_write_1(iot, ioh, paddr, addr);
1616 	BSB(iot, ioh, pst, psz, WRITE_BEFORE_WRITE);
1617 	bus_space_write_1(iot, ioh, pdata, data);
1618 	BSB(iot, ioh, pst, psz, WRITE_BEFORE_WRITE);
1619 }
1620 
1621 static uint8_t
1622 slhci_read(struct slhci_softc *sc, uint8_t addr)
1623 {
1624 	bus_size_t paddr, pdata, pst, psz;
1625 	bus_space_tag_t iot;
1626 	bus_space_handle_t ioh;
1627 	uint8_t data;
1628 
1629 	paddr = pst = 0;
1630 	pdata = sc->sc_stride;
1631 	psz = pdata * 2;
1632 	iot = sc->sc_iot;
1633 	ioh = sc->sc_ioh;
1634 
1635 	bus_space_write_1(iot, ioh, paddr, addr);
1636 	BSB(iot, ioh, pst, psz, WRITE_BEFORE_READ);
1637 	data = bus_space_read_1(iot, ioh, pdata);
1638 	BSB(iot, ioh, pst, psz, READ_BEFORE_WRITE);
1639 	return data;
1640 }
1641 
1642 #if 0 /* auto-increment mode broken, see errata doc */
1643 static void
1644 slhci_write_multi(struct slhci_softc *sc, uint8_t addr, uint8_t *buf, int l)
1645 {
1646 	bus_size_t paddr, pdata, pst, psz;
1647 	bus_space_tag_t iot;
1648 	bus_space_handle_t ioh;
1649 
1650 	paddr = pst = 0;
1651 	pdata = sc->sc_stride;
1652 	psz = pdata * 2;
1653 	iot = sc->sc_iot;
1654 	ioh = sc->sc_ioh;
1655 
1656 	bus_space_write_1(iot, ioh, paddr, addr);
1657 	BSB(iot, ioh, pst, psz, WRITE_BEFORE_WRITE);
1658 	bus_space_write_multi_1(iot, ioh, pdata, buf, l);
1659 	BSB(iot, ioh, pst, psz, WRITE_BEFORE_WRITE);
1660 }
1661 
1662 static void
1663 slhci_read_multi(struct slhci_softc *sc, uint8_t addr, uint8_t *buf, int l)
1664 {
1665 	bus_size_t paddr, pdata, pst, psz;
1666 	bus_space_tag_t iot;
1667 	bus_space_handle_t ioh;
1668 
1669 	paddr = pst = 0;
1670 	pdata = sc->sc_stride;
1671 	psz = pdata * 2;
1672 	iot = sc->sc_iot;
1673 	ioh = sc->sc_ioh;
1674 
1675 	bus_space_write_1(iot, ioh, paddr, addr);
1676 	BSB(iot, ioh, pst, psz, WRITE_BEFORE_READ);
1677 	bus_space_read_multi_1(iot, ioh, pdata, buf, l);
1678 	BSB(iot, ioh, pst, psz, READ_BEFORE_WRITE);
1679 }
1680 #else
1681 static void
1682 slhci_write_multi(struct slhci_softc *sc, uint8_t addr, uint8_t *buf, int l)
1683 {
1684 #if 1
1685 	for (; l; addr++, buf++, l--)
1686 		slhci_write(sc, addr, *buf);
1687 #else
1688 	bus_size_t paddr, pdata, pst, psz;
1689 	bus_space_tag_t iot;
1690 	bus_space_handle_t ioh;
1691 
1692 	paddr = pst = 0;
1693 	pdata = sc->sc_stride;
1694 	psz = pdata * 2;
1695 	iot = sc->sc_iot;
1696 	ioh = sc->sc_ioh;
1697 
1698 	for (; l; addr++, buf++, l--) {
1699 		bus_space_write_1(iot, ioh, paddr, addr);
1700 		BSB(iot, ioh, pst, psz, WRITE_BEFORE_WRITE);
1701 		bus_space_write_1(iot, ioh, pdata, *buf);
1702 		BSB(iot, ioh, pst, psz, WRITE_BEFORE_WRITE);
1703 	}
1704 #endif
1705 }
1706 
1707 static void
1708 slhci_read_multi(struct slhci_softc *sc, uint8_t addr, uint8_t *buf, int l)
1709 {
1710 #if 1
1711 	for (; l; addr++, buf++, l--)
1712 		*buf = slhci_read(sc, addr);
1713 #else
1714 	bus_size_t paddr, pdata, pst, psz;
1715 	bus_space_tag_t iot;
1716 	bus_space_handle_t ioh;
1717 
1718 	paddr = pst = 0;
1719 	pdata = sc->sc_stride;
1720 	psz = pdata * 2;
1721 	iot = sc->sc_iot;
1722 	ioh = sc->sc_ioh;
1723 
1724 	for (; l; addr++, buf++, l--) {
1725 		bus_space_write_1(iot, ioh, paddr, addr);
1726 		BSB(iot, ioh, pst, psz, WRITE_BEFORE_READ);
1727 		*buf = bus_space_read_1(iot, ioh, pdata);
1728 		BSB(iot, ioh, pst, psz, READ_BEFORE_WRITE);
1729 	}
1730 #endif
1731 }
1732 #endif
1733 
1734 /*
1735  * After calling waitintr it is necessary to either call slhci_callback or
1736  * schedule the callback if necessary.  The callback cannot be called directly
1737  * from the hard interrupt since it interrupts at a high IPL and callbacks
1738  * can do copyout and such.
1739  */
1740 static void
1741 slhci_waitintr(struct slhci_softc *sc, int wait_time)
1742 {
1743 	struct slhci_transfers *t;
1744 
1745 	t = &sc->sc_transfers;
1746 
1747 	KASSERT(mutex_owned(&sc->sc_intr_lock));
1748 
1749 	if (__predict_false(sc->sc_bus.use_polling))
1750 		wait_time = 12000;
1751 
1752 	while (t->pend <= wait_time) {
1753 		DLOG(D_WAIT, "waiting... frame %d pend %d flags %#x",
1754 		    t->frame, t->pend, t->flags, 0);
1755 		LK_SLASSERT(t->flags & F_ACTIVE, sc, NULL, NULL, return);
1756 		LK_SLASSERT(t->flags & (F_AINPROG|F_BINPROG), sc, NULL, NULL,
1757 		    return);
1758 		slhci_dointr(sc);
1759 	}
1760 }
1761 
1762 static int
1763 slhci_dointr(struct slhci_softc *sc)
1764 {
1765 	struct slhci_transfers *t;
1766 	struct slhci_pipe *tosp;
1767 	uint8_t r;
1768 
1769 	t = &sc->sc_transfers;
1770 
1771 	KASSERT(mutex_owned(&sc->sc_intr_lock));
1772 
1773 	if (sc->sc_ier == 0)
1774 		return 0;
1775 
1776 	r = slhci_read(sc, SL11_ISR);
1777 
1778 #ifdef SLHCI_DEBUG
1779 	if (slhci_debug & SLHCI_D_INTR && r & sc->sc_ier &&
1780 	    ((r & ~(SL11_ISR_SOF|SL11_ISR_DATA)) || slhci_debug &
1781 	    SLHCI_D_SOF)) {
1782 		uint8_t e, f;
1783 
1784 		e = slhci_read(sc, SL11_IER);
1785 		f = slhci_read(sc, SL11_CTRL);
1786 		DDOLOG("Flags=%#x IER=%#x ISR=%#x", t->flags, e, r, 0);
1787 		DDOLOGFLAG8("Status=", r, "D+", (f & SL11_CTRL_SUSPEND) ?
1788 		    "RESUME" : "NODEV", "INSERT", "SOF", "res", "BABBLE",
1789 		    "USBB", "USBA");
1790 	}
1791 #endif
1792 
1793 	/*
1794 	 * check IER for corruption occasionally.  Assume that the above
1795 	 * sc_ier == 0 case works correctly.
1796 	 */
1797 	if (__predict_false(sc->sc_ier_check++ > SLHCI_IER_CHECK_FREQUENCY)) {
1798 		sc->sc_ier_check = 0;
1799 		if (sc->sc_ier != slhci_read(sc, SL11_IER)) {
1800 			printf("%s: IER value corrupted! halted\n",
1801 			    SC_NAME(sc));
1802 			DDOLOG("%s: IER value corrupted! halted\n",
1803 			    SC_NAME(sc), 0,0,0);
1804 			slhci_halt(sc, NULL, NULL);
1805 			return 1;
1806 		}
1807 	}
1808 
1809 	r &= sc->sc_ier;
1810 
1811 	if (r == 0)
1812 		return 0;
1813 
1814 	sc->sc_ier_check = 0;
1815 
1816 	slhci_write(sc, SL11_ISR, r);
1817 	BSB_SYNC(sc->iot, sc->ioh, sc->pst, sc->psz);
1818 
1819 	/* If we have an insertion event we do not care about anything else. */
1820 	if (__predict_false(r & SL11_ISR_INSERT)) {
1821 		slhci_insert(sc);
1822 		return 1;
1823 	}
1824 
1825 	stop_cc_time(&t_intr);
1826 	start_cc_time(&t_intr, r);
1827 
1828 	if (r & SL11_ISR_SOF) {
1829 		t->frame++;
1830 
1831 		gcq_merge_tail(&t->q[Q_CB], &t->q[Q_NEXT_CB]);
1832 
1833 		/*
1834 		 * SOFCHECK flags are cleared in tstart.  Two flags are needed
1835 		 * since the first SOF interrupt processed after the transfer
1836 		 * is started might have been generated before the transfer
1837 		 * was started.
1838 		 */
1839 		if (__predict_false(t->flags & F_SOFCHECK2 && t->flags &
1840 		    (F_AINPROG|F_BINPROG))) {
1841 			printf("%s: Missed transfer completion. halted\n",
1842 			    SC_NAME(sc));
1843 			DDOLOG("%s: Missed transfer completion. halted\n",
1844 			    SC_NAME(sc), 0,0,0);
1845 			slhci_halt(sc, NULL, NULL);
1846 			return 1;
1847 		} else if (t->flags & F_SOFCHECK1) {
1848 			t->flags |= F_SOFCHECK2;
1849 		} else
1850 			t->flags |= F_SOFCHECK1;
1851 
1852 		if (t->flags & F_CHANGE)
1853 			t->flags |= F_ROOTINTR;
1854 
1855 		while (__predict_true(GOT_FIRST_TO(tosp, t)) &&
1856 		    __predict_false(tosp->to_frame <= t->frame)) {
1857 			tosp->xfer->status = USBD_TIMEOUT;
1858 			slhci_do_abort(sc, tosp, tosp->xfer);
1859 			enter_callback(t, tosp);
1860 		}
1861 
1862 		/*
1863 		 * Start any waiting transfers right away.  If none, we will
1864 		 * start any new transfers later.
1865 		 */
1866 		slhci_tstart(sc);
1867 	}
1868 
1869 	if (r & (SL11_ISR_USBA|SL11_ISR_USBB)) {
1870 		int ab;
1871 
1872 		if ((r & (SL11_ISR_USBA|SL11_ISR_USBB)) ==
1873 		    (SL11_ISR_USBA|SL11_ISR_USBB)) {
1874 			if (!(t->flags & (F_AINPROG|F_BINPROG)))
1875 				return 1; /* presume card pulled */
1876 
1877 			LK_SLASSERT((t->flags & (F_AINPROG|F_BINPROG)) !=
1878 			    (F_AINPROG|F_BINPROG), sc, NULL, NULL, return 1);
1879 
1880 			/*
1881 			 * This should never happen (unless card removal just
1882 			 * occurred) but appeared frequently when both
1883 			 * transfers were started at the same time and was
1884 			 * accompanied by data corruption.  It still happens
1885 			 * at times.  I have not seen data correption except
1886 			 * when the STATUS bit gets set, which now causes the
1887 			 * driver to halt, however this should still not
1888 			 * happen so the warning is kept.  See comment in
1889 			 * abdone, below.
1890 			 */
1891 			printf("%s: Transfer reported done but not started! "
1892 			    "Verify data integrity if not detaching. "
1893 			    " flags %#x r %x\n", SC_NAME(sc), t->flags, r);
1894 
1895 			if (!(t->flags & F_AINPROG))
1896 				r &= ~SL11_ISR_USBA;
1897 			else
1898 				r &= ~SL11_ISR_USBB;
1899 		}
1900 		t->pend = INT_MAX;
1901 
1902 		if (r & SL11_ISR_USBA)
1903 			ab = A;
1904 		else
1905 			ab = B;
1906 
1907 		/*
1908 		 * This happens when a low speed device is attached to
1909 		 * a hub with chip rev 1.5.  SOF stops, but a few transfers
1910 		 * still work before causing this error.
1911 		 */
1912 		if (!(t->flags & (ab ? F_BINPROG : F_AINPROG))) {
1913 			printf("%s: %s done but not in progress! halted\n",
1914 			    SC_NAME(sc), ab ? "B" : "A");
1915 			DDOLOG("%s: %s done but not in progress! halted\n",
1916 			    SC_NAME(sc), ab ? "B" : "A", 0,0);
1917 			slhci_halt(sc, NULL, NULL);
1918 			return 1;
1919 		}
1920 
1921 		t->flags &= ~(ab ? F_BINPROG : F_AINPROG);
1922 		slhci_tstart(sc);
1923 		stop_cc_time(&t_ab[ab]);
1924 		start_cc_time(&t_abdone, t->flags);
1925 		slhci_abdone(sc, ab);
1926 		stop_cc_time(&t_abdone);
1927 	}
1928 
1929 	slhci_dotransfer(sc);
1930 
1931 	return 1;
1932 }
1933 
1934 static void
1935 slhci_abdone(struct slhci_softc *sc, int ab)
1936 {
1937 	struct slhci_transfers *t;
1938 	struct slhci_pipe *spipe;
1939 	struct usbd_xfer *xfer;
1940 	uint8_t status, buf_start;
1941 	uint8_t *target_buf;
1942 	unsigned int actlen;
1943 	int head;
1944 
1945 	t = &sc->sc_transfers;
1946 
1947 	KASSERT(mutex_owned(&sc->sc_intr_lock));
1948 
1949 	DLOG(D_TRACE, "ABDONE flags %#x", t->flags, 0,0,0);
1950 
1951 	DLOG(D_MSG, "DONE %s spipe %p len %d xfer %p", ab ? "B" : "A",
1952 	    t->spipe[ab], t->len[ab], t->spipe[ab] ?
1953 	    t->spipe[ab]->xfer : NULL);
1954 
1955 	spipe = t->spipe[ab];
1956 
1957 	/*
1958 	 * skip this one if aborted; do not call return from the rest of the
1959 	 * function unless halting, else t->len will not be cleared.
1960 	 */
1961 	if (spipe == NULL)
1962 		goto done;
1963 
1964 	t->spipe[ab] = NULL;
1965 
1966 	xfer = spipe->xfer;
1967 
1968 	gcq_remove(&spipe->to);
1969 
1970 	LK_SLASSERT(xfer != NULL, sc, spipe, NULL, return);
1971 
1972 	status = slhci_read(sc, slhci_tregs[ab][STAT]);
1973 
1974 	/*
1975 	 * I saw no status or remaining length greater than the requested
1976 	 * length in early driver versions in circumstances I assumed caused
1977 	 * excess power draw.  I am no longer able to reproduce this when
1978 	 * causing excess power draw circumstances.
1979 	 *
1980 	 * Disabling a power check and attaching aue to a keyboard and hub
1981 	 * that is directly attached (to CFU1U, 100mA max, aue 160mA, keyboard
1982 	 * 98mA) sometimes works and sometimes fails to configure.  After
1983 	 * removing the aue and attaching a self-powered umass dvd reader
1984 	 * (unknown if it draws power from the host also) soon a single Error
1985 	 * status occurs then only timeouts. The controller soon halts freeing
1986 	 * memory due to being ONQU instead of BUSY.  This may be the same
1987 	 * basic sequence that caused the no status/bad length errors.  The
1988 	 * umass device seems to work (better at least) with the keyboard hub
1989 	 * when not first attaching aue (tested once reading an approximately
1990 	 * 200MB file).
1991 	 *
1992 	 * Overflow can indicate that the device and host disagree about how
1993 	 * much data has been transfered.  This may indicate a problem at any
1994 	 * point during the transfer, not just when the error occurs.  It may
1995 	 * indicate data corruption.  A warning message is printed.
1996 	 *
1997 	 * Trying to use both A and B transfers at the same time results in
1998 	 * incorrect transfer completion ISR reports and the status will then
1999 	 * include SL11_EPSTAT_SETUP, which is apparently set while the
2000 	 * transfer is in progress.  I also noticed data corruption, even
2001 	 * after waiting for the transfer to complete. The driver now avoids
2002 	 * trying to start both at the same time.
2003 	 *
2004 	 * I had accidently initialized the B registers before they were valid
2005 	 * in some driver versions.  Since every other performance enhancing
2006 	 * feature has been confirmed buggy in the errata doc, I have not
2007 	 * tried both transfers at once again with the documented
2008 	 * initialization order.
2009 	 *
2010 	 * However, I have seen this problem again ("done but not started"
2011 	 * errors), which in some cases cases the SETUP status bit to remain
2012 	 * set on future transfers.  In other cases, the SETUP bit is not set
2013 	 * and no data corruption occurs.  This occured while using both umass
2014 	 * and aue on a powered hub (maybe triggered by some local activity
2015 	 * also) and needs several reads of the 200MB file to trigger.  The
2016 	 * driver now halts if SETUP is detected.
2017  	 */
2018 
2019 	actlen = 0;
2020 
2021 	if (__predict_false(!status)) {
2022 		DDOLOG("no status! xfer %p spipe %p", xfer, spipe, 0,0);
2023 		printf("%s: no status! halted\n", SC_NAME(sc));
2024 		slhci_halt(sc, spipe, xfer);
2025 		return;
2026 	}
2027 
2028 #ifdef SLHCI_DEBUG
2029 	if (slhci_debug & SLHCI_D_NAK || (status & SL11_EPSTAT_ERRBITS) !=
2030 	    SL11_EPSTAT_NAK)
2031 		DLOGFLAG8(D_XFER, "STATUS=", status, "STALL", "NAK",
2032 		    "Overflow", "Setup", "Data Toggle", "Timeout", "Error",
2033 		    "ACK");
2034 #endif
2035 
2036 	if (!(status & SL11_EPSTAT_ERRBITS)) {
2037 		unsigned int cont;
2038 		cont = slhci_read(sc, slhci_tregs[ab][CONT]);
2039 		if (cont != 0)
2040 			DLOG(D_XFER, "cont %d len %d", cont,
2041 			    spipe->tregs[LEN], 0,0);
2042 		if (__predict_false(cont > spipe->tregs[LEN])) {
2043 			DDOLOG("cont > len! cont %d len %d xfer->length %d "
2044 			    "spipe %p", cont, spipe->tregs[LEN], xfer->length,
2045 			    spipe);
2046 			printf("%s: cont > len! cont %d len %d xfer->length "
2047 			    "%d", SC_NAME(sc), cont, spipe->tregs[LEN],
2048 			    xfer->length);
2049 			slhci_halt(sc, spipe, xfer);
2050 			return;
2051 		} else {
2052 			spipe->nerrs = 0;
2053 			actlen = spipe->tregs[LEN] - cont;
2054 		}
2055 	}
2056 
2057 	/* Actual copyin done after starting next transfer. */
2058 	if (actlen && (spipe->tregs[PID] & SL11_PID_BITS) == SL11_PID_IN) {
2059 		target_buf = spipe->buffer;
2060 		buf_start = spipe->tregs[ADR];
2061 	} else {
2062 		target_buf = NULL;
2063 		buf_start = 0; /* XXX gcc uninitialized warnings */
2064 	}
2065 
2066 	if (status & SL11_EPSTAT_ERRBITS) {
2067 		status &= SL11_EPSTAT_ERRBITS;
2068 		if (status & SL11_EPSTAT_SETUP) {
2069 			printf("%s: Invalid controller state detected! "
2070 			    "halted\n", SC_NAME(sc));
2071 			DDOLOG("%s: Invalid controller state detected! "
2072 			    "halted\n", SC_NAME(sc), 0,0,0);
2073 			slhci_halt(sc, spipe, xfer);
2074 			return;
2075 		} else if (__predict_false(sc->sc_bus.use_polling)) {
2076 			if (status == SL11_EPSTAT_STALL)
2077 				xfer->status = USBD_STALLED;
2078 			else if (status == SL11_EPSTAT_TIMEOUT)
2079 				xfer->status = USBD_TIMEOUT;
2080 			else if (status == SL11_EPSTAT_NAK)
2081 				xfer->status = USBD_TIMEOUT; /*XXX*/
2082 			else
2083 				xfer->status = USBD_IOERROR;
2084 			head = Q_CALLBACKS;
2085 		} else if (status == SL11_EPSTAT_NAK) {
2086 			if (spipe->pipe.interval) {
2087 				spipe->lastframe = spipe->frame =
2088 				    t->frame + spipe->pipe.interval;
2089 				slhci_queue_timed(sc, spipe);
2090 				goto queued;
2091 			}
2092 			head = Q_NEXT_CB;
2093 		} else if (++spipe->nerrs > SLHCI_MAX_RETRIES ||
2094 		    status == SL11_EPSTAT_STALL) {
2095 			if (status == SL11_EPSTAT_STALL)
2096 				xfer->status = USBD_STALLED;
2097 			else if (status == SL11_EPSTAT_TIMEOUT)
2098 				xfer->status = USBD_TIMEOUT;
2099 			else
2100 				xfer->status = USBD_IOERROR;
2101 
2102 			DLOG(D_ERR, "Max retries reached! status %#x "
2103 			    "xfer->status %#x", status, xfer->status, 0,0);
2104 			DLOGFLAG8(D_ERR, "STATUS=", status, "STALL",
2105 			    "NAK", "Overflow", "Setup", "Data Toggle",
2106 			    "Timeout", "Error", "ACK");
2107 
2108 			if (status == SL11_EPSTAT_OVERFLOW &&
2109 			    ratecheck(&sc->sc_overflow_warn_rate,
2110 			    &overflow_warn_rate)) {
2111 				printf("%s: Overflow condition: "
2112 				    "data corruption possible\n",
2113 				    SC_NAME(sc));
2114 				DDOLOG("%s: Overflow condition: "
2115 				    "data corruption possible\n",
2116 				    SC_NAME(sc), 0,0,0);
2117 			}
2118 			head = Q_CALLBACKS;
2119 		} else {
2120 			head = Q_NEXT_CB;
2121 		}
2122 	} else if (spipe->ptype == PT_CTRL_SETUP) {
2123 		spipe->tregs[PID] = spipe->newpid;
2124 
2125 		if (xfer->length) {
2126 			LK_SLASSERT(spipe->newlen[1] != 0, sc, spipe, xfer,
2127 			    return);
2128 			spipe->tregs[LEN] = spipe->newlen[1];
2129 			spipe->bustime = spipe->newbustime[1];
2130 			spipe->buffer = KERNADDR(&xfer->dmabuf, 0);
2131 			spipe->ptype = PT_CTRL_DATA;
2132 		} else {
2133 status_setup:
2134 			/* CTRL_DATA swaps direction in PID then jumps here */
2135 			spipe->tregs[LEN] = 0;
2136 			if (spipe->pflags & PF_LS)
2137 				spipe->bustime = SLHCI_LS_CONST;
2138 			else
2139 				spipe->bustime = SLHCI_FS_CONST;
2140 			spipe->ptype = PT_CTRL_STATUS;
2141 			spipe->buffer = NULL;
2142 		}
2143 
2144 		/* Status or first data packet must be DATA1. */
2145 		spipe->control |= SL11_EPCTRL_DATATOGGLE;
2146 		if ((spipe->tregs[PID] & SL11_PID_BITS) == SL11_PID_IN)
2147 			spipe->control &= ~SL11_EPCTRL_DIRECTION;
2148 		else
2149 			spipe->control |= SL11_EPCTRL_DIRECTION;
2150 
2151 		head = Q_CB;
2152 	} else if (spipe->ptype == PT_CTRL_STATUS) {
2153 		head = Q_CALLBACKS;
2154 	} else { /* bulk, intr, control data */
2155 		xfer->actlen += actlen;
2156 		spipe->control ^= SL11_EPCTRL_DATATOGGLE;
2157 
2158 		if (actlen == spipe->tregs[LEN] && (xfer->length >
2159 		    xfer->actlen || spipe->wantshort)) {
2160 			spipe->buffer += actlen;
2161 			LK_SLASSERT(xfer->length >= xfer->actlen, sc,
2162 			    spipe, xfer, return);
2163 			if (xfer->length - xfer->actlen < actlen) {
2164 				spipe->wantshort = 0;
2165 				spipe->tregs[LEN] = spipe->newlen[0];
2166 				spipe->bustime = spipe->newbustime[0];
2167 				LK_SLASSERT(xfer->actlen +
2168 				    spipe->tregs[LEN] == xfer->length, sc,
2169 				    spipe, xfer, return);
2170 			}
2171 			head = Q_CB;
2172 		} else if (spipe->ptype == PT_CTRL_DATA) {
2173 			spipe->tregs[PID] ^= SLHCI_PID_SWAP_IN_OUT;
2174 			goto status_setup;
2175 		} else {
2176 			if (spipe->ptype == PT_INTR) {
2177 				spipe->lastframe +=
2178 				    spipe->pipe.interval;
2179 				/*
2180 				 * If ack, we try to keep the
2181 				 * interrupt rate by using lastframe
2182 				 * instead of the current frame.
2183 				 */
2184 				spipe->frame = spipe->lastframe +
2185 				    spipe->pipe.interval;
2186 			}
2187 
2188 			/*
2189 			 * Set the toggle for the next transfer.  It
2190 			 * has already been toggled above, so the
2191 			 * current setting will apply to the next
2192 			 * transfer.
2193 			 */
2194 			if (spipe->control & SL11_EPCTRL_DATATOGGLE)
2195 				spipe->pflags |= PF_TOGGLE;
2196 			else
2197 				spipe->pflags &= ~PF_TOGGLE;
2198 
2199 			head = Q_CALLBACKS;
2200 		}
2201 	}
2202 
2203 	if (head == Q_CALLBACKS) {
2204 		gcq_remove(&spipe->to);
2205 
2206 	 	if (xfer->status == USBD_IN_PROGRESS) {
2207 			LK_SLASSERT(xfer->actlen <= xfer->length, sc,
2208 			    spipe, xfer, return);
2209 			xfer->status = USBD_NORMAL_COMPLETION;
2210 #if 0 /* usb_transfer_complete will do this */
2211 			if (xfer->length == xfer->actlen || xfer->flags &
2212 			    USBD_SHORT_XFER_OK)
2213 				xfer->status = USBD_NORMAL_COMPLETION;
2214 			else
2215 				xfer->status = USBD_SHORT_XFER;
2216 #endif
2217 		}
2218 	}
2219 
2220 	enter_q(t, spipe, head);
2221 
2222 queued:
2223 	if (target_buf != NULL) {
2224 		slhci_dotransfer(sc);
2225 		start_cc_time(&t_copy_from_dev, actlen);
2226 		slhci_read_multi(sc, buf_start, target_buf, actlen);
2227 		stop_cc_time(&t_copy_from_dev);
2228 		DLOGBUF(D_BUF, target_buf, actlen);
2229 		t->pend -= SLHCI_FS_CONST + SLHCI_FS_DATA_TIME(actlen);
2230 	}
2231 
2232 done:
2233 	t->len[ab] = -1;
2234 }
2235 
2236 static void
2237 slhci_tstart(struct slhci_softc *sc)
2238 {
2239 	struct slhci_transfers *t;
2240 	struct slhci_pipe *spipe;
2241 	int remaining_bustime;
2242 
2243 	t = &sc->sc_transfers;
2244 
2245 	KASSERT(mutex_owned(&sc->sc_intr_lock));
2246 
2247 	if (!(t->flags & (F_AREADY|F_BREADY)))
2248 		return;
2249 
2250 	if (t->flags & (F_AINPROG|F_BINPROG|F_DISABLED))
2251 		return;
2252 
2253 	/*
2254 	 * We have about 6 us to get from the bus time check to
2255 	 * starting the transfer or we might babble or the chip might fail to
2256 	 * signal transfer complete.  This leaves no time for any other
2257 	 * interrupts.
2258 	 */
2259 	remaining_bustime = (int)(slhci_read(sc, SL811_CSOF)) << 6;
2260 	remaining_bustime -= SLHCI_END_BUSTIME;
2261 
2262 	/*
2263 	 * Start one transfer only, clearing any aborted transfers that are
2264 	 * not yet in progress and skipping missed isoc. It is easier to copy
2265 	 * & paste most of the A/B sections than to make the logic work
2266 	 * otherwise and this allows better constant use.
2267 	 */
2268 	if (t->flags & F_AREADY) {
2269 		spipe = t->spipe[A];
2270 		if (spipe == NULL) {
2271 			t->flags &= ~F_AREADY;
2272 			t->len[A] = -1;
2273 		} else if (remaining_bustime >= spipe->bustime) {
2274 			t->flags &= ~(F_AREADY|F_SOFCHECK1|F_SOFCHECK2);
2275 			t->flags |= F_AINPROG;
2276 			start_cc_time(&t_ab[A], spipe->tregs[LEN]);
2277 			slhci_write(sc, SL11_E0CTRL, spipe->control);
2278 			goto pend;
2279 		}
2280 	}
2281 	if (t->flags & F_BREADY) {
2282 		spipe = t->spipe[B];
2283 		if (spipe == NULL) {
2284 			t->flags &= ~F_BREADY;
2285 			t->len[B] = -1;
2286 		} else if (remaining_bustime >= spipe->bustime) {
2287 			t->flags &= ~(F_BREADY|F_SOFCHECK1|F_SOFCHECK2);
2288 			t->flags |= F_BINPROG;
2289 			start_cc_time(&t_ab[B], spipe->tregs[LEN]);
2290 			slhci_write(sc, SL11_E1CTRL, spipe->control);
2291 pend:
2292 			t->pend = spipe->bustime;
2293 		}
2294 	}
2295 }
2296 
2297 static void
2298 slhci_dotransfer(struct slhci_softc *sc)
2299 {
2300 	struct slhci_transfers *t;
2301 	struct slhci_pipe *spipe;
2302 	int ab, i;
2303 
2304 	t = &sc->sc_transfers;
2305 
2306 	KASSERT(mutex_owned(&sc->sc_intr_lock));
2307 
2308  	while ((t->len[A] == -1 || t->len[B] == -1) &&
2309 	    (GOT_FIRST_TIMED_COND(spipe, t, spipe->frame <= t->frame) ||
2310 	    GOT_FIRST_CB(spipe, t))) {
2311 		LK_SLASSERT(spipe->xfer != NULL, sc, spipe, NULL, return);
2312 		LK_SLASSERT(spipe->ptype != PT_ROOT_CTRL && spipe->ptype !=
2313 		    PT_ROOT_INTR, sc, spipe, NULL, return);
2314 
2315 		/* Check that this transfer can fit in the remaining memory. */
2316 		if (t->len[A] + t->len[B] + spipe->tregs[LEN] + 1 >
2317 		    SL11_MAX_PACKET_SIZE) {
2318 			DLOG(D_XFER, "Transfer does not fit. alen %d blen %d "
2319 			    "len %d", t->len[A], t->len[B], spipe->tregs[LEN],
2320 			    0);
2321 			return;
2322 		}
2323 
2324 		gcq_remove(&spipe->xq);
2325 
2326 		if (t->len[A] == -1) {
2327 			ab = A;
2328 			spipe->tregs[ADR] = SL11_BUFFER_START;
2329 		} else {
2330 			ab = B;
2331 			spipe->tregs[ADR] = SL11_BUFFER_END -
2332 			    spipe->tregs[LEN];
2333 		}
2334 
2335 		t->len[ab] = spipe->tregs[LEN];
2336 
2337 		if (spipe->tregs[LEN] && (spipe->tregs[PID] & SL11_PID_BITS)
2338 		    != SL11_PID_IN) {
2339 			start_cc_time(&t_copy_to_dev,
2340 			    spipe->tregs[LEN]);
2341 			slhci_write_multi(sc, spipe->tregs[ADR],
2342 			    spipe->buffer, spipe->tregs[LEN]);
2343 			stop_cc_time(&t_copy_to_dev);
2344 			t->pend -= SLHCI_FS_CONST +
2345 			    SLHCI_FS_DATA_TIME(spipe->tregs[LEN]);
2346 		}
2347 
2348 		DLOG(D_MSG, "NEW TRANSFER %s flags %#x alen %d blen %d",
2349 		    ab ? "B" : "A", t->flags, t->len[0], t->len[1]);
2350 
2351 		if (spipe->tregs[LEN])
2352 			i = 0;
2353 		else
2354 			i = 1;
2355 
2356 		for (; i <= 3; i++)
2357 			if (t->current_tregs[ab][i] != spipe->tregs[i]) {
2358 				t->current_tregs[ab][i] = spipe->tregs[i];
2359 				slhci_write(sc, slhci_tregs[ab][i],
2360 				    spipe->tregs[i]);
2361 			}
2362 
2363 		DLOG(D_SXFER, "Transfer len %d pid %#x dev %d type %s",
2364 		    spipe->tregs[LEN], spipe->tregs[PID], spipe->tregs[DEV],
2365 	    	    pnames(spipe->ptype));
2366 
2367 		t->spipe[ab] = spipe;
2368 		t->flags |= ab ? F_BREADY : F_AREADY;
2369 
2370 		slhci_tstart(sc);
2371 	}
2372 }
2373 
2374 /*
2375  * slhci_callback is called after the lock is taken from splusb.
2376  */
2377 static void
2378 slhci_callback(struct slhci_softc *sc)
2379 {
2380 	struct slhci_transfers *t;
2381 	struct slhci_pipe *spipe;
2382 	struct usbd_xfer *xfer;
2383 
2384 	t = &sc->sc_transfers;
2385 
2386 	KASSERT(mutex_owned(&sc->sc_intr_lock));
2387 
2388 	DLOG(D_SOFT, "CB flags %#x", t->flags, 0,0,0);
2389 	for (;;) {
2390 		if (__predict_false(t->flags & F_ROOTINTR)) {
2391 			t->flags &= ~F_ROOTINTR;
2392 			if (t->rootintr != NULL) {
2393 				u_char *p;
2394 
2395 				p = KERNADDR(&t->rootintr->dmabuf, 0);
2396 				p[0] = 2;
2397 				t->rootintr->actlen = 1;
2398 				t->rootintr->status = USBD_NORMAL_COMPLETION;
2399 				xfer = t->rootintr;
2400 				goto do_callback;
2401 			}
2402 		}
2403 
2404 
2405 		if (!DEQUEUED_CALLBACK(spipe, t))
2406 			return;
2407 
2408 		xfer = spipe->xfer;
2409 		LK_SLASSERT(xfer != NULL, sc, spipe, NULL, return);
2410 		spipe->xfer = NULL;
2411 		DLOG(D_XFER, "xfer callback length %d actlen %d spipe %x "
2412 		    "type %s", xfer->length, xfer->actlen, spipe,
2413 		    pnames(spipe->ptype));
2414 do_callback:
2415 		slhci_do_callback(sc, xfer);
2416 	}
2417 }
2418 
2419 static void
2420 slhci_enter_xfer(struct slhci_softc *sc, struct slhci_pipe *spipe)
2421 {
2422 	struct slhci_transfers *t;
2423 
2424 	t = &sc->sc_transfers;
2425 
2426 	KASSERT(mutex_owned(&sc->sc_intr_lock));
2427 
2428 	if (__predict_false(t->flags & F_DISABLED) ||
2429 	    __predict_false(spipe->pflags & PF_GONE)) {
2430 		DLOG(D_MSG, "slhci_enter_xfer: DISABLED or GONE", 0,0,0,0);
2431 		spipe->xfer->status = USBD_CANCELLED;
2432 	}
2433 
2434 	if (spipe->xfer->status == USBD_IN_PROGRESS) {
2435 		if (spipe->xfer->timeout) {
2436 			spipe->to_frame = t->frame + spipe->xfer->timeout;
2437 			slhci_xfer_timer(sc, spipe);
2438 		}
2439 		if (spipe->pipe.interval)
2440 			slhci_queue_timed(sc, spipe);
2441 		else
2442 			enter_q(t, spipe, Q_CB);
2443 	} else
2444 		enter_callback(t, spipe);
2445 }
2446 
2447 static void
2448 slhci_enter_xfers(struct slhci_softc *sc)
2449 {
2450 	struct slhci_pipe *spipe;
2451 
2452 	KASSERT(mutex_owned(&sc->sc_intr_lock));
2453 
2454 	while (DEQUEUED_WAITQ(spipe, sc))
2455 		slhci_enter_xfer(sc, spipe);
2456 }
2457 
2458 static void
2459 slhci_queue_timed(struct slhci_softc *sc, struct slhci_pipe *spipe)
2460 {
2461 	struct slhci_transfers *t;
2462 	struct gcq *q;
2463 	struct slhci_pipe *spp;
2464 
2465 	t = &sc->sc_transfers;
2466 
2467 	KASSERT(mutex_owned(&sc->sc_intr_lock));
2468 
2469 	FIND_TIMED(q, t, spp, spp->frame > spipe->frame);
2470 	gcq_insert_before(q, &spipe->xq);
2471 }
2472 
2473 static void
2474 slhci_xfer_timer(struct slhci_softc *sc, struct slhci_pipe *spipe)
2475 {
2476 	struct slhci_transfers *t;
2477 	struct gcq *q;
2478 	struct slhci_pipe *spp;
2479 
2480 	t = &sc->sc_transfers;
2481 
2482 	KASSERT(mutex_owned(&sc->sc_intr_lock));
2483 
2484 	FIND_TO(q, t, spp, spp->to_frame >= spipe->to_frame);
2485 	gcq_insert_before(q, &spipe->to);
2486 }
2487 
2488 static void
2489 slhci_do_repeat(struct slhci_softc *sc, struct usbd_xfer *xfer)
2490 {
2491 	struct slhci_transfers *t;
2492 	struct slhci_pipe *spipe;
2493 
2494 	t = &sc->sc_transfers;
2495 	spipe = (struct slhci_pipe *)xfer->pipe;
2496 
2497 	if (xfer == t->rootintr)
2498 		return;
2499 
2500 	DLOG(D_TRACE, "REPEAT: xfer %p actlen %d frame %u now %u",
2501 	    xfer, xfer->actlen, spipe->frame, sc->sc_transfers.frame);
2502 
2503 	xfer->actlen = 0;
2504 	spipe->xfer = xfer;
2505 	if (spipe->tregs[LEN])
2506 		KASSERT(spipe->buffer == KERNADDR(&xfer->dmabuf, 0));
2507 	slhci_queue_timed(sc, spipe);
2508 	slhci_dotransfer(sc);
2509 }
2510 
2511 static void
2512 slhci_callback_schedule(struct slhci_softc *sc)
2513 {
2514 	struct slhci_transfers *t;
2515 
2516 	t = &sc->sc_transfers;
2517 
2518 	KASSERT(mutex_owned(&sc->sc_intr_lock));
2519 
2520 	if (t->flags & F_ACTIVE)
2521 		slhci_do_callback_schedule(sc);
2522 }
2523 
2524 static void
2525 slhci_do_callback_schedule(struct slhci_softc *sc)
2526 {
2527 	struct slhci_transfers *t;
2528 
2529 	t = &sc->sc_transfers;
2530 
2531 	KASSERT(mutex_owned(&sc->sc_intr_lock));
2532 
2533 	if (!(t->flags & F_CALLBACK)) {
2534 		t->flags |= F_CALLBACK;
2535 		softint_schedule(sc->sc_cb_softintr);
2536 	}
2537 }
2538 
2539 #if 0
2540 /* must be called with lock taken from IPL_USB */
2541 /* XXX static */ void
2542 slhci_pollxfer(struct slhci_softc *sc, struct usbd_xfer *xfer)
2543 {
2544 	KASSERT(mutex_owned(&sc->sc_intr_lock));
2545 	slhci_dotransfer(sc);
2546 	do {
2547 		slhci_dointr(sc);
2548 	} while (xfer->status == USBD_IN_PROGRESS);
2549 	slhci_do_callback(sc, xfer);
2550 }
2551 #endif
2552 
2553 static usbd_status
2554 slhci_do_poll(struct slhci_softc *sc, struct slhci_pipe *spipe, struct
2555     usbd_xfer *xfer)
2556 {
2557 	slhci_waitintr(sc, 0);
2558 
2559 	return USBD_NORMAL_COMPLETION;
2560 }
2561 
2562 static usbd_status
2563 slhci_lsvh_warn(struct slhci_softc *sc, struct slhci_pipe *spipe, struct
2564     usbd_xfer *xfer)
2565 {
2566 	struct slhci_transfers *t;
2567 
2568 	t = &sc->sc_transfers;
2569 
2570 	if (!(t->flags & F_LSVH_WARNED)) {
2571 		printf("%s: Low speed device via hub disabled, "
2572 		    "see slhci(4)\n", SC_NAME(sc));
2573 		DDOLOG("%s: Low speed device via hub disabled, "
2574 		    "see slhci(4)\n", SC_NAME(sc), 0,0,0);
2575 		t->flags |= F_LSVH_WARNED;
2576 	}
2577 	return USBD_INVAL;
2578 }
2579 
2580 static usbd_status
2581 slhci_isoc_warn(struct slhci_softc *sc, struct slhci_pipe *spipe, struct
2582     usbd_xfer *xfer)
2583 {
2584 	struct slhci_transfers *t;
2585 
2586 	t = &sc->sc_transfers;
2587 
2588 	if (!(t->flags & F_ISOC_WARNED)) {
2589 		printf("%s: ISOC transfer not supported "
2590 		    "(see slhci(4))\n", SC_NAME(sc));
2591 		DDOLOG("%s: ISOC transfer not supported "
2592 		    "(see slhci(4))\n", SC_NAME(sc), 0,0,0);
2593 		t->flags |= F_ISOC_WARNED;
2594 	}
2595 	return USBD_INVAL;
2596 }
2597 
2598 static usbd_status
2599 slhci_open_pipe(struct slhci_softc *sc, struct slhci_pipe *spipe, struct
2600     usbd_xfer *xfer)
2601 {
2602 	struct slhci_transfers *t;
2603 	struct usbd_pipe *pipe;
2604 
2605 	t = &sc->sc_transfers;
2606 	pipe = &spipe->pipe;
2607 
2608 	if (t->flags & F_DISABLED)
2609 		return USBD_CANCELLED;
2610 	else if (pipe->interval && !slhci_reserve_bustime(sc, spipe, 1))
2611 		return USBD_PENDING_REQUESTS;
2612 	else {
2613 		enter_all_pipes(t, spipe);
2614 		return USBD_NORMAL_COMPLETION;
2615 	}
2616 }
2617 
2618 static usbd_status
2619 slhci_close_pipe(struct slhci_softc *sc, struct slhci_pipe *spipe, struct
2620     usbd_xfer *xfer)
2621 {
2622 	struct usbd_pipe *pipe;
2623 
2624 	pipe = &spipe->pipe;
2625 
2626 	if (pipe->interval && spipe->ptype != PT_ROOT_INTR)
2627 		slhci_reserve_bustime(sc, spipe, 0);
2628 	gcq_remove(&spipe->ap);
2629 	return USBD_NORMAL_COMPLETION;
2630 }
2631 
2632 static usbd_status
2633 slhci_do_abort(struct slhci_softc *sc, struct slhci_pipe *spipe, struct
2634     usbd_xfer *xfer)
2635 {
2636 	struct slhci_transfers *t;
2637 
2638 	t = &sc->sc_transfers;
2639 
2640 	KASSERT(mutex_owned(&sc->sc_intr_lock));
2641 
2642 	if (spipe->xfer == xfer) {
2643 		if (spipe->ptype == PT_ROOT_INTR) {
2644 			if (t->rootintr == spipe->xfer) /* XXX assert? */
2645 				t->rootintr = NULL;
2646 		} else {
2647 			gcq_remove(&spipe->to);
2648 			gcq_remove(&spipe->xq);
2649 
2650 			if (t->spipe[A] == spipe) {
2651 				t->spipe[A] = NULL;
2652 				if (!(t->flags & F_AINPROG))
2653 					t->len[A] = -1;
2654 			} else if (t->spipe[B] == spipe) {
2655 					t->spipe[B] = NULL;
2656 				if (!(t->flags & F_BINPROG))
2657 					t->len[B] = -1;
2658 			}
2659 		}
2660 
2661 		if (xfer->status != USBD_TIMEOUT) {
2662 			spipe->xfer = NULL;
2663 			spipe->pipe.repeat = 0; /* XXX timeout? */
2664 		}
2665 	}
2666 
2667 	return USBD_NORMAL_COMPLETION;
2668 }
2669 
2670 /*
2671  * Called to deactivate or stop use of the controller instead of panicking.
2672  * Will cancel the xfer correctly even when not on a list.
2673  */
2674 static usbd_status
2675 slhci_halt(struct slhci_softc *sc, struct slhci_pipe *spipe, struct usbd_xfer
2676     *xfer)
2677 {
2678 	struct slhci_transfers *t;
2679 
2680 	KASSERT(mutex_owned(&sc->sc_intr_lock));
2681 
2682 	t = &sc->sc_transfers;
2683 
2684 	DDOLOG("Halt! sc %p spipe %p xfer %p", sc, spipe, xfer, 0);
2685 
2686 	if (spipe != NULL)
2687 		slhci_log_spipe(spipe);
2688 
2689 	if (xfer != NULL)
2690 		slhci_log_xfer(xfer);
2691 
2692 	if (spipe != NULL && xfer != NULL && spipe->xfer == xfer &&
2693 	    !gcq_onlist(&spipe->xq) && t->spipe[A] != spipe && t->spipe[B] !=
2694 	    spipe) {
2695 		xfer->status = USBD_CANCELLED;
2696 		enter_callback(t, spipe);
2697 	}
2698 
2699 	if (t->flags & F_ACTIVE) {
2700 		slhci_intrchange(sc, 0);
2701 		/*
2702 		 * leave power on when halting in case flash devices or disks
2703 		 * are attached, which may be writing and could be damaged
2704 		 * by abrupt power loss.  The root hub clear power feature
2705 		 * should still work after halting.
2706 		 */
2707 	}
2708 
2709 	t->flags &= ~F_ACTIVE;
2710 	t->flags |= F_UDISABLED;
2711 	if (!(t->flags & F_NODEV))
2712 		t->flags |= F_NODEV|F_CCONNECT|F_ROOTINTR;
2713 	slhci_drain(sc);
2714 
2715 	/* One last callback for the drain and device removal. */
2716 	slhci_do_callback_schedule(sc);
2717 
2718 	return USBD_NORMAL_COMPLETION;
2719 }
2720 
2721 /*
2722  * There are three interrupt states: no interrupts during reset and after
2723  * device deactivation, INSERT only for no device present but power on, and
2724  * SOF, INSERT, ADONE, and BDONE when device is present.
2725  */
2726 static void
2727 slhci_intrchange(struct slhci_softc *sc, uint8_t new_ier)
2728 {
2729 	KASSERT(mutex_owned(&sc->sc_intr_lock));
2730 	if (sc->sc_ier != new_ier) {
2731 		sc->sc_ier = new_ier;
2732 		slhci_write(sc, SL11_IER, new_ier);
2733 		BSB_SYNC(sc->iot, sc->ioh, sc->pst, sc->psz);
2734 	}
2735 }
2736 
2737 /*
2738  * Drain: cancel all pending transfers and put them on the callback list and
2739  * set the UDISABLED flag.  UDISABLED is cleared only by reset.
2740  */
2741 static void
2742 slhci_drain(struct slhci_softc *sc)
2743 {
2744 	struct slhci_transfers *t;
2745 	struct slhci_pipe *spipe;
2746 	struct gcq *q;
2747 	int i;
2748 
2749  	KASSERT(mutex_owned(&sc->sc_intr_lock));
2750 
2751 	t = &sc->sc_transfers;
2752 
2753 	DLOG(D_MSG, "DRAIN flags %#x", t->flags, 0,0,0);
2754 
2755 	t->pend = INT_MAX;
2756 
2757 	for (i=0; i<=1; i++) {
2758 		t->len[i] = -1;
2759 		if (t->spipe[i] != NULL) {
2760 			enter_callback(t, t->spipe[i]);
2761 			t->spipe[i] = NULL;
2762 		}
2763 	}
2764 
2765 	/* Merge the queues into the callback queue. */
2766 	gcq_merge_tail(&t->q[Q_CALLBACKS], &t->q[Q_CB]);
2767 	gcq_merge_tail(&t->q[Q_CALLBACKS], &t->q[Q_NEXT_CB]);
2768 	gcq_merge_tail(&t->q[Q_CALLBACKS], &t->timed);
2769 
2770 	/*
2771 	 * Cancel all pipes.  Note that not all of these may be on the
2772 	 * callback queue yet; some could be in slhci_start, for example.
2773 	 */
2774 	FOREACH_AP(q, t, spipe) {
2775 		spipe->pflags |= PF_GONE;
2776 		spipe->pipe.repeat = 0;
2777 		spipe->pipe.aborting = 1;
2778 		if (spipe->xfer != NULL)
2779 			spipe->xfer->status = USBD_CANCELLED;
2780 	}
2781 
2782 	gcq_remove_all(&t->to);
2783 
2784 	t->flags |= F_UDISABLED;
2785 	t->flags &= ~(F_AREADY|F_BREADY|F_AINPROG|F_BINPROG|F_LOWSPEED);
2786 }
2787 
2788 /*
2789  * RESET: SL11_CTRL_RESETENGINE=1 and SL11_CTRL_JKSTATE=0 for 50ms
2790  * reconfigure SOF after reset, must wait 2.5us before USB bus activity (SOF)
2791  * check attached device speed.
2792  * must wait 100ms before USB transaction according to app note, 10ms
2793  * by spec.  uhub does this delay
2794  *
2795  * Started from root hub set feature reset, which does step one.
2796  * use_polling will call slhci_reset directly, otherwise the callout goes
2797  * through slhci_reset_entry.
2798  */
2799 void
2800 slhci_reset(struct slhci_softc *sc)
2801 {
2802 	struct slhci_transfers *t;
2803 	struct slhci_pipe *spipe;
2804 	struct gcq *q;
2805 	uint8_t r, pol, ctrl;
2806 
2807 	t = &sc->sc_transfers;
2808 	KASSERT(mutex_owned(&sc->sc_intr_lock));
2809 
2810 	stop_cc_time(&t_delay);
2811 
2812 	KASSERT(t->flags & F_ACTIVE);
2813 
2814 	start_cc_time(&t_delay, 0);
2815 	stop_cc_time(&t_delay);
2816 
2817 	slhci_write(sc, SL11_CTRL, 0);
2818 	start_cc_time(&t_delay, 3);
2819 	DELAY(3);
2820 	stop_cc_time(&t_delay);
2821 	slhci_write(sc, SL11_ISR, 0xff);
2822 
2823 	r = slhci_read(sc, SL11_ISR);
2824 
2825 	if (r & SL11_ISR_INSERT)
2826 		slhci_write(sc, SL11_ISR, SL11_ISR_INSERT);
2827 
2828 	if (r & SL11_ISR_NODEV) {
2829 		DLOG(D_MSG, "NC", 0,0,0,0);
2830 		/*
2831 		 * Normally, the hard interrupt insert routine will issue
2832 		 * CCONNECT, however we need to do it here if the detach
2833 		 * happened during reset.
2834 		 */
2835 		if (!(t->flags & F_NODEV))
2836 			t->flags |= F_CCONNECT|F_ROOTINTR|F_NODEV;
2837 		slhci_intrchange(sc, SL11_IER_INSERT);
2838 	} else {
2839 		if (t->flags & F_NODEV)
2840 			t->flags |= F_CCONNECT;
2841 		t->flags &= ~(F_NODEV|F_LOWSPEED);
2842 		if (r & SL11_ISR_DATA) {
2843 			DLOG(D_MSG, "FS", 0,0,0,0);
2844 			pol = ctrl = 0;
2845 		} else {
2846 			DLOG(D_MSG, "LS", 0,0,0,0);
2847 			pol  = SL811_CSOF_POLARITY;
2848 			ctrl = SL11_CTRL_LOWSPEED;
2849 			t->flags |= F_LOWSPEED;
2850 		}
2851 
2852 		/* Enable SOF auto-generation */
2853 		t->frame = 0;	/* write to SL811_CSOF will reset frame */
2854 		slhci_write(sc, SL11_SOFTIME, 0xe0);
2855 		slhci_write(sc, SL811_CSOF, pol|SL811_CSOF_MASTER|0x2e);
2856 		slhci_write(sc, SL11_CTRL, ctrl|SL11_CTRL_ENABLESOF);
2857 
2858 		/*
2859 		 * According to the app note, ARM must be set
2860 		 * for SOF generation to work.  We initialize all
2861 		 * USBA registers here for current_tregs.
2862 		 */
2863 		slhci_write(sc, SL11_E0ADDR, SL11_BUFFER_START);
2864 		slhci_write(sc, SL11_E0LEN, 0);
2865 		slhci_write(sc, SL11_E0PID, SL11_PID_SOF);
2866 		slhci_write(sc, SL11_E0DEV, 0);
2867 		slhci_write(sc, SL11_E0CTRL, SL11_EPCTRL_ARM);
2868 
2869 		/*
2870 		 * Initialize B registers.  This can't be done earlier since
2871 		 * they are not valid until the SL811_CSOF register is written
2872 		 * above due to SL11H compatability.
2873 		 */
2874 		slhci_write(sc, SL11_E1ADDR, SL11_BUFFER_END - 8);
2875 		slhci_write(sc, SL11_E1LEN, 0);
2876 		slhci_write(sc, SL11_E1PID, 0);
2877 		slhci_write(sc, SL11_E1DEV, 0);
2878 
2879 		t->current_tregs[0][ADR] = SL11_BUFFER_START;
2880 		t->current_tregs[0][LEN] = 0;
2881 		t->current_tregs[0][PID] = SL11_PID_SOF;
2882 		t->current_tregs[0][DEV] = 0;
2883 		t->current_tregs[1][ADR] = SL11_BUFFER_END - 8;
2884 		t->current_tregs[1][LEN] = 0;
2885 		t->current_tregs[1][PID] = 0;
2886 		t->current_tregs[1][DEV] = 0;
2887 
2888 		/* SOF start will produce USBA interrupt */
2889 		t->len[A] = 0;
2890 		t->flags |= F_AINPROG;
2891 
2892 		slhci_intrchange(sc, SLHCI_NORMAL_INTERRUPTS);
2893 	}
2894 
2895 	t->flags &= ~(F_UDISABLED|F_RESET);
2896 	t->flags |= F_CRESET|F_ROOTINTR;
2897 	FOREACH_AP(q, t, spipe) {
2898 		spipe->pflags &= ~PF_GONE;
2899 		spipe->pipe.aborting = 0;
2900 	}
2901 	DLOG(D_MSG, "RESET done flags %#x", t->flags, 0,0,0);
2902 }
2903 
2904 /* returns 1 if succeeded, 0 if failed, reserve == 0 is unreserve */
2905 static int
2906 slhci_reserve_bustime(struct slhci_softc *sc, struct slhci_pipe *spipe, int
2907     reserve)
2908 {
2909 	struct slhci_transfers *t;
2910 	int bustime, max_packet;
2911 
2912 	KASSERT(mutex_owned(&sc->sc_intr_lock));
2913 
2914 	t = &sc->sc_transfers;
2915 	max_packet = UGETW(spipe->pipe.endpoint->edesc->wMaxPacketSize);
2916 
2917 	if (spipe->pflags & PF_LS)
2918 		bustime = SLHCI_LS_CONST + SLHCI_LS_DATA_TIME(max_packet);
2919 	else
2920 		bustime = SLHCI_FS_CONST + SLHCI_FS_DATA_TIME(max_packet);
2921 
2922 	if (!reserve) {
2923 		t->reserved_bustime -= bustime;
2924 #ifdef DIAGNOSTIC
2925 		if (t->reserved_bustime < 0) {
2926 			printf("%s: reserved_bustime %d < 0!\n",
2927 			    SC_NAME(sc), t->reserved_bustime);
2928 			DDOLOG("%s: reserved_bustime %d < 0!\n",
2929 			    SC_NAME(sc), t->reserved_bustime, 0,0);
2930 			t->reserved_bustime = 0;
2931 		}
2932 #endif
2933 		return 1;
2934 	}
2935 
2936 	if (t->reserved_bustime + bustime > SLHCI_RESERVED_BUSTIME) {
2937 		if (ratecheck(&sc->sc_reserved_warn_rate,
2938 		    &reserved_warn_rate))
2939 #ifdef SLHCI_NO_OVERTIME
2940 		{
2941 			printf("%s: Max reserved bus time exceeded! "
2942 			    "Erroring request.\n", SC_NAME(sc));
2943 			DDOLOG("%s: Max reserved bus time exceeded! "
2944 			    "Erroring request.\n", SC_NAME(sc), 0,0,0);
2945 		}
2946 		return 0;
2947 #else
2948 		{
2949 			printf("%s: Reserved bus time exceeds %d!\n",
2950 			    SC_NAME(sc), SLHCI_RESERVED_BUSTIME);
2951 			DDOLOG("%s: Reserved bus time exceeds %d!\n",
2952 			    SC_NAME(sc), SLHCI_RESERVED_BUSTIME, 0,0);
2953 		}
2954 #endif
2955 	}
2956 
2957 	t->reserved_bustime += bustime;
2958 	return 1;
2959 }
2960 
2961 /* Device insertion/removal interrupt */
2962 static void
2963 slhci_insert(struct slhci_softc *sc)
2964 {
2965 	struct slhci_transfers *t;
2966 
2967 	t = &sc->sc_transfers;
2968 
2969 	KASSERT(mutex_owned(&sc->sc_intr_lock));
2970 
2971 	if (t->flags & F_NODEV)
2972 		slhci_intrchange(sc, 0);
2973 	else {
2974 		slhci_drain(sc);
2975 		slhci_intrchange(sc, SL11_IER_INSERT);
2976 	}
2977 	t->flags ^= F_NODEV;
2978 	t->flags |= F_ROOTINTR|F_CCONNECT;
2979 	DLOG(D_MSG, "INSERT intr: flags after %#x", t->flags, 0,0,0);
2980 }
2981 
2982 /*
2983  * Data structures and routines to emulate the root hub.
2984  */
2985 static const usb_device_descriptor_t slhci_devd = {
2986 	USB_DEVICE_DESCRIPTOR_SIZE,
2987 	UDESC_DEVICE,		/* type */
2988 	{0x01, 0x01},		/* USB version */
2989 	UDCLASS_HUB,		/* class */
2990 	UDSUBCLASS_HUB,		/* subclass */
2991 	0,			/* protocol */
2992 	64,			/* max packet */
2993 	{USB_VENDOR_SCANLOGIC & 0xff,	/* vendor ID (low)  */
2994 	 USB_VENDOR_SCANLOGIC >> 8  },	/* vendor ID (high) */
2995 	{0} /* ? */,		/* product ID */
2996 	{0},			/* device */
2997 	1,			/* index to manufacturer */
2998 	2,			/* index to product */
2999 	0,			/* index to serial number */
3000 	1			/* number of configurations */
3001 };
3002 
3003 static const struct slhci_confd_t {
3004 	const usb_config_descriptor_t confd;
3005 	const usb_interface_descriptor_t ifcd;
3006 	const usb_endpoint_descriptor_t endpd;
3007 } UPACKED slhci_confd = {
3008 	{ /* Configuration */
3009 		USB_CONFIG_DESCRIPTOR_SIZE,
3010 		UDESC_CONFIG,
3011 		{USB_CONFIG_DESCRIPTOR_SIZE +
3012 		 USB_INTERFACE_DESCRIPTOR_SIZE +
3013 		 USB_ENDPOINT_DESCRIPTOR_SIZE},
3014 		1,			/* number of interfaces */
3015 		1,			/* configuration value */
3016 		0,			/* index to configuration */
3017 		UC_SELF_POWERED,	/* attributes */
3018 		0			/* max current, filled in later */
3019 	}, { /* Interface */
3020 		USB_INTERFACE_DESCRIPTOR_SIZE,
3021 		UDESC_INTERFACE,
3022 		0,			/* interface number */
3023 		0,			/* alternate setting */
3024 		1,			/* number of endpoint */
3025 		UICLASS_HUB,		/* class */
3026 		UISUBCLASS_HUB,		/* subclass */
3027 		0,			/* protocol */
3028 		0			/* index to interface */
3029 	}, { /* Endpoint */
3030 		USB_ENDPOINT_DESCRIPTOR_SIZE,
3031 		UDESC_ENDPOINT,
3032 		UE_DIR_IN | ROOT_INTR_ENDPT,	/* endpoint address */
3033 		UE_INTERRUPT,			/* attributes */
3034 		{240, 0},			/* max packet size */
3035 		255				/* interval */
3036 	}
3037 };
3038 
3039 static const usb_hub_descriptor_t slhci_hubd = {
3040 	USB_HUB_DESCRIPTOR_SIZE,
3041 	UDESC_HUB,
3042 	1,			/* number of ports */
3043 	{UHD_PWR_INDIVIDUAL | UHD_OC_NONE, 0},	/* hub characteristics */
3044 	50,			/* 5:power on to power good, units of 2ms */
3045 	0,			/* 6:maximum current, filled in later */
3046 	{ 0x00 },		/* port is removable */
3047 	{ 0x00 }		/* port power control mask */
3048 };
3049 
3050 static usbd_status
3051 slhci_clear_feature(struct slhci_softc *sc, unsigned int what)
3052 {
3053 	struct slhci_transfers *t;
3054 	usbd_status error;
3055 
3056 	t = &sc->sc_transfers;
3057 	error = USBD_NORMAL_COMPLETION;
3058 
3059 	KASSERT(mutex_owned(&sc->sc_intr_lock));
3060 
3061 	if (what == UHF_PORT_POWER) {
3062 		DLOG(D_MSG, "POWER_OFF", 0,0,0,0);
3063 		t->flags &= ~F_POWER;
3064 		if (!(t->flags & F_NODEV))
3065 			t->flags |= F_NODEV|F_CCONNECT|F_ROOTINTR;
3066 		/* for x68k Nereid USB controller */
3067 		if (sc->sc_enable_power && (t->flags & F_REALPOWER)) {
3068 			t->flags &= ~F_REALPOWER;
3069 			sc->sc_enable_power(sc, POWER_OFF);
3070 		}
3071 		slhci_intrchange(sc, 0);
3072 		slhci_drain(sc);
3073 	} else if (what == UHF_C_PORT_CONNECTION) {
3074 		t->flags &= ~F_CCONNECT;
3075 	} else if (what == UHF_C_PORT_RESET) {
3076 		t->flags &= ~F_CRESET;
3077 	} else if (what == UHF_PORT_ENABLE) {
3078 		slhci_drain(sc);
3079 	} else if (what != UHF_PORT_SUSPEND) {
3080 		DDOLOG("ClrPortFeatERR:value=%#.4x", what, 0,0,0);
3081 		error = USBD_IOERROR;
3082 	}
3083 
3084 	return error;
3085 }
3086 
3087 static usbd_status
3088 slhci_set_feature(struct slhci_softc *sc, unsigned int what)
3089 {
3090 	struct slhci_transfers *t;
3091 	uint8_t r;
3092 
3093 	t = &sc->sc_transfers;
3094 
3095 	KASSERT(mutex_owned(&sc->sc_intr_lock));
3096 
3097 	if (what == UHF_PORT_RESET) {
3098 		if (!(t->flags & F_ACTIVE)) {
3099 			DDOLOG("SET PORT_RESET when not ACTIVE!",
3100 			    0,0,0,0);
3101 			return USBD_INVAL;
3102 		}
3103 		if (!(t->flags & F_POWER)) {
3104 			DDOLOG("SET PORT_RESET without PORT_POWER! flags %p",
3105 			    t->flags, 0,0,0);
3106 			return USBD_INVAL;
3107 		}
3108 		if (t->flags & F_RESET)
3109 			return USBD_NORMAL_COMPLETION;
3110 		DLOG(D_MSG, "RESET flags %#x", t->flags, 0,0,0);
3111 		slhci_intrchange(sc, 0);
3112 		slhci_drain(sc);
3113 		slhci_write(sc, SL11_CTRL, SL11_CTRL_RESETENGINE);
3114 		/* usb spec says delay >= 10ms, app note 50ms */
3115  		start_cc_time(&t_delay, 50000);
3116 		if (sc->sc_bus.use_polling) {
3117 			DELAY(50000);
3118 			slhci_reset(sc);
3119 		} else {
3120 			t->flags |= F_RESET;
3121 			callout_schedule(&sc->sc_timer, max(mstohz(50), 2));
3122 		}
3123 	} else if (what == UHF_PORT_SUSPEND) {
3124 		printf("%s: USB Suspend not implemented!\n", SC_NAME(sc));
3125 		DDOLOG("%s: USB Suspend not implemented!\n", SC_NAME(sc),
3126 		    0,0,0);
3127 	} else if (what == UHF_PORT_POWER) {
3128 		DLOG(D_MSG, "PORT_POWER", 0,0,0,0);
3129 		/* for x68k Nereid USB controller */
3130 		if (!(t->flags & F_ACTIVE))
3131 			return USBD_INVAL;
3132 		if (t->flags & F_POWER)
3133 			return USBD_NORMAL_COMPLETION;
3134 		if (!(t->flags & F_REALPOWER)) {
3135 			if (sc->sc_enable_power)
3136 				sc->sc_enable_power(sc, POWER_ON);
3137 			t->flags |= F_REALPOWER;
3138 		}
3139 		t->flags |= F_POWER;
3140 		r = slhci_read(sc, SL11_ISR);
3141 		if (r & SL11_ISR_INSERT)
3142 			slhci_write(sc, SL11_ISR, SL11_ISR_INSERT);
3143 		if (r & SL11_ISR_NODEV) {
3144 			slhci_intrchange(sc, SL11_IER_INSERT);
3145 			t->flags |= F_NODEV;
3146 		} else {
3147 			t->flags &= ~F_NODEV;
3148 			t->flags |= F_CCONNECT|F_ROOTINTR;
3149 		}
3150 	} else {
3151 		DDOLOG("SetPortFeatERR=%#.8x", what, 0,0,0);
3152 		return USBD_IOERROR;
3153 	}
3154 
3155 	return USBD_NORMAL_COMPLETION;
3156 }
3157 
3158 static void
3159 slhci_get_status(struct slhci_softc *sc, usb_port_status_t *ps)
3160 {
3161 	struct slhci_transfers *t;
3162 	unsigned int status, change;
3163 
3164 	t = &sc->sc_transfers;
3165 
3166 	KASSERT(mutex_owned(&sc->sc_intr_lock));
3167 
3168 	/*
3169 	 * We do not have a way to detect over current or bable and
3170 	 * suspend is currently not implemented, so connect and reset
3171 	 * are the only changes that need to be reported.
3172 	 */
3173 	change = 0;
3174 	if (t->flags & F_CCONNECT)
3175 		change |= UPS_C_CONNECT_STATUS;
3176 	if (t->flags & F_CRESET)
3177 		change |= UPS_C_PORT_RESET;
3178 
3179 	status = 0;
3180 	if (!(t->flags & F_NODEV))
3181 		status |= UPS_CURRENT_CONNECT_STATUS;
3182 	if (!(t->flags & F_UDISABLED))
3183 		status |= UPS_PORT_ENABLED;
3184 	if (t->flags & F_RESET)
3185 		status |= UPS_RESET;
3186 	if (t->flags & F_POWER)
3187 		status |= UPS_PORT_POWER;
3188 	if (t->flags & F_LOWSPEED)
3189 		status |= UPS_LOW_SPEED;
3190 	USETW(ps->wPortStatus, status);
3191 	USETW(ps->wPortChange, change);
3192 	DLOG(D_ROOT, "status=%#.4x, change=%#.4x", status, change, 0,0);
3193 }
3194 
3195 static usbd_status
3196 slhci_root(struct slhci_softc *sc, struct slhci_pipe *spipe, struct usbd_xfer
3197     *xfer)
3198 {
3199 	struct slhci_transfers *t;
3200 	usb_device_request_t *req;
3201 	unsigned int len, value, index, actlen, type;
3202 	uint8_t *buf;
3203 	usbd_status error;
3204 
3205 	t = &sc->sc_transfers;
3206 	buf = NULL;
3207 
3208 	LK_SLASSERT(spipe != NULL && xfer != NULL, sc, spipe, xfer, return
3209 	    USBD_CANCELLED);
3210 
3211 	DLOG(D_TRACE, "%s start", pnames(SLHCI_XFER_TYPE(xfer)), 0,0,0);
3212 	KASSERT(mutex_owned(&sc->sc_intr_lock));
3213 
3214 	if (spipe->ptype == PT_ROOT_INTR) {
3215 		LK_SLASSERT(t->rootintr == NULL, sc, spipe, xfer, return
3216 		    USBD_CANCELLED);
3217 		t->rootintr = xfer;
3218 		if (t->flags & F_CHANGE)
3219 			t->flags |= F_ROOTINTR;
3220 		return USBD_IN_PROGRESS;
3221 	}
3222 
3223 	error = USBD_IOERROR; /* XXX should be STALL */
3224 	actlen = 0;
3225 	req = &xfer->request;
3226 
3227 	len = UGETW(req->wLength);
3228 	value = UGETW(req->wValue);
3229 	index = UGETW(req->wIndex);
3230 
3231 	type = req->bmRequestType;
3232 
3233 	if (len)
3234 		buf = KERNADDR(&xfer->dmabuf, 0);
3235 
3236 	SLHCI_DEXEC(D_TRACE, slhci_log_req_hub(req));
3237 
3238 	/*
3239 	 * USB requests for hubs have two basic types, standard and class.
3240 	 * Each could potentially have recipients of device, interface,
3241 	 * endpoint, or other.  For the hub class, CLASS_OTHER means the port
3242 	 * and CLASS_DEVICE means the hub.  For standard requests, OTHER
3243 	 * is not used.  Standard request are described in section 9.4 of the
3244 	 * standard, hub class requests in 11.16.  Each request is either read
3245 	 * or write.
3246 	 *
3247 	 * Clear Feature, Set Feature, and Status are defined for each of the
3248 	 * used recipients.  Get Descriptor and Set Descriptor are defined for
3249 	 * both standard and hub class types with different descriptors.
3250 	 * Other requests have only one defined recipient and type.  These
3251 	 * include: Get/Set Address, Get/Set Configuration, Get/Set Interface,
3252 	 * and Synch Frame for standard requests and Get Bus State for hub
3253 	 * class.
3254 	 *
3255 	 * When a device is first powered up it has address 0 until the
3256 	 * address is set.
3257 	 *
3258 	 * Hubs are only allowed to support one interface and may not have
3259 	 * isochronous endpoints.  The results of the related requests are
3260 	 * undefined.
3261 	 *
3262 	 * The standard requires invalid or unsupported requests to return
3263 	 * STALL in the data stage, however this does not work well with
3264 	 * current error handling. XXX
3265 	 *
3266 	 * Some unsupported fields:
3267 	 * Clear Hub Feature is for C_HUB_LOCAL_POWER and C_HUB_OVER_CURRENT
3268 	 * Set Device Features is for ENDPOINT_HALT and DEVICE_REMOTE_WAKEUP
3269 	 * Get Bus State is optional sample of D- and D+ at EOF2
3270 	 */
3271 
3272 	switch (req->bRequest) {
3273 	/* Write Requests */
3274 	case UR_CLEAR_FEATURE:
3275 		if (type == UT_WRITE_CLASS_OTHER) {
3276 			if (index == 1 /* Port */)
3277 				error = slhci_clear_feature(sc, value);
3278 			else
3279 				DLOG(D_ROOT, "Clear Port Feature "
3280 				    "index = %#.4x", index, 0,0,0);
3281 		}
3282 		break;
3283 	case UR_SET_FEATURE:
3284 		if (type == UT_WRITE_CLASS_OTHER) {
3285 			if (index == 1 /* Port */)
3286 				error = slhci_set_feature(sc, value);
3287 			else
3288 				DLOG(D_ROOT, "Set Port Feature "
3289 				    "index = %#.4x", index, 0,0,0);
3290 		} else if (type != UT_WRITE_CLASS_DEVICE)
3291 			DLOG(D_ROOT, "Set Device Feature "
3292 			    "ENDPOINT_HALT or DEVICE_REMOTE_WAKEUP "
3293 			    "not supported", 0,0,0,0);
3294 		break;
3295 	case UR_SET_ADDRESS:
3296 		if (type == UT_WRITE_DEVICE) {
3297 			DLOG(D_ROOT, "Set Address %#.4x", value, 0,0,0);
3298 			if (value < USB_MAX_DEVICES) {
3299 				t->rootaddr = value;
3300 				error = USBD_NORMAL_COMPLETION;
3301 			}
3302 		}
3303 		break;
3304 	case UR_SET_CONFIG:
3305 		if (type == UT_WRITE_DEVICE) {
3306 			DLOG(D_ROOT, "Set Config %#.4x", value, 0,0,0);
3307 			if (value == 0 || value == 1) {
3308 				t->rootconf = value;
3309 				error = USBD_NORMAL_COMPLETION;
3310 			}
3311 		}
3312 		break;
3313 	/* Read Requests */
3314 	case UR_GET_STATUS:
3315 		if (type == UT_READ_CLASS_OTHER) {
3316 			if (index == 1 /* Port */ && len == /* XXX >=? */
3317 			    sizeof(usb_port_status_t)) {
3318 				slhci_get_status(sc, (usb_port_status_t *)
3319 				    buf);
3320 				actlen = sizeof(usb_port_status_t);
3321 				error = USBD_NORMAL_COMPLETION;
3322 			} else
3323 				DLOG(D_ROOT, "Get Port Status index = %#.4x "
3324 				    "len = %#.4x", index, len, 0,0);
3325 		} else if (type == UT_READ_CLASS_DEVICE) { /* XXX index? */
3326 			if (len == sizeof(usb_hub_status_t)) {
3327 				DLOG(D_ROOT, "Get Hub Status",
3328 				    0,0,0,0);
3329 				actlen = sizeof(usb_hub_status_t);
3330 				memset(buf, 0, actlen);
3331 				error = USBD_NORMAL_COMPLETION;
3332 			} else
3333 				DLOG(D_ROOT, "Get Hub Status bad len %#.4x",
3334 				    len, 0,0,0);
3335 		} else if (type == UT_READ_DEVICE) {
3336 			if (len >= 2) {
3337 				USETW(((usb_status_t *)buf)->wStatus, UDS_SELF_POWERED);
3338 				actlen = 2;
3339 				error = USBD_NORMAL_COMPLETION;
3340 			}
3341 		} else if (type == (UT_READ_INTERFACE|UT_READ_ENDPOINT)) {
3342 			if (len >= 2) {
3343 				USETW(((usb_status_t *)buf)->wStatus, 0);
3344 				actlen = 2;
3345 				error = USBD_NORMAL_COMPLETION;
3346 			}
3347 		}
3348 		break;
3349 	case UR_GET_CONFIG:
3350 		if (type == UT_READ_DEVICE) {
3351 			DLOG(D_ROOT, "Get Config", 0,0,0,0);
3352 			if (len > 0) {
3353 				*buf = t->rootconf;
3354 				actlen = 1;
3355 				error = USBD_NORMAL_COMPLETION;
3356 			}
3357 		}
3358 		break;
3359 	case UR_GET_INTERFACE:
3360 		if (type == UT_READ_INTERFACE) {
3361 			if (len > 0) {
3362 				*buf = 0;
3363 				actlen = 1;
3364 				error = USBD_NORMAL_COMPLETION;
3365 			}
3366 		}
3367 		break;
3368 	case UR_GET_DESCRIPTOR:
3369 		if (type == UT_READ_DEVICE) {
3370 			/* value is type (&0xff00) and index (0xff) */
3371 			if (value == (UDESC_DEVICE<<8)) {
3372 				actlen = min(len, sizeof(slhci_devd));
3373 				memcpy(buf, &slhci_devd, actlen);
3374 				error = USBD_NORMAL_COMPLETION;
3375 			} else if (value == (UDESC_CONFIG<<8)) {
3376 				actlen = min(len, sizeof(slhci_confd));
3377 				memcpy(buf, &slhci_confd, actlen);
3378 				if (actlen > offsetof(usb_config_descriptor_t,
3379 				    bMaxPower))
3380 					((usb_config_descriptor_t *)
3381 					    buf)->bMaxPower = t->max_current;
3382 					    /* 2 mA units */
3383 				error = USBD_NORMAL_COMPLETION;
3384 			} else if (value == (UDESC_STRING<<8)) {
3385 				/* language table XXX */
3386 			} else if (value == ((UDESC_STRING<<8)|1)) {
3387 				/* Vendor */
3388 				actlen = usb_makestrdesc((usb_string_descriptor_t *)
3389 				    buf, len, "ScanLogic/Cypress");
3390 				error = USBD_NORMAL_COMPLETION;
3391 			} else if (value == ((UDESC_STRING<<8)|2)) {
3392 				/* Product */
3393 				actlen = usb_makestrdesc((usb_string_descriptor_t *)
3394 				    buf, len, "SL811HS/T root hub");
3395 				error = USBD_NORMAL_COMPLETION;
3396 			} else
3397 				DDOLOG("Unknown Get Descriptor %#.4x",
3398 				    value, 0,0,0);
3399 		} else if (type == UT_READ_CLASS_DEVICE) {
3400 			/* Descriptor number is 0 */
3401 			if (value == (UDESC_HUB<<8)) {
3402 				actlen = min(len, sizeof(slhci_hubd));
3403 				memcpy(buf, &slhci_hubd, actlen);
3404 				if (actlen > offsetof(usb_config_descriptor_t,
3405 				    bMaxPower))
3406 					((usb_hub_descriptor_t *)
3407 					    buf)->bHubContrCurrent = 500 -
3408 					    t->max_current;
3409 				error = USBD_NORMAL_COMPLETION;
3410 			} else
3411 				DDOLOG("Unknown Get Hub Descriptor %#.4x",
3412 				    value, 0,0,0);
3413 		}
3414 		break;
3415 	}
3416 
3417 	if (error == USBD_NORMAL_COMPLETION)
3418 		xfer->actlen = actlen;
3419 	xfer->status = error;
3420 	KASSERT(spipe->xfer == NULL);
3421 	spipe->xfer = xfer;
3422 	enter_callback(t, spipe);
3423 
3424 	return USBD_IN_PROGRESS;
3425 }
3426 
3427 /* End in lock functions. Start debug functions. */
3428 
3429 #ifdef SLHCI_DEBUG
3430 void
3431 slhci_log_buffer(struct usbd_xfer *xfer)
3432 {
3433 	u_char *buf;
3434 
3435 	if(xfer->length > 0 &&
3436 	    UE_GET_DIR(xfer->pipe->endpoint->edesc->bEndpointAddress) ==
3437 	    UE_DIR_IN) {
3438 		buf = KERNADDR(&xfer->dmabuf, 0);
3439 		DDOLOGBUF(buf, xfer->actlen);
3440 		DDOLOG("len %d actlen %d short %d", xfer->length,
3441 		    xfer->actlen, xfer->length - xfer->actlen, 0);
3442 	}
3443 }
3444 
3445 void
3446 slhci_log_req(usb_device_request_t *r)
3447 {
3448 	static const char *xmes[]={
3449 		"GETSTAT",
3450 		"CLRFEAT",
3451 		"res",
3452 		"SETFEAT",
3453 		"res",
3454 		"SETADDR",
3455 		"GETDESC",
3456 		"SETDESC",
3457 		"GETCONF",
3458 		"SETCONF",
3459 		"GETIN/F",
3460 		"SETIN/F",
3461 		"SYNC_FR",
3462 		"UNKNOWN"
3463 	};
3464 	int req, mreq, type, value, index, len;
3465 
3466 	req   = r->bRequest;
3467 	mreq  = (req > 13) ? 13 : req;
3468 	type  = r->bmRequestType;
3469 	value = UGETW(r->wValue);
3470 	index = UGETW(r->wIndex);
3471 	len   = UGETW(r->wLength);
3472 
3473 	DDOLOG("request: %s %#x", xmes[mreq], type, 0,0);
3474 	DDOLOG("request: r=%d,v=%d,i=%d,l=%d ", req, value, index, len);
3475 }
3476 
3477 void
3478 slhci_log_req_hub(usb_device_request_t *r)
3479 {
3480 	static const struct {
3481 		int req;
3482 		int type;
3483 		const char *str;
3484 	} conf[] = {
3485 		{ 1, 0x20, "ClrHubFeat"  },
3486 		{ 1, 0x23, "ClrPortFeat" },
3487 		{ 2, 0xa3, "GetBusState" },
3488 		{ 6, 0xa0, "GetHubDesc"  },
3489 		{ 0, 0xa0, "GetHubStat"  },
3490 		{ 0, 0xa3, "GetPortStat" },
3491 		{ 7, 0x20, "SetHubDesc"  },
3492 		{ 3, 0x20, "SetHubFeat"  },
3493 		{ 3, 0x23, "SetPortFeat" },
3494 		{-1, 0, NULL},
3495 	};
3496 	int i;
3497 	int value, index, len;
3498 	const char *str;
3499 
3500 	value = UGETW(r->wValue);
3501 	index = UGETW(r->wIndex);
3502 	len   = UGETW(r->wLength);
3503 	for (i = 0; ; i++) {
3504 		if (conf[i].req == -1 ) {
3505 			slhci_log_req(r);
3506 			return;
3507 		}
3508 		if (r->bmRequestType == conf[i].type && r->bRequest == conf[i].req) {
3509 			str = conf[i].str;
3510 			break;
3511 		}
3512 	}
3513 	DDOLOG("hub request: %s v=%d,i=%d,l=%d ", str, value, index, len);
3514 }
3515 
3516 void
3517 slhci_log_dumpreg(void)
3518 {
3519 	uint8_t r;
3520 	unsigned int aaddr, alen, baddr, blen;
3521 	static u_char buf[240];
3522 
3523 	r = slhci_read(ssc, SL11_E0CTRL);
3524 	DDOLOG("USB A Host Control = %#.2x", r, 0,0,0);
3525 	DDOLOGFLAG8("E0CTRL=", r, "Preamble", "Data Toggle",  "SOF Sync",
3526 	    "ISOC", "res", "Out", "Enable", "Arm");
3527 	aaddr = slhci_read(ssc, SL11_E0ADDR);
3528 	DDOLOG("USB A Base Address = %u", aaddr, 0,0,0);
3529 	alen = slhci_read(ssc, SL11_E0LEN);
3530 	DDOLOG("USB A Length = %u", alen, 0,0,0);
3531 	r = slhci_read(ssc, SL11_E0STAT);
3532 	DDOLOG("USB A Status = %#.2x", r, 0,0,0);
3533 	DDOLOGFLAG8("E0STAT=", r, "STALL", "NAK", "Overflow", "Setup",
3534 	    "Data Toggle", "Timeout", "Error", "ACK");
3535 	r = slhci_read(ssc, SL11_E0CONT);
3536 	DDOLOG("USB A Remaining or Overflow Length = %u", r, 0,0,0);
3537 	r = slhci_read(ssc, SL11_E1CTRL);
3538 	DDOLOG("USB B Host Control = %#.2x", r, 0,0,0);
3539 	DDOLOGFLAG8("E1CTRL=", r, "Preamble", "Data Toggle",  "SOF Sync",
3540 	    "ISOC", "res", "Out", "Enable", "Arm");
3541 	baddr = slhci_read(ssc, SL11_E1ADDR);
3542 	DDOLOG("USB B Base Address = %u", baddr, 0,0,0);
3543 	blen = slhci_read(ssc, SL11_E1LEN);
3544 	DDOLOG("USB B Length = %u", blen, 0,0,0);
3545 	r = slhci_read(ssc, SL11_E1STAT);
3546 	DDOLOG("USB B Status = %#.2x", r, 0,0,0);
3547 	DDOLOGFLAG8("E1STAT=", r, "STALL", "NAK", "Overflow", "Setup",
3548 	    "Data Toggle", "Timeout", "Error", "ACK");
3549 	r = slhci_read(ssc, SL11_E1CONT);
3550 	DDOLOG("USB B Remaining or Overflow Length = %u", r, 0,0,0);
3551 
3552 	r = slhci_read(ssc, SL11_CTRL);
3553 	DDOLOG("Control = %#.2x", r, 0,0,0);
3554 	DDOLOGFLAG8("CTRL=", r, "res", "Suspend", "LOW Speed",
3555 	    "J-K State Force", "Reset", "res", "res", "SOF");
3556 	r = slhci_read(ssc, SL11_IER);
3557 	DDOLOG("Interrupt Enable = %#.2x", r, 0,0,0);
3558 	DDOLOGFLAG8("IER=", r, "D+ **IER!**", "Device Detect/Resume",
3559 	    "Insert/Remove", "SOF", "res", "res", "USBB", "USBA");
3560 	r = slhci_read(ssc, SL11_ISR);
3561 	DDOLOG("Interrupt Status = %#.2x", r, 0,0,0);
3562 	DDOLOGFLAG8("ISR=", r, "D+", "Device Detect/Resume",
3563 	    "Insert/Remove", "SOF", "res", "res", "USBB", "USBA");
3564 	r = slhci_read(ssc, SL11_REV);
3565 	DDOLOG("Revision = %#.2x", r, 0,0,0);
3566 	r = slhci_read(ssc, SL811_CSOF);
3567 	DDOLOG("SOF Counter = %#.2x", r, 0,0,0);
3568 
3569 	if (alen && aaddr >= SL11_BUFFER_START && aaddr < SL11_BUFFER_END &&
3570 	    alen <= SL11_MAX_PACKET_SIZE && aaddr + alen <= SL11_BUFFER_END) {
3571 		slhci_read_multi(ssc, aaddr, buf, alen);
3572 		DDOLOG("USBA Buffer: start %u len %u", aaddr, alen, 0,0);
3573 		DDOLOGBUF(buf, alen);
3574 	} else if (alen)
3575 		DDOLOG("USBA Buffer Invalid", 0,0,0,0);
3576 
3577 	if (blen && baddr >= SL11_BUFFER_START && baddr < SL11_BUFFER_END &&
3578 	    blen <= SL11_MAX_PACKET_SIZE && baddr + blen <= SL11_BUFFER_END) {
3579 		slhci_read_multi(ssc, baddr, buf, blen);
3580 		DDOLOG("USBB Buffer: start %u len %u", baddr, blen, 0,0);
3581 		DDOLOGBUF(buf, blen);
3582 	} else if (blen)
3583 		DDOLOG("USBB Buffer Invalid", 0,0,0,0);
3584 }
3585 
3586 void
3587 slhci_log_xfer(struct usbd_xfer *xfer)
3588 {
3589 	DDOLOG("xfer: length=%u, actlen=%u, flags=%#x, timeout=%u,",
3590 		xfer->length, xfer->actlen, xfer->flags, xfer->timeout);
3591 	if (xfer->dmabuf.block)
3592 		DDOLOG("buffer=%p", KERNADDR(&xfer->dmabuf, 0), 0,0,0);
3593 	slhci_log_req_hub(&xfer->request);
3594 }
3595 
3596 void
3597 slhci_log_spipe(struct slhci_pipe *spipe)
3598 {
3599 	DDOLOG("spipe %p onlists: %s %s %s", spipe, gcq_onlist(&spipe->ap) ?
3600 	    "AP" : "", gcq_onlist(&spipe->to) ? "TO" : "",
3601 	    gcq_onlist(&spipe->xq) ? "XQ" : "");
3602 	DDOLOG("spipe: xfer %p buffer %p pflags %#x ptype %s",
3603 	    spipe->xfer, spipe->buffer, spipe->pflags, pnames(spipe->ptype));
3604 }
3605 
3606 void
3607 slhci_print_intr(void)
3608 {
3609 	unsigned int ier, isr;
3610 	ier = slhci_read(ssc, SL11_IER);
3611 	isr = slhci_read(ssc, SL11_ISR);
3612 	printf("IER: %#x ISR: %#x \n", ier, isr);
3613 }
3614 
3615 #if 0
3616 void
3617 slhci_log_sc(void)
3618 {
3619 	struct slhci_transfers *t;
3620 	int i;
3621 
3622 	t = &ssc->sc_transfers;
3623 
3624 	DDOLOG("Flags=%#x", t->flags, 0,0,0);
3625 	DDOLOG("a = %p Alen=%d b = %p Blen=%d", t->spipe[0], t->len[0],
3626 	    t->spipe[1], t->len[1]);
3627 
3628 	for (i=0; i<=Q_MAX; i++)
3629 		DDOLOG("Q %d: %p", i, gcq_first(&t->q[i]), 0,0);
3630 
3631 	DDOLOG("TIMED: %p", GCQ_ITEM(gcq_first(&t->to),
3632 	    struct slhci_pipe, to), 0,0,0);
3633 
3634 	DDOLOG("frame=%d rootintr=%p", t->frame, t->rootintr, 0,0);
3635 
3636 	DDOLOG("use_polling=%d", ssc->sc_bus.use_polling, 0, 0, 0);
3637 }
3638 
3639 void
3640 slhci_log_slreq(struct slhci_pipe *r)
3641 {
3642 	DDOLOG("next: %p", r->q.next.sqe_next, 0,0,0);
3643 	DDOLOG("xfer: %p", r->xfer, 0,0,0);
3644 	DDOLOG("buffer: %p", r->buffer, 0,0,0);
3645 	DDOLOG("bustime: %u", r->bustime, 0,0,0);
3646 	DDOLOG("control: %#x", r->control, 0,0,0);
3647 	DDOLOGFLAG8("control=", r->control, "Preamble", "Data Toggle",
3648 	    "SOF Sync", "ISOC", "res", "Out", "Enable", "Arm");
3649 	DDOLOG("pid: %#x", r->tregs[PID], 0,0,0);
3650 	DDOLOG("dev: %u", r->tregs[DEV], 0,0,0);
3651 	DDOLOG("len: %u", r->tregs[LEN], 0,0,0);
3652 
3653 	if (r->xfer)
3654 		slhci_log_xfer(r->xfer);
3655 }
3656 #endif
3657 #endif /* SLHCI_DEBUG */
3658 /* End debug functions. */
3659