xref: /netbsd-src/sys/dev/ic/rtwphy.c (revision e5548b402ae4c44fb816de42c7bba9581ce23ef5)
1 /* $NetBSD: rtwphy.c,v 1.7 2005/12/11 12:21:28 christos Exp $ */
2 /*-
3  * Copyright (c) 2004, 2005 David Young.  All rights reserved.
4  *
5  * Programmed for NetBSD by David Young.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. The name of David Young may not be used to endorse or promote
16  *    products derived from this software without specific prior
17  *    written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY David Young ``AS IS'' AND ANY
20  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
22  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL David
23  * Young BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
25  * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
28  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
30  * OF SUCH DAMAGE.
31  */
32 /*
33  * Control the Philips SA2400 RF front-end and the baseband processor
34  * built into the Realtek RTL8180.
35  */
36 
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: rtwphy.c,v 1.7 2005/12/11 12:21:28 christos Exp $");
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/types.h>
43 
44 #include <machine/bus.h>
45 
46 #include <net/if.h>
47 #include <net/if_media.h>
48 #include <net/if_ether.h>
49 
50 #include <net80211/ieee80211_netbsd.h>
51 #include <net80211/ieee80211_radiotap.h>
52 #include <net80211/ieee80211_var.h>
53 
54 #include <dev/ic/rtwreg.h>
55 #include <dev/ic/max2820reg.h>
56 #include <dev/ic/sa2400reg.h>
57 #include <dev/ic/rtwvar.h>
58 #include <dev/ic/rtwphyio.h>
59 #include <dev/ic/rtwphy.h>
60 
61 static int rtw_max2820_pwrstate(struct rtw_rf *, enum rtw_pwrstate);
62 static int rtw_sa2400_pwrstate(struct rtw_rf *, enum rtw_pwrstate);
63 
64 static int
65 rtw_bbp_preinit(struct rtw_regs *regs, u_int antatten0, int dflantb,
66     u_int freq)
67 {
68 	u_int antatten = antatten0;
69 	if (dflantb)
70 		antatten |= RTW_BBP_ANTATTEN_DFLANTB;
71 	if (freq == 2484) /* channel 14 */
72 		antatten |= RTW_BBP_ANTATTEN_CHAN14;
73 	return rtw_bbp_write(regs, RTW_BBP_ANTATTEN, antatten);
74 }
75 
76 static int
77 rtw_bbp_init(struct rtw_regs *regs, struct rtw_bbpset *bb, int antdiv,
78     int dflantb, uint8_t cs_threshold, u_int freq)
79 {
80 	int rc;
81 	uint32_t sys2, sys3;
82 
83 	sys2 = bb->bb_sys2;
84 	if (antdiv)
85 		sys2 |= RTW_BBP_SYS2_ANTDIV;
86 	sys3 = bb->bb_sys3 |
87 	    LSHIFT(cs_threshold, RTW_BBP_SYS3_CSTHRESH_MASK);
88 
89 #define	RTW_BBP_WRITE_OR_RETURN(reg, val) \
90 	if ((rc = rtw_bbp_write(regs, reg, val)) != 0) \
91 		return rc;
92 
93 	RTW_BBP_WRITE_OR_RETURN(RTW_BBP_SYS1,		bb->bb_sys1);
94 	RTW_BBP_WRITE_OR_RETURN(RTW_BBP_TXAGC,		bb->bb_txagc);
95 	RTW_BBP_WRITE_OR_RETURN(RTW_BBP_LNADET,		bb->bb_lnadet);
96 	RTW_BBP_WRITE_OR_RETURN(RTW_BBP_IFAGCINI,	bb->bb_ifagcini);
97 	RTW_BBP_WRITE_OR_RETURN(RTW_BBP_IFAGCLIMIT,	bb->bb_ifagclimit);
98 	RTW_BBP_WRITE_OR_RETURN(RTW_BBP_IFAGCDET,	bb->bb_ifagcdet);
99 
100 	if ((rc = rtw_bbp_preinit(regs, bb->bb_antatten, dflantb, freq)) != 0)
101 		return rc;
102 
103 	RTW_BBP_WRITE_OR_RETURN(RTW_BBP_TRL,		bb->bb_trl);
104 	RTW_BBP_WRITE_OR_RETURN(RTW_BBP_SYS2,		sys2);
105 	RTW_BBP_WRITE_OR_RETURN(RTW_BBP_SYS3,		sys3);
106 	RTW_BBP_WRITE_OR_RETURN(RTW_BBP_CHESTLIM,	bb->bb_chestlim);
107 	RTW_BBP_WRITE_OR_RETURN(RTW_BBP_CHSQLIM,	bb->bb_chsqlim);
108 	return 0;
109 }
110 
111 static int
112 rtw_sa2400_txpower(struct rtw_rf *rf, uint8_t opaque_txpower)
113 {
114 	struct rtw_sa2400 *sa = (struct rtw_sa2400 *)rf;
115 	struct rtw_rfbus *bus = &sa->sa_bus;
116 
117 	return rtw_rfbus_write(bus, RTW_RFCHIPID_PHILIPS, SA2400_TX,
118 	    opaque_txpower);
119 }
120 
121 /* make sure we're using the same settings as the reference driver */
122 static void
123 verify_syna(u_int freq, uint32_t val)
124 {
125 	uint32_t expected_val = ~val;
126 
127 	switch (freq) {
128 	case 2412:
129 		expected_val = 0x0000096c; /* ch 1 */
130 		break;
131 	case 2417:
132 		expected_val = 0x00080970; /* ch 2 */
133 		break;
134 	case 2422:
135 		expected_val = 0x00100974; /* ch 3 */
136 		break;
137 	case 2427:
138 		expected_val = 0x00180978; /* ch 4 */
139 		break;
140 	case 2432:
141 		expected_val = 0x00000980; /* ch 5 */
142 		break;
143 	case 2437:
144 		expected_val = 0x00080984; /* ch 6 */
145 		break;
146 	case 2442:
147 		expected_val = 0x00100988; /* ch 7 */
148 		break;
149 	case 2447:
150 		expected_val = 0x0018098c; /* ch 8 */
151 		break;
152 	case 2452:
153 		expected_val = 0x00000994; /* ch 9 */
154 		break;
155 	case 2457:
156 		expected_val = 0x00080998; /* ch 10 */
157 		break;
158 	case 2462:
159 		expected_val = 0x0010099c; /* ch 11 */
160 		break;
161 	case 2467:
162 		expected_val = 0x001809a0; /* ch 12 */
163 		break;
164         case 2472:
165 		expected_val = 0x000009a8; /* ch 13 */
166 		break;
167         case 2484:
168 		expected_val = 0x000009b4; /* ch 14 */
169 		break;
170 	}
171 	KASSERT(val == expected_val);
172 }
173 
174 /* freq is in MHz */
175 static int
176 rtw_sa2400_tune(struct rtw_rf *rf, u_int freq)
177 {
178 	struct rtw_sa2400 *sa = (struct rtw_sa2400 *)rf;
179 	struct rtw_rfbus *bus = &sa->sa_bus;
180 	int rc;
181 	uint32_t syna, synb, sync;
182 
183 	/* XO = 44MHz, R = 11, hence N is in units of XO / R = 4MHz.
184 	 *
185 	 * The channel spacing (5MHz) is not divisible by 4MHz, so
186 	 * we set the fractional part of N to compensate.
187 	 */
188 	int n = freq / 4, nf = (freq % 4) * 2;
189 
190 	syna = LSHIFT(nf, SA2400_SYNA_NF_MASK) | LSHIFT(n, SA2400_SYNA_N_MASK);
191 	verify_syna(freq, syna);
192 
193 	/* Divide the 44MHz crystal down to 4MHz. Set the fractional
194 	 * compensation charge pump value to agree with the fractional
195 	 * modulus.
196 	 */
197 	synb = LSHIFT(11, SA2400_SYNB_R_MASK) | SA2400_SYNB_L_NORMAL |
198 	    SA2400_SYNB_ON | SA2400_SYNB_ONE |
199 	    LSHIFT(80, SA2400_SYNB_FC_MASK); /* agrees w/ SA2400_SYNA_FM = 0 */
200 
201 	sync = SA2400_SYNC_CP_NORMAL;
202 
203 	if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_PHILIPS, SA2400_SYNA,
204 	    syna)) != 0)
205 		return rc;
206 	if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_PHILIPS, SA2400_SYNB,
207 	    synb)) != 0)
208 		return rc;
209 	if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_PHILIPS, SA2400_SYNC,
210 	    sync)) != 0)
211 		return rc;
212 	return rtw_rfbus_write(bus, RTW_RFCHIPID_PHILIPS, SA2400_SYND, 0x0);
213 }
214 
215 static int
216 rtw_sa2400_pwrstate(struct rtw_rf *rf, enum rtw_pwrstate power)
217 {
218 	struct rtw_sa2400 *sa = (struct rtw_sa2400 *)rf;
219 	struct rtw_rfbus *bus = &sa->sa_bus;
220 	uint32_t opmode;
221 	opmode = SA2400_OPMODE_DEFAULTS;
222 	switch (power) {
223 	case RTW_ON:
224 		opmode |= SA2400_OPMODE_MODE_TXRX;
225 		break;
226 	case RTW_SLEEP:
227 		opmode |= SA2400_OPMODE_MODE_WAIT;
228 		break;
229 	case RTW_OFF:
230 		opmode |= SA2400_OPMODE_MODE_SLEEP;
231 		break;
232 	}
233 
234 	if (sa->sa_digphy)
235 		opmode |= SA2400_OPMODE_DIGIN;
236 
237 	return rtw_rfbus_write(bus, RTW_RFCHIPID_PHILIPS, SA2400_OPMODE,
238 	    opmode);
239 }
240 
241 static int
242 rtw_sa2400_manrx_init(struct rtw_sa2400 *sa)
243 {
244 	uint32_t manrx;
245 
246 	/* XXX we are not supposed to be in RXMGC mode when we do
247 	 * this?
248 	 */
249 	manrx = SA2400_MANRX_AHSN;
250 	manrx |= SA2400_MANRX_TEN;
251 	manrx |= LSHIFT(1023, SA2400_MANRX_RXGAIN_MASK);
252 
253 	return rtw_rfbus_write(&sa->sa_bus, RTW_RFCHIPID_PHILIPS, SA2400_MANRX,
254 	    manrx);
255 }
256 
257 static int
258 rtw_sa2400_vcocal_start(struct rtw_sa2400 *sa, int start)
259 {
260 	uint32_t opmode;
261 
262 	opmode = SA2400_OPMODE_DEFAULTS;
263 	if (start)
264 		opmode |= SA2400_OPMODE_MODE_VCOCALIB;
265 	else
266 		opmode |= SA2400_OPMODE_MODE_SLEEP;
267 
268 	if (sa->sa_digphy)
269 		opmode |= SA2400_OPMODE_DIGIN;
270 
271 	return rtw_rfbus_write(&sa->sa_bus, RTW_RFCHIPID_PHILIPS, SA2400_OPMODE,
272 	    opmode);
273 }
274 
275 static int
276 rtw_sa2400_vco_calibration(struct rtw_sa2400 *sa)
277 {
278 	int rc;
279 	/* calibrate VCO */
280 	if ((rc = rtw_sa2400_vcocal_start(sa, 1)) != 0)
281 		return rc;
282 	DELAY(2200);	/* 2.2 milliseconds */
283 	/* XXX superfluous: SA2400 automatically entered SLEEP mode. */
284 	return rtw_sa2400_vcocal_start(sa, 0);
285 }
286 
287 static int
288 rtw_sa2400_filter_calibration(struct rtw_sa2400 *sa)
289 {
290 	uint32_t opmode;
291 
292 	opmode = SA2400_OPMODE_DEFAULTS | SA2400_OPMODE_MODE_FCALIB;
293 	if (sa->sa_digphy)
294 		opmode |= SA2400_OPMODE_DIGIN;
295 
296 	return rtw_rfbus_write(&sa->sa_bus, RTW_RFCHIPID_PHILIPS, SA2400_OPMODE,
297 	    opmode);
298 }
299 
300 static int
301 rtw_sa2400_dc_calibration(struct rtw_sa2400 *sa)
302 {
303 	struct rtw_rf *rf = &sa->sa_rf;
304 	int rc;
305 	uint32_t dccal;
306 
307 	(*rf->rf_continuous_tx_cb)(rf->rf_continuous_tx_arg, 1);
308 
309 	dccal = SA2400_OPMODE_DEFAULTS | SA2400_OPMODE_MODE_TXRX;
310 
311 	rc = rtw_rfbus_write(&sa->sa_bus, RTW_RFCHIPID_PHILIPS, SA2400_OPMODE,
312 	    dccal);
313 	if (rc != 0)
314 		return rc;
315 
316 	DELAY(5);	/* DCALIB after being in Tx mode for 5
317 			 * microseconds
318 			 */
319 
320 	dccal &= ~SA2400_OPMODE_MODE_MASK;
321 	dccal |= SA2400_OPMODE_MODE_DCALIB;
322 
323 	rc = rtw_rfbus_write(&sa->sa_bus, RTW_RFCHIPID_PHILIPS, SA2400_OPMODE,
324 	   dccal);
325 	if (rc != 0)
326 		return rc;
327 
328 	DELAY(20);	/* calibration takes at most 20 microseconds */
329 
330 	(*rf->rf_continuous_tx_cb)(rf->rf_continuous_tx_arg, 0);
331 
332 	return 0;
333 }
334 
335 static int
336 rtw_sa2400_agc_init(struct rtw_sa2400 *sa)
337 {
338 	uint32_t agc;
339 
340 	agc = LSHIFT(25, SA2400_AGC_MAXGAIN_MASK);
341 	agc |= LSHIFT(7, SA2400_AGC_BBPDELAY_MASK);
342 	agc |= LSHIFT(15, SA2400_AGC_LNADELAY_MASK);
343 	agc |= LSHIFT(27, SA2400_AGC_RXONDELAY_MASK);
344 
345 	return rtw_rfbus_write(&sa->sa_bus, RTW_RFCHIPID_PHILIPS, SA2400_AGC,
346 	    agc);
347 }
348 
349 static void
350 rtw_sa2400_destroy(struct rtw_rf *rf)
351 {
352 	struct rtw_sa2400 *sa = (struct rtw_sa2400 *)rf;
353 	memset(sa, 0, sizeof(*sa));
354 	free(sa, M_DEVBUF);
355 }
356 
357 static int
358 rtw_sa2400_calibrate(struct rtw_rf *rf, u_int freq)
359 {
360 	struct rtw_sa2400 *sa = (struct rtw_sa2400 *)rf;
361 	int i, rc;
362 
363 	/* XXX reference driver calibrates VCO twice. Is it a bug? */
364 	for (i = 0; i < 2; i++) {
365 		if ((rc = rtw_sa2400_vco_calibration(sa)) != 0)
366 			return rc;
367 	}
368 	/* VCO calibration erases synthesizer registers, so re-tune */
369 	if ((rc = rtw_sa2400_tune(rf, freq)) != 0)
370 		return rc;
371 	if ((rc = rtw_sa2400_filter_calibration(sa)) != 0)
372 		return rc;
373 	/* analog PHY needs DC calibration */
374 	if (!sa->sa_digphy)
375 		return rtw_sa2400_dc_calibration(sa);
376 	return 0;
377 }
378 
379 static int
380 rtw_sa2400_init(struct rtw_rf *rf, u_int freq, uint8_t opaque_txpower,
381     enum rtw_pwrstate power)
382 {
383 	struct rtw_sa2400 *sa = (struct rtw_sa2400 *)rf;
384 	int rc;
385 
386 	if ((rc = rtw_sa2400_txpower(rf, opaque_txpower)) != 0)
387 		return rc;
388 
389 	/* skip configuration if it's time to sleep or to power-down. */
390 	if (power == RTW_SLEEP || power == RTW_OFF)
391 		return rtw_sa2400_pwrstate(rf, power);
392 
393 	/* go to sleep for configuration */
394 	if ((rc = rtw_sa2400_pwrstate(rf, RTW_SLEEP)) != 0)
395 		return rc;
396 
397 	if ((rc = rtw_sa2400_tune(rf, freq)) != 0)
398 		return rc;
399 	if ((rc = rtw_sa2400_agc_init(sa)) != 0)
400 		return rc;
401 	if ((rc = rtw_sa2400_manrx_init(sa)) != 0)
402 		return rc;
403 	if ((rc = rtw_sa2400_calibrate(rf, freq)) != 0)
404 		return rc;
405 
406 	/* enter Tx/Rx mode */
407 	return rtw_sa2400_pwrstate(rf, power);
408 }
409 
410 struct rtw_rf *
411 rtw_sa2400_create(struct rtw_regs *regs, rtw_rf_write_t rf_write, int digphy)
412 {
413 	struct rtw_sa2400 *sa;
414 	struct rtw_rfbus *bus;
415 	struct rtw_rf *rf;
416 	struct rtw_bbpset *bb;
417 
418 	sa = malloc(sizeof(*sa), M_DEVBUF, M_NOWAIT | M_ZERO);
419 	if (sa == NULL)
420 		return NULL;
421 
422 	sa->sa_digphy = digphy;
423 
424 	rf = &sa->sa_rf;
425 	bus = &sa->sa_bus;
426 
427 	rf->rf_init = rtw_sa2400_init;
428 	rf->rf_destroy = rtw_sa2400_destroy;
429 	rf->rf_txpower = rtw_sa2400_txpower;
430 	rf->rf_tune = rtw_sa2400_tune;
431 	rf->rf_pwrstate = rtw_sa2400_pwrstate;
432 	bb = &rf->rf_bbpset;
433 
434 	/* XXX magic */
435 	bb->bb_antatten = RTW_BBP_ANTATTEN_PHILIPS_MAGIC;
436 	bb->bb_chestlim =	0x00;
437 	bb->bb_chsqlim =	0xa0;
438 	bb->bb_ifagcdet =	0x64;
439 	bb->bb_ifagcini =	0x90;
440 	bb->bb_ifagclimit =	0x1a;
441 	bb->bb_lnadet =		0xe0;
442 	bb->bb_sys1 =		0x98;
443 	bb->bb_sys2 =		0x47;
444 	bb->bb_sys3 =		0x90;
445 	bb->bb_trl =		0x88;
446 	bb->bb_txagc =		0x38;
447 
448 	bus->b_regs = regs;
449 	bus->b_write = rf_write;
450 
451 	return &sa->sa_rf;
452 }
453 
454 /* freq is in MHz */
455 static int
456 rtw_max2820_tune(struct rtw_rf *rf, u_int freq)
457 {
458 	struct rtw_max2820 *mx = (struct rtw_max2820 *)rf;
459 	struct rtw_rfbus *bus = &mx->mx_bus;
460 
461 	if (freq < 2400 || freq > 2499)
462 		return -1;
463 
464 	return rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_CHANNEL,
465 	    LSHIFT(freq - 2400, MAX2820_CHANNEL_CF_MASK));
466 }
467 
468 static void
469 rtw_max2820_destroy(struct rtw_rf *rf)
470 {
471 	struct rtw_max2820 *mx = (struct rtw_max2820 *)rf;
472 	memset(mx, 0, sizeof(*mx));
473 	free(mx, M_DEVBUF);
474 }
475 
476 static int
477 rtw_max2820_init(struct rtw_rf *rf, u_int freq, uint8_t opaque_txpower,
478     enum rtw_pwrstate power)
479 {
480 	struct rtw_max2820 *mx = (struct rtw_max2820 *)rf;
481 	struct rtw_rfbus *bus = &mx->mx_bus;
482 	int rc;
483 
484 	if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_TEST,
485 	    MAX2820_TEST_DEFAULT)) != 0)
486 		return rc;
487 
488 	if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_ENABLE,
489 	    MAX2820_ENABLE_DEFAULT)) != 0)
490 		return rc;
491 
492 	/* skip configuration if it's time to sleep or to power-down. */
493 	if ((rc = rtw_max2820_pwrstate(rf, power)) != 0)
494 		return rc;
495 	else if (power == RTW_OFF || power == RTW_SLEEP)
496 		return 0;
497 
498 	if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_SYNTH,
499 	    MAX2820_SYNTH_R_44MHZ)) != 0)
500 		return rc;
501 
502 	if ((rc = rtw_max2820_tune(rf, freq)) != 0)
503 		return rc;
504 
505 	/* XXX The MAX2820 datasheet indicates that 1C and 2C should not
506 	 * be changed from 7, however, the reference driver sets them
507 	 * to 4 and 1, respectively.
508 	 */
509 	if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_RECEIVE,
510 	    MAX2820_RECEIVE_DL_DEFAULT |
511 	    LSHIFT(4, MAX2820A_RECEIVE_1C_MASK) |
512 	    LSHIFT(1, MAX2820A_RECEIVE_2C_MASK))) != 0)
513 		return rc;
514 
515 	return rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_TRANSMIT,
516 	    MAX2820_TRANSMIT_PA_DEFAULT);
517 }
518 
519 static int
520 rtw_max2820_txpower(struct rtw_rf *rf, uint8_t opaque_txpower)
521 {
522 	/* TBD */
523 	return 0;
524 }
525 
526 static int
527 rtw_max2820_pwrstate(struct rtw_rf *rf, enum rtw_pwrstate power)
528 {
529 	uint32_t enable;
530 	struct rtw_max2820 *mx;
531 	struct rtw_rfbus *bus;
532 
533 	mx = (struct rtw_max2820 *)rf;
534 	bus = &mx->mx_bus;
535 
536 	switch (power) {
537 	case RTW_OFF:
538 	case RTW_SLEEP:
539 	default:
540 		enable = 0x0;
541 		break;
542 	case RTW_ON:
543 		enable = MAX2820_ENABLE_DEFAULT;
544 		break;
545 	}
546 	return rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_ENABLE, enable);
547 }
548 
549 struct rtw_rf *
550 rtw_max2820_create(struct rtw_regs *regs, rtw_rf_write_t rf_write, int is_a)
551 {
552 	struct rtw_max2820 *mx;
553 	struct rtw_rfbus *bus;
554 	struct rtw_rf *rf;
555 	struct rtw_bbpset *bb;
556 
557 	mx = malloc(sizeof(*mx), M_DEVBUF, M_NOWAIT | M_ZERO);
558 	if (mx == NULL)
559 		return NULL;
560 
561 	mx->mx_is_a = is_a;
562 
563 	rf = &mx->mx_rf;
564 	bus = &mx->mx_bus;
565 
566 	rf->rf_init = rtw_max2820_init;
567 	rf->rf_destroy = rtw_max2820_destroy;
568 	rf->rf_txpower = rtw_max2820_txpower;
569 	rf->rf_tune = rtw_max2820_tune;
570 	rf->rf_pwrstate = rtw_max2820_pwrstate;
571 	bb = &rf->rf_bbpset;
572 
573 	/* XXX magic */
574 	bb->bb_antatten = RTW_BBP_ANTATTEN_MAXIM_MAGIC;
575 	bb->bb_chestlim =	0;
576 	bb->bb_chsqlim =	159;
577 	bb->bb_ifagcdet =	100;
578 	bb->bb_ifagcini =	144;
579 	bb->bb_ifagclimit =	26;
580 	bb->bb_lnadet =		248;
581 	bb->bb_sys1 =		136;
582 	bb->bb_sys2 =		71;
583 	bb->bb_sys3 =		155;
584 	bb->bb_trl =		136;
585 	bb->bb_txagc =		8;
586 
587 	bus->b_regs = regs;
588 	bus->b_write = rf_write;
589 
590 	return &mx->mx_rf;
591 }
592 
593 /* freq is in MHz */
594 int
595 rtw_phy_init(struct rtw_regs *regs, struct rtw_rf *rf, uint8_t opaque_txpower,
596     uint8_t cs_threshold, u_int freq, int antdiv, int dflantb,
597     enum rtw_pwrstate power)
598 {
599 	int rc;
600 	RTW_DPRINTF(RTW_DEBUG_PHY,
601 	    ("%s: txpower %u csthresh %u freq %u antdiv %u dflantb %u "
602 	     "pwrstate %s\n", __func__, opaque_txpower, cs_threshold, freq,
603 	     antdiv, dflantb, rtw_pwrstate_string(power)));
604 
605 	/* XXX is this really necessary? */
606 	if ((rc = rtw_rf_txpower(rf, opaque_txpower)) != 0)
607 		return rc;
608 	if ((rc = rtw_bbp_preinit(regs, rf->rf_bbpset.bb_antatten, dflantb,
609 	    freq)) != 0)
610 		return rc;
611 	if ((rc = rtw_rf_tune(rf, freq)) != 0)
612 		return rc;
613 	/* initialize RF  */
614 	if ((rc = rtw_rf_init(rf, freq, opaque_txpower, power)) != 0)
615 		return rc;
616 #if 0	/* what is this redundant tx power setting here for? */
617 	if ((rc = rtw_rf_txpower(rf, opaque_txpower)) != 0)
618 		return rc;
619 #endif
620 	return rtw_bbp_init(regs, &rf->rf_bbpset, antdiv, dflantb,
621 	    cs_threshold, freq);
622 }
623