1 /* $NetBSD: rtwphy.c,v 1.8 2005/12/29 22:27:17 dyoung Exp $ */ 2 /*- 3 * Copyright (c) 2004, 2005 David Young. All rights reserved. 4 * 5 * Programmed for NetBSD by David Young. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. The name of David Young may not be used to endorse or promote 16 * products derived from this software without specific prior 17 * written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY David Young ``AS IS'' AND ANY 20 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, 21 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A 22 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL David 23 * Young BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 24 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 25 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 28 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY 30 * OF SUCH DAMAGE. 31 */ 32 /* 33 * Control the Philips SA2400 RF front-end and the baseband processor 34 * built into the Realtek RTL8180. 35 */ 36 37 #include <sys/cdefs.h> 38 __KERNEL_RCSID(0, "$NetBSD: rtwphy.c,v 1.8 2005/12/29 22:27:17 dyoung Exp $"); 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/types.h> 43 44 #include <machine/bus.h> 45 46 #include <net/if.h> 47 #include <net/if_media.h> 48 #include <net/if_ether.h> 49 50 #include <net80211/ieee80211_netbsd.h> 51 #include <net80211/ieee80211_radiotap.h> 52 #include <net80211/ieee80211_var.h> 53 54 #include <dev/ic/rtwreg.h> 55 #include <dev/ic/max2820reg.h> 56 #include <dev/ic/sa2400reg.h> 57 #include <dev/ic/rtwvar.h> 58 #include <dev/ic/rtwphyio.h> 59 #include <dev/ic/rtwphy.h> 60 61 static int rtw_max2820_pwrstate(struct rtw_rf *, enum rtw_pwrstate); 62 static int rtw_sa2400_pwrstate(struct rtw_rf *, enum rtw_pwrstate); 63 64 #define GCT_WRITE(__gr, __addr, __val, __label) \ 65 do { \ 66 if (rtw_rfbus_write(&(__gr)->gr_bus, RTW_RFCHIPID_GCT, \ 67 (__addr), (__val)) == -1) \ 68 goto __label; \ 69 } while(0) 70 71 static int 72 rtw_bbp_preinit(struct rtw_regs *regs, u_int antatten0, int dflantb, 73 u_int freq) 74 { 75 u_int antatten = antatten0; 76 if (dflantb) 77 antatten |= RTW_BBP_ANTATTEN_DFLANTB; 78 if (freq == 2484) /* channel 14 */ 79 antatten |= RTW_BBP_ANTATTEN_CHAN14; 80 return rtw_bbp_write(regs, RTW_BBP_ANTATTEN, antatten); 81 } 82 83 static int 84 rtw_bbp_init(struct rtw_regs *regs, struct rtw_bbpset *bb, int antdiv, 85 int dflantb, uint8_t cs_threshold, u_int freq) 86 { 87 int rc; 88 uint32_t sys2, sys3; 89 90 sys2 = bb->bb_sys2; 91 if (antdiv) 92 sys2 |= RTW_BBP_SYS2_ANTDIV; 93 sys3 = bb->bb_sys3 | 94 LSHIFT(cs_threshold, RTW_BBP_SYS3_CSTHRESH_MASK); 95 96 #define RTW_BBP_WRITE_OR_RETURN(reg, val) \ 97 if ((rc = rtw_bbp_write(regs, reg, val)) != 0) \ 98 return rc; 99 100 RTW_BBP_WRITE_OR_RETURN(RTW_BBP_SYS1, bb->bb_sys1); 101 RTW_BBP_WRITE_OR_RETURN(RTW_BBP_TXAGC, bb->bb_txagc); 102 RTW_BBP_WRITE_OR_RETURN(RTW_BBP_LNADET, bb->bb_lnadet); 103 RTW_BBP_WRITE_OR_RETURN(RTW_BBP_IFAGCINI, bb->bb_ifagcini); 104 RTW_BBP_WRITE_OR_RETURN(RTW_BBP_IFAGCLIMIT, bb->bb_ifagclimit); 105 RTW_BBP_WRITE_OR_RETURN(RTW_BBP_IFAGCDET, bb->bb_ifagcdet); 106 107 if ((rc = rtw_bbp_preinit(regs, bb->bb_antatten, dflantb, freq)) != 0) 108 return rc; 109 110 RTW_BBP_WRITE_OR_RETURN(RTW_BBP_TRL, bb->bb_trl); 111 RTW_BBP_WRITE_OR_RETURN(RTW_BBP_SYS2, sys2); 112 RTW_BBP_WRITE_OR_RETURN(RTW_BBP_SYS3, sys3); 113 RTW_BBP_WRITE_OR_RETURN(RTW_BBP_CHESTLIM, bb->bb_chestlim); 114 RTW_BBP_WRITE_OR_RETURN(RTW_BBP_CHSQLIM, bb->bb_chsqlim); 115 return 0; 116 } 117 118 static int 119 rtw_sa2400_txpower(struct rtw_rf *rf, uint8_t opaque_txpower) 120 { 121 struct rtw_sa2400 *sa = (struct rtw_sa2400 *)rf; 122 struct rtw_rfbus *bus = &sa->sa_bus; 123 124 return rtw_rfbus_write(bus, RTW_RFCHIPID_PHILIPS, SA2400_TX, 125 opaque_txpower); 126 } 127 128 /* make sure we're using the same settings as the reference driver */ 129 static void 130 verify_syna(u_int freq, uint32_t val) 131 { 132 uint32_t expected_val = ~val; 133 134 switch (freq) { 135 case 2412: 136 expected_val = 0x0000096c; /* ch 1 */ 137 break; 138 case 2417: 139 expected_val = 0x00080970; /* ch 2 */ 140 break; 141 case 2422: 142 expected_val = 0x00100974; /* ch 3 */ 143 break; 144 case 2427: 145 expected_val = 0x00180978; /* ch 4 */ 146 break; 147 case 2432: 148 expected_val = 0x00000980; /* ch 5 */ 149 break; 150 case 2437: 151 expected_val = 0x00080984; /* ch 6 */ 152 break; 153 case 2442: 154 expected_val = 0x00100988; /* ch 7 */ 155 break; 156 case 2447: 157 expected_val = 0x0018098c; /* ch 8 */ 158 break; 159 case 2452: 160 expected_val = 0x00000994; /* ch 9 */ 161 break; 162 case 2457: 163 expected_val = 0x00080998; /* ch 10 */ 164 break; 165 case 2462: 166 expected_val = 0x0010099c; /* ch 11 */ 167 break; 168 case 2467: 169 expected_val = 0x001809a0; /* ch 12 */ 170 break; 171 case 2472: 172 expected_val = 0x000009a8; /* ch 13 */ 173 break; 174 case 2484: 175 expected_val = 0x000009b4; /* ch 14 */ 176 break; 177 } 178 KASSERT(val == expected_val); 179 } 180 181 /* freq is in MHz */ 182 static int 183 rtw_sa2400_tune(struct rtw_rf *rf, u_int freq) 184 { 185 struct rtw_sa2400 *sa = (struct rtw_sa2400 *)rf; 186 struct rtw_rfbus *bus = &sa->sa_bus; 187 int rc; 188 uint32_t syna, synb, sync; 189 190 /* XO = 44MHz, R = 11, hence N is in units of XO / R = 4MHz. 191 * 192 * The channel spacing (5MHz) is not divisible by 4MHz, so 193 * we set the fractional part of N to compensate. 194 */ 195 int n = freq / 4, nf = (freq % 4) * 2; 196 197 syna = LSHIFT(nf, SA2400_SYNA_NF_MASK) | LSHIFT(n, SA2400_SYNA_N_MASK); 198 verify_syna(freq, syna); 199 200 /* Divide the 44MHz crystal down to 4MHz. Set the fractional 201 * compensation charge pump value to agree with the fractional 202 * modulus. 203 */ 204 synb = LSHIFT(11, SA2400_SYNB_R_MASK) | SA2400_SYNB_L_NORMAL | 205 SA2400_SYNB_ON | SA2400_SYNB_ONE | 206 LSHIFT(80, SA2400_SYNB_FC_MASK); /* agrees w/ SA2400_SYNA_FM = 0 */ 207 208 sync = SA2400_SYNC_CP_NORMAL; 209 210 if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_PHILIPS, SA2400_SYNA, 211 syna)) != 0) 212 return rc; 213 if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_PHILIPS, SA2400_SYNB, 214 synb)) != 0) 215 return rc; 216 if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_PHILIPS, SA2400_SYNC, 217 sync)) != 0) 218 return rc; 219 return rtw_rfbus_write(bus, RTW_RFCHIPID_PHILIPS, SA2400_SYND, 0x0); 220 } 221 222 static int 223 rtw_sa2400_pwrstate(struct rtw_rf *rf, enum rtw_pwrstate power) 224 { 225 struct rtw_sa2400 *sa = (struct rtw_sa2400 *)rf; 226 struct rtw_rfbus *bus = &sa->sa_bus; 227 uint32_t opmode; 228 opmode = SA2400_OPMODE_DEFAULTS; 229 switch (power) { 230 case RTW_ON: 231 opmode |= SA2400_OPMODE_MODE_TXRX; 232 break; 233 case RTW_SLEEP: 234 opmode |= SA2400_OPMODE_MODE_WAIT; 235 break; 236 case RTW_OFF: 237 opmode |= SA2400_OPMODE_MODE_SLEEP; 238 break; 239 } 240 241 if (sa->sa_digphy) 242 opmode |= SA2400_OPMODE_DIGIN; 243 244 return rtw_rfbus_write(bus, RTW_RFCHIPID_PHILIPS, SA2400_OPMODE, 245 opmode); 246 } 247 248 static int 249 rtw_sa2400_manrx_init(struct rtw_sa2400 *sa) 250 { 251 uint32_t manrx; 252 253 /* XXX we are not supposed to be in RXMGC mode when we do 254 * this? 255 */ 256 manrx = SA2400_MANRX_AHSN; 257 manrx |= SA2400_MANRX_TEN; 258 manrx |= LSHIFT(1023, SA2400_MANRX_RXGAIN_MASK); 259 260 return rtw_rfbus_write(&sa->sa_bus, RTW_RFCHIPID_PHILIPS, SA2400_MANRX, 261 manrx); 262 } 263 264 static int 265 rtw_sa2400_vcocal_start(struct rtw_sa2400 *sa, int start) 266 { 267 uint32_t opmode; 268 269 opmode = SA2400_OPMODE_DEFAULTS; 270 if (start) 271 opmode |= SA2400_OPMODE_MODE_VCOCALIB; 272 else 273 opmode |= SA2400_OPMODE_MODE_SLEEP; 274 275 if (sa->sa_digphy) 276 opmode |= SA2400_OPMODE_DIGIN; 277 278 return rtw_rfbus_write(&sa->sa_bus, RTW_RFCHIPID_PHILIPS, SA2400_OPMODE, 279 opmode); 280 } 281 282 static int 283 rtw_sa2400_vco_calibration(struct rtw_sa2400 *sa) 284 { 285 int rc; 286 /* calibrate VCO */ 287 if ((rc = rtw_sa2400_vcocal_start(sa, 1)) != 0) 288 return rc; 289 DELAY(2200); /* 2.2 milliseconds */ 290 /* XXX superfluous: SA2400 automatically entered SLEEP mode. */ 291 return rtw_sa2400_vcocal_start(sa, 0); 292 } 293 294 static int 295 rtw_sa2400_filter_calibration(struct rtw_sa2400 *sa) 296 { 297 uint32_t opmode; 298 299 opmode = SA2400_OPMODE_DEFAULTS | SA2400_OPMODE_MODE_FCALIB; 300 if (sa->sa_digphy) 301 opmode |= SA2400_OPMODE_DIGIN; 302 303 return rtw_rfbus_write(&sa->sa_bus, RTW_RFCHIPID_PHILIPS, SA2400_OPMODE, 304 opmode); 305 } 306 307 static int 308 rtw_sa2400_dc_calibration(struct rtw_sa2400 *sa) 309 { 310 struct rtw_rf *rf = &sa->sa_rf; 311 int rc; 312 uint32_t dccal; 313 314 (*rf->rf_continuous_tx_cb)(rf->rf_continuous_tx_arg, 1); 315 316 dccal = SA2400_OPMODE_DEFAULTS | SA2400_OPMODE_MODE_TXRX; 317 318 rc = rtw_rfbus_write(&sa->sa_bus, RTW_RFCHIPID_PHILIPS, SA2400_OPMODE, 319 dccal); 320 if (rc != 0) 321 return rc; 322 323 DELAY(5); /* DCALIB after being in Tx mode for 5 324 * microseconds 325 */ 326 327 dccal &= ~SA2400_OPMODE_MODE_MASK; 328 dccal |= SA2400_OPMODE_MODE_DCALIB; 329 330 rc = rtw_rfbus_write(&sa->sa_bus, RTW_RFCHIPID_PHILIPS, SA2400_OPMODE, 331 dccal); 332 if (rc != 0) 333 return rc; 334 335 DELAY(20); /* calibration takes at most 20 microseconds */ 336 337 (*rf->rf_continuous_tx_cb)(rf->rf_continuous_tx_arg, 0); 338 339 return 0; 340 } 341 342 static int 343 rtw_sa2400_agc_init(struct rtw_sa2400 *sa) 344 { 345 uint32_t agc; 346 347 agc = LSHIFT(25, SA2400_AGC_MAXGAIN_MASK); 348 agc |= LSHIFT(7, SA2400_AGC_BBPDELAY_MASK); 349 agc |= LSHIFT(15, SA2400_AGC_LNADELAY_MASK); 350 agc |= LSHIFT(27, SA2400_AGC_RXONDELAY_MASK); 351 352 return rtw_rfbus_write(&sa->sa_bus, RTW_RFCHIPID_PHILIPS, SA2400_AGC, 353 agc); 354 } 355 356 static void 357 rtw_sa2400_destroy(struct rtw_rf *rf) 358 { 359 struct rtw_sa2400 *sa = (struct rtw_sa2400 *)rf; 360 memset(sa, 0, sizeof(*sa)); 361 free(sa, M_DEVBUF); 362 } 363 364 static int 365 rtw_sa2400_calibrate(struct rtw_rf *rf, u_int freq) 366 { 367 struct rtw_sa2400 *sa = (struct rtw_sa2400 *)rf; 368 int i, rc; 369 370 /* XXX reference driver calibrates VCO twice. Is it a bug? */ 371 for (i = 0; i < 2; i++) { 372 if ((rc = rtw_sa2400_vco_calibration(sa)) != 0) 373 return rc; 374 } 375 /* VCO calibration erases synthesizer registers, so re-tune */ 376 if ((rc = rtw_sa2400_tune(rf, freq)) != 0) 377 return rc; 378 if ((rc = rtw_sa2400_filter_calibration(sa)) != 0) 379 return rc; 380 /* analog PHY needs DC calibration */ 381 if (!sa->sa_digphy) 382 return rtw_sa2400_dc_calibration(sa); 383 return 0; 384 } 385 386 static int 387 rtw_sa2400_init(struct rtw_rf *rf, u_int freq, uint8_t opaque_txpower, 388 enum rtw_pwrstate power) 389 { 390 struct rtw_sa2400 *sa = (struct rtw_sa2400 *)rf; 391 int rc; 392 393 if ((rc = rtw_sa2400_txpower(rf, opaque_txpower)) != 0) 394 return rc; 395 396 /* skip configuration if it's time to sleep or to power-down. */ 397 if (power == RTW_SLEEP || power == RTW_OFF) 398 return rtw_sa2400_pwrstate(rf, power); 399 400 /* go to sleep for configuration */ 401 if ((rc = rtw_sa2400_pwrstate(rf, RTW_SLEEP)) != 0) 402 return rc; 403 404 if ((rc = rtw_sa2400_tune(rf, freq)) != 0) 405 return rc; 406 if ((rc = rtw_sa2400_agc_init(sa)) != 0) 407 return rc; 408 if ((rc = rtw_sa2400_manrx_init(sa)) != 0) 409 return rc; 410 if ((rc = rtw_sa2400_calibrate(rf, freq)) != 0) 411 return rc; 412 413 /* enter Tx/Rx mode */ 414 return rtw_sa2400_pwrstate(rf, power); 415 } 416 417 struct rtw_rf * 418 rtw_sa2400_create(struct rtw_regs *regs, rtw_rf_write_t rf_write, int digphy) 419 { 420 struct rtw_sa2400 *sa; 421 struct rtw_rfbus *bus; 422 struct rtw_rf *rf; 423 struct rtw_bbpset *bb; 424 425 sa = malloc(sizeof(*sa), M_DEVBUF, M_NOWAIT | M_ZERO); 426 if (sa == NULL) 427 return NULL; 428 429 sa->sa_digphy = digphy; 430 431 rf = &sa->sa_rf; 432 bus = &sa->sa_bus; 433 434 rf->rf_init = rtw_sa2400_init; 435 rf->rf_destroy = rtw_sa2400_destroy; 436 rf->rf_txpower = rtw_sa2400_txpower; 437 rf->rf_tune = rtw_sa2400_tune; 438 rf->rf_pwrstate = rtw_sa2400_pwrstate; 439 bb = &rf->rf_bbpset; 440 441 /* XXX magic */ 442 bb->bb_antatten = RTW_BBP_ANTATTEN_PHILIPS_MAGIC; 443 bb->bb_chestlim = 0x00; 444 bb->bb_chsqlim = 0xa0; 445 bb->bb_ifagcdet = 0x64; 446 bb->bb_ifagcini = 0x90; 447 bb->bb_ifagclimit = 0x1a; 448 bb->bb_lnadet = 0xe0; 449 bb->bb_sys1 = 0x98; 450 bb->bb_sys2 = 0x47; 451 bb->bb_sys3 = 0x90; 452 bb->bb_trl = 0x88; 453 bb->bb_txagc = 0x38; 454 455 bus->b_regs = regs; 456 bus->b_write = rf_write; 457 458 return &sa->sa_rf; 459 } 460 461 static int 462 rtw_grf5101_txpower(struct rtw_rf *rf, uint8_t opaque_txpower) 463 { 464 struct rtw_grf5101 *gr = (struct rtw_grf5101 *)rf; 465 466 GCT_WRITE(gr, 0x15, 0, err); 467 GCT_WRITE(gr, 0x06, opaque_txpower, err); 468 GCT_WRITE(gr, 0x15, 0x10, err); 469 GCT_WRITE(gr, 0x15, 0x00, err); 470 return 0; 471 err: 472 return -1; 473 } 474 475 static int 476 rtw_grf5101_pwrstate(struct rtw_rf *rf, enum rtw_pwrstate power) 477 { 478 struct rtw_grf5101 *gr = (struct rtw_grf5101 *)rf; 479 switch (power) { 480 case RTW_OFF: 481 case RTW_SLEEP: 482 GCT_WRITE(gr, 0x07, 0x0000, err); 483 GCT_WRITE(gr, 0x1f, 0x0045, err); 484 GCT_WRITE(gr, 0x1f, 0x0005, err); 485 GCT_WRITE(gr, 0x00, 0x08e4, err); 486 default: 487 break; 488 case RTW_ON: 489 GCT_WRITE(gr, 0x1f, 0x0001, err); 490 DELAY(10); 491 GCT_WRITE(gr, 0x1f, 0x0001, err); 492 DELAY(10); 493 GCT_WRITE(gr, 0x1f, 0x0041, err); 494 DELAY(10); 495 GCT_WRITE(gr, 0x1f, 0x0061, err); 496 DELAY(10); 497 GCT_WRITE(gr, 0x00, 0x0ae4, err); 498 DELAY(10); 499 GCT_WRITE(gr, 0x07, 0x1000, err); 500 DELAY(100); 501 break; 502 } 503 504 return 0; 505 err: 506 return -1; 507 } 508 509 static int 510 rtw_grf5101_tune(struct rtw_rf *rf, u_int freq) 511 { 512 int channel; 513 struct rtw_grf5101 *gr = (struct rtw_grf5101 *)rf; 514 515 if (freq == 2484) 516 channel = 14; 517 else if ((channel = (freq - 2412) / 5 + 1) < 1 || channel > 13) { 518 RTW_DPRINTF(RTW_DEBUG_PHY, 519 ("%s: invalid channel %d (freq %d)\n", __func__, channel, 520 freq)); 521 return -1; 522 } 523 524 GCT_WRITE(gr, 0x07, 0, err); 525 GCT_WRITE(gr, 0x0b, channel - 1, err); 526 GCT_WRITE(gr, 0x07, 0x1000, err); 527 return 0; 528 err: 529 return -1; 530 } 531 532 static int 533 rtw_grf5101_init(struct rtw_rf *rf, u_int freq, uint8_t opaque_txpower, 534 enum rtw_pwrstate power) 535 { 536 int rc; 537 struct rtw_grf5101 *gr = (struct rtw_grf5101 *)rf; 538 539 /* 540 * These values have been derived from the rtl8180-sa2400 541 * Linux driver. It is unknown what they all do, GCT refuse 542 * to release any documentation so these are more than 543 * likely sub optimal settings 544 */ 545 546 GCT_WRITE(gr, 0x01, 0x1a23, err); 547 GCT_WRITE(gr, 0x02, 0x4971, err); 548 GCT_WRITE(gr, 0x03, 0x41de, err); 549 GCT_WRITE(gr, 0x04, 0x2d80, err); 550 551 GCT_WRITE(gr, 0x05, 0x61ff, err); 552 553 GCT_WRITE(gr, 0x06, 0x0, err); 554 555 GCT_WRITE(gr, 0x08, 0x7533, err); 556 GCT_WRITE(gr, 0x09, 0xc401, err); 557 GCT_WRITE(gr, 0x0a, 0x0, err); 558 GCT_WRITE(gr, 0x0c, 0x1c7, err); 559 GCT_WRITE(gr, 0x0d, 0x29d3, err); 560 GCT_WRITE(gr, 0x0e, 0x2e8, err); 561 GCT_WRITE(gr, 0x10, 0x192, err); 562 GCT_WRITE(gr, 0x11, 0x248, err); 563 GCT_WRITE(gr, 0x12, 0x0, err); 564 GCT_WRITE(gr, 0x13, 0x20c4, err); 565 GCT_WRITE(gr, 0x14, 0xf4fc, err); 566 GCT_WRITE(gr, 0x15, 0x0, err); 567 GCT_WRITE(gr, 0x16, 0x1500, err); 568 569 if ((rc = rtw_grf5101_txpower(rf, opaque_txpower)) != 0) 570 return rc; 571 572 if ((rc = rtw_grf5101_tune(rf, freq)) != 0) 573 return rc; 574 575 return 0; 576 err: 577 return -1; 578 } 579 580 static void 581 rtw_grf5101_destroy(struct rtw_rf *rf) 582 { 583 struct rtw_grf5101 *gr = (struct rtw_grf5101 *)rf; 584 memset(gr, 0, sizeof(*gr)); 585 free(gr, M_DEVBUF); 586 } 587 588 struct rtw_rf * 589 rtw_grf5101_create(struct rtw_regs *regs, rtw_rf_write_t rf_write, int digphy) 590 { 591 struct rtw_grf5101 *gr; 592 struct rtw_rfbus *bus; 593 struct rtw_rf *rf; 594 struct rtw_bbpset *bb; 595 596 gr = malloc(sizeof(*gr), M_DEVBUF, M_NOWAIT | M_ZERO); 597 if (gr == NULL) 598 return NULL; 599 600 rf = &gr->gr_rf; 601 bus = &gr->gr_bus; 602 603 rf->rf_init = rtw_grf5101_init; 604 rf->rf_destroy = rtw_grf5101_destroy; 605 rf->rf_txpower = rtw_grf5101_txpower; 606 rf->rf_tune = rtw_grf5101_tune; 607 rf->rf_pwrstate = rtw_grf5101_pwrstate; 608 bb = &rf->rf_bbpset; 609 610 /* XXX magic */ 611 bb->bb_antatten = RTW_BBP_ANTATTEN_GCT_MAGIC; 612 bb->bb_chestlim = 0x00; 613 bb->bb_chsqlim = 0xa0; 614 bb->bb_ifagcdet = 0x64; 615 bb->bb_ifagcini = 0x90; 616 bb->bb_ifagclimit = 0x1e; 617 bb->bb_lnadet = 0xc0; 618 bb->bb_sys1 = 0xa8; 619 bb->bb_sys2 = 0x47; 620 bb->bb_sys3 = 0x9b; 621 bb->bb_trl = 0x88; 622 bb->bb_txagc = 0x08; 623 624 bus->b_regs = regs; 625 bus->b_write = rf_write; 626 627 return &gr->gr_rf; 628 } 629 630 /* freq is in MHz */ 631 static int 632 rtw_max2820_tune(struct rtw_rf *rf, u_int freq) 633 { 634 struct rtw_max2820 *mx = (struct rtw_max2820 *)rf; 635 struct rtw_rfbus *bus = &mx->mx_bus; 636 637 if (freq < 2400 || freq > 2499) 638 return -1; 639 640 return rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_CHANNEL, 641 LSHIFT(freq - 2400, MAX2820_CHANNEL_CF_MASK)); 642 } 643 644 static void 645 rtw_max2820_destroy(struct rtw_rf *rf) 646 { 647 struct rtw_max2820 *mx = (struct rtw_max2820 *)rf; 648 memset(mx, 0, sizeof(*mx)); 649 free(mx, M_DEVBUF); 650 } 651 652 static int 653 rtw_max2820_init(struct rtw_rf *rf, u_int freq, uint8_t opaque_txpower, 654 enum rtw_pwrstate power) 655 { 656 struct rtw_max2820 *mx = (struct rtw_max2820 *)rf; 657 struct rtw_rfbus *bus = &mx->mx_bus; 658 int rc; 659 660 if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_TEST, 661 MAX2820_TEST_DEFAULT)) != 0) 662 return rc; 663 664 if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_ENABLE, 665 MAX2820_ENABLE_DEFAULT)) != 0) 666 return rc; 667 668 /* skip configuration if it's time to sleep or to power-down. */ 669 if ((rc = rtw_max2820_pwrstate(rf, power)) != 0) 670 return rc; 671 else if (power == RTW_OFF || power == RTW_SLEEP) 672 return 0; 673 674 if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_SYNTH, 675 MAX2820_SYNTH_R_44MHZ)) != 0) 676 return rc; 677 678 if ((rc = rtw_max2820_tune(rf, freq)) != 0) 679 return rc; 680 681 /* XXX The MAX2820 datasheet indicates that 1C and 2C should not 682 * be changed from 7, however, the reference driver sets them 683 * to 4 and 1, respectively. 684 */ 685 if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_RECEIVE, 686 MAX2820_RECEIVE_DL_DEFAULT | 687 LSHIFT(4, MAX2820A_RECEIVE_1C_MASK) | 688 LSHIFT(1, MAX2820A_RECEIVE_2C_MASK))) != 0) 689 return rc; 690 691 return rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_TRANSMIT, 692 MAX2820_TRANSMIT_PA_DEFAULT); 693 } 694 695 static int 696 rtw_max2820_txpower(struct rtw_rf *rf, uint8_t opaque_txpower) 697 { 698 /* TBD */ 699 return 0; 700 } 701 702 static int 703 rtw_max2820_pwrstate(struct rtw_rf *rf, enum rtw_pwrstate power) 704 { 705 uint32_t enable; 706 struct rtw_max2820 *mx; 707 struct rtw_rfbus *bus; 708 709 mx = (struct rtw_max2820 *)rf; 710 bus = &mx->mx_bus; 711 712 switch (power) { 713 case RTW_OFF: 714 case RTW_SLEEP: 715 default: 716 enable = 0x0; 717 break; 718 case RTW_ON: 719 enable = MAX2820_ENABLE_DEFAULT; 720 break; 721 } 722 return rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_ENABLE, enable); 723 } 724 725 struct rtw_rf * 726 rtw_max2820_create(struct rtw_regs *regs, rtw_rf_write_t rf_write, int is_a) 727 { 728 struct rtw_max2820 *mx; 729 struct rtw_rfbus *bus; 730 struct rtw_rf *rf; 731 struct rtw_bbpset *bb; 732 733 mx = malloc(sizeof(*mx), M_DEVBUF, M_NOWAIT | M_ZERO); 734 if (mx == NULL) 735 return NULL; 736 737 mx->mx_is_a = is_a; 738 739 rf = &mx->mx_rf; 740 bus = &mx->mx_bus; 741 742 rf->rf_init = rtw_max2820_init; 743 rf->rf_destroy = rtw_max2820_destroy; 744 rf->rf_txpower = rtw_max2820_txpower; 745 rf->rf_tune = rtw_max2820_tune; 746 rf->rf_pwrstate = rtw_max2820_pwrstate; 747 bb = &rf->rf_bbpset; 748 749 /* XXX magic */ 750 bb->bb_antatten = RTW_BBP_ANTATTEN_MAXIM_MAGIC; 751 bb->bb_chestlim = 0; 752 bb->bb_chsqlim = 159; 753 bb->bb_ifagcdet = 100; 754 bb->bb_ifagcini = 144; 755 bb->bb_ifagclimit = 26; 756 bb->bb_lnadet = 248; 757 bb->bb_sys1 = 136; 758 bb->bb_sys2 = 71; 759 bb->bb_sys3 = 155; 760 bb->bb_trl = 136; 761 bb->bb_txagc = 8; 762 763 bus->b_regs = regs; 764 bus->b_write = rf_write; 765 766 return &mx->mx_rf; 767 } 768 769 /* freq is in MHz */ 770 int 771 rtw_phy_init(struct rtw_regs *regs, struct rtw_rf *rf, uint8_t opaque_txpower, 772 uint8_t cs_threshold, u_int freq, int antdiv, int dflantb, 773 enum rtw_pwrstate power) 774 { 775 int rc; 776 RTW_DPRINTF(RTW_DEBUG_PHY, 777 ("%s: txpower %u csthresh %u freq %u antdiv %u dflantb %u " 778 "pwrstate %s\n", __func__, opaque_txpower, cs_threshold, freq, 779 antdiv, dflantb, rtw_pwrstate_string(power))); 780 781 /* XXX is this really necessary? */ 782 if ((rc = rtw_rf_txpower(rf, opaque_txpower)) != 0) 783 return rc; 784 if ((rc = rtw_bbp_preinit(regs, rf->rf_bbpset.bb_antatten, dflantb, 785 freq)) != 0) 786 return rc; 787 if ((rc = rtw_rf_tune(rf, freq)) != 0) 788 return rc; 789 /* initialize RF */ 790 if ((rc = rtw_rf_init(rf, freq, opaque_txpower, power)) != 0) 791 return rc; 792 #if 0 /* what is this redundant tx power setting here for? */ 793 if ((rc = rtw_rf_txpower(rf, opaque_txpower)) != 0) 794 return rc; 795 #endif 796 return rtw_bbp_init(regs, &rf->rf_bbpset, antdiv, dflantb, 797 cs_threshold, freq); 798 } 799