xref: /netbsd-src/sys/dev/ic/rtwphy.c (revision 23c8222edbfb0f0932d88a8351d3a0cf817dfb9e)
1 /* $NetBSD: rtwphy.c,v 1.1 2004/09/26 02:29:15 dyoung Exp $ */
2 /*-
3  * Copyright (c) 2004, 2005 David Young.  All rights reserved.
4  *
5  * Programmed for NetBSD by David Young.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. The name of David Young may not be used to endorse or promote
16  *    products derived from this software without specific prior
17  *    written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY David Young ``AS IS'' AND ANY
20  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
22  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL David
23  * Young BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
25  * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
28  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
30  * OF SUCH DAMAGE.
31  */
32 /*
33  * Control the Philips SA2400 RF front-end and the baseband processor
34  * built into the Realtek RTL8180.
35  */
36 
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: rtwphy.c,v 1.1 2004/09/26 02:29:15 dyoung Exp $");
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/types.h>
43 
44 #include <machine/bus.h>
45 
46 #include <net/if.h>
47 #include <net/if_media.h>
48 #include <net/if_ether.h>
49 
50 #include <net80211/ieee80211_var.h>
51 #include <net80211/ieee80211_compat.h>
52 #include <net80211/ieee80211_radiotap.h>
53 
54 #include <dev/ic/rtwreg.h>
55 #include <dev/ic/max2820reg.h>
56 #include <dev/ic/sa2400reg.h>
57 #include <dev/ic/rtwvar.h>
58 #include <dev/ic/rtwphyio.h>
59 #include <dev/ic/rtwphy.h>
60 
61 static int rtw_max2820_pwrstate(struct rtw_rf *, enum rtw_pwrstate);
62 static int rtw_sa2400_pwrstate(struct rtw_rf *, enum rtw_pwrstate);
63 
64 static int
65 rtw_bbp_preinit(struct rtw_regs *regs, u_int antatten0, int dflantb,
66     u_int freq)
67 {
68 	u_int antatten = antatten0;
69 	if (dflantb)
70 		antatten |= RTW_BBP_ANTATTEN_DFLANTB;
71 	if (freq == 2484) /* channel 14 */
72 		antatten |= RTW_BBP_ANTATTEN_CHAN14;
73 	return rtw_bbp_write(regs, RTW_BBP_ANTATTEN, antatten);
74 }
75 
76 static int
77 rtw_bbp_init(struct rtw_regs *regs, struct rtw_bbpset *bb, int antdiv,
78     int dflantb, u_int8_t cs_threshold, u_int freq)
79 {
80 	int rc;
81 	u_int32_t sys2, sys3;
82 
83 	sys2 = bb->bb_sys2;
84 	if (antdiv)
85 		sys2 |= RTW_BBP_SYS2_ANTDIV;
86 	sys3 = bb->bb_sys3 |
87 	    LSHIFT(cs_threshold, RTW_BBP_SYS3_CSTHRESH_MASK);
88 
89 #define	RTW_BBP_WRITE_OR_RETURN(reg, val) \
90 	if ((rc = rtw_bbp_write(regs, reg, val)) != 0) \
91 		return rc;
92 
93 	RTW_BBP_WRITE_OR_RETURN(RTW_BBP_SYS1,		bb->bb_sys1);
94 	RTW_BBP_WRITE_OR_RETURN(RTW_BBP_TXAGC,		bb->bb_txagc);
95 	RTW_BBP_WRITE_OR_RETURN(RTW_BBP_LNADET,		bb->bb_lnadet);
96 	RTW_BBP_WRITE_OR_RETURN(RTW_BBP_IFAGCINI,	bb->bb_ifagcini);
97 	RTW_BBP_WRITE_OR_RETURN(RTW_BBP_IFAGCLIMIT,	bb->bb_ifagclimit);
98 	RTW_BBP_WRITE_OR_RETURN(RTW_BBP_IFAGCDET,	bb->bb_ifagcdet);
99 
100 	if ((rc = rtw_bbp_preinit(regs, bb->bb_antatten, dflantb, freq)) != 0)
101 		return rc;
102 
103 	RTW_BBP_WRITE_OR_RETURN(RTW_BBP_TRL,		bb->bb_trl);
104 	RTW_BBP_WRITE_OR_RETURN(RTW_BBP_SYS2,		sys2);
105 	RTW_BBP_WRITE_OR_RETURN(RTW_BBP_SYS3,		sys3);
106 	RTW_BBP_WRITE_OR_RETURN(RTW_BBP_CHESTLIM,	bb->bb_chestlim);
107 	RTW_BBP_WRITE_OR_RETURN(RTW_BBP_CHSQLIM,	bb->bb_chsqlim);
108 	return 0;
109 }
110 
111 static int
112 rtw_sa2400_txpower(struct rtw_rf *rf, u_int8_t opaque_txpower)
113 {
114 	struct rtw_sa2400 *sa = (struct rtw_sa2400 *)rf;
115 	struct rtw_rfbus *bus = &sa->sa_bus;
116 
117 	return rtw_rfbus_write(bus, RTW_RFCHIPID_PHILIPS, SA2400_TX,
118 	    opaque_txpower);
119 }
120 
121 /* make sure we're using the same settings as the reference driver */
122 static void
123 verify_syna(u_int freq, u_int32_t val)
124 {
125 	u_int32_t expected_val = ~val;
126 
127 	switch (freq) {
128 	case 2412:
129 		expected_val = 0x0000096c; /* ch 1 */
130 		break;
131 	case 2417:
132 		expected_val = 0x00080970; /* ch 2 */
133 		break;
134 	case 2422:
135 		expected_val = 0x00100974; /* ch 3 */
136 		break;
137 	case 2427:
138 		expected_val = 0x00180978; /* ch 4 */
139 		break;
140 	case 2432:
141 		expected_val = 0x00000980; /* ch 5 */
142 		break;
143 	case 2437:
144 		expected_val = 0x00080984; /* ch 6 */
145 		break;
146 	case 2442:
147 		expected_val = 0x00100988; /* ch 7 */
148 		break;
149 	case 2447:
150 		expected_val = 0x0018098c; /* ch 8 */
151 		break;
152 	case 2452:
153 		expected_val = 0x00000994; /* ch 9 */
154 		break;
155 	case 2457:
156 		expected_val = 0x00080998; /* ch 10 */
157 		break;
158 	case 2462:
159 		expected_val = 0x0010099c; /* ch 11 */
160 		break;
161 	case 2467:
162 		expected_val = 0x001809a0; /* ch 12 */
163 		break;
164         case 2472:
165 		expected_val = 0x000009a8; /* ch 13 */
166 		break;
167         case 2484:
168 		expected_val = 0x000009b4; /* ch 14 */
169 		break;
170 	}
171 	KASSERT(val == expected_val);
172 }
173 
174 /* freq is in MHz */
175 static int
176 rtw_sa2400_tune(struct rtw_rf *rf, u_int freq)
177 {
178 	struct rtw_sa2400 *sa = (struct rtw_sa2400 *)rf;
179 	struct rtw_rfbus *bus = &sa->sa_bus;
180 	int rc;
181 	u_int32_t syna, synb, sync;
182 
183 	/* XO = 44MHz, R = 11, hence N is in units of XO / R = 4MHz.
184 	 *
185 	 * The channel spacing (5MHz) is not divisible by 4MHz, so
186 	 * we set the fractional part of N to compensate.
187 	 */
188 	int n = freq / 4, nf = (freq % 4) * 2;
189 
190 	syna = LSHIFT(nf, SA2400_SYNA_NF_MASK) | LSHIFT(n, SA2400_SYNA_N_MASK);
191 	verify_syna(freq, syna);
192 
193 	/* Divide the 44MHz crystal down to 4MHz. Set the fractional
194 	 * compensation charge pump value to agree with the fractional
195 	 * modulus.
196 	 */
197 	synb = LSHIFT(11, SA2400_SYNB_R_MASK) | SA2400_SYNB_L_NORMAL |
198 	    SA2400_SYNB_ON | SA2400_SYNB_ONE |
199 	    LSHIFT(80, SA2400_SYNB_FC_MASK); /* agrees w/ SA2400_SYNA_FM = 0 */
200 
201 	sync = SA2400_SYNC_CP_NORMAL;
202 
203 	if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_PHILIPS, SA2400_SYNA,
204 	    syna)) != 0)
205 		return rc;
206 	if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_PHILIPS, SA2400_SYNB,
207 	    synb)) != 0)
208 		return rc;
209 	if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_PHILIPS, SA2400_SYNC,
210 	    sync)) != 0)
211 		return rc;
212 	return rtw_rfbus_write(bus, RTW_RFCHIPID_PHILIPS, SA2400_SYND, 0x0);
213 }
214 
215 static int
216 rtw_sa2400_pwrstate(struct rtw_rf *rf, enum rtw_pwrstate power)
217 {
218 	struct rtw_sa2400 *sa = (struct rtw_sa2400 *)rf;
219 	struct rtw_rfbus *bus = &sa->sa_bus;
220 	u_int32_t opmode;
221 	opmode = SA2400_OPMODE_XO;
222 	opmode |= SA2400_OPMODE_RXLV;
223 	opmode |= SA2400_OPMODE_CLK;
224 	opmode |= SA2400_OPMODE_I0P3;
225 	opmode |= LSHIFT(3, SA2400_OPMODE_FILTTUNE_MASK);
226 	switch (power) {
227 	case RTW_ON:
228 		opmode |= SA2400_OPMODE_MODE_TXRX;
229 		break;
230 	case RTW_SLEEP:
231 		opmode |= SA2400_OPMODE_MODE_WAIT;
232 		break;
233 	case RTW_OFF:
234 		opmode |= SA2400_OPMODE_MODE_SLEEP;
235 		break;
236 	}
237 
238 	if (sa->sa_digphy)
239 		opmode |= SA2400_OPMODE_DIGIN;
240 
241 	return rtw_rfbus_write(bus, RTW_RFCHIPID_PHILIPS, SA2400_OPMODE,
242 	    opmode);
243 }
244 
245 static int
246 rtw_sa2400_manrx_init(struct rtw_sa2400 *sa)
247 {
248 	u_int32_t manrx;
249 
250 	/* XXX we are not supposed to be in RXMGC mode when we do
251 	 * this?
252 	 */
253 	manrx = SA2400_MANRX_AHSN;
254 	manrx |= SA2400_MANRX_TEN;
255 	manrx |= LSHIFT(1023, SA2400_MANRX_RXGAIN_MASK);
256 
257 	return rtw_rfbus_write(&sa->sa_bus, RTW_RFCHIPID_PHILIPS, SA2400_MANRX,
258 	    manrx);
259 }
260 
261 static int
262 rtw_sa2400_vcocal_start(struct rtw_sa2400 *sa, int start)
263 {
264 	u_int32_t opmode;
265 
266 	opmode = SA2400_OPMODE_XO;
267 	opmode |= SA2400_OPMODE_RXLV;
268 	opmode |= SA2400_OPMODE_CLK;
269 	opmode |= SA2400_OPMODE_I0P3;
270 	opmode |= LSHIFT(3, SA2400_OPMODE_FILTTUNE_MASK);
271 	if (start)
272 		opmode |= SA2400_OPMODE_MODE_VCOCALIB;
273 	else
274 		opmode |= SA2400_OPMODE_MODE_SLEEP;
275 
276 	if (sa->sa_digphy)
277 		opmode |= SA2400_OPMODE_DIGIN;
278 
279 	return rtw_rfbus_write(&sa->sa_bus, RTW_RFCHIPID_PHILIPS, SA2400_OPMODE,
280 	    opmode);
281 }
282 
283 static int
284 rtw_sa2400_vco_calibration(struct rtw_sa2400 *sa)
285 {
286 	int rc;
287 	/* calibrate VCO */
288 	if ((rc = rtw_sa2400_vcocal_start(sa, 1)) != 0)
289 		return rc;
290 	DELAY(2200);	/* 2.2 milliseconds */
291 	/* XXX superfluous: SA2400 automatically entered SLEEP mode. */
292 	return rtw_sa2400_vcocal_start(sa, 0);
293 }
294 
295 static int
296 rtw_sa2400_filter_calibration(struct rtw_sa2400 *sa)
297 {
298 	u_int32_t opmode;
299 
300 	opmode = SA2400_OPMODE_XO;
301 	opmode |= SA2400_OPMODE_RXLV;
302 	opmode |= SA2400_OPMODE_CLK;
303 	opmode |= SA2400_OPMODE_I0P3;
304 	opmode |= LSHIFT(3, SA2400_OPMODE_FILTTUNE_MASK);
305 	opmode |= SA2400_OPMODE_MODE_FCALIB;
306 	if (sa->sa_digphy)
307 		opmode |= SA2400_OPMODE_DIGIN;
308 
309 	return rtw_rfbus_write(&sa->sa_bus, RTW_RFCHIPID_PHILIPS, SA2400_OPMODE,
310 	    opmode);
311 }
312 
313 static int
314 rtw_sa2400_dc_calibration(struct rtw_sa2400 *sa)
315 {
316 	struct rtw_rf *rf = &sa->sa_rf;
317 	int rc;
318 	u_int32_t dccal;
319 
320 	(*rf->rf_continuous_tx_cb)(rf->rf_continuous_tx_arg, 1);
321 
322 	dccal = SA2400_OPMODE_XO;
323 	dccal |= SA2400_OPMODE_RXLV;
324 	dccal |= SA2400_OPMODE_CLK;
325 	dccal |= SA2400_OPMODE_I0P3;
326 	dccal |= LSHIFT(3, SA2400_OPMODE_FILTTUNE_MASK);
327 	dccal |= SA2400_OPMODE_MODE_TXRX;
328 
329 	rc = rtw_rfbus_write(&sa->sa_bus, RTW_RFCHIPID_PHILIPS, SA2400_OPMODE,
330 	    dccal);
331 	if (rc != 0)
332 		return rc;
333 
334 	DELAY(5);	/* DCALIB after being in Tx mode for 5
335 			 * microseconds
336 			 */
337 
338 	dccal &= ~SA2400_OPMODE_MODE_MASK;
339 	dccal |= SA2400_OPMODE_MODE_DCALIB;
340 
341 	rc = rtw_rfbus_write(&sa->sa_bus, RTW_RFCHIPID_PHILIPS, SA2400_OPMODE,
342 	   dccal);
343 	if (rc != 0)
344 		return rc;
345 
346 	DELAY(20);	/* calibration takes at most 20 microseconds */
347 
348 	(*rf->rf_continuous_tx_cb)(rf->rf_continuous_tx_arg, 0);
349 
350 	return 0;
351 }
352 
353 static int
354 rtw_sa2400_agc_init(struct rtw_sa2400 *sa)
355 {
356 	u_int32_t agc;
357 
358 	agc = LSHIFT(25, SA2400_AGC_MAXGAIN_MASK);
359 	agc |= LSHIFT(7, SA2400_AGC_BBPDELAY_MASK);
360 	agc |= LSHIFT(15, SA2400_AGC_LNADELAY_MASK);
361 	agc |= LSHIFT(27, SA2400_AGC_RXONDELAY_MASK);
362 
363 	return rtw_rfbus_write(&sa->sa_bus, RTW_RFCHIPID_PHILIPS, SA2400_AGC,
364 	    agc);
365 }
366 
367 static void
368 rtw_sa2400_destroy(struct rtw_rf *rf)
369 {
370 	struct rtw_sa2400 *sa = (struct rtw_sa2400 *)rf;
371 	memset(sa, 0, sizeof(*sa));
372 	free(sa, M_DEVBUF);
373 }
374 
375 static int
376 rtw_sa2400_init(struct rtw_rf *rf, u_int freq, u_int8_t opaque_txpower,
377     enum rtw_pwrstate power)
378 {
379 	struct rtw_sa2400 *sa = (struct rtw_sa2400 *)rf;
380 	int rc;
381 
382 	if ((rc = rtw_sa2400_txpower(rf, opaque_txpower)) != 0)
383 		return rc;
384 
385 	/* skip configuration if it's time to sleep or to power-down. */
386 	if (power == RTW_SLEEP || power == RTW_OFF)
387 		return rtw_sa2400_pwrstate(rf, power);
388 
389 	/* go to sleep for configuration */
390 	if ((rc = rtw_sa2400_pwrstate(rf, RTW_SLEEP)) != 0)
391 		return rc;
392 
393 	if ((rc = rtw_sa2400_agc_init(sa)) != 0)
394 		return rc;
395 	if ((rc = rtw_sa2400_manrx_init(sa)) != 0)
396 		return rc;
397 
398 	/* XXX reference driver calibrates VCO twice. Is it a bug? */
399 	if ((rc = rtw_sa2400_vco_calibration(sa)) != 0)
400 		return rc;
401 	/* VCO calibration erases synthesizer registers */
402 	if ((rc = rtw_sa2400_tune(rf, freq)) != 0)
403 		return rc;
404 	if ((rc = rtw_sa2400_filter_calibration(sa)) != 0)
405 		return rc;
406 	/* analog PHY needs DC calibration */
407 	if (!sa->sa_digphy && (rc = rtw_sa2400_dc_calibration(sa)) != 0)
408 		return rc;
409 	/* enter Tx/Rx mode */
410 	return rtw_sa2400_pwrstate(rf, power);
411 }
412 
413 struct rtw_rf *
414 rtw_sa2400_create(struct rtw_regs *regs, rtw_rf_write_t rf_write, int digphy)
415 {
416 	struct rtw_sa2400 *sa;
417 	struct rtw_rfbus *bus;
418 	struct rtw_rf *rf;
419 	struct rtw_bbpset *bb;
420 
421 	sa = malloc(sizeof(*sa), M_DEVBUF, M_NOWAIT | M_ZERO);
422 	if (sa == NULL)
423 		return NULL;
424 
425 	sa->sa_digphy = digphy;
426 
427 	rf = &sa->sa_rf;
428 	bus = &sa->sa_bus;
429 
430 	rf->rf_init = rtw_sa2400_init;
431 	rf->rf_destroy = rtw_sa2400_destroy;
432 	rf->rf_txpower = rtw_sa2400_txpower;
433 	rf->rf_tune = rtw_sa2400_tune;
434 	rf->rf_pwrstate = rtw_sa2400_pwrstate;
435 	bb = &rf->rf_bbpset;
436 
437 	/* XXX magic */
438 	bb->bb_antatten = RTW_BBP_ANTATTEN_PHILIPS_MAGIC;
439 	bb->bb_chestlim =	0x00;
440 	bb->bb_chsqlim =	0xa0;
441 	bb->bb_ifagcdet =	0x64;
442 	bb->bb_ifagcini =	0x90;
443 	bb->bb_ifagclimit =	0x1a;
444 	bb->bb_lnadet =		0xe0;
445 	bb->bb_sys1 =		0x98;
446 	bb->bb_sys2 =		0x47;
447 	bb->bb_sys3 =		0x90;
448 	bb->bb_trl =		0x88;
449 	bb->bb_txagc =		0x38;
450 
451 	bus->b_regs = regs;
452 	bus->b_write = rf_write;
453 
454 	return &sa->sa_rf;
455 }
456 
457 /* freq is in MHz */
458 static int
459 rtw_max2820_tune(struct rtw_rf *rf, u_int freq)
460 {
461 	struct rtw_max2820 *mx = (struct rtw_max2820 *)rf;
462 	struct rtw_rfbus *bus = &mx->mx_bus;
463 
464 	if (freq < 2400 || freq > 2499)
465 		return -1;
466 
467 	return rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_CHANNEL,
468 	    LSHIFT(freq - 2400, MAX2820_CHANNEL_CF_MASK));
469 }
470 
471 static void
472 rtw_max2820_destroy(struct rtw_rf *rf)
473 {
474 	struct rtw_max2820 *mx = (struct rtw_max2820 *)rf;
475 	memset(mx, 0, sizeof(*mx));
476 	free(mx, M_DEVBUF);
477 }
478 
479 static int
480 rtw_max2820_init(struct rtw_rf *rf, u_int freq, u_int8_t opaque_txpower,
481     enum rtw_pwrstate power)
482 {
483 	struct rtw_max2820 *mx = (struct rtw_max2820 *)rf;
484 	struct rtw_rfbus *bus = &mx->mx_bus;
485 	int rc;
486 
487 	if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_TEST,
488 	    MAX2820_TEST_DEFAULT)) != 0)
489 		return rc;
490 
491 	if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_ENABLE,
492 	    MAX2820_ENABLE_DEFAULT)) != 0)
493 		return rc;
494 
495 	/* skip configuration if it's time to sleep or to power-down. */
496 	if ((rc = rtw_max2820_pwrstate(rf, power)) != 0)
497 		return rc;
498 	else if (power == RTW_OFF || power == RTW_SLEEP)
499 		return 0;
500 
501 	if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_SYNTH,
502 	    MAX2820_SYNTH_R_44MHZ)) != 0)
503 		return rc;
504 
505 	if ((rc = rtw_max2820_tune(rf, freq)) != 0)
506 		return rc;
507 
508 	/* XXX The MAX2820 datasheet indicates that 1C and 2C should not
509 	 * be changed from 7, however, the reference driver sets them
510 	 * to 4 and 1, respectively.
511 	 */
512 	if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_RECEIVE,
513 	    MAX2820_RECEIVE_DL_DEFAULT |
514 	    LSHIFT(4, MAX2820A_RECEIVE_1C_MASK) |
515 	    LSHIFT(1, MAX2820A_RECEIVE_2C_MASK))) != 0)
516 		return rc;
517 
518 	return rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_TRANSMIT,
519 	    MAX2820_TRANSMIT_PA_DEFAULT);
520 }
521 
522 static int
523 rtw_max2820_txpower(struct rtw_rf *rf, u_int8_t opaque_txpower)
524 {
525 	/* TBD */
526 	return 0;
527 }
528 
529 static int
530 rtw_max2820_pwrstate(struct rtw_rf *rf, enum rtw_pwrstate power)
531 {
532 	uint32_t enable;
533 	struct rtw_max2820 *mx;
534 	struct rtw_rfbus *bus;
535 
536 	mx = (struct rtw_max2820 *)rf;
537 	bus = &mx->mx_bus;
538 
539 	switch (power) {
540 	case RTW_OFF:
541 	case RTW_SLEEP:
542 	default:
543 		enable = 0x0;
544 		break;
545 	case RTW_ON:
546 		enable = MAX2820_ENABLE_DEFAULT;
547 		break;
548 	}
549 	return rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_ENABLE, enable);
550 }
551 
552 struct rtw_rf *
553 rtw_max2820_create(struct rtw_regs *regs, rtw_rf_write_t rf_write, int is_a)
554 {
555 	struct rtw_max2820 *mx;
556 	struct rtw_rfbus *bus;
557 	struct rtw_rf *rf;
558 	struct rtw_bbpset *bb;
559 
560 	mx = malloc(sizeof(*mx), M_DEVBUF, M_NOWAIT | M_ZERO);
561 	if (mx == NULL)
562 		return NULL;
563 
564 	mx->mx_is_a = is_a;
565 
566 	rf = &mx->mx_rf;
567 	bus = &mx->mx_bus;
568 
569 	rf->rf_init = rtw_max2820_init;
570 	rf->rf_destroy = rtw_max2820_destroy;
571 	rf->rf_txpower = rtw_max2820_txpower;
572 	rf->rf_tune = rtw_max2820_tune;
573 	rf->rf_pwrstate = rtw_max2820_pwrstate;
574 	bb = &rf->rf_bbpset;
575 
576 	/* XXX magic */
577 	bb->bb_antatten = RTW_BBP_ANTATTEN_MAXIM_MAGIC;
578 	bb->bb_chestlim =	0;
579 	bb->bb_chsqlim =	159;
580 	bb->bb_ifagcdet =	100;
581 	bb->bb_ifagcini =	144;
582 	bb->bb_ifagclimit =	26;
583 	bb->bb_lnadet =		248;
584 	bb->bb_sys1 =		136;
585 	bb->bb_sys2 =		71;
586 	bb->bb_sys3 =		155;
587 	bb->bb_trl =		136;
588 	bb->bb_txagc =		8;
589 
590 	bus->b_regs = regs;
591 	bus->b_write = rf_write;
592 
593 	return &mx->mx_rf;
594 }
595 
596 /* freq is in MHz */
597 int
598 rtw_phy_init(struct rtw_regs *regs, struct rtw_rf *rf, u_int8_t opaque_txpower,
599     u_int8_t cs_threshold, u_int freq, int antdiv, int dflantb,
600     enum rtw_pwrstate power)
601 {
602 	int rc;
603 	RTW_DPRINTF(("%s: txpower %u csthresh %u freq %u antdiv %u dflantb %u "
604 	             "pwrstate %s\n", __func__, opaque_txpower, cs_threshold,
605 	             freq, antdiv, dflantb, rtw_pwrstate_string(power)));
606 
607 	/* XXX is this really necessary? */
608 	if ((rc = rtw_rf_txpower(rf, opaque_txpower)) != 0)
609 		return rc;
610 	if ((rc = rtw_bbp_preinit(regs, rf->rf_bbpset.bb_antatten, dflantb,
611 	    freq)) != 0)
612 		return rc;
613 	if ((rc = rtw_rf_tune(rf, freq)) != 0)
614 		return rc;
615 	/* initialize RF  */
616 	if ((rc = rtw_rf_init(rf, freq, opaque_txpower, power)) != 0)
617 		return rc;
618 #if 0	/* what is this redundant tx power setting here for? */
619 	if ((rc = rtw_rf_txpower(rf, opaque_txpower)) != 0)
620 		return rc;
621 #endif
622 	return rtw_bbp_init(regs, &rf->rf_bbpset, antdiv, dflantb,
623 	    cs_threshold, freq);
624 }
625