xref: /netbsd-src/sys/dev/ic/rtw.c (revision b7b7574d3bf8eeb51a1fa3977b59142ec6434a55)
1 /* $NetBSD: rtw.c,v 1.121 2014/02/25 18:30:09 pooka Exp $ */
2 /*-
3  * Copyright (c) 2004, 2005, 2006, 2007 David Young.  All rights
4  * reserved.
5  *
6  * Programmed for NetBSD by David Young.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY David Young ``AS IS'' AND ANY
18  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
19  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
20  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL David
21  * Young BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
22  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
23  * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
25  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
28  * OF SUCH DAMAGE.
29  */
30 /*
31  * Device driver for the Realtek RTL8180 802.11 MAC/BBP.
32  */
33 
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: rtw.c,v 1.121 2014/02/25 18:30:09 pooka Exp $");
36 
37 
38 #include <sys/param.h>
39 #include <sys/sysctl.h>
40 #include <sys/systm.h>
41 #include <sys/callout.h>
42 #include <sys/mbuf.h>
43 #include <sys/malloc.h>
44 #include <sys/kernel.h>
45 #include <sys/time.h>
46 #include <sys/types.h>
47 #include <sys/device.h>
48 #include <sys/sockio.h>
49 
50 #include <machine/endian.h>
51 #include <sys/bus.h>
52 #include <sys/intr.h>	/* splnet */
53 
54 #include <net/if.h>
55 #include <net/if_media.h>
56 #include <net/if_ether.h>
57 
58 #include <net80211/ieee80211_netbsd.h>
59 #include <net80211/ieee80211_var.h>
60 #include <net80211/ieee80211_radiotap.h>
61 
62 #include <net/bpf.h>
63 
64 #include <dev/ic/rtwreg.h>
65 #include <dev/ic/rtwvar.h>
66 #include <dev/ic/rtwphyio.h>
67 #include <dev/ic/rtwphy.h>
68 
69 #include <dev/ic/smc93cx6var.h>
70 
71 static int rtw_rfprog_fallback = 0;
72 static int rtw_host_rfio = 0;
73 
74 #ifdef RTW_DEBUG
75 int rtw_debug = 0;
76 static int rtw_rxbufs_limit = RTW_RXQLEN;
77 #endif /* RTW_DEBUG */
78 
79 #define NEXT_ATTACH_STATE(sc, state) do {			\
80 	DPRINTF(sc, RTW_DEBUG_ATTACH,				\
81 	    ("%s: attach state %s\n", __func__, #state));	\
82 	sc->sc_attach_state = state;				\
83 } while (0)
84 
85 int rtw_dwelltime = 200;	/* milliseconds */
86 static struct ieee80211_cipher rtw_cipher_wep;
87 
88 static void rtw_disable_interrupts(struct rtw_regs *);
89 static void rtw_enable_interrupts(struct rtw_softc *);
90 
91 static int rtw_init(struct ifnet *);
92 
93 static void rtw_start(struct ifnet *);
94 static void rtw_reset_oactive(struct rtw_softc *);
95 static struct mbuf *rtw_beacon_alloc(struct rtw_softc *,
96     struct ieee80211_node *);
97 static u_int rtw_txring_next(struct rtw_regs *, struct rtw_txdesc_blk *);
98 
99 static void rtw_io_enable(struct rtw_softc *, uint8_t, int);
100 static int rtw_key_delete(struct ieee80211com *, const struct ieee80211_key *);
101 static int rtw_key_set(struct ieee80211com *, const struct ieee80211_key *,
102     const u_int8_t[IEEE80211_ADDR_LEN]);
103 static void rtw_key_update_end(struct ieee80211com *);
104 static void rtw_key_update_begin(struct ieee80211com *);
105 static int rtw_wep_decap(struct ieee80211_key *, struct mbuf *, int);
106 static void rtw_wep_setkeys(struct rtw_softc *, struct ieee80211_key *, int);
107 
108 static void rtw_led_attach(struct rtw_led_state *, void *);
109 static void rtw_led_detach(struct rtw_led_state *);
110 static void rtw_led_init(struct rtw_regs *);
111 static void rtw_led_slowblink(void *);
112 static void rtw_led_fastblink(void *);
113 static void rtw_led_set(struct rtw_led_state *, struct rtw_regs *, int);
114 
115 static int rtw_sysctl_verify_rfio(SYSCTLFN_PROTO);
116 static int rtw_sysctl_verify_rfprog(SYSCTLFN_PROTO);
117 #ifdef RTW_DEBUG
118 static void rtw_dump_rings(struct rtw_softc *sc);
119 static void rtw_print_txdesc(struct rtw_softc *, const char *,
120     struct rtw_txsoft *, struct rtw_txdesc_blk *, int);
121 static int rtw_sysctl_verify_debug(SYSCTLFN_PROTO);
122 static int rtw_sysctl_verify_rxbufs_limit(SYSCTLFN_PROTO);
123 #endif /* RTW_DEBUG */
124 #ifdef RTW_DIAG
125 static void rtw_txring_fixup(struct rtw_softc *sc, const char *fn, int ln);
126 #endif /* RTW_DIAG */
127 
128 /*
129  * Setup sysctl(3) MIB, hw.rtw.*
130  *
131  * TBD condition CTLFLAG_PERMANENT on being a module or not
132  */
133 SYSCTL_SETUP(sysctl_rtw, "sysctl rtw(4) subtree setup")
134 {
135 	int rc;
136 	const struct sysctlnode *cnode, *rnode;
137 
138 	if ((rc = sysctl_createv(clog, 0, NULL, &rnode,
139 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "rtw",
140 	    "Realtek RTL818x 802.11 controls",
141 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0)
142 		goto err;
143 
144 #ifdef RTW_DEBUG
145 	/* control debugging printfs */
146 	if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
147 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
148 	    "debug", SYSCTL_DESCR("Enable RTL818x debugging output"),
149 	    rtw_sysctl_verify_debug, 0, &rtw_debug, 0,
150 	    CTL_CREATE, CTL_EOL)) != 0)
151 		goto err;
152 
153 	/* Limit rx buffers, for simulating resource exhaustion. */
154 	if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
155 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
156 	    "rxbufs_limit",
157 	    SYSCTL_DESCR("Set rx buffers limit"),
158 	    rtw_sysctl_verify_rxbufs_limit, 0, &rtw_rxbufs_limit, 0,
159 	    CTL_CREATE, CTL_EOL)) != 0)
160 		goto err;
161 
162 #endif /* RTW_DEBUG */
163 	/* set fallback RF programming method */
164 	if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
165 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
166 	    "rfprog_fallback",
167 	    SYSCTL_DESCR("Set fallback RF programming method"),
168 	    rtw_sysctl_verify_rfprog, 0, &rtw_rfprog_fallback, 0,
169 	    CTL_CREATE, CTL_EOL)) != 0)
170 		goto err;
171 
172 	/* force host to control RF I/O bus */
173 	if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
174 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
175 	    "host_rfio", SYSCTL_DESCR("Enable host control of RF I/O"),
176 	    rtw_sysctl_verify_rfio, 0, &rtw_host_rfio, 0,
177 	    CTL_CREATE, CTL_EOL)) != 0)
178 		goto err;
179 
180 	return;
181 err:
182 	printf("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
183 }
184 
185 static int
186 rtw_sysctl_verify(SYSCTLFN_ARGS, int lower, int upper)
187 {
188 	int error, t;
189 	struct sysctlnode node;
190 
191 	node = *rnode;
192 	t = *(int*)rnode->sysctl_data;
193 	node.sysctl_data = &t;
194 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
195 	if (error || newp == NULL)
196 		return (error);
197 
198 	if (t < lower || t > upper)
199 		return (EINVAL);
200 
201 	*(int*)rnode->sysctl_data = t;
202 
203 	return (0);
204 }
205 
206 static int
207 rtw_sysctl_verify_rfprog(SYSCTLFN_ARGS)
208 {
209 	return rtw_sysctl_verify(SYSCTLFN_CALL(__UNCONST(rnode)), 0,
210 	    __SHIFTOUT(RTW_CONFIG4_RFTYPE_MASK, RTW_CONFIG4_RFTYPE_MASK));
211 }
212 
213 static int
214 rtw_sysctl_verify_rfio(SYSCTLFN_ARGS)
215 {
216 	return rtw_sysctl_verify(SYSCTLFN_CALL(__UNCONST(rnode)), 0, 1);
217 }
218 
219 #ifdef RTW_DEBUG
220 static int
221 rtw_sysctl_verify_debug(SYSCTLFN_ARGS)
222 {
223 	return rtw_sysctl_verify(SYSCTLFN_CALL(__UNCONST(rnode)),
224 	    0, RTW_DEBUG_MAX);
225 }
226 
227 static int
228 rtw_sysctl_verify_rxbufs_limit(SYSCTLFN_ARGS)
229 {
230 	return rtw_sysctl_verify(SYSCTLFN_CALL(__UNCONST(rnode)),
231 	    0, RTW_RXQLEN);
232 }
233 
234 static void
235 rtw_print_regs(struct rtw_regs *regs, const char *dvname, const char *where)
236 {
237 #define PRINTREG32(sc, reg)				\
238 	RTW_DPRINTF(RTW_DEBUG_REGDUMP,			\
239 	    ("%s: reg[ " #reg " / %03x ] = %08x\n",	\
240 	    dvname, reg, RTW_READ(regs, reg)))
241 
242 #define PRINTREG16(sc, reg)				\
243 	RTW_DPRINTF(RTW_DEBUG_REGDUMP,			\
244 	    ("%s: reg[ " #reg " / %03x ] = %04x\n",	\
245 	    dvname, reg, RTW_READ16(regs, reg)))
246 
247 #define PRINTREG8(sc, reg)				\
248 	RTW_DPRINTF(RTW_DEBUG_REGDUMP,			\
249 	    ("%s: reg[ " #reg " / %03x ] = %02x\n",	\
250 	    dvname, reg, RTW_READ8(regs, reg)))
251 
252 	RTW_DPRINTF(RTW_DEBUG_REGDUMP, ("%s: %s\n", dvname, where));
253 
254 	PRINTREG32(regs, RTW_IDR0);
255 	PRINTREG32(regs, RTW_IDR1);
256 	PRINTREG32(regs, RTW_MAR0);
257 	PRINTREG32(regs, RTW_MAR1);
258 	PRINTREG32(regs, RTW_TSFTRL);
259 	PRINTREG32(regs, RTW_TSFTRH);
260 	PRINTREG32(regs, RTW_TLPDA);
261 	PRINTREG32(regs, RTW_TNPDA);
262 	PRINTREG32(regs, RTW_THPDA);
263 	PRINTREG32(regs, RTW_TCR);
264 	PRINTREG32(regs, RTW_RCR);
265 	PRINTREG32(regs, RTW_TINT);
266 	PRINTREG32(regs, RTW_TBDA);
267 	PRINTREG32(regs, RTW_ANAPARM);
268 	PRINTREG32(regs, RTW_BB);
269 	PRINTREG32(regs, RTW_PHYCFG);
270 	PRINTREG32(regs, RTW_WAKEUP0L);
271 	PRINTREG32(regs, RTW_WAKEUP0H);
272 	PRINTREG32(regs, RTW_WAKEUP1L);
273 	PRINTREG32(regs, RTW_WAKEUP1H);
274 	PRINTREG32(regs, RTW_WAKEUP2LL);
275 	PRINTREG32(regs, RTW_WAKEUP2LH);
276 	PRINTREG32(regs, RTW_WAKEUP2HL);
277 	PRINTREG32(regs, RTW_WAKEUP2HH);
278 	PRINTREG32(regs, RTW_WAKEUP3LL);
279 	PRINTREG32(regs, RTW_WAKEUP3LH);
280 	PRINTREG32(regs, RTW_WAKEUP3HL);
281 	PRINTREG32(regs, RTW_WAKEUP3HH);
282 	PRINTREG32(regs, RTW_WAKEUP4LL);
283 	PRINTREG32(regs, RTW_WAKEUP4LH);
284 	PRINTREG32(regs, RTW_WAKEUP4HL);
285 	PRINTREG32(regs, RTW_WAKEUP4HH);
286 	PRINTREG32(regs, RTW_DK0);
287 	PRINTREG32(regs, RTW_DK1);
288 	PRINTREG32(regs, RTW_DK2);
289 	PRINTREG32(regs, RTW_DK3);
290 	PRINTREG32(regs, RTW_RETRYCTR);
291 	PRINTREG32(regs, RTW_RDSAR);
292 	PRINTREG32(regs, RTW_FER);
293 	PRINTREG32(regs, RTW_FEMR);
294 	PRINTREG32(regs, RTW_FPSR);
295 	PRINTREG32(regs, RTW_FFER);
296 
297 	/* 16-bit registers */
298 	PRINTREG16(regs, RTW_BRSR);
299 	PRINTREG16(regs, RTW_IMR);
300 	PRINTREG16(regs, RTW_ISR);
301 	PRINTREG16(regs, RTW_BCNITV);
302 	PRINTREG16(regs, RTW_ATIMWND);
303 	PRINTREG16(regs, RTW_BINTRITV);
304 	PRINTREG16(regs, RTW_ATIMTRITV);
305 	PRINTREG16(regs, RTW_CRC16ERR);
306 	PRINTREG16(regs, RTW_CRC0);
307 	PRINTREG16(regs, RTW_CRC1);
308 	PRINTREG16(regs, RTW_CRC2);
309 	PRINTREG16(regs, RTW_CRC3);
310 	PRINTREG16(regs, RTW_CRC4);
311 	PRINTREG16(regs, RTW_CWR);
312 
313 	/* 8-bit registers */
314 	PRINTREG8(regs, RTW_CR);
315 	PRINTREG8(regs, RTW_9346CR);
316 	PRINTREG8(regs, RTW_CONFIG0);
317 	PRINTREG8(regs, RTW_CONFIG1);
318 	PRINTREG8(regs, RTW_CONFIG2);
319 	PRINTREG8(regs, RTW_MSR);
320 	PRINTREG8(regs, RTW_CONFIG3);
321 	PRINTREG8(regs, RTW_CONFIG4);
322 	PRINTREG8(regs, RTW_TESTR);
323 	PRINTREG8(regs, RTW_PSR);
324 	PRINTREG8(regs, RTW_SCR);
325 	PRINTREG8(regs, RTW_PHYDELAY);
326 	PRINTREG8(regs, RTW_CRCOUNT);
327 	PRINTREG8(regs, RTW_PHYADDR);
328 	PRINTREG8(regs, RTW_PHYDATAW);
329 	PRINTREG8(regs, RTW_PHYDATAR);
330 	PRINTREG8(regs, RTW_CONFIG5);
331 	PRINTREG8(regs, RTW_TPPOLL);
332 
333 	PRINTREG16(regs, RTW_BSSID16);
334 	PRINTREG32(regs, RTW_BSSID32);
335 #undef PRINTREG32
336 #undef PRINTREG16
337 #undef PRINTREG8
338 }
339 #endif /* RTW_DEBUG */
340 
341 void
342 rtw_continuous_tx_enable(struct rtw_softc *sc, int enable)
343 {
344 	struct rtw_regs *regs = &sc->sc_regs;
345 
346 	uint32_t tcr;
347 	tcr = RTW_READ(regs, RTW_TCR);
348 	tcr &= ~RTW_TCR_LBK_MASK;
349 	if (enable)
350 		tcr |= RTW_TCR_LBK_CONT;
351 	else
352 		tcr |= RTW_TCR_LBK_NORMAL;
353 	RTW_WRITE(regs, RTW_TCR, tcr);
354 	RTW_SYNC(regs, RTW_TCR, RTW_TCR);
355 	rtw_set_access(regs, RTW_ACCESS_ANAPARM);
356 	rtw_txdac_enable(sc, !enable);
357 	rtw_set_access(regs, RTW_ACCESS_ANAPARM);/* XXX Voodoo from Linux. */
358 	rtw_set_access(regs, RTW_ACCESS_NONE);
359 }
360 
361 #ifdef RTW_DEBUG
362 static const char *
363 rtw_access_string(enum rtw_access access)
364 {
365 	switch (access) {
366 	case RTW_ACCESS_NONE:
367 		return "none";
368 	case RTW_ACCESS_CONFIG:
369 		return "config";
370 	case RTW_ACCESS_ANAPARM:
371 		return "anaparm";
372 	default:
373 		return "unknown";
374 	}
375 }
376 #endif /* RTW_DEBUG */
377 
378 static void
379 rtw_set_access1(struct rtw_regs *regs, enum rtw_access naccess)
380 {
381 	KASSERT(/* naccess >= RTW_ACCESS_NONE && */
382 	    naccess <= RTW_ACCESS_ANAPARM);
383 	KASSERT(/* regs->r_access >= RTW_ACCESS_NONE && */
384 	    regs->r_access <= RTW_ACCESS_ANAPARM);
385 
386 	if (naccess == regs->r_access)
387 		return;
388 
389 	switch (naccess) {
390 	case RTW_ACCESS_NONE:
391 		switch (regs->r_access) {
392 		case RTW_ACCESS_ANAPARM:
393 			rtw_anaparm_enable(regs, 0);
394 			/*FALLTHROUGH*/
395 		case RTW_ACCESS_CONFIG:
396 			rtw_config0123_enable(regs, 0);
397 			/*FALLTHROUGH*/
398 		case RTW_ACCESS_NONE:
399 			break;
400 		}
401 		break;
402 	case RTW_ACCESS_CONFIG:
403 		switch (regs->r_access) {
404 		case RTW_ACCESS_NONE:
405 			rtw_config0123_enable(regs, 1);
406 			/*FALLTHROUGH*/
407 		case RTW_ACCESS_CONFIG:
408 			break;
409 		case RTW_ACCESS_ANAPARM:
410 			rtw_anaparm_enable(regs, 0);
411 			break;
412 		}
413 		break;
414 	case RTW_ACCESS_ANAPARM:
415 		switch (regs->r_access) {
416 		case RTW_ACCESS_NONE:
417 			rtw_config0123_enable(regs, 1);
418 			/*FALLTHROUGH*/
419 		case RTW_ACCESS_CONFIG:
420 			rtw_anaparm_enable(regs, 1);
421 			/*FALLTHROUGH*/
422 		case RTW_ACCESS_ANAPARM:
423 			break;
424 		}
425 		break;
426 	}
427 }
428 
429 void
430 rtw_set_access(struct rtw_regs *regs, enum rtw_access access)
431 {
432 	rtw_set_access1(regs, access);
433 	RTW_DPRINTF(RTW_DEBUG_ACCESS,
434 	    ("%s: access %s -> %s\n", __func__,
435 	    rtw_access_string(regs->r_access),
436 	    rtw_access_string(access)));
437 	regs->r_access = access;
438 }
439 
440 /*
441  * Enable registers, switch register banks.
442  */
443 void
444 rtw_config0123_enable(struct rtw_regs *regs, int enable)
445 {
446 	uint8_t ecr;
447 	ecr = RTW_READ8(regs, RTW_9346CR);
448 	ecr &= ~(RTW_9346CR_EEM_MASK | RTW_9346CR_EECS | RTW_9346CR_EESK);
449 	if (enable)
450 		ecr |= RTW_9346CR_EEM_CONFIG;
451 	else {
452 		RTW_WBW(regs, RTW_9346CR, MAX(RTW_CONFIG0, RTW_CONFIG3));
453 		ecr |= RTW_9346CR_EEM_NORMAL;
454 	}
455 	RTW_WRITE8(regs, RTW_9346CR, ecr);
456 	RTW_SYNC(regs, RTW_9346CR, RTW_9346CR);
457 }
458 
459 /* requires rtw_config0123_enable(, 1) */
460 void
461 rtw_anaparm_enable(struct rtw_regs *regs, int enable)
462 {
463 	uint8_t cfg3;
464 
465 	cfg3 = RTW_READ8(regs, RTW_CONFIG3);
466 	cfg3 |= RTW_CONFIG3_CLKRUNEN;
467 	if (enable)
468 		cfg3 |= RTW_CONFIG3_PARMEN;
469 	else
470 		cfg3 &= ~RTW_CONFIG3_PARMEN;
471 	RTW_WRITE8(regs, RTW_CONFIG3, cfg3);
472 	RTW_SYNC(regs, RTW_CONFIG3, RTW_CONFIG3);
473 }
474 
475 /* requires rtw_anaparm_enable(, 1) */
476 void
477 rtw_txdac_enable(struct rtw_softc *sc, int enable)
478 {
479 	uint32_t anaparm;
480 	struct rtw_regs *regs = &sc->sc_regs;
481 
482 	anaparm = RTW_READ(regs, RTW_ANAPARM);
483 	if (enable)
484 		anaparm &= ~RTW_ANAPARM_TXDACOFF;
485 	else
486 		anaparm |= RTW_ANAPARM_TXDACOFF;
487 	RTW_WRITE(regs, RTW_ANAPARM, anaparm);
488 	RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
489 }
490 
491 static inline int
492 rtw_chip_reset1(struct rtw_regs *regs, device_t dev)
493 {
494 	uint8_t cr;
495 	int i;
496 
497 	RTW_WRITE8(regs, RTW_CR, RTW_CR_RST);
498 
499 	RTW_WBR(regs, RTW_CR, RTW_CR);
500 
501 	for (i = 0; i < 1000; i++) {
502 		if ((cr = RTW_READ8(regs, RTW_CR) & RTW_CR_RST) == 0) {
503 			RTW_DPRINTF(RTW_DEBUG_RESET,
504 			    ("%s: reset in %dus\n", device_xname(dev), i));
505 			return 0;
506 		}
507 		RTW_RBR(regs, RTW_CR, RTW_CR);
508 		DELAY(10); /* 10us */
509 	}
510 
511 	aprint_error_dev(dev, "reset failed\n");
512 	return ETIMEDOUT;
513 }
514 
515 static inline int
516 rtw_chip_reset(struct rtw_regs *regs, device_t dev)
517 {
518 	uint32_t tcr;
519 
520 	/* from Linux driver */
521 	tcr = RTW_TCR_CWMIN | RTW_TCR_MXDMA_2048 |
522 	      __SHIFTIN(7, RTW_TCR_SRL_MASK) | __SHIFTIN(7, RTW_TCR_LRL_MASK);
523 
524 	RTW_WRITE(regs, RTW_TCR, tcr);
525 
526 	RTW_WBW(regs, RTW_CR, RTW_TCR);
527 
528 	return rtw_chip_reset1(regs, dev);
529 }
530 
531 static int
532 rtw_wep_decap(struct ieee80211_key *k, struct mbuf *m, int hdrlen)
533 {
534 	struct ieee80211_key keycopy;
535 
536 	RTW_DPRINTF(RTW_DEBUG_KEY, ("%s:\n", __func__));
537 
538 	keycopy = *k;
539 	keycopy.wk_flags &= ~IEEE80211_KEY_SWCRYPT;
540 
541 	return (*ieee80211_cipher_wep.ic_decap)(&keycopy, m, hdrlen);
542 }
543 
544 static int
545 rtw_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
546 {
547 	struct rtw_softc *sc = ic->ic_ifp->if_softc;
548 
549 	DPRINTF(sc, RTW_DEBUG_KEY, ("%s: delete key %u\n", __func__,
550 	    k->wk_keyix));
551 
552 	KASSERT(k->wk_keyix < IEEE80211_WEP_NKID);
553 
554 	if (k->wk_keylen != 0 &&
555 	    k->wk_cipher->ic_cipher == IEEE80211_CIPHER_WEP)
556 		sc->sc_flags &= ~RTW_F_DK_VALID;
557 
558 	return 1;
559 }
560 
561 static int
562 rtw_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
563     const u_int8_t mac[IEEE80211_ADDR_LEN])
564 {
565 	struct rtw_softc *sc = ic->ic_ifp->if_softc;
566 
567 	DPRINTF(sc, RTW_DEBUG_KEY, ("%s: set key %u\n", __func__, k->wk_keyix));
568 
569 	KASSERT(k->wk_keyix < IEEE80211_WEP_NKID);
570 
571 	sc->sc_flags &= ~RTW_F_DK_VALID;
572 
573 	return 1;
574 }
575 
576 static void
577 rtw_key_update_begin(struct ieee80211com *ic)
578 {
579 #ifdef RTW_DEBUG
580 	struct ifnet *ifp = ic->ic_ifp;
581 	struct rtw_softc *sc = ifp->if_softc;
582 #endif
583 
584 	DPRINTF(sc, RTW_DEBUG_KEY, ("%s:\n", __func__));
585 }
586 
587 static void
588 rtw_tx_kick(struct rtw_regs *regs, uint8_t ringsel)
589 {
590 	uint8_t tppoll;
591 
592 	tppoll = RTW_READ8(regs, RTW_TPPOLL);
593 	tppoll &= ~RTW_TPPOLL_SALL;
594 	tppoll |= ringsel & RTW_TPPOLL_ALL;
595 	RTW_WRITE8(regs, RTW_TPPOLL, tppoll);
596 	RTW_SYNC(regs, RTW_TPPOLL, RTW_TPPOLL);
597 }
598 
599 static void
600 rtw_key_update_end(struct ieee80211com *ic)
601 {
602 	struct ifnet *ifp = ic->ic_ifp;
603 	struct rtw_softc *sc = ifp->if_softc;
604 
605 	DPRINTF(sc, RTW_DEBUG_KEY, ("%s:\n", __func__));
606 
607 	if ((sc->sc_flags & RTW_F_DK_VALID) != 0 ||
608 	    !device_is_active(sc->sc_dev))
609 		return;
610 
611 	rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 0);
612 	rtw_wep_setkeys(sc, ic->ic_nw_keys, ic->ic_def_txkey);
613 	rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE,
614 	    (ifp->if_flags & IFF_RUNNING) != 0);
615 }
616 
617 static bool
618 rtw_key_hwsupp(uint32_t flags, const struct ieee80211_key *k)
619 {
620 	if (k->wk_cipher->ic_cipher != IEEE80211_CIPHER_WEP)
621 		return false;
622 
623 	return	((flags & RTW_C_RXWEP_40) != 0 && k->wk_keylen == 5) ||
624 		((flags & RTW_C_RXWEP_104) != 0 && k->wk_keylen == 13);
625 }
626 
627 static void
628 rtw_wep_setkeys(struct rtw_softc *sc, struct ieee80211_key *wk, int txkey)
629 {
630 	uint8_t psr, scr;
631 	int i, keylen = 0;
632 	struct rtw_regs *regs;
633 	union rtw_keys *rk;
634 
635 	regs = &sc->sc_regs;
636 	rk = &sc->sc_keys;
637 
638 	(void)memset(rk, 0, sizeof(*rk));
639 
640 	/* Temporarily use software crypto for all keys. */
641 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
642 		if (wk[i].wk_cipher == &rtw_cipher_wep)
643 			wk[i].wk_cipher = &ieee80211_cipher_wep;
644 	}
645 
646 	rtw_set_access(regs, RTW_ACCESS_CONFIG);
647 
648 	psr = RTW_READ8(regs, RTW_PSR);
649 	scr = RTW_READ8(regs, RTW_SCR);
650 	scr &= ~(RTW_SCR_KM_MASK | RTW_SCR_TXSECON | RTW_SCR_RXSECON);
651 
652 	if ((sc->sc_ic.ic_flags & IEEE80211_F_PRIVACY) == 0)
653 		goto out;
654 
655 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
656 		if (!rtw_key_hwsupp(sc->sc_flags, &wk[i]))
657 			continue;
658 		if (i == txkey) {
659 			keylen = wk[i].wk_keylen;
660 			break;
661 		}
662 		keylen = MAX(keylen, wk[i].wk_keylen);
663 	}
664 
665 	if (keylen == 5)
666 		scr |= RTW_SCR_KM_WEP40 | RTW_SCR_RXSECON;
667 	else if (keylen == 13)
668 		scr |= RTW_SCR_KM_WEP104 | RTW_SCR_RXSECON;
669 
670 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
671 		if (wk[i].wk_keylen != keylen ||
672 		    wk[i].wk_cipher->ic_cipher != IEEE80211_CIPHER_WEP)
673 			continue;
674 		/* h/w will decrypt, s/w still strips headers */
675 		wk[i].wk_cipher = &rtw_cipher_wep;
676 		(void)memcpy(rk->rk_keys[i], wk[i].wk_key, wk[i].wk_keylen);
677 	}
678 
679 out:
680 	RTW_WRITE8(regs, RTW_PSR, psr & ~RTW_PSR_PSEN);
681 
682 	bus_space_write_region_stream_4(regs->r_bt, regs->r_bh,
683 	    RTW_DK0, rk->rk_words, __arraycount(rk->rk_words));
684 
685 	bus_space_barrier(regs->r_bt, regs->r_bh, RTW_DK0, sizeof(rk->rk_words),
686 	    BUS_SPACE_BARRIER_SYNC);
687 
688 	RTW_DPRINTF(RTW_DEBUG_KEY,
689 	    ("%s.%d: scr %02" PRIx8 ", keylen %d\n", __func__, __LINE__, scr,
690 	     keylen));
691 
692 	RTW_WBW(regs, RTW_DK0, RTW_PSR);
693 	RTW_WRITE8(regs, RTW_PSR, psr);
694 	RTW_WBW(regs, RTW_PSR, RTW_SCR);
695 	RTW_WRITE8(regs, RTW_SCR, scr);
696 	RTW_SYNC(regs, RTW_SCR, RTW_SCR);
697 	rtw_set_access(regs, RTW_ACCESS_NONE);
698 	sc->sc_flags |= RTW_F_DK_VALID;
699 }
700 
701 static inline int
702 rtw_recall_eeprom(struct rtw_regs *regs, device_t dev)
703 {
704 	int i;
705 	uint8_t ecr;
706 
707 	ecr = RTW_READ8(regs, RTW_9346CR);
708 	ecr = (ecr & ~RTW_9346CR_EEM_MASK) | RTW_9346CR_EEM_AUTOLOAD;
709 	RTW_WRITE8(regs, RTW_9346CR, ecr);
710 
711 	RTW_WBR(regs, RTW_9346CR, RTW_9346CR);
712 
713 	/* wait 25ms for completion */
714 	for (i = 0; i < 250; i++) {
715 		ecr = RTW_READ8(regs, RTW_9346CR);
716 		if ((ecr & RTW_9346CR_EEM_MASK) == RTW_9346CR_EEM_NORMAL) {
717 			RTW_DPRINTF(RTW_DEBUG_RESET,
718 			    ("%s: recall EEPROM in %dus\n", device_xname(dev),
719 			    i * 100));
720 			return 0;
721 		}
722 		RTW_RBR(regs, RTW_9346CR, RTW_9346CR);
723 		DELAY(100);
724 	}
725 	aprint_error_dev(dev, "recall EEPROM failed\n");
726 	return ETIMEDOUT;
727 }
728 
729 static inline int
730 rtw_reset(struct rtw_softc *sc)
731 {
732 	int rc;
733 	uint8_t config1;
734 
735 	sc->sc_flags &= ~RTW_F_DK_VALID;
736 
737 	if ((rc = rtw_chip_reset(&sc->sc_regs, sc->sc_dev)) != 0)
738 		return rc;
739 
740 	rc = rtw_recall_eeprom(&sc->sc_regs, sc->sc_dev);
741 
742 	config1 = RTW_READ8(&sc->sc_regs, RTW_CONFIG1);
743 	RTW_WRITE8(&sc->sc_regs, RTW_CONFIG1, config1 & ~RTW_CONFIG1_PMEN);
744 	/* TBD turn off maximum power saving? */
745 
746 	return 0;
747 }
748 
749 static inline int
750 rtw_txdesc_dmamaps_create(bus_dma_tag_t dmat, struct rtw_txsoft *descs,
751     u_int ndescs)
752 {
753 	int i, rc = 0;
754 	for (i = 0; i < ndescs; i++) {
755 		rc = bus_dmamap_create(dmat, MCLBYTES, RTW_MAXPKTSEGS, MCLBYTES,
756 		    0, 0, &descs[i].ts_dmamap);
757 		if (rc != 0)
758 			break;
759 	}
760 	return rc;
761 }
762 
763 static inline int
764 rtw_rxdesc_dmamaps_create(bus_dma_tag_t dmat, struct rtw_rxsoft *descs,
765     u_int ndescs)
766 {
767 	int i, rc = 0;
768 	for (i = 0; i < ndescs; i++) {
769 		rc = bus_dmamap_create(dmat, MCLBYTES, 1, MCLBYTES, 0, 0,
770 		    &descs[i].rs_dmamap);
771 		if (rc != 0)
772 			break;
773 	}
774 	return rc;
775 }
776 
777 static inline void
778 rtw_rxdesc_dmamaps_destroy(bus_dma_tag_t dmat, struct rtw_rxsoft *descs,
779     u_int ndescs)
780 {
781 	int i;
782 	for (i = 0; i < ndescs; i++) {
783 		if (descs[i].rs_dmamap != NULL)
784 			bus_dmamap_destroy(dmat, descs[i].rs_dmamap);
785 	}
786 }
787 
788 static inline void
789 rtw_txdesc_dmamaps_destroy(bus_dma_tag_t dmat, struct rtw_txsoft *descs,
790     u_int ndescs)
791 {
792 	int i;
793 	for (i = 0; i < ndescs; i++) {
794 		if (descs[i].ts_dmamap != NULL)
795 			bus_dmamap_destroy(dmat, descs[i].ts_dmamap);
796 	}
797 }
798 
799 static inline void
800 rtw_srom_free(struct rtw_srom *sr)
801 {
802 	sr->sr_size = 0;
803 	if (sr->sr_content == NULL)
804 		return;
805 	free(sr->sr_content, M_DEVBUF);
806 	sr->sr_content = NULL;
807 }
808 
809 static void
810 rtw_srom_defaults(struct rtw_srom *sr, uint32_t *flags,
811     uint8_t *cs_threshold, enum rtw_rfchipid *rfchipid, uint32_t *rcr)
812 {
813 	*flags |= (RTW_F_DIGPHY|RTW_F_ANTDIV);
814 	*cs_threshold = RTW_SR_ENERGYDETTHR_DEFAULT;
815 	*rcr |= RTW_RCR_ENCS1;
816 	*rfchipid = RTW_RFCHIPID_PHILIPS;
817 }
818 
819 static int
820 rtw_srom_parse(struct rtw_srom *sr, uint32_t *flags, uint8_t *cs_threshold,
821     enum rtw_rfchipid *rfchipid, uint32_t *rcr, enum rtw_locale *locale,
822     device_t dev)
823 {
824 	int i;
825 	const char *rfname, *paname;
826 	char scratch[sizeof("unknown 0xXX")];
827 	uint16_t srom_version;
828 
829 	*flags &= ~(RTW_F_DIGPHY|RTW_F_DFLANTB|RTW_F_ANTDIV);
830 	*rcr &= ~(RTW_RCR_ENCS1 | RTW_RCR_ENCS2);
831 
832 	srom_version = RTW_SR_GET16(sr, RTW_SR_VERSION);
833 
834 	if (srom_version <= 0x0101) {
835 		aprint_error_dev(dev,
836 		    "SROM version %d.%d is not understood, "
837 		    "limping along with defaults\n",
838 		    srom_version >> 8, srom_version & 0xff);
839 		rtw_srom_defaults(sr, flags, cs_threshold, rfchipid, rcr);
840 		return 0;
841 	} else {
842 		aprint_verbose_dev(dev, "SROM version %d.%d\n",
843 		    srom_version >> 8, srom_version & 0xff);
844 	}
845 
846 	uint8_t mac[IEEE80211_ADDR_LEN];
847 	for (i = 0; i < IEEE80211_ADDR_LEN; i++)
848 		mac[i] = RTW_SR_GET(sr, RTW_SR_MAC + i);
849 	__USE(mac);
850 
851 	RTW_DPRINTF(RTW_DEBUG_ATTACH,
852 	    ("%s: EEPROM MAC %s\n", device_xname(dev), ether_sprintf(mac)));
853 
854 	*cs_threshold = RTW_SR_GET(sr, RTW_SR_ENERGYDETTHR);
855 
856 	if ((RTW_SR_GET(sr, RTW_SR_CONFIG2) & RTW_CONFIG2_ANT) != 0)
857 		*flags |= RTW_F_ANTDIV;
858 
859 	/* Note well: the sense of the RTW_SR_RFPARM_DIGPHY bit seems
860 	 * to be reversed.
861 	 */
862 	if ((RTW_SR_GET(sr, RTW_SR_RFPARM) & RTW_SR_RFPARM_DIGPHY) == 0)
863 		*flags |= RTW_F_DIGPHY;
864 	if ((RTW_SR_GET(sr, RTW_SR_RFPARM) & RTW_SR_RFPARM_DFLANTB) != 0)
865 		*flags |= RTW_F_DFLANTB;
866 
867 	*rcr |= __SHIFTIN(__SHIFTOUT(RTW_SR_GET(sr, RTW_SR_RFPARM),
868 	    RTW_SR_RFPARM_CS_MASK), RTW_RCR_ENCS1);
869 
870 	if ((RTW_SR_GET(sr, RTW_SR_CONFIG0) & RTW_CONFIG0_WEP104) != 0)
871 		*flags |= RTW_C_RXWEP_104;
872 
873 	*flags |= RTW_C_RXWEP_40;	/* XXX */
874 
875 	*rfchipid = RTW_SR_GET(sr, RTW_SR_RFCHIPID);
876 	switch (*rfchipid) {
877 	case RTW_RFCHIPID_GCT:		/* this combo seen in the wild */
878 		rfname = "GCT GRF5101";
879 		paname = "Winspring WS9901";
880 		break;
881 	case RTW_RFCHIPID_MAXIM:
882 		rfname = "Maxim MAX2820";	/* guess */
883 		paname = "Maxim MAX2422";	/* guess */
884 		break;
885 	case RTW_RFCHIPID_INTERSIL:
886 		rfname = "Intersil HFA3873";	/* guess */
887 		paname = "Intersil <unknown>";
888 		break;
889 	case RTW_RFCHIPID_PHILIPS:	/* this combo seen in the wild */
890 		rfname = "Philips SA2400A";
891 		paname = "Philips SA2411";
892 		break;
893 	case RTW_RFCHIPID_RFMD:
894 		/* this is the same front-end as an atw(4)! */
895 		rfname = "RFMD RF2948B, "	/* mentioned in Realtek docs */
896 			 "LNA: RFMD RF2494, "	/* mentioned in Realtek docs */
897 			 "SYN: Silicon Labs Si4126";	/* inferred from
898 			 				 * reference driver
899 							 */
900 		paname = "RFMD RF2189";		/* mentioned in Realtek docs */
901 		break;
902 	case RTW_RFCHIPID_RESERVED:
903 		rfname = paname = "reserved";
904 		break;
905 	default:
906 		snprintf(scratch, sizeof(scratch), "unknown 0x%02x", *rfchipid);
907 		rfname = paname = scratch;
908 	}
909 	aprint_normal_dev(dev, "RF: %s, PA: %s\n", rfname, paname);
910 
911 	switch (RTW_SR_GET(sr, RTW_SR_CONFIG0) & RTW_CONFIG0_GL_MASK) {
912 	case RTW_CONFIG0_GL_USA:
913 	case _RTW_CONFIG0_GL_USA:
914 		*locale = RTW_LOCALE_USA;
915 		break;
916 	case RTW_CONFIG0_GL_EUROPE:
917 		*locale = RTW_LOCALE_EUROPE;
918 		break;
919 	case RTW_CONFIG0_GL_JAPAN:
920 		*locale = RTW_LOCALE_JAPAN;
921 		break;
922 	default:
923 		*locale = RTW_LOCALE_UNKNOWN;
924 		break;
925 	}
926 	return 0;
927 }
928 
929 /* Returns -1 on failure. */
930 static int
931 rtw_srom_read(struct rtw_regs *regs, uint32_t flags, struct rtw_srom *sr,
932     device_t dev)
933 {
934 	int rc;
935 	struct seeprom_descriptor sd;
936 	uint8_t ecr;
937 
938 	(void)memset(&sd, 0, sizeof(sd));
939 
940 	ecr = RTW_READ8(regs, RTW_9346CR);
941 
942 	if ((flags & RTW_F_9356SROM) != 0) {
943 		RTW_DPRINTF(RTW_DEBUG_ATTACH, ("%s: 93c56 SROM\n",
944 		    device_xname(dev)));
945 		sr->sr_size = 256;
946 		sd.sd_chip = C56_66;
947 	} else {
948 		RTW_DPRINTF(RTW_DEBUG_ATTACH, ("%s: 93c46 SROM\n",
949 		    device_xname(dev)));
950 		sr->sr_size = 128;
951 		sd.sd_chip = C46;
952 	}
953 
954 	ecr &= ~(RTW_9346CR_EEDI | RTW_9346CR_EEDO | RTW_9346CR_EESK |
955 	    RTW_9346CR_EEM_MASK | RTW_9346CR_EECS);
956 	ecr |= RTW_9346CR_EEM_PROGRAM;
957 
958 	RTW_WRITE8(regs, RTW_9346CR, ecr);
959 
960 	sr->sr_content = malloc(sr->sr_size, M_DEVBUF, M_NOWAIT);
961 
962 	if (sr->sr_content == NULL) {
963 		aprint_error_dev(dev, "unable to allocate SROM buffer\n");
964 		return ENOMEM;
965 	}
966 
967 	(void)memset(sr->sr_content, 0, sr->sr_size);
968 
969 	/* RTL8180 has a single 8-bit register for controlling the
970 	 * 93cx6 SROM.  There is no "ready" bit. The RTL8180
971 	 * input/output sense is the reverse of read_seeprom's.
972 	 */
973 	sd.sd_tag = regs->r_bt;
974 	sd.sd_bsh = regs->r_bh;
975 	sd.sd_regsize = 1;
976 	sd.sd_control_offset = RTW_9346CR;
977 	sd.sd_status_offset = RTW_9346CR;
978 	sd.sd_dataout_offset = RTW_9346CR;
979 	sd.sd_CK = RTW_9346CR_EESK;
980 	sd.sd_CS = RTW_9346CR_EECS;
981 	sd.sd_DI = RTW_9346CR_EEDO;
982 	sd.sd_DO = RTW_9346CR_EEDI;
983 	/* make read_seeprom enter EEPROM read/write mode */
984 	sd.sd_MS = ecr;
985 	sd.sd_RDY = 0;
986 
987 	/* TBD bus barriers */
988 	if (!read_seeprom(&sd, sr->sr_content, 0, sr->sr_size/2)) {
989 		aprint_error_dev(dev, "could not read SROM\n");
990 		free(sr->sr_content, M_DEVBUF);
991 		sr->sr_content = NULL;
992 		return -1;	/* XXX */
993 	}
994 
995 	/* end EEPROM read/write mode */
996 	RTW_WRITE8(regs, RTW_9346CR,
997 	    (ecr & ~RTW_9346CR_EEM_MASK) | RTW_9346CR_EEM_NORMAL);
998 	RTW_WBRW(regs, RTW_9346CR, RTW_9346CR);
999 
1000 	if ((rc = rtw_recall_eeprom(regs, dev)) != 0)
1001 		return rc;
1002 
1003 #ifdef RTW_DEBUG
1004 	{
1005 		int i;
1006 		RTW_DPRINTF(RTW_DEBUG_ATTACH,
1007 		    ("\n%s: serial ROM:\n\t", device_xname(dev)));
1008 		for (i = 0; i < sr->sr_size/2; i++) {
1009 			if (((i % 8) == 0) && (i != 0))
1010 				RTW_DPRINTF(RTW_DEBUG_ATTACH, ("\n\t"));
1011 			RTW_DPRINTF(RTW_DEBUG_ATTACH,
1012 			    (" %04x", sr->sr_content[i]));
1013 		}
1014 		RTW_DPRINTF(RTW_DEBUG_ATTACH, ("\n"));
1015 	}
1016 #endif /* RTW_DEBUG */
1017 	return 0;
1018 }
1019 
1020 static void
1021 rtw_set_rfprog(struct rtw_regs *regs, enum rtw_rfchipid rfchipid,
1022     device_t dev)
1023 {
1024 	uint8_t cfg4;
1025 	const char *method;
1026 
1027 	cfg4 = RTW_READ8(regs, RTW_CONFIG4) & ~RTW_CONFIG4_RFTYPE_MASK;
1028 
1029 	switch (rfchipid) {
1030 	default:
1031 		cfg4 |= __SHIFTIN(rtw_rfprog_fallback, RTW_CONFIG4_RFTYPE_MASK);
1032 		method = "fallback";
1033 		break;
1034 	case RTW_RFCHIPID_INTERSIL:
1035 		cfg4 |= RTW_CONFIG4_RFTYPE_INTERSIL;
1036 		method = "Intersil";
1037 		break;
1038 	case RTW_RFCHIPID_PHILIPS:
1039 		cfg4 |= RTW_CONFIG4_RFTYPE_PHILIPS;
1040 		method = "Philips";
1041 		break;
1042 	case RTW_RFCHIPID_GCT:	/* XXX a guess */
1043 	case RTW_RFCHIPID_RFMD:
1044 		cfg4 |= RTW_CONFIG4_RFTYPE_RFMD;
1045 		method = "RFMD";
1046 		break;
1047 	}
1048 
1049 	RTW_WRITE8(regs, RTW_CONFIG4, cfg4);
1050 
1051 	RTW_WBR(regs, RTW_CONFIG4, RTW_CONFIG4);
1052 
1053 #ifdef RTW_DEBUG
1054 	RTW_DPRINTF(RTW_DEBUG_INIT,
1055 	    ("%s: %s RF programming method, %#02x\n", device_xname(dev), method,
1056 	    RTW_READ8(regs, RTW_CONFIG4)));
1057 #else
1058 	__USE(method);
1059 #endif
1060 }
1061 
1062 static inline void
1063 rtw_init_channels(enum rtw_locale locale,
1064     struct ieee80211_channel (*chans)[IEEE80211_CHAN_MAX+1], device_t dev)
1065 {
1066 	int i;
1067 	const char *name = NULL;
1068 #define ADD_CHANNEL(_chans, _chan) do {			\
1069 	(*_chans)[_chan].ic_flags = IEEE80211_CHAN_B;		\
1070 	(*_chans)[_chan].ic_freq =				\
1071 	    ieee80211_ieee2mhz(_chan, (*_chans)[_chan].ic_flags);\
1072 } while (0)
1073 
1074 	switch (locale) {
1075 	case RTW_LOCALE_USA:	/* 1-11 */
1076 		name = "USA";
1077 		for (i = 1; i <= 11; i++)
1078 			ADD_CHANNEL(chans, i);
1079 		break;
1080 	case RTW_LOCALE_JAPAN:	/* 1-14 */
1081 		name = "Japan";
1082 		ADD_CHANNEL(chans, 14);
1083 		for (i = 1; i <= 14; i++)
1084 			ADD_CHANNEL(chans, i);
1085 		break;
1086 	case RTW_LOCALE_EUROPE:	/* 1-13 */
1087 		name = "Europe";
1088 		for (i = 1; i <= 13; i++)
1089 			ADD_CHANNEL(chans, i);
1090 		break;
1091 	default:			/* 10-11 allowed by most countries */
1092 		name = "<unknown>";
1093 		for (i = 10; i <= 11; i++)
1094 			ADD_CHANNEL(chans, i);
1095 		break;
1096 	}
1097 	aprint_normal_dev(dev, "Geographic Location %s\n", name);
1098 #undef ADD_CHANNEL
1099 }
1100 
1101 
1102 static inline void
1103 rtw_identify_country(struct rtw_regs *regs, enum rtw_locale *locale)
1104 {
1105 	uint8_t cfg0 = RTW_READ8(regs, RTW_CONFIG0);
1106 
1107 	switch (cfg0 & RTW_CONFIG0_GL_MASK) {
1108 	case RTW_CONFIG0_GL_USA:
1109 	case _RTW_CONFIG0_GL_USA:
1110 		*locale = RTW_LOCALE_USA;
1111 		break;
1112 	case RTW_CONFIG0_GL_JAPAN:
1113 		*locale = RTW_LOCALE_JAPAN;
1114 		break;
1115 	case RTW_CONFIG0_GL_EUROPE:
1116 		*locale = RTW_LOCALE_EUROPE;
1117 		break;
1118 	default:
1119 		*locale = RTW_LOCALE_UNKNOWN;
1120 		break;
1121 	}
1122 }
1123 
1124 static inline int
1125 rtw_identify_sta(struct rtw_regs *regs, uint8_t (*addr)[IEEE80211_ADDR_LEN],
1126     device_t dev)
1127 {
1128 	static const uint8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
1129 		0x00, 0x00, 0x00, 0x00, 0x00, 0x00
1130 	};
1131 	uint32_t idr0 = RTW_READ(regs, RTW_IDR0),
1132 	          idr1 = RTW_READ(regs, RTW_IDR1);
1133 
1134 	(*addr)[0] = __SHIFTOUT(idr0, __BITS(0,  7));
1135 	(*addr)[1] = __SHIFTOUT(idr0, __BITS(8,  15));
1136 	(*addr)[2] = __SHIFTOUT(idr0, __BITS(16, 23));
1137 	(*addr)[3] = __SHIFTOUT(idr0, __BITS(24 ,31));
1138 
1139 	(*addr)[4] = __SHIFTOUT(idr1, __BITS(0,  7));
1140 	(*addr)[5] = __SHIFTOUT(idr1, __BITS(8, 15));
1141 
1142 	if (IEEE80211_ADDR_EQ(addr, empty_macaddr)) {
1143 		aprint_error_dev(dev,
1144 		    "could not get mac address, attach failed\n");
1145 		return ENXIO;
1146 	}
1147 
1148 	aprint_normal_dev(dev, "802.11 address %s\n", ether_sprintf(*addr));
1149 
1150 	return 0;
1151 }
1152 
1153 static uint8_t
1154 rtw_chan2txpower(struct rtw_srom *sr, struct ieee80211com *ic,
1155     struct ieee80211_channel *chan)
1156 {
1157 	u_int idx = RTW_SR_TXPOWER1 + ieee80211_chan2ieee(ic, chan) - 1;
1158 	KASSERT(idx >= RTW_SR_TXPOWER1 && idx <= RTW_SR_TXPOWER14);
1159 	return RTW_SR_GET(sr, idx);
1160 }
1161 
1162 static void
1163 rtw_txdesc_blk_init_all(struct rtw_txdesc_blk *tdb)
1164 {
1165 	int pri;
1166 	/* nfree: the number of free descriptors in each ring.
1167 	 * The beacon ring is a special case: I do not let the
1168 	 * driver use all of the descriptors on the beacon ring.
1169 	 * The reasons are two-fold:
1170 	 *
1171 	 * (1) A BEACON descriptor's OWN bit is (apparently) not
1172 	 * updated, so the driver cannot easily know if the descriptor
1173 	 * belongs to it, or if it is racing the NIC.  If the NIC
1174 	 * does not OWN every descriptor, then the driver can safely
1175 	 * update the descriptors when RTW_TBDA points at tdb_next.
1176 	 *
1177 	 * (2) I hope that the NIC will process more than one BEACON
1178 	 * descriptor in a single beacon interval, since that will
1179 	 * enable multiple-BSS support.  Since the NIC does not
1180 	 * clear the OWN bit, there is no natural place for it to
1181 	 * stop processing BEACON desciptors.  Maybe it will *not*
1182 	 * stop processing them!  I do not want to chance the NIC
1183 	 * looping around and around a saturated beacon ring, so
1184 	 * I will leave one descriptor unOWNed at all times.
1185 	 */
1186 	u_int nfree[RTW_NTXPRI] =
1187 	    {RTW_NTXDESCLO, RTW_NTXDESCMD, RTW_NTXDESCHI,
1188 	     RTW_NTXDESCBCN - 1};
1189 
1190 	for (pri = 0; pri < RTW_NTXPRI; pri++) {
1191 		tdb[pri].tdb_nfree = nfree[pri];
1192 		tdb[pri].tdb_next = 0;
1193 	}
1194 }
1195 
1196 static int
1197 rtw_txsoft_blk_init(struct rtw_txsoft_blk *tsb)
1198 {
1199 	int i;
1200 	struct rtw_txsoft *ts;
1201 
1202 	SIMPLEQ_INIT(&tsb->tsb_dirtyq);
1203 	SIMPLEQ_INIT(&tsb->tsb_freeq);
1204 	for (i = 0; i < tsb->tsb_ndesc; i++) {
1205 		ts = &tsb->tsb_desc[i];
1206 		ts->ts_mbuf = NULL;
1207 		SIMPLEQ_INSERT_TAIL(&tsb->tsb_freeq, ts, ts_q);
1208 	}
1209 	tsb->tsb_tx_timer = 0;
1210 	return 0;
1211 }
1212 
1213 static void
1214 rtw_txsoft_blk_init_all(struct rtw_txsoft_blk *tsb)
1215 {
1216 	int pri;
1217 	for (pri = 0; pri < RTW_NTXPRI; pri++)
1218 		rtw_txsoft_blk_init(&tsb[pri]);
1219 }
1220 
1221 static inline void
1222 rtw_rxdescs_sync(struct rtw_rxdesc_blk *rdb, int desc0, int nsync, int ops)
1223 {
1224 	KASSERT(nsync <= rdb->rdb_ndesc);
1225 	/* sync to end of ring */
1226 	if (desc0 + nsync > rdb->rdb_ndesc) {
1227 		bus_dmamap_sync(rdb->rdb_dmat, rdb->rdb_dmamap,
1228 		    offsetof(struct rtw_descs, hd_rx[desc0]),
1229 		    sizeof(struct rtw_rxdesc) * (rdb->rdb_ndesc - desc0), ops);
1230 		nsync -= (rdb->rdb_ndesc - desc0);
1231 		desc0 = 0;
1232 	}
1233 
1234 	KASSERT(desc0 < rdb->rdb_ndesc);
1235 	KASSERT(nsync <= rdb->rdb_ndesc);
1236 	KASSERT(desc0 + nsync <= rdb->rdb_ndesc);
1237 
1238 	/* sync what remains */
1239 	bus_dmamap_sync(rdb->rdb_dmat, rdb->rdb_dmamap,
1240 	    offsetof(struct rtw_descs, hd_rx[desc0]),
1241 	    sizeof(struct rtw_rxdesc) * nsync, ops);
1242 }
1243 
1244 static void
1245 rtw_txdescs_sync(struct rtw_txdesc_blk *tdb, u_int desc0, u_int nsync, int ops)
1246 {
1247 	/* sync to end of ring */
1248 	if (desc0 + nsync > tdb->tdb_ndesc) {
1249 		bus_dmamap_sync(tdb->tdb_dmat, tdb->tdb_dmamap,
1250 		    tdb->tdb_ofs + sizeof(struct rtw_txdesc) * desc0,
1251 		    sizeof(struct rtw_txdesc) * (tdb->tdb_ndesc - desc0),
1252 		    ops);
1253 		nsync -= (tdb->tdb_ndesc - desc0);
1254 		desc0 = 0;
1255 	}
1256 
1257 	/* sync what remains */
1258 	bus_dmamap_sync(tdb->tdb_dmat, tdb->tdb_dmamap,
1259 	    tdb->tdb_ofs + sizeof(struct rtw_txdesc) * desc0,
1260 	    sizeof(struct rtw_txdesc) * nsync, ops);
1261 }
1262 
1263 static void
1264 rtw_txdescs_sync_all(struct rtw_txdesc_blk *tdb)
1265 {
1266 	int pri;
1267 	for (pri = 0; pri < RTW_NTXPRI; pri++) {
1268 		rtw_txdescs_sync(&tdb[pri], 0, tdb[pri].tdb_ndesc,
1269 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1270 	}
1271 }
1272 
1273 static void
1274 rtw_rxbufs_release(bus_dma_tag_t dmat, struct rtw_rxsoft *desc)
1275 {
1276 	int i;
1277 	struct rtw_rxsoft *rs;
1278 
1279 	for (i = 0; i < RTW_RXQLEN; i++) {
1280 		rs = &desc[i];
1281 		if (rs->rs_mbuf == NULL)
1282 			continue;
1283 		bus_dmamap_sync(dmat, rs->rs_dmamap, 0,
1284 		    rs->rs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1285 		bus_dmamap_unload(dmat, rs->rs_dmamap);
1286 		m_freem(rs->rs_mbuf);
1287 		rs->rs_mbuf = NULL;
1288 	}
1289 }
1290 
1291 static inline int
1292 rtw_rxsoft_alloc(bus_dma_tag_t dmat, struct rtw_rxsoft *rs)
1293 {
1294 	int rc;
1295 	struct mbuf *m;
1296 
1297 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1298 	if (m == NULL)
1299 		return ENOBUFS;
1300 
1301 	MCLGET(m, M_DONTWAIT);
1302 	if ((m->m_flags & M_EXT) == 0) {
1303 		m_freem(m);
1304 		return ENOBUFS;
1305 	}
1306 
1307 	m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
1308 
1309 	if (rs->rs_mbuf != NULL)
1310 		bus_dmamap_unload(dmat, rs->rs_dmamap);
1311 
1312 	rs->rs_mbuf = NULL;
1313 
1314 	rc = bus_dmamap_load_mbuf(dmat, rs->rs_dmamap, m, BUS_DMA_NOWAIT);
1315 	if (rc != 0) {
1316 		m_freem(m);
1317 		return -1;
1318 	}
1319 
1320 	rs->rs_mbuf = m;
1321 
1322 	return 0;
1323 }
1324 
1325 static int
1326 rtw_rxsoft_init_all(bus_dma_tag_t dmat, struct rtw_rxsoft *desc,
1327     int *ndesc, device_t dev)
1328 {
1329 	int i, rc = 0;
1330 	struct rtw_rxsoft *rs;
1331 
1332 	for (i = 0; i < RTW_RXQLEN; i++) {
1333 		rs = &desc[i];
1334 		/* we're in rtw_init, so there should be no mbufs allocated */
1335 		KASSERT(rs->rs_mbuf == NULL);
1336 #ifdef RTW_DEBUG
1337 		if (i == rtw_rxbufs_limit) {
1338 			aprint_error_dev(dev, "TEST hit %d-buffer limit\n", i);
1339 			rc = ENOBUFS;
1340 			break;
1341 		}
1342 #endif /* RTW_DEBUG */
1343 		if ((rc = rtw_rxsoft_alloc(dmat, rs)) != 0) {
1344 			aprint_error_dev(dev,
1345 			    "rtw_rxsoft_alloc failed, %d buffers, rc %d\n",
1346 			    i, rc);
1347 			break;
1348 		}
1349 	}
1350 	*ndesc = i;
1351 	return rc;
1352 }
1353 
1354 static inline void
1355 rtw_rxdesc_init(struct rtw_rxdesc_blk *rdb, struct rtw_rxsoft *rs,
1356     int idx, int kick)
1357 {
1358 	int is_last = (idx == rdb->rdb_ndesc - 1);
1359 	uint32_t ctl, octl, obuf;
1360 	struct rtw_rxdesc *rd = &rdb->rdb_desc[idx];
1361 
1362 	/* sync the mbuf before the descriptor */
1363 	bus_dmamap_sync(rdb->rdb_dmat, rs->rs_dmamap, 0,
1364 	    rs->rs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1365 
1366 	obuf = rd->rd_buf;
1367 	rd->rd_buf = htole32(rs->rs_dmamap->dm_segs[0].ds_addr);
1368 
1369 	ctl = __SHIFTIN(rs->rs_mbuf->m_len, RTW_RXCTL_LENGTH_MASK) |
1370 	    RTW_RXCTL_OWN | RTW_RXCTL_FS | RTW_RXCTL_LS;
1371 
1372 	if (is_last)
1373 		ctl |= RTW_RXCTL_EOR;
1374 
1375 	octl = rd->rd_ctl;
1376 	rd->rd_ctl = htole32(ctl);
1377 
1378 #ifdef RTW_DEBUG
1379 	RTW_DPRINTF(
1380 	    kick ? (RTW_DEBUG_RECV_DESC | RTW_DEBUG_IO_KICK)
1381 	         : RTW_DEBUG_RECV_DESC,
1382 	    ("%s: rd %p buf %08x -> %08x ctl %08x -> %08x\n", __func__, rd,
1383 	     le32toh(obuf), le32toh(rd->rd_buf), le32toh(octl),
1384 	     le32toh(rd->rd_ctl)));
1385 #else
1386 	__USE(octl);
1387 	__USE(obuf);
1388 #endif
1389 
1390 	/* sync the descriptor */
1391 	bus_dmamap_sync(rdb->rdb_dmat, rdb->rdb_dmamap,
1392 	    RTW_DESC_OFFSET(hd_rx, idx), sizeof(struct rtw_rxdesc),
1393 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1394 }
1395 
1396 static void
1397 rtw_rxdesc_init_all(struct rtw_rxdesc_blk *rdb, struct rtw_rxsoft *ctl, int kick)
1398 {
1399 	int i;
1400 	struct rtw_rxsoft *rs;
1401 
1402 	for (i = 0; i < rdb->rdb_ndesc; i++) {
1403 		rs = &ctl[i];
1404 		rtw_rxdesc_init(rdb, rs, i, kick);
1405 	}
1406 }
1407 
1408 static void
1409 rtw_io_enable(struct rtw_softc *sc, uint8_t flags, int enable)
1410 {
1411 	struct rtw_regs *regs = &sc->sc_regs;
1412 	uint8_t cr;
1413 
1414 	RTW_DPRINTF(RTW_DEBUG_IOSTATE, ("%s: %s 0x%02x\n", __func__,
1415 	    enable ? "enable" : "disable", flags));
1416 
1417 	cr = RTW_READ8(regs, RTW_CR);
1418 
1419 	/* XXX reference source does not enable MULRW */
1420 	/* enable PCI Read/Write Multiple */
1421 	cr |= RTW_CR_MULRW;
1422 
1423 	/* The receive engine will always start at RDSAR.  */
1424 	if (enable && (flags & ~cr & RTW_CR_RE)) {
1425 		struct rtw_rxdesc_blk *rdb;
1426 		rdb = &sc->sc_rxdesc_blk;
1427 		rdb->rdb_next = 0;
1428 	}
1429 
1430 	RTW_RBW(regs, RTW_CR, RTW_CR);	/* XXX paranoia? */
1431 	if (enable)
1432 		cr |= flags;
1433 	else
1434 		cr &= ~flags;
1435 	RTW_WRITE8(regs, RTW_CR, cr);
1436 	RTW_SYNC(regs, RTW_CR, RTW_CR);
1437 
1438 #ifdef RTW_DIAG
1439 	if (cr & RTW_CR_TE)
1440 		rtw_txring_fixup(sc, __func__, __LINE__);
1441 #endif
1442 	if (cr & RTW_CR_TE) {
1443 		rtw_tx_kick(&sc->sc_regs,
1444 		    RTW_TPPOLL_HPQ | RTW_TPPOLL_NPQ | RTW_TPPOLL_LPQ);
1445 	}
1446 }
1447 
1448 static void
1449 rtw_intr_rx(struct rtw_softc *sc, uint16_t isr)
1450 {
1451 #define	IS_BEACON(__fc0)						\
1452     ((__fc0 & (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==\
1453      (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_BEACON))
1454 
1455 	static const int ratetbl[4] = {2, 4, 11, 22};	/* convert rates:
1456 							 * hardware -> net80211
1457 							 */
1458 	u_int next, nproc = 0;
1459 	int hwrate, len, rate, rssi, sq;
1460 	uint32_t hrssi, hstat, htsfth, htsftl;
1461 	struct rtw_rxdesc *rd;
1462 	struct rtw_rxsoft *rs;
1463 	struct rtw_rxdesc_blk *rdb;
1464 	struct mbuf *m;
1465 	struct ifnet *ifp = &sc->sc_if;
1466 
1467 	struct ieee80211_node *ni;
1468 	struct ieee80211_frame_min *wh;
1469 
1470 	rdb = &sc->sc_rxdesc_blk;
1471 
1472 	for (next = rdb->rdb_next; ; next = rdb->rdb_next) {
1473 		KASSERT(next < rdb->rdb_ndesc);
1474 
1475 		rtw_rxdescs_sync(rdb, next, 1,
1476 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1477 		rd = &rdb->rdb_desc[next];
1478 		rs = &sc->sc_rxsoft[next];
1479 
1480 		hstat = le32toh(rd->rd_stat);
1481 		hrssi = le32toh(rd->rd_rssi);
1482 		htsfth = le32toh(rd->rd_tsfth);
1483 		htsftl = le32toh(rd->rd_tsftl);
1484 
1485 		RTW_DPRINTF(RTW_DEBUG_RECV_DESC,
1486 		    ("%s: rxdesc[%d] hstat %08x hrssi %08x htsft %08x%08x\n",
1487 		    __func__, next, hstat, hrssi, htsfth, htsftl));
1488 
1489 		++nproc;
1490 
1491 		/* still belongs to NIC */
1492 		if ((hstat & RTW_RXSTAT_OWN) != 0) {
1493 			rtw_rxdescs_sync(rdb, next, 1, BUS_DMASYNC_PREREAD);
1494 			break;
1495 		}
1496 
1497                 /* ieee80211_input() might reset the receive engine
1498                  * (e.g. by indirectly calling rtw_tune()), so save
1499                  * the next pointer here and retrieve it again on
1500                  * the next round.
1501 		 */
1502 		rdb->rdb_next = (next + 1) % rdb->rdb_ndesc;
1503 
1504 #ifdef RTW_DEBUG
1505 #define PRINTSTAT(flag) do { \
1506 	if ((hstat & flag) != 0) { \
1507 		printf("%s" #flag, delim); \
1508 		delim = ","; \
1509 	} \
1510 } while (0)
1511 		if ((rtw_debug & RTW_DEBUG_RECV_DESC) != 0) {
1512 			const char *delim = "<";
1513 			printf("%s: ", device_xname(sc->sc_dev));
1514 			if ((hstat & RTW_RXSTAT_DEBUG) != 0) {
1515 				printf("status %08x", hstat);
1516 				PRINTSTAT(RTW_RXSTAT_SPLCP);
1517 				PRINTSTAT(RTW_RXSTAT_MAR);
1518 				PRINTSTAT(RTW_RXSTAT_PAR);
1519 				PRINTSTAT(RTW_RXSTAT_BAR);
1520 				PRINTSTAT(RTW_RXSTAT_PWRMGT);
1521 				PRINTSTAT(RTW_RXSTAT_CRC32);
1522 				PRINTSTAT(RTW_RXSTAT_ICV);
1523 				printf(">, ");
1524 			}
1525 		}
1526 #endif /* RTW_DEBUG */
1527 
1528 		if ((hstat & RTW_RXSTAT_IOERROR) != 0) {
1529 			aprint_error_dev(sc->sc_dev,
1530 			    "DMA error/FIFO overflow %08" PRIx32 ", "
1531 			    "rx descriptor %d\n", hstat, next);
1532 			ifp->if_ierrors++;
1533 			goto next;
1534 		}
1535 
1536 		len = __SHIFTOUT(hstat, RTW_RXSTAT_LENGTH_MASK);
1537 		if (len < IEEE80211_MIN_LEN) {
1538 			sc->sc_ic.ic_stats.is_rx_tooshort++;
1539 			goto next;
1540 		}
1541 		if (len > rs->rs_mbuf->m_len) {
1542 			aprint_error_dev(sc->sc_dev,
1543 			    "rx frame too long, %d > %d, %08" PRIx32
1544 			    ", desc %d\n",
1545 			    len, rs->rs_mbuf->m_len, hstat, next);
1546 			ifp->if_ierrors++;
1547 			goto next;
1548 		}
1549 
1550 		hwrate = __SHIFTOUT(hstat, RTW_RXSTAT_RATE_MASK);
1551 		if (hwrate >= __arraycount(ratetbl)) {
1552 			aprint_error_dev(sc->sc_dev,
1553 			    "unknown rate #%" __PRIuBITS "\n",
1554 			    __SHIFTOUT(hstat, RTW_RXSTAT_RATE_MASK));
1555 			ifp->if_ierrors++;
1556 			goto next;
1557 		}
1558 		rate = ratetbl[hwrate];
1559 
1560 #ifdef RTW_DEBUG
1561 		RTW_DPRINTF(RTW_DEBUG_RECV_DESC,
1562 		    ("rate %d.%d Mb/s, time %08x%08x\n", (rate * 5) / 10,
1563 		     (rate * 5) % 10, htsfth, htsftl));
1564 #endif /* RTW_DEBUG */
1565 
1566 		/* if bad flags, skip descriptor */
1567 		if ((hstat & RTW_RXSTAT_ONESEG) != RTW_RXSTAT_ONESEG) {
1568 			aprint_error_dev(sc->sc_dev, "too many rx segments, "
1569 			    "next=%d, %08" PRIx32 "\n", next, hstat);
1570 			goto next;
1571 		}
1572 
1573 		bus_dmamap_sync(sc->sc_dmat, rs->rs_dmamap, 0,
1574 		    rs->rs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1575 
1576 		m = rs->rs_mbuf;
1577 
1578 		/* if temporarily out of memory, re-use mbuf */
1579 		switch (rtw_rxsoft_alloc(sc->sc_dmat, rs)) {
1580 		case 0:
1581 			break;
1582 		case ENOBUFS:
1583 			aprint_error_dev(sc->sc_dev,
1584 			    "rtw_rxsoft_alloc(, %d) failed, dropping packet\n",
1585 			    next);
1586 			goto next;
1587 		default:
1588 			/* XXX shorten rx ring, instead? */
1589 			aprint_error_dev(sc->sc_dev,
1590 			    "could not load DMA map\n");
1591 		}
1592 
1593 		sq = __SHIFTOUT(hrssi, RTW_RXRSSI_SQ);
1594 
1595 		if (sc->sc_rfchipid == RTW_RFCHIPID_PHILIPS)
1596 			rssi = UINT8_MAX - sq;
1597 		else {
1598 			rssi = __SHIFTOUT(hrssi, RTW_RXRSSI_IMR_RSSI);
1599 			/* TBD find out each front-end's LNA gain in the
1600 			 * front-end's units
1601 			 */
1602 			if ((hrssi & RTW_RXRSSI_IMR_LNA) == 0)
1603 				rssi |= 0x80;
1604 		}
1605 
1606 		/* Note well: now we cannot recycle the rs_mbuf unless
1607 		 * we restore its original length.
1608 		 */
1609 		m->m_pkthdr.rcvif = ifp;
1610 		m->m_pkthdr.len = m->m_len = len;
1611 
1612 		wh = mtod(m, struct ieee80211_frame_min *);
1613 
1614 		if (!IS_BEACON(wh->i_fc[0]))
1615 			sc->sc_led_state.ls_event |= RTW_LED_S_RX;
1616 
1617 		sc->sc_tsfth = htsfth;
1618 
1619 #ifdef RTW_DEBUG
1620 		if ((ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) ==
1621 		    (IFF_DEBUG|IFF_LINK2)) {
1622 			ieee80211_dump_pkt(mtod(m, uint8_t *), m->m_pkthdr.len,
1623 			    rate, rssi);
1624 		}
1625 #endif /* RTW_DEBUG */
1626 
1627 		if (sc->sc_radiobpf != NULL) {
1628 			struct rtw_rx_radiotap_header *rr = &sc->sc_rxtap;
1629 
1630 			rr->rr_tsft =
1631 			    htole64(((uint64_t)htsfth << 32) | htsftl);
1632 
1633 			rr->rr_flags = IEEE80211_RADIOTAP_F_FCS;
1634 
1635 			if ((hstat & RTW_RXSTAT_SPLCP) != 0)
1636 				rr->rr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1637 			if ((hstat & RTW_RXSTAT_CRC32) != 0)
1638 				rr->rr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
1639 
1640 			rr->rr_rate = rate;
1641 
1642 			if (sc->sc_rfchipid == RTW_RFCHIPID_PHILIPS)
1643 				rr->rr_u.u_philips.p_antsignal = rssi;
1644 			else {
1645 				rr->rr_u.u_other.o_antsignal = rssi;
1646 				rr->rr_u.u_other.o_barker_lock =
1647 				    htole16(UINT8_MAX - sq);
1648 			}
1649 
1650 			bpf_mtap2(sc->sc_radiobpf,
1651 			    rr, sizeof(sc->sc_rxtapu), m);
1652 		}
1653 
1654 		if ((hstat & RTW_RXSTAT_RES) != 0) {
1655 			m_freem(m);
1656 			goto next;
1657 		}
1658 
1659 		/* CRC is included with the packet; trim it off. */
1660 		m_adj(m, -IEEE80211_CRC_LEN);
1661 
1662 		/* TBD use _MAR, _BAR, _PAR flags as hints to _find_rxnode? */
1663 		ni = ieee80211_find_rxnode(&sc->sc_ic, wh);
1664 		ieee80211_input(&sc->sc_ic, m, ni, rssi, htsftl);
1665 		ieee80211_free_node(ni);
1666 next:
1667 		rtw_rxdesc_init(rdb, rs, next, 0);
1668 	}
1669 #undef IS_BEACON
1670 }
1671 
1672 static void
1673 rtw_txsoft_release(bus_dma_tag_t dmat, struct ieee80211com *ic,
1674     struct rtw_txsoft *ts)
1675 {
1676 	struct mbuf *m;
1677 	struct ieee80211_node *ni;
1678 
1679 	m = ts->ts_mbuf;
1680 	ni = ts->ts_ni;
1681 	KASSERT(m != NULL);
1682 	KASSERT(ni != NULL);
1683 	ts->ts_mbuf = NULL;
1684 	ts->ts_ni = NULL;
1685 
1686 	bus_dmamap_sync(dmat, ts->ts_dmamap, 0, ts->ts_dmamap->dm_mapsize,
1687 	    BUS_DMASYNC_POSTWRITE);
1688 	bus_dmamap_unload(dmat, ts->ts_dmamap);
1689 	m_freem(m);
1690 	ieee80211_free_node(ni);
1691 }
1692 
1693 static void
1694 rtw_txsofts_release(bus_dma_tag_t dmat, struct ieee80211com *ic,
1695     struct rtw_txsoft_blk *tsb)
1696 {
1697 	struct rtw_txsoft *ts;
1698 
1699 	while ((ts = SIMPLEQ_FIRST(&tsb->tsb_dirtyq)) != NULL) {
1700 		rtw_txsoft_release(dmat, ic, ts);
1701 		SIMPLEQ_REMOVE_HEAD(&tsb->tsb_dirtyq, ts_q);
1702 		SIMPLEQ_INSERT_TAIL(&tsb->tsb_freeq, ts, ts_q);
1703 	}
1704 	tsb->tsb_tx_timer = 0;
1705 }
1706 
1707 static inline void
1708 rtw_collect_txpkt(struct rtw_softc *sc, struct rtw_txdesc_blk *tdb,
1709     struct rtw_txsoft *ts, int ndesc)
1710 {
1711 	uint32_t hstat;
1712 	int data_retry, rts_retry;
1713 	struct rtw_txdesc *tdn;
1714 	const char *condstring;
1715 	struct ifnet *ifp = &sc->sc_if;
1716 
1717 	rtw_txsoft_release(sc->sc_dmat, &sc->sc_ic, ts);
1718 
1719 	tdb->tdb_nfree += ndesc;
1720 
1721 	tdn = &tdb->tdb_desc[ts->ts_last];
1722 
1723 	hstat = le32toh(tdn->td_stat);
1724 	rts_retry = __SHIFTOUT(hstat, RTW_TXSTAT_RTSRETRY_MASK);
1725 	data_retry = __SHIFTOUT(hstat, RTW_TXSTAT_DRC_MASK);
1726 
1727 	ifp->if_collisions += rts_retry + data_retry;
1728 
1729 	if ((hstat & RTW_TXSTAT_TOK) != 0)
1730 		condstring = "ok";
1731 	else {
1732 		ifp->if_oerrors++;
1733 		condstring = "error";
1734 	}
1735 
1736 #ifdef RTW_DEBUG
1737 	DPRINTF(sc, RTW_DEBUG_XMIT_DESC,
1738 	    ("%s: ts %p txdesc[%d, %d] %s tries rts %u data %u\n",
1739 	    device_xname(sc->sc_dev), ts, ts->ts_first, ts->ts_last,
1740 	    condstring, rts_retry, data_retry));
1741 #else
1742 	__USE(condstring);
1743 #endif
1744 }
1745 
1746 static void
1747 rtw_reset_oactive(struct rtw_softc *sc)
1748 {
1749 	short oflags;
1750 	int pri;
1751 	struct rtw_txsoft_blk *tsb;
1752 	struct rtw_txdesc_blk *tdb;
1753 	oflags = sc->sc_if.if_flags;
1754 	for (pri = 0; pri < RTW_NTXPRI; pri++) {
1755 		tsb = &sc->sc_txsoft_blk[pri];
1756 		tdb = &sc->sc_txdesc_blk[pri];
1757 		if (!SIMPLEQ_EMPTY(&tsb->tsb_freeq) && tdb->tdb_nfree > 0)
1758 			sc->sc_if.if_flags &= ~IFF_OACTIVE;
1759 	}
1760 	if (oflags != sc->sc_if.if_flags) {
1761 		DPRINTF(sc, RTW_DEBUG_OACTIVE,
1762 		    ("%s: reset OACTIVE\n", __func__));
1763 	}
1764 }
1765 
1766 /* Collect transmitted packets. */
1767 static bool
1768 rtw_collect_txring(struct rtw_softc *sc, struct rtw_txsoft_blk *tsb,
1769     struct rtw_txdesc_blk *tdb, int force)
1770 {
1771 	bool collected = false;
1772 	int ndesc;
1773 	struct rtw_txsoft *ts;
1774 
1775 #ifdef RTW_DEBUG
1776 	rtw_dump_rings(sc);
1777 #endif
1778 
1779 	while ((ts = SIMPLEQ_FIRST(&tsb->tsb_dirtyq)) != NULL) {
1780 		/* If we're clearing a failed transmission, only clear
1781 		   up to the last packet the hardware has processed.  */
1782 		if (ts->ts_first == rtw_txring_next(&sc->sc_regs, tdb))
1783 			break;
1784 
1785 		ndesc = 1 + ts->ts_last - ts->ts_first;
1786 		if (ts->ts_last < ts->ts_first)
1787 			ndesc += tdb->tdb_ndesc;
1788 
1789 		KASSERT(ndesc > 0);
1790 
1791 		rtw_txdescs_sync(tdb, ts->ts_first, ndesc,
1792 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1793 
1794 		if (force) {
1795 			int next;
1796 #ifdef RTW_DIAG
1797 			printf("%s: clearing packet, stats", __func__);
1798 #endif
1799 			for (next = ts->ts_first; ;
1800 			    next = RTW_NEXT_IDX(tdb, next)) {
1801 #ifdef RTW_DIAG
1802 				printf(" %" PRIx32 "/%" PRIx32 "/%" PRIx32 "/%" PRIu32 "/%" PRIx32, le32toh(tdb->tdb_desc[next].td_stat), le32toh(tdb->tdb_desc[next].td_ctl1), le32toh(tdb->tdb_desc[next].td_buf), le32toh(tdb->tdb_desc[next].td_len), le32toh(tdb->tdb_desc[next].td_next));
1803 #endif
1804 				tdb->tdb_desc[next].td_stat &=
1805 				    ~htole32(RTW_TXSTAT_OWN);
1806 				if (next == ts->ts_last)
1807 					break;
1808 			}
1809 			rtw_txdescs_sync(tdb, ts->ts_first, ndesc,
1810 			    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1811 #ifdef RTW_DIAG
1812 			next = RTW_NEXT_IDX(tdb, next);
1813 			printf(" -> end %u stat %" PRIx32 ", was %u\n", next,
1814 			    le32toh(tdb->tdb_desc[next].td_stat),
1815 			    rtw_txring_next(&sc->sc_regs, tdb));
1816 #endif
1817 		} else if ((tdb->tdb_desc[ts->ts_last].td_stat &
1818 		    htole32(RTW_TXSTAT_OWN)) != 0) {
1819 			rtw_txdescs_sync(tdb, ts->ts_last, 1,
1820 			    BUS_DMASYNC_PREREAD);
1821 			break;
1822 		}
1823 
1824 		collected = true;
1825 
1826 		rtw_collect_txpkt(sc, tdb, ts, ndesc);
1827 		SIMPLEQ_REMOVE_HEAD(&tsb->tsb_dirtyq, ts_q);
1828 		SIMPLEQ_INSERT_TAIL(&tsb->tsb_freeq, ts, ts_q);
1829 	}
1830 
1831 	/* no more pending transmissions, cancel watchdog */
1832 	if (ts == NULL)
1833 		tsb->tsb_tx_timer = 0;
1834 	rtw_reset_oactive(sc);
1835 
1836 	return collected;
1837 }
1838 
1839 static void
1840 rtw_intr_tx(struct rtw_softc *sc, uint16_t isr)
1841 {
1842 	int pri;
1843 	struct rtw_txsoft_blk	*tsb;
1844 	struct rtw_txdesc_blk	*tdb;
1845 	struct ifnet *ifp = &sc->sc_if;
1846 
1847 	for (pri = 0; pri < RTW_NTXPRI; pri++) {
1848 		tsb = &sc->sc_txsoft_blk[pri];
1849 		tdb = &sc->sc_txdesc_blk[pri];
1850 		rtw_collect_txring(sc, tsb, tdb, 0);
1851 	}
1852 
1853 	if ((isr & RTW_INTR_TX) != 0)
1854 		rtw_start(ifp);
1855 
1856 	return;
1857 }
1858 
1859 static void
1860 rtw_intr_beacon(struct rtw_softc *sc, uint16_t isr)
1861 {
1862 	u_int next;
1863 	uint32_t tsfth, tsftl;
1864 	struct ieee80211com *ic;
1865 	struct rtw_txdesc_blk *tdb = &sc->sc_txdesc_blk[RTW_TXPRIBCN];
1866 	struct rtw_txsoft_blk *tsb = &sc->sc_txsoft_blk[RTW_TXPRIBCN];
1867 	struct mbuf *m;
1868 
1869 	tsfth = RTW_READ(&sc->sc_regs, RTW_TSFTRH);
1870 	tsftl = RTW_READ(&sc->sc_regs, RTW_TSFTRL);
1871 
1872 	if ((isr & (RTW_INTR_TBDOK|RTW_INTR_TBDER)) != 0) {
1873 		next = rtw_txring_next(&sc->sc_regs, tdb);
1874 #ifdef RTW_DEBUG
1875 		RTW_DPRINTF(RTW_DEBUG_BEACON,
1876 		    ("%s: beacon ring %sprocessed, isr = %#04" PRIx16
1877 		     ", next %u expected %u, %" PRIu64 "\n", __func__,
1878 		     (next == tdb->tdb_next) ? "" : "un", isr, next,
1879 		     tdb->tdb_next, (uint64_t)tsfth << 32 | tsftl));
1880 #else
1881 		__USE(next);
1882 		__USE(tsfth);
1883 		__USE(tsftl);
1884 #endif
1885 		if ((RTW_READ8(&sc->sc_regs, RTW_TPPOLL) & RTW_TPPOLL_BQ) == 0)
1886 			rtw_collect_txring(sc, tsb, tdb, 1);
1887 	}
1888 	/* Start beacon transmission. */
1889 
1890 	if ((isr & RTW_INTR_BCNINT) != 0 &&
1891 	    sc->sc_ic.ic_state == IEEE80211_S_RUN &&
1892 	    SIMPLEQ_EMPTY(&tsb->tsb_dirtyq)) {
1893 		RTW_DPRINTF(RTW_DEBUG_BEACON,
1894 		    ("%s: beacon prep. time, isr = %#04" PRIx16
1895 		     ", %16" PRIu64 "\n", __func__, isr,
1896 		     (uint64_t)tsfth << 32 | tsftl));
1897 		ic = &sc->sc_ic;
1898 		m = rtw_beacon_alloc(sc, ic->ic_bss);
1899 
1900 		if (m == NULL) {
1901 			aprint_error_dev(sc->sc_dev,
1902 			    "could not allocate beacon\n");
1903 			return;
1904 		}
1905 		m->m_pkthdr.rcvif = (void *)ieee80211_ref_node(ic->ic_bss);
1906 		IF_ENQUEUE(&sc->sc_beaconq, m);
1907 		rtw_start(&sc->sc_if);
1908 	}
1909 }
1910 
1911 static void
1912 rtw_intr_atim(struct rtw_softc *sc)
1913 {
1914 	/* TBD */
1915 	return;
1916 }
1917 
1918 #ifdef RTW_DEBUG
1919 static void
1920 rtw_dump_rings(struct rtw_softc *sc)
1921 {
1922 	struct rtw_txdesc_blk *tdb;
1923 	struct rtw_rxdesc *rd;
1924 	struct rtw_rxdesc_blk *rdb;
1925 	int desc, pri;
1926 
1927 	if ((rtw_debug & RTW_DEBUG_IO_KICK) == 0)
1928 		return;
1929 
1930 	for (pri = 0; pri < RTW_NTXPRI; pri++) {
1931 		tdb = &sc->sc_txdesc_blk[pri];
1932 		printf("%s: txpri %d ndesc %d nfree %d\n", __func__, pri,
1933 		    tdb->tdb_ndesc, tdb->tdb_nfree);
1934 		for (desc = 0; desc < tdb->tdb_ndesc; desc++)
1935 			rtw_print_txdesc(sc, ".", NULL, tdb, desc);
1936 	}
1937 
1938 	rdb = &sc->sc_rxdesc_blk;
1939 
1940 	for (desc = 0; desc < RTW_RXQLEN; desc++) {
1941 		rd = &rdb->rdb_desc[desc];
1942 		printf("%s: %sctl %08x rsvd0/rssi %08x buf/tsftl %08x "
1943 		    "rsvd1/tsfth %08x\n", __func__,
1944 		    (desc >= rdb->rdb_ndesc) ? "UNUSED " : "",
1945 		    le32toh(rd->rd_ctl), le32toh(rd->rd_rssi),
1946 		    le32toh(rd->rd_buf), le32toh(rd->rd_tsfth));
1947 	}
1948 }
1949 #endif /* RTW_DEBUG */
1950 
1951 static void
1952 rtw_hwring_setup(struct rtw_softc *sc)
1953 {
1954 	int pri;
1955 	struct rtw_regs *regs = &sc->sc_regs;
1956 	struct rtw_txdesc_blk *tdb;
1957 
1958 	sc->sc_txdesc_blk[RTW_TXPRILO].tdb_basereg = RTW_TLPDA;
1959 	sc->sc_txdesc_blk[RTW_TXPRILO].tdb_base = RTW_RING_BASE(sc, hd_txlo);
1960 	sc->sc_txdesc_blk[RTW_TXPRIMD].tdb_basereg = RTW_TNPDA;
1961 	sc->sc_txdesc_blk[RTW_TXPRIMD].tdb_base = RTW_RING_BASE(sc, hd_txmd);
1962 	sc->sc_txdesc_blk[RTW_TXPRIHI].tdb_basereg = RTW_THPDA;
1963 	sc->sc_txdesc_blk[RTW_TXPRIHI].tdb_base = RTW_RING_BASE(sc, hd_txhi);
1964 	sc->sc_txdesc_blk[RTW_TXPRIBCN].tdb_basereg = RTW_TBDA;
1965 	sc->sc_txdesc_blk[RTW_TXPRIBCN].tdb_base = RTW_RING_BASE(sc, hd_bcn);
1966 
1967 	for (pri = 0; pri < RTW_NTXPRI; pri++) {
1968 		tdb = &sc->sc_txdesc_blk[pri];
1969 		RTW_WRITE(regs, tdb->tdb_basereg, tdb->tdb_base);
1970 		RTW_DPRINTF(RTW_DEBUG_XMIT_DESC,
1971 		    ("%s: reg[tdb->tdb_basereg] <- %" PRIxPTR "\n", __func__,
1972 		     (uintptr_t)tdb->tdb_base));
1973 	}
1974 
1975 	RTW_WRITE(regs, RTW_RDSAR, RTW_RING_BASE(sc, hd_rx));
1976 
1977 	RTW_DPRINTF(RTW_DEBUG_RECV_DESC,
1978 	    ("%s: reg[RDSAR] <- %" PRIxPTR "\n", __func__,
1979 	     (uintptr_t)RTW_RING_BASE(sc, hd_rx)));
1980 
1981 	RTW_SYNC(regs, RTW_TLPDA, RTW_RDSAR);
1982 
1983 }
1984 
1985 static int
1986 rtw_swring_setup(struct rtw_softc *sc)
1987 {
1988 	int rc;
1989 	struct rtw_rxdesc_blk *rdb;
1990 
1991 	rtw_txdesc_blk_init_all(&sc->sc_txdesc_blk[0]);
1992 
1993 	rtw_txsoft_blk_init_all(&sc->sc_txsoft_blk[0]);
1994 
1995 	rdb = &sc->sc_rxdesc_blk;
1996 	if ((rc = rtw_rxsoft_init_all(sc->sc_dmat, sc->sc_rxsoft, &rdb->rdb_ndesc,
1997 	     sc->sc_dev)) != 0 && rdb->rdb_ndesc == 0) {
1998 		aprint_error_dev(sc->sc_dev, "could not allocate rx buffers\n");
1999 		return rc;
2000 	}
2001 
2002 	rdb = &sc->sc_rxdesc_blk;
2003 	rtw_rxdescs_sync(rdb, 0, rdb->rdb_ndesc,
2004 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2005 	rtw_rxdesc_init_all(rdb, sc->sc_rxsoft, 1);
2006 	rdb->rdb_next = 0;
2007 
2008 	rtw_txdescs_sync_all(&sc->sc_txdesc_blk[0]);
2009 	return 0;
2010 }
2011 
2012 static void
2013 rtw_txdesc_blk_init(struct rtw_txdesc_blk *tdb)
2014 {
2015 	int i;
2016 
2017 	(void)memset(tdb->tdb_desc, 0,
2018 	    sizeof(tdb->tdb_desc[0]) * tdb->tdb_ndesc);
2019 	for (i = 0; i < tdb->tdb_ndesc; i++)
2020 		tdb->tdb_desc[i].td_next = htole32(RTW_NEXT_DESC(tdb, i));
2021 }
2022 
2023 static u_int
2024 rtw_txring_next(struct rtw_regs *regs, struct rtw_txdesc_blk *tdb)
2025 {
2026 	return (le32toh(RTW_READ(regs, tdb->tdb_basereg)) - tdb->tdb_base) /
2027 	    sizeof(struct rtw_txdesc);
2028 }
2029 
2030 #ifdef RTW_DIAG
2031 static void
2032 rtw_txring_fixup(struct rtw_softc *sc, const char *fn, int ln)
2033 {
2034 	int pri;
2035 	u_int next;
2036 	struct rtw_txdesc_blk *tdb;
2037 	struct rtw_regs *regs = &sc->sc_regs;
2038 
2039 	for (pri = 0; pri < RTW_NTXPRI; pri++) {
2040 		int i;
2041 		tdb = &sc->sc_txdesc_blk[pri];
2042 		next = rtw_txring_next(regs, tdb);
2043 		if (tdb->tdb_next == next)
2044 			continue;
2045 		for (i = 0; next != tdb->tdb_next;
2046 		    next = RTW_NEXT_IDX(tdb, next), i++) {
2047 			if ((tdb->tdb_desc[next].td_stat & htole32(RTW_TXSTAT_OWN)) == 0)
2048 				break;
2049 		}
2050 		printf("%s:%d: tx-ring %d expected next %u, read %u+%d -> %s\n", fn,
2051 		    ln, pri, tdb->tdb_next, next, i, tdb->tdb_next == next ? "okay" : "BAD");
2052 		if (tdb->tdb_next == next)
2053 			continue;
2054 		tdb->tdb_next = MIN(next, tdb->tdb_ndesc - 1);
2055 	}
2056 }
2057 #endif
2058 
2059 static void
2060 rtw_txdescs_reset(struct rtw_softc *sc)
2061 {
2062 	int pri;
2063 	struct rtw_txsoft_blk	*tsb;
2064 	struct rtw_txdesc_blk	*tdb;
2065 
2066 	for (pri = 0; pri < RTW_NTXPRI; pri++) {
2067 		tsb = &sc->sc_txsoft_blk[pri];
2068 		tdb = &sc->sc_txdesc_blk[pri];
2069 		rtw_collect_txring(sc, tsb, tdb, 1);
2070 #ifdef RTW_DIAG
2071 		if (!SIMPLEQ_EMPTY(&tsb->tsb_dirtyq))
2072 			printf("%s: packets left in ring %d\n", __func__, pri);
2073 #endif
2074 	}
2075 }
2076 
2077 static void
2078 rtw_intr_ioerror(struct rtw_softc *sc, uint16_t isr)
2079 {
2080 	aprint_error_dev(sc->sc_dev, "tx fifo underflow\n");
2081 
2082 	RTW_DPRINTF(RTW_DEBUG_BUGS, ("%s: cleaning up xmit, isr %" PRIx16
2083 	    "\n", device_xname(sc->sc_dev), isr));
2084 
2085 #ifdef RTW_DEBUG
2086 	rtw_dump_rings(sc);
2087 #endif /* RTW_DEBUG */
2088 
2089 	/* Collect tx'd packets.  XXX let's hope this stops the transmit
2090 	 * timeouts.
2091 	 */
2092 	rtw_txdescs_reset(sc);
2093 
2094 #ifdef RTW_DEBUG
2095 	rtw_dump_rings(sc);
2096 #endif /* RTW_DEBUG */
2097 }
2098 
2099 static inline void
2100 rtw_suspend_ticks(struct rtw_softc *sc)
2101 {
2102 	RTW_DPRINTF(RTW_DEBUG_TIMEOUT,
2103 	    ("%s: suspending ticks\n", device_xname(sc->sc_dev)));
2104 	sc->sc_do_tick = 0;
2105 }
2106 
2107 static inline void
2108 rtw_resume_ticks(struct rtw_softc *sc)
2109 {
2110 	uint32_t tsftrl0, tsftrl1, next_tint;
2111 
2112 	tsftrl0 = RTW_READ(&sc->sc_regs, RTW_TSFTRL);
2113 
2114 	tsftrl1 = RTW_READ(&sc->sc_regs, RTW_TSFTRL);
2115 	next_tint = tsftrl1 + 1000000;
2116 	RTW_WRITE(&sc->sc_regs, RTW_TINT, next_tint);
2117 
2118 	sc->sc_do_tick = 1;
2119 
2120 #ifdef RTW_DEBUG
2121 	RTW_DPRINTF(RTW_DEBUG_TIMEOUT,
2122 	    ("%s: resume ticks delta %#08x now %#08x next %#08x\n",
2123 	    device_xname(sc->sc_dev), tsftrl1 - tsftrl0, tsftrl1, next_tint));
2124 #else
2125 	__USE(tsftrl0);
2126 #endif
2127 }
2128 
2129 static void
2130 rtw_intr_timeout(struct rtw_softc *sc)
2131 {
2132 	RTW_DPRINTF(RTW_DEBUG_TIMEOUT, ("%s: timeout\n", device_xname(sc->sc_dev)));
2133 	if (sc->sc_do_tick)
2134 		rtw_resume_ticks(sc);
2135 	return;
2136 }
2137 
2138 int
2139 rtw_intr(void *arg)
2140 {
2141 	int i;
2142 	struct rtw_softc *sc = arg;
2143 	struct rtw_regs *regs = &sc->sc_regs;
2144 	uint16_t isr;
2145 	struct ifnet *ifp = &sc->sc_if;
2146 
2147 	/*
2148 	 * If the interface isn't running, the interrupt couldn't
2149 	 * possibly have come from us.
2150 	 */
2151 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2152 	    !device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER)) {
2153 		RTW_DPRINTF(RTW_DEBUG_INTR, ("%s: stray interrupt\n",
2154 		    device_xname(sc->sc_dev)));
2155 		return (0);
2156 	}
2157 
2158 	for (i = 0; i < 10; i++) {
2159 		isr = RTW_READ16(regs, RTW_ISR);
2160 
2161 		RTW_WRITE16(regs, RTW_ISR, isr);
2162 		RTW_WBR(regs, RTW_ISR, RTW_ISR);
2163 
2164 		if (sc->sc_intr_ack != NULL)
2165 			(*sc->sc_intr_ack)(regs);
2166 
2167 		if (isr == 0)
2168 			break;
2169 
2170 #ifdef RTW_DEBUG
2171 #define PRINTINTR(flag) do { \
2172 	if ((isr & flag) != 0) { \
2173 		printf("%s" #flag, delim); \
2174 		delim = ","; \
2175 	} \
2176 } while (0)
2177 
2178 		if ((rtw_debug & RTW_DEBUG_INTR) != 0 && isr != 0) {
2179 			const char *delim = "<";
2180 
2181 			printf("%s: reg[ISR] = %x", device_xname(sc->sc_dev),
2182 			    isr);
2183 
2184 			PRINTINTR(RTW_INTR_TXFOVW);
2185 			PRINTINTR(RTW_INTR_TIMEOUT);
2186 			PRINTINTR(RTW_INTR_BCNINT);
2187 			PRINTINTR(RTW_INTR_ATIMINT);
2188 			PRINTINTR(RTW_INTR_TBDER);
2189 			PRINTINTR(RTW_INTR_TBDOK);
2190 			PRINTINTR(RTW_INTR_THPDER);
2191 			PRINTINTR(RTW_INTR_THPDOK);
2192 			PRINTINTR(RTW_INTR_TNPDER);
2193 			PRINTINTR(RTW_INTR_TNPDOK);
2194 			PRINTINTR(RTW_INTR_RXFOVW);
2195 			PRINTINTR(RTW_INTR_RDU);
2196 			PRINTINTR(RTW_INTR_TLPDER);
2197 			PRINTINTR(RTW_INTR_TLPDOK);
2198 			PRINTINTR(RTW_INTR_RER);
2199 			PRINTINTR(RTW_INTR_ROK);
2200 
2201 			printf(">\n");
2202 		}
2203 #undef PRINTINTR
2204 #endif /* RTW_DEBUG */
2205 
2206 		if ((isr & RTW_INTR_RX) != 0)
2207 			rtw_intr_rx(sc, isr);
2208 		if ((isr & RTW_INTR_TX) != 0)
2209 			rtw_intr_tx(sc, isr);
2210 		if ((isr & RTW_INTR_BEACON) != 0)
2211 			rtw_intr_beacon(sc, isr);
2212 		if ((isr & RTW_INTR_ATIMINT) != 0)
2213 			rtw_intr_atim(sc);
2214 		if ((isr & RTW_INTR_IOERROR) != 0)
2215 			rtw_intr_ioerror(sc, isr);
2216 		if ((isr & RTW_INTR_TIMEOUT) != 0)
2217 			rtw_intr_timeout(sc);
2218 	}
2219 
2220 	return 1;
2221 }
2222 
2223 /* Must be called at splnet. */
2224 static void
2225 rtw_stop(struct ifnet *ifp, int disable)
2226 {
2227 	int pri;
2228 	struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
2229 	struct ieee80211com *ic = &sc->sc_ic;
2230 	struct rtw_regs *regs = &sc->sc_regs;
2231 
2232 	rtw_suspend_ticks(sc);
2233 
2234 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2235 
2236 	if (device_has_power(sc->sc_dev)) {
2237 		/* Disable interrupts. */
2238 		RTW_WRITE16(regs, RTW_IMR, 0);
2239 
2240 		RTW_WBW(regs, RTW_TPPOLL, RTW_IMR);
2241 
2242 		/* Stop the transmit and receive processes. First stop DMA,
2243 		 * then disable receiver and transmitter.
2244 		 */
2245 		RTW_WRITE8(regs, RTW_TPPOLL, RTW_TPPOLL_SALL);
2246 
2247 		RTW_SYNC(regs, RTW_TPPOLL, RTW_IMR);
2248 
2249 		rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 0);
2250 	}
2251 
2252 	for (pri = 0; pri < RTW_NTXPRI; pri++) {
2253 		rtw_txsofts_release(sc->sc_dmat, &sc->sc_ic,
2254 		    &sc->sc_txsoft_blk[pri]);
2255 	}
2256 
2257 	rtw_rxbufs_release(sc->sc_dmat, &sc->sc_rxsoft[0]);
2258 
2259 	/* Mark the interface as not running.  Cancel the watchdog timer. */
2260 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2261 	ifp->if_timer = 0;
2262 
2263 	if (disable)
2264 		pmf_device_suspend(sc->sc_dev, &sc->sc_qual);
2265 
2266 	return;
2267 }
2268 
2269 const char *
2270 rtw_pwrstate_string(enum rtw_pwrstate power)
2271 {
2272 	switch (power) {
2273 	case RTW_ON:
2274 		return "on";
2275 	case RTW_SLEEP:
2276 		return "sleep";
2277 	case RTW_OFF:
2278 		return "off";
2279 	default:
2280 		return "unknown";
2281 	}
2282 }
2283 
2284 /* XXX For Maxim, I am using the RFMD settings gleaned from the
2285  * reference driver, plus a magic Maxim "ON" value that comes from
2286  * the Realtek document "Windows PG for Rtl8180."
2287  */
2288 static void
2289 rtw_maxim_pwrstate(struct rtw_regs *regs, enum rtw_pwrstate power,
2290     int before_rf, int digphy)
2291 {
2292 	uint32_t anaparm;
2293 
2294 	anaparm = RTW_READ(regs, RTW_ANAPARM);
2295 	anaparm &= ~(RTW_ANAPARM_RFPOW_MASK | RTW_ANAPARM_TXDACOFF);
2296 
2297 	switch (power) {
2298 	case RTW_OFF:
2299 		if (before_rf)
2300 			return;
2301 		anaparm |= RTW_ANAPARM_RFPOW_MAXIM_OFF;
2302 		anaparm |= RTW_ANAPARM_TXDACOFF;
2303 		break;
2304 	case RTW_SLEEP:
2305 		if (!before_rf)
2306 			return;
2307 		anaparm |= RTW_ANAPARM_RFPOW_MAXIM_SLEEP;
2308 		anaparm |= RTW_ANAPARM_TXDACOFF;
2309 		break;
2310 	case RTW_ON:
2311 		if (!before_rf)
2312 			return;
2313 		anaparm |= RTW_ANAPARM_RFPOW_MAXIM_ON;
2314 		break;
2315 	}
2316 	RTW_DPRINTF(RTW_DEBUG_PWR,
2317 	    ("%s: power state %s, %s RF, reg[ANAPARM] <- %08x\n",
2318 	    __func__, rtw_pwrstate_string(power),
2319 	    (before_rf) ? "before" : "after", anaparm));
2320 
2321 	RTW_WRITE(regs, RTW_ANAPARM, anaparm);
2322 	RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
2323 }
2324 
2325 /* XXX I am using the RFMD settings gleaned from the reference
2326  * driver.  They agree
2327  */
2328 static void
2329 rtw_rfmd_pwrstate(struct rtw_regs *regs, enum rtw_pwrstate power,
2330     int before_rf, int digphy)
2331 {
2332 	uint32_t anaparm;
2333 
2334 	anaparm = RTW_READ(regs, RTW_ANAPARM);
2335 	anaparm &= ~(RTW_ANAPARM_RFPOW_MASK | RTW_ANAPARM_TXDACOFF);
2336 
2337 	switch (power) {
2338 	case RTW_OFF:
2339 		if (before_rf)
2340 			return;
2341 		anaparm |= RTW_ANAPARM_RFPOW_RFMD_OFF;
2342 		anaparm |= RTW_ANAPARM_TXDACOFF;
2343 		break;
2344 	case RTW_SLEEP:
2345 		if (!before_rf)
2346 			return;
2347 		anaparm |= RTW_ANAPARM_RFPOW_RFMD_SLEEP;
2348 		anaparm |= RTW_ANAPARM_TXDACOFF;
2349 		break;
2350 	case RTW_ON:
2351 		if (!before_rf)
2352 			return;
2353 		anaparm |= RTW_ANAPARM_RFPOW_RFMD_ON;
2354 		break;
2355 	}
2356 	RTW_DPRINTF(RTW_DEBUG_PWR,
2357 	    ("%s: power state %s, %s RF, reg[ANAPARM] <- %08x\n",
2358 	    __func__, rtw_pwrstate_string(power),
2359 	    (before_rf) ? "before" : "after", anaparm));
2360 
2361 	RTW_WRITE(regs, RTW_ANAPARM, anaparm);
2362 	RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
2363 }
2364 
2365 static void
2366 rtw_philips_pwrstate(struct rtw_regs *regs, enum rtw_pwrstate power,
2367     int before_rf, int digphy)
2368 {
2369 	uint32_t anaparm;
2370 
2371 	anaparm = RTW_READ(regs, RTW_ANAPARM);
2372 	anaparm &= ~(RTW_ANAPARM_RFPOW_MASK | RTW_ANAPARM_TXDACOFF);
2373 
2374 	switch (power) {
2375 	case RTW_OFF:
2376 		if (before_rf)
2377 			return;
2378 		anaparm |= RTW_ANAPARM_RFPOW_PHILIPS_OFF;
2379 		anaparm |= RTW_ANAPARM_TXDACOFF;
2380 		break;
2381 	case RTW_SLEEP:
2382 		if (!before_rf)
2383 			return;
2384 		anaparm |= RTW_ANAPARM_RFPOW_PHILIPS_SLEEP;
2385 		anaparm |= RTW_ANAPARM_TXDACOFF;
2386 		break;
2387 	case RTW_ON:
2388 		if (!before_rf)
2389 			return;
2390 		if (digphy) {
2391 			anaparm |= RTW_ANAPARM_RFPOW_DIG_PHILIPS_ON;
2392 			/* XXX guess */
2393 			anaparm |= RTW_ANAPARM_TXDACOFF;
2394 		} else
2395 			anaparm |= RTW_ANAPARM_RFPOW_ANA_PHILIPS_ON;
2396 		break;
2397 	}
2398 	RTW_DPRINTF(RTW_DEBUG_PWR,
2399 	    ("%s: power state %s, %s RF, reg[ANAPARM] <- %08x\n",
2400 	    __func__, rtw_pwrstate_string(power),
2401 	    (before_rf) ? "before" : "after", anaparm));
2402 
2403 	RTW_WRITE(regs, RTW_ANAPARM, anaparm);
2404 	RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
2405 }
2406 
2407 static void
2408 rtw_pwrstate0(struct rtw_softc *sc, enum rtw_pwrstate power, int before_rf,
2409     int digphy)
2410 {
2411 	struct rtw_regs *regs = &sc->sc_regs;
2412 
2413 	rtw_set_access(regs, RTW_ACCESS_ANAPARM);
2414 
2415 	(*sc->sc_pwrstate_cb)(regs, power, before_rf, digphy);
2416 
2417 	rtw_set_access(regs, RTW_ACCESS_NONE);
2418 
2419 	return;
2420 }
2421 
2422 static int
2423 rtw_pwrstate(struct rtw_softc *sc, enum rtw_pwrstate power)
2424 {
2425 	int rc;
2426 
2427 	RTW_DPRINTF(RTW_DEBUG_PWR,
2428 	    ("%s: %s->%s\n", __func__,
2429 	    rtw_pwrstate_string(sc->sc_pwrstate), rtw_pwrstate_string(power)));
2430 
2431 	if (sc->sc_pwrstate == power)
2432 		return 0;
2433 
2434 	rtw_pwrstate0(sc, power, 1, sc->sc_flags & RTW_F_DIGPHY);
2435 	rc = rtw_rf_pwrstate(sc->sc_rf, power);
2436 	rtw_pwrstate0(sc, power, 0, sc->sc_flags & RTW_F_DIGPHY);
2437 
2438 	switch (power) {
2439 	case RTW_ON:
2440 		/* TBD set LEDs */
2441 		break;
2442 	case RTW_SLEEP:
2443 		/* TBD */
2444 		break;
2445 	case RTW_OFF:
2446 		/* TBD */
2447 		break;
2448 	}
2449 	if (rc == 0)
2450 		sc->sc_pwrstate = power;
2451 	else
2452 		sc->sc_pwrstate = RTW_OFF;
2453 	return rc;
2454 }
2455 
2456 static int
2457 rtw_tune(struct rtw_softc *sc)
2458 {
2459 	struct ieee80211com *ic = &sc->sc_ic;
2460 	struct rtw_tx_radiotap_header *rt = &sc->sc_txtap;
2461 	struct rtw_rx_radiotap_header *rr = &sc->sc_rxtap;
2462 	u_int chan;
2463 	int rc;
2464 	int antdiv = sc->sc_flags & RTW_F_ANTDIV,
2465 	    dflantb = sc->sc_flags & RTW_F_DFLANTB;
2466 
2467 	chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
2468 	KASSERT(chan != IEEE80211_CHAN_ANY);
2469 
2470 	rt->rt_chan_freq = htole16(ic->ic_curchan->ic_freq);
2471 	rt->rt_chan_flags = htole16(ic->ic_curchan->ic_flags);
2472 
2473 	rr->rr_chan_freq = htole16(ic->ic_curchan->ic_freq);
2474 	rr->rr_chan_flags = htole16(ic->ic_curchan->ic_flags);
2475 
2476 	if (chan == sc->sc_cur_chan) {
2477 		RTW_DPRINTF(RTW_DEBUG_TUNE,
2478 		    ("%s: already tuned chan #%d\n", __func__, chan));
2479 		return 0;
2480 	}
2481 
2482 	rtw_suspend_ticks(sc);
2483 
2484 	rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 0);
2485 
2486 	/* TBD wait for Tx to complete */
2487 
2488 	KASSERT(device_has_power(sc->sc_dev));
2489 
2490 	if ((rc = rtw_phy_init(&sc->sc_regs, sc->sc_rf,
2491 	    rtw_chan2txpower(&sc->sc_srom, ic, ic->ic_curchan), sc->sc_csthr,
2492 	        ic->ic_curchan->ic_freq, antdiv, dflantb, RTW_ON)) != 0) {
2493 		/* XXX condition on powersaving */
2494 		aprint_error_dev(sc->sc_dev, "phy init failed\n");
2495 	}
2496 
2497 	sc->sc_cur_chan = chan;
2498 
2499 	rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 1);
2500 
2501 	rtw_resume_ticks(sc);
2502 
2503 	return rc;
2504 }
2505 
2506 bool
2507 rtw_suspend(device_t self, const pmf_qual_t *qual)
2508 {
2509 	int rc;
2510 	struct rtw_softc *sc = device_private(self);
2511 
2512 	sc->sc_flags &= ~RTW_F_DK_VALID;
2513 
2514 	if (!device_has_power(self))
2515 		return false;
2516 
2517 	/* turn off PHY */
2518 	if ((rc = rtw_pwrstate(sc, RTW_OFF)) != 0) {
2519 		aprint_error_dev(self, "failed to turn off PHY (%d)\n", rc);
2520 		return false;
2521 	}
2522 
2523 	rtw_disable_interrupts(&sc->sc_regs);
2524 
2525 	return true;
2526 }
2527 
2528 bool
2529 rtw_resume(device_t self, const pmf_qual_t *qual)
2530 {
2531 	struct rtw_softc *sc = device_private(self);
2532 
2533 	/* Power may have been removed, resetting WEP keys.
2534 	 */
2535 	sc->sc_flags &= ~RTW_F_DK_VALID;
2536 	rtw_enable_interrupts(sc);
2537 
2538 	return true;
2539 }
2540 
2541 static void
2542 rtw_transmit_config(struct rtw_regs *regs)
2543 {
2544 	uint32_t tcr;
2545 
2546 	tcr = RTW_READ(regs, RTW_TCR);
2547 
2548 	tcr |= RTW_TCR_CWMIN;
2549 	tcr &= ~RTW_TCR_MXDMA_MASK;
2550 	tcr |= RTW_TCR_MXDMA_256;
2551 	tcr |= RTW_TCR_SAT;		/* send ACK as fast as possible */
2552 	tcr &= ~RTW_TCR_LBK_MASK;
2553 	tcr |= RTW_TCR_LBK_NORMAL;	/* normal operating mode */
2554 
2555 	/* set short/long retry limits */
2556 	tcr &= ~(RTW_TCR_SRL_MASK|RTW_TCR_LRL_MASK);
2557 	tcr |= __SHIFTIN(4, RTW_TCR_SRL_MASK) | __SHIFTIN(4, RTW_TCR_LRL_MASK);
2558 
2559 	tcr &= ~RTW_TCR_CRC;	/* NIC appends CRC32 */
2560 
2561 	RTW_WRITE(regs, RTW_TCR, tcr);
2562 	RTW_SYNC(regs, RTW_TCR, RTW_TCR);
2563 }
2564 
2565 static void
2566 rtw_disable_interrupts(struct rtw_regs *regs)
2567 {
2568 	RTW_WRITE16(regs, RTW_IMR, 0);
2569 	RTW_WBW(regs, RTW_IMR, RTW_ISR);
2570 	RTW_WRITE16(regs, RTW_ISR, 0xffff);
2571 	RTW_SYNC(regs, RTW_IMR, RTW_ISR);
2572 }
2573 
2574 static void
2575 rtw_enable_interrupts(struct rtw_softc *sc)
2576 {
2577 	struct rtw_regs *regs = &sc->sc_regs;
2578 
2579 	sc->sc_inten = RTW_INTR_RX|RTW_INTR_TX|RTW_INTR_BEACON|RTW_INTR_ATIMINT;
2580 	sc->sc_inten |= RTW_INTR_IOERROR|RTW_INTR_TIMEOUT;
2581 
2582 	RTW_WRITE16(regs, RTW_IMR, sc->sc_inten);
2583 	RTW_WBW(regs, RTW_IMR, RTW_ISR);
2584 	RTW_WRITE16(regs, RTW_ISR, 0xffff);
2585 	RTW_SYNC(regs, RTW_IMR, RTW_ISR);
2586 
2587 	/* XXX necessary? */
2588 	if (sc->sc_intr_ack != NULL)
2589 		(*sc->sc_intr_ack)(regs);
2590 }
2591 
2592 static void
2593 rtw_set_nettype(struct rtw_softc *sc, enum ieee80211_opmode opmode)
2594 {
2595 	uint8_t msr;
2596 
2597 	/* I'm guessing that MSR is protected as CONFIG[0123] are. */
2598 	rtw_set_access(&sc->sc_regs, RTW_ACCESS_CONFIG);
2599 
2600 	msr = RTW_READ8(&sc->sc_regs, RTW_MSR) & ~RTW_MSR_NETYPE_MASK;
2601 
2602 	switch (opmode) {
2603 	case IEEE80211_M_AHDEMO:
2604 	case IEEE80211_M_IBSS:
2605 		msr |= RTW_MSR_NETYPE_ADHOC_OK;
2606 		break;
2607 	case IEEE80211_M_HOSTAP:
2608 		msr |= RTW_MSR_NETYPE_AP_OK;
2609 		break;
2610 	case IEEE80211_M_MONITOR:
2611 		/* XXX */
2612 		msr |= RTW_MSR_NETYPE_NOLINK;
2613 		break;
2614 	case IEEE80211_M_STA:
2615 		msr |= RTW_MSR_NETYPE_INFRA_OK;
2616 		break;
2617 	}
2618 	RTW_WRITE8(&sc->sc_regs, RTW_MSR, msr);
2619 
2620 	rtw_set_access(&sc->sc_regs, RTW_ACCESS_NONE);
2621 }
2622 
2623 #define	rtw_calchash(addr) \
2624 	(ether_crc32_be((addr), IEEE80211_ADDR_LEN) >> 26)
2625 
2626 static void
2627 rtw_pktfilt_load(struct rtw_softc *sc)
2628 {
2629 	struct rtw_regs *regs = &sc->sc_regs;
2630 	struct ieee80211com *ic = &sc->sc_ic;
2631 	struct ethercom *ec = &sc->sc_ec;
2632 	struct ifnet *ifp = &sc->sc_if;
2633 	int hash;
2634 	uint32_t hashes[2] = { 0, 0 };
2635 	struct ether_multi *enm;
2636 	struct ether_multistep step;
2637 
2638 	/* XXX might be necessary to stop Rx/Tx engines while setting filters */
2639 
2640 	sc->sc_rcr &= ~RTW_RCR_PKTFILTER_MASK;
2641 	sc->sc_rcr &= ~(RTW_RCR_MXDMA_MASK | RTW_RCR_RXFTH_MASK);
2642 
2643 	sc->sc_rcr |= RTW_RCR_PKTFILTER_DEFAULT;
2644 	/* MAC auto-reset PHY (huh?) */
2645 	sc->sc_rcr |= RTW_RCR_ENMARP;
2646 	/* DMA whole Rx packets, only.  Set Tx DMA burst size to 1024 bytes. */
2647 	sc->sc_rcr |= RTW_RCR_MXDMA_1024 | RTW_RCR_RXFTH_WHOLE;
2648 
2649 	switch (ic->ic_opmode) {
2650 	case IEEE80211_M_MONITOR:
2651 		sc->sc_rcr |= RTW_RCR_MONITOR;
2652 		break;
2653 	case IEEE80211_M_AHDEMO:
2654 	case IEEE80211_M_IBSS:
2655 		/* receive broadcasts in our BSS */
2656 		sc->sc_rcr |= RTW_RCR_ADD3;
2657 		break;
2658 	default:
2659 		break;
2660 	}
2661 
2662 	ifp->if_flags &= ~IFF_ALLMULTI;
2663 
2664 	/*
2665 	 * Program the 64-bit multicast hash filter.
2666 	 */
2667 	ETHER_FIRST_MULTI(step, ec, enm);
2668 	while (enm != NULL) {
2669 		/* XXX */
2670 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
2671 		    ETHER_ADDR_LEN) != 0) {
2672 			ifp->if_flags |= IFF_ALLMULTI;
2673 			break;
2674 		}
2675 
2676 		hash = rtw_calchash(enm->enm_addrlo);
2677 		hashes[hash >> 5] |= (1 << (hash & 0x1f));
2678 		ETHER_NEXT_MULTI(step, enm);
2679 	}
2680 
2681 	/* XXX accept all broadcast if scanning */
2682 	if ((ifp->if_flags & IFF_BROADCAST) != 0)
2683 		sc->sc_rcr |= RTW_RCR_AB;	/* accept all broadcast */
2684 
2685 	if (ifp->if_flags & IFF_PROMISC) {
2686 		sc->sc_rcr |= RTW_RCR_AB;	/* accept all broadcast */
2687 		sc->sc_rcr |= RTW_RCR_ACRC32;	/* accept frames failing CRC */
2688 		sc->sc_rcr |= RTW_RCR_AICV;	/* accept frames failing ICV */
2689 		ifp->if_flags |= IFF_ALLMULTI;
2690 	}
2691 
2692 	if (ifp->if_flags & IFF_ALLMULTI)
2693 		hashes[0] = hashes[1] = 0xffffffff;
2694 
2695 	if ((hashes[0] | hashes[1]) != 0)
2696 		sc->sc_rcr |= RTW_RCR_AM;	/* accept multicast */
2697 
2698 	RTW_WRITE(regs, RTW_MAR0, hashes[0]);
2699 	RTW_WRITE(regs, RTW_MAR1, hashes[1]);
2700 	RTW_WRITE(regs, RTW_RCR, sc->sc_rcr);
2701 	RTW_SYNC(regs, RTW_MAR0, RTW_RCR); /* RTW_MAR0 < RTW_MAR1 < RTW_RCR */
2702 
2703 	DPRINTF(sc, RTW_DEBUG_PKTFILT,
2704 	    ("%s: RTW_MAR0 %08x RTW_MAR1 %08x RTW_RCR %08x\n",
2705 	    device_xname(sc->sc_dev), RTW_READ(regs, RTW_MAR0),
2706 	    RTW_READ(regs, RTW_MAR1), RTW_READ(regs, RTW_RCR)));
2707 }
2708 
2709 static struct mbuf *
2710 rtw_beacon_alloc(struct rtw_softc *sc, struct ieee80211_node *ni)
2711 {
2712 	struct ieee80211com *ic = &sc->sc_ic;
2713 	struct mbuf *m;
2714 	struct ieee80211_beacon_offsets	boff;
2715 
2716 	if ((m = ieee80211_beacon_alloc(ic, ni, &boff)) != NULL) {
2717 		RTW_DPRINTF(RTW_DEBUG_BEACON,
2718 		    ("%s: m %p len %u\n", __func__, m, m->m_len));
2719 	}
2720 	return m;
2721 }
2722 
2723 /* Must be called at splnet. */
2724 static int
2725 rtw_init(struct ifnet *ifp)
2726 {
2727 	struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
2728 	struct ieee80211com *ic = &sc->sc_ic;
2729 	struct rtw_regs *regs = &sc->sc_regs;
2730 	int rc;
2731 
2732 	if (device_is_active(sc->sc_dev)) {
2733 		/* Cancel pending I/O and reset. */
2734 		rtw_stop(ifp, 0);
2735 	} else if (!pmf_device_resume(sc->sc_dev, &sc->sc_qual) ||
2736 	           !device_is_active(sc->sc_dev))
2737 		return 0;
2738 
2739 	DPRINTF(sc, RTW_DEBUG_TUNE, ("%s: channel %d freq %d flags 0x%04x\n",
2740 	    __func__, ieee80211_chan2ieee(ic, ic->ic_curchan),
2741 	    ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags));
2742 
2743 	if ((rc = rtw_pwrstate(sc, RTW_OFF)) != 0)
2744 		goto out;
2745 
2746 	if ((rc = rtw_swring_setup(sc)) != 0)
2747 		goto out;
2748 
2749 	rtw_transmit_config(regs);
2750 
2751 	rtw_set_access(regs, RTW_ACCESS_CONFIG);
2752 
2753 	RTW_WRITE8(regs, RTW_MSR, 0x0);	/* no link */
2754 	RTW_WBW(regs, RTW_MSR, RTW_BRSR);
2755 
2756 	/* long PLCP header, 1Mb/2Mb basic rate */
2757 	RTW_WRITE16(regs, RTW_BRSR, RTW_BRSR_MBR8180_2MBPS);
2758 	RTW_SYNC(regs, RTW_BRSR, RTW_BRSR);
2759 
2760 	rtw_set_access(regs, RTW_ACCESS_ANAPARM);
2761 	rtw_set_access(regs, RTW_ACCESS_NONE);
2762 
2763 	/* XXX from reference sources */
2764 	RTW_WRITE(regs, RTW_FEMR, 0xffff);
2765 	RTW_SYNC(regs, RTW_FEMR, RTW_FEMR);
2766 
2767 	rtw_set_rfprog(regs, sc->sc_rfchipid, sc->sc_dev);
2768 
2769 	RTW_WRITE8(regs, RTW_PHYDELAY, sc->sc_phydelay);
2770 	/* from Linux driver */
2771 	RTW_WRITE8(regs, RTW_CRCOUNT, RTW_CRCOUNT_MAGIC);
2772 
2773 	RTW_SYNC(regs, RTW_PHYDELAY, RTW_CRCOUNT);
2774 
2775 	rtw_enable_interrupts(sc);
2776 
2777 	rtw_pktfilt_load(sc);
2778 
2779 	rtw_hwring_setup(sc);
2780 
2781 	rtw_wep_setkeys(sc, ic->ic_nw_keys, ic->ic_def_txkey);
2782 
2783 	rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 1);
2784 
2785 	ifp->if_flags |= IFF_RUNNING;
2786 	ic->ic_state = IEEE80211_S_INIT;
2787 
2788 	RTW_WRITE16(regs, RTW_BSSID16, 0x0);
2789 	RTW_WRITE(regs, RTW_BSSID32, 0x0);
2790 
2791 	rtw_resume_ticks(sc);
2792 
2793 	rtw_set_nettype(sc, IEEE80211_M_MONITOR);
2794 
2795 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2796 		return ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2797 	else
2798 		return ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2799 
2800 out:
2801 	aprint_error_dev(sc->sc_dev, "interface not running\n");
2802 	return rc;
2803 }
2804 
2805 static inline void
2806 rtw_led_init(struct rtw_regs *regs)
2807 {
2808 	uint8_t cfg0, cfg1;
2809 
2810 	rtw_set_access(regs, RTW_ACCESS_CONFIG);
2811 
2812 	cfg0 = RTW_READ8(regs, RTW_CONFIG0);
2813 	cfg0 |= RTW_CONFIG0_LEDGPOEN;
2814 	RTW_WRITE8(regs, RTW_CONFIG0, cfg0);
2815 
2816 	cfg1 = RTW_READ8(regs, RTW_CONFIG1);
2817 	RTW_DPRINTF(RTW_DEBUG_LED,
2818 	    ("%s: read %" PRIx8 " from reg[CONFIG1]\n", __func__, cfg1));
2819 
2820 	cfg1 &= ~RTW_CONFIG1_LEDS_MASK;
2821 	cfg1 |= RTW_CONFIG1_LEDS_TX_RX;
2822 	RTW_WRITE8(regs, RTW_CONFIG1, cfg1);
2823 
2824 	rtw_set_access(regs, RTW_ACCESS_NONE);
2825 }
2826 
2827 /*
2828  * IEEE80211_S_INIT: 		LED1 off
2829  *
2830  * IEEE80211_S_AUTH,
2831  * IEEE80211_S_ASSOC,
2832  * IEEE80211_S_SCAN: 		LED1 blinks @ 1 Hz, blinks at 5Hz for tx/rx
2833  *
2834  * IEEE80211_S_RUN: 		LED1 on, blinks @ 5Hz for tx/rx
2835  */
2836 static void
2837 rtw_led_newstate(struct rtw_softc *sc, enum ieee80211_state nstate)
2838 {
2839 	struct rtw_led_state *ls;
2840 
2841 	ls = &sc->sc_led_state;
2842 
2843 	switch (nstate) {
2844 	case IEEE80211_S_INIT:
2845 		rtw_led_init(&sc->sc_regs);
2846 		aprint_debug_dev(sc->sc_dev, "stopping blink\n");
2847 		callout_stop(&ls->ls_slow_ch);
2848 		callout_stop(&ls->ls_fast_ch);
2849 		ls->ls_slowblink = 0;
2850 		ls->ls_actblink = 0;
2851 		ls->ls_default = 0;
2852 		break;
2853 	case IEEE80211_S_SCAN:
2854 		aprint_debug_dev(sc->sc_dev, "scheduling blink\n");
2855 		callout_schedule(&ls->ls_slow_ch, RTW_LED_SLOW_TICKS);
2856 		callout_schedule(&ls->ls_fast_ch, RTW_LED_FAST_TICKS);
2857 		/*FALLTHROUGH*/
2858 	case IEEE80211_S_AUTH:
2859 	case IEEE80211_S_ASSOC:
2860 		ls->ls_default = RTW_LED1;
2861 		ls->ls_actblink = RTW_LED1;
2862 		ls->ls_slowblink = RTW_LED1;
2863 		break;
2864 	case IEEE80211_S_RUN:
2865 		ls->ls_slowblink = 0;
2866 		break;
2867 	}
2868 	rtw_led_set(ls, &sc->sc_regs, sc->sc_hwverid);
2869 }
2870 
2871 static void
2872 rtw_led_set(struct rtw_led_state *ls, struct rtw_regs *regs, int hwverid)
2873 {
2874 	uint8_t led_condition;
2875 	bus_size_t ofs;
2876 	uint8_t mask, newval, val;
2877 
2878 	led_condition = ls->ls_default;
2879 
2880 	if (ls->ls_state & RTW_LED_S_SLOW)
2881 		led_condition ^= ls->ls_slowblink;
2882 	if (ls->ls_state & (RTW_LED_S_RX|RTW_LED_S_TX))
2883 		led_condition ^= ls->ls_actblink;
2884 
2885 	RTW_DPRINTF(RTW_DEBUG_LED,
2886 	    ("%s: LED condition %" PRIx8 "\n", __func__, led_condition));
2887 
2888 	switch (hwverid) {
2889 	default:
2890 	case 'F':
2891 		ofs = RTW_PSR;
2892 		newval = mask = RTW_PSR_LEDGPO0 | RTW_PSR_LEDGPO1;
2893 		if (led_condition & RTW_LED0)
2894 			newval &= ~RTW_PSR_LEDGPO0;
2895 		if (led_condition & RTW_LED1)
2896 			newval &= ~RTW_PSR_LEDGPO1;
2897 		break;
2898 	case 'D':
2899 		ofs = RTW_9346CR;
2900 		mask = RTW_9346CR_EEM_MASK | RTW_9346CR_EEDI | RTW_9346CR_EECS;
2901 		newval = RTW_9346CR_EEM_PROGRAM;
2902 		if (led_condition & RTW_LED0)
2903 			newval |= RTW_9346CR_EEDI;
2904 		if (led_condition & RTW_LED1)
2905 			newval |= RTW_9346CR_EECS;
2906 		break;
2907 	}
2908 	val = RTW_READ8(regs, ofs);
2909 	RTW_DPRINTF(RTW_DEBUG_LED,
2910 	    ("%s: read %" PRIx8 " from reg[%#02" PRIxPTR "]\n", __func__, val,
2911 	     (uintptr_t)ofs));
2912 	val &= ~mask;
2913 	val |= newval;
2914 	RTW_WRITE8(regs, ofs, val);
2915 	RTW_DPRINTF(RTW_DEBUG_LED,
2916 	    ("%s: wrote %" PRIx8 " to reg[%#02" PRIxPTR "]\n", __func__, val,
2917 	     (uintptr_t)ofs));
2918 	RTW_SYNC(regs, ofs, ofs);
2919 }
2920 
2921 static void
2922 rtw_led_fastblink(void *arg)
2923 {
2924 	int ostate, s;
2925 	struct rtw_softc *sc = (struct rtw_softc *)arg;
2926 	struct rtw_led_state *ls = &sc->sc_led_state;
2927 
2928 	s = splnet();
2929 	ostate = ls->ls_state;
2930 	ls->ls_state ^= ls->ls_event;
2931 
2932 	if ((ls->ls_event & RTW_LED_S_TX) == 0)
2933 		ls->ls_state &= ~RTW_LED_S_TX;
2934 
2935 	if ((ls->ls_event & RTW_LED_S_RX) == 0)
2936 		ls->ls_state &= ~RTW_LED_S_RX;
2937 
2938 	ls->ls_event = 0;
2939 
2940 	if (ostate != ls->ls_state)
2941 		rtw_led_set(ls, &sc->sc_regs, sc->sc_hwverid);
2942 	splx(s);
2943 
2944 	aprint_debug_dev(sc->sc_dev, "scheduling fast blink\n");
2945 	callout_schedule(&ls->ls_fast_ch, RTW_LED_FAST_TICKS);
2946 }
2947 
2948 static void
2949 rtw_led_slowblink(void *arg)
2950 {
2951 	int s;
2952 	struct rtw_softc *sc = (struct rtw_softc *)arg;
2953 	struct rtw_led_state *ls = &sc->sc_led_state;
2954 
2955 	s = splnet();
2956 	ls->ls_state ^= RTW_LED_S_SLOW;
2957 	rtw_led_set(ls, &sc->sc_regs, sc->sc_hwverid);
2958 	splx(s);
2959 	aprint_debug_dev(sc->sc_dev, "scheduling slow blink\n");
2960 	callout_schedule(&ls->ls_slow_ch, RTW_LED_SLOW_TICKS);
2961 }
2962 
2963 static void
2964 rtw_led_detach(struct rtw_led_state *ls)
2965 {
2966 	callout_destroy(&ls->ls_fast_ch);
2967 	callout_destroy(&ls->ls_slow_ch);
2968 }
2969 
2970 static void
2971 rtw_led_attach(struct rtw_led_state *ls, void *arg)
2972 {
2973 	callout_init(&ls->ls_fast_ch, 0);
2974 	callout_init(&ls->ls_slow_ch, 0);
2975 	callout_setfunc(&ls->ls_fast_ch, rtw_led_fastblink, arg);
2976 	callout_setfunc(&ls->ls_slow_ch, rtw_led_slowblink, arg);
2977 }
2978 
2979 static int
2980 rtw_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2981 {
2982 	int rc = 0, s;
2983 	struct rtw_softc *sc = ifp->if_softc;
2984 
2985 	s = splnet();
2986 	if (cmd == SIOCSIFFLAGS) {
2987 		if ((rc = ifioctl_common(ifp, cmd, data)) != 0)
2988 			;
2989 		else switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
2990 		case IFF_UP:
2991 			rc = rtw_init(ifp);
2992 			RTW_PRINT_REGS(&sc->sc_regs, ifp->if_xname, __func__);
2993 			break;
2994 		case IFF_UP|IFF_RUNNING:
2995 			if (device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
2996 				rtw_pktfilt_load(sc);
2997 			RTW_PRINT_REGS(&sc->sc_regs, ifp->if_xname, __func__);
2998 			break;
2999 		case IFF_RUNNING:
3000 			RTW_PRINT_REGS(&sc->sc_regs, ifp->if_xname, __func__);
3001 			rtw_stop(ifp, 1);
3002 			break;
3003 		default:
3004 			break;
3005 		}
3006 	} else if ((rc = ieee80211_ioctl(&sc->sc_ic, cmd, data)) != ENETRESET)
3007 		;	/* nothing to do */
3008 	else if (cmd == SIOCADDMULTI || cmd == SIOCDELMULTI) {
3009 		/* reload packet filter if running */
3010 		if (ifp->if_flags & IFF_RUNNING)
3011 			rtw_pktfilt_load(sc);
3012 		rc = 0;
3013 	} else if ((ifp->if_flags & IFF_UP) != 0)
3014 		rc = rtw_init(ifp);
3015 	else
3016 		rc = 0;
3017 	splx(s);
3018 	return rc;
3019 }
3020 
3021 /* Select a transmit ring with at least one h/w and s/w descriptor free.
3022  * Return 0 on success, -1 on failure.
3023  */
3024 static inline int
3025 rtw_txring_choose(struct rtw_softc *sc, struct rtw_txsoft_blk **tsbp,
3026     struct rtw_txdesc_blk **tdbp, int pri)
3027 {
3028 	struct rtw_txsoft_blk *tsb;
3029 	struct rtw_txdesc_blk *tdb;
3030 
3031 	KASSERT(pri >= 0 && pri < RTW_NTXPRI);
3032 
3033 	tsb = &sc->sc_txsoft_blk[pri];
3034 	tdb = &sc->sc_txdesc_blk[pri];
3035 
3036 	if (SIMPLEQ_EMPTY(&tsb->tsb_freeq) || tdb->tdb_nfree == 0) {
3037 		if (tsb->tsb_tx_timer == 0)
3038 			tsb->tsb_tx_timer = 5;
3039 		*tsbp = NULL;
3040 		*tdbp = NULL;
3041 		return -1;
3042 	}
3043 	*tsbp = tsb;
3044 	*tdbp = tdb;
3045 	return 0;
3046 }
3047 
3048 static inline struct mbuf *
3049 rtw_80211_dequeue(struct rtw_softc *sc, struct ifqueue *ifq, int pri,
3050     struct rtw_txsoft_blk **tsbp, struct rtw_txdesc_blk **tdbp,
3051     struct ieee80211_node **nip, short *if_flagsp)
3052 {
3053 	struct mbuf *m;
3054 
3055 	if (IF_IS_EMPTY(ifq))
3056 		return NULL;
3057 	if (rtw_txring_choose(sc, tsbp, tdbp, pri) == -1) {
3058 		DPRINTF(sc, RTW_DEBUG_XMIT_RSRC, ("%s: no ring %d descriptor\n",
3059 		    __func__, pri));
3060 		*if_flagsp |= IFF_OACTIVE;
3061 		sc->sc_if.if_timer = 1;
3062 		return NULL;
3063 	}
3064 	IF_DEQUEUE(ifq, m);
3065 	*nip = (struct ieee80211_node *)m->m_pkthdr.rcvif;
3066 	m->m_pkthdr.rcvif = NULL;
3067 	KASSERT(*nip != NULL);
3068 	return m;
3069 }
3070 
3071 /* Point *mp at the next 802.11 frame to transmit.  Point *tsbp
3072  * at the driver's selection of transmit control block for the packet.
3073  */
3074 static inline int
3075 rtw_dequeue(struct ifnet *ifp, struct rtw_txsoft_blk **tsbp,
3076     struct rtw_txdesc_blk **tdbp, struct mbuf **mp,
3077     struct ieee80211_node **nip)
3078 {
3079 	int pri;
3080 	struct ether_header *eh;
3081 	struct mbuf *m0;
3082 	struct rtw_softc *sc;
3083 	short *if_flagsp;
3084 
3085 	*mp = NULL;
3086 
3087 	sc = (struct rtw_softc *)ifp->if_softc;
3088 
3089 	DPRINTF(sc, RTW_DEBUG_XMIT,
3090 	    ("%s: enter %s\n", device_xname(sc->sc_dev), __func__));
3091 
3092 	if_flagsp = &ifp->if_flags;
3093 
3094 	if (sc->sc_ic.ic_state == IEEE80211_S_RUN &&
3095 	    (*mp = rtw_80211_dequeue(sc, &sc->sc_beaconq, RTW_TXPRIBCN, tsbp,
3096 		                     tdbp, nip, if_flagsp)) != NULL) {
3097 		DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: dequeue beacon frame\n",
3098 		    __func__));
3099 		return 0;
3100 	}
3101 
3102 	if ((*mp = rtw_80211_dequeue(sc, &sc->sc_ic.ic_mgtq, RTW_TXPRIMD, tsbp,
3103 		                     tdbp, nip, if_flagsp)) != NULL) {
3104 		DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: dequeue mgt frame\n",
3105 		    __func__));
3106 		return 0;
3107 	}
3108 
3109 	if (sc->sc_ic.ic_state != IEEE80211_S_RUN) {
3110 		DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: not running\n", __func__));
3111 		return 0;
3112 	}
3113 
3114 	IFQ_POLL(&ifp->if_snd, m0);
3115 	if (m0 == NULL) {
3116 		DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: no frame ready\n",
3117 		    __func__));
3118 		return 0;
3119 	}
3120 
3121 	pri = ((m0->m_flags & M_PWR_SAV) != 0) ? RTW_TXPRIHI : RTW_TXPRIMD;
3122 
3123 	if (rtw_txring_choose(sc, tsbp, tdbp, pri) == -1) {
3124 		DPRINTF(sc, RTW_DEBUG_XMIT_RSRC, ("%s: no ring %d descriptor\n",
3125 		    __func__, pri));
3126 		*if_flagsp |= IFF_OACTIVE;
3127 		sc->sc_if.if_timer = 1;
3128 		return 0;
3129 	}
3130 
3131 	IFQ_DEQUEUE(&ifp->if_snd, m0);
3132 	if (m0 == NULL) {
3133 		DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: no frame ready\n",
3134 		    __func__));
3135 		return 0;
3136 	}
3137 	DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: dequeue data frame\n", __func__));
3138 	ifp->if_opackets++;
3139 	bpf_mtap(ifp, m0);
3140 	eh = mtod(m0, struct ether_header *);
3141 	*nip = ieee80211_find_txnode(&sc->sc_ic, eh->ether_dhost);
3142 	if (*nip == NULL) {
3143 		/* NB: ieee80211_find_txnode does stat+msg */
3144 		m_freem(m0);
3145 		return -1;
3146 	}
3147 	if ((m0 = ieee80211_encap(&sc->sc_ic, m0, *nip)) == NULL) {
3148 		DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: encap error\n", __func__));
3149 		ifp->if_oerrors++;
3150 		return -1;
3151 	}
3152 	DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: leave\n", __func__));
3153 	*mp = m0;
3154 	return 0;
3155 }
3156 
3157 static int
3158 rtw_seg_too_short(bus_dmamap_t dmamap)
3159 {
3160 	int i;
3161 	for (i = 0; i < dmamap->dm_nsegs; i++) {
3162 		if (dmamap->dm_segs[i].ds_len < 4)
3163 			return 1;
3164 	}
3165 	return 0;
3166 }
3167 
3168 /* TBD factor with atw_start */
3169 static struct mbuf *
3170 rtw_dmamap_load_txbuf(bus_dma_tag_t dmat, bus_dmamap_t dmam, struct mbuf *chain,
3171     u_int ndescfree, device_t dev)
3172 {
3173 	int first, rc;
3174 	struct mbuf *m, *m0;
3175 
3176 	m0 = chain;
3177 
3178 	/*
3179 	 * Load the DMA map.  Copy and try (once) again if the packet
3180 	 * didn't fit in the alloted number of segments.
3181 	 */
3182 	for (first = 1;
3183 	     ((rc = bus_dmamap_load_mbuf(dmat, dmam, m0,
3184 			  BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 ||
3185 	      dmam->dm_nsegs > ndescfree || rtw_seg_too_short(dmam)) && first;
3186 	     first = 0) {
3187 		if (rc == 0) {
3188 #ifdef RTW_DIAGxxx
3189 			if (rtw_seg_too_short(dmam)) {
3190 				printf("%s: short segment, mbuf lengths:", __func__);
3191 				for (m = m0; m; m = m->m_next)
3192 					printf(" %d", m->m_len);
3193 				printf("\n");
3194 			}
3195 #endif
3196 			bus_dmamap_unload(dmat, dmam);
3197 		}
3198 		MGETHDR(m, M_DONTWAIT, MT_DATA);
3199 		if (m == NULL) {
3200 			aprint_error_dev(dev, "unable to allocate Tx mbuf\n");
3201 			break;
3202 		}
3203 		if (m0->m_pkthdr.len > MHLEN) {
3204 			MCLGET(m, M_DONTWAIT);
3205 			if ((m->m_flags & M_EXT) == 0) {
3206 				aprint_error_dev(dev,
3207 				    "cannot allocate Tx cluster\n");
3208 				m_freem(m);
3209 				break;
3210 			}
3211 		}
3212 		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
3213 		m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
3214 		m_freem(m0);
3215 		m0 = m;
3216 		m = NULL;
3217 	}
3218 	if (rc != 0) {
3219 		aprint_error_dev(dev, "cannot load Tx buffer, rc = %d\n", rc);
3220 		m_freem(m0);
3221 		return NULL;
3222 	} else if (rtw_seg_too_short(dmam)) {
3223 		aprint_error_dev(dev,
3224 		    "cannot load Tx buffer, segment too short\n");
3225 		bus_dmamap_unload(dmat, dmam);
3226 		m_freem(m0);
3227 		return NULL;
3228 	} else if (dmam->dm_nsegs > ndescfree) {
3229 		aprint_error_dev(dev, "too many tx segments\n");
3230 		bus_dmamap_unload(dmat, dmam);
3231 		m_freem(m0);
3232 		return NULL;
3233 	}
3234 	return m0;
3235 }
3236 
3237 #ifdef RTW_DEBUG
3238 static void
3239 rtw_print_txdesc(struct rtw_softc *sc, const char *action,
3240     struct rtw_txsoft *ts, struct rtw_txdesc_blk *tdb, int desc)
3241 {
3242 	struct rtw_txdesc *td = &tdb->tdb_desc[desc];
3243 	DPRINTF(sc, RTW_DEBUG_XMIT_DESC, ("%s: %p %s txdesc[%d] next %#08x "
3244 	    "buf %#08x ctl0 %#08x ctl1 %#08x len %#08x\n",
3245 	    device_xname(sc->sc_dev), ts, action, desc,
3246 	    le32toh(td->td_buf), le32toh(td->td_next),
3247 	    le32toh(td->td_ctl0), le32toh(td->td_ctl1),
3248 	    le32toh(td->td_len)));
3249 }
3250 #endif /* RTW_DEBUG */
3251 
3252 static void
3253 rtw_start(struct ifnet *ifp)
3254 {
3255 	int desc, i, lastdesc, npkt, rate;
3256 	uint32_t proto_ctl0, ctl0, ctl1;
3257 	bus_dmamap_t		dmamap;
3258 	struct ieee80211com	*ic;
3259 	struct ieee80211_duration *d0;
3260 	struct ieee80211_frame_min	*wh;
3261 	struct ieee80211_node	*ni = NULL;	/* XXX: GCC */
3262 	struct mbuf		*m0;
3263 	struct rtw_softc	*sc;
3264 	struct rtw_txsoft_blk	*tsb = NULL;	/* XXX: GCC */
3265 	struct rtw_txdesc_blk	*tdb = NULL;	/* XXX: GCC */
3266 	struct rtw_txsoft	*ts;
3267 	struct rtw_txdesc	*td;
3268 	struct ieee80211_key	*k;
3269 
3270 	sc = (struct rtw_softc *)ifp->if_softc;
3271 	ic = &sc->sc_ic;
3272 
3273 	DPRINTF(sc, RTW_DEBUG_XMIT,
3274 	    ("%s: enter %s\n", device_xname(sc->sc_dev), __func__));
3275 
3276 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3277 		goto out;
3278 
3279 	/* XXX do real rate control */
3280 	proto_ctl0 = RTW_TXCTL0_RTSRATE_1MBPS;
3281 
3282 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0)
3283 		proto_ctl0 |= RTW_TXCTL0_SPLCP;
3284 
3285 	for (;;) {
3286 		if (rtw_dequeue(ifp, &tsb, &tdb, &m0, &ni) == -1)
3287 			continue;
3288 		if (m0 == NULL)
3289 			break;
3290 
3291 		wh = mtod(m0, struct ieee80211_frame_min *);
3292 
3293 		if ((wh->i_fc[1] & IEEE80211_FC1_WEP) != 0 &&
3294 		    (k = ieee80211_crypto_encap(ic, ni, m0)) == NULL) {
3295 			m_freem(m0);
3296 			break;
3297 		} else
3298 			k = NULL;
3299 
3300 		ts = SIMPLEQ_FIRST(&tsb->tsb_freeq);
3301 
3302 		dmamap = ts->ts_dmamap;
3303 
3304 		m0 = rtw_dmamap_load_txbuf(sc->sc_dmat, dmamap, m0,
3305 		    tdb->tdb_nfree, sc->sc_dev);
3306 
3307 		if (m0 == NULL || dmamap->dm_nsegs == 0) {
3308 			DPRINTF(sc, RTW_DEBUG_XMIT,
3309 			    ("%s: fail dmamap load\n", __func__));
3310 			goto post_dequeue_err;
3311 		}
3312 
3313 		/* Note well: rtw_dmamap_load_txbuf may have created
3314 		 * a new chain, so we must find the header once
3315 		 * more.
3316 		 */
3317 		wh = mtod(m0, struct ieee80211_frame_min *);
3318 
3319 		/* XXX do real rate control */
3320 		if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
3321 		    IEEE80211_FC0_TYPE_MGT)
3322 			rate = 2;
3323 		else
3324 			rate = MAX(2, ieee80211_get_rate(ni));
3325 
3326 #ifdef RTW_DEBUG
3327 		if ((ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) ==
3328 		    (IFF_DEBUG|IFF_LINK2)) {
3329 			ieee80211_dump_pkt(mtod(m0, uint8_t *),
3330 			    (dmamap->dm_nsegs == 1) ? m0->m_pkthdr.len
3331 			                            : sizeof(wh),
3332 			    rate, 0);
3333 		}
3334 #endif /* RTW_DEBUG */
3335 		ctl0 = proto_ctl0 |
3336 		    __SHIFTIN(m0->m_pkthdr.len, RTW_TXCTL0_TPKTSIZE_MASK);
3337 
3338 		switch (rate) {
3339 		default:
3340 		case 2:
3341 			ctl0 |= RTW_TXCTL0_RATE_1MBPS;
3342 			break;
3343 		case 4:
3344 			ctl0 |= RTW_TXCTL0_RATE_2MBPS;
3345 			break;
3346 		case 11:
3347 			ctl0 |= RTW_TXCTL0_RATE_5MBPS;
3348 			break;
3349 		case 22:
3350 			ctl0 |= RTW_TXCTL0_RATE_11MBPS;
3351 			break;
3352 		}
3353 		/* XXX >= ? Compare after fragmentation? */
3354 		if (m0->m_pkthdr.len > ic->ic_rtsthreshold)
3355 			ctl0 |= RTW_TXCTL0_RTSEN;
3356 
3357                 /* XXX Sometimes writes a bogus keyid; h/w doesn't
3358                  * seem to care, since we don't activate h/w Tx
3359                  * encryption.
3360 		 */
3361 		if (k != NULL &&
3362 		    k->wk_cipher->ic_cipher == IEEE80211_CIPHER_WEP) {
3363 			ctl0 |= __SHIFTIN(k->wk_keyix, RTW_TXCTL0_KEYID_MASK) &
3364 			    RTW_TXCTL0_KEYID_MASK;
3365 		}
3366 
3367 		if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
3368 		    IEEE80211_FC0_TYPE_MGT) {
3369 			ctl0 &= ~(RTW_TXCTL0_SPLCP | RTW_TXCTL0_RTSEN);
3370 			if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
3371 			    IEEE80211_FC0_SUBTYPE_BEACON)
3372 				ctl0 |= RTW_TXCTL0_BEACON;
3373 		}
3374 
3375 		if (ieee80211_compute_duration(wh, k, m0->m_pkthdr.len,
3376 		    ic->ic_flags, ic->ic_fragthreshold,
3377 		    rate, &ts->ts_d0, &ts->ts_dn, &npkt,
3378 		    (ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) ==
3379 		    (IFF_DEBUG|IFF_LINK2)) == -1) {
3380 			DPRINTF(sc, RTW_DEBUG_XMIT,
3381 			    ("%s: fail compute duration\n", __func__));
3382 			goto post_load_err;
3383 		}
3384 
3385 		d0 = &ts->ts_d0;
3386 
3387 		*(uint16_t*)wh->i_dur = htole16(d0->d_data_dur);
3388 
3389 		ctl1 = __SHIFTIN(d0->d_plcp_len, RTW_TXCTL1_LENGTH_MASK) |
3390 		    __SHIFTIN(d0->d_rts_dur, RTW_TXCTL1_RTSDUR_MASK);
3391 
3392 		if (d0->d_residue)
3393 			ctl1 |= RTW_TXCTL1_LENGEXT;
3394 
3395 		/* TBD fragmentation */
3396 
3397 		ts->ts_first = tdb->tdb_next;
3398 
3399 		rtw_txdescs_sync(tdb, ts->ts_first, dmamap->dm_nsegs,
3400 		    BUS_DMASYNC_PREWRITE);
3401 
3402 		KASSERT(ts->ts_first < tdb->tdb_ndesc);
3403 
3404 		bpf_mtap3(ic->ic_rawbpf, m0);
3405 
3406 		if (sc->sc_radiobpf != NULL) {
3407 			struct rtw_tx_radiotap_header *rt = &sc->sc_txtap;
3408 
3409 			rt->rt_rate = rate;
3410 
3411 			bpf_mtap2(sc->sc_radiobpf, rt, sizeof(sc->sc_txtapu),
3412 			    m0);
3413 		}
3414 
3415 		for (i = 0, lastdesc = desc = ts->ts_first;
3416 		     i < dmamap->dm_nsegs;
3417 		     i++, desc = RTW_NEXT_IDX(tdb, desc)) {
3418 			if (dmamap->dm_segs[i].ds_len > RTW_TXLEN_LENGTH_MASK) {
3419 				DPRINTF(sc, RTW_DEBUG_XMIT_DESC,
3420 				    ("%s: seg too long\n", __func__));
3421 				goto post_load_err;
3422 			}
3423 			td = &tdb->tdb_desc[desc];
3424 			td->td_ctl0 = htole32(ctl0);
3425 			td->td_ctl1 = htole32(ctl1);
3426 			td->td_buf = htole32(dmamap->dm_segs[i].ds_addr);
3427 			td->td_len = htole32(dmamap->dm_segs[i].ds_len);
3428 			td->td_next = htole32(RTW_NEXT_DESC(tdb, desc));
3429 			if (i != 0)
3430 				td->td_ctl0 |= htole32(RTW_TXCTL0_OWN);
3431 			lastdesc = desc;
3432 #ifdef RTW_DEBUG
3433 			rtw_print_txdesc(sc, "load", ts, tdb, desc);
3434 #endif /* RTW_DEBUG */
3435 		}
3436 
3437 		KASSERT(desc < tdb->tdb_ndesc);
3438 
3439 		ts->ts_ni = ni;
3440 		KASSERT(ni != NULL);
3441 		ts->ts_mbuf = m0;
3442 		ts->ts_last = lastdesc;
3443 		tdb->tdb_desc[ts->ts_last].td_ctl0 |= htole32(RTW_TXCTL0_LS);
3444 		tdb->tdb_desc[ts->ts_first].td_ctl0 |=
3445 		   htole32(RTW_TXCTL0_FS);
3446 
3447 #ifdef RTW_DEBUG
3448 		rtw_print_txdesc(sc, "FS on", ts, tdb, ts->ts_first);
3449 		rtw_print_txdesc(sc, "LS on", ts, tdb, ts->ts_last);
3450 #endif /* RTW_DEBUG */
3451 
3452 		tdb->tdb_nfree -= dmamap->dm_nsegs;
3453 		tdb->tdb_next = desc;
3454 
3455 		rtw_txdescs_sync(tdb, ts->ts_first, dmamap->dm_nsegs,
3456 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3457 
3458 		tdb->tdb_desc[ts->ts_first].td_ctl0 |=
3459 		    htole32(RTW_TXCTL0_OWN);
3460 
3461 #ifdef RTW_DEBUG
3462 		rtw_print_txdesc(sc, "OWN on", ts, tdb, ts->ts_first);
3463 #endif /* RTW_DEBUG */
3464 
3465 		rtw_txdescs_sync(tdb, ts->ts_first, 1,
3466 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3467 
3468 		SIMPLEQ_REMOVE_HEAD(&tsb->tsb_freeq, ts_q);
3469 		SIMPLEQ_INSERT_TAIL(&tsb->tsb_dirtyq, ts, ts_q);
3470 
3471 		if (tsb != &sc->sc_txsoft_blk[RTW_TXPRIBCN])
3472 			sc->sc_led_state.ls_event |= RTW_LED_S_TX;
3473 		tsb->tsb_tx_timer = 5;
3474 		ifp->if_timer = 1;
3475 		rtw_tx_kick(&sc->sc_regs, tsb->tsb_poll);
3476 	}
3477 out:
3478 	DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: leave\n", __func__));
3479 	return;
3480 post_load_err:
3481 	bus_dmamap_unload(sc->sc_dmat, dmamap);
3482 	m_freem(m0);
3483 post_dequeue_err:
3484 	ieee80211_free_node(ni);
3485 	return;
3486 }
3487 
3488 static void
3489 rtw_idle(struct rtw_regs *regs)
3490 {
3491 	int active;
3492 	uint8_t tppoll;
3493 
3494 	/* request stop DMA; wait for packets to stop transmitting. */
3495 
3496 	RTW_WRITE8(regs, RTW_TPPOLL, RTW_TPPOLL_SALL);
3497 	RTW_WBR(regs, RTW_TPPOLL, RTW_TPPOLL);
3498 
3499 	for (active = 0; active < 300 &&
3500 	     (tppoll = RTW_READ8(regs, RTW_TPPOLL) & RTW_TPPOLL_ACTIVE) != 0;
3501 	     active++)
3502 		DELAY(10);
3503 	printf("%s: transmit DMA idle in %dus, tppoll %02" PRIx8 "\n", __func__,
3504 	    active * 10, tppoll);
3505 }
3506 
3507 static void
3508 rtw_watchdog(struct ifnet *ifp)
3509 {
3510 	int pri, tx_timeouts = 0;
3511 	struct rtw_softc *sc;
3512 	struct rtw_txsoft_blk *tsb;
3513 
3514 	sc = ifp->if_softc;
3515 
3516 	ifp->if_timer = 0;
3517 
3518 	if (!device_is_active(sc->sc_dev))
3519 		return;
3520 
3521 	for (pri = 0; pri < RTW_NTXPRI; pri++) {
3522 		tsb = &sc->sc_txsoft_blk[pri];
3523 
3524 		if (tsb->tsb_tx_timer == 0)
3525 			continue;
3526 		else if (--tsb->tsb_tx_timer == 0) {
3527 			if (SIMPLEQ_EMPTY(&tsb->tsb_dirtyq))
3528 				continue;
3529 			else if (rtw_collect_txring(sc, tsb,
3530 			    &sc->sc_txdesc_blk[pri], 0))
3531 				continue;
3532 			printf("%s: transmit timeout, priority %d\n",
3533 			    ifp->if_xname, pri);
3534 			ifp->if_oerrors++;
3535 			if (pri != RTW_TXPRIBCN)
3536 				tx_timeouts++;
3537 		} else
3538 			ifp->if_timer = 1;
3539 	}
3540 
3541 	if (tx_timeouts > 0) {
3542 		/* Stop Tx DMA, disable xmtr, flush Tx rings, enable xmtr,
3543 		 * reset s/w tx-ring pointers, and start transmission.
3544 		 *
3545 		 * TBD Stop/restart just the broken rings?
3546 		 */
3547 		rtw_idle(&sc->sc_regs);
3548 		rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 0);
3549 		rtw_txdescs_reset(sc);
3550 		rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 1);
3551 		rtw_start(ifp);
3552 	}
3553 	ieee80211_watchdog(&sc->sc_ic);
3554 	return;
3555 }
3556 
3557 static void
3558 rtw_next_scan(void *arg)
3559 {
3560 	struct ieee80211com *ic = arg;
3561 	int s;
3562 
3563 	/* don't call rtw_start w/o network interrupts blocked */
3564 	s = splnet();
3565 	if (ic->ic_state == IEEE80211_S_SCAN)
3566 		ieee80211_next_scan(ic);
3567 	splx(s);
3568 }
3569 
3570 static void
3571 rtw_join_bss(struct rtw_softc *sc, uint8_t *bssid, uint16_t intval0)
3572 {
3573 	uint16_t bcnitv, bintritv, intval;
3574 	int i;
3575 	struct rtw_regs *regs = &sc->sc_regs;
3576 
3577 	for (i = 0; i < IEEE80211_ADDR_LEN; i++)
3578 		RTW_WRITE8(regs, RTW_BSSID + i, bssid[i]);
3579 
3580 	RTW_SYNC(regs, RTW_BSSID16, RTW_BSSID32);
3581 
3582 	rtw_set_access(regs, RTW_ACCESS_CONFIG);
3583 
3584 	intval = MIN(intval0, __SHIFTOUT_MASK(RTW_BCNITV_BCNITV_MASK));
3585 
3586 	bcnitv = RTW_READ16(regs, RTW_BCNITV) & ~RTW_BCNITV_BCNITV_MASK;
3587 	bcnitv |= __SHIFTIN(intval, RTW_BCNITV_BCNITV_MASK);
3588 	RTW_WRITE16(regs, RTW_BCNITV, bcnitv);
3589 	/* interrupt host 1ms before the TBTT */
3590 	bintritv = RTW_READ16(regs, RTW_BINTRITV) & ~RTW_BINTRITV_BINTRITV;
3591 	bintritv |= __SHIFTIN(1000, RTW_BINTRITV_BINTRITV);
3592 	RTW_WRITE16(regs, RTW_BINTRITV, bintritv);
3593 	/* magic from Linux */
3594 	RTW_WRITE16(regs, RTW_ATIMWND, __SHIFTIN(1, RTW_ATIMWND_ATIMWND));
3595 	RTW_WRITE16(regs, RTW_ATIMTRITV, __SHIFTIN(2, RTW_ATIMTRITV_ATIMTRITV));
3596 	rtw_set_access(regs, RTW_ACCESS_NONE);
3597 
3598 	rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 1);
3599 }
3600 
3601 /* Synchronize the hardware state with the software state. */
3602 static int
3603 rtw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
3604 {
3605 	struct ifnet *ifp = ic->ic_ifp;
3606 	struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
3607 	enum ieee80211_state ostate;
3608 	int error;
3609 
3610 	ostate = ic->ic_state;
3611 
3612 	aprint_debug_dev(sc->sc_dev, "%s: l.%d\n", __func__, __LINE__);
3613 	rtw_led_newstate(sc, nstate);
3614 
3615 	aprint_debug_dev(sc->sc_dev, "%s: l.%d\n", __func__, __LINE__);
3616 	if (nstate == IEEE80211_S_INIT) {
3617 		callout_stop(&sc->sc_scan_ch);
3618 		sc->sc_cur_chan = IEEE80211_CHAN_ANY;
3619 		return (*sc->sc_mtbl.mt_newstate)(ic, nstate, arg);
3620 	}
3621 
3622 	if (ostate == IEEE80211_S_INIT && nstate != IEEE80211_S_INIT)
3623 		rtw_pwrstate(sc, RTW_ON);
3624 
3625 	if ((error = rtw_tune(sc)) != 0)
3626 		return error;
3627 
3628 	switch (nstate) {
3629 	case IEEE80211_S_INIT:
3630 		panic("%s: unexpected state IEEE80211_S_INIT\n", __func__);
3631 		break;
3632 	case IEEE80211_S_SCAN:
3633 		if (ostate != IEEE80211_S_SCAN) {
3634 			(void)memset(ic->ic_bss->ni_bssid, 0,
3635 			    IEEE80211_ADDR_LEN);
3636 			rtw_set_nettype(sc, IEEE80211_M_MONITOR);
3637 		}
3638 
3639 		callout_reset(&sc->sc_scan_ch, rtw_dwelltime * hz / 1000,
3640 		    rtw_next_scan, ic);
3641 
3642 		break;
3643 	case IEEE80211_S_RUN:
3644 		switch (ic->ic_opmode) {
3645 		case IEEE80211_M_HOSTAP:
3646 		case IEEE80211_M_IBSS:
3647 			rtw_set_nettype(sc, IEEE80211_M_MONITOR);
3648 			/*FALLTHROUGH*/
3649 		case IEEE80211_M_AHDEMO:
3650 		case IEEE80211_M_STA:
3651 			rtw_join_bss(sc, ic->ic_bss->ni_bssid,
3652 			    ic->ic_bss->ni_intval);
3653 			break;
3654 		case IEEE80211_M_MONITOR:
3655 			break;
3656 		}
3657 		rtw_set_nettype(sc, ic->ic_opmode);
3658 		break;
3659 	case IEEE80211_S_ASSOC:
3660 	case IEEE80211_S_AUTH:
3661 		break;
3662 	}
3663 
3664 	if (nstate != IEEE80211_S_SCAN)
3665 		callout_stop(&sc->sc_scan_ch);
3666 
3667 	return (*sc->sc_mtbl.mt_newstate)(ic, nstate, arg);
3668 }
3669 
3670 /* Extend a 32-bit TSF timestamp to a 64-bit timestamp. */
3671 static uint64_t
3672 rtw_tsf_extend(struct rtw_regs *regs, uint32_t rstamp)
3673 {
3674 	uint32_t tsftl, tsfth;
3675 
3676 	tsfth = RTW_READ(regs, RTW_TSFTRH);
3677 	tsftl = RTW_READ(regs, RTW_TSFTRL);
3678 	if (tsftl < rstamp)	/* Compensate for rollover. */
3679 		tsfth--;
3680 	return ((uint64_t)tsfth << 32) | rstamp;
3681 }
3682 
3683 static void
3684 rtw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
3685     struct ieee80211_node *ni, int subtype, int rssi, uint32_t rstamp)
3686 {
3687 	struct ifnet *ifp = ic->ic_ifp;
3688 	struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
3689 
3690 	(*sc->sc_mtbl.mt_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
3691 
3692 	switch (subtype) {
3693 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
3694 	case IEEE80211_FC0_SUBTYPE_BEACON:
3695 		if (ic->ic_opmode == IEEE80211_M_IBSS &&
3696 		    ic->ic_state == IEEE80211_S_RUN &&
3697 		    device_is_active(sc->sc_dev)) {
3698 			uint64_t tsf = rtw_tsf_extend(&sc->sc_regs, rstamp);
3699 			if (le64toh(ni->ni_tstamp.tsf) >= tsf)
3700 				(void)ieee80211_ibss_merge(ni);
3701 		}
3702 		break;
3703 	default:
3704 		break;
3705 	}
3706 	return;
3707 }
3708 
3709 static struct ieee80211_node *
3710 rtw_node_alloc(struct ieee80211_node_table *nt)
3711 {
3712 	struct ifnet *ifp = nt->nt_ic->ic_ifp;
3713 	struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
3714 	struct ieee80211_node *ni = (*sc->sc_mtbl.mt_node_alloc)(nt);
3715 
3716 	DPRINTF(sc, RTW_DEBUG_NODE,
3717 	    ("%s: alloc node %p\n", device_xname(sc->sc_dev), ni));
3718 	return ni;
3719 }
3720 
3721 static void
3722 rtw_node_free(struct ieee80211_node *ni)
3723 {
3724 	struct ieee80211com *ic = ni->ni_ic;
3725 	struct ifnet *ifp = ic->ic_ifp;
3726 	struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
3727 
3728 	DPRINTF(sc, RTW_DEBUG_NODE,
3729 	    ("%s: freeing node %p %s\n", device_xname(sc->sc_dev), ni,
3730 	    ether_sprintf(ni->ni_bssid)));
3731 	(*sc->sc_mtbl.mt_node_free)(ni);
3732 }
3733 
3734 static int
3735 rtw_media_change(struct ifnet *ifp)
3736 {
3737 	int error;
3738 
3739 	error = ieee80211_media_change(ifp);
3740 	if (error == ENETRESET) {
3741 		if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
3742 		    (IFF_RUNNING|IFF_UP))
3743 			rtw_init(ifp);		/* XXX lose error */
3744 		error = 0;
3745 	}
3746 	return error;
3747 }
3748 
3749 static void
3750 rtw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
3751 {
3752 	struct rtw_softc *sc = ifp->if_softc;
3753 
3754 	if (!device_is_active(sc->sc_dev)) {
3755 		imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
3756 		imr->ifm_status = 0;
3757 		return;
3758 	}
3759 	ieee80211_media_status(ifp, imr);
3760 }
3761 
3762 static inline void
3763 rtw_setifprops(struct ifnet *ifp, const char *dvname, void *softc)
3764 {
3765 	(void)strlcpy(ifp->if_xname, dvname, IFNAMSIZ);
3766 	ifp->if_softc = softc;
3767 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
3768 	    IFF_NOTRAILERS;
3769 	ifp->if_ioctl = rtw_ioctl;
3770 	ifp->if_start = rtw_start;
3771 	ifp->if_watchdog = rtw_watchdog;
3772 	ifp->if_init = rtw_init;
3773 	ifp->if_stop = rtw_stop;
3774 }
3775 
3776 static inline void
3777 rtw_set80211props(struct ieee80211com *ic)
3778 {
3779 	int nrate;
3780 	ic->ic_phytype = IEEE80211_T_DS;
3781 	ic->ic_opmode = IEEE80211_M_STA;
3782 	ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
3783 	    IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR | IEEE80211_C_WEP;
3784 
3785 	nrate = 0;
3786 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] =
3787 	    IEEE80211_RATE_BASIC | 2;
3788 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] =
3789 	    IEEE80211_RATE_BASIC | 4;
3790 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
3791 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
3792 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
3793 }
3794 
3795 static inline void
3796 rtw_set80211methods(struct rtw_mtbl *mtbl, struct ieee80211com *ic)
3797 {
3798 	mtbl->mt_newstate = ic->ic_newstate;
3799 	ic->ic_newstate = rtw_newstate;
3800 
3801 	mtbl->mt_recv_mgmt = ic->ic_recv_mgmt;
3802 	ic->ic_recv_mgmt = rtw_recv_mgmt;
3803 
3804 	mtbl->mt_node_free = ic->ic_node_free;
3805 	ic->ic_node_free = rtw_node_free;
3806 
3807 	mtbl->mt_node_alloc = ic->ic_node_alloc;
3808 	ic->ic_node_alloc = rtw_node_alloc;
3809 
3810 	ic->ic_crypto.cs_key_delete = rtw_key_delete;
3811 	ic->ic_crypto.cs_key_set = rtw_key_set;
3812 	ic->ic_crypto.cs_key_update_begin = rtw_key_update_begin;
3813 	ic->ic_crypto.cs_key_update_end = rtw_key_update_end;
3814 }
3815 
3816 static inline void
3817 rtw_init_radiotap(struct rtw_softc *sc)
3818 {
3819 	uint32_t present;
3820 
3821 	memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
3822 	sc->sc_rxtap.rr_ihdr.it_len = htole16(sizeof(sc->sc_rxtapu));
3823 
3824 	if (sc->sc_rfchipid == RTW_RFCHIPID_PHILIPS)
3825 		present = htole32(RTW_PHILIPS_RX_RADIOTAP_PRESENT);
3826 	else
3827 		present = htole32(RTW_RX_RADIOTAP_PRESENT);
3828 	sc->sc_rxtap.rr_ihdr.it_present = present;
3829 
3830 	memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
3831 	sc->sc_txtap.rt_ihdr.it_len = htole16(sizeof(sc->sc_txtapu));
3832 	sc->sc_txtap.rt_ihdr.it_present = htole32(RTW_TX_RADIOTAP_PRESENT);
3833 }
3834 
3835 static int
3836 rtw_txsoft_blk_setup(struct rtw_txsoft_blk *tsb, u_int qlen)
3837 {
3838 	SIMPLEQ_INIT(&tsb->tsb_dirtyq);
3839 	SIMPLEQ_INIT(&tsb->tsb_freeq);
3840 	tsb->tsb_ndesc = qlen;
3841 	tsb->tsb_desc = malloc(qlen * sizeof(*tsb->tsb_desc), M_DEVBUF,
3842 	    M_NOWAIT);
3843 	if (tsb->tsb_desc == NULL)
3844 		return ENOMEM;
3845 	return 0;
3846 }
3847 
3848 static void
3849 rtw_txsoft_blk_cleanup_all(struct rtw_softc *sc)
3850 {
3851 	int pri;
3852 	struct rtw_txsoft_blk *tsb;
3853 
3854 	for (pri = 0; pri < RTW_NTXPRI; pri++) {
3855 		tsb = &sc->sc_txsoft_blk[pri];
3856 		free(tsb->tsb_desc, M_DEVBUF);
3857 		tsb->tsb_desc = NULL;
3858 	}
3859 }
3860 
3861 static int
3862 rtw_txsoft_blk_setup_all(struct rtw_softc *sc)
3863 {
3864 	int pri, rc = 0;
3865 	int qlen[RTW_NTXPRI] =
3866 	     {RTW_TXQLENLO, RTW_TXQLENMD, RTW_TXQLENHI, RTW_TXQLENBCN};
3867 	struct rtw_txsoft_blk *tsbs;
3868 
3869 	tsbs = sc->sc_txsoft_blk;
3870 
3871 	for (pri = 0; pri < RTW_NTXPRI; pri++) {
3872 		rc = rtw_txsoft_blk_setup(&tsbs[pri], qlen[pri]);
3873 		if (rc != 0)
3874 			break;
3875 	}
3876 	tsbs[RTW_TXPRILO].tsb_poll = RTW_TPPOLL_LPQ | RTW_TPPOLL_SLPQ;
3877 	tsbs[RTW_TXPRIMD].tsb_poll = RTW_TPPOLL_NPQ | RTW_TPPOLL_SNPQ;
3878 	tsbs[RTW_TXPRIHI].tsb_poll = RTW_TPPOLL_HPQ | RTW_TPPOLL_SHPQ;
3879 	tsbs[RTW_TXPRIBCN].tsb_poll = RTW_TPPOLL_BQ | RTW_TPPOLL_SBQ;
3880 	return rc;
3881 }
3882 
3883 static void
3884 rtw_txdesc_blk_setup(struct rtw_txdesc_blk *tdb, struct rtw_txdesc *desc,
3885     u_int ndesc, bus_addr_t ofs, bus_addr_t physbase)
3886 {
3887 	tdb->tdb_ndesc = ndesc;
3888 	tdb->tdb_desc = desc;
3889 	tdb->tdb_physbase = physbase;
3890 	tdb->tdb_ofs = ofs;
3891 
3892 	(void)memset(tdb->tdb_desc, 0,
3893 	    sizeof(tdb->tdb_desc[0]) * tdb->tdb_ndesc);
3894 
3895 	rtw_txdesc_blk_init(tdb);
3896 	tdb->tdb_next = 0;
3897 }
3898 
3899 static void
3900 rtw_txdesc_blk_setup_all(struct rtw_softc *sc)
3901 {
3902 	rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRILO],
3903 	    &sc->sc_descs->hd_txlo[0], RTW_NTXDESCLO,
3904 	    RTW_RING_OFFSET(hd_txlo), RTW_RING_BASE(sc, hd_txlo));
3905 
3906 	rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRIMD],
3907 	    &sc->sc_descs->hd_txmd[0], RTW_NTXDESCMD,
3908 	    RTW_RING_OFFSET(hd_txmd), RTW_RING_BASE(sc, hd_txmd));
3909 
3910 	rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRIHI],
3911 	    &sc->sc_descs->hd_txhi[0], RTW_NTXDESCHI,
3912 	    RTW_RING_OFFSET(hd_txhi), RTW_RING_BASE(sc, hd_txhi));
3913 
3914 	rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRIBCN],
3915 	    &sc->sc_descs->hd_bcn[0], RTW_NTXDESCBCN,
3916 	    RTW_RING_OFFSET(hd_bcn), RTW_RING_BASE(sc, hd_bcn));
3917 }
3918 
3919 static struct rtw_rf *
3920 rtw_rf_attach(struct rtw_softc *sc, enum rtw_rfchipid rfchipid, int digphy)
3921 {
3922 	rtw_rf_write_t rf_write;
3923 	struct rtw_rf *rf;
3924 
3925 	switch (rfchipid) {
3926 	default:
3927 		rf_write = rtw_rf_hostwrite;
3928 		break;
3929 	case RTW_RFCHIPID_INTERSIL:
3930 	case RTW_RFCHIPID_PHILIPS:
3931 	case RTW_RFCHIPID_GCT:	/* XXX a guess */
3932 	case RTW_RFCHIPID_RFMD:
3933 		rf_write = (rtw_host_rfio) ? rtw_rf_hostwrite : rtw_rf_macwrite;
3934 		break;
3935 	}
3936 
3937 	switch (rfchipid) {
3938 	case RTW_RFCHIPID_GCT:
3939 		rf = rtw_grf5101_create(&sc->sc_regs, rf_write, 0);
3940 		sc->sc_pwrstate_cb = rtw_maxim_pwrstate;
3941 		break;
3942 	case RTW_RFCHIPID_MAXIM:
3943 		rf = rtw_max2820_create(&sc->sc_regs, rf_write, 0);
3944 		sc->sc_pwrstate_cb = rtw_maxim_pwrstate;
3945 		break;
3946 	case RTW_RFCHIPID_PHILIPS:
3947 		rf = rtw_sa2400_create(&sc->sc_regs, rf_write, digphy);
3948 		sc->sc_pwrstate_cb = rtw_philips_pwrstate;
3949 		break;
3950 	case RTW_RFCHIPID_RFMD:
3951 		/* XXX RFMD has no RF constructor */
3952 		sc->sc_pwrstate_cb = rtw_rfmd_pwrstate;
3953 		/*FALLTHROUGH*/
3954 	default:
3955 		return NULL;
3956 	}
3957 	rf->rf_continuous_tx_cb =
3958 	    (rtw_continuous_tx_cb_t)rtw_continuous_tx_enable;
3959 	rf->rf_continuous_tx_arg = (void *)sc;
3960 	return rf;
3961 }
3962 
3963 /* Revision C and later use a different PHY delay setting than
3964  * revisions A and B.
3965  */
3966 static uint8_t
3967 rtw_check_phydelay(struct rtw_regs *regs, uint32_t old_rcr)
3968 {
3969 #define REVAB (RTW_RCR_MXDMA_UNLIMITED | RTW_RCR_AICV)
3970 #define REVC (REVAB | RTW_RCR_RXFTH_WHOLE)
3971 
3972 	uint8_t phydelay = __SHIFTIN(0x6, RTW_PHYDELAY_PHYDELAY);
3973 
3974 	RTW_WRITE(regs, RTW_RCR, REVAB);
3975 	RTW_WBW(regs, RTW_RCR, RTW_RCR);
3976 	RTW_WRITE(regs, RTW_RCR, REVC);
3977 
3978 	RTW_WBR(regs, RTW_RCR, RTW_RCR);
3979 	if ((RTW_READ(regs, RTW_RCR) & REVC) == REVC)
3980 		phydelay |= RTW_PHYDELAY_REVC_MAGIC;
3981 
3982 	RTW_WRITE(regs, RTW_RCR, old_rcr);	/* restore RCR */
3983 	RTW_SYNC(regs, RTW_RCR, RTW_RCR);
3984 
3985 	return phydelay;
3986 #undef REVC
3987 }
3988 
3989 void
3990 rtw_attach(struct rtw_softc *sc)
3991 {
3992 	struct ifnet *ifp = &sc->sc_if;
3993 	struct ieee80211com *ic = &sc->sc_ic;
3994 	struct rtw_txsoft_blk *tsb;
3995 	int pri, rc;
3996 
3997 	pmf_self_suspensor_init(sc->sc_dev, &sc->sc_suspensor, &sc->sc_qual);
3998 
3999 	rtw_cipher_wep = ieee80211_cipher_wep;
4000 	rtw_cipher_wep.ic_decap = rtw_wep_decap;
4001 
4002 	NEXT_ATTACH_STATE(sc, DETACHED);
4003 
4004 	switch (RTW_READ(&sc->sc_regs, RTW_TCR) & RTW_TCR_HWVERID_MASK) {
4005 	case RTW_TCR_HWVERID_F:
4006 		sc->sc_hwverid = 'F';
4007 		break;
4008 	case RTW_TCR_HWVERID_D:
4009 		sc->sc_hwverid = 'D';
4010 		break;
4011 	default:
4012 		sc->sc_hwverid = '?';
4013 		break;
4014 	}
4015 	aprint_verbose_dev(sc->sc_dev, "hardware version %c\n",
4016 	    sc->sc_hwverid);
4017 
4018 	rc = bus_dmamem_alloc(sc->sc_dmat, sizeof(struct rtw_descs),
4019 	    RTW_DESC_ALIGNMENT, 0, &sc->sc_desc_segs, 1, &sc->sc_desc_nsegs,
4020 	    0);
4021 
4022 	if (rc != 0) {
4023 		aprint_error_dev(sc->sc_dev,
4024 		    "could not allocate hw descriptors, error %d\n", rc);
4025 		goto err;
4026 	}
4027 
4028 	NEXT_ATTACH_STATE(sc, FINISH_DESC_ALLOC);
4029 
4030 	rc = bus_dmamem_map(sc->sc_dmat, &sc->sc_desc_segs,
4031 	    sc->sc_desc_nsegs, sizeof(struct rtw_descs),
4032 	    (void **)&sc->sc_descs, BUS_DMA_COHERENT);
4033 
4034 	if (rc != 0) {
4035 		aprint_error_dev(sc->sc_dev,
4036 		    "could not map hw descriptors, error %d\n", rc);
4037 		goto err;
4038 	}
4039 	NEXT_ATTACH_STATE(sc, FINISH_DESC_MAP);
4040 
4041 	rc = bus_dmamap_create(sc->sc_dmat, sizeof(struct rtw_descs), 1,
4042 	    sizeof(struct rtw_descs), 0, 0, &sc->sc_desc_dmamap);
4043 
4044 	if (rc != 0) {
4045 		aprint_error_dev(sc->sc_dev,
4046 		    "could not create DMA map for hw descriptors, error %d\n",
4047 		    rc);
4048 		goto err;
4049 	}
4050 	NEXT_ATTACH_STATE(sc, FINISH_DESCMAP_CREATE);
4051 
4052 	sc->sc_rxdesc_blk.rdb_dmat = sc->sc_dmat;
4053 	sc->sc_rxdesc_blk.rdb_dmamap = sc->sc_desc_dmamap;
4054 
4055 	for (pri = 0; pri < RTW_NTXPRI; pri++) {
4056 		sc->sc_txdesc_blk[pri].tdb_dmat = sc->sc_dmat;
4057 		sc->sc_txdesc_blk[pri].tdb_dmamap = sc->sc_desc_dmamap;
4058 	}
4059 
4060 	rc = bus_dmamap_load(sc->sc_dmat, sc->sc_desc_dmamap, sc->sc_descs,
4061 	    sizeof(struct rtw_descs), NULL, 0);
4062 
4063 	if (rc != 0) {
4064 		aprint_error_dev(sc->sc_dev,
4065 		    "could not load DMA map for hw descriptors, error %d\n",
4066 		    rc);
4067 		goto err;
4068 	}
4069 	NEXT_ATTACH_STATE(sc, FINISH_DESCMAP_LOAD);
4070 
4071 	if (rtw_txsoft_blk_setup_all(sc) != 0)
4072 		goto err;
4073 	NEXT_ATTACH_STATE(sc, FINISH_TXCTLBLK_SETUP);
4074 
4075 	rtw_txdesc_blk_setup_all(sc);
4076 
4077 	NEXT_ATTACH_STATE(sc, FINISH_TXDESCBLK_SETUP);
4078 
4079 	sc->sc_rxdesc_blk.rdb_desc = &sc->sc_descs->hd_rx[0];
4080 
4081 	for (pri = 0; pri < RTW_NTXPRI; pri++) {
4082 		tsb = &sc->sc_txsoft_blk[pri];
4083 
4084 		if ((rc = rtw_txdesc_dmamaps_create(sc->sc_dmat,
4085 		    &tsb->tsb_desc[0], tsb->tsb_ndesc)) != 0) {
4086 			aprint_error_dev(sc->sc_dev,
4087 			    "could not load DMA map for hw tx descriptors, "
4088 			    "error %d\n", rc);
4089 			goto err;
4090 		}
4091 	}
4092 
4093 	NEXT_ATTACH_STATE(sc, FINISH_TXMAPS_CREATE);
4094 	if ((rc = rtw_rxdesc_dmamaps_create(sc->sc_dmat, &sc->sc_rxsoft[0],
4095 	                                    RTW_RXQLEN)) != 0) {
4096 		aprint_error_dev(sc->sc_dev,
4097 		    "could not load DMA map for hw rx descriptors, error %d\n",
4098 		    rc);
4099 		goto err;
4100 	}
4101 	NEXT_ATTACH_STATE(sc, FINISH_RXMAPS_CREATE);
4102 
4103 	/* Reset the chip to a known state. */
4104 	if (rtw_reset(sc) != 0)
4105 		goto err;
4106 	NEXT_ATTACH_STATE(sc, FINISH_RESET);
4107 
4108 	sc->sc_rcr = RTW_READ(&sc->sc_regs, RTW_RCR);
4109 
4110 	if ((sc->sc_rcr & RTW_RCR_9356SEL) != 0)
4111 		sc->sc_flags |= RTW_F_9356SROM;
4112 
4113 	if (rtw_srom_read(&sc->sc_regs, sc->sc_flags, &sc->sc_srom,
4114 	    sc->sc_dev) != 0)
4115 		goto err;
4116 
4117 	NEXT_ATTACH_STATE(sc, FINISH_READ_SROM);
4118 
4119 	if (rtw_srom_parse(&sc->sc_srom, &sc->sc_flags, &sc->sc_csthr,
4120 	    &sc->sc_rfchipid, &sc->sc_rcr, &sc->sc_locale,
4121 	    sc->sc_dev) != 0) {
4122 		aprint_error_dev(sc->sc_dev,
4123 		    "attach failed, malformed serial ROM\n");
4124 		goto err;
4125 	}
4126 
4127 	aprint_verbose_dev(sc->sc_dev, "%s PHY\n",
4128 	    ((sc->sc_flags & RTW_F_DIGPHY) != 0) ? "digital" : "analog");
4129 
4130 	aprint_verbose_dev(sc->sc_dev, "carrier-sense threshold %u\n",
4131 	    sc->sc_csthr);
4132 
4133 	NEXT_ATTACH_STATE(sc, FINISH_PARSE_SROM);
4134 
4135 	sc->sc_rf = rtw_rf_attach(sc, sc->sc_rfchipid,
4136 	    sc->sc_flags & RTW_F_DIGPHY);
4137 
4138 	if (sc->sc_rf == NULL) {
4139 		aprint_verbose_dev(sc->sc_dev,
4140 		    "attach failed, could not attach RF\n");
4141 		goto err;
4142 	}
4143 
4144 	NEXT_ATTACH_STATE(sc, FINISH_RF_ATTACH);
4145 
4146 	sc->sc_phydelay = rtw_check_phydelay(&sc->sc_regs, sc->sc_rcr);
4147 
4148 	RTW_DPRINTF(RTW_DEBUG_ATTACH,
4149 	    ("%s: PHY delay %d\n", device_xname(sc->sc_dev), sc->sc_phydelay));
4150 
4151 	if (sc->sc_locale == RTW_LOCALE_UNKNOWN)
4152 		rtw_identify_country(&sc->sc_regs, &sc->sc_locale);
4153 
4154 	rtw_init_channels(sc->sc_locale, &sc->sc_ic.ic_channels, sc->sc_dev);
4155 
4156 	if (rtw_identify_sta(&sc->sc_regs, &sc->sc_ic.ic_myaddr,
4157 	    sc->sc_dev) != 0)
4158 		goto err;
4159 	NEXT_ATTACH_STATE(sc, FINISH_ID_STA);
4160 
4161 	rtw_setifprops(ifp, device_xname(sc->sc_dev), (void*)sc);
4162 
4163 	IFQ_SET_READY(&ifp->if_snd);
4164 
4165 	sc->sc_ic.ic_ifp = ifp;
4166 	rtw_set80211props(&sc->sc_ic);
4167 
4168 	rtw_led_attach(&sc->sc_led_state, (void *)sc);
4169 
4170 	/*
4171 	 * Call MI attach routines.
4172 	 */
4173 	if_attach(ifp);
4174 	ieee80211_ifattach(&sc->sc_ic);
4175 
4176 	rtw_set80211methods(&sc->sc_mtbl, &sc->sc_ic);
4177 
4178 	/* possibly we should fill in our own sc_send_prresp, since
4179 	 * the RTL8180 is probably sending probe responses in ad hoc
4180 	 * mode.
4181 	 */
4182 
4183 	/* complete initialization */
4184 	ieee80211_media_init(&sc->sc_ic, rtw_media_change, rtw_media_status);
4185 	callout_init(&sc->sc_scan_ch, 0);
4186 
4187 	rtw_init_radiotap(sc);
4188 
4189 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
4190 	    sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
4191 
4192 	NEXT_ATTACH_STATE(sc, FINISHED);
4193 
4194 	ieee80211_announce(ic);
4195 	return;
4196 err:
4197 	rtw_detach(sc);
4198 	return;
4199 }
4200 
4201 int
4202 rtw_detach(struct rtw_softc *sc)
4203 {
4204 	struct ifnet *ifp = &sc->sc_if;
4205 	int pri, s;
4206 
4207 	s = splnet();
4208 
4209 	switch (sc->sc_attach_state) {
4210 	case FINISHED:
4211 		rtw_stop(ifp, 1);
4212 
4213 		pmf_device_deregister(sc->sc_dev);
4214 		callout_stop(&sc->sc_scan_ch);
4215 		ieee80211_ifdetach(&sc->sc_ic);
4216 		if_detach(ifp);
4217 		rtw_led_detach(&sc->sc_led_state);
4218 		/*FALLTHROUGH*/
4219 	case FINISH_ID_STA:
4220 	case FINISH_RF_ATTACH:
4221 		rtw_rf_destroy(sc->sc_rf);
4222 		sc->sc_rf = NULL;
4223 		/*FALLTHROUGH*/
4224 	case FINISH_PARSE_SROM:
4225 	case FINISH_READ_SROM:
4226 		rtw_srom_free(&sc->sc_srom);
4227 		/*FALLTHROUGH*/
4228 	case FINISH_RESET:
4229 	case FINISH_RXMAPS_CREATE:
4230 		rtw_rxdesc_dmamaps_destroy(sc->sc_dmat, &sc->sc_rxsoft[0],
4231 		    RTW_RXQLEN);
4232 		/*FALLTHROUGH*/
4233 	case FINISH_TXMAPS_CREATE:
4234 		for (pri = 0; pri < RTW_NTXPRI; pri++) {
4235 			rtw_txdesc_dmamaps_destroy(sc->sc_dmat,
4236 			    sc->sc_txsoft_blk[pri].tsb_desc,
4237 			    sc->sc_txsoft_blk[pri].tsb_ndesc);
4238 		}
4239 		/*FALLTHROUGH*/
4240 	case FINISH_TXDESCBLK_SETUP:
4241 	case FINISH_TXCTLBLK_SETUP:
4242 		rtw_txsoft_blk_cleanup_all(sc);
4243 		/*FALLTHROUGH*/
4244 	case FINISH_DESCMAP_LOAD:
4245 		bus_dmamap_unload(sc->sc_dmat, sc->sc_desc_dmamap);
4246 		/*FALLTHROUGH*/
4247 	case FINISH_DESCMAP_CREATE:
4248 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_desc_dmamap);
4249 		/*FALLTHROUGH*/
4250 	case FINISH_DESC_MAP:
4251 		bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_descs,
4252 		    sizeof(struct rtw_descs));
4253 		/*FALLTHROUGH*/
4254 	case FINISH_DESC_ALLOC:
4255 		bus_dmamem_free(sc->sc_dmat, &sc->sc_desc_segs,
4256 		    sc->sc_desc_nsegs);
4257 		/*FALLTHROUGH*/
4258 	case DETACHED:
4259 		NEXT_ATTACH_STATE(sc, DETACHED);
4260 		break;
4261 	}
4262 	splx(s);
4263 	return 0;
4264 }
4265