xref: /netbsd-src/sys/dev/ic/rtw.c (revision 6a493d6bc668897c91594964a732d38505b70cbb)
1 /* $NetBSD: rtw.c,v 1.120 2013/10/17 21:24:24 christos Exp $ */
2 /*-
3  * Copyright (c) 2004, 2005, 2006, 2007 David Young.  All rights
4  * reserved.
5  *
6  * Programmed for NetBSD by David Young.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY David Young ``AS IS'' AND ANY
18  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
19  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
20  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL David
21  * Young BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
22  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
23  * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
25  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
28  * OF SUCH DAMAGE.
29  */
30 /*
31  * Device driver for the Realtek RTL8180 802.11 MAC/BBP.
32  */
33 
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: rtw.c,v 1.120 2013/10/17 21:24:24 christos Exp $");
36 
37 
38 #include <sys/param.h>
39 #include <sys/sysctl.h>
40 #include <sys/systm.h>
41 #include <sys/callout.h>
42 #include <sys/mbuf.h>
43 #include <sys/malloc.h>
44 #include <sys/kernel.h>
45 #include <sys/time.h>
46 #include <sys/types.h>
47 #include <sys/device.h>
48 #include <sys/sockio.h>
49 
50 #include <machine/endian.h>
51 #include <sys/bus.h>
52 #include <sys/intr.h>	/* splnet */
53 
54 #include <net/if.h>
55 #include <net/if_media.h>
56 #include <net/if_ether.h>
57 
58 #include <net80211/ieee80211_netbsd.h>
59 #include <net80211/ieee80211_var.h>
60 #include <net80211/ieee80211_radiotap.h>
61 
62 #include <net/bpf.h>
63 
64 #include <dev/ic/rtwreg.h>
65 #include <dev/ic/rtwvar.h>
66 #include <dev/ic/rtwphyio.h>
67 #include <dev/ic/rtwphy.h>
68 
69 #include <dev/ic/smc93cx6var.h>
70 
71 static int rtw_rfprog_fallback = 0;
72 static int rtw_host_rfio = 0;
73 
74 #ifdef RTW_DEBUG
75 int rtw_debug = 0;
76 static int rtw_rxbufs_limit = RTW_RXQLEN;
77 #endif /* RTW_DEBUG */
78 
79 #define NEXT_ATTACH_STATE(sc, state) do {			\
80 	DPRINTF(sc, RTW_DEBUG_ATTACH,				\
81 	    ("%s: attach state %s\n", __func__, #state));	\
82 	sc->sc_attach_state = state;				\
83 } while (0)
84 
85 int rtw_dwelltime = 200;	/* milliseconds */
86 static struct ieee80211_cipher rtw_cipher_wep;
87 
88 static void rtw_disable_interrupts(struct rtw_regs *);
89 static void rtw_enable_interrupts(struct rtw_softc *);
90 
91 static int rtw_init(struct ifnet *);
92 
93 static void rtw_start(struct ifnet *);
94 static void rtw_reset_oactive(struct rtw_softc *);
95 static struct mbuf *rtw_beacon_alloc(struct rtw_softc *,
96     struct ieee80211_node *);
97 static u_int rtw_txring_next(struct rtw_regs *, struct rtw_txdesc_blk *);
98 
99 static void rtw_io_enable(struct rtw_softc *, uint8_t, int);
100 static int rtw_key_delete(struct ieee80211com *, const struct ieee80211_key *);
101 static int rtw_key_set(struct ieee80211com *, const struct ieee80211_key *,
102     const u_int8_t[IEEE80211_ADDR_LEN]);
103 static void rtw_key_update_end(struct ieee80211com *);
104 static void rtw_key_update_begin(struct ieee80211com *);
105 static int rtw_wep_decap(struct ieee80211_key *, struct mbuf *, int);
106 static void rtw_wep_setkeys(struct rtw_softc *, struct ieee80211_key *, int);
107 
108 static void rtw_led_attach(struct rtw_led_state *, void *);
109 static void rtw_led_detach(struct rtw_led_state *);
110 static void rtw_led_init(struct rtw_regs *);
111 static void rtw_led_slowblink(void *);
112 static void rtw_led_fastblink(void *);
113 static void rtw_led_set(struct rtw_led_state *, struct rtw_regs *, int);
114 
115 static int rtw_sysctl_verify_rfio(SYSCTLFN_PROTO);
116 static int rtw_sysctl_verify_rfprog(SYSCTLFN_PROTO);
117 #ifdef RTW_DEBUG
118 static void rtw_dump_rings(struct rtw_softc *sc);
119 static void rtw_print_txdesc(struct rtw_softc *, const char *,
120     struct rtw_txsoft *, struct rtw_txdesc_blk *, int);
121 static int rtw_sysctl_verify_debug(SYSCTLFN_PROTO);
122 static int rtw_sysctl_verify_rxbufs_limit(SYSCTLFN_PROTO);
123 #endif /* RTW_DEBUG */
124 #ifdef RTW_DIAG
125 static void rtw_txring_fixup(struct rtw_softc *sc, const char *fn, int ln);
126 #endif /* RTW_DIAG */
127 
128 /*
129  * Setup sysctl(3) MIB, hw.rtw.*
130  *
131  * TBD condition CTLFLAG_PERMANENT on being a module or not
132  */
133 SYSCTL_SETUP(sysctl_rtw, "sysctl rtw(4) subtree setup")
134 {
135 	int rc;
136 	const struct sysctlnode *cnode, *rnode;
137 
138 	if ((rc = sysctl_createv(clog, 0, NULL, &rnode,
139 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
140 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0)
141 		goto err;
142 
143 	if ((rc = sysctl_createv(clog, 0, &rnode, &rnode,
144 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "rtw",
145 	    "Realtek RTL818x 802.11 controls",
146 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL)) != 0)
147 		goto err;
148 
149 #ifdef RTW_DEBUG
150 	/* control debugging printfs */
151 	if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
152 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
153 	    "debug", SYSCTL_DESCR("Enable RTL818x debugging output"),
154 	    rtw_sysctl_verify_debug, 0, &rtw_debug, 0,
155 	    CTL_CREATE, CTL_EOL)) != 0)
156 		goto err;
157 
158 	/* Limit rx buffers, for simulating resource exhaustion. */
159 	if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
160 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
161 	    "rxbufs_limit",
162 	    SYSCTL_DESCR("Set rx buffers limit"),
163 	    rtw_sysctl_verify_rxbufs_limit, 0, &rtw_rxbufs_limit, 0,
164 	    CTL_CREATE, CTL_EOL)) != 0)
165 		goto err;
166 
167 #endif /* RTW_DEBUG */
168 	/* set fallback RF programming method */
169 	if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
170 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
171 	    "rfprog_fallback",
172 	    SYSCTL_DESCR("Set fallback RF programming method"),
173 	    rtw_sysctl_verify_rfprog, 0, &rtw_rfprog_fallback, 0,
174 	    CTL_CREATE, CTL_EOL)) != 0)
175 		goto err;
176 
177 	/* force host to control RF I/O bus */
178 	if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
179 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
180 	    "host_rfio", SYSCTL_DESCR("Enable host control of RF I/O"),
181 	    rtw_sysctl_verify_rfio, 0, &rtw_host_rfio, 0,
182 	    CTL_CREATE, CTL_EOL)) != 0)
183 		goto err;
184 
185 	return;
186 err:
187 	printf("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
188 }
189 
190 static int
191 rtw_sysctl_verify(SYSCTLFN_ARGS, int lower, int upper)
192 {
193 	int error, t;
194 	struct sysctlnode node;
195 
196 	node = *rnode;
197 	t = *(int*)rnode->sysctl_data;
198 	node.sysctl_data = &t;
199 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
200 	if (error || newp == NULL)
201 		return (error);
202 
203 	if (t < lower || t > upper)
204 		return (EINVAL);
205 
206 	*(int*)rnode->sysctl_data = t;
207 
208 	return (0);
209 }
210 
211 static int
212 rtw_sysctl_verify_rfprog(SYSCTLFN_ARGS)
213 {
214 	return rtw_sysctl_verify(SYSCTLFN_CALL(__UNCONST(rnode)), 0,
215 	    __SHIFTOUT(RTW_CONFIG4_RFTYPE_MASK, RTW_CONFIG4_RFTYPE_MASK));
216 }
217 
218 static int
219 rtw_sysctl_verify_rfio(SYSCTLFN_ARGS)
220 {
221 	return rtw_sysctl_verify(SYSCTLFN_CALL(__UNCONST(rnode)), 0, 1);
222 }
223 
224 #ifdef RTW_DEBUG
225 static int
226 rtw_sysctl_verify_debug(SYSCTLFN_ARGS)
227 {
228 	return rtw_sysctl_verify(SYSCTLFN_CALL(__UNCONST(rnode)),
229 	    0, RTW_DEBUG_MAX);
230 }
231 
232 static int
233 rtw_sysctl_verify_rxbufs_limit(SYSCTLFN_ARGS)
234 {
235 	return rtw_sysctl_verify(SYSCTLFN_CALL(__UNCONST(rnode)),
236 	    0, RTW_RXQLEN);
237 }
238 
239 static void
240 rtw_print_regs(struct rtw_regs *regs, const char *dvname, const char *where)
241 {
242 #define PRINTREG32(sc, reg)				\
243 	RTW_DPRINTF(RTW_DEBUG_REGDUMP,			\
244 	    ("%s: reg[ " #reg " / %03x ] = %08x\n",	\
245 	    dvname, reg, RTW_READ(regs, reg)))
246 
247 #define PRINTREG16(sc, reg)				\
248 	RTW_DPRINTF(RTW_DEBUG_REGDUMP,			\
249 	    ("%s: reg[ " #reg " / %03x ] = %04x\n",	\
250 	    dvname, reg, RTW_READ16(regs, reg)))
251 
252 #define PRINTREG8(sc, reg)				\
253 	RTW_DPRINTF(RTW_DEBUG_REGDUMP,			\
254 	    ("%s: reg[ " #reg " / %03x ] = %02x\n",	\
255 	    dvname, reg, RTW_READ8(regs, reg)))
256 
257 	RTW_DPRINTF(RTW_DEBUG_REGDUMP, ("%s: %s\n", dvname, where));
258 
259 	PRINTREG32(regs, RTW_IDR0);
260 	PRINTREG32(regs, RTW_IDR1);
261 	PRINTREG32(regs, RTW_MAR0);
262 	PRINTREG32(regs, RTW_MAR1);
263 	PRINTREG32(regs, RTW_TSFTRL);
264 	PRINTREG32(regs, RTW_TSFTRH);
265 	PRINTREG32(regs, RTW_TLPDA);
266 	PRINTREG32(regs, RTW_TNPDA);
267 	PRINTREG32(regs, RTW_THPDA);
268 	PRINTREG32(regs, RTW_TCR);
269 	PRINTREG32(regs, RTW_RCR);
270 	PRINTREG32(regs, RTW_TINT);
271 	PRINTREG32(regs, RTW_TBDA);
272 	PRINTREG32(regs, RTW_ANAPARM);
273 	PRINTREG32(regs, RTW_BB);
274 	PRINTREG32(regs, RTW_PHYCFG);
275 	PRINTREG32(regs, RTW_WAKEUP0L);
276 	PRINTREG32(regs, RTW_WAKEUP0H);
277 	PRINTREG32(regs, RTW_WAKEUP1L);
278 	PRINTREG32(regs, RTW_WAKEUP1H);
279 	PRINTREG32(regs, RTW_WAKEUP2LL);
280 	PRINTREG32(regs, RTW_WAKEUP2LH);
281 	PRINTREG32(regs, RTW_WAKEUP2HL);
282 	PRINTREG32(regs, RTW_WAKEUP2HH);
283 	PRINTREG32(regs, RTW_WAKEUP3LL);
284 	PRINTREG32(regs, RTW_WAKEUP3LH);
285 	PRINTREG32(regs, RTW_WAKEUP3HL);
286 	PRINTREG32(regs, RTW_WAKEUP3HH);
287 	PRINTREG32(regs, RTW_WAKEUP4LL);
288 	PRINTREG32(regs, RTW_WAKEUP4LH);
289 	PRINTREG32(regs, RTW_WAKEUP4HL);
290 	PRINTREG32(regs, RTW_WAKEUP4HH);
291 	PRINTREG32(regs, RTW_DK0);
292 	PRINTREG32(regs, RTW_DK1);
293 	PRINTREG32(regs, RTW_DK2);
294 	PRINTREG32(regs, RTW_DK3);
295 	PRINTREG32(regs, RTW_RETRYCTR);
296 	PRINTREG32(regs, RTW_RDSAR);
297 	PRINTREG32(regs, RTW_FER);
298 	PRINTREG32(regs, RTW_FEMR);
299 	PRINTREG32(regs, RTW_FPSR);
300 	PRINTREG32(regs, RTW_FFER);
301 
302 	/* 16-bit registers */
303 	PRINTREG16(regs, RTW_BRSR);
304 	PRINTREG16(regs, RTW_IMR);
305 	PRINTREG16(regs, RTW_ISR);
306 	PRINTREG16(regs, RTW_BCNITV);
307 	PRINTREG16(regs, RTW_ATIMWND);
308 	PRINTREG16(regs, RTW_BINTRITV);
309 	PRINTREG16(regs, RTW_ATIMTRITV);
310 	PRINTREG16(regs, RTW_CRC16ERR);
311 	PRINTREG16(regs, RTW_CRC0);
312 	PRINTREG16(regs, RTW_CRC1);
313 	PRINTREG16(regs, RTW_CRC2);
314 	PRINTREG16(regs, RTW_CRC3);
315 	PRINTREG16(regs, RTW_CRC4);
316 	PRINTREG16(regs, RTW_CWR);
317 
318 	/* 8-bit registers */
319 	PRINTREG8(regs, RTW_CR);
320 	PRINTREG8(regs, RTW_9346CR);
321 	PRINTREG8(regs, RTW_CONFIG0);
322 	PRINTREG8(regs, RTW_CONFIG1);
323 	PRINTREG8(regs, RTW_CONFIG2);
324 	PRINTREG8(regs, RTW_MSR);
325 	PRINTREG8(regs, RTW_CONFIG3);
326 	PRINTREG8(regs, RTW_CONFIG4);
327 	PRINTREG8(regs, RTW_TESTR);
328 	PRINTREG8(regs, RTW_PSR);
329 	PRINTREG8(regs, RTW_SCR);
330 	PRINTREG8(regs, RTW_PHYDELAY);
331 	PRINTREG8(regs, RTW_CRCOUNT);
332 	PRINTREG8(regs, RTW_PHYADDR);
333 	PRINTREG8(regs, RTW_PHYDATAW);
334 	PRINTREG8(regs, RTW_PHYDATAR);
335 	PRINTREG8(regs, RTW_CONFIG5);
336 	PRINTREG8(regs, RTW_TPPOLL);
337 
338 	PRINTREG16(regs, RTW_BSSID16);
339 	PRINTREG32(regs, RTW_BSSID32);
340 #undef PRINTREG32
341 #undef PRINTREG16
342 #undef PRINTREG8
343 }
344 #endif /* RTW_DEBUG */
345 
346 void
347 rtw_continuous_tx_enable(struct rtw_softc *sc, int enable)
348 {
349 	struct rtw_regs *regs = &sc->sc_regs;
350 
351 	uint32_t tcr;
352 	tcr = RTW_READ(regs, RTW_TCR);
353 	tcr &= ~RTW_TCR_LBK_MASK;
354 	if (enable)
355 		tcr |= RTW_TCR_LBK_CONT;
356 	else
357 		tcr |= RTW_TCR_LBK_NORMAL;
358 	RTW_WRITE(regs, RTW_TCR, tcr);
359 	RTW_SYNC(regs, RTW_TCR, RTW_TCR);
360 	rtw_set_access(regs, RTW_ACCESS_ANAPARM);
361 	rtw_txdac_enable(sc, !enable);
362 	rtw_set_access(regs, RTW_ACCESS_ANAPARM);/* XXX Voodoo from Linux. */
363 	rtw_set_access(regs, RTW_ACCESS_NONE);
364 }
365 
366 #ifdef RTW_DEBUG
367 static const char *
368 rtw_access_string(enum rtw_access access)
369 {
370 	switch (access) {
371 	case RTW_ACCESS_NONE:
372 		return "none";
373 	case RTW_ACCESS_CONFIG:
374 		return "config";
375 	case RTW_ACCESS_ANAPARM:
376 		return "anaparm";
377 	default:
378 		return "unknown";
379 	}
380 }
381 #endif /* RTW_DEBUG */
382 
383 static void
384 rtw_set_access1(struct rtw_regs *regs, enum rtw_access naccess)
385 {
386 	KASSERT(/* naccess >= RTW_ACCESS_NONE && */
387 	    naccess <= RTW_ACCESS_ANAPARM);
388 	KASSERT(/* regs->r_access >= RTW_ACCESS_NONE && */
389 	    regs->r_access <= RTW_ACCESS_ANAPARM);
390 
391 	if (naccess == regs->r_access)
392 		return;
393 
394 	switch (naccess) {
395 	case RTW_ACCESS_NONE:
396 		switch (regs->r_access) {
397 		case RTW_ACCESS_ANAPARM:
398 			rtw_anaparm_enable(regs, 0);
399 			/*FALLTHROUGH*/
400 		case RTW_ACCESS_CONFIG:
401 			rtw_config0123_enable(regs, 0);
402 			/*FALLTHROUGH*/
403 		case RTW_ACCESS_NONE:
404 			break;
405 		}
406 		break;
407 	case RTW_ACCESS_CONFIG:
408 		switch (regs->r_access) {
409 		case RTW_ACCESS_NONE:
410 			rtw_config0123_enable(regs, 1);
411 			/*FALLTHROUGH*/
412 		case RTW_ACCESS_CONFIG:
413 			break;
414 		case RTW_ACCESS_ANAPARM:
415 			rtw_anaparm_enable(regs, 0);
416 			break;
417 		}
418 		break;
419 	case RTW_ACCESS_ANAPARM:
420 		switch (regs->r_access) {
421 		case RTW_ACCESS_NONE:
422 			rtw_config0123_enable(regs, 1);
423 			/*FALLTHROUGH*/
424 		case RTW_ACCESS_CONFIG:
425 			rtw_anaparm_enable(regs, 1);
426 			/*FALLTHROUGH*/
427 		case RTW_ACCESS_ANAPARM:
428 			break;
429 		}
430 		break;
431 	}
432 }
433 
434 void
435 rtw_set_access(struct rtw_regs *regs, enum rtw_access access)
436 {
437 	rtw_set_access1(regs, access);
438 	RTW_DPRINTF(RTW_DEBUG_ACCESS,
439 	    ("%s: access %s -> %s\n", __func__,
440 	    rtw_access_string(regs->r_access),
441 	    rtw_access_string(access)));
442 	regs->r_access = access;
443 }
444 
445 /*
446  * Enable registers, switch register banks.
447  */
448 void
449 rtw_config0123_enable(struct rtw_regs *regs, int enable)
450 {
451 	uint8_t ecr;
452 	ecr = RTW_READ8(regs, RTW_9346CR);
453 	ecr &= ~(RTW_9346CR_EEM_MASK | RTW_9346CR_EECS | RTW_9346CR_EESK);
454 	if (enable)
455 		ecr |= RTW_9346CR_EEM_CONFIG;
456 	else {
457 		RTW_WBW(regs, RTW_9346CR, MAX(RTW_CONFIG0, RTW_CONFIG3));
458 		ecr |= RTW_9346CR_EEM_NORMAL;
459 	}
460 	RTW_WRITE8(regs, RTW_9346CR, ecr);
461 	RTW_SYNC(regs, RTW_9346CR, RTW_9346CR);
462 }
463 
464 /* requires rtw_config0123_enable(, 1) */
465 void
466 rtw_anaparm_enable(struct rtw_regs *regs, int enable)
467 {
468 	uint8_t cfg3;
469 
470 	cfg3 = RTW_READ8(regs, RTW_CONFIG3);
471 	cfg3 |= RTW_CONFIG3_CLKRUNEN;
472 	if (enable)
473 		cfg3 |= RTW_CONFIG3_PARMEN;
474 	else
475 		cfg3 &= ~RTW_CONFIG3_PARMEN;
476 	RTW_WRITE8(regs, RTW_CONFIG3, cfg3);
477 	RTW_SYNC(regs, RTW_CONFIG3, RTW_CONFIG3);
478 }
479 
480 /* requires rtw_anaparm_enable(, 1) */
481 void
482 rtw_txdac_enable(struct rtw_softc *sc, int enable)
483 {
484 	uint32_t anaparm;
485 	struct rtw_regs *regs = &sc->sc_regs;
486 
487 	anaparm = RTW_READ(regs, RTW_ANAPARM);
488 	if (enable)
489 		anaparm &= ~RTW_ANAPARM_TXDACOFF;
490 	else
491 		anaparm |= RTW_ANAPARM_TXDACOFF;
492 	RTW_WRITE(regs, RTW_ANAPARM, anaparm);
493 	RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
494 }
495 
496 static inline int
497 rtw_chip_reset1(struct rtw_regs *regs, device_t dev)
498 {
499 	uint8_t cr;
500 	int i;
501 
502 	RTW_WRITE8(regs, RTW_CR, RTW_CR_RST);
503 
504 	RTW_WBR(regs, RTW_CR, RTW_CR);
505 
506 	for (i = 0; i < 1000; i++) {
507 		if ((cr = RTW_READ8(regs, RTW_CR) & RTW_CR_RST) == 0) {
508 			RTW_DPRINTF(RTW_DEBUG_RESET,
509 			    ("%s: reset in %dus\n", device_xname(dev), i));
510 			return 0;
511 		}
512 		RTW_RBR(regs, RTW_CR, RTW_CR);
513 		DELAY(10); /* 10us */
514 	}
515 
516 	aprint_error_dev(dev, "reset failed\n");
517 	return ETIMEDOUT;
518 }
519 
520 static inline int
521 rtw_chip_reset(struct rtw_regs *regs, device_t dev)
522 {
523 	uint32_t tcr;
524 
525 	/* from Linux driver */
526 	tcr = RTW_TCR_CWMIN | RTW_TCR_MXDMA_2048 |
527 	      __SHIFTIN(7, RTW_TCR_SRL_MASK) | __SHIFTIN(7, RTW_TCR_LRL_MASK);
528 
529 	RTW_WRITE(regs, RTW_TCR, tcr);
530 
531 	RTW_WBW(regs, RTW_CR, RTW_TCR);
532 
533 	return rtw_chip_reset1(regs, dev);
534 }
535 
536 static int
537 rtw_wep_decap(struct ieee80211_key *k, struct mbuf *m, int hdrlen)
538 {
539 	struct ieee80211_key keycopy;
540 
541 	RTW_DPRINTF(RTW_DEBUG_KEY, ("%s:\n", __func__));
542 
543 	keycopy = *k;
544 	keycopy.wk_flags &= ~IEEE80211_KEY_SWCRYPT;
545 
546 	return (*ieee80211_cipher_wep.ic_decap)(&keycopy, m, hdrlen);
547 }
548 
549 static int
550 rtw_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
551 {
552 	struct rtw_softc *sc = ic->ic_ifp->if_softc;
553 
554 	DPRINTF(sc, RTW_DEBUG_KEY, ("%s: delete key %u\n", __func__,
555 	    k->wk_keyix));
556 
557 	KASSERT(k->wk_keyix < IEEE80211_WEP_NKID);
558 
559 	if (k->wk_keylen != 0 &&
560 	    k->wk_cipher->ic_cipher == IEEE80211_CIPHER_WEP)
561 		sc->sc_flags &= ~RTW_F_DK_VALID;
562 
563 	return 1;
564 }
565 
566 static int
567 rtw_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
568     const u_int8_t mac[IEEE80211_ADDR_LEN])
569 {
570 	struct rtw_softc *sc = ic->ic_ifp->if_softc;
571 
572 	DPRINTF(sc, RTW_DEBUG_KEY, ("%s: set key %u\n", __func__, k->wk_keyix));
573 
574 	KASSERT(k->wk_keyix < IEEE80211_WEP_NKID);
575 
576 	sc->sc_flags &= ~RTW_F_DK_VALID;
577 
578 	return 1;
579 }
580 
581 static void
582 rtw_key_update_begin(struct ieee80211com *ic)
583 {
584 #ifdef RTW_DEBUG
585 	struct ifnet *ifp = ic->ic_ifp;
586 	struct rtw_softc *sc = ifp->if_softc;
587 #endif
588 
589 	DPRINTF(sc, RTW_DEBUG_KEY, ("%s:\n", __func__));
590 }
591 
592 static void
593 rtw_tx_kick(struct rtw_regs *regs, uint8_t ringsel)
594 {
595 	uint8_t tppoll;
596 
597 	tppoll = RTW_READ8(regs, RTW_TPPOLL);
598 	tppoll &= ~RTW_TPPOLL_SALL;
599 	tppoll |= ringsel & RTW_TPPOLL_ALL;
600 	RTW_WRITE8(regs, RTW_TPPOLL, tppoll);
601 	RTW_SYNC(regs, RTW_TPPOLL, RTW_TPPOLL);
602 }
603 
604 static void
605 rtw_key_update_end(struct ieee80211com *ic)
606 {
607 	struct ifnet *ifp = ic->ic_ifp;
608 	struct rtw_softc *sc = ifp->if_softc;
609 
610 	DPRINTF(sc, RTW_DEBUG_KEY, ("%s:\n", __func__));
611 
612 	if ((sc->sc_flags & RTW_F_DK_VALID) != 0 ||
613 	    !device_is_active(sc->sc_dev))
614 		return;
615 
616 	rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 0);
617 	rtw_wep_setkeys(sc, ic->ic_nw_keys, ic->ic_def_txkey);
618 	rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE,
619 	    (ifp->if_flags & IFF_RUNNING) != 0);
620 }
621 
622 static bool
623 rtw_key_hwsupp(uint32_t flags, const struct ieee80211_key *k)
624 {
625 	if (k->wk_cipher->ic_cipher != IEEE80211_CIPHER_WEP)
626 		return false;
627 
628 	return	((flags & RTW_C_RXWEP_40) != 0 && k->wk_keylen == 5) ||
629 		((flags & RTW_C_RXWEP_104) != 0 && k->wk_keylen == 13);
630 }
631 
632 static void
633 rtw_wep_setkeys(struct rtw_softc *sc, struct ieee80211_key *wk, int txkey)
634 {
635 	uint8_t psr, scr;
636 	int i, keylen = 0;
637 	struct rtw_regs *regs;
638 	union rtw_keys *rk;
639 
640 	regs = &sc->sc_regs;
641 	rk = &sc->sc_keys;
642 
643 	(void)memset(rk, 0, sizeof(*rk));
644 
645 	/* Temporarily use software crypto for all keys. */
646 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
647 		if (wk[i].wk_cipher == &rtw_cipher_wep)
648 			wk[i].wk_cipher = &ieee80211_cipher_wep;
649 	}
650 
651 	rtw_set_access(regs, RTW_ACCESS_CONFIG);
652 
653 	psr = RTW_READ8(regs, RTW_PSR);
654 	scr = RTW_READ8(regs, RTW_SCR);
655 	scr &= ~(RTW_SCR_KM_MASK | RTW_SCR_TXSECON | RTW_SCR_RXSECON);
656 
657 	if ((sc->sc_ic.ic_flags & IEEE80211_F_PRIVACY) == 0)
658 		goto out;
659 
660 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
661 		if (!rtw_key_hwsupp(sc->sc_flags, &wk[i]))
662 			continue;
663 		if (i == txkey) {
664 			keylen = wk[i].wk_keylen;
665 			break;
666 		}
667 		keylen = MAX(keylen, wk[i].wk_keylen);
668 	}
669 
670 	if (keylen == 5)
671 		scr |= RTW_SCR_KM_WEP40 | RTW_SCR_RXSECON;
672 	else if (keylen == 13)
673 		scr |= RTW_SCR_KM_WEP104 | RTW_SCR_RXSECON;
674 
675 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
676 		if (wk[i].wk_keylen != keylen ||
677 		    wk[i].wk_cipher->ic_cipher != IEEE80211_CIPHER_WEP)
678 			continue;
679 		/* h/w will decrypt, s/w still strips headers */
680 		wk[i].wk_cipher = &rtw_cipher_wep;
681 		(void)memcpy(rk->rk_keys[i], wk[i].wk_key, wk[i].wk_keylen);
682 	}
683 
684 out:
685 	RTW_WRITE8(regs, RTW_PSR, psr & ~RTW_PSR_PSEN);
686 
687 	bus_space_write_region_stream_4(regs->r_bt, regs->r_bh,
688 	    RTW_DK0, rk->rk_words, __arraycount(rk->rk_words));
689 
690 	bus_space_barrier(regs->r_bt, regs->r_bh, RTW_DK0, sizeof(rk->rk_words),
691 	    BUS_SPACE_BARRIER_SYNC);
692 
693 	RTW_DPRINTF(RTW_DEBUG_KEY,
694 	    ("%s.%d: scr %02" PRIx8 ", keylen %d\n", __func__, __LINE__, scr,
695 	     keylen));
696 
697 	RTW_WBW(regs, RTW_DK0, RTW_PSR);
698 	RTW_WRITE8(regs, RTW_PSR, psr);
699 	RTW_WBW(regs, RTW_PSR, RTW_SCR);
700 	RTW_WRITE8(regs, RTW_SCR, scr);
701 	RTW_SYNC(regs, RTW_SCR, RTW_SCR);
702 	rtw_set_access(regs, RTW_ACCESS_NONE);
703 	sc->sc_flags |= RTW_F_DK_VALID;
704 }
705 
706 static inline int
707 rtw_recall_eeprom(struct rtw_regs *regs, device_t dev)
708 {
709 	int i;
710 	uint8_t ecr;
711 
712 	ecr = RTW_READ8(regs, RTW_9346CR);
713 	ecr = (ecr & ~RTW_9346CR_EEM_MASK) | RTW_9346CR_EEM_AUTOLOAD;
714 	RTW_WRITE8(regs, RTW_9346CR, ecr);
715 
716 	RTW_WBR(regs, RTW_9346CR, RTW_9346CR);
717 
718 	/* wait 25ms for completion */
719 	for (i = 0; i < 250; i++) {
720 		ecr = RTW_READ8(regs, RTW_9346CR);
721 		if ((ecr & RTW_9346CR_EEM_MASK) == RTW_9346CR_EEM_NORMAL) {
722 			RTW_DPRINTF(RTW_DEBUG_RESET,
723 			    ("%s: recall EEPROM in %dus\n", device_xname(dev),
724 			    i * 100));
725 			return 0;
726 		}
727 		RTW_RBR(regs, RTW_9346CR, RTW_9346CR);
728 		DELAY(100);
729 	}
730 	aprint_error_dev(dev, "recall EEPROM failed\n");
731 	return ETIMEDOUT;
732 }
733 
734 static inline int
735 rtw_reset(struct rtw_softc *sc)
736 {
737 	int rc;
738 	uint8_t config1;
739 
740 	sc->sc_flags &= ~RTW_F_DK_VALID;
741 
742 	if ((rc = rtw_chip_reset(&sc->sc_regs, sc->sc_dev)) != 0)
743 		return rc;
744 
745 	rc = rtw_recall_eeprom(&sc->sc_regs, sc->sc_dev);
746 
747 	config1 = RTW_READ8(&sc->sc_regs, RTW_CONFIG1);
748 	RTW_WRITE8(&sc->sc_regs, RTW_CONFIG1, config1 & ~RTW_CONFIG1_PMEN);
749 	/* TBD turn off maximum power saving? */
750 
751 	return 0;
752 }
753 
754 static inline int
755 rtw_txdesc_dmamaps_create(bus_dma_tag_t dmat, struct rtw_txsoft *descs,
756     u_int ndescs)
757 {
758 	int i, rc = 0;
759 	for (i = 0; i < ndescs; i++) {
760 		rc = bus_dmamap_create(dmat, MCLBYTES, RTW_MAXPKTSEGS, MCLBYTES,
761 		    0, 0, &descs[i].ts_dmamap);
762 		if (rc != 0)
763 			break;
764 	}
765 	return rc;
766 }
767 
768 static inline int
769 rtw_rxdesc_dmamaps_create(bus_dma_tag_t dmat, struct rtw_rxsoft *descs,
770     u_int ndescs)
771 {
772 	int i, rc = 0;
773 	for (i = 0; i < ndescs; i++) {
774 		rc = bus_dmamap_create(dmat, MCLBYTES, 1, MCLBYTES, 0, 0,
775 		    &descs[i].rs_dmamap);
776 		if (rc != 0)
777 			break;
778 	}
779 	return rc;
780 }
781 
782 static inline void
783 rtw_rxdesc_dmamaps_destroy(bus_dma_tag_t dmat, struct rtw_rxsoft *descs,
784     u_int ndescs)
785 {
786 	int i;
787 	for (i = 0; i < ndescs; i++) {
788 		if (descs[i].rs_dmamap != NULL)
789 			bus_dmamap_destroy(dmat, descs[i].rs_dmamap);
790 	}
791 }
792 
793 static inline void
794 rtw_txdesc_dmamaps_destroy(bus_dma_tag_t dmat, struct rtw_txsoft *descs,
795     u_int ndescs)
796 {
797 	int i;
798 	for (i = 0; i < ndescs; i++) {
799 		if (descs[i].ts_dmamap != NULL)
800 			bus_dmamap_destroy(dmat, descs[i].ts_dmamap);
801 	}
802 }
803 
804 static inline void
805 rtw_srom_free(struct rtw_srom *sr)
806 {
807 	sr->sr_size = 0;
808 	if (sr->sr_content == NULL)
809 		return;
810 	free(sr->sr_content, M_DEVBUF);
811 	sr->sr_content = NULL;
812 }
813 
814 static void
815 rtw_srom_defaults(struct rtw_srom *sr, uint32_t *flags,
816     uint8_t *cs_threshold, enum rtw_rfchipid *rfchipid, uint32_t *rcr)
817 {
818 	*flags |= (RTW_F_DIGPHY|RTW_F_ANTDIV);
819 	*cs_threshold = RTW_SR_ENERGYDETTHR_DEFAULT;
820 	*rcr |= RTW_RCR_ENCS1;
821 	*rfchipid = RTW_RFCHIPID_PHILIPS;
822 }
823 
824 static int
825 rtw_srom_parse(struct rtw_srom *sr, uint32_t *flags, uint8_t *cs_threshold,
826     enum rtw_rfchipid *rfchipid, uint32_t *rcr, enum rtw_locale *locale,
827     device_t dev)
828 {
829 	int i;
830 	const char *rfname, *paname;
831 	char scratch[sizeof("unknown 0xXX")];
832 	uint16_t srom_version;
833 
834 	*flags &= ~(RTW_F_DIGPHY|RTW_F_DFLANTB|RTW_F_ANTDIV);
835 	*rcr &= ~(RTW_RCR_ENCS1 | RTW_RCR_ENCS2);
836 
837 	srom_version = RTW_SR_GET16(sr, RTW_SR_VERSION);
838 
839 	if (srom_version <= 0x0101) {
840 		aprint_error_dev(dev,
841 		    "SROM version %d.%d is not understood, "
842 		    "limping along with defaults\n",
843 		    srom_version >> 8, srom_version & 0xff);
844 		rtw_srom_defaults(sr, flags, cs_threshold, rfchipid, rcr);
845 		return 0;
846 	} else {
847 		aprint_verbose_dev(dev, "SROM version %d.%d\n",
848 		    srom_version >> 8, srom_version & 0xff);
849 	}
850 
851 	uint8_t mac[IEEE80211_ADDR_LEN];
852 	for (i = 0; i < IEEE80211_ADDR_LEN; i++)
853 		mac[i] = RTW_SR_GET(sr, RTW_SR_MAC + i);
854 	__USE(mac);
855 
856 	RTW_DPRINTF(RTW_DEBUG_ATTACH,
857 	    ("%s: EEPROM MAC %s\n", device_xname(dev), ether_sprintf(mac)));
858 
859 	*cs_threshold = RTW_SR_GET(sr, RTW_SR_ENERGYDETTHR);
860 
861 	if ((RTW_SR_GET(sr, RTW_SR_CONFIG2) & RTW_CONFIG2_ANT) != 0)
862 		*flags |= RTW_F_ANTDIV;
863 
864 	/* Note well: the sense of the RTW_SR_RFPARM_DIGPHY bit seems
865 	 * to be reversed.
866 	 */
867 	if ((RTW_SR_GET(sr, RTW_SR_RFPARM) & RTW_SR_RFPARM_DIGPHY) == 0)
868 		*flags |= RTW_F_DIGPHY;
869 	if ((RTW_SR_GET(sr, RTW_SR_RFPARM) & RTW_SR_RFPARM_DFLANTB) != 0)
870 		*flags |= RTW_F_DFLANTB;
871 
872 	*rcr |= __SHIFTIN(__SHIFTOUT(RTW_SR_GET(sr, RTW_SR_RFPARM),
873 	    RTW_SR_RFPARM_CS_MASK), RTW_RCR_ENCS1);
874 
875 	if ((RTW_SR_GET(sr, RTW_SR_CONFIG0) & RTW_CONFIG0_WEP104) != 0)
876 		*flags |= RTW_C_RXWEP_104;
877 
878 	*flags |= RTW_C_RXWEP_40;	/* XXX */
879 
880 	*rfchipid = RTW_SR_GET(sr, RTW_SR_RFCHIPID);
881 	switch (*rfchipid) {
882 	case RTW_RFCHIPID_GCT:		/* this combo seen in the wild */
883 		rfname = "GCT GRF5101";
884 		paname = "Winspring WS9901";
885 		break;
886 	case RTW_RFCHIPID_MAXIM:
887 		rfname = "Maxim MAX2820";	/* guess */
888 		paname = "Maxim MAX2422";	/* guess */
889 		break;
890 	case RTW_RFCHIPID_INTERSIL:
891 		rfname = "Intersil HFA3873";	/* guess */
892 		paname = "Intersil <unknown>";
893 		break;
894 	case RTW_RFCHIPID_PHILIPS:	/* this combo seen in the wild */
895 		rfname = "Philips SA2400A";
896 		paname = "Philips SA2411";
897 		break;
898 	case RTW_RFCHIPID_RFMD:
899 		/* this is the same front-end as an atw(4)! */
900 		rfname = "RFMD RF2948B, "	/* mentioned in Realtek docs */
901 			 "LNA: RFMD RF2494, "	/* mentioned in Realtek docs */
902 			 "SYN: Silicon Labs Si4126";	/* inferred from
903 			 				 * reference driver
904 							 */
905 		paname = "RFMD RF2189";		/* mentioned in Realtek docs */
906 		break;
907 	case RTW_RFCHIPID_RESERVED:
908 		rfname = paname = "reserved";
909 		break;
910 	default:
911 		snprintf(scratch, sizeof(scratch), "unknown 0x%02x", *rfchipid);
912 		rfname = paname = scratch;
913 	}
914 	aprint_normal_dev(dev, "RF: %s, PA: %s\n", rfname, paname);
915 
916 	switch (RTW_SR_GET(sr, RTW_SR_CONFIG0) & RTW_CONFIG0_GL_MASK) {
917 	case RTW_CONFIG0_GL_USA:
918 	case _RTW_CONFIG0_GL_USA:
919 		*locale = RTW_LOCALE_USA;
920 		break;
921 	case RTW_CONFIG0_GL_EUROPE:
922 		*locale = RTW_LOCALE_EUROPE;
923 		break;
924 	case RTW_CONFIG0_GL_JAPAN:
925 		*locale = RTW_LOCALE_JAPAN;
926 		break;
927 	default:
928 		*locale = RTW_LOCALE_UNKNOWN;
929 		break;
930 	}
931 	return 0;
932 }
933 
934 /* Returns -1 on failure. */
935 static int
936 rtw_srom_read(struct rtw_regs *regs, uint32_t flags, struct rtw_srom *sr,
937     device_t dev)
938 {
939 	int rc;
940 	struct seeprom_descriptor sd;
941 	uint8_t ecr;
942 
943 	(void)memset(&sd, 0, sizeof(sd));
944 
945 	ecr = RTW_READ8(regs, RTW_9346CR);
946 
947 	if ((flags & RTW_F_9356SROM) != 0) {
948 		RTW_DPRINTF(RTW_DEBUG_ATTACH, ("%s: 93c56 SROM\n",
949 		    device_xname(dev)));
950 		sr->sr_size = 256;
951 		sd.sd_chip = C56_66;
952 	} else {
953 		RTW_DPRINTF(RTW_DEBUG_ATTACH, ("%s: 93c46 SROM\n",
954 		    device_xname(dev)));
955 		sr->sr_size = 128;
956 		sd.sd_chip = C46;
957 	}
958 
959 	ecr &= ~(RTW_9346CR_EEDI | RTW_9346CR_EEDO | RTW_9346CR_EESK |
960 	    RTW_9346CR_EEM_MASK | RTW_9346CR_EECS);
961 	ecr |= RTW_9346CR_EEM_PROGRAM;
962 
963 	RTW_WRITE8(regs, RTW_9346CR, ecr);
964 
965 	sr->sr_content = malloc(sr->sr_size, M_DEVBUF, M_NOWAIT);
966 
967 	if (sr->sr_content == NULL) {
968 		aprint_error_dev(dev, "unable to allocate SROM buffer\n");
969 		return ENOMEM;
970 	}
971 
972 	(void)memset(sr->sr_content, 0, sr->sr_size);
973 
974 	/* RTL8180 has a single 8-bit register for controlling the
975 	 * 93cx6 SROM.  There is no "ready" bit. The RTL8180
976 	 * input/output sense is the reverse of read_seeprom's.
977 	 */
978 	sd.sd_tag = regs->r_bt;
979 	sd.sd_bsh = regs->r_bh;
980 	sd.sd_regsize = 1;
981 	sd.sd_control_offset = RTW_9346CR;
982 	sd.sd_status_offset = RTW_9346CR;
983 	sd.sd_dataout_offset = RTW_9346CR;
984 	sd.sd_CK = RTW_9346CR_EESK;
985 	sd.sd_CS = RTW_9346CR_EECS;
986 	sd.sd_DI = RTW_9346CR_EEDO;
987 	sd.sd_DO = RTW_9346CR_EEDI;
988 	/* make read_seeprom enter EEPROM read/write mode */
989 	sd.sd_MS = ecr;
990 	sd.sd_RDY = 0;
991 
992 	/* TBD bus barriers */
993 	if (!read_seeprom(&sd, sr->sr_content, 0, sr->sr_size/2)) {
994 		aprint_error_dev(dev, "could not read SROM\n");
995 		free(sr->sr_content, M_DEVBUF);
996 		sr->sr_content = NULL;
997 		return -1;	/* XXX */
998 	}
999 
1000 	/* end EEPROM read/write mode */
1001 	RTW_WRITE8(regs, RTW_9346CR,
1002 	    (ecr & ~RTW_9346CR_EEM_MASK) | RTW_9346CR_EEM_NORMAL);
1003 	RTW_WBRW(regs, RTW_9346CR, RTW_9346CR);
1004 
1005 	if ((rc = rtw_recall_eeprom(regs, dev)) != 0)
1006 		return rc;
1007 
1008 #ifdef RTW_DEBUG
1009 	{
1010 		int i;
1011 		RTW_DPRINTF(RTW_DEBUG_ATTACH,
1012 		    ("\n%s: serial ROM:\n\t", device_xname(dev)));
1013 		for (i = 0; i < sr->sr_size/2; i++) {
1014 			if (((i % 8) == 0) && (i != 0))
1015 				RTW_DPRINTF(RTW_DEBUG_ATTACH, ("\n\t"));
1016 			RTW_DPRINTF(RTW_DEBUG_ATTACH,
1017 			    (" %04x", sr->sr_content[i]));
1018 		}
1019 		RTW_DPRINTF(RTW_DEBUG_ATTACH, ("\n"));
1020 	}
1021 #endif /* RTW_DEBUG */
1022 	return 0;
1023 }
1024 
1025 static void
1026 rtw_set_rfprog(struct rtw_regs *regs, enum rtw_rfchipid rfchipid,
1027     device_t dev)
1028 {
1029 	uint8_t cfg4;
1030 	const char *method;
1031 
1032 	cfg4 = RTW_READ8(regs, RTW_CONFIG4) & ~RTW_CONFIG4_RFTYPE_MASK;
1033 
1034 	switch (rfchipid) {
1035 	default:
1036 		cfg4 |= __SHIFTIN(rtw_rfprog_fallback, RTW_CONFIG4_RFTYPE_MASK);
1037 		method = "fallback";
1038 		break;
1039 	case RTW_RFCHIPID_INTERSIL:
1040 		cfg4 |= RTW_CONFIG4_RFTYPE_INTERSIL;
1041 		method = "Intersil";
1042 		break;
1043 	case RTW_RFCHIPID_PHILIPS:
1044 		cfg4 |= RTW_CONFIG4_RFTYPE_PHILIPS;
1045 		method = "Philips";
1046 		break;
1047 	case RTW_RFCHIPID_GCT:	/* XXX a guess */
1048 	case RTW_RFCHIPID_RFMD:
1049 		cfg4 |= RTW_CONFIG4_RFTYPE_RFMD;
1050 		method = "RFMD";
1051 		break;
1052 	}
1053 
1054 	RTW_WRITE8(regs, RTW_CONFIG4, cfg4);
1055 
1056 	RTW_WBR(regs, RTW_CONFIG4, RTW_CONFIG4);
1057 
1058 #ifdef RTW_DEBUG
1059 	RTW_DPRINTF(RTW_DEBUG_INIT,
1060 	    ("%s: %s RF programming method, %#02x\n", device_xname(dev), method,
1061 	    RTW_READ8(regs, RTW_CONFIG4)));
1062 #else
1063 	__USE(method);
1064 #endif
1065 }
1066 
1067 static inline void
1068 rtw_init_channels(enum rtw_locale locale,
1069     struct ieee80211_channel (*chans)[IEEE80211_CHAN_MAX+1], device_t dev)
1070 {
1071 	int i;
1072 	const char *name = NULL;
1073 #define ADD_CHANNEL(_chans, _chan) do {			\
1074 	(*_chans)[_chan].ic_flags = IEEE80211_CHAN_B;		\
1075 	(*_chans)[_chan].ic_freq =				\
1076 	    ieee80211_ieee2mhz(_chan, (*_chans)[_chan].ic_flags);\
1077 } while (0)
1078 
1079 	switch (locale) {
1080 	case RTW_LOCALE_USA:	/* 1-11 */
1081 		name = "USA";
1082 		for (i = 1; i <= 11; i++)
1083 			ADD_CHANNEL(chans, i);
1084 		break;
1085 	case RTW_LOCALE_JAPAN:	/* 1-14 */
1086 		name = "Japan";
1087 		ADD_CHANNEL(chans, 14);
1088 		for (i = 1; i <= 14; i++)
1089 			ADD_CHANNEL(chans, i);
1090 		break;
1091 	case RTW_LOCALE_EUROPE:	/* 1-13 */
1092 		name = "Europe";
1093 		for (i = 1; i <= 13; i++)
1094 			ADD_CHANNEL(chans, i);
1095 		break;
1096 	default:			/* 10-11 allowed by most countries */
1097 		name = "<unknown>";
1098 		for (i = 10; i <= 11; i++)
1099 			ADD_CHANNEL(chans, i);
1100 		break;
1101 	}
1102 	aprint_normal_dev(dev, "Geographic Location %s\n", name);
1103 #undef ADD_CHANNEL
1104 }
1105 
1106 
1107 static inline void
1108 rtw_identify_country(struct rtw_regs *regs, enum rtw_locale *locale)
1109 {
1110 	uint8_t cfg0 = RTW_READ8(regs, RTW_CONFIG0);
1111 
1112 	switch (cfg0 & RTW_CONFIG0_GL_MASK) {
1113 	case RTW_CONFIG0_GL_USA:
1114 	case _RTW_CONFIG0_GL_USA:
1115 		*locale = RTW_LOCALE_USA;
1116 		break;
1117 	case RTW_CONFIG0_GL_JAPAN:
1118 		*locale = RTW_LOCALE_JAPAN;
1119 		break;
1120 	case RTW_CONFIG0_GL_EUROPE:
1121 		*locale = RTW_LOCALE_EUROPE;
1122 		break;
1123 	default:
1124 		*locale = RTW_LOCALE_UNKNOWN;
1125 		break;
1126 	}
1127 }
1128 
1129 static inline int
1130 rtw_identify_sta(struct rtw_regs *regs, uint8_t (*addr)[IEEE80211_ADDR_LEN],
1131     device_t dev)
1132 {
1133 	static const uint8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
1134 		0x00, 0x00, 0x00, 0x00, 0x00, 0x00
1135 	};
1136 	uint32_t idr0 = RTW_READ(regs, RTW_IDR0),
1137 	          idr1 = RTW_READ(regs, RTW_IDR1);
1138 
1139 	(*addr)[0] = __SHIFTOUT(idr0, __BITS(0,  7));
1140 	(*addr)[1] = __SHIFTOUT(idr0, __BITS(8,  15));
1141 	(*addr)[2] = __SHIFTOUT(idr0, __BITS(16, 23));
1142 	(*addr)[3] = __SHIFTOUT(idr0, __BITS(24 ,31));
1143 
1144 	(*addr)[4] = __SHIFTOUT(idr1, __BITS(0,  7));
1145 	(*addr)[5] = __SHIFTOUT(idr1, __BITS(8, 15));
1146 
1147 	if (IEEE80211_ADDR_EQ(addr, empty_macaddr)) {
1148 		aprint_error_dev(dev,
1149 		    "could not get mac address, attach failed\n");
1150 		return ENXIO;
1151 	}
1152 
1153 	aprint_normal_dev(dev, "802.11 address %s\n", ether_sprintf(*addr));
1154 
1155 	return 0;
1156 }
1157 
1158 static uint8_t
1159 rtw_chan2txpower(struct rtw_srom *sr, struct ieee80211com *ic,
1160     struct ieee80211_channel *chan)
1161 {
1162 	u_int idx = RTW_SR_TXPOWER1 + ieee80211_chan2ieee(ic, chan) - 1;
1163 	KASSERT(idx >= RTW_SR_TXPOWER1 && idx <= RTW_SR_TXPOWER14);
1164 	return RTW_SR_GET(sr, idx);
1165 }
1166 
1167 static void
1168 rtw_txdesc_blk_init_all(struct rtw_txdesc_blk *tdb)
1169 {
1170 	int pri;
1171 	/* nfree: the number of free descriptors in each ring.
1172 	 * The beacon ring is a special case: I do not let the
1173 	 * driver use all of the descriptors on the beacon ring.
1174 	 * The reasons are two-fold:
1175 	 *
1176 	 * (1) A BEACON descriptor's OWN bit is (apparently) not
1177 	 * updated, so the driver cannot easily know if the descriptor
1178 	 * belongs to it, or if it is racing the NIC.  If the NIC
1179 	 * does not OWN every descriptor, then the driver can safely
1180 	 * update the descriptors when RTW_TBDA points at tdb_next.
1181 	 *
1182 	 * (2) I hope that the NIC will process more than one BEACON
1183 	 * descriptor in a single beacon interval, since that will
1184 	 * enable multiple-BSS support.  Since the NIC does not
1185 	 * clear the OWN bit, there is no natural place for it to
1186 	 * stop processing BEACON desciptors.  Maybe it will *not*
1187 	 * stop processing them!  I do not want to chance the NIC
1188 	 * looping around and around a saturated beacon ring, so
1189 	 * I will leave one descriptor unOWNed at all times.
1190 	 */
1191 	u_int nfree[RTW_NTXPRI] =
1192 	    {RTW_NTXDESCLO, RTW_NTXDESCMD, RTW_NTXDESCHI,
1193 	     RTW_NTXDESCBCN - 1};
1194 
1195 	for (pri = 0; pri < RTW_NTXPRI; pri++) {
1196 		tdb[pri].tdb_nfree = nfree[pri];
1197 		tdb[pri].tdb_next = 0;
1198 	}
1199 }
1200 
1201 static int
1202 rtw_txsoft_blk_init(struct rtw_txsoft_blk *tsb)
1203 {
1204 	int i;
1205 	struct rtw_txsoft *ts;
1206 
1207 	SIMPLEQ_INIT(&tsb->tsb_dirtyq);
1208 	SIMPLEQ_INIT(&tsb->tsb_freeq);
1209 	for (i = 0; i < tsb->tsb_ndesc; i++) {
1210 		ts = &tsb->tsb_desc[i];
1211 		ts->ts_mbuf = NULL;
1212 		SIMPLEQ_INSERT_TAIL(&tsb->tsb_freeq, ts, ts_q);
1213 	}
1214 	tsb->tsb_tx_timer = 0;
1215 	return 0;
1216 }
1217 
1218 static void
1219 rtw_txsoft_blk_init_all(struct rtw_txsoft_blk *tsb)
1220 {
1221 	int pri;
1222 	for (pri = 0; pri < RTW_NTXPRI; pri++)
1223 		rtw_txsoft_blk_init(&tsb[pri]);
1224 }
1225 
1226 static inline void
1227 rtw_rxdescs_sync(struct rtw_rxdesc_blk *rdb, int desc0, int nsync, int ops)
1228 {
1229 	KASSERT(nsync <= rdb->rdb_ndesc);
1230 	/* sync to end of ring */
1231 	if (desc0 + nsync > rdb->rdb_ndesc) {
1232 		bus_dmamap_sync(rdb->rdb_dmat, rdb->rdb_dmamap,
1233 		    offsetof(struct rtw_descs, hd_rx[desc0]),
1234 		    sizeof(struct rtw_rxdesc) * (rdb->rdb_ndesc - desc0), ops);
1235 		nsync -= (rdb->rdb_ndesc - desc0);
1236 		desc0 = 0;
1237 	}
1238 
1239 	KASSERT(desc0 < rdb->rdb_ndesc);
1240 	KASSERT(nsync <= rdb->rdb_ndesc);
1241 	KASSERT(desc0 + nsync <= rdb->rdb_ndesc);
1242 
1243 	/* sync what remains */
1244 	bus_dmamap_sync(rdb->rdb_dmat, rdb->rdb_dmamap,
1245 	    offsetof(struct rtw_descs, hd_rx[desc0]),
1246 	    sizeof(struct rtw_rxdesc) * nsync, ops);
1247 }
1248 
1249 static void
1250 rtw_txdescs_sync(struct rtw_txdesc_blk *tdb, u_int desc0, u_int nsync, int ops)
1251 {
1252 	/* sync to end of ring */
1253 	if (desc0 + nsync > tdb->tdb_ndesc) {
1254 		bus_dmamap_sync(tdb->tdb_dmat, tdb->tdb_dmamap,
1255 		    tdb->tdb_ofs + sizeof(struct rtw_txdesc) * desc0,
1256 		    sizeof(struct rtw_txdesc) * (tdb->tdb_ndesc - desc0),
1257 		    ops);
1258 		nsync -= (tdb->tdb_ndesc - desc0);
1259 		desc0 = 0;
1260 	}
1261 
1262 	/* sync what remains */
1263 	bus_dmamap_sync(tdb->tdb_dmat, tdb->tdb_dmamap,
1264 	    tdb->tdb_ofs + sizeof(struct rtw_txdesc) * desc0,
1265 	    sizeof(struct rtw_txdesc) * nsync, ops);
1266 }
1267 
1268 static void
1269 rtw_txdescs_sync_all(struct rtw_txdesc_blk *tdb)
1270 {
1271 	int pri;
1272 	for (pri = 0; pri < RTW_NTXPRI; pri++) {
1273 		rtw_txdescs_sync(&tdb[pri], 0, tdb[pri].tdb_ndesc,
1274 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1275 	}
1276 }
1277 
1278 static void
1279 rtw_rxbufs_release(bus_dma_tag_t dmat, struct rtw_rxsoft *desc)
1280 {
1281 	int i;
1282 	struct rtw_rxsoft *rs;
1283 
1284 	for (i = 0; i < RTW_RXQLEN; i++) {
1285 		rs = &desc[i];
1286 		if (rs->rs_mbuf == NULL)
1287 			continue;
1288 		bus_dmamap_sync(dmat, rs->rs_dmamap, 0,
1289 		    rs->rs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1290 		bus_dmamap_unload(dmat, rs->rs_dmamap);
1291 		m_freem(rs->rs_mbuf);
1292 		rs->rs_mbuf = NULL;
1293 	}
1294 }
1295 
1296 static inline int
1297 rtw_rxsoft_alloc(bus_dma_tag_t dmat, struct rtw_rxsoft *rs)
1298 {
1299 	int rc;
1300 	struct mbuf *m;
1301 
1302 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1303 	if (m == NULL)
1304 		return ENOBUFS;
1305 
1306 	MCLGET(m, M_DONTWAIT);
1307 	if ((m->m_flags & M_EXT) == 0) {
1308 		m_freem(m);
1309 		return ENOBUFS;
1310 	}
1311 
1312 	m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
1313 
1314 	if (rs->rs_mbuf != NULL)
1315 		bus_dmamap_unload(dmat, rs->rs_dmamap);
1316 
1317 	rs->rs_mbuf = NULL;
1318 
1319 	rc = bus_dmamap_load_mbuf(dmat, rs->rs_dmamap, m, BUS_DMA_NOWAIT);
1320 	if (rc != 0) {
1321 		m_freem(m);
1322 		return -1;
1323 	}
1324 
1325 	rs->rs_mbuf = m;
1326 
1327 	return 0;
1328 }
1329 
1330 static int
1331 rtw_rxsoft_init_all(bus_dma_tag_t dmat, struct rtw_rxsoft *desc,
1332     int *ndesc, device_t dev)
1333 {
1334 	int i, rc = 0;
1335 	struct rtw_rxsoft *rs;
1336 
1337 	for (i = 0; i < RTW_RXQLEN; i++) {
1338 		rs = &desc[i];
1339 		/* we're in rtw_init, so there should be no mbufs allocated */
1340 		KASSERT(rs->rs_mbuf == NULL);
1341 #ifdef RTW_DEBUG
1342 		if (i == rtw_rxbufs_limit) {
1343 			aprint_error_dev(dev, "TEST hit %d-buffer limit\n", i);
1344 			rc = ENOBUFS;
1345 			break;
1346 		}
1347 #endif /* RTW_DEBUG */
1348 		if ((rc = rtw_rxsoft_alloc(dmat, rs)) != 0) {
1349 			aprint_error_dev(dev,
1350 			    "rtw_rxsoft_alloc failed, %d buffers, rc %d\n",
1351 			    i, rc);
1352 			break;
1353 		}
1354 	}
1355 	*ndesc = i;
1356 	return rc;
1357 }
1358 
1359 static inline void
1360 rtw_rxdesc_init(struct rtw_rxdesc_blk *rdb, struct rtw_rxsoft *rs,
1361     int idx, int kick)
1362 {
1363 	int is_last = (idx == rdb->rdb_ndesc - 1);
1364 	uint32_t ctl, octl, obuf;
1365 	struct rtw_rxdesc *rd = &rdb->rdb_desc[idx];
1366 
1367 	/* sync the mbuf before the descriptor */
1368 	bus_dmamap_sync(rdb->rdb_dmat, rs->rs_dmamap, 0,
1369 	    rs->rs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1370 
1371 	obuf = rd->rd_buf;
1372 	rd->rd_buf = htole32(rs->rs_dmamap->dm_segs[0].ds_addr);
1373 
1374 	ctl = __SHIFTIN(rs->rs_mbuf->m_len, RTW_RXCTL_LENGTH_MASK) |
1375 	    RTW_RXCTL_OWN | RTW_RXCTL_FS | RTW_RXCTL_LS;
1376 
1377 	if (is_last)
1378 		ctl |= RTW_RXCTL_EOR;
1379 
1380 	octl = rd->rd_ctl;
1381 	rd->rd_ctl = htole32(ctl);
1382 
1383 #ifdef RTW_DEBUG
1384 	RTW_DPRINTF(
1385 	    kick ? (RTW_DEBUG_RECV_DESC | RTW_DEBUG_IO_KICK)
1386 	         : RTW_DEBUG_RECV_DESC,
1387 	    ("%s: rd %p buf %08x -> %08x ctl %08x -> %08x\n", __func__, rd,
1388 	     le32toh(obuf), le32toh(rd->rd_buf), le32toh(octl),
1389 	     le32toh(rd->rd_ctl)));
1390 #else
1391 	__USE(octl);
1392 	__USE(obuf);
1393 #endif
1394 
1395 	/* sync the descriptor */
1396 	bus_dmamap_sync(rdb->rdb_dmat, rdb->rdb_dmamap,
1397 	    RTW_DESC_OFFSET(hd_rx, idx), sizeof(struct rtw_rxdesc),
1398 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1399 }
1400 
1401 static void
1402 rtw_rxdesc_init_all(struct rtw_rxdesc_blk *rdb, struct rtw_rxsoft *ctl, int kick)
1403 {
1404 	int i;
1405 	struct rtw_rxsoft *rs;
1406 
1407 	for (i = 0; i < rdb->rdb_ndesc; i++) {
1408 		rs = &ctl[i];
1409 		rtw_rxdesc_init(rdb, rs, i, kick);
1410 	}
1411 }
1412 
1413 static void
1414 rtw_io_enable(struct rtw_softc *sc, uint8_t flags, int enable)
1415 {
1416 	struct rtw_regs *regs = &sc->sc_regs;
1417 	uint8_t cr;
1418 
1419 	RTW_DPRINTF(RTW_DEBUG_IOSTATE, ("%s: %s 0x%02x\n", __func__,
1420 	    enable ? "enable" : "disable", flags));
1421 
1422 	cr = RTW_READ8(regs, RTW_CR);
1423 
1424 	/* XXX reference source does not enable MULRW */
1425 	/* enable PCI Read/Write Multiple */
1426 	cr |= RTW_CR_MULRW;
1427 
1428 	/* The receive engine will always start at RDSAR.  */
1429 	if (enable && (flags & ~cr & RTW_CR_RE)) {
1430 		struct rtw_rxdesc_blk *rdb;
1431 		rdb = &sc->sc_rxdesc_blk;
1432 		rdb->rdb_next = 0;
1433 	}
1434 
1435 	RTW_RBW(regs, RTW_CR, RTW_CR);	/* XXX paranoia? */
1436 	if (enable)
1437 		cr |= flags;
1438 	else
1439 		cr &= ~flags;
1440 	RTW_WRITE8(regs, RTW_CR, cr);
1441 	RTW_SYNC(regs, RTW_CR, RTW_CR);
1442 
1443 #ifdef RTW_DIAG
1444 	if (cr & RTW_CR_TE)
1445 		rtw_txring_fixup(sc, __func__, __LINE__);
1446 #endif
1447 	if (cr & RTW_CR_TE) {
1448 		rtw_tx_kick(&sc->sc_regs,
1449 		    RTW_TPPOLL_HPQ | RTW_TPPOLL_NPQ | RTW_TPPOLL_LPQ);
1450 	}
1451 }
1452 
1453 static void
1454 rtw_intr_rx(struct rtw_softc *sc, uint16_t isr)
1455 {
1456 #define	IS_BEACON(__fc0)						\
1457     ((__fc0 & (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==\
1458      (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_BEACON))
1459 
1460 	static const int ratetbl[4] = {2, 4, 11, 22};	/* convert rates:
1461 							 * hardware -> net80211
1462 							 */
1463 	u_int next, nproc = 0;
1464 	int hwrate, len, rate, rssi, sq;
1465 	uint32_t hrssi, hstat, htsfth, htsftl;
1466 	struct rtw_rxdesc *rd;
1467 	struct rtw_rxsoft *rs;
1468 	struct rtw_rxdesc_blk *rdb;
1469 	struct mbuf *m;
1470 	struct ifnet *ifp = &sc->sc_if;
1471 
1472 	struct ieee80211_node *ni;
1473 	struct ieee80211_frame_min *wh;
1474 
1475 	rdb = &sc->sc_rxdesc_blk;
1476 
1477 	for (next = rdb->rdb_next; ; next = rdb->rdb_next) {
1478 		KASSERT(next < rdb->rdb_ndesc);
1479 
1480 		rtw_rxdescs_sync(rdb, next, 1,
1481 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1482 		rd = &rdb->rdb_desc[next];
1483 		rs = &sc->sc_rxsoft[next];
1484 
1485 		hstat = le32toh(rd->rd_stat);
1486 		hrssi = le32toh(rd->rd_rssi);
1487 		htsfth = le32toh(rd->rd_tsfth);
1488 		htsftl = le32toh(rd->rd_tsftl);
1489 
1490 		RTW_DPRINTF(RTW_DEBUG_RECV_DESC,
1491 		    ("%s: rxdesc[%d] hstat %08x hrssi %08x htsft %08x%08x\n",
1492 		    __func__, next, hstat, hrssi, htsfth, htsftl));
1493 
1494 		++nproc;
1495 
1496 		/* still belongs to NIC */
1497 		if ((hstat & RTW_RXSTAT_OWN) != 0) {
1498 			rtw_rxdescs_sync(rdb, next, 1, BUS_DMASYNC_PREREAD);
1499 			break;
1500 		}
1501 
1502                 /* ieee80211_input() might reset the receive engine
1503                  * (e.g. by indirectly calling rtw_tune()), so save
1504                  * the next pointer here and retrieve it again on
1505                  * the next round.
1506 		 */
1507 		rdb->rdb_next = (next + 1) % rdb->rdb_ndesc;
1508 
1509 #ifdef RTW_DEBUG
1510 #define PRINTSTAT(flag) do { \
1511 	if ((hstat & flag) != 0) { \
1512 		printf("%s" #flag, delim); \
1513 		delim = ","; \
1514 	} \
1515 } while (0)
1516 		if ((rtw_debug & RTW_DEBUG_RECV_DESC) != 0) {
1517 			const char *delim = "<";
1518 			printf("%s: ", device_xname(sc->sc_dev));
1519 			if ((hstat & RTW_RXSTAT_DEBUG) != 0) {
1520 				printf("status %08x", hstat);
1521 				PRINTSTAT(RTW_RXSTAT_SPLCP);
1522 				PRINTSTAT(RTW_RXSTAT_MAR);
1523 				PRINTSTAT(RTW_RXSTAT_PAR);
1524 				PRINTSTAT(RTW_RXSTAT_BAR);
1525 				PRINTSTAT(RTW_RXSTAT_PWRMGT);
1526 				PRINTSTAT(RTW_RXSTAT_CRC32);
1527 				PRINTSTAT(RTW_RXSTAT_ICV);
1528 				printf(">, ");
1529 			}
1530 		}
1531 #endif /* RTW_DEBUG */
1532 
1533 		if ((hstat & RTW_RXSTAT_IOERROR) != 0) {
1534 			aprint_error_dev(sc->sc_dev,
1535 			    "DMA error/FIFO overflow %08" PRIx32 ", "
1536 			    "rx descriptor %d\n", hstat, next);
1537 			ifp->if_ierrors++;
1538 			goto next;
1539 		}
1540 
1541 		len = __SHIFTOUT(hstat, RTW_RXSTAT_LENGTH_MASK);
1542 		if (len < IEEE80211_MIN_LEN) {
1543 			sc->sc_ic.ic_stats.is_rx_tooshort++;
1544 			goto next;
1545 		}
1546 		if (len > rs->rs_mbuf->m_len) {
1547 			aprint_error_dev(sc->sc_dev,
1548 			    "rx frame too long, %d > %d, %08" PRIx32
1549 			    ", desc %d\n",
1550 			    len, rs->rs_mbuf->m_len, hstat, next);
1551 			ifp->if_ierrors++;
1552 			goto next;
1553 		}
1554 
1555 		hwrate = __SHIFTOUT(hstat, RTW_RXSTAT_RATE_MASK);
1556 		if (hwrate >= __arraycount(ratetbl)) {
1557 			aprint_error_dev(sc->sc_dev,
1558 			    "unknown rate #%" __PRIuBITS "\n",
1559 			    __SHIFTOUT(hstat, RTW_RXSTAT_RATE_MASK));
1560 			ifp->if_ierrors++;
1561 			goto next;
1562 		}
1563 		rate = ratetbl[hwrate];
1564 
1565 #ifdef RTW_DEBUG
1566 		RTW_DPRINTF(RTW_DEBUG_RECV_DESC,
1567 		    ("rate %d.%d Mb/s, time %08x%08x\n", (rate * 5) / 10,
1568 		     (rate * 5) % 10, htsfth, htsftl));
1569 #endif /* RTW_DEBUG */
1570 
1571 		/* if bad flags, skip descriptor */
1572 		if ((hstat & RTW_RXSTAT_ONESEG) != RTW_RXSTAT_ONESEG) {
1573 			aprint_error_dev(sc->sc_dev, "too many rx segments, "
1574 			    "next=%d, %08" PRIx32 "\n", next, hstat);
1575 			goto next;
1576 		}
1577 
1578 		bus_dmamap_sync(sc->sc_dmat, rs->rs_dmamap, 0,
1579 		    rs->rs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1580 
1581 		m = rs->rs_mbuf;
1582 
1583 		/* if temporarily out of memory, re-use mbuf */
1584 		switch (rtw_rxsoft_alloc(sc->sc_dmat, rs)) {
1585 		case 0:
1586 			break;
1587 		case ENOBUFS:
1588 			aprint_error_dev(sc->sc_dev,
1589 			    "rtw_rxsoft_alloc(, %d) failed, dropping packet\n",
1590 			    next);
1591 			goto next;
1592 		default:
1593 			/* XXX shorten rx ring, instead? */
1594 			aprint_error_dev(sc->sc_dev,
1595 			    "could not load DMA map\n");
1596 		}
1597 
1598 		sq = __SHIFTOUT(hrssi, RTW_RXRSSI_SQ);
1599 
1600 		if (sc->sc_rfchipid == RTW_RFCHIPID_PHILIPS)
1601 			rssi = UINT8_MAX - sq;
1602 		else {
1603 			rssi = __SHIFTOUT(hrssi, RTW_RXRSSI_IMR_RSSI);
1604 			/* TBD find out each front-end's LNA gain in the
1605 			 * front-end's units
1606 			 */
1607 			if ((hrssi & RTW_RXRSSI_IMR_LNA) == 0)
1608 				rssi |= 0x80;
1609 		}
1610 
1611 		/* Note well: now we cannot recycle the rs_mbuf unless
1612 		 * we restore its original length.
1613 		 */
1614 		m->m_pkthdr.rcvif = ifp;
1615 		m->m_pkthdr.len = m->m_len = len;
1616 
1617 		wh = mtod(m, struct ieee80211_frame_min *);
1618 
1619 		if (!IS_BEACON(wh->i_fc[0]))
1620 			sc->sc_led_state.ls_event |= RTW_LED_S_RX;
1621 
1622 		sc->sc_tsfth = htsfth;
1623 
1624 #ifdef RTW_DEBUG
1625 		if ((ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) ==
1626 		    (IFF_DEBUG|IFF_LINK2)) {
1627 			ieee80211_dump_pkt(mtod(m, uint8_t *), m->m_pkthdr.len,
1628 			    rate, rssi);
1629 		}
1630 #endif /* RTW_DEBUG */
1631 
1632 		if (sc->sc_radiobpf != NULL) {
1633 			struct rtw_rx_radiotap_header *rr = &sc->sc_rxtap;
1634 
1635 			rr->rr_tsft =
1636 			    htole64(((uint64_t)htsfth << 32) | htsftl);
1637 
1638 			rr->rr_flags = IEEE80211_RADIOTAP_F_FCS;
1639 
1640 			if ((hstat & RTW_RXSTAT_SPLCP) != 0)
1641 				rr->rr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1642 			if ((hstat & RTW_RXSTAT_CRC32) != 0)
1643 				rr->rr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
1644 
1645 			rr->rr_rate = rate;
1646 
1647 			if (sc->sc_rfchipid == RTW_RFCHIPID_PHILIPS)
1648 				rr->rr_u.u_philips.p_antsignal = rssi;
1649 			else {
1650 				rr->rr_u.u_other.o_antsignal = rssi;
1651 				rr->rr_u.u_other.o_barker_lock =
1652 				    htole16(UINT8_MAX - sq);
1653 			}
1654 
1655 			bpf_mtap2(sc->sc_radiobpf,
1656 			    rr, sizeof(sc->sc_rxtapu), m);
1657 		}
1658 
1659 		if ((hstat & RTW_RXSTAT_RES) != 0) {
1660 			m_freem(m);
1661 			goto next;
1662 		}
1663 
1664 		/* CRC is included with the packet; trim it off. */
1665 		m_adj(m, -IEEE80211_CRC_LEN);
1666 
1667 		/* TBD use _MAR, _BAR, _PAR flags as hints to _find_rxnode? */
1668 		ni = ieee80211_find_rxnode(&sc->sc_ic, wh);
1669 		ieee80211_input(&sc->sc_ic, m, ni, rssi, htsftl);
1670 		ieee80211_free_node(ni);
1671 next:
1672 		rtw_rxdesc_init(rdb, rs, next, 0);
1673 	}
1674 #undef IS_BEACON
1675 }
1676 
1677 static void
1678 rtw_txsoft_release(bus_dma_tag_t dmat, struct ieee80211com *ic,
1679     struct rtw_txsoft *ts)
1680 {
1681 	struct mbuf *m;
1682 	struct ieee80211_node *ni;
1683 
1684 	m = ts->ts_mbuf;
1685 	ni = ts->ts_ni;
1686 	KASSERT(m != NULL);
1687 	KASSERT(ni != NULL);
1688 	ts->ts_mbuf = NULL;
1689 	ts->ts_ni = NULL;
1690 
1691 	bus_dmamap_sync(dmat, ts->ts_dmamap, 0, ts->ts_dmamap->dm_mapsize,
1692 	    BUS_DMASYNC_POSTWRITE);
1693 	bus_dmamap_unload(dmat, ts->ts_dmamap);
1694 	m_freem(m);
1695 	ieee80211_free_node(ni);
1696 }
1697 
1698 static void
1699 rtw_txsofts_release(bus_dma_tag_t dmat, struct ieee80211com *ic,
1700     struct rtw_txsoft_blk *tsb)
1701 {
1702 	struct rtw_txsoft *ts;
1703 
1704 	while ((ts = SIMPLEQ_FIRST(&tsb->tsb_dirtyq)) != NULL) {
1705 		rtw_txsoft_release(dmat, ic, ts);
1706 		SIMPLEQ_REMOVE_HEAD(&tsb->tsb_dirtyq, ts_q);
1707 		SIMPLEQ_INSERT_TAIL(&tsb->tsb_freeq, ts, ts_q);
1708 	}
1709 	tsb->tsb_tx_timer = 0;
1710 }
1711 
1712 static inline void
1713 rtw_collect_txpkt(struct rtw_softc *sc, struct rtw_txdesc_blk *tdb,
1714     struct rtw_txsoft *ts, int ndesc)
1715 {
1716 	uint32_t hstat;
1717 	int data_retry, rts_retry;
1718 	struct rtw_txdesc *tdn;
1719 	const char *condstring;
1720 	struct ifnet *ifp = &sc->sc_if;
1721 
1722 	rtw_txsoft_release(sc->sc_dmat, &sc->sc_ic, ts);
1723 
1724 	tdb->tdb_nfree += ndesc;
1725 
1726 	tdn = &tdb->tdb_desc[ts->ts_last];
1727 
1728 	hstat = le32toh(tdn->td_stat);
1729 	rts_retry = __SHIFTOUT(hstat, RTW_TXSTAT_RTSRETRY_MASK);
1730 	data_retry = __SHIFTOUT(hstat, RTW_TXSTAT_DRC_MASK);
1731 
1732 	ifp->if_collisions += rts_retry + data_retry;
1733 
1734 	if ((hstat & RTW_TXSTAT_TOK) != 0)
1735 		condstring = "ok";
1736 	else {
1737 		ifp->if_oerrors++;
1738 		condstring = "error";
1739 	}
1740 
1741 #ifdef RTW_DEBUG
1742 	DPRINTF(sc, RTW_DEBUG_XMIT_DESC,
1743 	    ("%s: ts %p txdesc[%d, %d] %s tries rts %u data %u\n",
1744 	    device_xname(sc->sc_dev), ts, ts->ts_first, ts->ts_last,
1745 	    condstring, rts_retry, data_retry));
1746 #else
1747 	__USE(condstring);
1748 #endif
1749 }
1750 
1751 static void
1752 rtw_reset_oactive(struct rtw_softc *sc)
1753 {
1754 	short oflags;
1755 	int pri;
1756 	struct rtw_txsoft_blk *tsb;
1757 	struct rtw_txdesc_blk *tdb;
1758 	oflags = sc->sc_if.if_flags;
1759 	for (pri = 0; pri < RTW_NTXPRI; pri++) {
1760 		tsb = &sc->sc_txsoft_blk[pri];
1761 		tdb = &sc->sc_txdesc_blk[pri];
1762 		if (!SIMPLEQ_EMPTY(&tsb->tsb_freeq) && tdb->tdb_nfree > 0)
1763 			sc->sc_if.if_flags &= ~IFF_OACTIVE;
1764 	}
1765 	if (oflags != sc->sc_if.if_flags) {
1766 		DPRINTF(sc, RTW_DEBUG_OACTIVE,
1767 		    ("%s: reset OACTIVE\n", __func__));
1768 	}
1769 }
1770 
1771 /* Collect transmitted packets. */
1772 static bool
1773 rtw_collect_txring(struct rtw_softc *sc, struct rtw_txsoft_blk *tsb,
1774     struct rtw_txdesc_blk *tdb, int force)
1775 {
1776 	bool collected = false;
1777 	int ndesc;
1778 	struct rtw_txsoft *ts;
1779 
1780 #ifdef RTW_DEBUG
1781 	rtw_dump_rings(sc);
1782 #endif
1783 
1784 	while ((ts = SIMPLEQ_FIRST(&tsb->tsb_dirtyq)) != NULL) {
1785 		/* If we're clearing a failed transmission, only clear
1786 		   up to the last packet the hardware has processed.  */
1787 		if (ts->ts_first == rtw_txring_next(&sc->sc_regs, tdb))
1788 			break;
1789 
1790 		ndesc = 1 + ts->ts_last - ts->ts_first;
1791 		if (ts->ts_last < ts->ts_first)
1792 			ndesc += tdb->tdb_ndesc;
1793 
1794 		KASSERT(ndesc > 0);
1795 
1796 		rtw_txdescs_sync(tdb, ts->ts_first, ndesc,
1797 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1798 
1799 		if (force) {
1800 			int next;
1801 #ifdef RTW_DIAG
1802 			printf("%s: clearing packet, stats", __func__);
1803 #endif
1804 			for (next = ts->ts_first; ;
1805 			    next = RTW_NEXT_IDX(tdb, next)) {
1806 #ifdef RTW_DIAG
1807 				printf(" %" PRIx32 "/%" PRIx32 "/%" PRIx32 "/%" PRIu32 "/%" PRIx32, le32toh(tdb->tdb_desc[next].td_stat), le32toh(tdb->tdb_desc[next].td_ctl1), le32toh(tdb->tdb_desc[next].td_buf), le32toh(tdb->tdb_desc[next].td_len), le32toh(tdb->tdb_desc[next].td_next));
1808 #endif
1809 				tdb->tdb_desc[next].td_stat &=
1810 				    ~htole32(RTW_TXSTAT_OWN);
1811 				if (next == ts->ts_last)
1812 					break;
1813 			}
1814 			rtw_txdescs_sync(tdb, ts->ts_first, ndesc,
1815 			    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1816 #ifdef RTW_DIAG
1817 			next = RTW_NEXT_IDX(tdb, next);
1818 			printf(" -> end %u stat %" PRIx32 ", was %u\n", next,
1819 			    le32toh(tdb->tdb_desc[next].td_stat),
1820 			    rtw_txring_next(&sc->sc_regs, tdb));
1821 #endif
1822 		} else if ((tdb->tdb_desc[ts->ts_last].td_stat &
1823 		    htole32(RTW_TXSTAT_OWN)) != 0) {
1824 			rtw_txdescs_sync(tdb, ts->ts_last, 1,
1825 			    BUS_DMASYNC_PREREAD);
1826 			break;
1827 		}
1828 
1829 		collected = true;
1830 
1831 		rtw_collect_txpkt(sc, tdb, ts, ndesc);
1832 		SIMPLEQ_REMOVE_HEAD(&tsb->tsb_dirtyq, ts_q);
1833 		SIMPLEQ_INSERT_TAIL(&tsb->tsb_freeq, ts, ts_q);
1834 	}
1835 
1836 	/* no more pending transmissions, cancel watchdog */
1837 	if (ts == NULL)
1838 		tsb->tsb_tx_timer = 0;
1839 	rtw_reset_oactive(sc);
1840 
1841 	return collected;
1842 }
1843 
1844 static void
1845 rtw_intr_tx(struct rtw_softc *sc, uint16_t isr)
1846 {
1847 	int pri;
1848 	struct rtw_txsoft_blk	*tsb;
1849 	struct rtw_txdesc_blk	*tdb;
1850 	struct ifnet *ifp = &sc->sc_if;
1851 
1852 	for (pri = 0; pri < RTW_NTXPRI; pri++) {
1853 		tsb = &sc->sc_txsoft_blk[pri];
1854 		tdb = &sc->sc_txdesc_blk[pri];
1855 		rtw_collect_txring(sc, tsb, tdb, 0);
1856 	}
1857 
1858 	if ((isr & RTW_INTR_TX) != 0)
1859 		rtw_start(ifp);
1860 
1861 	return;
1862 }
1863 
1864 static void
1865 rtw_intr_beacon(struct rtw_softc *sc, uint16_t isr)
1866 {
1867 	u_int next;
1868 	uint32_t tsfth, tsftl;
1869 	struct ieee80211com *ic;
1870 	struct rtw_txdesc_blk *tdb = &sc->sc_txdesc_blk[RTW_TXPRIBCN];
1871 	struct rtw_txsoft_blk *tsb = &sc->sc_txsoft_blk[RTW_TXPRIBCN];
1872 	struct mbuf *m;
1873 
1874 	tsfth = RTW_READ(&sc->sc_regs, RTW_TSFTRH);
1875 	tsftl = RTW_READ(&sc->sc_regs, RTW_TSFTRL);
1876 
1877 	if ((isr & (RTW_INTR_TBDOK|RTW_INTR_TBDER)) != 0) {
1878 		next = rtw_txring_next(&sc->sc_regs, tdb);
1879 #ifdef RTW_DEBUG
1880 		RTW_DPRINTF(RTW_DEBUG_BEACON,
1881 		    ("%s: beacon ring %sprocessed, isr = %#04" PRIx16
1882 		     ", next %u expected %u, %" PRIu64 "\n", __func__,
1883 		     (next == tdb->tdb_next) ? "" : "un", isr, next,
1884 		     tdb->tdb_next, (uint64_t)tsfth << 32 | tsftl));
1885 #else
1886 		__USE(next);
1887 		__USE(tsfth);
1888 		__USE(tsftl);
1889 #endif
1890 		if ((RTW_READ8(&sc->sc_regs, RTW_TPPOLL) & RTW_TPPOLL_BQ) == 0)
1891 			rtw_collect_txring(sc, tsb, tdb, 1);
1892 	}
1893 	/* Start beacon transmission. */
1894 
1895 	if ((isr & RTW_INTR_BCNINT) != 0 &&
1896 	    sc->sc_ic.ic_state == IEEE80211_S_RUN &&
1897 	    SIMPLEQ_EMPTY(&tsb->tsb_dirtyq)) {
1898 		RTW_DPRINTF(RTW_DEBUG_BEACON,
1899 		    ("%s: beacon prep. time, isr = %#04" PRIx16
1900 		     ", %16" PRIu64 "\n", __func__, isr,
1901 		     (uint64_t)tsfth << 32 | tsftl));
1902 		ic = &sc->sc_ic;
1903 		m = rtw_beacon_alloc(sc, ic->ic_bss);
1904 
1905 		if (m == NULL) {
1906 			aprint_error_dev(sc->sc_dev,
1907 			    "could not allocate beacon\n");
1908 			return;
1909 		}
1910 		m->m_pkthdr.rcvif = (void *)ieee80211_ref_node(ic->ic_bss);
1911 		IF_ENQUEUE(&sc->sc_beaconq, m);
1912 		rtw_start(&sc->sc_if);
1913 	}
1914 }
1915 
1916 static void
1917 rtw_intr_atim(struct rtw_softc *sc)
1918 {
1919 	/* TBD */
1920 	return;
1921 }
1922 
1923 #ifdef RTW_DEBUG
1924 static void
1925 rtw_dump_rings(struct rtw_softc *sc)
1926 {
1927 	struct rtw_txdesc_blk *tdb;
1928 	struct rtw_rxdesc *rd;
1929 	struct rtw_rxdesc_blk *rdb;
1930 	int desc, pri;
1931 
1932 	if ((rtw_debug & RTW_DEBUG_IO_KICK) == 0)
1933 		return;
1934 
1935 	for (pri = 0; pri < RTW_NTXPRI; pri++) {
1936 		tdb = &sc->sc_txdesc_blk[pri];
1937 		printf("%s: txpri %d ndesc %d nfree %d\n", __func__, pri,
1938 		    tdb->tdb_ndesc, tdb->tdb_nfree);
1939 		for (desc = 0; desc < tdb->tdb_ndesc; desc++)
1940 			rtw_print_txdesc(sc, ".", NULL, tdb, desc);
1941 	}
1942 
1943 	rdb = &sc->sc_rxdesc_blk;
1944 
1945 	for (desc = 0; desc < RTW_RXQLEN; desc++) {
1946 		rd = &rdb->rdb_desc[desc];
1947 		printf("%s: %sctl %08x rsvd0/rssi %08x buf/tsftl %08x "
1948 		    "rsvd1/tsfth %08x\n", __func__,
1949 		    (desc >= rdb->rdb_ndesc) ? "UNUSED " : "",
1950 		    le32toh(rd->rd_ctl), le32toh(rd->rd_rssi),
1951 		    le32toh(rd->rd_buf), le32toh(rd->rd_tsfth));
1952 	}
1953 }
1954 #endif /* RTW_DEBUG */
1955 
1956 static void
1957 rtw_hwring_setup(struct rtw_softc *sc)
1958 {
1959 	int pri;
1960 	struct rtw_regs *regs = &sc->sc_regs;
1961 	struct rtw_txdesc_blk *tdb;
1962 
1963 	sc->sc_txdesc_blk[RTW_TXPRILO].tdb_basereg = RTW_TLPDA;
1964 	sc->sc_txdesc_blk[RTW_TXPRILO].tdb_base = RTW_RING_BASE(sc, hd_txlo);
1965 	sc->sc_txdesc_blk[RTW_TXPRIMD].tdb_basereg = RTW_TNPDA;
1966 	sc->sc_txdesc_blk[RTW_TXPRIMD].tdb_base = RTW_RING_BASE(sc, hd_txmd);
1967 	sc->sc_txdesc_blk[RTW_TXPRIHI].tdb_basereg = RTW_THPDA;
1968 	sc->sc_txdesc_blk[RTW_TXPRIHI].tdb_base = RTW_RING_BASE(sc, hd_txhi);
1969 	sc->sc_txdesc_blk[RTW_TXPRIBCN].tdb_basereg = RTW_TBDA;
1970 	sc->sc_txdesc_blk[RTW_TXPRIBCN].tdb_base = RTW_RING_BASE(sc, hd_bcn);
1971 
1972 	for (pri = 0; pri < RTW_NTXPRI; pri++) {
1973 		tdb = &sc->sc_txdesc_blk[pri];
1974 		RTW_WRITE(regs, tdb->tdb_basereg, tdb->tdb_base);
1975 		RTW_DPRINTF(RTW_DEBUG_XMIT_DESC,
1976 		    ("%s: reg[tdb->tdb_basereg] <- %" PRIxPTR "\n", __func__,
1977 		     (uintptr_t)tdb->tdb_base));
1978 	}
1979 
1980 	RTW_WRITE(regs, RTW_RDSAR, RTW_RING_BASE(sc, hd_rx));
1981 
1982 	RTW_DPRINTF(RTW_DEBUG_RECV_DESC,
1983 	    ("%s: reg[RDSAR] <- %" PRIxPTR "\n", __func__,
1984 	     (uintptr_t)RTW_RING_BASE(sc, hd_rx)));
1985 
1986 	RTW_SYNC(regs, RTW_TLPDA, RTW_RDSAR);
1987 
1988 }
1989 
1990 static int
1991 rtw_swring_setup(struct rtw_softc *sc)
1992 {
1993 	int rc;
1994 	struct rtw_rxdesc_blk *rdb;
1995 
1996 	rtw_txdesc_blk_init_all(&sc->sc_txdesc_blk[0]);
1997 
1998 	rtw_txsoft_blk_init_all(&sc->sc_txsoft_blk[0]);
1999 
2000 	rdb = &sc->sc_rxdesc_blk;
2001 	if ((rc = rtw_rxsoft_init_all(sc->sc_dmat, sc->sc_rxsoft, &rdb->rdb_ndesc,
2002 	     sc->sc_dev)) != 0 && rdb->rdb_ndesc == 0) {
2003 		aprint_error_dev(sc->sc_dev, "could not allocate rx buffers\n");
2004 		return rc;
2005 	}
2006 
2007 	rdb = &sc->sc_rxdesc_blk;
2008 	rtw_rxdescs_sync(rdb, 0, rdb->rdb_ndesc,
2009 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2010 	rtw_rxdesc_init_all(rdb, sc->sc_rxsoft, 1);
2011 	rdb->rdb_next = 0;
2012 
2013 	rtw_txdescs_sync_all(&sc->sc_txdesc_blk[0]);
2014 	return 0;
2015 }
2016 
2017 static void
2018 rtw_txdesc_blk_init(struct rtw_txdesc_blk *tdb)
2019 {
2020 	int i;
2021 
2022 	(void)memset(tdb->tdb_desc, 0,
2023 	    sizeof(tdb->tdb_desc[0]) * tdb->tdb_ndesc);
2024 	for (i = 0; i < tdb->tdb_ndesc; i++)
2025 		tdb->tdb_desc[i].td_next = htole32(RTW_NEXT_DESC(tdb, i));
2026 }
2027 
2028 static u_int
2029 rtw_txring_next(struct rtw_regs *regs, struct rtw_txdesc_blk *tdb)
2030 {
2031 	return (le32toh(RTW_READ(regs, tdb->tdb_basereg)) - tdb->tdb_base) /
2032 	    sizeof(struct rtw_txdesc);
2033 }
2034 
2035 #ifdef RTW_DIAG
2036 static void
2037 rtw_txring_fixup(struct rtw_softc *sc, const char *fn, int ln)
2038 {
2039 	int pri;
2040 	u_int next;
2041 	struct rtw_txdesc_blk *tdb;
2042 	struct rtw_regs *regs = &sc->sc_regs;
2043 
2044 	for (pri = 0; pri < RTW_NTXPRI; pri++) {
2045 		int i;
2046 		tdb = &sc->sc_txdesc_blk[pri];
2047 		next = rtw_txring_next(regs, tdb);
2048 		if (tdb->tdb_next == next)
2049 			continue;
2050 		for (i = 0; next != tdb->tdb_next;
2051 		    next = RTW_NEXT_IDX(tdb, next), i++) {
2052 			if ((tdb->tdb_desc[next].td_stat & htole32(RTW_TXSTAT_OWN)) == 0)
2053 				break;
2054 		}
2055 		printf("%s:%d: tx-ring %d expected next %u, read %u+%d -> %s\n", fn,
2056 		    ln, pri, tdb->tdb_next, next, i, tdb->tdb_next == next ? "okay" : "BAD");
2057 		if (tdb->tdb_next == next)
2058 			continue;
2059 		tdb->tdb_next = MIN(next, tdb->tdb_ndesc - 1);
2060 	}
2061 }
2062 #endif
2063 
2064 static void
2065 rtw_txdescs_reset(struct rtw_softc *sc)
2066 {
2067 	int pri;
2068 	struct rtw_txsoft_blk	*tsb;
2069 	struct rtw_txdesc_blk	*tdb;
2070 
2071 	for (pri = 0; pri < RTW_NTXPRI; pri++) {
2072 		tsb = &sc->sc_txsoft_blk[pri];
2073 		tdb = &sc->sc_txdesc_blk[pri];
2074 		rtw_collect_txring(sc, tsb, tdb, 1);
2075 #ifdef RTW_DIAG
2076 		if (!SIMPLEQ_EMPTY(&tsb->tsb_dirtyq))
2077 			printf("%s: packets left in ring %d\n", __func__, pri);
2078 #endif
2079 	}
2080 }
2081 
2082 static void
2083 rtw_intr_ioerror(struct rtw_softc *sc, uint16_t isr)
2084 {
2085 	aprint_error_dev(sc->sc_dev, "tx fifo underflow\n");
2086 
2087 	RTW_DPRINTF(RTW_DEBUG_BUGS, ("%s: cleaning up xmit, isr %" PRIx16
2088 	    "\n", device_xname(sc->sc_dev), isr));
2089 
2090 #ifdef RTW_DEBUG
2091 	rtw_dump_rings(sc);
2092 #endif /* RTW_DEBUG */
2093 
2094 	/* Collect tx'd packets.  XXX let's hope this stops the transmit
2095 	 * timeouts.
2096 	 */
2097 	rtw_txdescs_reset(sc);
2098 
2099 #ifdef RTW_DEBUG
2100 	rtw_dump_rings(sc);
2101 #endif /* RTW_DEBUG */
2102 }
2103 
2104 static inline void
2105 rtw_suspend_ticks(struct rtw_softc *sc)
2106 {
2107 	RTW_DPRINTF(RTW_DEBUG_TIMEOUT,
2108 	    ("%s: suspending ticks\n", device_xname(sc->sc_dev)));
2109 	sc->sc_do_tick = 0;
2110 }
2111 
2112 static inline void
2113 rtw_resume_ticks(struct rtw_softc *sc)
2114 {
2115 	uint32_t tsftrl0, tsftrl1, next_tint;
2116 
2117 	tsftrl0 = RTW_READ(&sc->sc_regs, RTW_TSFTRL);
2118 
2119 	tsftrl1 = RTW_READ(&sc->sc_regs, RTW_TSFTRL);
2120 	next_tint = tsftrl1 + 1000000;
2121 	RTW_WRITE(&sc->sc_regs, RTW_TINT, next_tint);
2122 
2123 	sc->sc_do_tick = 1;
2124 
2125 #ifdef RTW_DEBUG
2126 	RTW_DPRINTF(RTW_DEBUG_TIMEOUT,
2127 	    ("%s: resume ticks delta %#08x now %#08x next %#08x\n",
2128 	    device_xname(sc->sc_dev), tsftrl1 - tsftrl0, tsftrl1, next_tint));
2129 #else
2130 	__USE(tsftrl0);
2131 #endif
2132 }
2133 
2134 static void
2135 rtw_intr_timeout(struct rtw_softc *sc)
2136 {
2137 	RTW_DPRINTF(RTW_DEBUG_TIMEOUT, ("%s: timeout\n", device_xname(sc->sc_dev)));
2138 	if (sc->sc_do_tick)
2139 		rtw_resume_ticks(sc);
2140 	return;
2141 }
2142 
2143 int
2144 rtw_intr(void *arg)
2145 {
2146 	int i;
2147 	struct rtw_softc *sc = arg;
2148 	struct rtw_regs *regs = &sc->sc_regs;
2149 	uint16_t isr;
2150 	struct ifnet *ifp = &sc->sc_if;
2151 
2152 	/*
2153 	 * If the interface isn't running, the interrupt couldn't
2154 	 * possibly have come from us.
2155 	 */
2156 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2157 	    !device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER)) {
2158 		RTW_DPRINTF(RTW_DEBUG_INTR, ("%s: stray interrupt\n",
2159 		    device_xname(sc->sc_dev)));
2160 		return (0);
2161 	}
2162 
2163 	for (i = 0; i < 10; i++) {
2164 		isr = RTW_READ16(regs, RTW_ISR);
2165 
2166 		RTW_WRITE16(regs, RTW_ISR, isr);
2167 		RTW_WBR(regs, RTW_ISR, RTW_ISR);
2168 
2169 		if (sc->sc_intr_ack != NULL)
2170 			(*sc->sc_intr_ack)(regs);
2171 
2172 		if (isr == 0)
2173 			break;
2174 
2175 #ifdef RTW_DEBUG
2176 #define PRINTINTR(flag) do { \
2177 	if ((isr & flag) != 0) { \
2178 		printf("%s" #flag, delim); \
2179 		delim = ","; \
2180 	} \
2181 } while (0)
2182 
2183 		if ((rtw_debug & RTW_DEBUG_INTR) != 0 && isr != 0) {
2184 			const char *delim = "<";
2185 
2186 			printf("%s: reg[ISR] = %x", device_xname(sc->sc_dev),
2187 			    isr);
2188 
2189 			PRINTINTR(RTW_INTR_TXFOVW);
2190 			PRINTINTR(RTW_INTR_TIMEOUT);
2191 			PRINTINTR(RTW_INTR_BCNINT);
2192 			PRINTINTR(RTW_INTR_ATIMINT);
2193 			PRINTINTR(RTW_INTR_TBDER);
2194 			PRINTINTR(RTW_INTR_TBDOK);
2195 			PRINTINTR(RTW_INTR_THPDER);
2196 			PRINTINTR(RTW_INTR_THPDOK);
2197 			PRINTINTR(RTW_INTR_TNPDER);
2198 			PRINTINTR(RTW_INTR_TNPDOK);
2199 			PRINTINTR(RTW_INTR_RXFOVW);
2200 			PRINTINTR(RTW_INTR_RDU);
2201 			PRINTINTR(RTW_INTR_TLPDER);
2202 			PRINTINTR(RTW_INTR_TLPDOK);
2203 			PRINTINTR(RTW_INTR_RER);
2204 			PRINTINTR(RTW_INTR_ROK);
2205 
2206 			printf(">\n");
2207 		}
2208 #undef PRINTINTR
2209 #endif /* RTW_DEBUG */
2210 
2211 		if ((isr & RTW_INTR_RX) != 0)
2212 			rtw_intr_rx(sc, isr);
2213 		if ((isr & RTW_INTR_TX) != 0)
2214 			rtw_intr_tx(sc, isr);
2215 		if ((isr & RTW_INTR_BEACON) != 0)
2216 			rtw_intr_beacon(sc, isr);
2217 		if ((isr & RTW_INTR_ATIMINT) != 0)
2218 			rtw_intr_atim(sc);
2219 		if ((isr & RTW_INTR_IOERROR) != 0)
2220 			rtw_intr_ioerror(sc, isr);
2221 		if ((isr & RTW_INTR_TIMEOUT) != 0)
2222 			rtw_intr_timeout(sc);
2223 	}
2224 
2225 	return 1;
2226 }
2227 
2228 /* Must be called at splnet. */
2229 static void
2230 rtw_stop(struct ifnet *ifp, int disable)
2231 {
2232 	int pri;
2233 	struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
2234 	struct ieee80211com *ic = &sc->sc_ic;
2235 	struct rtw_regs *regs = &sc->sc_regs;
2236 
2237 	rtw_suspend_ticks(sc);
2238 
2239 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2240 
2241 	if (device_has_power(sc->sc_dev)) {
2242 		/* Disable interrupts. */
2243 		RTW_WRITE16(regs, RTW_IMR, 0);
2244 
2245 		RTW_WBW(regs, RTW_TPPOLL, RTW_IMR);
2246 
2247 		/* Stop the transmit and receive processes. First stop DMA,
2248 		 * then disable receiver and transmitter.
2249 		 */
2250 		RTW_WRITE8(regs, RTW_TPPOLL, RTW_TPPOLL_SALL);
2251 
2252 		RTW_SYNC(regs, RTW_TPPOLL, RTW_IMR);
2253 
2254 		rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 0);
2255 	}
2256 
2257 	for (pri = 0; pri < RTW_NTXPRI; pri++) {
2258 		rtw_txsofts_release(sc->sc_dmat, &sc->sc_ic,
2259 		    &sc->sc_txsoft_blk[pri]);
2260 	}
2261 
2262 	rtw_rxbufs_release(sc->sc_dmat, &sc->sc_rxsoft[0]);
2263 
2264 	/* Mark the interface as not running.  Cancel the watchdog timer. */
2265 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2266 	ifp->if_timer = 0;
2267 
2268 	if (disable)
2269 		pmf_device_suspend(sc->sc_dev, &sc->sc_qual);
2270 
2271 	return;
2272 }
2273 
2274 const char *
2275 rtw_pwrstate_string(enum rtw_pwrstate power)
2276 {
2277 	switch (power) {
2278 	case RTW_ON:
2279 		return "on";
2280 	case RTW_SLEEP:
2281 		return "sleep";
2282 	case RTW_OFF:
2283 		return "off";
2284 	default:
2285 		return "unknown";
2286 	}
2287 }
2288 
2289 /* XXX For Maxim, I am using the RFMD settings gleaned from the
2290  * reference driver, plus a magic Maxim "ON" value that comes from
2291  * the Realtek document "Windows PG for Rtl8180."
2292  */
2293 static void
2294 rtw_maxim_pwrstate(struct rtw_regs *regs, enum rtw_pwrstate power,
2295     int before_rf, int digphy)
2296 {
2297 	uint32_t anaparm;
2298 
2299 	anaparm = RTW_READ(regs, RTW_ANAPARM);
2300 	anaparm &= ~(RTW_ANAPARM_RFPOW_MASK | RTW_ANAPARM_TXDACOFF);
2301 
2302 	switch (power) {
2303 	case RTW_OFF:
2304 		if (before_rf)
2305 			return;
2306 		anaparm |= RTW_ANAPARM_RFPOW_MAXIM_OFF;
2307 		anaparm |= RTW_ANAPARM_TXDACOFF;
2308 		break;
2309 	case RTW_SLEEP:
2310 		if (!before_rf)
2311 			return;
2312 		anaparm |= RTW_ANAPARM_RFPOW_MAXIM_SLEEP;
2313 		anaparm |= RTW_ANAPARM_TXDACOFF;
2314 		break;
2315 	case RTW_ON:
2316 		if (!before_rf)
2317 			return;
2318 		anaparm |= RTW_ANAPARM_RFPOW_MAXIM_ON;
2319 		break;
2320 	}
2321 	RTW_DPRINTF(RTW_DEBUG_PWR,
2322 	    ("%s: power state %s, %s RF, reg[ANAPARM] <- %08x\n",
2323 	    __func__, rtw_pwrstate_string(power),
2324 	    (before_rf) ? "before" : "after", anaparm));
2325 
2326 	RTW_WRITE(regs, RTW_ANAPARM, anaparm);
2327 	RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
2328 }
2329 
2330 /* XXX I am using the RFMD settings gleaned from the reference
2331  * driver.  They agree
2332  */
2333 static void
2334 rtw_rfmd_pwrstate(struct rtw_regs *regs, enum rtw_pwrstate power,
2335     int before_rf, int digphy)
2336 {
2337 	uint32_t anaparm;
2338 
2339 	anaparm = RTW_READ(regs, RTW_ANAPARM);
2340 	anaparm &= ~(RTW_ANAPARM_RFPOW_MASK | RTW_ANAPARM_TXDACOFF);
2341 
2342 	switch (power) {
2343 	case RTW_OFF:
2344 		if (before_rf)
2345 			return;
2346 		anaparm |= RTW_ANAPARM_RFPOW_RFMD_OFF;
2347 		anaparm |= RTW_ANAPARM_TXDACOFF;
2348 		break;
2349 	case RTW_SLEEP:
2350 		if (!before_rf)
2351 			return;
2352 		anaparm |= RTW_ANAPARM_RFPOW_RFMD_SLEEP;
2353 		anaparm |= RTW_ANAPARM_TXDACOFF;
2354 		break;
2355 	case RTW_ON:
2356 		if (!before_rf)
2357 			return;
2358 		anaparm |= RTW_ANAPARM_RFPOW_RFMD_ON;
2359 		break;
2360 	}
2361 	RTW_DPRINTF(RTW_DEBUG_PWR,
2362 	    ("%s: power state %s, %s RF, reg[ANAPARM] <- %08x\n",
2363 	    __func__, rtw_pwrstate_string(power),
2364 	    (before_rf) ? "before" : "after", anaparm));
2365 
2366 	RTW_WRITE(regs, RTW_ANAPARM, anaparm);
2367 	RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
2368 }
2369 
2370 static void
2371 rtw_philips_pwrstate(struct rtw_regs *regs, enum rtw_pwrstate power,
2372     int before_rf, int digphy)
2373 {
2374 	uint32_t anaparm;
2375 
2376 	anaparm = RTW_READ(regs, RTW_ANAPARM);
2377 	anaparm &= ~(RTW_ANAPARM_RFPOW_MASK | RTW_ANAPARM_TXDACOFF);
2378 
2379 	switch (power) {
2380 	case RTW_OFF:
2381 		if (before_rf)
2382 			return;
2383 		anaparm |= RTW_ANAPARM_RFPOW_PHILIPS_OFF;
2384 		anaparm |= RTW_ANAPARM_TXDACOFF;
2385 		break;
2386 	case RTW_SLEEP:
2387 		if (!before_rf)
2388 			return;
2389 		anaparm |= RTW_ANAPARM_RFPOW_PHILIPS_SLEEP;
2390 		anaparm |= RTW_ANAPARM_TXDACOFF;
2391 		break;
2392 	case RTW_ON:
2393 		if (!before_rf)
2394 			return;
2395 		if (digphy) {
2396 			anaparm |= RTW_ANAPARM_RFPOW_DIG_PHILIPS_ON;
2397 			/* XXX guess */
2398 			anaparm |= RTW_ANAPARM_TXDACOFF;
2399 		} else
2400 			anaparm |= RTW_ANAPARM_RFPOW_ANA_PHILIPS_ON;
2401 		break;
2402 	}
2403 	RTW_DPRINTF(RTW_DEBUG_PWR,
2404 	    ("%s: power state %s, %s RF, reg[ANAPARM] <- %08x\n",
2405 	    __func__, rtw_pwrstate_string(power),
2406 	    (before_rf) ? "before" : "after", anaparm));
2407 
2408 	RTW_WRITE(regs, RTW_ANAPARM, anaparm);
2409 	RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
2410 }
2411 
2412 static void
2413 rtw_pwrstate0(struct rtw_softc *sc, enum rtw_pwrstate power, int before_rf,
2414     int digphy)
2415 {
2416 	struct rtw_regs *regs = &sc->sc_regs;
2417 
2418 	rtw_set_access(regs, RTW_ACCESS_ANAPARM);
2419 
2420 	(*sc->sc_pwrstate_cb)(regs, power, before_rf, digphy);
2421 
2422 	rtw_set_access(regs, RTW_ACCESS_NONE);
2423 
2424 	return;
2425 }
2426 
2427 static int
2428 rtw_pwrstate(struct rtw_softc *sc, enum rtw_pwrstate power)
2429 {
2430 	int rc;
2431 
2432 	RTW_DPRINTF(RTW_DEBUG_PWR,
2433 	    ("%s: %s->%s\n", __func__,
2434 	    rtw_pwrstate_string(sc->sc_pwrstate), rtw_pwrstate_string(power)));
2435 
2436 	if (sc->sc_pwrstate == power)
2437 		return 0;
2438 
2439 	rtw_pwrstate0(sc, power, 1, sc->sc_flags & RTW_F_DIGPHY);
2440 	rc = rtw_rf_pwrstate(sc->sc_rf, power);
2441 	rtw_pwrstate0(sc, power, 0, sc->sc_flags & RTW_F_DIGPHY);
2442 
2443 	switch (power) {
2444 	case RTW_ON:
2445 		/* TBD set LEDs */
2446 		break;
2447 	case RTW_SLEEP:
2448 		/* TBD */
2449 		break;
2450 	case RTW_OFF:
2451 		/* TBD */
2452 		break;
2453 	}
2454 	if (rc == 0)
2455 		sc->sc_pwrstate = power;
2456 	else
2457 		sc->sc_pwrstate = RTW_OFF;
2458 	return rc;
2459 }
2460 
2461 static int
2462 rtw_tune(struct rtw_softc *sc)
2463 {
2464 	struct ieee80211com *ic = &sc->sc_ic;
2465 	struct rtw_tx_radiotap_header *rt = &sc->sc_txtap;
2466 	struct rtw_rx_radiotap_header *rr = &sc->sc_rxtap;
2467 	u_int chan;
2468 	int rc;
2469 	int antdiv = sc->sc_flags & RTW_F_ANTDIV,
2470 	    dflantb = sc->sc_flags & RTW_F_DFLANTB;
2471 
2472 	chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
2473 	KASSERT(chan != IEEE80211_CHAN_ANY);
2474 
2475 	rt->rt_chan_freq = htole16(ic->ic_curchan->ic_freq);
2476 	rt->rt_chan_flags = htole16(ic->ic_curchan->ic_flags);
2477 
2478 	rr->rr_chan_freq = htole16(ic->ic_curchan->ic_freq);
2479 	rr->rr_chan_flags = htole16(ic->ic_curchan->ic_flags);
2480 
2481 	if (chan == sc->sc_cur_chan) {
2482 		RTW_DPRINTF(RTW_DEBUG_TUNE,
2483 		    ("%s: already tuned chan #%d\n", __func__, chan));
2484 		return 0;
2485 	}
2486 
2487 	rtw_suspend_ticks(sc);
2488 
2489 	rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 0);
2490 
2491 	/* TBD wait for Tx to complete */
2492 
2493 	KASSERT(device_has_power(sc->sc_dev));
2494 
2495 	if ((rc = rtw_phy_init(&sc->sc_regs, sc->sc_rf,
2496 	    rtw_chan2txpower(&sc->sc_srom, ic, ic->ic_curchan), sc->sc_csthr,
2497 	        ic->ic_curchan->ic_freq, antdiv, dflantb, RTW_ON)) != 0) {
2498 		/* XXX condition on powersaving */
2499 		aprint_error_dev(sc->sc_dev, "phy init failed\n");
2500 	}
2501 
2502 	sc->sc_cur_chan = chan;
2503 
2504 	rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 1);
2505 
2506 	rtw_resume_ticks(sc);
2507 
2508 	return rc;
2509 }
2510 
2511 bool
2512 rtw_suspend(device_t self, const pmf_qual_t *qual)
2513 {
2514 	int rc;
2515 	struct rtw_softc *sc = device_private(self);
2516 
2517 	sc->sc_flags &= ~RTW_F_DK_VALID;
2518 
2519 	if (!device_has_power(self))
2520 		return false;
2521 
2522 	/* turn off PHY */
2523 	if ((rc = rtw_pwrstate(sc, RTW_OFF)) != 0) {
2524 		aprint_error_dev(self, "failed to turn off PHY (%d)\n", rc);
2525 		return false;
2526 	}
2527 
2528 	rtw_disable_interrupts(&sc->sc_regs);
2529 
2530 	return true;
2531 }
2532 
2533 bool
2534 rtw_resume(device_t self, const pmf_qual_t *qual)
2535 {
2536 	struct rtw_softc *sc = device_private(self);
2537 
2538 	/* Power may have been removed, resetting WEP keys.
2539 	 */
2540 	sc->sc_flags &= ~RTW_F_DK_VALID;
2541 	rtw_enable_interrupts(sc);
2542 
2543 	return true;
2544 }
2545 
2546 static void
2547 rtw_transmit_config(struct rtw_regs *regs)
2548 {
2549 	uint32_t tcr;
2550 
2551 	tcr = RTW_READ(regs, RTW_TCR);
2552 
2553 	tcr |= RTW_TCR_CWMIN;
2554 	tcr &= ~RTW_TCR_MXDMA_MASK;
2555 	tcr |= RTW_TCR_MXDMA_256;
2556 	tcr |= RTW_TCR_SAT;		/* send ACK as fast as possible */
2557 	tcr &= ~RTW_TCR_LBK_MASK;
2558 	tcr |= RTW_TCR_LBK_NORMAL;	/* normal operating mode */
2559 
2560 	/* set short/long retry limits */
2561 	tcr &= ~(RTW_TCR_SRL_MASK|RTW_TCR_LRL_MASK);
2562 	tcr |= __SHIFTIN(4, RTW_TCR_SRL_MASK) | __SHIFTIN(4, RTW_TCR_LRL_MASK);
2563 
2564 	tcr &= ~RTW_TCR_CRC;	/* NIC appends CRC32 */
2565 
2566 	RTW_WRITE(regs, RTW_TCR, tcr);
2567 	RTW_SYNC(regs, RTW_TCR, RTW_TCR);
2568 }
2569 
2570 static void
2571 rtw_disable_interrupts(struct rtw_regs *regs)
2572 {
2573 	RTW_WRITE16(regs, RTW_IMR, 0);
2574 	RTW_WBW(regs, RTW_IMR, RTW_ISR);
2575 	RTW_WRITE16(regs, RTW_ISR, 0xffff);
2576 	RTW_SYNC(regs, RTW_IMR, RTW_ISR);
2577 }
2578 
2579 static void
2580 rtw_enable_interrupts(struct rtw_softc *sc)
2581 {
2582 	struct rtw_regs *regs = &sc->sc_regs;
2583 
2584 	sc->sc_inten = RTW_INTR_RX|RTW_INTR_TX|RTW_INTR_BEACON|RTW_INTR_ATIMINT;
2585 	sc->sc_inten |= RTW_INTR_IOERROR|RTW_INTR_TIMEOUT;
2586 
2587 	RTW_WRITE16(regs, RTW_IMR, sc->sc_inten);
2588 	RTW_WBW(regs, RTW_IMR, RTW_ISR);
2589 	RTW_WRITE16(regs, RTW_ISR, 0xffff);
2590 	RTW_SYNC(regs, RTW_IMR, RTW_ISR);
2591 
2592 	/* XXX necessary? */
2593 	if (sc->sc_intr_ack != NULL)
2594 		(*sc->sc_intr_ack)(regs);
2595 }
2596 
2597 static void
2598 rtw_set_nettype(struct rtw_softc *sc, enum ieee80211_opmode opmode)
2599 {
2600 	uint8_t msr;
2601 
2602 	/* I'm guessing that MSR is protected as CONFIG[0123] are. */
2603 	rtw_set_access(&sc->sc_regs, RTW_ACCESS_CONFIG);
2604 
2605 	msr = RTW_READ8(&sc->sc_regs, RTW_MSR) & ~RTW_MSR_NETYPE_MASK;
2606 
2607 	switch (opmode) {
2608 	case IEEE80211_M_AHDEMO:
2609 	case IEEE80211_M_IBSS:
2610 		msr |= RTW_MSR_NETYPE_ADHOC_OK;
2611 		break;
2612 	case IEEE80211_M_HOSTAP:
2613 		msr |= RTW_MSR_NETYPE_AP_OK;
2614 		break;
2615 	case IEEE80211_M_MONITOR:
2616 		/* XXX */
2617 		msr |= RTW_MSR_NETYPE_NOLINK;
2618 		break;
2619 	case IEEE80211_M_STA:
2620 		msr |= RTW_MSR_NETYPE_INFRA_OK;
2621 		break;
2622 	}
2623 	RTW_WRITE8(&sc->sc_regs, RTW_MSR, msr);
2624 
2625 	rtw_set_access(&sc->sc_regs, RTW_ACCESS_NONE);
2626 }
2627 
2628 #define	rtw_calchash(addr) \
2629 	(ether_crc32_be((addr), IEEE80211_ADDR_LEN) >> 26)
2630 
2631 static void
2632 rtw_pktfilt_load(struct rtw_softc *sc)
2633 {
2634 	struct rtw_regs *regs = &sc->sc_regs;
2635 	struct ieee80211com *ic = &sc->sc_ic;
2636 	struct ethercom *ec = &sc->sc_ec;
2637 	struct ifnet *ifp = &sc->sc_if;
2638 	int hash;
2639 	uint32_t hashes[2] = { 0, 0 };
2640 	struct ether_multi *enm;
2641 	struct ether_multistep step;
2642 
2643 	/* XXX might be necessary to stop Rx/Tx engines while setting filters */
2644 
2645 	sc->sc_rcr &= ~RTW_RCR_PKTFILTER_MASK;
2646 	sc->sc_rcr &= ~(RTW_RCR_MXDMA_MASK | RTW_RCR_RXFTH_MASK);
2647 
2648 	sc->sc_rcr |= RTW_RCR_PKTFILTER_DEFAULT;
2649 	/* MAC auto-reset PHY (huh?) */
2650 	sc->sc_rcr |= RTW_RCR_ENMARP;
2651 	/* DMA whole Rx packets, only.  Set Tx DMA burst size to 1024 bytes. */
2652 	sc->sc_rcr |= RTW_RCR_MXDMA_1024 | RTW_RCR_RXFTH_WHOLE;
2653 
2654 	switch (ic->ic_opmode) {
2655 	case IEEE80211_M_MONITOR:
2656 		sc->sc_rcr |= RTW_RCR_MONITOR;
2657 		break;
2658 	case IEEE80211_M_AHDEMO:
2659 	case IEEE80211_M_IBSS:
2660 		/* receive broadcasts in our BSS */
2661 		sc->sc_rcr |= RTW_RCR_ADD3;
2662 		break;
2663 	default:
2664 		break;
2665 	}
2666 
2667 	ifp->if_flags &= ~IFF_ALLMULTI;
2668 
2669 	/*
2670 	 * Program the 64-bit multicast hash filter.
2671 	 */
2672 	ETHER_FIRST_MULTI(step, ec, enm);
2673 	while (enm != NULL) {
2674 		/* XXX */
2675 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
2676 		    ETHER_ADDR_LEN) != 0) {
2677 			ifp->if_flags |= IFF_ALLMULTI;
2678 			break;
2679 		}
2680 
2681 		hash = rtw_calchash(enm->enm_addrlo);
2682 		hashes[hash >> 5] |= (1 << (hash & 0x1f));
2683 		ETHER_NEXT_MULTI(step, enm);
2684 	}
2685 
2686 	/* XXX accept all broadcast if scanning */
2687 	if ((ifp->if_flags & IFF_BROADCAST) != 0)
2688 		sc->sc_rcr |= RTW_RCR_AB;	/* accept all broadcast */
2689 
2690 	if (ifp->if_flags & IFF_PROMISC) {
2691 		sc->sc_rcr |= RTW_RCR_AB;	/* accept all broadcast */
2692 		sc->sc_rcr |= RTW_RCR_ACRC32;	/* accept frames failing CRC */
2693 		sc->sc_rcr |= RTW_RCR_AICV;	/* accept frames failing ICV */
2694 		ifp->if_flags |= IFF_ALLMULTI;
2695 	}
2696 
2697 	if (ifp->if_flags & IFF_ALLMULTI)
2698 		hashes[0] = hashes[1] = 0xffffffff;
2699 
2700 	if ((hashes[0] | hashes[1]) != 0)
2701 		sc->sc_rcr |= RTW_RCR_AM;	/* accept multicast */
2702 
2703 	RTW_WRITE(regs, RTW_MAR0, hashes[0]);
2704 	RTW_WRITE(regs, RTW_MAR1, hashes[1]);
2705 	RTW_WRITE(regs, RTW_RCR, sc->sc_rcr);
2706 	RTW_SYNC(regs, RTW_MAR0, RTW_RCR); /* RTW_MAR0 < RTW_MAR1 < RTW_RCR */
2707 
2708 	DPRINTF(sc, RTW_DEBUG_PKTFILT,
2709 	    ("%s: RTW_MAR0 %08x RTW_MAR1 %08x RTW_RCR %08x\n",
2710 	    device_xname(sc->sc_dev), RTW_READ(regs, RTW_MAR0),
2711 	    RTW_READ(regs, RTW_MAR1), RTW_READ(regs, RTW_RCR)));
2712 }
2713 
2714 static struct mbuf *
2715 rtw_beacon_alloc(struct rtw_softc *sc, struct ieee80211_node *ni)
2716 {
2717 	struct ieee80211com *ic = &sc->sc_ic;
2718 	struct mbuf *m;
2719 	struct ieee80211_beacon_offsets	boff;
2720 
2721 	if ((m = ieee80211_beacon_alloc(ic, ni, &boff)) != NULL) {
2722 		RTW_DPRINTF(RTW_DEBUG_BEACON,
2723 		    ("%s: m %p len %u\n", __func__, m, m->m_len));
2724 	}
2725 	return m;
2726 }
2727 
2728 /* Must be called at splnet. */
2729 static int
2730 rtw_init(struct ifnet *ifp)
2731 {
2732 	struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
2733 	struct ieee80211com *ic = &sc->sc_ic;
2734 	struct rtw_regs *regs = &sc->sc_regs;
2735 	int rc;
2736 
2737 	if (device_is_active(sc->sc_dev)) {
2738 		/* Cancel pending I/O and reset. */
2739 		rtw_stop(ifp, 0);
2740 	} else if (!pmf_device_resume(sc->sc_dev, &sc->sc_qual) ||
2741 	           !device_is_active(sc->sc_dev))
2742 		return 0;
2743 
2744 	DPRINTF(sc, RTW_DEBUG_TUNE, ("%s: channel %d freq %d flags 0x%04x\n",
2745 	    __func__, ieee80211_chan2ieee(ic, ic->ic_curchan),
2746 	    ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags));
2747 
2748 	if ((rc = rtw_pwrstate(sc, RTW_OFF)) != 0)
2749 		goto out;
2750 
2751 	if ((rc = rtw_swring_setup(sc)) != 0)
2752 		goto out;
2753 
2754 	rtw_transmit_config(regs);
2755 
2756 	rtw_set_access(regs, RTW_ACCESS_CONFIG);
2757 
2758 	RTW_WRITE8(regs, RTW_MSR, 0x0);	/* no link */
2759 	RTW_WBW(regs, RTW_MSR, RTW_BRSR);
2760 
2761 	/* long PLCP header, 1Mb/2Mb basic rate */
2762 	RTW_WRITE16(regs, RTW_BRSR, RTW_BRSR_MBR8180_2MBPS);
2763 	RTW_SYNC(regs, RTW_BRSR, RTW_BRSR);
2764 
2765 	rtw_set_access(regs, RTW_ACCESS_ANAPARM);
2766 	rtw_set_access(regs, RTW_ACCESS_NONE);
2767 
2768 	/* XXX from reference sources */
2769 	RTW_WRITE(regs, RTW_FEMR, 0xffff);
2770 	RTW_SYNC(regs, RTW_FEMR, RTW_FEMR);
2771 
2772 	rtw_set_rfprog(regs, sc->sc_rfchipid, sc->sc_dev);
2773 
2774 	RTW_WRITE8(regs, RTW_PHYDELAY, sc->sc_phydelay);
2775 	/* from Linux driver */
2776 	RTW_WRITE8(regs, RTW_CRCOUNT, RTW_CRCOUNT_MAGIC);
2777 
2778 	RTW_SYNC(regs, RTW_PHYDELAY, RTW_CRCOUNT);
2779 
2780 	rtw_enable_interrupts(sc);
2781 
2782 	rtw_pktfilt_load(sc);
2783 
2784 	rtw_hwring_setup(sc);
2785 
2786 	rtw_wep_setkeys(sc, ic->ic_nw_keys, ic->ic_def_txkey);
2787 
2788 	rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 1);
2789 
2790 	ifp->if_flags |= IFF_RUNNING;
2791 	ic->ic_state = IEEE80211_S_INIT;
2792 
2793 	RTW_WRITE16(regs, RTW_BSSID16, 0x0);
2794 	RTW_WRITE(regs, RTW_BSSID32, 0x0);
2795 
2796 	rtw_resume_ticks(sc);
2797 
2798 	rtw_set_nettype(sc, IEEE80211_M_MONITOR);
2799 
2800 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2801 		return ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2802 	else
2803 		return ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2804 
2805 out:
2806 	aprint_error_dev(sc->sc_dev, "interface not running\n");
2807 	return rc;
2808 }
2809 
2810 static inline void
2811 rtw_led_init(struct rtw_regs *regs)
2812 {
2813 	uint8_t cfg0, cfg1;
2814 
2815 	rtw_set_access(regs, RTW_ACCESS_CONFIG);
2816 
2817 	cfg0 = RTW_READ8(regs, RTW_CONFIG0);
2818 	cfg0 |= RTW_CONFIG0_LEDGPOEN;
2819 	RTW_WRITE8(regs, RTW_CONFIG0, cfg0);
2820 
2821 	cfg1 = RTW_READ8(regs, RTW_CONFIG1);
2822 	RTW_DPRINTF(RTW_DEBUG_LED,
2823 	    ("%s: read %" PRIx8 " from reg[CONFIG1]\n", __func__, cfg1));
2824 
2825 	cfg1 &= ~RTW_CONFIG1_LEDS_MASK;
2826 	cfg1 |= RTW_CONFIG1_LEDS_TX_RX;
2827 	RTW_WRITE8(regs, RTW_CONFIG1, cfg1);
2828 
2829 	rtw_set_access(regs, RTW_ACCESS_NONE);
2830 }
2831 
2832 /*
2833  * IEEE80211_S_INIT: 		LED1 off
2834  *
2835  * IEEE80211_S_AUTH,
2836  * IEEE80211_S_ASSOC,
2837  * IEEE80211_S_SCAN: 		LED1 blinks @ 1 Hz, blinks at 5Hz for tx/rx
2838  *
2839  * IEEE80211_S_RUN: 		LED1 on, blinks @ 5Hz for tx/rx
2840  */
2841 static void
2842 rtw_led_newstate(struct rtw_softc *sc, enum ieee80211_state nstate)
2843 {
2844 	struct rtw_led_state *ls;
2845 
2846 	ls = &sc->sc_led_state;
2847 
2848 	switch (nstate) {
2849 	case IEEE80211_S_INIT:
2850 		rtw_led_init(&sc->sc_regs);
2851 		aprint_debug_dev(sc->sc_dev, "stopping blink\n");
2852 		callout_stop(&ls->ls_slow_ch);
2853 		callout_stop(&ls->ls_fast_ch);
2854 		ls->ls_slowblink = 0;
2855 		ls->ls_actblink = 0;
2856 		ls->ls_default = 0;
2857 		break;
2858 	case IEEE80211_S_SCAN:
2859 		aprint_debug_dev(sc->sc_dev, "scheduling blink\n");
2860 		callout_schedule(&ls->ls_slow_ch, RTW_LED_SLOW_TICKS);
2861 		callout_schedule(&ls->ls_fast_ch, RTW_LED_FAST_TICKS);
2862 		/*FALLTHROUGH*/
2863 	case IEEE80211_S_AUTH:
2864 	case IEEE80211_S_ASSOC:
2865 		ls->ls_default = RTW_LED1;
2866 		ls->ls_actblink = RTW_LED1;
2867 		ls->ls_slowblink = RTW_LED1;
2868 		break;
2869 	case IEEE80211_S_RUN:
2870 		ls->ls_slowblink = 0;
2871 		break;
2872 	}
2873 	rtw_led_set(ls, &sc->sc_regs, sc->sc_hwverid);
2874 }
2875 
2876 static void
2877 rtw_led_set(struct rtw_led_state *ls, struct rtw_regs *regs, int hwverid)
2878 {
2879 	uint8_t led_condition;
2880 	bus_size_t ofs;
2881 	uint8_t mask, newval, val;
2882 
2883 	led_condition = ls->ls_default;
2884 
2885 	if (ls->ls_state & RTW_LED_S_SLOW)
2886 		led_condition ^= ls->ls_slowblink;
2887 	if (ls->ls_state & (RTW_LED_S_RX|RTW_LED_S_TX))
2888 		led_condition ^= ls->ls_actblink;
2889 
2890 	RTW_DPRINTF(RTW_DEBUG_LED,
2891 	    ("%s: LED condition %" PRIx8 "\n", __func__, led_condition));
2892 
2893 	switch (hwverid) {
2894 	default:
2895 	case 'F':
2896 		ofs = RTW_PSR;
2897 		newval = mask = RTW_PSR_LEDGPO0 | RTW_PSR_LEDGPO1;
2898 		if (led_condition & RTW_LED0)
2899 			newval &= ~RTW_PSR_LEDGPO0;
2900 		if (led_condition & RTW_LED1)
2901 			newval &= ~RTW_PSR_LEDGPO1;
2902 		break;
2903 	case 'D':
2904 		ofs = RTW_9346CR;
2905 		mask = RTW_9346CR_EEM_MASK | RTW_9346CR_EEDI | RTW_9346CR_EECS;
2906 		newval = RTW_9346CR_EEM_PROGRAM;
2907 		if (led_condition & RTW_LED0)
2908 			newval |= RTW_9346CR_EEDI;
2909 		if (led_condition & RTW_LED1)
2910 			newval |= RTW_9346CR_EECS;
2911 		break;
2912 	}
2913 	val = RTW_READ8(regs, ofs);
2914 	RTW_DPRINTF(RTW_DEBUG_LED,
2915 	    ("%s: read %" PRIx8 " from reg[%#02" PRIxPTR "]\n", __func__, val,
2916 	     (uintptr_t)ofs));
2917 	val &= ~mask;
2918 	val |= newval;
2919 	RTW_WRITE8(regs, ofs, val);
2920 	RTW_DPRINTF(RTW_DEBUG_LED,
2921 	    ("%s: wrote %" PRIx8 " to reg[%#02" PRIxPTR "]\n", __func__, val,
2922 	     (uintptr_t)ofs));
2923 	RTW_SYNC(regs, ofs, ofs);
2924 }
2925 
2926 static void
2927 rtw_led_fastblink(void *arg)
2928 {
2929 	int ostate, s;
2930 	struct rtw_softc *sc = (struct rtw_softc *)arg;
2931 	struct rtw_led_state *ls = &sc->sc_led_state;
2932 
2933 	s = splnet();
2934 	ostate = ls->ls_state;
2935 	ls->ls_state ^= ls->ls_event;
2936 
2937 	if ((ls->ls_event & RTW_LED_S_TX) == 0)
2938 		ls->ls_state &= ~RTW_LED_S_TX;
2939 
2940 	if ((ls->ls_event & RTW_LED_S_RX) == 0)
2941 		ls->ls_state &= ~RTW_LED_S_RX;
2942 
2943 	ls->ls_event = 0;
2944 
2945 	if (ostate != ls->ls_state)
2946 		rtw_led_set(ls, &sc->sc_regs, sc->sc_hwverid);
2947 	splx(s);
2948 
2949 	aprint_debug_dev(sc->sc_dev, "scheduling fast blink\n");
2950 	callout_schedule(&ls->ls_fast_ch, RTW_LED_FAST_TICKS);
2951 }
2952 
2953 static void
2954 rtw_led_slowblink(void *arg)
2955 {
2956 	int s;
2957 	struct rtw_softc *sc = (struct rtw_softc *)arg;
2958 	struct rtw_led_state *ls = &sc->sc_led_state;
2959 
2960 	s = splnet();
2961 	ls->ls_state ^= RTW_LED_S_SLOW;
2962 	rtw_led_set(ls, &sc->sc_regs, sc->sc_hwverid);
2963 	splx(s);
2964 	aprint_debug_dev(sc->sc_dev, "scheduling slow blink\n");
2965 	callout_schedule(&ls->ls_slow_ch, RTW_LED_SLOW_TICKS);
2966 }
2967 
2968 static void
2969 rtw_led_detach(struct rtw_led_state *ls)
2970 {
2971 	callout_destroy(&ls->ls_fast_ch);
2972 	callout_destroy(&ls->ls_slow_ch);
2973 }
2974 
2975 static void
2976 rtw_led_attach(struct rtw_led_state *ls, void *arg)
2977 {
2978 	callout_init(&ls->ls_fast_ch, 0);
2979 	callout_init(&ls->ls_slow_ch, 0);
2980 	callout_setfunc(&ls->ls_fast_ch, rtw_led_fastblink, arg);
2981 	callout_setfunc(&ls->ls_slow_ch, rtw_led_slowblink, arg);
2982 }
2983 
2984 static int
2985 rtw_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2986 {
2987 	int rc = 0, s;
2988 	struct rtw_softc *sc = ifp->if_softc;
2989 
2990 	s = splnet();
2991 	if (cmd == SIOCSIFFLAGS) {
2992 		if ((rc = ifioctl_common(ifp, cmd, data)) != 0)
2993 			;
2994 		else switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
2995 		case IFF_UP:
2996 			rc = rtw_init(ifp);
2997 			RTW_PRINT_REGS(&sc->sc_regs, ifp->if_xname, __func__);
2998 			break;
2999 		case IFF_UP|IFF_RUNNING:
3000 			if (device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
3001 				rtw_pktfilt_load(sc);
3002 			RTW_PRINT_REGS(&sc->sc_regs, ifp->if_xname, __func__);
3003 			break;
3004 		case IFF_RUNNING:
3005 			RTW_PRINT_REGS(&sc->sc_regs, ifp->if_xname, __func__);
3006 			rtw_stop(ifp, 1);
3007 			break;
3008 		default:
3009 			break;
3010 		}
3011 	} else if ((rc = ieee80211_ioctl(&sc->sc_ic, cmd, data)) != ENETRESET)
3012 		;	/* nothing to do */
3013 	else if (cmd == SIOCADDMULTI || cmd == SIOCDELMULTI) {
3014 		/* reload packet filter if running */
3015 		if (ifp->if_flags & IFF_RUNNING)
3016 			rtw_pktfilt_load(sc);
3017 		rc = 0;
3018 	} else if ((ifp->if_flags & IFF_UP) != 0)
3019 		rc = rtw_init(ifp);
3020 	else
3021 		rc = 0;
3022 	splx(s);
3023 	return rc;
3024 }
3025 
3026 /* Select a transmit ring with at least one h/w and s/w descriptor free.
3027  * Return 0 on success, -1 on failure.
3028  */
3029 static inline int
3030 rtw_txring_choose(struct rtw_softc *sc, struct rtw_txsoft_blk **tsbp,
3031     struct rtw_txdesc_blk **tdbp, int pri)
3032 {
3033 	struct rtw_txsoft_blk *tsb;
3034 	struct rtw_txdesc_blk *tdb;
3035 
3036 	KASSERT(pri >= 0 && pri < RTW_NTXPRI);
3037 
3038 	tsb = &sc->sc_txsoft_blk[pri];
3039 	tdb = &sc->sc_txdesc_blk[pri];
3040 
3041 	if (SIMPLEQ_EMPTY(&tsb->tsb_freeq) || tdb->tdb_nfree == 0) {
3042 		if (tsb->tsb_tx_timer == 0)
3043 			tsb->tsb_tx_timer = 5;
3044 		*tsbp = NULL;
3045 		*tdbp = NULL;
3046 		return -1;
3047 	}
3048 	*tsbp = tsb;
3049 	*tdbp = tdb;
3050 	return 0;
3051 }
3052 
3053 static inline struct mbuf *
3054 rtw_80211_dequeue(struct rtw_softc *sc, struct ifqueue *ifq, int pri,
3055     struct rtw_txsoft_blk **tsbp, struct rtw_txdesc_blk **tdbp,
3056     struct ieee80211_node **nip, short *if_flagsp)
3057 {
3058 	struct mbuf *m;
3059 
3060 	if (IF_IS_EMPTY(ifq))
3061 		return NULL;
3062 	if (rtw_txring_choose(sc, tsbp, tdbp, pri) == -1) {
3063 		DPRINTF(sc, RTW_DEBUG_XMIT_RSRC, ("%s: no ring %d descriptor\n",
3064 		    __func__, pri));
3065 		*if_flagsp |= IFF_OACTIVE;
3066 		sc->sc_if.if_timer = 1;
3067 		return NULL;
3068 	}
3069 	IF_DEQUEUE(ifq, m);
3070 	*nip = (struct ieee80211_node *)m->m_pkthdr.rcvif;
3071 	m->m_pkthdr.rcvif = NULL;
3072 	KASSERT(*nip != NULL);
3073 	return m;
3074 }
3075 
3076 /* Point *mp at the next 802.11 frame to transmit.  Point *tsbp
3077  * at the driver's selection of transmit control block for the packet.
3078  */
3079 static inline int
3080 rtw_dequeue(struct ifnet *ifp, struct rtw_txsoft_blk **tsbp,
3081     struct rtw_txdesc_blk **tdbp, struct mbuf **mp,
3082     struct ieee80211_node **nip)
3083 {
3084 	int pri;
3085 	struct ether_header *eh;
3086 	struct mbuf *m0;
3087 	struct rtw_softc *sc;
3088 	short *if_flagsp;
3089 
3090 	*mp = NULL;
3091 
3092 	sc = (struct rtw_softc *)ifp->if_softc;
3093 
3094 	DPRINTF(sc, RTW_DEBUG_XMIT,
3095 	    ("%s: enter %s\n", device_xname(sc->sc_dev), __func__));
3096 
3097 	if_flagsp = &ifp->if_flags;
3098 
3099 	if (sc->sc_ic.ic_state == IEEE80211_S_RUN &&
3100 	    (*mp = rtw_80211_dequeue(sc, &sc->sc_beaconq, RTW_TXPRIBCN, tsbp,
3101 		                     tdbp, nip, if_flagsp)) != NULL) {
3102 		DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: dequeue beacon frame\n",
3103 		    __func__));
3104 		return 0;
3105 	}
3106 
3107 	if ((*mp = rtw_80211_dequeue(sc, &sc->sc_ic.ic_mgtq, RTW_TXPRIMD, tsbp,
3108 		                     tdbp, nip, if_flagsp)) != NULL) {
3109 		DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: dequeue mgt frame\n",
3110 		    __func__));
3111 		return 0;
3112 	}
3113 
3114 	if (sc->sc_ic.ic_state != IEEE80211_S_RUN) {
3115 		DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: not running\n", __func__));
3116 		return 0;
3117 	}
3118 
3119 	IFQ_POLL(&ifp->if_snd, m0);
3120 	if (m0 == NULL) {
3121 		DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: no frame ready\n",
3122 		    __func__));
3123 		return 0;
3124 	}
3125 
3126 	pri = ((m0->m_flags & M_PWR_SAV) != 0) ? RTW_TXPRIHI : RTW_TXPRIMD;
3127 
3128 	if (rtw_txring_choose(sc, tsbp, tdbp, pri) == -1) {
3129 		DPRINTF(sc, RTW_DEBUG_XMIT_RSRC, ("%s: no ring %d descriptor\n",
3130 		    __func__, pri));
3131 		*if_flagsp |= IFF_OACTIVE;
3132 		sc->sc_if.if_timer = 1;
3133 		return 0;
3134 	}
3135 
3136 	IFQ_DEQUEUE(&ifp->if_snd, m0);
3137 	if (m0 == NULL) {
3138 		DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: no frame ready\n",
3139 		    __func__));
3140 		return 0;
3141 	}
3142 	DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: dequeue data frame\n", __func__));
3143 	ifp->if_opackets++;
3144 	bpf_mtap(ifp, m0);
3145 	eh = mtod(m0, struct ether_header *);
3146 	*nip = ieee80211_find_txnode(&sc->sc_ic, eh->ether_dhost);
3147 	if (*nip == NULL) {
3148 		/* NB: ieee80211_find_txnode does stat+msg */
3149 		m_freem(m0);
3150 		return -1;
3151 	}
3152 	if ((m0 = ieee80211_encap(&sc->sc_ic, m0, *nip)) == NULL) {
3153 		DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: encap error\n", __func__));
3154 		ifp->if_oerrors++;
3155 		return -1;
3156 	}
3157 	DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: leave\n", __func__));
3158 	*mp = m0;
3159 	return 0;
3160 }
3161 
3162 static int
3163 rtw_seg_too_short(bus_dmamap_t dmamap)
3164 {
3165 	int i;
3166 	for (i = 0; i < dmamap->dm_nsegs; i++) {
3167 		if (dmamap->dm_segs[i].ds_len < 4)
3168 			return 1;
3169 	}
3170 	return 0;
3171 }
3172 
3173 /* TBD factor with atw_start */
3174 static struct mbuf *
3175 rtw_dmamap_load_txbuf(bus_dma_tag_t dmat, bus_dmamap_t dmam, struct mbuf *chain,
3176     u_int ndescfree, device_t dev)
3177 {
3178 	int first, rc;
3179 	struct mbuf *m, *m0;
3180 
3181 	m0 = chain;
3182 
3183 	/*
3184 	 * Load the DMA map.  Copy and try (once) again if the packet
3185 	 * didn't fit in the alloted number of segments.
3186 	 */
3187 	for (first = 1;
3188 	     ((rc = bus_dmamap_load_mbuf(dmat, dmam, m0,
3189 			  BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 ||
3190 	      dmam->dm_nsegs > ndescfree || rtw_seg_too_short(dmam)) && first;
3191 	     first = 0) {
3192 		if (rc == 0) {
3193 #ifdef RTW_DIAGxxx
3194 			if (rtw_seg_too_short(dmam)) {
3195 				printf("%s: short segment, mbuf lengths:", __func__);
3196 				for (m = m0; m; m = m->m_next)
3197 					printf(" %d", m->m_len);
3198 				printf("\n");
3199 			}
3200 #endif
3201 			bus_dmamap_unload(dmat, dmam);
3202 		}
3203 		MGETHDR(m, M_DONTWAIT, MT_DATA);
3204 		if (m == NULL) {
3205 			aprint_error_dev(dev, "unable to allocate Tx mbuf\n");
3206 			break;
3207 		}
3208 		if (m0->m_pkthdr.len > MHLEN) {
3209 			MCLGET(m, M_DONTWAIT);
3210 			if ((m->m_flags & M_EXT) == 0) {
3211 				aprint_error_dev(dev,
3212 				    "cannot allocate Tx cluster\n");
3213 				m_freem(m);
3214 				break;
3215 			}
3216 		}
3217 		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
3218 		m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
3219 		m_freem(m0);
3220 		m0 = m;
3221 		m = NULL;
3222 	}
3223 	if (rc != 0) {
3224 		aprint_error_dev(dev, "cannot load Tx buffer, rc = %d\n", rc);
3225 		m_freem(m0);
3226 		return NULL;
3227 	} else if (rtw_seg_too_short(dmam)) {
3228 		aprint_error_dev(dev,
3229 		    "cannot load Tx buffer, segment too short\n");
3230 		bus_dmamap_unload(dmat, dmam);
3231 		m_freem(m0);
3232 		return NULL;
3233 	} else if (dmam->dm_nsegs > ndescfree) {
3234 		aprint_error_dev(dev, "too many tx segments\n");
3235 		bus_dmamap_unload(dmat, dmam);
3236 		m_freem(m0);
3237 		return NULL;
3238 	}
3239 	return m0;
3240 }
3241 
3242 #ifdef RTW_DEBUG
3243 static void
3244 rtw_print_txdesc(struct rtw_softc *sc, const char *action,
3245     struct rtw_txsoft *ts, struct rtw_txdesc_blk *tdb, int desc)
3246 {
3247 	struct rtw_txdesc *td = &tdb->tdb_desc[desc];
3248 	DPRINTF(sc, RTW_DEBUG_XMIT_DESC, ("%s: %p %s txdesc[%d] next %#08x "
3249 	    "buf %#08x ctl0 %#08x ctl1 %#08x len %#08x\n",
3250 	    device_xname(sc->sc_dev), ts, action, desc,
3251 	    le32toh(td->td_buf), le32toh(td->td_next),
3252 	    le32toh(td->td_ctl0), le32toh(td->td_ctl1),
3253 	    le32toh(td->td_len)));
3254 }
3255 #endif /* RTW_DEBUG */
3256 
3257 static void
3258 rtw_start(struct ifnet *ifp)
3259 {
3260 	int desc, i, lastdesc, npkt, rate;
3261 	uint32_t proto_ctl0, ctl0, ctl1;
3262 	bus_dmamap_t		dmamap;
3263 	struct ieee80211com	*ic;
3264 	struct ieee80211_duration *d0;
3265 	struct ieee80211_frame_min	*wh;
3266 	struct ieee80211_node	*ni = NULL;	/* XXX: GCC */
3267 	struct mbuf		*m0;
3268 	struct rtw_softc	*sc;
3269 	struct rtw_txsoft_blk	*tsb = NULL;	/* XXX: GCC */
3270 	struct rtw_txdesc_blk	*tdb = NULL;	/* XXX: GCC */
3271 	struct rtw_txsoft	*ts;
3272 	struct rtw_txdesc	*td;
3273 	struct ieee80211_key	*k;
3274 
3275 	sc = (struct rtw_softc *)ifp->if_softc;
3276 	ic = &sc->sc_ic;
3277 
3278 	DPRINTF(sc, RTW_DEBUG_XMIT,
3279 	    ("%s: enter %s\n", device_xname(sc->sc_dev), __func__));
3280 
3281 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3282 		goto out;
3283 
3284 	/* XXX do real rate control */
3285 	proto_ctl0 = RTW_TXCTL0_RTSRATE_1MBPS;
3286 
3287 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0)
3288 		proto_ctl0 |= RTW_TXCTL0_SPLCP;
3289 
3290 	for (;;) {
3291 		if (rtw_dequeue(ifp, &tsb, &tdb, &m0, &ni) == -1)
3292 			continue;
3293 		if (m0 == NULL)
3294 			break;
3295 
3296 		wh = mtod(m0, struct ieee80211_frame_min *);
3297 
3298 		if ((wh->i_fc[1] & IEEE80211_FC1_WEP) != 0 &&
3299 		    (k = ieee80211_crypto_encap(ic, ni, m0)) == NULL) {
3300 			m_freem(m0);
3301 			break;
3302 		} else
3303 			k = NULL;
3304 
3305 		ts = SIMPLEQ_FIRST(&tsb->tsb_freeq);
3306 
3307 		dmamap = ts->ts_dmamap;
3308 
3309 		m0 = rtw_dmamap_load_txbuf(sc->sc_dmat, dmamap, m0,
3310 		    tdb->tdb_nfree, sc->sc_dev);
3311 
3312 		if (m0 == NULL || dmamap->dm_nsegs == 0) {
3313 			DPRINTF(sc, RTW_DEBUG_XMIT,
3314 			    ("%s: fail dmamap load\n", __func__));
3315 			goto post_dequeue_err;
3316 		}
3317 
3318 		/* Note well: rtw_dmamap_load_txbuf may have created
3319 		 * a new chain, so we must find the header once
3320 		 * more.
3321 		 */
3322 		wh = mtod(m0, struct ieee80211_frame_min *);
3323 
3324 		/* XXX do real rate control */
3325 		if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
3326 		    IEEE80211_FC0_TYPE_MGT)
3327 			rate = 2;
3328 		else
3329 			rate = MAX(2, ieee80211_get_rate(ni));
3330 
3331 #ifdef RTW_DEBUG
3332 		if ((ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) ==
3333 		    (IFF_DEBUG|IFF_LINK2)) {
3334 			ieee80211_dump_pkt(mtod(m0, uint8_t *),
3335 			    (dmamap->dm_nsegs == 1) ? m0->m_pkthdr.len
3336 			                            : sizeof(wh),
3337 			    rate, 0);
3338 		}
3339 #endif /* RTW_DEBUG */
3340 		ctl0 = proto_ctl0 |
3341 		    __SHIFTIN(m0->m_pkthdr.len, RTW_TXCTL0_TPKTSIZE_MASK);
3342 
3343 		switch (rate) {
3344 		default:
3345 		case 2:
3346 			ctl0 |= RTW_TXCTL0_RATE_1MBPS;
3347 			break;
3348 		case 4:
3349 			ctl0 |= RTW_TXCTL0_RATE_2MBPS;
3350 			break;
3351 		case 11:
3352 			ctl0 |= RTW_TXCTL0_RATE_5MBPS;
3353 			break;
3354 		case 22:
3355 			ctl0 |= RTW_TXCTL0_RATE_11MBPS;
3356 			break;
3357 		}
3358 		/* XXX >= ? Compare after fragmentation? */
3359 		if (m0->m_pkthdr.len > ic->ic_rtsthreshold)
3360 			ctl0 |= RTW_TXCTL0_RTSEN;
3361 
3362                 /* XXX Sometimes writes a bogus keyid; h/w doesn't
3363                  * seem to care, since we don't activate h/w Tx
3364                  * encryption.
3365 		 */
3366 		if (k != NULL &&
3367 		    k->wk_cipher->ic_cipher == IEEE80211_CIPHER_WEP) {
3368 			ctl0 |= __SHIFTIN(k->wk_keyix, RTW_TXCTL0_KEYID_MASK) &
3369 			    RTW_TXCTL0_KEYID_MASK;
3370 		}
3371 
3372 		if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
3373 		    IEEE80211_FC0_TYPE_MGT) {
3374 			ctl0 &= ~(RTW_TXCTL0_SPLCP | RTW_TXCTL0_RTSEN);
3375 			if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
3376 			    IEEE80211_FC0_SUBTYPE_BEACON)
3377 				ctl0 |= RTW_TXCTL0_BEACON;
3378 		}
3379 
3380 		if (ieee80211_compute_duration(wh, k, m0->m_pkthdr.len,
3381 		    ic->ic_flags, ic->ic_fragthreshold,
3382 		    rate, &ts->ts_d0, &ts->ts_dn, &npkt,
3383 		    (ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) ==
3384 		    (IFF_DEBUG|IFF_LINK2)) == -1) {
3385 			DPRINTF(sc, RTW_DEBUG_XMIT,
3386 			    ("%s: fail compute duration\n", __func__));
3387 			goto post_load_err;
3388 		}
3389 
3390 		d0 = &ts->ts_d0;
3391 
3392 		*(uint16_t*)wh->i_dur = htole16(d0->d_data_dur);
3393 
3394 		ctl1 = __SHIFTIN(d0->d_plcp_len, RTW_TXCTL1_LENGTH_MASK) |
3395 		    __SHIFTIN(d0->d_rts_dur, RTW_TXCTL1_RTSDUR_MASK);
3396 
3397 		if (d0->d_residue)
3398 			ctl1 |= RTW_TXCTL1_LENGEXT;
3399 
3400 		/* TBD fragmentation */
3401 
3402 		ts->ts_first = tdb->tdb_next;
3403 
3404 		rtw_txdescs_sync(tdb, ts->ts_first, dmamap->dm_nsegs,
3405 		    BUS_DMASYNC_PREWRITE);
3406 
3407 		KASSERT(ts->ts_first < tdb->tdb_ndesc);
3408 
3409 		bpf_mtap3(ic->ic_rawbpf, m0);
3410 
3411 		if (sc->sc_radiobpf != NULL) {
3412 			struct rtw_tx_radiotap_header *rt = &sc->sc_txtap;
3413 
3414 			rt->rt_rate = rate;
3415 
3416 			bpf_mtap2(sc->sc_radiobpf, rt, sizeof(sc->sc_txtapu),
3417 			    m0);
3418 		}
3419 
3420 		for (i = 0, lastdesc = desc = ts->ts_first;
3421 		     i < dmamap->dm_nsegs;
3422 		     i++, desc = RTW_NEXT_IDX(tdb, desc)) {
3423 			if (dmamap->dm_segs[i].ds_len > RTW_TXLEN_LENGTH_MASK) {
3424 				DPRINTF(sc, RTW_DEBUG_XMIT_DESC,
3425 				    ("%s: seg too long\n", __func__));
3426 				goto post_load_err;
3427 			}
3428 			td = &tdb->tdb_desc[desc];
3429 			td->td_ctl0 = htole32(ctl0);
3430 			td->td_ctl1 = htole32(ctl1);
3431 			td->td_buf = htole32(dmamap->dm_segs[i].ds_addr);
3432 			td->td_len = htole32(dmamap->dm_segs[i].ds_len);
3433 			td->td_next = htole32(RTW_NEXT_DESC(tdb, desc));
3434 			if (i != 0)
3435 				td->td_ctl0 |= htole32(RTW_TXCTL0_OWN);
3436 			lastdesc = desc;
3437 #ifdef RTW_DEBUG
3438 			rtw_print_txdesc(sc, "load", ts, tdb, desc);
3439 #endif /* RTW_DEBUG */
3440 		}
3441 
3442 		KASSERT(desc < tdb->tdb_ndesc);
3443 
3444 		ts->ts_ni = ni;
3445 		KASSERT(ni != NULL);
3446 		ts->ts_mbuf = m0;
3447 		ts->ts_last = lastdesc;
3448 		tdb->tdb_desc[ts->ts_last].td_ctl0 |= htole32(RTW_TXCTL0_LS);
3449 		tdb->tdb_desc[ts->ts_first].td_ctl0 |=
3450 		   htole32(RTW_TXCTL0_FS);
3451 
3452 #ifdef RTW_DEBUG
3453 		rtw_print_txdesc(sc, "FS on", ts, tdb, ts->ts_first);
3454 		rtw_print_txdesc(sc, "LS on", ts, tdb, ts->ts_last);
3455 #endif /* RTW_DEBUG */
3456 
3457 		tdb->tdb_nfree -= dmamap->dm_nsegs;
3458 		tdb->tdb_next = desc;
3459 
3460 		rtw_txdescs_sync(tdb, ts->ts_first, dmamap->dm_nsegs,
3461 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3462 
3463 		tdb->tdb_desc[ts->ts_first].td_ctl0 |=
3464 		    htole32(RTW_TXCTL0_OWN);
3465 
3466 #ifdef RTW_DEBUG
3467 		rtw_print_txdesc(sc, "OWN on", ts, tdb, ts->ts_first);
3468 #endif /* RTW_DEBUG */
3469 
3470 		rtw_txdescs_sync(tdb, ts->ts_first, 1,
3471 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3472 
3473 		SIMPLEQ_REMOVE_HEAD(&tsb->tsb_freeq, ts_q);
3474 		SIMPLEQ_INSERT_TAIL(&tsb->tsb_dirtyq, ts, ts_q);
3475 
3476 		if (tsb != &sc->sc_txsoft_blk[RTW_TXPRIBCN])
3477 			sc->sc_led_state.ls_event |= RTW_LED_S_TX;
3478 		tsb->tsb_tx_timer = 5;
3479 		ifp->if_timer = 1;
3480 		rtw_tx_kick(&sc->sc_regs, tsb->tsb_poll);
3481 	}
3482 out:
3483 	DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: leave\n", __func__));
3484 	return;
3485 post_load_err:
3486 	bus_dmamap_unload(sc->sc_dmat, dmamap);
3487 	m_freem(m0);
3488 post_dequeue_err:
3489 	ieee80211_free_node(ni);
3490 	return;
3491 }
3492 
3493 static void
3494 rtw_idle(struct rtw_regs *regs)
3495 {
3496 	int active;
3497 	uint8_t tppoll;
3498 
3499 	/* request stop DMA; wait for packets to stop transmitting. */
3500 
3501 	RTW_WRITE8(regs, RTW_TPPOLL, RTW_TPPOLL_SALL);
3502 	RTW_WBR(regs, RTW_TPPOLL, RTW_TPPOLL);
3503 
3504 	for (active = 0; active < 300 &&
3505 	     (tppoll = RTW_READ8(regs, RTW_TPPOLL) & RTW_TPPOLL_ACTIVE) != 0;
3506 	     active++)
3507 		DELAY(10);
3508 	printf("%s: transmit DMA idle in %dus, tppoll %02" PRIx8 "\n", __func__,
3509 	    active * 10, tppoll);
3510 }
3511 
3512 static void
3513 rtw_watchdog(struct ifnet *ifp)
3514 {
3515 	int pri, tx_timeouts = 0;
3516 	struct rtw_softc *sc;
3517 	struct rtw_txsoft_blk *tsb;
3518 
3519 	sc = ifp->if_softc;
3520 
3521 	ifp->if_timer = 0;
3522 
3523 	if (!device_is_active(sc->sc_dev))
3524 		return;
3525 
3526 	for (pri = 0; pri < RTW_NTXPRI; pri++) {
3527 		tsb = &sc->sc_txsoft_blk[pri];
3528 
3529 		if (tsb->tsb_tx_timer == 0)
3530 			continue;
3531 		else if (--tsb->tsb_tx_timer == 0) {
3532 			if (SIMPLEQ_EMPTY(&tsb->tsb_dirtyq))
3533 				continue;
3534 			else if (rtw_collect_txring(sc, tsb,
3535 			    &sc->sc_txdesc_blk[pri], 0))
3536 				continue;
3537 			printf("%s: transmit timeout, priority %d\n",
3538 			    ifp->if_xname, pri);
3539 			ifp->if_oerrors++;
3540 			if (pri != RTW_TXPRIBCN)
3541 				tx_timeouts++;
3542 		} else
3543 			ifp->if_timer = 1;
3544 	}
3545 
3546 	if (tx_timeouts > 0) {
3547 		/* Stop Tx DMA, disable xmtr, flush Tx rings, enable xmtr,
3548 		 * reset s/w tx-ring pointers, and start transmission.
3549 		 *
3550 		 * TBD Stop/restart just the broken rings?
3551 		 */
3552 		rtw_idle(&sc->sc_regs);
3553 		rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 0);
3554 		rtw_txdescs_reset(sc);
3555 		rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 1);
3556 		rtw_start(ifp);
3557 	}
3558 	ieee80211_watchdog(&sc->sc_ic);
3559 	return;
3560 }
3561 
3562 static void
3563 rtw_next_scan(void *arg)
3564 {
3565 	struct ieee80211com *ic = arg;
3566 	int s;
3567 
3568 	/* don't call rtw_start w/o network interrupts blocked */
3569 	s = splnet();
3570 	if (ic->ic_state == IEEE80211_S_SCAN)
3571 		ieee80211_next_scan(ic);
3572 	splx(s);
3573 }
3574 
3575 static void
3576 rtw_join_bss(struct rtw_softc *sc, uint8_t *bssid, uint16_t intval0)
3577 {
3578 	uint16_t bcnitv, bintritv, intval;
3579 	int i;
3580 	struct rtw_regs *regs = &sc->sc_regs;
3581 
3582 	for (i = 0; i < IEEE80211_ADDR_LEN; i++)
3583 		RTW_WRITE8(regs, RTW_BSSID + i, bssid[i]);
3584 
3585 	RTW_SYNC(regs, RTW_BSSID16, RTW_BSSID32);
3586 
3587 	rtw_set_access(regs, RTW_ACCESS_CONFIG);
3588 
3589 	intval = MIN(intval0, __SHIFTOUT_MASK(RTW_BCNITV_BCNITV_MASK));
3590 
3591 	bcnitv = RTW_READ16(regs, RTW_BCNITV) & ~RTW_BCNITV_BCNITV_MASK;
3592 	bcnitv |= __SHIFTIN(intval, RTW_BCNITV_BCNITV_MASK);
3593 	RTW_WRITE16(regs, RTW_BCNITV, bcnitv);
3594 	/* interrupt host 1ms before the TBTT */
3595 	bintritv = RTW_READ16(regs, RTW_BINTRITV) & ~RTW_BINTRITV_BINTRITV;
3596 	bintritv |= __SHIFTIN(1000, RTW_BINTRITV_BINTRITV);
3597 	RTW_WRITE16(regs, RTW_BINTRITV, bintritv);
3598 	/* magic from Linux */
3599 	RTW_WRITE16(regs, RTW_ATIMWND, __SHIFTIN(1, RTW_ATIMWND_ATIMWND));
3600 	RTW_WRITE16(regs, RTW_ATIMTRITV, __SHIFTIN(2, RTW_ATIMTRITV_ATIMTRITV));
3601 	rtw_set_access(regs, RTW_ACCESS_NONE);
3602 
3603 	rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 1);
3604 }
3605 
3606 /* Synchronize the hardware state with the software state. */
3607 static int
3608 rtw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
3609 {
3610 	struct ifnet *ifp = ic->ic_ifp;
3611 	struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
3612 	enum ieee80211_state ostate;
3613 	int error;
3614 
3615 	ostate = ic->ic_state;
3616 
3617 	aprint_debug_dev(sc->sc_dev, "%s: l.%d\n", __func__, __LINE__);
3618 	rtw_led_newstate(sc, nstate);
3619 
3620 	aprint_debug_dev(sc->sc_dev, "%s: l.%d\n", __func__, __LINE__);
3621 	if (nstate == IEEE80211_S_INIT) {
3622 		callout_stop(&sc->sc_scan_ch);
3623 		sc->sc_cur_chan = IEEE80211_CHAN_ANY;
3624 		return (*sc->sc_mtbl.mt_newstate)(ic, nstate, arg);
3625 	}
3626 
3627 	if (ostate == IEEE80211_S_INIT && nstate != IEEE80211_S_INIT)
3628 		rtw_pwrstate(sc, RTW_ON);
3629 
3630 	if ((error = rtw_tune(sc)) != 0)
3631 		return error;
3632 
3633 	switch (nstate) {
3634 	case IEEE80211_S_INIT:
3635 		panic("%s: unexpected state IEEE80211_S_INIT\n", __func__);
3636 		break;
3637 	case IEEE80211_S_SCAN:
3638 		if (ostate != IEEE80211_S_SCAN) {
3639 			(void)memset(ic->ic_bss->ni_bssid, 0,
3640 			    IEEE80211_ADDR_LEN);
3641 			rtw_set_nettype(sc, IEEE80211_M_MONITOR);
3642 		}
3643 
3644 		callout_reset(&sc->sc_scan_ch, rtw_dwelltime * hz / 1000,
3645 		    rtw_next_scan, ic);
3646 
3647 		break;
3648 	case IEEE80211_S_RUN:
3649 		switch (ic->ic_opmode) {
3650 		case IEEE80211_M_HOSTAP:
3651 		case IEEE80211_M_IBSS:
3652 			rtw_set_nettype(sc, IEEE80211_M_MONITOR);
3653 			/*FALLTHROUGH*/
3654 		case IEEE80211_M_AHDEMO:
3655 		case IEEE80211_M_STA:
3656 			rtw_join_bss(sc, ic->ic_bss->ni_bssid,
3657 			    ic->ic_bss->ni_intval);
3658 			break;
3659 		case IEEE80211_M_MONITOR:
3660 			break;
3661 		}
3662 		rtw_set_nettype(sc, ic->ic_opmode);
3663 		break;
3664 	case IEEE80211_S_ASSOC:
3665 	case IEEE80211_S_AUTH:
3666 		break;
3667 	}
3668 
3669 	if (nstate != IEEE80211_S_SCAN)
3670 		callout_stop(&sc->sc_scan_ch);
3671 
3672 	return (*sc->sc_mtbl.mt_newstate)(ic, nstate, arg);
3673 }
3674 
3675 /* Extend a 32-bit TSF timestamp to a 64-bit timestamp. */
3676 static uint64_t
3677 rtw_tsf_extend(struct rtw_regs *regs, uint32_t rstamp)
3678 {
3679 	uint32_t tsftl, tsfth;
3680 
3681 	tsfth = RTW_READ(regs, RTW_TSFTRH);
3682 	tsftl = RTW_READ(regs, RTW_TSFTRL);
3683 	if (tsftl < rstamp)	/* Compensate for rollover. */
3684 		tsfth--;
3685 	return ((uint64_t)tsfth << 32) | rstamp;
3686 }
3687 
3688 static void
3689 rtw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
3690     struct ieee80211_node *ni, int subtype, int rssi, uint32_t rstamp)
3691 {
3692 	struct ifnet *ifp = ic->ic_ifp;
3693 	struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
3694 
3695 	(*sc->sc_mtbl.mt_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
3696 
3697 	switch (subtype) {
3698 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
3699 	case IEEE80211_FC0_SUBTYPE_BEACON:
3700 		if (ic->ic_opmode == IEEE80211_M_IBSS &&
3701 		    ic->ic_state == IEEE80211_S_RUN &&
3702 		    device_is_active(sc->sc_dev)) {
3703 			uint64_t tsf = rtw_tsf_extend(&sc->sc_regs, rstamp);
3704 			if (le64toh(ni->ni_tstamp.tsf) >= tsf)
3705 				(void)ieee80211_ibss_merge(ni);
3706 		}
3707 		break;
3708 	default:
3709 		break;
3710 	}
3711 	return;
3712 }
3713 
3714 static struct ieee80211_node *
3715 rtw_node_alloc(struct ieee80211_node_table *nt)
3716 {
3717 	struct ifnet *ifp = nt->nt_ic->ic_ifp;
3718 	struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
3719 	struct ieee80211_node *ni = (*sc->sc_mtbl.mt_node_alloc)(nt);
3720 
3721 	DPRINTF(sc, RTW_DEBUG_NODE,
3722 	    ("%s: alloc node %p\n", device_xname(sc->sc_dev), ni));
3723 	return ni;
3724 }
3725 
3726 static void
3727 rtw_node_free(struct ieee80211_node *ni)
3728 {
3729 	struct ieee80211com *ic = ni->ni_ic;
3730 	struct ifnet *ifp = ic->ic_ifp;
3731 	struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
3732 
3733 	DPRINTF(sc, RTW_DEBUG_NODE,
3734 	    ("%s: freeing node %p %s\n", device_xname(sc->sc_dev), ni,
3735 	    ether_sprintf(ni->ni_bssid)));
3736 	(*sc->sc_mtbl.mt_node_free)(ni);
3737 }
3738 
3739 static int
3740 rtw_media_change(struct ifnet *ifp)
3741 {
3742 	int error;
3743 
3744 	error = ieee80211_media_change(ifp);
3745 	if (error == ENETRESET) {
3746 		if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
3747 		    (IFF_RUNNING|IFF_UP))
3748 			rtw_init(ifp);		/* XXX lose error */
3749 		error = 0;
3750 	}
3751 	return error;
3752 }
3753 
3754 static void
3755 rtw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
3756 {
3757 	struct rtw_softc *sc = ifp->if_softc;
3758 
3759 	if (!device_is_active(sc->sc_dev)) {
3760 		imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
3761 		imr->ifm_status = 0;
3762 		return;
3763 	}
3764 	ieee80211_media_status(ifp, imr);
3765 }
3766 
3767 static inline void
3768 rtw_setifprops(struct ifnet *ifp, const char *dvname, void *softc)
3769 {
3770 	(void)strlcpy(ifp->if_xname, dvname, IFNAMSIZ);
3771 	ifp->if_softc = softc;
3772 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
3773 	    IFF_NOTRAILERS;
3774 	ifp->if_ioctl = rtw_ioctl;
3775 	ifp->if_start = rtw_start;
3776 	ifp->if_watchdog = rtw_watchdog;
3777 	ifp->if_init = rtw_init;
3778 	ifp->if_stop = rtw_stop;
3779 }
3780 
3781 static inline void
3782 rtw_set80211props(struct ieee80211com *ic)
3783 {
3784 	int nrate;
3785 	ic->ic_phytype = IEEE80211_T_DS;
3786 	ic->ic_opmode = IEEE80211_M_STA;
3787 	ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
3788 	    IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR | IEEE80211_C_WEP;
3789 
3790 	nrate = 0;
3791 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] =
3792 	    IEEE80211_RATE_BASIC | 2;
3793 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] =
3794 	    IEEE80211_RATE_BASIC | 4;
3795 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
3796 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
3797 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
3798 }
3799 
3800 static inline void
3801 rtw_set80211methods(struct rtw_mtbl *mtbl, struct ieee80211com *ic)
3802 {
3803 	mtbl->mt_newstate = ic->ic_newstate;
3804 	ic->ic_newstate = rtw_newstate;
3805 
3806 	mtbl->mt_recv_mgmt = ic->ic_recv_mgmt;
3807 	ic->ic_recv_mgmt = rtw_recv_mgmt;
3808 
3809 	mtbl->mt_node_free = ic->ic_node_free;
3810 	ic->ic_node_free = rtw_node_free;
3811 
3812 	mtbl->mt_node_alloc = ic->ic_node_alloc;
3813 	ic->ic_node_alloc = rtw_node_alloc;
3814 
3815 	ic->ic_crypto.cs_key_delete = rtw_key_delete;
3816 	ic->ic_crypto.cs_key_set = rtw_key_set;
3817 	ic->ic_crypto.cs_key_update_begin = rtw_key_update_begin;
3818 	ic->ic_crypto.cs_key_update_end = rtw_key_update_end;
3819 }
3820 
3821 static inline void
3822 rtw_init_radiotap(struct rtw_softc *sc)
3823 {
3824 	uint32_t present;
3825 
3826 	memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
3827 	sc->sc_rxtap.rr_ihdr.it_len = htole16(sizeof(sc->sc_rxtapu));
3828 
3829 	if (sc->sc_rfchipid == RTW_RFCHIPID_PHILIPS)
3830 		present = htole32(RTW_PHILIPS_RX_RADIOTAP_PRESENT);
3831 	else
3832 		present = htole32(RTW_RX_RADIOTAP_PRESENT);
3833 	sc->sc_rxtap.rr_ihdr.it_present = present;
3834 
3835 	memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
3836 	sc->sc_txtap.rt_ihdr.it_len = htole16(sizeof(sc->sc_txtapu));
3837 	sc->sc_txtap.rt_ihdr.it_present = htole32(RTW_TX_RADIOTAP_PRESENT);
3838 }
3839 
3840 static int
3841 rtw_txsoft_blk_setup(struct rtw_txsoft_blk *tsb, u_int qlen)
3842 {
3843 	SIMPLEQ_INIT(&tsb->tsb_dirtyq);
3844 	SIMPLEQ_INIT(&tsb->tsb_freeq);
3845 	tsb->tsb_ndesc = qlen;
3846 	tsb->tsb_desc = malloc(qlen * sizeof(*tsb->tsb_desc), M_DEVBUF,
3847 	    M_NOWAIT);
3848 	if (tsb->tsb_desc == NULL)
3849 		return ENOMEM;
3850 	return 0;
3851 }
3852 
3853 static void
3854 rtw_txsoft_blk_cleanup_all(struct rtw_softc *sc)
3855 {
3856 	int pri;
3857 	struct rtw_txsoft_blk *tsb;
3858 
3859 	for (pri = 0; pri < RTW_NTXPRI; pri++) {
3860 		tsb = &sc->sc_txsoft_blk[pri];
3861 		free(tsb->tsb_desc, M_DEVBUF);
3862 		tsb->tsb_desc = NULL;
3863 	}
3864 }
3865 
3866 static int
3867 rtw_txsoft_blk_setup_all(struct rtw_softc *sc)
3868 {
3869 	int pri, rc = 0;
3870 	int qlen[RTW_NTXPRI] =
3871 	     {RTW_TXQLENLO, RTW_TXQLENMD, RTW_TXQLENHI, RTW_TXQLENBCN};
3872 	struct rtw_txsoft_blk *tsbs;
3873 
3874 	tsbs = sc->sc_txsoft_blk;
3875 
3876 	for (pri = 0; pri < RTW_NTXPRI; pri++) {
3877 		rc = rtw_txsoft_blk_setup(&tsbs[pri], qlen[pri]);
3878 		if (rc != 0)
3879 			break;
3880 	}
3881 	tsbs[RTW_TXPRILO].tsb_poll = RTW_TPPOLL_LPQ | RTW_TPPOLL_SLPQ;
3882 	tsbs[RTW_TXPRIMD].tsb_poll = RTW_TPPOLL_NPQ | RTW_TPPOLL_SNPQ;
3883 	tsbs[RTW_TXPRIHI].tsb_poll = RTW_TPPOLL_HPQ | RTW_TPPOLL_SHPQ;
3884 	tsbs[RTW_TXPRIBCN].tsb_poll = RTW_TPPOLL_BQ | RTW_TPPOLL_SBQ;
3885 	return rc;
3886 }
3887 
3888 static void
3889 rtw_txdesc_blk_setup(struct rtw_txdesc_blk *tdb, struct rtw_txdesc *desc,
3890     u_int ndesc, bus_addr_t ofs, bus_addr_t physbase)
3891 {
3892 	tdb->tdb_ndesc = ndesc;
3893 	tdb->tdb_desc = desc;
3894 	tdb->tdb_physbase = physbase;
3895 	tdb->tdb_ofs = ofs;
3896 
3897 	(void)memset(tdb->tdb_desc, 0,
3898 	    sizeof(tdb->tdb_desc[0]) * tdb->tdb_ndesc);
3899 
3900 	rtw_txdesc_blk_init(tdb);
3901 	tdb->tdb_next = 0;
3902 }
3903 
3904 static void
3905 rtw_txdesc_blk_setup_all(struct rtw_softc *sc)
3906 {
3907 	rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRILO],
3908 	    &sc->sc_descs->hd_txlo[0], RTW_NTXDESCLO,
3909 	    RTW_RING_OFFSET(hd_txlo), RTW_RING_BASE(sc, hd_txlo));
3910 
3911 	rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRIMD],
3912 	    &sc->sc_descs->hd_txmd[0], RTW_NTXDESCMD,
3913 	    RTW_RING_OFFSET(hd_txmd), RTW_RING_BASE(sc, hd_txmd));
3914 
3915 	rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRIHI],
3916 	    &sc->sc_descs->hd_txhi[0], RTW_NTXDESCHI,
3917 	    RTW_RING_OFFSET(hd_txhi), RTW_RING_BASE(sc, hd_txhi));
3918 
3919 	rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRIBCN],
3920 	    &sc->sc_descs->hd_bcn[0], RTW_NTXDESCBCN,
3921 	    RTW_RING_OFFSET(hd_bcn), RTW_RING_BASE(sc, hd_bcn));
3922 }
3923 
3924 static struct rtw_rf *
3925 rtw_rf_attach(struct rtw_softc *sc, enum rtw_rfchipid rfchipid, int digphy)
3926 {
3927 	rtw_rf_write_t rf_write;
3928 	struct rtw_rf *rf;
3929 
3930 	switch (rfchipid) {
3931 	default:
3932 		rf_write = rtw_rf_hostwrite;
3933 		break;
3934 	case RTW_RFCHIPID_INTERSIL:
3935 	case RTW_RFCHIPID_PHILIPS:
3936 	case RTW_RFCHIPID_GCT:	/* XXX a guess */
3937 	case RTW_RFCHIPID_RFMD:
3938 		rf_write = (rtw_host_rfio) ? rtw_rf_hostwrite : rtw_rf_macwrite;
3939 		break;
3940 	}
3941 
3942 	switch (rfchipid) {
3943 	case RTW_RFCHIPID_GCT:
3944 		rf = rtw_grf5101_create(&sc->sc_regs, rf_write, 0);
3945 		sc->sc_pwrstate_cb = rtw_maxim_pwrstate;
3946 		break;
3947 	case RTW_RFCHIPID_MAXIM:
3948 		rf = rtw_max2820_create(&sc->sc_regs, rf_write, 0);
3949 		sc->sc_pwrstate_cb = rtw_maxim_pwrstate;
3950 		break;
3951 	case RTW_RFCHIPID_PHILIPS:
3952 		rf = rtw_sa2400_create(&sc->sc_regs, rf_write, digphy);
3953 		sc->sc_pwrstate_cb = rtw_philips_pwrstate;
3954 		break;
3955 	case RTW_RFCHIPID_RFMD:
3956 		/* XXX RFMD has no RF constructor */
3957 		sc->sc_pwrstate_cb = rtw_rfmd_pwrstate;
3958 		/*FALLTHROUGH*/
3959 	default:
3960 		return NULL;
3961 	}
3962 	rf->rf_continuous_tx_cb =
3963 	    (rtw_continuous_tx_cb_t)rtw_continuous_tx_enable;
3964 	rf->rf_continuous_tx_arg = (void *)sc;
3965 	return rf;
3966 }
3967 
3968 /* Revision C and later use a different PHY delay setting than
3969  * revisions A and B.
3970  */
3971 static uint8_t
3972 rtw_check_phydelay(struct rtw_regs *regs, uint32_t old_rcr)
3973 {
3974 #define REVAB (RTW_RCR_MXDMA_UNLIMITED | RTW_RCR_AICV)
3975 #define REVC (REVAB | RTW_RCR_RXFTH_WHOLE)
3976 
3977 	uint8_t phydelay = __SHIFTIN(0x6, RTW_PHYDELAY_PHYDELAY);
3978 
3979 	RTW_WRITE(regs, RTW_RCR, REVAB);
3980 	RTW_WBW(regs, RTW_RCR, RTW_RCR);
3981 	RTW_WRITE(regs, RTW_RCR, REVC);
3982 
3983 	RTW_WBR(regs, RTW_RCR, RTW_RCR);
3984 	if ((RTW_READ(regs, RTW_RCR) & REVC) == REVC)
3985 		phydelay |= RTW_PHYDELAY_REVC_MAGIC;
3986 
3987 	RTW_WRITE(regs, RTW_RCR, old_rcr);	/* restore RCR */
3988 	RTW_SYNC(regs, RTW_RCR, RTW_RCR);
3989 
3990 	return phydelay;
3991 #undef REVC
3992 }
3993 
3994 void
3995 rtw_attach(struct rtw_softc *sc)
3996 {
3997 	struct ifnet *ifp = &sc->sc_if;
3998 	struct ieee80211com *ic = &sc->sc_ic;
3999 	struct rtw_txsoft_blk *tsb;
4000 	int pri, rc;
4001 
4002 	pmf_self_suspensor_init(sc->sc_dev, &sc->sc_suspensor, &sc->sc_qual);
4003 
4004 	rtw_cipher_wep = ieee80211_cipher_wep;
4005 	rtw_cipher_wep.ic_decap = rtw_wep_decap;
4006 
4007 	NEXT_ATTACH_STATE(sc, DETACHED);
4008 
4009 	switch (RTW_READ(&sc->sc_regs, RTW_TCR) & RTW_TCR_HWVERID_MASK) {
4010 	case RTW_TCR_HWVERID_F:
4011 		sc->sc_hwverid = 'F';
4012 		break;
4013 	case RTW_TCR_HWVERID_D:
4014 		sc->sc_hwverid = 'D';
4015 		break;
4016 	default:
4017 		sc->sc_hwverid = '?';
4018 		break;
4019 	}
4020 	aprint_verbose_dev(sc->sc_dev, "hardware version %c\n",
4021 	    sc->sc_hwverid);
4022 
4023 	rc = bus_dmamem_alloc(sc->sc_dmat, sizeof(struct rtw_descs),
4024 	    RTW_DESC_ALIGNMENT, 0, &sc->sc_desc_segs, 1, &sc->sc_desc_nsegs,
4025 	    0);
4026 
4027 	if (rc != 0) {
4028 		aprint_error_dev(sc->sc_dev,
4029 		    "could not allocate hw descriptors, error %d\n", rc);
4030 		goto err;
4031 	}
4032 
4033 	NEXT_ATTACH_STATE(sc, FINISH_DESC_ALLOC);
4034 
4035 	rc = bus_dmamem_map(sc->sc_dmat, &sc->sc_desc_segs,
4036 	    sc->sc_desc_nsegs, sizeof(struct rtw_descs),
4037 	    (void **)&sc->sc_descs, BUS_DMA_COHERENT);
4038 
4039 	if (rc != 0) {
4040 		aprint_error_dev(sc->sc_dev,
4041 		    "could not map hw descriptors, error %d\n", rc);
4042 		goto err;
4043 	}
4044 	NEXT_ATTACH_STATE(sc, FINISH_DESC_MAP);
4045 
4046 	rc = bus_dmamap_create(sc->sc_dmat, sizeof(struct rtw_descs), 1,
4047 	    sizeof(struct rtw_descs), 0, 0, &sc->sc_desc_dmamap);
4048 
4049 	if (rc != 0) {
4050 		aprint_error_dev(sc->sc_dev,
4051 		    "could not create DMA map for hw descriptors, error %d\n",
4052 		    rc);
4053 		goto err;
4054 	}
4055 	NEXT_ATTACH_STATE(sc, FINISH_DESCMAP_CREATE);
4056 
4057 	sc->sc_rxdesc_blk.rdb_dmat = sc->sc_dmat;
4058 	sc->sc_rxdesc_blk.rdb_dmamap = sc->sc_desc_dmamap;
4059 
4060 	for (pri = 0; pri < RTW_NTXPRI; pri++) {
4061 		sc->sc_txdesc_blk[pri].tdb_dmat = sc->sc_dmat;
4062 		sc->sc_txdesc_blk[pri].tdb_dmamap = sc->sc_desc_dmamap;
4063 	}
4064 
4065 	rc = bus_dmamap_load(sc->sc_dmat, sc->sc_desc_dmamap, sc->sc_descs,
4066 	    sizeof(struct rtw_descs), NULL, 0);
4067 
4068 	if (rc != 0) {
4069 		aprint_error_dev(sc->sc_dev,
4070 		    "could not load DMA map for hw descriptors, error %d\n",
4071 		    rc);
4072 		goto err;
4073 	}
4074 	NEXT_ATTACH_STATE(sc, FINISH_DESCMAP_LOAD);
4075 
4076 	if (rtw_txsoft_blk_setup_all(sc) != 0)
4077 		goto err;
4078 	NEXT_ATTACH_STATE(sc, FINISH_TXCTLBLK_SETUP);
4079 
4080 	rtw_txdesc_blk_setup_all(sc);
4081 
4082 	NEXT_ATTACH_STATE(sc, FINISH_TXDESCBLK_SETUP);
4083 
4084 	sc->sc_rxdesc_blk.rdb_desc = &sc->sc_descs->hd_rx[0];
4085 
4086 	for (pri = 0; pri < RTW_NTXPRI; pri++) {
4087 		tsb = &sc->sc_txsoft_blk[pri];
4088 
4089 		if ((rc = rtw_txdesc_dmamaps_create(sc->sc_dmat,
4090 		    &tsb->tsb_desc[0], tsb->tsb_ndesc)) != 0) {
4091 			aprint_error_dev(sc->sc_dev,
4092 			    "could not load DMA map for hw tx descriptors, "
4093 			    "error %d\n", rc);
4094 			goto err;
4095 		}
4096 	}
4097 
4098 	NEXT_ATTACH_STATE(sc, FINISH_TXMAPS_CREATE);
4099 	if ((rc = rtw_rxdesc_dmamaps_create(sc->sc_dmat, &sc->sc_rxsoft[0],
4100 	                                    RTW_RXQLEN)) != 0) {
4101 		aprint_error_dev(sc->sc_dev,
4102 		    "could not load DMA map for hw rx descriptors, error %d\n",
4103 		    rc);
4104 		goto err;
4105 	}
4106 	NEXT_ATTACH_STATE(sc, FINISH_RXMAPS_CREATE);
4107 
4108 	/* Reset the chip to a known state. */
4109 	if (rtw_reset(sc) != 0)
4110 		goto err;
4111 	NEXT_ATTACH_STATE(sc, FINISH_RESET);
4112 
4113 	sc->sc_rcr = RTW_READ(&sc->sc_regs, RTW_RCR);
4114 
4115 	if ((sc->sc_rcr & RTW_RCR_9356SEL) != 0)
4116 		sc->sc_flags |= RTW_F_9356SROM;
4117 
4118 	if (rtw_srom_read(&sc->sc_regs, sc->sc_flags, &sc->sc_srom,
4119 	    sc->sc_dev) != 0)
4120 		goto err;
4121 
4122 	NEXT_ATTACH_STATE(sc, FINISH_READ_SROM);
4123 
4124 	if (rtw_srom_parse(&sc->sc_srom, &sc->sc_flags, &sc->sc_csthr,
4125 	    &sc->sc_rfchipid, &sc->sc_rcr, &sc->sc_locale,
4126 	    sc->sc_dev) != 0) {
4127 		aprint_error_dev(sc->sc_dev,
4128 		    "attach failed, malformed serial ROM\n");
4129 		goto err;
4130 	}
4131 
4132 	aprint_verbose_dev(sc->sc_dev, "%s PHY\n",
4133 	    ((sc->sc_flags & RTW_F_DIGPHY) != 0) ? "digital" : "analog");
4134 
4135 	aprint_verbose_dev(sc->sc_dev, "carrier-sense threshold %u\n",
4136 	    sc->sc_csthr);
4137 
4138 	NEXT_ATTACH_STATE(sc, FINISH_PARSE_SROM);
4139 
4140 	sc->sc_rf = rtw_rf_attach(sc, sc->sc_rfchipid,
4141 	    sc->sc_flags & RTW_F_DIGPHY);
4142 
4143 	if (sc->sc_rf == NULL) {
4144 		aprint_verbose_dev(sc->sc_dev,
4145 		    "attach failed, could not attach RF\n");
4146 		goto err;
4147 	}
4148 
4149 	NEXT_ATTACH_STATE(sc, FINISH_RF_ATTACH);
4150 
4151 	sc->sc_phydelay = rtw_check_phydelay(&sc->sc_regs, sc->sc_rcr);
4152 
4153 	RTW_DPRINTF(RTW_DEBUG_ATTACH,
4154 	    ("%s: PHY delay %d\n", device_xname(sc->sc_dev), sc->sc_phydelay));
4155 
4156 	if (sc->sc_locale == RTW_LOCALE_UNKNOWN)
4157 		rtw_identify_country(&sc->sc_regs, &sc->sc_locale);
4158 
4159 	rtw_init_channels(sc->sc_locale, &sc->sc_ic.ic_channels, sc->sc_dev);
4160 
4161 	if (rtw_identify_sta(&sc->sc_regs, &sc->sc_ic.ic_myaddr,
4162 	    sc->sc_dev) != 0)
4163 		goto err;
4164 	NEXT_ATTACH_STATE(sc, FINISH_ID_STA);
4165 
4166 	rtw_setifprops(ifp, device_xname(sc->sc_dev), (void*)sc);
4167 
4168 	IFQ_SET_READY(&ifp->if_snd);
4169 
4170 	sc->sc_ic.ic_ifp = ifp;
4171 	rtw_set80211props(&sc->sc_ic);
4172 
4173 	rtw_led_attach(&sc->sc_led_state, (void *)sc);
4174 
4175 	/*
4176 	 * Call MI attach routines.
4177 	 */
4178 	if_attach(ifp);
4179 	ieee80211_ifattach(&sc->sc_ic);
4180 
4181 	rtw_set80211methods(&sc->sc_mtbl, &sc->sc_ic);
4182 
4183 	/* possibly we should fill in our own sc_send_prresp, since
4184 	 * the RTL8180 is probably sending probe responses in ad hoc
4185 	 * mode.
4186 	 */
4187 
4188 	/* complete initialization */
4189 	ieee80211_media_init(&sc->sc_ic, rtw_media_change, rtw_media_status);
4190 	callout_init(&sc->sc_scan_ch, 0);
4191 
4192 	rtw_init_radiotap(sc);
4193 
4194 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
4195 	    sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
4196 
4197 	NEXT_ATTACH_STATE(sc, FINISHED);
4198 
4199 	ieee80211_announce(ic);
4200 	return;
4201 err:
4202 	rtw_detach(sc);
4203 	return;
4204 }
4205 
4206 int
4207 rtw_detach(struct rtw_softc *sc)
4208 {
4209 	struct ifnet *ifp = &sc->sc_if;
4210 	int pri, s;
4211 
4212 	s = splnet();
4213 
4214 	switch (sc->sc_attach_state) {
4215 	case FINISHED:
4216 		rtw_stop(ifp, 1);
4217 
4218 		pmf_device_deregister(sc->sc_dev);
4219 		callout_stop(&sc->sc_scan_ch);
4220 		ieee80211_ifdetach(&sc->sc_ic);
4221 		if_detach(ifp);
4222 		rtw_led_detach(&sc->sc_led_state);
4223 		/*FALLTHROUGH*/
4224 	case FINISH_ID_STA:
4225 	case FINISH_RF_ATTACH:
4226 		rtw_rf_destroy(sc->sc_rf);
4227 		sc->sc_rf = NULL;
4228 		/*FALLTHROUGH*/
4229 	case FINISH_PARSE_SROM:
4230 	case FINISH_READ_SROM:
4231 		rtw_srom_free(&sc->sc_srom);
4232 		/*FALLTHROUGH*/
4233 	case FINISH_RESET:
4234 	case FINISH_RXMAPS_CREATE:
4235 		rtw_rxdesc_dmamaps_destroy(sc->sc_dmat, &sc->sc_rxsoft[0],
4236 		    RTW_RXQLEN);
4237 		/*FALLTHROUGH*/
4238 	case FINISH_TXMAPS_CREATE:
4239 		for (pri = 0; pri < RTW_NTXPRI; pri++) {
4240 			rtw_txdesc_dmamaps_destroy(sc->sc_dmat,
4241 			    sc->sc_txsoft_blk[pri].tsb_desc,
4242 			    sc->sc_txsoft_blk[pri].tsb_ndesc);
4243 		}
4244 		/*FALLTHROUGH*/
4245 	case FINISH_TXDESCBLK_SETUP:
4246 	case FINISH_TXCTLBLK_SETUP:
4247 		rtw_txsoft_blk_cleanup_all(sc);
4248 		/*FALLTHROUGH*/
4249 	case FINISH_DESCMAP_LOAD:
4250 		bus_dmamap_unload(sc->sc_dmat, sc->sc_desc_dmamap);
4251 		/*FALLTHROUGH*/
4252 	case FINISH_DESCMAP_CREATE:
4253 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_desc_dmamap);
4254 		/*FALLTHROUGH*/
4255 	case FINISH_DESC_MAP:
4256 		bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_descs,
4257 		    sizeof(struct rtw_descs));
4258 		/*FALLTHROUGH*/
4259 	case FINISH_DESC_ALLOC:
4260 		bus_dmamem_free(sc->sc_dmat, &sc->sc_desc_segs,
4261 		    sc->sc_desc_nsegs);
4262 		/*FALLTHROUGH*/
4263 	case DETACHED:
4264 		NEXT_ATTACH_STATE(sc, DETACHED);
4265 		break;
4266 	}
4267 	splx(s);
4268 	return 0;
4269 }
4270