xref: /netbsd-src/sys/dev/ic/rtsx.c (revision 8fdb68d7ad179c9cdecacf9b7a5eb0bc90bd38fa)
1 /*	$NetBSD: rtsx.c,v 1.2 2014/10/29 14:24:09 nonaka Exp $	*/
2 /*	$OpenBSD: rtsx.c,v 1.10 2014/08/19 17:55:03 phessler Exp $	*/
3 
4 /*
5  * Copyright (c) 2006 Uwe Stuehler <uwe@openbsd.org>
6  * Copyright (c) 2012 Stefan Sperling <stsp@openbsd.org>
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /*
22  * Realtek RTS5209/RTS5227/RTS5229/RTL8402/RTL8411/RTL8411B Card Reader driver.
23  */
24 
25 #include <sys/cdefs.h>
26 __KERNEL_RCSID(0, "$NetBSD: rtsx.c,v 1.2 2014/10/29 14:24:09 nonaka Exp $");
27 
28 #include <sys/param.h>
29 #include <sys/device.h>
30 #include <sys/kernel.h>
31 #include <sys/systm.h>
32 #include <sys/proc.h>
33 #include <sys/mutex.h>
34 
35 #include <dev/ic/rtsxreg.h>
36 #include <dev/ic/rtsxvar.h>
37 
38 #include <dev/sdmmc/sdmmcvar.h>
39 #include <dev/sdmmc/sdmmc_ioreg.h>
40 
41 /*
42  * We use two DMA buffers, a command buffer and a data buffer.
43  *
44  * The command buffer contains a command queue for the host controller,
45  * which describes SD/MMC commands to run, and other parameters. The chip
46  * runs the command queue when a special bit in the RTSX_HCBAR register is set
47  * and signals completion with the TRANS_OK interrupt.
48  * Each command is encoded as a 4 byte sequence containing command number
49  * (read, write, or check a host controller register), a register address,
50  * and a data bit-mask and value.
51  *
52  * The data buffer is used to transfer data sectors to or from the SD card.
53  * Data transfer is controlled via the RTSX_HDBAR register. Completion is
54  * also signalled by the TRANS_OK interrupt.
55  *
56  * The chip is unable to perform DMA above 4GB.
57  *
58  * SD/MMC commands which do not transfer any data from/to the card only use
59  * the command buffer.
60  */
61 
62 #define RTSX_DMA_MAX_SEGSIZE	0x80000
63 #define RTSX_HOSTCMD_MAX	256
64 #define RTSX_HOSTCMD_BUFSIZE	(sizeof(uint32_t) * RTSX_HOSTCMD_MAX)
65 #define RTSX_DMA_DATA_BUFSIZE	MAXPHYS
66 
67 #define READ4(sc, reg)							\
68 	(bus_space_read_4((sc)->sc_iot, (sc)->sc_ioh, (reg)))
69 #define WRITE4(sc, reg, val)						\
70 	bus_space_write_4((sc)->sc_iot, (sc)->sc_ioh, (reg), (val))
71 
72 #define RTSX_READ(sc, reg, val) 				\
73 	do {							\
74 		int err = rtsx_read((sc), (reg), (val)); 	\
75 		if (err) 					\
76 			return err;				\
77 	} while (/*CONSTCOND*/0)
78 
79 #define RTSX_WRITE(sc, reg, val) 				\
80 	do {							\
81 		int err = rtsx_write((sc), (reg), 0xff, (val));	\
82 		if (err) 					\
83 			return err;				\
84 	} while (/*CONSTCOND*/0)
85 
86 #define RTSX_CLR(sc, reg, bits)					\
87 	do {							\
88 		int err = rtsx_write((sc), (reg), (bits), 0); 	\
89 		if (err) 					\
90 			return err;				\
91 	} while (/*CONSTCOND*/0)
92 
93 #define RTSX_SET(sc, reg, bits)					\
94 	do {							\
95 		int err = rtsx_write((sc), (reg), (bits), 0xff);\
96 		if (err) 					\
97 			return err;				\
98 	} while (/*CONSTCOND*/0)
99 
100 #define RTSX_BITOP(sc, reg, mask, bits)				\
101 	do {							\
102 		int err = rtsx_write((sc), (reg), (mask), (bits));\
103 		if (err) 					\
104 			return err;				\
105 	} while (/*CONSTCOND*/0)
106 
107 static int	rtsx_host_reset(sdmmc_chipset_handle_t);
108 static uint32_t	rtsx_host_ocr(sdmmc_chipset_handle_t);
109 static int	rtsx_host_maxblklen(sdmmc_chipset_handle_t);
110 static int	rtsx_card_detect(sdmmc_chipset_handle_t);
111 static int	rtsx_write_protect(sdmmc_chipset_handle_t);
112 static int	rtsx_bus_power(sdmmc_chipset_handle_t, uint32_t);
113 static int	rtsx_bus_clock(sdmmc_chipset_handle_t, int);
114 static int	rtsx_bus_width(sdmmc_chipset_handle_t, int);
115 static int	rtsx_bus_rod(sdmmc_chipset_handle_t, int);
116 static void	rtsx_exec_command(sdmmc_chipset_handle_t,
117 		    struct sdmmc_command *);
118 static int	rtsx_init(struct rtsx_softc *, int);
119 static void	rtsx_soft_reset(struct rtsx_softc *);
120 static int	rtsx_bus_power_off(struct rtsx_softc *);
121 static int	rtsx_bus_power_on(struct rtsx_softc *);
122 static int	rtsx_set_bus_width(struct rtsx_softc *, int);
123 static int	rtsx_stop_sd_clock(struct rtsx_softc *);
124 static int	rtsx_switch_sd_clock(struct rtsx_softc *, uint8_t, int, int);
125 static int	rtsx_wait_intr(struct rtsx_softc *, int, int);
126 static int	rtsx_read(struct rtsx_softc *, uint16_t, uint8_t *);
127 static int	rtsx_write(struct rtsx_softc *, uint16_t, uint8_t, uint8_t);
128 #ifdef notyet
129 static int	rtsx_read_phy(struct rtsx_softc *, uint8_t, uint16_t *);
130 #endif
131 static int	rtsx_write_phy(struct rtsx_softc *, uint8_t, uint16_t);
132 static int	rtsx_read_cfg(struct rtsx_softc *, uint8_t, uint16_t,
133 		    uint32_t *);
134 #ifdef notyet
135 static int	rtsx_write_cfg(struct rtsx_softc *, uint8_t, uint16_t, uint32_t,
136 		    uint32_t);
137 #endif
138 static void	rtsx_hostcmd(uint32_t *, int *, uint8_t, uint16_t, uint8_t,
139 		    uint8_t);
140 static int	rtsx_hostcmd_send(struct rtsx_softc *, int);
141 static uint8_t	rtsx_response_type(uint16_t);
142 static int	rtsx_read_ppbuf(struct rtsx_softc *, struct sdmmc_command *,
143 		    uint32_t *);
144 static int	rtsx_write_ppbuf(struct rtsx_softc *, struct sdmmc_command *,
145 		    uint32_t *);
146 static int	rtsx_exec_short_xfer(struct rtsx_softc *,
147 		    struct sdmmc_command *, uint32_t *, uint8_t);
148 static int	rtsx_xfer(struct rtsx_softc *, struct sdmmc_command *,
149 		    uint32_t *);
150 static void	rtsx_card_insert(struct rtsx_softc *);
151 static void	rtsx_card_eject(struct rtsx_softc *);
152 static int	rtsx_led_enable(struct rtsx_softc *);
153 static int	rtsx_led_disable(struct rtsx_softc *);
154 static void	rtsx_save_regs(struct rtsx_softc *);
155 static void	rtsx_restore_regs(struct rtsx_softc *);
156 
157 #ifdef RTSX_DEBUG
158 int rtsxdebug = 0;
159 #define DPRINTF(n,s)	do { if ((n) <= rtsxdebug) printf s; } while (0)
160 #else
161 #define DPRINTF(n,s)	/**/
162 #endif
163 
164 #define	DEVNAME(sc)	SDMMCDEVNAME(sc)
165 
166 static struct sdmmc_chip_functions rtsx_chip_functions = {
167 	/* host controller reset */
168 	.host_reset = rtsx_host_reset,
169 
170 	/* host controller capabilities */
171 	.host_ocr = rtsx_host_ocr,
172 	.host_maxblklen = rtsx_host_maxblklen,
173 
174 	/* card detection */
175 	.card_detect = rtsx_card_detect,
176 
177 	/* write protect */
178 	.write_protect = rtsx_write_protect,
179 
180 	/* bus power, clock frequency, width and ROD(OpenDrain/PushPull) */
181 	.bus_power = rtsx_bus_power,
182 	.bus_clock = rtsx_bus_clock,
183 	.bus_width = rtsx_bus_width,
184 	.bus_rod = rtsx_bus_rod,
185 
186 	/* command execution */
187 	.exec_command = rtsx_exec_command,
188 
189 	/* card interrupt */
190 	.card_enable_intr = NULL,
191 	.card_intr_ack = NULL,
192 };
193 
194 /*
195  * Called by attachment driver.
196  */
197 int
198 rtsx_attach(struct rtsx_softc *sc, bus_space_tag_t iot,
199     bus_space_handle_t ioh, bus_size_t iosize, bus_dma_tag_t dmat, int flags)
200 {
201 	struct sdmmcbus_attach_args saa;
202 	uint32_t sdio_cfg;
203 
204 	sc->sc_iot = iot;
205 	sc->sc_ioh = ioh;
206 	sc->sc_iosize = iosize;
207 	sc->sc_dmat = dmat;
208 	sc->sc_flags = flags;
209 
210 	mutex_init(&sc->sc_host_mtx, MUTEX_DEFAULT, IPL_SDMMC);
211 	mutex_init(&sc->sc_intr_mtx, MUTEX_DEFAULT, IPL_SDMMC);
212 	cv_init(&sc->sc_intr_cv, "rtsxintr");
213 
214 	if (rtsx_init(sc, 1))
215 		goto error;
216 
217 	if (rtsx_read_cfg(sc, 0, RTSX_SDIOCFG_REG, &sdio_cfg) == 0) {
218 		if (sdio_cfg & (RTSX_SDIOCFG_SDIO_ONLY|RTSX_SDIOCFG_HAVE_SDIO)){
219 			sc->sc_flags |= RTSX_F_SDIO_SUPPORT;
220 		}
221 	}
222 
223 	if (bus_dmamap_create(sc->sc_dmat, RTSX_HOSTCMD_BUFSIZE, 1,
224 	    RTSX_DMA_MAX_SEGSIZE, 0, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW,
225 	    &sc->sc_dmap_cmd) != 0)
226 		goto error;
227 
228 	/*
229 	 * Attach the generic SD/MMC bus driver.  (The bus driver must
230 	 * not invoke any chipset functions before it is attached.)
231 	 */
232 	memset(&saa, 0, sizeof(saa));
233 	saa.saa_busname = "sdmmc";
234 	saa.saa_sct = &rtsx_chip_functions;
235 	saa.saa_spi_sct = NULL;
236 	saa.saa_sch = sc;
237 	saa.saa_dmat = sc->sc_dmat;
238 	saa.saa_clkmin = SDMMC_SDCLK_400K;
239 	saa.saa_clkmax = 25000;
240 	saa.saa_caps = SMC_CAPS_DMA|SMC_CAPS_4BIT_MODE;
241 
242 	sc->sc_sdmmc = config_found(sc->sc_dev, &saa, NULL);
243 	if (sc->sc_sdmmc == NULL)
244 		goto destroy_dmamap_cmd;
245 
246 	/* Now handle cards discovered during attachment. */
247 	if (ISSET(sc->sc_flags, RTSX_F_CARD_PRESENT))
248 		rtsx_card_insert(sc);
249 
250 	return 0;
251 
252 destroy_dmamap_cmd:
253 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmap_cmd);
254 error:
255 	cv_destroy(&sc->sc_intr_cv);
256 	mutex_destroy(&sc->sc_intr_mtx);
257 	mutex_destroy(&sc->sc_host_mtx);
258 	return 1;
259 }
260 
261 int
262 rtsx_detach(struct rtsx_softc *sc, int flags)
263 {
264 	int rv;
265 
266 	if (sc->sc_sdmmc != NULL) {
267 		rv = config_detach(sc->sc_sdmmc, flags);
268 		if (rv != 0)
269 			return rv;
270 		sc->sc_sdmmc = NULL;
271 	}
272 
273 	/* disable interrupts */
274 	if ((flags & DETACH_FORCE) == 0) {
275 		WRITE4(sc, RTSX_BIER, 0);
276 		rtsx_soft_reset(sc);
277 	}
278 
279 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmap_cmd);
280 	cv_destroy(&sc->sc_intr_cv);
281 	mutex_destroy(&sc->sc_intr_mtx);
282 	mutex_destroy(&sc->sc_host_mtx);
283 	bus_space_unmap(sc->sc_iot, sc->sc_ioh, sc->sc_iosize);
284 
285 	return 0;
286 }
287 
288 bool
289 rtsx_suspend(device_t dev, const pmf_qual_t *qual)
290 {
291 	struct rtsx_softc *sc = device_private(dev);
292 
293 	/* Save the host controller state. */
294 	rtsx_save_regs(sc);
295 
296 	return true;
297 }
298 
299 bool
300 rtsx_resume(device_t dev, const pmf_qual_t *qual)
301 {
302 	struct rtsx_softc *sc = device_private(dev);
303 
304 	/* Restore the host controller state. */
305 	rtsx_restore_regs(sc);
306 
307 	if (READ4(sc, RTSX_BIPR) & RTSX_SD_EXIST)
308 		rtsx_card_insert(sc);
309 	else
310 		rtsx_card_eject(sc);
311 
312 	return true;
313 }
314 
315 bool
316 rtsx_shutdown(device_t dev, int flags)
317 {
318 	struct rtsx_softc *sc = device_private(dev);
319 
320 	/* XXX chip locks up if we don't disable it before reboot. */
321 	(void)rtsx_host_reset(sc);
322 
323 	return true;
324 }
325 
326 static int
327 rtsx_init(struct rtsx_softc *sc, int attaching)
328 {
329 	uint32_t status;
330 	uint8_t reg;
331 	int error;
332 
333 	if (attaching) {
334 		if (RTSX_IS_RTS5229(sc)) {
335 			/* Read IC version from dummy register. */
336 			RTSX_READ(sc, RTSX_DUMMY_REG, &reg);
337 			switch (reg & 0x0f) {
338 			case RTSX_IC_VERSION_A:
339 			case RTSX_IC_VERSION_B:
340 			case RTSX_IC_VERSION_D:
341 				break;
342 			case RTSX_IC_VERSION_C:
343 				sc->sc_flags |= RTSX_F_5229_TYPE_C;
344 				break;
345 			default:
346 				aprint_error_dev(sc->sc_dev,
347 				    "unknown RTS5229 version 0x%02x\n", reg);
348 				return 1;
349 			}
350 		} else if (RTSX_IS_RTL8411B(sc)) {
351 			RTSX_READ(sc, RTSX_RTL8411B_PACKAGE, &reg);
352 			if (reg & RTSX_RTL8411B_QFN48)
353 				sc->sc_flags |= RTSX_F_8411B_QFN48;
354 		}
355 	}
356 
357 	/* Enable interrupt write-clear (default is read-clear). */
358 	RTSX_CLR(sc, RTSX_NFTS_TX_CTRL, RTSX_INT_READ_CLR);
359 
360 	/* Clear any pending interrupts. */
361 	status = READ4(sc, RTSX_BIPR);
362 	WRITE4(sc, RTSX_BIPR, status);
363 
364 	/* Check for cards already inserted at attach time. */
365 	if (attaching && (status & RTSX_SD_EXIST))
366 		sc->sc_flags |= RTSX_F_CARD_PRESENT;
367 
368 	/* Enable interrupts. */
369 	WRITE4(sc, RTSX_BIER,
370 	    RTSX_TRANS_OK_INT_EN | RTSX_TRANS_FAIL_INT_EN | RTSX_SD_INT_EN);
371 
372 	/* Power on SSC clock. */
373 	RTSX_CLR(sc, RTSX_FPDCTL, RTSX_SSC_POWER_DOWN);
374 	delay(200);
375 
376 	/* XXX magic numbers from linux driver */
377 	if (RTSX_IS_RTS5209(sc))
378 		error = rtsx_write_phy(sc, 0x00, 0xB966);
379 	else if (RTSX_IS_RTS5227(sc) || RTSX_IS_RTS5229(sc))
380 		error = rtsx_write_phy(sc, 0x00, 0xBA42);
381 	else
382 		error = 0;
383 	if (error) {
384 		aprint_error_dev(sc->sc_dev, "couldn't write phy register\n");
385 		return 1;
386 	}
387 
388 	RTSX_SET(sc, RTSX_CLK_DIV, 0x07);
389 
390 	/* Disable sleep mode. */
391 	RTSX_CLR(sc, RTSX_HOST_SLEEP_STATE,
392 	    RTSX_HOST_ENTER_S1 | RTSX_HOST_ENTER_S3);
393 
394 	/* Disable card clock. */
395 	RTSX_CLR(sc, RTSX_CARD_CLK_EN, RTSX_CARD_CLK_EN_ALL);
396 
397 	RTSX_CLR(sc, RTSX_CHANGE_LINK_STATE,
398 	    RTSX_FORCE_RST_CORE_EN | RTSX_NON_STICKY_RST_N_DBG | 0x04);
399 	RTSX_WRITE(sc, RTSX_SD30_DRIVE_SEL, RTSX_SD30_DRIVE_SEL_3V3);
400 
401 	/* Enable SSC clock. */
402 	RTSX_WRITE(sc, RTSX_SSC_CTL1, RTSX_SSC_8X_EN | RTSX_SSC_SEL_4M);
403 	RTSX_WRITE(sc, RTSX_SSC_CTL2, 0x12);
404 
405 	RTSX_SET(sc, RTSX_CHANGE_LINK_STATE, RTSX_MAC_PHY_RST_N_DBG);
406 	RTSX_SET(sc, RTSX_IRQSTAT0, RTSX_LINK_READY_INT);
407 
408 	RTSX_WRITE(sc, RTSX_PERST_GLITCH_WIDTH, 0x80);
409 
410 	/* Set RC oscillator to 400K. */
411 	RTSX_CLR(sc, RTSX_RCCTL, RTSX_RCCTL_F_2M);
412 
413 	/* Request clock by driving CLKREQ pin to zero. */
414 	RTSX_SET(sc, RTSX_PETXCFG, RTSX_PETXCFG_CLKREQ_PIN);
415 
416 	/* Set up LED GPIO. */
417 	if (RTSX_IS_RTS5209(sc)) {
418 		RTSX_WRITE(sc, RTSX_CARD_GPIO, 0x03);
419 		RTSX_WRITE(sc, RTSX_CARD_GPIO_DIR, 0x03);
420 	} else if (RTSX_IS_RTS5227(sc) || RTSX_IS_RTS5229(sc)) {
421 		RTSX_SET(sc, RTSX_GPIO_CTL, RTSX_GPIO_LED_ON);
422 		/* Switch LDO3318 source from DV33 to 3V3. */
423 		RTSX_CLR(sc, RTSX_LDO_PWR_SEL, RTSX_LDO_PWR_SEL_DV33);
424 		RTSX_SET(sc, RTSX_LDO_PWR_SEL, RTSX_LDO_PWR_SEL_3V3);
425 		/* Set default OLT blink period. */
426 		RTSX_SET(sc, RTSX_OLT_LED_CTL, RTSX_OLT_LED_PERIOD);
427 	} else if (RTSX_IS_RTL8402(sc)
428 	           || RTSX_IS_RTL8411(sc)
429 	           || RTSX_IS_RTL8411B(sc)) {
430 		if (RTSX_IS_RTL8411B_QFN48(sc))
431 			RTSX_WRITE(sc, RTSX_CARD_PULL_CTL3, 0xf5);
432 		/* Enable SD interrupt */
433 		RTSX_WRITE(sc, RTSX_CARD_PAD_CTL, 0x05);
434 		RTSX_BITOP(sc, RTSX_EFUSE_CONTENT, 0xe0, 0x80);
435 		if (RTSX_IS_RTL8411B(sc))
436 			RTSX_WRITE(sc, RTSX_FUNC_FORCE_CTL, 0x00);
437 	}
438 
439 	return 0;
440 }
441 
442 int
443 rtsx_led_enable(struct rtsx_softc *sc)
444 {
445 
446 	if (RTSX_IS_RTS5209(sc)) {
447 		RTSX_CLR(sc, RTSX_CARD_GPIO, RTSX_CARD_GPIO_LED_OFF);
448 		RTSX_WRITE(sc, RTSX_CARD_AUTO_BLINK,
449 		    RTSX_LED_BLINK_EN | RTSX_LED_BLINK_SPEED);
450 	} else if (RTSX_IS_RTS5227(sc) || RTSX_IS_RTS5229(sc)) {
451 		RTSX_SET(sc, RTSX_GPIO_CTL, RTSX_GPIO_LED_ON);
452 		RTSX_SET(sc, RTSX_OLT_LED_CTL, RTSX_OLT_LED_AUTOBLINK);
453 	} else if (RTSX_IS_RTL8402(sc)
454 	           || RTSX_IS_RTL8411(sc)
455 	           || RTSX_IS_RTL8411B(sc)) {
456 		RTSX_CLR(sc, RTSX_GPIO_CTL, 0x01);
457 		RTSX_WRITE(sc, RTSX_CARD_AUTO_BLINK,
458 		    RTSX_LED_BLINK_EN | RTSX_LED_BLINK_SPEED);
459 	}
460 
461 	return 0;
462 }
463 
464 int
465 rtsx_led_disable(struct rtsx_softc *sc)
466 {
467 
468 	if (RTSX_IS_RTS5209(sc)) {
469 		RTSX_CLR(sc, RTSX_CARD_AUTO_BLINK, RTSX_LED_BLINK_EN);
470 		RTSX_WRITE(sc, RTSX_CARD_GPIO, RTSX_CARD_GPIO_LED_OFF);
471 	} else if (RTSX_IS_RTS5227(sc) || RTSX_IS_RTS5229(sc)) {
472 		RTSX_CLR(sc, RTSX_OLT_LED_CTL, RTSX_OLT_LED_AUTOBLINK);
473 		RTSX_CLR(sc, RTSX_GPIO_CTL, RTSX_GPIO_LED_ON);
474 	} else if (RTSX_IS_RTL8402(sc)
475 	           || RTSX_IS_RTL8411(sc)
476 	           || RTSX_IS_RTL8411B(sc)) {
477 		RTSX_CLR(sc, RTSX_CARD_AUTO_BLINK, RTSX_LED_BLINK_EN);
478 		RTSX_SET(sc, RTSX_GPIO_CTL, 0x01);
479 	}
480 
481 	return 0;
482 }
483 
484 /*
485  * Reset the host controller.  Called during initialization, when
486  * cards are removed, upon resume, and during error recovery.
487  */
488 int
489 rtsx_host_reset(sdmmc_chipset_handle_t sch)
490 {
491 	struct rtsx_softc *sc = sch;
492 	int error;
493 
494 	DPRINTF(1,("%s: host reset\n", DEVNAME(sc)));
495 
496 	mutex_enter(&sc->sc_host_mtx);
497 
498 	if (ISSET(sc->sc_flags, RTSX_F_CARD_PRESENT))
499 		rtsx_soft_reset(sc);
500 
501 	error = rtsx_init(sc, 0);
502 
503 	mutex_exit(&sc->sc_host_mtx);
504 
505 	return error;
506 }
507 
508 static uint32_t
509 rtsx_host_ocr(sdmmc_chipset_handle_t sch)
510 {
511 
512 	return RTSX_SUPPORT_VOLTAGE;
513 }
514 
515 static int
516 rtsx_host_maxblklen(sdmmc_chipset_handle_t sch)
517 {
518 
519 	return 512;
520 }
521 
522 /*
523  * Return non-zero if the card is currently inserted.
524  */
525 static int
526 rtsx_card_detect(sdmmc_chipset_handle_t sch)
527 {
528 	struct rtsx_softc *sc = sch;
529 
530 	return ISSET(sc->sc_flags, RTSX_F_CARD_PRESENT);
531 }
532 
533 static int
534 rtsx_write_protect(sdmmc_chipset_handle_t sch)
535 {
536 
537 	return 0; /* XXX */
538 }
539 
540 /*
541  * Notice that the meaning of RTSX_PWR_GATE_CTRL changes between RTS5209 and
542  * RTS5229. In RTS5209 it is a mask of disabled power gates, while in RTS5229
543  * it is a mask of *enabled* gates.
544  */
545 
546 static int
547 rtsx_bus_power_off(struct rtsx_softc *sc)
548 {
549 	int error;
550 	uint8_t disable3;
551 
552 	error = rtsx_stop_sd_clock(sc);
553 	if (error)
554 		return error;
555 
556 	/* Disable SD output. */
557 	RTSX_CLR(sc, RTSX_CARD_OE, RTSX_CARD_OUTPUT_EN);
558 
559 	/* Turn off power. */
560 	disable3 = RTSX_PULL_CTL_DISABLE3;
561 	if (RTSX_IS_RTS5209(sc))
562 		RTSX_SET(sc, RTSX_PWR_GATE_CTRL, RTSX_LDO3318_OFF);
563 	else if (RTSX_IS_RTS5227(sc) || RTSX_IS_RTS5229(sc)) {
564 		RTSX_CLR(sc, RTSX_PWR_GATE_CTRL, RTSX_LDO3318_VCC1 |
565 		    RTSX_LDO3318_VCC2);
566 		if (RTSX_IS_RTS5229_TYPE_C(sc))
567 			disable3 = RTSX_PULL_CTL_DISABLE3_TYPE_C;
568 	} else if (RTSX_IS_RTL8402(sc)
569 	           || RTSX_IS_RTL8411(sc)
570 	           || RTSX_IS_RTL8411B(sc)) {
571 		RTSX_BITOP(sc, RTSX_CARD_PWR_CTL, RTSX_BPP_POWER_MASK,
572 		    RTSX_BPP_POWER_OFF);
573 		RTSX_BITOP(sc, RTSX_LDO_CTL, RTSX_BPP_LDO_POWB,
574 		    RTSX_BPP_LDO_SUSPEND);
575 	}
576 
577 	RTSX_SET(sc, RTSX_CARD_PWR_CTL, RTSX_SD_PWR_OFF);
578 	RTSX_CLR(sc, RTSX_CARD_PWR_CTL, RTSX_PMOS_STRG_800mA);
579 
580 	/* Disable pull control. */
581 	if (RTSX_IS_RTS5209(sc) || RTSX_IS_RTS5227(sc) || RTSX_IS_RTS5229(sc)) {
582 		RTSX_WRITE(sc, RTSX_CARD_PULL_CTL1, RTSX_PULL_CTL_DISABLE12);
583 		RTSX_WRITE(sc, RTSX_CARD_PULL_CTL2, RTSX_PULL_CTL_DISABLE12);
584 		RTSX_WRITE(sc, RTSX_CARD_PULL_CTL3, disable3);
585 	} else if (RTSX_IS_RTL8402(sc) || RTSX_IS_RTL8411(sc)) {
586 		RTSX_WRITE(sc, RTSX_CARD_PULL_CTL1, 0x65);
587 		RTSX_WRITE(sc, RTSX_CARD_PULL_CTL2, 0x65);
588 		RTSX_WRITE(sc, RTSX_CARD_PULL_CTL3, 0x95);
589 		RTSX_WRITE(sc, RTSX_CARD_PULL_CTL4, 0x09);
590 		RTSX_WRITE(sc, RTSX_CARD_PULL_CTL5, 0x05);
591 		RTSX_WRITE(sc, RTSX_CARD_PULL_CTL6, 0x04);
592 	} else if (RTSX_IS_RTL8411B(sc)) {
593 		if (RTSX_IS_RTL8411B_QFN48(sc)) {
594 			RTSX_WRITE(sc, RTSX_CARD_PULL_CTL2, 0x55);
595 			RTSX_WRITE(sc, RTSX_CARD_PULL_CTL3, 0xf5);
596 			RTSX_WRITE(sc, RTSX_CARD_PULL_CTL6, 0x15);
597 		} else {
598 			RTSX_WRITE(sc, RTSX_CARD_PULL_CTL1, 0x65);
599 			RTSX_WRITE(sc, RTSX_CARD_PULL_CTL2, 0x55);
600 			RTSX_WRITE(sc, RTSX_CARD_PULL_CTL3, 0xd9);
601 			RTSX_WRITE(sc, RTSX_CARD_PULL_CTL4, 0x59);
602 			RTSX_WRITE(sc, RTSX_CARD_PULL_CTL5, 0x55);
603 			RTSX_WRITE(sc, RTSX_CARD_PULL_CTL6, 0x15);
604 		}
605 	}
606 
607 	return 0;
608 }
609 
610 static int
611 rtsx_bus_power_on(struct rtsx_softc *sc)
612 {
613 	uint8_t enable3;
614 
615 	/* Select SD card. */
616 	RTSX_WRITE(sc, RTSX_CARD_SELECT, RTSX_SD_MOD_SEL);
617 	RTSX_WRITE(sc, RTSX_CARD_SHARE_MODE, RTSX_CARD_SHARE_48_SD);
618 	RTSX_SET(sc, RTSX_CARD_CLK_EN, RTSX_SD_CLK_EN);
619 
620 	/* Enable pull control. */
621 	if (RTSX_IS_RTS5209(sc) || RTSX_IS_RTS5227(sc) || RTSX_IS_RTS5229(sc)) {
622 		RTSX_WRITE(sc, RTSX_CARD_PULL_CTL1, RTSX_PULL_CTL_ENABLE12);
623 		RTSX_WRITE(sc, RTSX_CARD_PULL_CTL2, RTSX_PULL_CTL_ENABLE12);
624 		if (RTSX_IS_RTS5229_TYPE_C(sc))
625 			enable3 = RTSX_PULL_CTL_ENABLE3_TYPE_C;
626 		else
627 			enable3 = RTSX_PULL_CTL_ENABLE3;
628 		RTSX_WRITE(sc, RTSX_CARD_PULL_CTL3, enable3);
629 	} else if (RTSX_IS_RTL8402(sc) || RTSX_IS_RTL8411(sc)) {
630 		RTSX_WRITE(sc, RTSX_CARD_PULL_CTL1, 0xaa);
631 		RTSX_WRITE(sc, RTSX_CARD_PULL_CTL2, 0xaa);
632 		RTSX_WRITE(sc, RTSX_CARD_PULL_CTL3, 0xa9);
633 		RTSX_WRITE(sc, RTSX_CARD_PULL_CTL4, 0x09);
634 		RTSX_WRITE(sc, RTSX_CARD_PULL_CTL5, 0x09);
635 		RTSX_WRITE(sc, RTSX_CARD_PULL_CTL6, 0x04);
636 	} else if (RTSX_IS_RTL8411B(sc)) {
637 		if (RTSX_IS_RTL8411B_QFN48(sc)) {
638 			RTSX_WRITE(sc, RTSX_CARD_PULL_CTL2, 0xaa);
639 			RTSX_WRITE(sc, RTSX_CARD_PULL_CTL3, 0xf9);
640 			RTSX_WRITE(sc, RTSX_CARD_PULL_CTL6, 0x19);
641 		} else {
642 			RTSX_WRITE(sc, RTSX_CARD_PULL_CTL1, 0xaa);
643 			RTSX_WRITE(sc, RTSX_CARD_PULL_CTL2, 0xaa);
644 			RTSX_WRITE(sc, RTSX_CARD_PULL_CTL3, 0xd9);
645 			RTSX_WRITE(sc, RTSX_CARD_PULL_CTL4, 0x59);
646 			RTSX_WRITE(sc, RTSX_CARD_PULL_CTL5, 0x59);
647 			RTSX_WRITE(sc, RTSX_CARD_PULL_CTL6, 0x15);
648 		}
649 	}
650 
651 	/*
652 	 * To avoid a current peak, enable card power in two phases with a
653 	 * delay in between.
654 	 */
655 
656 	if (RTSX_IS_RTS5209(sc) || RTSX_IS_RTS5227(sc) || RTSX_IS_RTS5229(sc)) {
657 		/* Partial power. */
658 		RTSX_SET(sc, RTSX_CARD_PWR_CTL, RTSX_SD_PARTIAL_PWR_ON);
659 		if (RTSX_IS_RTS5209(sc))
660 			RTSX_SET(sc, RTSX_PWR_GATE_CTRL, RTSX_LDO3318_SUSPEND);
661 		else
662 			RTSX_SET(sc, RTSX_PWR_GATE_CTRL, RTSX_LDO3318_VCC1);
663 
664 		delay(200);
665 
666 		/* Full power. */
667 		RTSX_CLR(sc, RTSX_CARD_PWR_CTL, RTSX_SD_PWR_OFF);
668 		if (RTSX_IS_RTS5209(sc))
669 			RTSX_CLR(sc, RTSX_PWR_GATE_CTRL, RTSX_LDO3318_OFF);
670 		else
671 			RTSX_SET(sc, RTSX_PWR_GATE_CTRL, RTSX_LDO3318_VCC2);
672 	} else if (RTSX_IS_RTL8402(sc)
673 	           || RTSX_IS_RTL8411(sc)
674 	           || RTSX_IS_RTL8411B(sc)) {
675 		RTSX_BITOP(sc, RTSX_CARD_PWR_CTL, RTSX_BPP_POWER_MASK,
676 		    RTSX_BPP_POWER_5_PERCENT_ON);
677 		RTSX_BITOP(sc, RTSX_LDO_CTL, RTSX_BPP_LDO_POWB,
678 		    RTSX_BPP_LDO_SUSPEND);
679 		delay(150);
680 		RTSX_BITOP(sc, RTSX_CARD_PWR_CTL, RTSX_BPP_POWER_MASK,
681 		    RTSX_BPP_POWER_10_PERCENT_ON);
682 		delay(150);
683 		RTSX_BITOP(sc, RTSX_CARD_PWR_CTL, RTSX_BPP_POWER_MASK,
684 		    RTSX_BPP_POWER_15_PERCENT_ON);
685 		delay(150);
686 		RTSX_BITOP(sc, RTSX_CARD_PWR_CTL, RTSX_BPP_POWER_MASK,
687 		    RTSX_BPP_POWER_ON);
688 		RTSX_BITOP(sc, RTSX_LDO_CTL, RTSX_BPP_LDO_POWB,
689 		    RTSX_BPP_LDO_ON);
690 	}
691 
692 	/* Enable SD card output. */
693 	RTSX_WRITE(sc, RTSX_CARD_OE, RTSX_SD_OUTPUT_EN);
694 
695 	return 0;
696 }
697 
698 static int
699 rtsx_set_bus_width(struct rtsx_softc *sc, int width)
700 {
701 	uint32_t bus_width;
702 
703 	DPRINTF(1,("%s: bus width=%d\n", DEVNAME(sc), width));
704 
705 	switch (width) {
706 	case 8:
707 		bus_width = RTSX_BUS_WIDTH_8;
708 		break;
709 	case 4:
710 		bus_width = RTSX_BUS_WIDTH_4;
711 		break;
712 	case 1:
713 		bus_width = RTSX_BUS_WIDTH_1;
714 		break;
715 	default:
716 		return EINVAL;
717 	}
718 
719 	if (bus_width == RTSX_BUS_WIDTH_1)
720 		RTSX_CLR(sc, RTSX_SD_CFG1, RTSX_BUS_WIDTH_MASK);
721 	else
722 		RTSX_SET(sc, RTSX_SD_CFG1, bus_width);
723 
724 	return 0;
725 }
726 
727 static int
728 rtsx_stop_sd_clock(struct rtsx_softc *sc)
729 {
730 
731 	RTSX_CLR(sc, RTSX_CARD_CLK_EN, RTSX_CARD_CLK_EN_ALL);
732 	RTSX_SET(sc, RTSX_SD_BUS_STAT, RTSX_SD_CLK_FORCE_STOP);
733 
734 	return 0;
735 }
736 
737 static int
738 rtsx_switch_sd_clock(struct rtsx_softc *sc, uint8_t n, int div, int mcu)
739 {
740 
741 	/* Enable SD 2.0 mode. */
742 	RTSX_CLR(sc, RTSX_SD_CFG1, RTSX_SD_MODE_MASK);
743 
744 	RTSX_SET(sc, RTSX_CLK_CTL, RTSX_CLK_LOW_FREQ);
745 
746 	RTSX_WRITE(sc, RTSX_CARD_CLK_SOURCE,
747 	    RTSX_CRC_FIX_CLK | RTSX_SD30_VAR_CLK0 | RTSX_SAMPLE_VAR_CLK1);
748 	RTSX_CLR(sc, RTSX_SD_SAMPLE_POINT_CTL, RTSX_SD20_RX_SEL_MASK);
749 	RTSX_WRITE(sc, RTSX_SD_PUSH_POINT_CTL, RTSX_SD20_TX_NEG_EDGE);
750 	RTSX_WRITE(sc, RTSX_CLK_DIV, (div << 4) | mcu);
751 	RTSX_CLR(sc, RTSX_SSC_CTL1, RTSX_RSTB);
752 	RTSX_CLR(sc, RTSX_SSC_CTL2, RTSX_SSC_DEPTH_MASK);
753 	RTSX_WRITE(sc, RTSX_SSC_DIV_N_0, n);
754 	RTSX_SET(sc, RTSX_SSC_CTL1, RTSX_RSTB);
755 	delay(100);
756 
757 	RTSX_CLR(sc, RTSX_CLK_CTL, RTSX_CLK_LOW_FREQ);
758 
759 	return 0;
760 }
761 
762 /*
763  * Set or change SD bus voltage and enable or disable SD bus power.
764  * Return zero on success.
765  */
766 static int
767 rtsx_bus_power(sdmmc_chipset_handle_t sch, uint32_t ocr)
768 {
769 	struct rtsx_softc *sc = sch;
770 	int error = 0;
771 
772 	DPRINTF(1,("%s: voltage change ocr=0x%x\n", DEVNAME(sc), ocr));
773 
774 	mutex_enter(&sc->sc_host_mtx);
775 
776 	/*
777 	 * Disable bus power before voltage change.
778 	 */
779 	error = rtsx_bus_power_off(sc);
780 	if (error)
781 		goto ret;
782 
783 	delay(200);
784 
785 	/* If power is disabled, reset the host and return now. */
786 	if (ocr == 0) {
787 		mutex_exit(&sc->sc_host_mtx);
788 		(void)rtsx_host_reset(sc);
789 		return 0;
790 	}
791 
792 	if (!ISSET(ocr, RTSX_SUPPORT_VOLTAGE)) {
793 		/* Unsupported voltage level requested. */
794 		DPRINTF(1,("%s: unsupported voltage ocr=0x%x\n",
795 		    DEVNAME(sc), ocr));
796 		error = EINVAL;
797 		goto ret;
798 	}
799 
800 	error = rtsx_set_bus_width(sc, 1);
801 	if (error)
802 		goto ret;
803 
804 	error = rtsx_bus_power_on(sc);
805 ret:
806 	mutex_exit(&sc->sc_host_mtx);
807 
808 	return error;
809 }
810 
811 /*
812  * Set or change SDCLK frequency or disable the SD clock.
813  * Return zero on success.
814  */
815 static int
816 rtsx_bus_clock(sdmmc_chipset_handle_t sch, int freq)
817 {
818 	struct rtsx_softc *sc = sch;
819 	uint8_t n;
820 	int div;
821 	int mcu;
822 	int error = 0;
823 
824 	DPRINTF(1,("%s: bus clock change freq=%d\n", DEVNAME(sc), freq));
825 
826 	mutex_enter(&sc->sc_host_mtx);
827 
828 	if (freq == SDMMC_SDCLK_OFF) {
829 		error = rtsx_stop_sd_clock(sc);
830 		goto ret;
831 	}
832 
833 	/*
834 	 * Configure the clock frequency.
835 	 */
836 	switch (freq) {
837 	case SDMMC_SDCLK_400K:
838 		n = 80; /* minimum */
839 		div = RTSX_CLK_DIV_8;
840 		mcu = 7;
841 		error = rtsx_write(sc, RTSX_SD_CFG1, RTSX_CLK_DIVIDE_128, 0xff);
842 		if (error)
843 			goto ret;
844 		break;
845 	case 20000:
846 		n = 80;
847 		div = RTSX_CLK_DIV_4;
848 		mcu = 7;
849 		error = rtsx_write(sc, RTSX_SD_CFG1, RTSX_CLK_DIVIDE_MASK, 0);
850 		if (error)
851 			goto ret;
852 		break;
853 	case 25000:
854 		n = 100;
855 		div = RTSX_CLK_DIV_4;
856 		mcu = 7;
857 		error = rtsx_write(sc, RTSX_SD_CFG1, RTSX_CLK_DIVIDE_MASK, 0);
858 		if (error)
859 			goto ret;
860 		break;
861 	case 30000:
862 		n = 120;
863 		div = RTSX_CLK_DIV_4;
864 		mcu = 7;
865 		error = rtsx_write(sc, RTSX_SD_CFG1, RTSX_CLK_DIVIDE_MASK, 0);
866 		if (error)
867 			goto ret;
868 		break;
869 	case 40000:
870 		n = 80;
871 		div = RTSX_CLK_DIV_2;
872 		mcu = 7;
873 		error = rtsx_write(sc, RTSX_SD_CFG1, RTSX_CLK_DIVIDE_MASK, 0);
874 		if (error)
875 			goto ret;
876 		break;
877 	case 50000:
878 		n = 100;
879 		div = RTSX_CLK_DIV_2;
880 		mcu = 6;
881 		error = rtsx_write(sc, RTSX_SD_CFG1, RTSX_CLK_DIVIDE_MASK, 0);
882 		if (error)
883 			goto ret;
884 		break;
885 	default:
886 		error = EINVAL;
887 		goto ret;
888 	}
889 
890 	/*
891 	 * Enable SD clock.
892 	 */
893 	error = rtsx_switch_sd_clock(sc, n, div, mcu);
894 ret:
895 	mutex_exit(&sc->sc_host_mtx);
896 
897 	return error;
898 }
899 
900 static int
901 rtsx_bus_width(sdmmc_chipset_handle_t sch, int width)
902 {
903 	struct rtsx_softc *sc = sch;
904 
905 	return rtsx_set_bus_width(sc, width);
906 }
907 
908 static int
909 rtsx_bus_rod(sdmmc_chipset_handle_t sch, int on)
910 {
911 
912 	/* Not support */
913 	return -1;
914 }
915 
916 static int
917 rtsx_read(struct rtsx_softc *sc, uint16_t addr, uint8_t *val)
918 {
919 	int tries = 1024;
920 	uint32_t reg;
921 
922 	WRITE4(sc, RTSX_HAIMR, RTSX_HAIMR_BUSY |
923 	    (uint32_t)((addr & 0x3FFF) << 16));
924 
925 	while (tries--) {
926 		reg = READ4(sc, RTSX_HAIMR);
927 		if (!(reg & RTSX_HAIMR_BUSY))
928 			break;
929 	}
930 
931 	*val = (reg & 0xff);
932 	return (tries == 0) ? ETIMEDOUT : 0;
933 }
934 
935 static int
936 rtsx_write(struct rtsx_softc *sc, uint16_t addr, uint8_t mask, uint8_t val)
937 {
938 	int tries = 1024;
939 	uint32_t reg;
940 
941 	WRITE4(sc, RTSX_HAIMR,
942 	    RTSX_HAIMR_BUSY | RTSX_HAIMR_WRITE |
943 	    (uint32_t)(((addr & 0x3FFF) << 16) |
944 	    (mask << 8) | val));
945 
946 	while (tries--) {
947 		reg = READ4(sc, RTSX_HAIMR);
948 		if (!(reg & RTSX_HAIMR_BUSY)) {
949 			if (val != (reg & 0xff))
950 				return EIO;
951 			return 0;
952 		}
953 	}
954 	return ETIMEDOUT;
955 }
956 
957 #ifdef notyet
958 static int
959 rtsx_read_phy(struct rtsx_softc *sc, uint8_t addr, uint16_t *val)
960 {
961 	int timeout = 100000;
962 	uint8_t data0;
963 	uint8_t data1;
964 	uint8_t rwctl;
965 
966 	RTSX_WRITE(sc, RTSX_PHY_ADDR, addr);
967 	RTSX_WRITE(sc, RTSX_PHY_RWCTL, RTSX_PHY_BUSY|RTSX_PHY_READ);
968 
969 	while (timeout--) {
970 		RTSX_READ(sc, RTSX_PHY_RWCTL, &rwctl);
971 		if (!(rwctl & RTSX_PHY_BUSY))
972 			break;
973 	}
974 	if (timeout == 0)
975 		return ETIMEDOUT;
976 
977 	RTSX_READ(sc, RTSX_PHY_DATA0, &data0);
978 	RTSX_READ(sc, RTSX_PHY_DATA1, &data1);
979 	*val = data0 | (data1 << 8);
980 
981 	return 0;
982 }
983 #endif
984 
985 static int
986 rtsx_write_phy(struct rtsx_softc *sc, uint8_t addr, uint16_t val)
987 {
988 	int timeout = 100000;
989 	uint8_t rwctl;
990 
991 	RTSX_WRITE(sc, RTSX_PHY_DATA0, val);
992 	RTSX_WRITE(sc, RTSX_PHY_DATA1, val >> 8);
993 	RTSX_WRITE(sc, RTSX_PHY_ADDR, addr);
994 	RTSX_WRITE(sc, RTSX_PHY_RWCTL, RTSX_PHY_BUSY|RTSX_PHY_WRITE);
995 
996 	while (timeout--) {
997 		RTSX_READ(sc, RTSX_PHY_RWCTL, &rwctl);
998 		if (!(rwctl & RTSX_PHY_BUSY))
999 			break;
1000 	}
1001 	if (timeout == 0)
1002 		return ETIMEDOUT;
1003 
1004 	return 0;
1005 }
1006 
1007 static int
1008 rtsx_read_cfg(struct rtsx_softc *sc, uint8_t func, uint16_t addr, uint32_t *val)
1009 {
1010 	int tries = 1024;
1011 	uint8_t data0, data1, data2, data3, rwctl;
1012 
1013 	RTSX_WRITE(sc, RTSX_CFGADDR0, addr);
1014 	RTSX_WRITE(sc, RTSX_CFGADDR1, addr >> 8);
1015 	RTSX_WRITE(sc, RTSX_CFGRWCTL, RTSX_CFG_BUSY | (func & 0x03 << 4));
1016 
1017 	while (tries--) {
1018 		RTSX_READ(sc, RTSX_CFGRWCTL, &rwctl);
1019 		if (!(rwctl & RTSX_CFG_BUSY))
1020 			break;
1021 	}
1022 	if (tries == 0)
1023 		return EIO;
1024 
1025 	RTSX_READ(sc, RTSX_CFGDATA0, &data0);
1026 	RTSX_READ(sc, RTSX_CFGDATA1, &data1);
1027 	RTSX_READ(sc, RTSX_CFGDATA2, &data2);
1028 	RTSX_READ(sc, RTSX_CFGDATA3, &data3);
1029 	*val = (data3 << 24) | (data2 << 16) | (data1 << 8) | data0;
1030 
1031 	return 0;
1032 }
1033 
1034 #ifdef notyet
1035 static int
1036 rtsx_write_cfg(struct rtsx_softc *sc, uint8_t func, uint16_t addr,
1037     uint32_t mask, uint32_t val)
1038 {
1039 	uint32_t writemask = 0;
1040 	int i, tries = 1024;
1041 	uint8_t rwctl;
1042 
1043 	for (i = 0; i < 4; i++) {
1044 		if (mask & 0xff) {
1045 			RTSX_WRITE(sc, RTSX_CFGDATA0 + i, val & mask & 0xff);
1046 			writemask |= (1 << i);
1047 		}
1048 		mask >>= 8;
1049 		val >>= 8;
1050 	}
1051 
1052 	if (writemask) {
1053 		RTSX_WRITE(sc, RTSX_CFGADDR0, addr);
1054 		RTSX_WRITE(sc, RTSX_CFGADDR1, addr >> 8);
1055 		RTSX_WRITE(sc, RTSX_CFGRWCTL,
1056 		    RTSX_CFG_BUSY | writemask | (func & 0x03 << 4));
1057 	}
1058 
1059 	while (tries--) {
1060 		RTSX_READ(sc, RTSX_CFGRWCTL, &rwctl);
1061 		if (!(rwctl & RTSX_CFG_BUSY))
1062 			break;
1063 	}
1064 	if (tries == 0)
1065 		return EIO;
1066 
1067 	return 0;
1068 }
1069 #endif
1070 
1071 /* Append a properly encoded host command to the host command buffer. */
1072 static void
1073 rtsx_hostcmd(uint32_t *cmdbuf, int *n, uint8_t cmd, uint16_t reg,
1074     uint8_t mask, uint8_t data)
1075 {
1076 
1077 	KASSERT(*n < RTSX_HOSTCMD_MAX);
1078 
1079 	cmdbuf[(*n)++] = htole32((uint32_t)(cmd & 0x3) << 30) |
1080 	    ((uint32_t)(reg & 0x3fff) << 16) |
1081 	    ((uint32_t)(mask) << 8) |
1082 	    ((uint32_t)data);
1083 }
1084 
1085 static void
1086 rtsx_save_regs(struct rtsx_softc *sc)
1087 {
1088 	int i;
1089 	uint16_t reg;
1090 
1091 	mutex_enter(&sc->sc_host_mtx);
1092 
1093 	i = 0;
1094 	for (reg = 0xFDA0; reg < 0xFDAE; reg++)
1095 		(void)rtsx_read(sc, reg, &sc->sc_regs[i++]);
1096 	for (reg = 0xFD52; reg < 0xFD69; reg++)
1097 		(void)rtsx_read(sc, reg, &sc->sc_regs[i++]);
1098 	for (reg = 0xFE20; reg < 0xFE34; reg++)
1099 		(void)rtsx_read(sc, reg, &sc->sc_regs[i++]);
1100 
1101 	sc->sc_regs4[0] = READ4(sc, RTSX_HCBAR);
1102 	sc->sc_regs4[1] = READ4(sc, RTSX_HCBCTLR);
1103 	sc->sc_regs4[2] = READ4(sc, RTSX_HDBAR);
1104 	sc->sc_regs4[3] = READ4(sc, RTSX_HDBCTLR);
1105 	sc->sc_regs4[4] = READ4(sc, RTSX_HAIMR);
1106 	sc->sc_regs4[5] = READ4(sc, RTSX_BIER);
1107 	/* Not saving RTSX_BIPR. */
1108 
1109 	mutex_exit(&sc->sc_host_mtx);
1110 }
1111 
1112 static void
1113 rtsx_restore_regs(struct rtsx_softc *sc)
1114 {
1115 	int i;
1116 	uint16_t reg;
1117 
1118 	mutex_enter(&sc->sc_host_mtx);
1119 
1120 	WRITE4(sc, RTSX_HCBAR, sc->sc_regs4[0]);
1121 	WRITE4(sc, RTSX_HCBCTLR, sc->sc_regs4[1]);
1122 	WRITE4(sc, RTSX_HDBAR, sc->sc_regs4[2]);
1123 	WRITE4(sc, RTSX_HDBCTLR, sc->sc_regs4[3]);
1124 	WRITE4(sc, RTSX_HAIMR, sc->sc_regs4[4]);
1125 	WRITE4(sc, RTSX_BIER, sc->sc_regs4[5]);
1126 	/* Not writing RTSX_BIPR since doing so would clear it. */
1127 
1128 	i = 0;
1129 	for (reg = 0xFDA0; reg < 0xFDAE; reg++)
1130 		(void)rtsx_write(sc, reg, 0xff, sc->sc_regs[i++]);
1131 	for (reg = 0xFD52; reg < 0xFD69; reg++)
1132 		(void)rtsx_write(sc, reg, 0xff, sc->sc_regs[i++]);
1133 	for (reg = 0xFE20; reg < 0xFE34; reg++)
1134 		(void)rtsx_write(sc, reg, 0xff, sc->sc_regs[i++]);
1135 
1136 	mutex_exit(&sc->sc_host_mtx);
1137 }
1138 
1139 static uint8_t
1140 rtsx_response_type(uint16_t sdmmc_rsp)
1141 {
1142 	static const struct rsp_type {
1143 		uint16_t	sdmmc_rsp;
1144 		uint8_t		rtsx_rsp;
1145 	} rsp_types[] = {
1146 		{ SCF_RSP_R0,	RTSX_SD_RSP_TYPE_R0 },
1147 		{ SCF_RSP_R1,	RTSX_SD_RSP_TYPE_R1 },
1148 		{ SCF_RSP_R1B,	RTSX_SD_RSP_TYPE_R1B },
1149 		{ SCF_RSP_R2,	RTSX_SD_RSP_TYPE_R2 },
1150 		{ SCF_RSP_R3,	RTSX_SD_RSP_TYPE_R3 },
1151 		{ SCF_RSP_R4,	RTSX_SD_RSP_TYPE_R4 },
1152 		{ SCF_RSP_R5,	RTSX_SD_RSP_TYPE_R5 },
1153 		{ SCF_RSP_R6,	RTSX_SD_RSP_TYPE_R6 },
1154 		{ SCF_RSP_R7,	RTSX_SD_RSP_TYPE_R7 }
1155 	};
1156 	size_t i;
1157 
1158 	for (i = 0; i < __arraycount(rsp_types); i++) {
1159 		if (sdmmc_rsp == rsp_types[i].sdmmc_rsp)
1160 			return rsp_types[i].rtsx_rsp;
1161 	}
1162 	return 0;
1163 }
1164 
1165 static int
1166 rtsx_hostcmd_send(struct rtsx_softc *sc, int ncmd)
1167 {
1168 
1169 	bus_dmamap_sync(sc->sc_dmat, sc->sc_dmap_cmd, 0, RTSX_HOSTCMD_BUFSIZE,
1170 	    BUS_DMASYNC_PREWRITE);
1171 
1172 	mutex_enter(&sc->sc_host_mtx);
1173 
1174 	/* Tell the chip where the command buffer is and run the commands. */
1175 	WRITE4(sc, RTSX_HCBAR, sc->sc_dmap_cmd->dm_segs[0].ds_addr);
1176 	WRITE4(sc, RTSX_HCBCTLR,
1177 	    ((ncmd * 4) & 0x00ffffff) | RTSX_START_CMD | RTSX_HW_AUTO_RSP);
1178 
1179 	mutex_exit(&sc->sc_host_mtx);
1180 
1181 	return 0;
1182 }
1183 
1184 static int
1185 rtsx_read_ppbuf(struct rtsx_softc *sc, struct sdmmc_command *cmd,
1186     uint32_t *cmdbuf)
1187 {
1188 	uint8_t *ptr;
1189 	int ncmd, remain;
1190 	uint16_t reg;
1191 	int error;
1192 	int i, j;
1193 
1194 	DPRINTF(3,("%s: read %d bytes from ppbuf2\n", DEVNAME(sc),
1195 	    cmd->c_datalen));
1196 
1197 	reg = RTSX_PPBUF_BASE2;
1198 	ptr = cmd->c_data;
1199 	remain = cmd->c_datalen;
1200 	for (j = 0; j < cmd->c_datalen / RTSX_HOSTCMD_MAX; j++) {
1201 		ncmd = 0;
1202 		for (i = 0; i < RTSX_HOSTCMD_MAX; i++) {
1203 			rtsx_hostcmd(cmdbuf, &ncmd, RTSX_READ_REG_CMD, reg++,
1204 			    0, 0);
1205 		}
1206 		error = rtsx_hostcmd_send(sc, ncmd);
1207 		if (error == 0)
1208 			error = rtsx_wait_intr(sc, RTSX_TRANS_OK_INT, hz / 4);
1209 		if (error)
1210 			goto ret;
1211 		bus_dmamap_sync(sc->sc_dmat, sc->sc_dmap_cmd, 0,
1212 		    RTSX_HOSTCMD_BUFSIZE, BUS_DMASYNC_POSTREAD);
1213 		memcpy(ptr, cmdbuf, RTSX_HOSTCMD_MAX);
1214 		ptr += RTSX_HOSTCMD_MAX;
1215 		remain -= RTSX_HOSTCMD_MAX;
1216 	}
1217 	if (remain > 0) {
1218 		ncmd = 0;
1219 		for (i = 0; i < remain; i++) {
1220 			rtsx_hostcmd(cmdbuf, &ncmd, RTSX_READ_REG_CMD, reg++,
1221 			    0, 0);
1222 		}
1223 		error = rtsx_hostcmd_send(sc, ncmd);
1224 		if (error == 0)
1225 			error = rtsx_wait_intr(sc, RTSX_TRANS_OK_INT, hz / 4);
1226 		if (error)
1227 			goto ret;
1228 		bus_dmamap_sync(sc->sc_dmat, sc->sc_dmap_cmd, 0,
1229 		    RTSX_HOSTCMD_BUFSIZE, BUS_DMASYNC_POSTREAD);
1230 		memcpy(ptr, cmdbuf, remain);
1231 	}
1232 ret:
1233 	return error;
1234 }
1235 
1236 static int
1237 rtsx_write_ppbuf(struct rtsx_softc *sc, struct sdmmc_command *cmd,
1238     uint32_t *cmdbuf)
1239 {
1240 	const uint8_t *ptr;
1241 	int ncmd, remain;
1242 	uint16_t reg;
1243 	int error;
1244 	int i, j;
1245 
1246 	DPRINTF(3,("%s: write %d bytes to ppbuf2\n", DEVNAME(sc),
1247 	    cmd->c_datalen));
1248 
1249 	reg = RTSX_PPBUF_BASE2;
1250 	ptr = cmd->c_data;
1251 	remain = cmd->c_datalen;
1252 	for (j = 0; j < cmd->c_datalen / RTSX_HOSTCMD_MAX; j++) {
1253 		ncmd = 0;
1254 		for (i = 0; i < RTSX_HOSTCMD_MAX; i++) {
1255 			rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, reg++,
1256 			    0xff, *ptr++);
1257 		}
1258 		error = rtsx_hostcmd_send(sc, ncmd);
1259 		if (error == 0)
1260 			error = rtsx_wait_intr(sc, RTSX_TRANS_OK_INT, hz / 4);
1261 		if (error)
1262 			goto ret;
1263 		remain -= RTSX_HOSTCMD_MAX;
1264 	}
1265 	if (remain > 0) {
1266 		ncmd = 0;
1267 		for (i = 0; i < remain; i++) {
1268 			rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, reg++,
1269 			    0xff, *ptr++);
1270 		}
1271 		error = rtsx_hostcmd_send(sc, ncmd);
1272 		if (error == 0)
1273 			error = rtsx_wait_intr(sc, RTSX_TRANS_OK_INT, hz / 4);
1274 		if (error)
1275 			goto ret;
1276 	}
1277 ret:
1278 	return error;
1279 }
1280 
1281 static int
1282 rtsx_exec_short_xfer(struct rtsx_softc *sc, struct sdmmc_command *cmd,
1283     uint32_t *cmdbuf, uint8_t rsp_type)
1284 {
1285 	int read = ISSET(cmd->c_flags, SCF_CMD_READ);
1286 	int ncmd;
1287 	uint8_t tmode = read ? RTSX_TM_NORMAL_READ : RTSX_TM_AUTO_WRITE2;
1288 	int error;
1289 
1290 	DPRINTF(3,("%s: %s short xfer: %d bytes with block size %d\n",
1291 	    DEVNAME(sc), read ? "read" : "write", cmd->c_datalen,
1292 	    cmd->c_blklen));
1293 
1294 	if (cmd->c_datalen > 512) {
1295 		DPRINTF(3, ("%s: cmd->c_datalen too large: %d > %d\n",
1296 		    DEVNAME(sc), cmd->c_datalen, 512));
1297 		return ENOMEM;
1298 	}
1299 
1300 	if (!read && cmd->c_data != NULL && cmd->c_datalen > 0) {
1301 		error = rtsx_write_ppbuf(sc, cmd, cmdbuf);
1302 		if (error)
1303 			goto ret;
1304 	}
1305 
1306 	/* The command buffer queues commands the host controller will
1307 	 * run asynchronously. */
1308 	ncmd = 0;
1309 
1310 	/* Queue commands to set SD command index and argument. */
1311 	rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_SD_CMD0,
1312 	    0xff, 0x40 | cmd->c_opcode);
1313 	rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_SD_CMD1,
1314 	    0xff, cmd->c_arg >> 24);
1315 	rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_SD_CMD2,
1316 	    0xff, cmd->c_arg >> 16);
1317 	rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_SD_CMD3,
1318 	    0xff, cmd->c_arg >> 8);
1319 	rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_SD_CMD4,
1320 	    0xff, cmd->c_arg);
1321 
1322 	/* Queue commands to configure data transfer size. */
1323 	rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_SD_BYTE_CNT_L,
1324 	    0xff, cmd->c_datalen);
1325 	rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_SD_BYTE_CNT_H,
1326 	    0xff, cmd->c_datalen >> 8);
1327 	rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_SD_BLOCK_CNT_L,
1328 	    0xff, 0x01);
1329 	rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_SD_BLOCK_CNT_H,
1330 	    0xff, 0x00);
1331 
1332 	/* Queue command to set response type. */
1333 	rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_SD_CFG2,
1334 	    0xff, rsp_type);
1335 
1336 	if (tmode == RTSX_TM_NORMAL_READ) {
1337 		rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD,
1338 		    RTSX_CARD_DATA_SOURCE, 0x01, RTSX_PINGPONG_BUFFER);
1339 	}
1340 
1341 	/* Queue commands to perform SD transfer. */
1342 	rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_SD_TRANSFER,
1343 	    0xff, tmode | RTSX_SD_TRANSFER_START);
1344 	rtsx_hostcmd(cmdbuf, &ncmd, RTSX_CHECK_REG_CMD, RTSX_SD_TRANSFER,
1345 	    RTSX_SD_TRANSFER_END, RTSX_SD_TRANSFER_END);
1346 
1347 	/* Run the command queue and wait for completion. */
1348 	error = rtsx_hostcmd_send(sc, ncmd);
1349 	if (error == 0)
1350 		error = rtsx_wait_intr(sc, RTSX_TRANS_OK_INT, 2 * hz);
1351 	if (error)
1352 		goto ret;
1353 
1354 	if (read && cmd->c_data != NULL && cmd->c_datalen > 0)
1355 		error = rtsx_read_ppbuf(sc, cmd, cmdbuf);
1356 ret:
1357 	DPRINTF(3,("%s: short xfer done, error=%d\n", DEVNAME(sc), error));
1358 	return error;
1359 }
1360 
1361 static int
1362 rtsx_xfer(struct rtsx_softc *sc, struct sdmmc_command *cmd, uint32_t *cmdbuf)
1363 {
1364 	int ncmd, dma_dir, error, tmode;
1365 	int read = ISSET(cmd->c_flags, SCF_CMD_READ);
1366 	uint8_t cfg2;
1367 
1368 	DPRINTF(3,("%s: %s xfer: %d bytes with block size %d\n", DEVNAME(sc),
1369 	    read ? "read" : "write", cmd->c_datalen, cmd->c_blklen));
1370 
1371 	if (cmd->c_datalen > RTSX_DMA_DATA_BUFSIZE) {
1372 		DPRINTF(3, ("%s: cmd->c_datalen too large: %d > %d\n",
1373 		    DEVNAME(sc), cmd->c_datalen, RTSX_DMA_DATA_BUFSIZE));
1374 		return ENOMEM;
1375 	}
1376 
1377 	/* Configure DMA transfer mode parameters. */
1378 	cfg2 = RTSX_SD_NO_CHECK_WAIT_CRC_TO | RTSX_SD_CHECK_CRC16 |
1379 	    RTSX_SD_NO_WAIT_BUSY_END | RTSX_SD_RSP_LEN_0;
1380 	if (read) {
1381 		dma_dir = RTSX_DMA_DIR_FROM_CARD;
1382 		/* Use transfer mode AUTO_READ3, which assumes we've already
1383 		 * sent the read command and gotten the response, and will
1384 		 * send CMD 12 manually after reading multiple blocks. */
1385 		tmode = RTSX_TM_AUTO_READ3;
1386 		cfg2 |= RTSX_SD_CALCULATE_CRC7 | RTSX_SD_CHECK_CRC7;
1387 	} else {
1388 		dma_dir = RTSX_DMA_DIR_TO_CARD;
1389 		/* Use transfer mode AUTO_WRITE3, which assumes we've already
1390 		 * sent the write command and gotten the response, and will
1391 		 * send CMD 12 manually after writing multiple blocks. */
1392 		tmode = RTSX_TM_AUTO_WRITE3;
1393 		cfg2 |= RTSX_SD_NO_CALCULATE_CRC7 | RTSX_SD_NO_CHECK_CRC7;
1394 	}
1395 
1396 	/* The command buffer queues commands the host controller will
1397 	 * run asynchronously. */
1398 	ncmd = 0;
1399 
1400 	/* Queue command to set response type. */
1401 	rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_SD_CFG2,
1402 	    0xff, cfg2);
1403 
1404 	/* Queue commands to configure data transfer size. */
1405 	rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_SD_BYTE_CNT_L,
1406 	    0xff, 0x00);
1407 	rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_SD_BYTE_CNT_H,
1408 	    0xff, 0x02);
1409 	rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_SD_BLOCK_CNT_L,
1410 	    0xff, cmd->c_datalen / cmd->c_blklen);
1411 	rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_SD_BLOCK_CNT_H,
1412 	    0xff, (cmd->c_datalen / cmd->c_blklen) >> 8);
1413 
1414 	/* Use the DMA ring buffer for commands which transfer data. */
1415 	rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_CARD_DATA_SOURCE,
1416 	    0x01, RTSX_RING_BUFFER);
1417 
1418 	/* Configure DMA controller. */
1419 	rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_IRQSTAT0,
1420 	    RTSX_DMA_DONE_INT, RTSX_DMA_DONE_INT);
1421 	rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_DMATC3,
1422 	    0xff, cmd->c_datalen >> 24);
1423 	rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_DMATC2,
1424 	    0xff, cmd->c_datalen >> 16);
1425 	rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_DMATC1,
1426 	    0xff, cmd->c_datalen >> 8);
1427 	rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_DMATC0,
1428 	    0xff, cmd->c_datalen);
1429 	rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_DMACTL,
1430 	    RTSX_DMA_EN | RTSX_DMA_DIR | RTSX_DMA_PACK_SIZE_MASK,
1431 	    RTSX_DMA_EN | dma_dir | RTSX_DMA_512);
1432 
1433 	/* Queue commands to perform SD transfer. */
1434 	rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_SD_TRANSFER,
1435 	    0xff, tmode | RTSX_SD_TRANSFER_START);
1436 	rtsx_hostcmd(cmdbuf, &ncmd, RTSX_CHECK_REG_CMD, RTSX_SD_TRANSFER,
1437 	    RTSX_SD_TRANSFER_END, RTSX_SD_TRANSFER_END);
1438 
1439 	error = rtsx_hostcmd_send(sc, ncmd);
1440 	if (error)
1441 		goto ret;
1442 
1443 	mutex_enter(&sc->sc_host_mtx);
1444 
1445 	/* Tell the chip where the data buffer is and run the transfer. */
1446 	WRITE4(sc, RTSX_HDBAR, cmd->c_dmamap->dm_segs[0].ds_addr);
1447 	WRITE4(sc, RTSX_HDBCTLR, RTSX_TRIG_DMA | (read ? RTSX_DMA_READ : 0) |
1448 	    (cmd->c_dmamap->dm_segs[0].ds_len & 0x00ffffff));
1449 
1450 	mutex_exit(&sc->sc_host_mtx);
1451 
1452 	/* Wait for completion. */
1453 	error = rtsx_wait_intr(sc, RTSX_TRANS_OK_INT, 10*hz);
1454 ret:
1455 	DPRINTF(3,("%s: xfer done, error=%d\n", DEVNAME(sc), error));
1456 	return error;
1457 }
1458 
1459 static void
1460 rtsx_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd)
1461 {
1462 	struct rtsx_softc *sc = sch;
1463 	bus_dma_segment_t segs[1];
1464 	int rsegs;
1465 	void *cmdkvap;
1466 	uint32_t *cmdbuf;
1467 	uint8_t rsp_type;
1468 	uint16_t r;
1469 	int ncmd;
1470 	int error = 0;
1471 
1472 	DPRINTF(3,("%s: executing cmd %hu\n", DEVNAME(sc), cmd->c_opcode));
1473 
1474 	/* Refuse SDIO probe if the chip doesn't support SDIO. */
1475 	if (cmd->c_opcode == SD_IO_SEND_OP_COND &&
1476 	    !ISSET(sc->sc_flags, RTSX_F_SDIO_SUPPORT)) {
1477 		error = ENOTSUP;
1478 		goto ret;
1479 	}
1480 
1481 	rsp_type = rtsx_response_type(cmd->c_flags & SCF_RSP_MASK);
1482 	if (rsp_type == 0) {
1483 		aprint_error_dev(sc->sc_dev, "unknown response type 0x%x\n",
1484 		    cmd->c_flags & SCF_RSP_MASK);
1485 		error = EINVAL;
1486 		goto ret;
1487 	}
1488 
1489 	/* Allocate and map the host command buffer. */
1490 	error = bus_dmamem_alloc(sc->sc_dmat, RTSX_HOSTCMD_BUFSIZE, 0, 0,
1491 	    segs, 1, &rsegs, BUS_DMA_WAITOK);
1492 	if (error)
1493 		goto ret;
1494 	error = bus_dmamem_map(sc->sc_dmat, segs, rsegs, RTSX_HOSTCMD_BUFSIZE,
1495 	    &cmdkvap, BUS_DMA_WAITOK|BUS_DMA_COHERENT);
1496 	if (error)
1497 		goto free_cmdbuf;
1498 
1499 	/* Load command DMA buffer. */
1500 	error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmap_cmd, cmdkvap,
1501 	    RTSX_HOSTCMD_BUFSIZE, NULL, BUS_DMA_WAITOK);
1502 	if (error)
1503 		goto unmap_cmdbuf;
1504 
1505 	/* Use another transfer method when data size < 512. */
1506 	if (cmd->c_data != NULL && cmd->c_datalen < 512) {
1507 		error = rtsx_exec_short_xfer(sch, cmd, cmdkvap, rsp_type);
1508 		goto unload_cmdbuf;
1509 	}
1510 
1511 	/* The command buffer queues commands the host controller will
1512 	 * run asynchronously. */
1513 	cmdbuf = cmdkvap;
1514 	ncmd = 0;
1515 
1516 	/* Queue commands to set SD command index and argument. */
1517 	rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_SD_CMD0,
1518 	    0xff, 0x40 | cmd->c_opcode);
1519 	rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_SD_CMD1,
1520 	    0xff, cmd->c_arg >> 24);
1521 	rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_SD_CMD2,
1522 	    0xff, cmd->c_arg >> 16);
1523 	rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_SD_CMD3,
1524 	    0xff, cmd->c_arg >> 8);
1525 	rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_SD_CMD4,
1526 	    0xff, cmd->c_arg);
1527 
1528 	/* Queue command to set response type. */
1529 	rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_SD_CFG2,
1530 	    0xff, rsp_type);
1531 
1532 	/* Use the ping-pong buffer for commands which do not transfer data. */
1533 	rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_CARD_DATA_SOURCE,
1534 	    0x01, RTSX_PINGPONG_BUFFER);
1535 
1536 	/* Queue commands to perform SD transfer. */
1537 	rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_SD_TRANSFER,
1538 	    0xff, RTSX_TM_CMD_RSP | RTSX_SD_TRANSFER_START);
1539 	rtsx_hostcmd(cmdbuf, &ncmd, RTSX_CHECK_REG_CMD, RTSX_SD_TRANSFER,
1540 	    RTSX_SD_TRANSFER_END | RTSX_SD_STAT_IDLE,
1541 	    RTSX_SD_TRANSFER_END | RTSX_SD_STAT_IDLE);
1542 
1543 	/* Queue commands to read back card status response.*/
1544 	if (rsp_type == RTSX_SD_RSP_TYPE_R2) {
1545 		for (r = RTSX_PPBUF_BASE2 + 15; r > RTSX_PPBUF_BASE2; r--)
1546 			rtsx_hostcmd(cmdbuf, &ncmd, RTSX_READ_REG_CMD, r, 0, 0);
1547 		rtsx_hostcmd(cmdbuf, &ncmd, RTSX_READ_REG_CMD, RTSX_SD_CMD5,
1548 		    0, 0);
1549 	} else if (rsp_type != RTSX_SD_RSP_TYPE_R0) {
1550 		for (r = RTSX_SD_CMD0; r <= RTSX_SD_CMD4; r++)
1551 			rtsx_hostcmd(cmdbuf, &ncmd, RTSX_READ_REG_CMD, r, 0, 0);
1552 	}
1553 
1554 	/* Run the command queue and wait for completion. */
1555 	error = rtsx_hostcmd_send(sc, ncmd);
1556 	if (error == 0)
1557 		error = rtsx_wait_intr(sc, RTSX_TRANS_OK_INT, hz);
1558 	if (error)
1559 		goto unload_cmdbuf;
1560 
1561 	bus_dmamap_sync(sc->sc_dmat, sc->sc_dmap_cmd, 0, RTSX_HOSTCMD_BUFSIZE,
1562 	    BUS_DMASYNC_POSTREAD);
1563 
1564 	/* Copy card response into sdmmc response buffer. */
1565 	if (ISSET(cmd->c_flags, SCF_RSP_PRESENT)) {
1566 		/* Copy bytes like sdhc(4), which on little-endian uses
1567 		 * different byte order for short and long responses... */
1568 		if (ISSET(cmd->c_flags, SCF_RSP_136)) {
1569 			uint8_t *resp = cmdkvap;
1570 			memcpy(cmd->c_resp, resp + 1, sizeof(cmd->c_resp));
1571 		} else {
1572 			/* First byte is CHECK_REG_CMD return value, second
1573 			 * one is the command op code -- we skip those. */
1574 			cmd->c_resp[0] =
1575 			    ((be32toh(cmdbuf[0]) & 0x0000ffff) << 16) |
1576 			    ((be32toh(cmdbuf[1]) & 0xffff0000) >> 16);
1577 		}
1578 	}
1579 
1580 	if (cmd->c_data) {
1581 		error = rtsx_xfer(sc, cmd, cmdbuf);
1582 		if (error) {
1583 			uint8_t stat1;
1584 			if (rtsx_read(sc, RTSX_SD_STAT1, &stat1) == 0 &&
1585 			    (stat1 & RTSX_SD_CRC_ERR)) {
1586 				aprint_error_dev(sc->sc_dev,
1587 				    "CRC error (stat=0x%x)\n", stat1);
1588 			}
1589 		}
1590 	}
1591 
1592 unload_cmdbuf:
1593 	bus_dmamap_unload(sc->sc_dmat, sc->sc_dmap_cmd);
1594 unmap_cmdbuf:
1595 	bus_dmamem_unmap(sc->sc_dmat, cmdkvap, RTSX_HOSTCMD_BUFSIZE);
1596 free_cmdbuf:
1597 	bus_dmamem_free(sc->sc_dmat, segs, rsegs);
1598 ret:
1599 	SET(cmd->c_flags, SCF_ITSDONE);
1600 	cmd->c_error = error;
1601 }
1602 
1603 /* Prepare for another command. */
1604 static void
1605 rtsx_soft_reset(struct rtsx_softc *sc)
1606 {
1607 
1608 	DPRINTF(1,("%s: soft reset\n", DEVNAME(sc)));
1609 
1610 	/* Stop command transfer. */
1611 	WRITE4(sc, RTSX_HCBCTLR, RTSX_STOP_CMD);
1612 
1613 	(void)rtsx_write(sc, RTSX_CARD_STOP, RTSX_SD_STOP|RTSX_SD_CLR_ERR,
1614 		    RTSX_SD_STOP|RTSX_SD_CLR_ERR);
1615 
1616 	/* Stop DMA transfer. */
1617 	WRITE4(sc, RTSX_HDBCTLR, RTSX_STOP_DMA);
1618 	(void)rtsx_write(sc, RTSX_DMACTL, RTSX_DMA_RST, RTSX_DMA_RST);
1619 
1620 	(void)rtsx_write(sc, RTSX_RBCTL, RTSX_RB_FLUSH, RTSX_RB_FLUSH);
1621 }
1622 
1623 static int
1624 rtsx_wait_intr(struct rtsx_softc *sc, int mask, int timo)
1625 {
1626 	int status;
1627 	int error = 0;
1628 
1629 	mask |= RTSX_TRANS_FAIL_INT;
1630 
1631 	mutex_enter(&sc->sc_intr_mtx);
1632 
1633 	status = sc->sc_intr_status & mask;
1634 	while (status == 0) {
1635 		if (cv_timedwait(&sc->sc_intr_cv, &sc->sc_intr_mtx, timo)
1636 		    == EWOULDBLOCK) {
1637 			rtsx_soft_reset(sc);
1638 			error = ETIMEDOUT;
1639 			break;
1640 		}
1641 		status = sc->sc_intr_status & mask;
1642 	}
1643 	sc->sc_intr_status &= ~status;
1644 
1645 	/* Has the card disappeared? */
1646 	if (!ISSET(sc->sc_flags, RTSX_F_CARD_PRESENT))
1647 		error = ENODEV;
1648 
1649 	mutex_exit(&sc->sc_intr_mtx);
1650 
1651 	if (error == 0 && (status & RTSX_TRANS_FAIL_INT))
1652 		error = EIO;
1653 	return error;
1654 }
1655 
1656 static void
1657 rtsx_card_insert(struct rtsx_softc *sc)
1658 {
1659 
1660 	DPRINTF(1, ("%s: card inserted\n", DEVNAME(sc)));
1661 
1662 	sc->sc_flags |= RTSX_F_CARD_PRESENT;
1663 	(void)rtsx_led_enable(sc);
1664 
1665 	/* Schedule card discovery task. */
1666 	sdmmc_needs_discover(sc->sc_sdmmc);
1667 }
1668 
1669 static void
1670 rtsx_card_eject(struct rtsx_softc *sc)
1671 {
1672 
1673 	DPRINTF(1, ("%s: card ejected\n", DEVNAME(sc)));
1674 
1675 	sc->sc_flags &= ~RTSX_F_CARD_PRESENT;
1676 	(void)rtsx_led_disable(sc);
1677 
1678 	/* Schedule card discovery task. */
1679 	sdmmc_needs_discover(sc->sc_sdmmc);
1680 }
1681 
1682 /*
1683  * Established by attachment driver at interrupt priority IPL_SDMMC.
1684  */
1685 int
1686 rtsx_intr(void *arg)
1687 {
1688 	struct rtsx_softc *sc = arg;
1689 	uint32_t enabled, status;
1690 
1691 	enabled = READ4(sc, RTSX_BIER);
1692 	status = READ4(sc, RTSX_BIPR);
1693 
1694 	/* Ack interrupts. */
1695 	WRITE4(sc, RTSX_BIPR, status);
1696 
1697 	if (((enabled & status) == 0) || status == 0xffffffff)
1698 		return 0;
1699 
1700 	mutex_enter(&sc->sc_intr_mtx);
1701 
1702 	if (status & RTSX_SD_INT) {
1703 		if (status & RTSX_SD_EXIST) {
1704 			if (!ISSET(sc->sc_flags, RTSX_F_CARD_PRESENT))
1705 				rtsx_card_insert(sc);
1706 		} else {
1707 			rtsx_card_eject(sc);
1708 		}
1709 	}
1710 
1711 	if (status & (RTSX_TRANS_OK_INT | RTSX_TRANS_FAIL_INT)) {
1712 		sc->sc_intr_status |= status;
1713 		cv_broadcast(&sc->sc_intr_cv);
1714 	}
1715 
1716 	mutex_exit(&sc->sc_intr_mtx);
1717 
1718 	return 1;
1719 }
1720