xref: /netbsd-src/sys/dev/ic/rtl81x9.c (revision d710132b4b8ce7f7cccaaf660cb16aa16b4077a0)
1 /*	$NetBSD: rtl81x9.c,v 1.45 2003/02/21 17:14:07 tsutsui Exp $	*/
2 
3 /*
4  * Copyright (c) 1997, 1998
5  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  *	FreeBSD Id: if_rl.c,v 1.17 1999/06/19 20:17:37 wpaul Exp
35  */
36 
37 /*
38  * RealTek 8129/8139 PCI NIC driver
39  *
40  * Supports several extremely cheap PCI 10/100 adapters based on
41  * the RealTek chipset. Datasheets can be obtained from
42  * www.realtek.com.tw.
43  *
44  * Written by Bill Paul <wpaul@ctr.columbia.edu>
45  * Electrical Engineering Department
46  * Columbia University, New York City
47  */
48 
49 /*
50  * The RealTek 8139 PCI NIC redefines the meaning of 'low end.' This is
51  * probably the worst PCI ethernet controller ever made, with the possible
52  * exception of the FEAST chip made by SMC. The 8139 supports bus-master
53  * DMA, but it has a terrible interface that nullifies any performance
54  * gains that bus-master DMA usually offers.
55  *
56  * For transmission, the chip offers a series of four TX descriptor
57  * registers. Each transmit frame must be in a contiguous buffer, aligned
58  * on a longword (32-bit) boundary. This means we almost always have to
59  * do mbuf copies in order to transmit a frame, except in the unlikely
60  * case where a) the packet fits into a single mbuf, and b) the packet
61  * is 32-bit aligned within the mbuf's data area. The presence of only
62  * four descriptor registers means that we can never have more than four
63  * packets queued for transmission at any one time.
64  *
65  * Reception is not much better. The driver has to allocate a single large
66  * buffer area (up to 64K in size) into which the chip will DMA received
67  * frames. Because we don't know where within this region received packets
68  * will begin or end, we have no choice but to copy data from the buffer
69  * area into mbufs in order to pass the packets up to the higher protocol
70  * levels.
71  *
72  * It's impossible given this rotten design to really achieve decent
73  * performance at 100Mbps, unless you happen to have a 400MHz PII or
74  * some equally overmuscled CPU to drive it.
75  *
76  * On the bright side, the 8139 does have a built-in PHY, although
77  * rather than using an MDIO serial interface like most other NICs, the
78  * PHY registers are directly accessible through the 8139's register
79  * space. The 8139 supports autonegotiation, as well as a 64-bit multicast
80  * filter.
81  *
82  * The 8129 chip is an older version of the 8139 that uses an external PHY
83  * chip. The 8129 has a serial MDIO interface for accessing the MII where
84  * the 8139 lets you directly access the on-board PHY registers. We need
85  * to select which interface to use depending on the chip type.
86  */
87 
88 #include <sys/cdefs.h>
89 __KERNEL_RCSID(0, "$NetBSD: rtl81x9.c,v 1.45 2003/02/21 17:14:07 tsutsui Exp $");
90 
91 #include "bpfilter.h"
92 #include "rnd.h"
93 
94 #include <sys/param.h>
95 #include <sys/systm.h>
96 #include <sys/callout.h>
97 #include <sys/device.h>
98 #include <sys/sockio.h>
99 #include <sys/mbuf.h>
100 #include <sys/malloc.h>
101 #include <sys/kernel.h>
102 #include <sys/socket.h>
103 
104 #include <uvm/uvm_extern.h>
105 
106 #include <net/if.h>
107 #include <net/if_arp.h>
108 #include <net/if_ether.h>
109 #include <net/if_dl.h>
110 #include <net/if_media.h>
111 
112 #if NBPFILTER > 0
113 #include <net/bpf.h>
114 #endif
115 #if NRND > 0
116 #include <sys/rnd.h>
117 #endif
118 
119 #include <machine/bus.h>
120 #include <machine/endian.h>
121 
122 #include <dev/mii/mii.h>
123 #include <dev/mii/miivar.h>
124 
125 #include <dev/ic/rtl81x9reg.h>
126 #include <dev/ic/rtl81x9var.h>
127 
128 #if defined(DEBUG)
129 #define STATIC
130 #else
131 #define STATIC static
132 #endif
133 
134 STATIC void rtk_reset		__P((struct rtk_softc *));
135 STATIC void rtk_rxeof		__P((struct rtk_softc *));
136 STATIC void rtk_txeof		__P((struct rtk_softc *));
137 STATIC void rtk_start		__P((struct ifnet *));
138 STATIC int rtk_ioctl		__P((struct ifnet *, u_long, caddr_t));
139 STATIC int rtk_init		__P((struct ifnet *));
140 STATIC void rtk_stop		__P((struct ifnet *, int));
141 
142 STATIC void rtk_watchdog	__P((struct ifnet *));
143 STATIC void rtk_shutdown	__P((void *));
144 STATIC int rtk_ifmedia_upd	__P((struct ifnet *));
145 STATIC void rtk_ifmedia_sts	__P((struct ifnet *, struct ifmediareq *));
146 
147 STATIC u_int16_t rtk_read_eeprom __P((struct rtk_softc *, int, int));
148 STATIC void rtk_eeprom_putbyte	__P((struct rtk_softc *, int, int));
149 STATIC void rtk_mii_sync	__P((struct rtk_softc *));
150 STATIC void rtk_mii_send	__P((struct rtk_softc *, u_int32_t, int));
151 STATIC int rtk_mii_readreg	__P((struct rtk_softc *, struct rtk_mii_frame *));
152 STATIC int rtk_mii_writereg	__P((struct rtk_softc *, struct rtk_mii_frame *));
153 
154 STATIC int rtk_phy_readreg	__P((struct device *, int, int));
155 STATIC void rtk_phy_writereg	__P((struct device *, int, int, int));
156 STATIC void rtk_phy_statchg	__P((struct device *));
157 STATIC void rtk_tick		__P((void *));
158 
159 STATIC int rtk_enable		__P((struct rtk_softc *));
160 STATIC void rtk_disable		__P((struct rtk_softc *));
161 STATIC void rtk_power		__P((int, void *));
162 
163 STATIC void rtk_setmulti	__P((struct rtk_softc *));
164 STATIC int rtk_list_tx_init	__P((struct rtk_softc *));
165 
166 #define EE_SET(x)					\
167 	CSR_WRITE_1(sc, RTK_EECMD,			\
168 		CSR_READ_1(sc, RTK_EECMD) | (x))
169 
170 #define EE_CLR(x)					\
171 	CSR_WRITE_1(sc, RTK_EECMD,			\
172 		CSR_READ_1(sc, RTK_EECMD) & ~(x))
173 
174 #define ETHER_PAD_LEN (ETHER_MIN_LEN - ETHER_CRC_LEN)
175 
176 /*
177  * Send a read command and address to the EEPROM, check for ACK.
178  */
179 STATIC void rtk_eeprom_putbyte(sc, addr, addr_len)
180 	struct rtk_softc	*sc;
181 	int			addr, addr_len;
182 {
183 	int			d, i;
184 
185 	d = (RTK_EECMD_READ << addr_len) | addr;
186 
187 	/*
188 	 * Feed in each bit and stobe the clock.
189 	 */
190 	for (i = RTK_EECMD_LEN + addr_len; i > 0; i--) {
191 		if (d & (1 << (i - 1))) {
192 			EE_SET(RTK_EE_DATAIN);
193 		} else {
194 			EE_CLR(RTK_EE_DATAIN);
195 		}
196 		DELAY(4);
197 		EE_SET(RTK_EE_CLK);
198 		DELAY(4);
199 		EE_CLR(RTK_EE_CLK);
200 		DELAY(4);
201 	}
202 }
203 
204 /*
205  * Read a word of data stored in the EEPROM at address 'addr.'
206  */
207 u_int16_t rtk_read_eeprom(sc, addr, addr_len)
208 	struct rtk_softc	*sc;
209 	int			addr, addr_len;
210 {
211 	u_int16_t		word = 0;
212 	int			i;
213 
214 	/* Enter EEPROM access mode. */
215 	CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_PROGRAM|RTK_EE_SEL);
216 
217 	/*
218 	 * Send address of word we want to read.
219 	 */
220 	rtk_eeprom_putbyte(sc, addr, addr_len);
221 
222 	CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_PROGRAM|RTK_EE_SEL);
223 
224 	/*
225 	 * Start reading bits from EEPROM.
226 	 */
227 	for (i = 16; i > 0; i--) {
228 		EE_SET(RTK_EE_CLK);
229 		DELAY(4);
230 		if (CSR_READ_1(sc, RTK_EECMD) & RTK_EE_DATAOUT)
231 			word |= 1 << (i - 1);
232 		EE_CLR(RTK_EE_CLK);
233 		DELAY(4);
234 	}
235 
236 	/* Turn off EEPROM access mode. */
237 	CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
238 
239 	return (word);
240 }
241 
242 /*
243  * MII access routines are provided for the 8129, which
244  * doesn't have a built-in PHY. For the 8139, we fake things
245  * up by diverting rtk_phy_readreg()/rtk_phy_writereg() to the
246  * direct access PHY registers.
247  */
248 #define MII_SET(x)					\
249 	CSR_WRITE_1(sc, RTK_MII,			\
250 		CSR_READ_1(sc, RTK_MII) | (x))
251 
252 #define MII_CLR(x)					\
253 	CSR_WRITE_1(sc, RTK_MII,			\
254 		CSR_READ_1(sc, RTK_MII) & ~(x))
255 
256 /*
257  * Sync the PHYs by setting data bit and strobing the clock 32 times.
258  */
259 STATIC void rtk_mii_sync(sc)
260 	struct rtk_softc	*sc;
261 {
262 	int			i;
263 
264 	MII_SET(RTK_MII_DIR|RTK_MII_DATAOUT);
265 
266 	for (i = 0; i < 32; i++) {
267 		MII_SET(RTK_MII_CLK);
268 		DELAY(1);
269 		MII_CLR(RTK_MII_CLK);
270 		DELAY(1);
271 	}
272 }
273 
274 /*
275  * Clock a series of bits through the MII.
276  */
277 STATIC void rtk_mii_send(sc, bits, cnt)
278 	struct rtk_softc	*sc;
279 	u_int32_t		bits;
280 	int			cnt;
281 {
282 	int			i;
283 
284 	MII_CLR(RTK_MII_CLK);
285 
286 	for (i = cnt; i > 0; i--) {
287                 if (bits & (1 << (i - 1))) {
288 			MII_SET(RTK_MII_DATAOUT);
289                 } else {
290 			MII_CLR(RTK_MII_DATAOUT);
291                 }
292 		DELAY(1);
293 		MII_CLR(RTK_MII_CLK);
294 		DELAY(1);
295 		MII_SET(RTK_MII_CLK);
296 	}
297 }
298 
299 /*
300  * Read an PHY register through the MII.
301  */
302 STATIC int rtk_mii_readreg(sc, frame)
303 	struct rtk_softc	*sc;
304 	struct rtk_mii_frame	*frame;
305 {
306 	int			i, ack, s;
307 
308 	s = splnet();
309 
310 	/*
311 	 * Set up frame for RX.
312 	 */
313 	frame->mii_stdelim = RTK_MII_STARTDELIM;
314 	frame->mii_opcode = RTK_MII_READOP;
315 	frame->mii_turnaround = 0;
316 	frame->mii_data = 0;
317 
318 	CSR_WRITE_2(sc, RTK_MII, 0);
319 
320 	/*
321  	 * Turn on data xmit.
322 	 */
323 	MII_SET(RTK_MII_DIR);
324 
325 	rtk_mii_sync(sc);
326 
327 	/*
328 	 * Send command/address info.
329 	 */
330 	rtk_mii_send(sc, frame->mii_stdelim, 2);
331 	rtk_mii_send(sc, frame->mii_opcode, 2);
332 	rtk_mii_send(sc, frame->mii_phyaddr, 5);
333 	rtk_mii_send(sc, frame->mii_regaddr, 5);
334 
335 	/* Idle bit */
336 	MII_CLR((RTK_MII_CLK|RTK_MII_DATAOUT));
337 	DELAY(1);
338 	MII_SET(RTK_MII_CLK);
339 	DELAY(1);
340 
341 	/* Turn off xmit. */
342 	MII_CLR(RTK_MII_DIR);
343 
344 	/* Check for ack */
345 	MII_CLR(RTK_MII_CLK);
346 	DELAY(1);
347 	MII_SET(RTK_MII_CLK);
348 	DELAY(1);
349 	ack = CSR_READ_2(sc, RTK_MII) & RTK_MII_DATAIN;
350 
351 	/*
352 	 * Now try reading data bits. If the ack failed, we still
353 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
354 	 */
355 	if (ack) {
356 		for (i = 0; i < 16; i++) {
357 			MII_CLR(RTK_MII_CLK);
358 			DELAY(1);
359 			MII_SET(RTK_MII_CLK);
360 			DELAY(1);
361 		}
362 		goto fail;
363 	}
364 
365 	for (i = 16; i > 0; i--) {
366 		MII_CLR(RTK_MII_CLK);
367 		DELAY(1);
368 		if (!ack) {
369 			if (CSR_READ_2(sc, RTK_MII) & RTK_MII_DATAIN)
370 				frame->mii_data |= 1 << (i - 1);
371 			DELAY(1);
372 		}
373 		MII_SET(RTK_MII_CLK);
374 		DELAY(1);
375 	}
376 
377  fail:
378 	MII_CLR(RTK_MII_CLK);
379 	DELAY(1);
380 	MII_SET(RTK_MII_CLK);
381 	DELAY(1);
382 
383 	splx(s);
384 
385 	if (ack)
386 		return (1);
387 	return (0);
388 }
389 
390 /*
391  * Write to a PHY register through the MII.
392  */
393 STATIC int rtk_mii_writereg(sc, frame)
394 	struct rtk_softc	*sc;
395 	struct rtk_mii_frame	*frame;
396 {
397 	int			s;
398 
399 	s = splnet();
400 	/*
401 	 * Set up frame for TX.
402 	 */
403 	frame->mii_stdelim = RTK_MII_STARTDELIM;
404 	frame->mii_opcode = RTK_MII_WRITEOP;
405 	frame->mii_turnaround = RTK_MII_TURNAROUND;
406 
407 	/*
408  	 * Turn on data output.
409 	 */
410 	MII_SET(RTK_MII_DIR);
411 
412 	rtk_mii_sync(sc);
413 
414 	rtk_mii_send(sc, frame->mii_stdelim, 2);
415 	rtk_mii_send(sc, frame->mii_opcode, 2);
416 	rtk_mii_send(sc, frame->mii_phyaddr, 5);
417 	rtk_mii_send(sc, frame->mii_regaddr, 5);
418 	rtk_mii_send(sc, frame->mii_turnaround, 2);
419 	rtk_mii_send(sc, frame->mii_data, 16);
420 
421 	/* Idle bit. */
422 	MII_SET(RTK_MII_CLK);
423 	DELAY(1);
424 	MII_CLR(RTK_MII_CLK);
425 	DELAY(1);
426 
427 	/*
428 	 * Turn off xmit.
429 	 */
430 	MII_CLR(RTK_MII_DIR);
431 
432 	splx(s);
433 
434 	return (0);
435 }
436 
437 STATIC int rtk_phy_readreg(self, phy, reg)
438 	struct device		*self;
439 	int			phy, reg;
440 {
441 	struct rtk_softc	*sc = (void *)self;
442 	struct rtk_mii_frame	frame;
443 	int			rval = 0;
444 	int			rtk8139_reg = 0;
445 
446 	if (sc->rtk_type == RTK_8139) {
447 		if (phy != 7)
448 			return (0);
449 
450 		switch(reg) {
451 		case MII_BMCR:
452 			rtk8139_reg = RTK_BMCR;
453 			break;
454 		case MII_BMSR:
455 			rtk8139_reg = RTK_BMSR;
456 			break;
457 		case MII_ANAR:
458 			rtk8139_reg = RTK_ANAR;
459 			break;
460 		case MII_ANER:
461 			rtk8139_reg = RTK_ANER;
462 			break;
463 		case MII_ANLPAR:
464 			rtk8139_reg = RTK_LPAR;
465 			break;
466 		default:
467 #if 0
468 			printf("%s: bad phy register\n", sc->sc_dev.dv_xname);
469 #endif
470 			return (0);
471 		}
472 		rval = CSR_READ_2(sc, rtk8139_reg);
473 		return (rval);
474 	}
475 
476 	memset((char *)&frame, 0, sizeof(frame));
477 
478 	frame.mii_phyaddr = phy;
479 	frame.mii_regaddr = reg;
480 	rtk_mii_readreg(sc, &frame);
481 
482 	return (frame.mii_data);
483 }
484 
485 STATIC void rtk_phy_writereg(self, phy, reg, data)
486 	struct device		*self;
487 	int			phy, reg;
488 	int			data;
489 {
490 	struct rtk_softc	*sc = (void *)self;
491 	struct rtk_mii_frame	frame;
492 	int			rtk8139_reg = 0;
493 
494 	if (sc->rtk_type == RTK_8139) {
495 		if (phy != 7)
496 			return;
497 
498 		switch(reg) {
499 		case MII_BMCR:
500 			rtk8139_reg = RTK_BMCR;
501 			break;
502 		case MII_BMSR:
503 			rtk8139_reg = RTK_BMSR;
504 			break;
505 		case MII_ANAR:
506 			rtk8139_reg = RTK_ANAR;
507 			break;
508 		case MII_ANER:
509 			rtk8139_reg = RTK_ANER;
510 			break;
511 		case MII_ANLPAR:
512 			rtk8139_reg = RTK_LPAR;
513 			break;
514 		default:
515 #if 0
516 			printf("%s: bad phy register\n", sc->sc_dev.dv_xname);
517 #endif
518 			return;
519 		}
520 		CSR_WRITE_2(sc, rtk8139_reg, data);
521 		return;
522 	}
523 
524 	memset((char *)&frame, 0, sizeof(frame));
525 
526 	frame.mii_phyaddr = phy;
527 	frame.mii_regaddr = reg;
528 	frame.mii_data = data;
529 
530 	rtk_mii_writereg(sc, &frame);
531 }
532 
533 STATIC void
534 rtk_phy_statchg(v)
535 	struct device *v;
536 {
537 
538 	/* Nothing to do. */
539 }
540 
541 #define	rtk_calchash(addr) \
542 	(ether_crc32_be((addr), ETHER_ADDR_LEN) >> 26)
543 
544 /*
545  * Program the 64-bit multicast hash filter.
546  */
547 STATIC void rtk_setmulti(sc)
548 	struct rtk_softc	*sc;
549 {
550 	struct ifnet		*ifp;
551 	int			h = 0;
552 	u_int32_t		hashes[2] = { 0, 0 };
553 	u_int32_t		rxfilt;
554 	int			mcnt = 0;
555 	struct ether_multi *enm;
556 	struct ether_multistep step;
557 
558 	ifp = &sc->ethercom.ec_if;
559 
560 	rxfilt = CSR_READ_4(sc, RTK_RXCFG);
561 
562 	if (ifp->if_flags & IFF_PROMISC) {
563 allmulti:
564 		ifp->if_flags |= IFF_ALLMULTI;
565 		rxfilt |= RTK_RXCFG_RX_MULTI;
566 		CSR_WRITE_4(sc, RTK_RXCFG, rxfilt);
567 		CSR_WRITE_4(sc, RTK_MAR0, 0xFFFFFFFF);
568 		CSR_WRITE_4(sc, RTK_MAR4, 0xFFFFFFFF);
569 		return;
570 	}
571 
572 	/* first, zot all the existing hash bits */
573 	CSR_WRITE_4(sc, RTK_MAR0, 0);
574 	CSR_WRITE_4(sc, RTK_MAR4, 0);
575 
576 	/* now program new ones */
577 	ETHER_FIRST_MULTI(step, &sc->ethercom, enm);
578 	while (enm != NULL) {
579 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
580 		    ETHER_ADDR_LEN) != 0)
581 			goto allmulti;
582 
583 		h = rtk_calchash(enm->enm_addrlo);
584 		if (h < 32)
585 			hashes[0] |= (1 << h);
586 		else
587 			hashes[1] |= (1 << (h - 32));
588 		mcnt++;
589 		ETHER_NEXT_MULTI(step, enm);
590 	}
591 
592 	ifp->if_flags &= ~IFF_ALLMULTI;
593 
594 	if (mcnt)
595 		rxfilt |= RTK_RXCFG_RX_MULTI;
596 	else
597 		rxfilt &= ~RTK_RXCFG_RX_MULTI;
598 
599 	CSR_WRITE_4(sc, RTK_RXCFG, rxfilt);
600 	CSR_WRITE_4(sc, RTK_MAR0, hashes[0]);
601 	CSR_WRITE_4(sc, RTK_MAR4, hashes[1]);
602 }
603 
604 void rtk_reset(sc)
605 	struct rtk_softc	*sc;
606 {
607 	int			i;
608 
609 	CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
610 
611 	for (i = 0; i < RTK_TIMEOUT; i++) {
612 		DELAY(10);
613 		if ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET) == 0)
614 			break;
615 	}
616 	if (i == RTK_TIMEOUT)
617 		printf("%s: reset never completed!\n", sc->sc_dev.dv_xname);
618 }
619 
620 /*
621  * Attach the interface. Allocate softc structures, do ifmedia
622  * setup and ethernet/BPF attach.
623  */
624 void
625 rtk_attach(sc)
626 	struct rtk_softc *sc;
627 {
628 	struct ifnet *ifp;
629 	struct rtk_tx_desc *txd;
630 	u_int16_t val;
631 	u_int8_t eaddr[ETHER_ADDR_LEN];
632 	int error;
633 	int i, addr_len;
634 
635 	callout_init(&sc->rtk_tick_ch);
636 
637 	/*
638 	 * Check EEPROM type 9346 or 9356.
639 	 */
640 	if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
641 		addr_len = RTK_EEADDR_LEN1;
642 	else
643 		addr_len = RTK_EEADDR_LEN0;
644 
645 	/*
646 	 * Get station address.
647 	 */
648 	val = rtk_read_eeprom(sc, RTK_EE_EADDR0, addr_len);
649 	eaddr[0] = val & 0xff;
650 	eaddr[1] = val >> 8;
651 	val = rtk_read_eeprom(sc, RTK_EE_EADDR1, addr_len);
652 	eaddr[2] = val & 0xff;
653 	eaddr[3] = val >> 8;
654 	val = rtk_read_eeprom(sc, RTK_EE_EADDR2, addr_len);
655 	eaddr[4] = val & 0xff;
656 	eaddr[5] = val >> 8;
657 
658 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
659 	    RTK_RXBUFLEN + 16, PAGE_SIZE, 0, &sc->sc_dmaseg, 1, &sc->sc_dmanseg,
660 	    BUS_DMA_NOWAIT)) != 0) {
661 		printf("%s: can't allocate recv buffer, error = %d\n",
662 		       sc->sc_dev.dv_xname, error);
663 		goto fail_0;
664 	}
665 
666 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_dmaseg, sc->sc_dmanseg,
667 	    RTK_RXBUFLEN + 16, (caddr_t *)&sc->rtk_rx_buf,
668 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
669 		printf("%s: can't map recv buffer, error = %d\n",
670 		       sc->sc_dev.dv_xname, error);
671 		goto fail_1;
672 	}
673 
674 	if ((error = bus_dmamap_create(sc->sc_dmat,
675 	    RTK_RXBUFLEN + 16, 1, RTK_RXBUFLEN + 16, 0, BUS_DMA_NOWAIT,
676 	    &sc->recv_dmamap)) != 0) {
677 		printf("%s: can't create recv buffer DMA map, error = %d\n",
678 		       sc->sc_dev.dv_xname, error);
679 		goto fail_2;
680 	}
681 
682 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->recv_dmamap,
683 	    sc->rtk_rx_buf, RTK_RXBUFLEN + 16,
684 	    NULL, BUS_DMA_READ|BUS_DMA_NOWAIT)) != 0) {
685 		printf("%s: can't load recv buffer DMA map, error = %d\n",
686 		       sc->sc_dev.dv_xname, error);
687 		goto fail_3;
688 	}
689 
690 	for (i = 0; i < RTK_TX_LIST_CNT; i++) {
691 		txd = &sc->rtk_tx_descs[i];
692 		if ((error = bus_dmamap_create(sc->sc_dmat,
693 		    MCLBYTES, 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
694 		    &txd->txd_dmamap)) != 0) {
695 			printf("%s: can't create snd buffer DMA map,"
696 			    " error = %d\n", sc->sc_dev.dv_xname, error);
697 			goto fail_4;
698 		}
699 		txd->txd_txaddr = RTK_TXADDR0 + (i * 4);
700 		txd->txd_txstat = RTK_TXSTAT0 + (i * 4);
701 	}
702 	SIMPLEQ_INIT(&sc->rtk_tx_free);
703 	SIMPLEQ_INIT(&sc->rtk_tx_dirty);
704 
705 	/*
706 	 * From this point forward, the attachment cannot fail. A failure
707 	 * before this releases all resources thar may have been
708 	 * allocated.
709 	 */
710 	sc->sc_flags |= RTK_ATTACHED;
711 
712 	/* Init Early TX threshold. */
713 	sc->sc_txthresh = TXTH_256;
714 
715 	/* Reset the adapter. */
716 	rtk_reset(sc);
717 
718 	printf("%s: Ethernet address %s\n",
719 	    sc->sc_dev.dv_xname, ether_sprintf(eaddr));
720 
721 	ifp = &sc->ethercom.ec_if;
722 	ifp->if_softc = sc;
723 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
724 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
725 	ifp->if_ioctl = rtk_ioctl;
726 	ifp->if_start = rtk_start;
727 	ifp->if_watchdog = rtk_watchdog;
728 	ifp->if_init = rtk_init;
729 	ifp->if_stop = rtk_stop;
730 	IFQ_SET_READY(&ifp->if_snd);
731 
732 	/*
733 	 * Do ifmedia setup.
734 	 */
735 	sc->mii.mii_ifp = ifp;
736 	sc->mii.mii_readreg = rtk_phy_readreg;
737 	sc->mii.mii_writereg = rtk_phy_writereg;
738 	sc->mii.mii_statchg = rtk_phy_statchg;
739 	ifmedia_init(&sc->mii.mii_media, IFM_IMASK, rtk_ifmedia_upd, rtk_ifmedia_sts);
740 	mii_attach(&sc->sc_dev, &sc->mii, 0xffffffff,
741 	    MII_PHY_ANY, MII_OFFSET_ANY, 0);
742 
743 	/* Choose a default media. */
744 	if (LIST_FIRST(&sc->mii.mii_phys) == NULL) {
745 		ifmedia_add(&sc->mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
746 		ifmedia_set(&sc->mii.mii_media, IFM_ETHER|IFM_NONE);
747 	} else {
748 		ifmedia_set(&sc->mii.mii_media, IFM_ETHER|IFM_AUTO);
749 	}
750 
751 	/*
752 	 * Call MI attach routines.
753 	 */
754 	if_attach(ifp);
755 	ether_ifattach(ifp, eaddr);
756 
757 	/*
758 	 * Make sure the interface is shutdown during reboot.
759 	 */
760 	sc->sc_sdhook = shutdownhook_establish(rtk_shutdown, sc);
761 	if (sc->sc_sdhook == NULL)
762 		printf("%s: WARNING: unable to establish shutdown hook\n",
763 		    sc->sc_dev.dv_xname);
764 	/*
765 	 * Add a suspend hook to make sure we come back up after a
766 	 * resume.
767 	 */
768 	sc->sc_powerhook = powerhook_establish(rtk_power, sc);
769 	if (sc->sc_powerhook == NULL)
770 		printf("%s: WARNING: unable to establish power hook\n",
771 		    sc->sc_dev.dv_xname);
772 
773 	return;
774  fail_4:
775 	for (i = 0; i < RTK_TX_LIST_CNT; i++) {
776 		txd = &sc->rtk_tx_descs[i];
777 		if (txd->txd_dmamap != NULL)
778 			bus_dmamap_destroy(sc->sc_dmat, txd->txd_dmamap);
779 	}
780  fail_3:
781 	bus_dmamap_destroy(sc->sc_dmat, sc->recv_dmamap);
782  fail_2:
783 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->rtk_rx_buf,
784 	    RTK_RXBUFLEN + 16);
785  fail_1:
786 	bus_dmamem_free(sc->sc_dmat, &sc->sc_dmaseg, sc->sc_dmanseg);
787  fail_0:
788 	return;
789 }
790 
791 /*
792  * Initialize the transmit descriptors.
793  */
794 STATIC int rtk_list_tx_init(sc)
795 	struct rtk_softc	*sc;
796 {
797 	struct rtk_tx_desc *txd;
798 	int i;
799 
800 	while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_dirty)) != NULL)
801 		SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_dirty, txd_q);
802 	while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_free)) != NULL)
803 		SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_free, txd_q);
804 
805 	for (i = 0; i < RTK_TX_LIST_CNT; i++) {
806 		txd = &sc->rtk_tx_descs[i];
807 		CSR_WRITE_4(sc, txd->txd_txaddr, 0);
808 		SIMPLEQ_INSERT_TAIL(&sc->rtk_tx_free, txd, txd_q);
809 	}
810 
811 	return (0);
812 }
813 
814 /*
815  * rtk_activate:
816  *     Handle device activation/deactivation requests.
817  */
818 int
819 rtk_activate(self, act)
820 	struct device *self;
821 	enum devact act;
822 {
823 	struct rtk_softc *sc = (void *) self;
824 	int s, error = 0;
825 
826 	s = splnet();
827 	switch (act) {
828 	case DVACT_ACTIVATE:
829 		error = EOPNOTSUPP;
830 		break;
831 	case DVACT_DEACTIVATE:
832 		mii_activate(&sc->mii, act, MII_PHY_ANY, MII_OFFSET_ANY);
833 		if_deactivate(&sc->ethercom.ec_if);
834 		break;
835 	}
836 	splx(s);
837 
838 	return (error);
839 }
840 
841 /*
842  * rtk_detach:
843  *     Detach a rtk interface.
844  */
845 int
846 rtk_detach(sc)
847 	struct rtk_softc *sc;
848 {
849 	struct ifnet *ifp = &sc->ethercom.ec_if;
850 	struct rtk_tx_desc *txd;
851 	int i;
852 
853 	/*
854 	 * Succeed now if there isn't any work to do.
855 	 */
856 	if ((sc->sc_flags & RTK_ATTACHED) == 0)
857 		return (0);
858 
859 	/* Unhook our tick handler. */
860 	callout_stop(&sc->rtk_tick_ch);
861 
862 	/* Detach all PHYs. */
863 	mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
864 
865 	/* Delete all remaining media. */
866 	ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
867 
868 	ether_ifdetach(ifp);
869 	if_detach(ifp);
870 
871 	for (i = 0; i < RTK_TX_LIST_CNT; i++) {
872 		txd = &sc->rtk_tx_descs[i];
873 		if (txd->txd_dmamap != NULL)
874 			bus_dmamap_destroy(sc->sc_dmat, txd->txd_dmamap);
875 	}
876 	bus_dmamap_destroy(sc->sc_dmat, sc->recv_dmamap);
877 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->rtk_rx_buf,
878 	    RTK_RXBUFLEN + 16);
879 	bus_dmamem_free(sc->sc_dmat, &sc->sc_dmaseg, sc->sc_dmanseg);
880 
881 	shutdownhook_disestablish(sc->sc_sdhook);
882 	powerhook_disestablish(sc->sc_powerhook);
883 
884 	return (0);
885 }
886 
887 /*
888  * rtk_enable:
889  *     Enable the RTL81X9 chip.
890  */
891 int
892 rtk_enable(sc)
893 	struct rtk_softc *sc;
894 {
895 
896 	if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
897 		if ((*sc->sc_enable)(sc) != 0) {
898 			printf("%s: device enable failed\n",
899 			    sc->sc_dev.dv_xname);
900 			return (EIO);
901 		}
902 		sc->sc_flags |= RTK_ENABLED;
903 	}
904 	return (0);
905 }
906 
907 /*
908  * rtk_disable:
909  *     Disable the RTL81X9 chip.
910  */
911 void
912 rtk_disable(sc)
913 	struct rtk_softc *sc;
914 {
915 
916 	if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
917 		(*sc->sc_disable)(sc);
918 		sc->sc_flags &= ~RTK_ENABLED;
919 	}
920 }
921 
922 /*
923  * rtk_power:
924  *     Power management (suspend/resume) hook.
925  */
926 void
927 rtk_power(why, arg)
928 	int why;
929 	void *arg;
930 {
931 	struct rtk_softc *sc = (void *) arg;
932 	struct ifnet *ifp = &sc->ethercom.ec_if;
933 	int s;
934 
935 	s = splnet();
936 	switch (why) {
937 	case PWR_SUSPEND:
938 	case PWR_STANDBY:
939 		rtk_stop(ifp, 0);
940 		if (sc->sc_power != NULL)
941 			(*sc->sc_power)(sc, why);
942 		break;
943 	case PWR_RESUME:
944 		if (ifp->if_flags & IFF_UP) {
945 			if (sc->sc_power != NULL)
946 				(*sc->sc_power)(sc, why);
947 			rtk_init(ifp);
948 		}
949 		break;
950 	case PWR_SOFTSUSPEND:
951 	case PWR_SOFTSTANDBY:
952 	case PWR_SOFTRESUME:
953 		break;
954 	}
955 	splx(s);
956 }
957 
958 /*
959  * A frame has been uploaded: pass the resulting mbuf chain up to
960  * the higher level protocols.
961  *
962  * You know there's something wrong with a PCI bus-master chip design.
963  *
964  * The receive operation is badly documented in the datasheet, so I'll
965  * attempt to document it here. The driver provides a buffer area and
966  * places its base address in the RX buffer start address register.
967  * The chip then begins copying frames into the RX buffer. Each frame
968  * is preceded by a 32-bit RX status word which specifies the length
969  * of the frame and certain other status bits. Each frame (starting with
970  * the status word) is also 32-bit aligned. The frame length is in the
971  * first 16 bits of the status word; the lower 15 bits correspond with
972  * the 'rx status register' mentioned in the datasheet.
973  *
974  * Note: to make the Alpha happy, the frame payload needs to be aligned
975  * on a 32-bit boundary. To achieve this, we copy the data to mbuf
976  * shifted forward 2 bytes.
977  */
978 STATIC void rtk_rxeof(sc)
979 	struct rtk_softc	*sc;
980 {
981         struct mbuf		*m;
982         struct ifnet		*ifp;
983 	caddr_t			rxbufpos, dst;
984 	u_int			total_len, wrap = 0;
985 	u_int32_t		rxstat;
986 	u_int16_t		cur_rx, new_rx;
987 	u_int16_t		limit;
988 	u_int16_t		rx_bytes = 0, max_bytes;
989 
990 	ifp = &sc->ethercom.ec_if;
991 
992 	cur_rx = (CSR_READ_2(sc, RTK_CURRXADDR) + 16) % RTK_RXBUFLEN;
993 
994 	/* Do not try to read past this point. */
995 	limit = CSR_READ_2(sc, RTK_CURRXBUF) % RTK_RXBUFLEN;
996 
997 	if (limit < cur_rx)
998 		max_bytes = (RTK_RXBUFLEN - cur_rx) + limit;
999 	else
1000 		max_bytes = limit - cur_rx;
1001 
1002 	while((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_EMPTY_RXBUF) == 0) {
1003 		rxbufpos = sc->rtk_rx_buf + cur_rx;
1004 		bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap, cur_rx,
1005 		    RTK_RXSTAT_LEN, BUS_DMASYNC_POSTREAD);
1006 		rxstat = le32toh(*(u_int32_t *)rxbufpos);
1007 		bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap, cur_rx,
1008 		    RTK_RXSTAT_LEN, BUS_DMASYNC_PREREAD);
1009 
1010 		/*
1011 		 * Here's a totally undocumented fact for you. When the
1012 		 * RealTek chip is in the process of copying a packet into
1013 		 * RAM for you, the length will be 0xfff0. If you spot a
1014 		 * packet header with this value, you need to stop. The
1015 		 * datasheet makes absolutely no mention of this and
1016 		 * RealTek should be shot for this.
1017 		 */
1018 		total_len = rxstat >> 16;
1019 		if (total_len == RTK_RXSTAT_UNFINISHED)
1020 			break;
1021 
1022 		if ((rxstat & RTK_RXSTAT_RXOK) == 0 ||
1023 		    total_len > ETHER_MAX_LEN) {
1024 			ifp->if_ierrors++;
1025 
1026 			/*
1027 			 * submitted by:[netbsd-pcmcia:00484]
1028 			 *	Takahiro Kambe <taca@sky.yamashina.kyoto.jp>
1029 			 * obtain from:
1030 			 *     FreeBSD if_rl.c rev 1.24->1.25
1031 			 *
1032 			 */
1033 #if 0
1034 			if (rxstat & (RTK_RXSTAT_BADSYM|RTK_RXSTAT_RUNT|
1035 			    RTK_RXSTAT_GIANT|RTK_RXSTAT_CRCERR|
1036 			    RTK_RXSTAT_ALIGNERR)) {
1037 				CSR_WRITE_2(sc, RTK_COMMAND, RTK_CMD_TX_ENB);
1038 				CSR_WRITE_2(sc, RTK_COMMAND,
1039 				    RTK_CMD_TX_ENB|RTK_CMD_RX_ENB);
1040 				CSR_WRITE_4(sc, RTK_RXCFG, RTK_RXCFG_CONFIG);
1041 				CSR_WRITE_4(sc, RTK_RXADDR,
1042 				    sc->recv_dmamap->dm_segs[0].ds_addr);
1043 				cur_rx = 0;
1044 			}
1045 			break;
1046 #else
1047 			rtk_init(ifp);
1048 			return;
1049 #endif
1050 		}
1051 
1052 		/* No errors; receive the packet. */
1053 		rx_bytes += total_len + RTK_RXSTAT_LEN;
1054 
1055 		/*
1056 		 * Avoid trying to read more bytes than we know
1057 		 * the chip has prepared for us.
1058 		 */
1059 		if (rx_bytes > max_bytes)
1060 			break;
1061 
1062 		/*
1063 		 * Skip the status word, wrapping around to the beginning
1064 		 * of the Rx area, if necessary.
1065 		 */
1066 		cur_rx = (cur_rx + RTK_RXSTAT_LEN) % RTK_RXBUFLEN;
1067 		rxbufpos = sc->rtk_rx_buf + cur_rx;
1068 
1069 		/*
1070 		 * Compute the number of bytes at which the packet
1071 		 * will wrap to the beginning of the ring buffer.
1072 		 */
1073 		wrap = RTK_RXBUFLEN - cur_rx;
1074 
1075 		/*
1076 		 * Compute where the next pending packet is.
1077 		 */
1078 		if (total_len > wrap)
1079 			new_rx = total_len - wrap;
1080 		else
1081 			new_rx = cur_rx + total_len;
1082 		/* Round up to 32-bit boundary. */
1083 		new_rx = (new_rx + 3) & ~3;
1084 
1085 		/*
1086 		 * Now allocate an mbuf (and possibly a cluster) to hold
1087 		 * the packet. Note we offset the packet 2 bytes so that
1088 		 * data after the Ethernet header will be 4-byte aligned.
1089 		 */
1090 		MGETHDR(m, M_DONTWAIT, MT_DATA);
1091 		if (m == NULL) {
1092 			printf("%s: unable to allocate Rx mbuf\n",
1093 			    sc->sc_dev.dv_xname);
1094 			ifp->if_ierrors++;
1095 			goto next_packet;
1096 		}
1097 		if (total_len > (MHLEN - RTK_ETHER_ALIGN)) {
1098 			MCLGET(m, M_DONTWAIT);
1099 			if ((m->m_flags & M_EXT) == 0) {
1100 				printf("%s: unable to allocate Rx cluster\n",
1101 				    sc->sc_dev.dv_xname);
1102 				ifp->if_ierrors++;
1103 				m_freem(m);
1104 				m = NULL;
1105 				goto next_packet;
1106 			}
1107 		}
1108 		m->m_data += RTK_ETHER_ALIGN;	/* for alignment */
1109 		m->m_pkthdr.rcvif = ifp;
1110 		m->m_pkthdr.len = m->m_len = total_len;
1111 		dst = mtod(m, caddr_t);
1112 
1113 		/*
1114 		 * If the packet wraps, copy up to the wrapping point.
1115 		 */
1116 		if (total_len > wrap) {
1117 			bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
1118 			    cur_rx, wrap, BUS_DMASYNC_POSTREAD);
1119 			memcpy(dst, rxbufpos, wrap);
1120 			bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
1121 			    cur_rx, wrap, BUS_DMASYNC_PREREAD);
1122 			cur_rx = 0;
1123 			rxbufpos = sc->rtk_rx_buf;
1124 			total_len -= wrap;
1125 			dst += wrap;
1126 		}
1127 
1128 		/*
1129 		 * ...and now the rest.
1130 		 */
1131 		bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
1132 		    cur_rx, total_len, BUS_DMASYNC_POSTREAD);
1133 		memcpy(dst, rxbufpos, total_len);
1134 		bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
1135 		    cur_rx, total_len, BUS_DMASYNC_PREREAD);
1136 
1137  next_packet:
1138 		CSR_WRITE_2(sc, RTK_CURRXADDR, new_rx - 16);
1139 		cur_rx = new_rx;
1140 
1141 		if (m == NULL)
1142 			continue;
1143 
1144 		/*
1145 		 * The RealTek chip includes the CRC with every
1146 		 * incoming packet.
1147 		 */
1148 		m->m_flags |= M_HASFCS;
1149 
1150 		ifp->if_ipackets++;
1151 
1152 #if NBPFILTER > 0
1153 		if (ifp->if_bpf)
1154 			bpf_mtap(ifp->if_bpf, m);
1155 #endif
1156 		/* pass it on. */
1157 		(*ifp->if_input)(ifp, m);
1158 	}
1159 }
1160 
1161 /*
1162  * A frame was downloaded to the chip. It's safe for us to clean up
1163  * the list buffers.
1164  */
1165 STATIC void rtk_txeof(sc)
1166 	struct rtk_softc	*sc;
1167 {
1168 	struct ifnet *ifp;
1169 	struct rtk_tx_desc *txd;
1170 	u_int32_t txstat;
1171 
1172 	ifp = &sc->ethercom.ec_if;
1173 
1174 	/* Clear the timeout timer. */
1175 	ifp->if_timer = 0;
1176 
1177 	/*
1178 	 * Go through our tx list and free mbufs for those
1179 	 * frames that have been uploaded.
1180 	 */
1181 	while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_dirty)) != NULL) {
1182 		txstat = CSR_READ_4(sc, txd->txd_txstat);
1183 		if ((txstat & (RTK_TXSTAT_TX_OK|
1184 		    RTK_TXSTAT_TX_UNDERRUN|RTK_TXSTAT_TXABRT)) == 0)
1185 			break;
1186 
1187 		SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_dirty, txd_q);
1188 
1189 		bus_dmamap_sync(sc->sc_dmat, txd->txd_dmamap, 0,
1190 		    txd->txd_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1191 		bus_dmamap_unload(sc->sc_dmat, txd->txd_dmamap);
1192 		m_freem(txd->txd_mbuf);
1193 		txd->txd_mbuf = NULL;
1194 
1195 		ifp->if_collisions += (txstat & RTK_TXSTAT_COLLCNT) >> 24;
1196 
1197 		if (txstat & RTK_TXSTAT_TX_OK)
1198 			ifp->if_opackets++;
1199 		else {
1200 			ifp->if_oerrors++;
1201 
1202 			/*
1203 			 * Increase Early TX threshold if underrun occurred.
1204 			 * Increase step 64 bytes.
1205 			 */
1206 			if (txstat & RTK_TXSTAT_TX_UNDERRUN) {
1207 				printf("%s: transmit underrun;",
1208 				    sc->sc_dev.dv_xname);
1209 				if (sc->sc_txthresh < TXTH_MAX) {
1210 					sc->sc_txthresh += 2;
1211 					printf(" new threshold: %d bytes",
1212 					    sc->sc_txthresh * 32);
1213 				}
1214 				printf("\n");
1215 			}
1216 			if (txstat & (RTK_TXSTAT_TXABRT|RTK_TXSTAT_OUTOFWIN))
1217 				CSR_WRITE_4(sc, RTK_TXCFG, RTK_TXCFG_CONFIG);
1218 		}
1219 		SIMPLEQ_INSERT_TAIL(&sc->rtk_tx_free, txd, txd_q);
1220 		ifp->if_flags &= ~IFF_OACTIVE;
1221 	}
1222 }
1223 
1224 int rtk_intr(arg)
1225 	void			*arg;
1226 {
1227 	struct rtk_softc	*sc;
1228 	struct ifnet		*ifp;
1229 	u_int16_t		status;
1230 	int handled = 0;
1231 
1232 	sc = arg;
1233 	ifp = &sc->ethercom.ec_if;
1234 
1235 	/* Disable interrupts. */
1236 	CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1237 
1238 	for (;;) {
1239 
1240 		status = CSR_READ_2(sc, RTK_ISR);
1241 		if (status)
1242 			CSR_WRITE_2(sc, RTK_ISR, status);
1243 
1244 		handled = 1;
1245 
1246 		if ((status & RTK_INTRS) == 0)
1247 			break;
1248 
1249 		if (status & RTK_ISR_RX_OK)
1250 			rtk_rxeof(sc);
1251 
1252 		if (status & RTK_ISR_RX_ERR)
1253 			rtk_rxeof(sc);
1254 
1255 		if (status & (RTK_ISR_TX_OK|RTK_ISR_TX_ERR))
1256 			rtk_txeof(sc);
1257 
1258 		if (status & RTK_ISR_SYSTEM_ERR) {
1259 			rtk_reset(sc);
1260 			rtk_init(ifp);
1261 		}
1262 	}
1263 
1264 	/* Re-enable interrupts. */
1265 	CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS);
1266 
1267 	if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
1268 		rtk_start(ifp);
1269 
1270 	return (handled);
1271 }
1272 
1273 /*
1274  * Main transmit routine.
1275  */
1276 
1277 STATIC void rtk_start(ifp)
1278 	struct ifnet		*ifp;
1279 {
1280 	struct rtk_softc *sc;
1281 	struct rtk_tx_desc *txd;
1282 	struct mbuf *m_head = NULL, *m_new;
1283 	int error, len;
1284 
1285 	sc = ifp->if_softc;
1286 
1287 	while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_free)) != NULL) {
1288 		IFQ_POLL(&ifp->if_snd, m_head);
1289 		if (m_head == NULL)
1290 			break;
1291 		m_new = NULL;
1292 
1293 		/*
1294 		 * Load the DMA map.  If this fails, the packet didn't
1295 		 * fit in one DMA segment, and we need to copy.  Note,
1296 		 * the packet must also be aligned.
1297 		 * if the packet is too small, copy it too, so we're sure
1298 		 * so have enouth room for the pad buffer.
1299 		 */
1300 		if ((mtod(m_head, uintptr_t) & 3) != 0 ||
1301 		    m_head->m_pkthdr.len < ETHER_PAD_LEN ||
1302 		    bus_dmamap_load_mbuf(sc->sc_dmat, txd->txd_dmamap,
1303 			m_head, BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1304 			MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1305 			if (m_new == NULL) {
1306 				printf("%s: unable to allocate Tx mbuf\n",
1307 				    sc->sc_dev.dv_xname);
1308 				break;
1309 			}
1310 			if (m_head->m_pkthdr.len > MHLEN) {
1311 				MCLGET(m_new, M_DONTWAIT);
1312 				if ((m_new->m_flags & M_EXT) == 0) {
1313 					printf("%s: unable to allocate Tx "
1314 					    "cluster\n", sc->sc_dev.dv_xname);
1315 					m_freem(m_new);
1316 					break;
1317 				}
1318 			}
1319 			m_copydata(m_head, 0, m_head->m_pkthdr.len,
1320 			    mtod(m_new, caddr_t));
1321 			m_new->m_pkthdr.len = m_new->m_len =
1322 			    m_head->m_pkthdr.len;
1323 			if (m_head->m_pkthdr.len < ETHER_PAD_LEN) {
1324 				memset(
1325 				    mtod(m_new, caddr_t) + m_head->m_pkthdr.len,
1326 				    0, ETHER_PAD_LEN - m_head->m_pkthdr.len);
1327 				m_new->m_pkthdr.len = m_new->m_len =
1328 				    ETHER_PAD_LEN;
1329 			}
1330 			error = bus_dmamap_load_mbuf(sc->sc_dmat,
1331 			    txd->txd_dmamap, m_new,
1332 			    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1333 			if (error) {
1334 				printf("%s: unable to load Tx buffer, "
1335 				    "error = %d\n", sc->sc_dev.dv_xname, error);
1336 				break;
1337 			}
1338 		}
1339 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1340 #if NBPFILTER > 0
1341 		/*
1342 		 * If there's a BPF listener, bounce a copy of this frame
1343 		 * to him.
1344 		 */
1345 		if (ifp->if_bpf)
1346 			bpf_mtap(ifp->if_bpf, m_head);
1347 #endif
1348 		if (m_new != NULL) {
1349 			m_freem(m_head);
1350 			m_head = m_new;
1351 		}
1352 		txd->txd_mbuf = m_head;
1353 
1354 		SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_free, txd_q);
1355 		SIMPLEQ_INSERT_TAIL(&sc->rtk_tx_dirty, txd, txd_q);
1356 
1357 		/*
1358 		 * Transmit the frame.
1359 	 	 */
1360 		bus_dmamap_sync(sc->sc_dmat,
1361 		    txd->txd_dmamap, 0, txd->txd_dmamap->dm_mapsize,
1362 		    BUS_DMASYNC_PREWRITE);
1363 
1364 		len = txd->txd_dmamap->dm_segs[0].ds_len;
1365 
1366 		CSR_WRITE_4(sc, txd->txd_txaddr,
1367 		    txd->txd_dmamap->dm_segs[0].ds_addr);
1368 		CSR_WRITE_4(sc, txd->txd_txstat, RTK_TX_THRESH(sc) | len);
1369 	}
1370 
1371 	/*
1372 	 * We broke out of the loop because all our TX slots are
1373 	 * full. Mark the NIC as busy until it drains some of the
1374 	 * packets from the queue.
1375 	 */
1376 	if (SIMPLEQ_EMPTY(&sc->rtk_tx_free))
1377 		ifp->if_flags |= IFF_OACTIVE;
1378 
1379 	/*
1380 	 * Set a timeout in case the chip goes out to lunch.
1381 	 */
1382 	ifp->if_timer = 5;
1383 }
1384 
1385 STATIC int rtk_init(ifp)
1386 	struct ifnet *ifp;
1387 {
1388 	struct rtk_softc	*sc = ifp->if_softc;
1389 	int			error = 0, i;
1390 	u_int32_t		rxcfg;
1391 
1392 	if ((error = rtk_enable(sc)) != 0)
1393 		goto out;
1394 
1395 	/*
1396 	 * Cancel pending I/O.
1397 	 */
1398 	rtk_stop(ifp, 0);
1399 
1400 	/* Init our MAC address */
1401 	for (i = 0; i < ETHER_ADDR_LEN; i++) {
1402 		CSR_WRITE_1(sc, RTK_IDR0 + i, LLADDR(ifp->if_sadl)[i]);
1403 	}
1404 
1405 	/* Init the RX buffer pointer register. */
1406 	bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap, 0,
1407 	    sc->recv_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1408 	CSR_WRITE_4(sc, RTK_RXADDR, sc->recv_dmamap->dm_segs[0].ds_addr);
1409 
1410 	/* Init TX descriptors. */
1411 	rtk_list_tx_init(sc);
1412 
1413 	/* Init Early TX threshold. */
1414 	sc->sc_txthresh = TXTH_256;
1415 	/*
1416 	 * Enable transmit and receive.
1417 	 */
1418 	CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB|RTK_CMD_RX_ENB);
1419 
1420 	/*
1421 	 * Set the initial TX and RX configuration.
1422 	 */
1423 	CSR_WRITE_4(sc, RTK_TXCFG, RTK_TXCFG_CONFIG);
1424 	CSR_WRITE_4(sc, RTK_RXCFG, RTK_RXCFG_CONFIG);
1425 
1426 	/* Set the individual bit to receive frames for this host only. */
1427 	rxcfg = CSR_READ_4(sc, RTK_RXCFG);
1428 	rxcfg |= RTK_RXCFG_RX_INDIV;
1429 
1430 	/* If we want promiscuous mode, set the allframes bit. */
1431 	if (ifp->if_flags & IFF_PROMISC) {
1432 		rxcfg |= RTK_RXCFG_RX_ALLPHYS;
1433 		CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1434 	} else {
1435 		rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
1436 		CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1437 	}
1438 
1439 	/*
1440 	 * Set capture broadcast bit to capture broadcast frames.
1441 	 */
1442 	if (ifp->if_flags & IFF_BROADCAST) {
1443 		rxcfg |= RTK_RXCFG_RX_BROAD;
1444 		CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1445 	} else {
1446 		rxcfg &= ~RTK_RXCFG_RX_BROAD;
1447 		CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1448 	}
1449 
1450 	/*
1451 	 * Program the multicast filter, if necessary.
1452 	 */
1453 	rtk_setmulti(sc);
1454 
1455 	/*
1456 	 * Enable interrupts.
1457 	 */
1458 	CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS);
1459 
1460 	/* Start RX/TX process. */
1461 	CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
1462 
1463 	/* Enable receiver and transmitter. */
1464 	CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB|RTK_CMD_RX_ENB);
1465 
1466 	CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD|RTK_CFG1_FULLDUPLEX);
1467 
1468 	/*
1469 	 * Set current media.
1470 	 */
1471 	mii_mediachg(&sc->mii);
1472 
1473 	ifp->if_flags |= IFF_RUNNING;
1474 	ifp->if_flags &= ~IFF_OACTIVE;
1475 
1476 	callout_reset(&sc->rtk_tick_ch, hz, rtk_tick, sc);
1477 
1478  out:
1479 	if (error) {
1480 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1481 		ifp->if_timer = 0;
1482 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1483 	}
1484 	return (error);
1485 }
1486 
1487 /*
1488  * Set media options.
1489  */
1490 STATIC int rtk_ifmedia_upd(ifp)
1491 	struct ifnet		*ifp;
1492 {
1493 	struct rtk_softc	*sc;
1494 
1495 	sc = ifp->if_softc;
1496 
1497 	return (mii_mediachg(&sc->mii));
1498 }
1499 
1500 /*
1501  * Report current media status.
1502  */
1503 STATIC void rtk_ifmedia_sts(ifp, ifmr)
1504 	struct ifnet		*ifp;
1505 	struct ifmediareq	*ifmr;
1506 {
1507 	struct rtk_softc	*sc;
1508 
1509 	sc = ifp->if_softc;
1510 
1511 	mii_pollstat(&sc->mii);
1512 	ifmr->ifm_status = sc->mii.mii_media_status;
1513 	ifmr->ifm_active = sc->mii.mii_media_active;
1514 }
1515 
1516 STATIC int rtk_ioctl(ifp, command, data)
1517 	struct ifnet		*ifp;
1518 	u_long			command;
1519 	caddr_t			data;
1520 {
1521 	struct rtk_softc	*sc = ifp->if_softc;
1522 	struct ifreq		*ifr = (struct ifreq *) data;
1523 	int			s, error = 0;
1524 
1525 	s = splnet();
1526 
1527 	switch (command) {
1528 	case SIOCGIFMEDIA:
1529 	case SIOCSIFMEDIA:
1530 		error = ifmedia_ioctl(ifp, ifr, &sc->mii.mii_media, command);
1531 		break;
1532 
1533 	default:
1534 		error = ether_ioctl(ifp, command, data);
1535 		if (error == ENETRESET) {
1536 			if (RTK_IS_ENABLED(sc)) {
1537 				/*
1538 				 * Multicast list has changed.  Set the
1539 				 * hardware filter accordingly.
1540 				 */
1541 				rtk_setmulti(sc);
1542 			}
1543 			error = 0;
1544 		}
1545 		break;
1546 	}
1547 
1548 	splx(s);
1549 
1550 	return (error);
1551 }
1552 
1553 STATIC void rtk_watchdog(ifp)
1554 	struct ifnet		*ifp;
1555 {
1556 	struct rtk_softc	*sc;
1557 
1558 	sc = ifp->if_softc;
1559 
1560 	printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
1561 	ifp->if_oerrors++;
1562 	rtk_txeof(sc);
1563 	rtk_rxeof(sc);
1564 	rtk_init(ifp);
1565 }
1566 
1567 /*
1568  * Stop the adapter and free any mbufs allocated to the
1569  * RX and TX lists.
1570  */
1571 STATIC void rtk_stop(ifp, disable)
1572 	struct ifnet *ifp;
1573 	int disable;
1574 {
1575 	struct rtk_softc *sc = ifp->if_softc;
1576 	struct rtk_tx_desc *txd;
1577 
1578 	callout_stop(&sc->rtk_tick_ch);
1579 
1580 	mii_down(&sc->mii);
1581 
1582 	CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
1583 	CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1584 
1585 	/*
1586 	 * Free the TX list buffers.
1587 	 */
1588 	while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_dirty)) != NULL) {
1589 		SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_dirty, txd_q);
1590 		bus_dmamap_unload(sc->sc_dmat, txd->txd_dmamap);
1591 		m_freem(txd->txd_mbuf);
1592 		txd->txd_mbuf = NULL;
1593 		CSR_WRITE_4(sc, txd->txd_txaddr, 0);
1594 	}
1595 
1596 	if (disable)
1597 		rtk_disable(sc);
1598 
1599 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1600 	ifp->if_timer = 0;
1601 }
1602 
1603 /*
1604  * Stop all chip I/O so that the kernel's probe routines don't
1605  * get confused by errant DMAs when rebooting.
1606  */
1607 STATIC void rtk_shutdown(vsc)
1608 	void			*vsc;
1609 {
1610 	struct rtk_softc	*sc = (struct rtk_softc *)vsc;
1611 
1612 	rtk_stop(&sc->ethercom.ec_if, 0);
1613 }
1614 
1615 STATIC void
1616 rtk_tick(arg)
1617 	void *arg;
1618 {
1619 	struct rtk_softc *sc = arg;
1620 	int s = splnet();
1621 
1622 	mii_tick(&sc->mii);
1623 	splx(s);
1624 
1625 	callout_reset(&sc->rtk_tick_ch, hz, rtk_tick, sc);
1626 }
1627