xref: /netbsd-src/sys/dev/ic/rtl81x9.c (revision ce2c90c7c172d95d2402a5b3d96d8f8e6d138a21)
1 /*	$NetBSD: rtl81x9.c,v 1.64 2006/10/12 01:31:01 christos Exp $	*/
2 
3 /*
4  * Copyright (c) 1997, 1998
5  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  *	FreeBSD Id: if_rl.c,v 1.17 1999/06/19 20:17:37 wpaul Exp
35  */
36 
37 /*
38  * RealTek 8129/8139 PCI NIC driver
39  *
40  * Supports several extremely cheap PCI 10/100 adapters based on
41  * the RealTek chipset. Datasheets can be obtained from
42  * www.realtek.com.tw.
43  *
44  * Written by Bill Paul <wpaul@ctr.columbia.edu>
45  * Electrical Engineering Department
46  * Columbia University, New York City
47  */
48 
49 /*
50  * The RealTek 8139 PCI NIC redefines the meaning of 'low end.' This is
51  * probably the worst PCI ethernet controller ever made, with the possible
52  * exception of the FEAST chip made by SMC. The 8139 supports bus-master
53  * DMA, but it has a terrible interface that nullifies any performance
54  * gains that bus-master DMA usually offers.
55  *
56  * For transmission, the chip offers a series of four TX descriptor
57  * registers. Each transmit frame must be in a contiguous buffer, aligned
58  * on a longword (32-bit) boundary. This means we almost always have to
59  * do mbuf copies in order to transmit a frame, except in the unlikely
60  * case where a) the packet fits into a single mbuf, and b) the packet
61  * is 32-bit aligned within the mbuf's data area. The presence of only
62  * four descriptor registers means that we can never have more than four
63  * packets queued for transmission at any one time.
64  *
65  * Reception is not much better. The driver has to allocate a single large
66  * buffer area (up to 64K in size) into which the chip will DMA received
67  * frames. Because we don't know where within this region received packets
68  * will begin or end, we have no choice but to copy data from the buffer
69  * area into mbufs in order to pass the packets up to the higher protocol
70  * levels.
71  *
72  * It's impossible given this rotten design to really achieve decent
73  * performance at 100Mbps, unless you happen to have a 400MHz PII or
74  * some equally overmuscled CPU to drive it.
75  *
76  * On the bright side, the 8139 does have a built-in PHY, although
77  * rather than using an MDIO serial interface like most other NICs, the
78  * PHY registers are directly accessible through the 8139's register
79  * space. The 8139 supports autonegotiation, as well as a 64-bit multicast
80  * filter.
81  *
82  * The 8129 chip is an older version of the 8139 that uses an external PHY
83  * chip. The 8129 has a serial MDIO interface for accessing the MII where
84  * the 8139 lets you directly access the on-board PHY registers. We need
85  * to select which interface to use depending on the chip type.
86  */
87 
88 #include <sys/cdefs.h>
89 __KERNEL_RCSID(0, "$NetBSD: rtl81x9.c,v 1.64 2006/10/12 01:31:01 christos Exp $");
90 
91 #include "bpfilter.h"
92 #include "rnd.h"
93 
94 #include <sys/param.h>
95 #include <sys/systm.h>
96 #include <sys/callout.h>
97 #include <sys/device.h>
98 #include <sys/sockio.h>
99 #include <sys/mbuf.h>
100 #include <sys/malloc.h>
101 #include <sys/kernel.h>
102 #include <sys/socket.h>
103 
104 #include <uvm/uvm_extern.h>
105 
106 #include <net/if.h>
107 #include <net/if_arp.h>
108 #include <net/if_ether.h>
109 #include <net/if_dl.h>
110 #include <net/if_media.h>
111 
112 #if NBPFILTER > 0
113 #include <net/bpf.h>
114 #endif
115 #if NRND > 0
116 #include <sys/rnd.h>
117 #endif
118 
119 #include <machine/bus.h>
120 #include <machine/endian.h>
121 
122 #include <dev/mii/mii.h>
123 #include <dev/mii/miivar.h>
124 
125 #include <dev/ic/rtl81x9reg.h>
126 #include <dev/ic/rtl81x9var.h>
127 
128 #if defined(DEBUG)
129 #define STATIC
130 #else
131 #define STATIC static
132 #endif
133 
134 STATIC void rtk_reset(struct rtk_softc *);
135 STATIC void rtk_rxeof(struct rtk_softc *);
136 STATIC void rtk_txeof(struct rtk_softc *);
137 STATIC void rtk_start(struct ifnet *);
138 STATIC int rtk_ioctl(struct ifnet *, u_long, caddr_t);
139 STATIC int rtk_init(struct ifnet *);
140 STATIC void rtk_stop(struct ifnet *, int);
141 
142 STATIC void rtk_watchdog(struct ifnet *);
143 STATIC void rtk_shutdown(void *);
144 STATIC int rtk_ifmedia_upd(struct ifnet *);
145 STATIC void rtk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
146 
147 STATIC void rtk_eeprom_putbyte(struct rtk_softc *, int, int);
148 STATIC void rtk_mii_sync(struct rtk_softc *);
149 STATIC void rtk_mii_send(struct rtk_softc *, uint32_t, int);
150 STATIC int rtk_mii_readreg(struct rtk_softc *, struct rtk_mii_frame *);
151 STATIC int rtk_mii_writereg(struct rtk_softc *, struct rtk_mii_frame *);
152 
153 STATIC int rtk_phy_readreg(struct device *, int, int);
154 STATIC void rtk_phy_writereg(struct device *, int, int, int);
155 STATIC void rtk_phy_statchg(struct device *);
156 STATIC void rtk_tick(void *);
157 
158 STATIC int rtk_enable(struct rtk_softc *);
159 STATIC void rtk_disable(struct rtk_softc *);
160 STATIC void rtk_power(int, void *);
161 
162 STATIC int rtk_list_tx_init(struct rtk_softc *);
163 
164 #define EE_SET(x)					\
165 	CSR_WRITE_1(sc, RTK_EECMD,			\
166 		CSR_READ_1(sc, RTK_EECMD) | (x))
167 
168 #define EE_CLR(x)					\
169 	CSR_WRITE_1(sc, RTK_EECMD,			\
170 		CSR_READ_1(sc, RTK_EECMD) & ~(x))
171 
172 #define ETHER_PAD_LEN (ETHER_MIN_LEN - ETHER_CRC_LEN)
173 
174 /*
175  * Send a read command and address to the EEPROM, check for ACK.
176  */
177 STATIC void
178 rtk_eeprom_putbyte(struct rtk_softc *sc, int addr, int addr_len)
179 {
180 	int d, i;
181 
182 	d = (RTK_EECMD_READ << addr_len) | addr;
183 
184 	/*
185 	 * Feed in each bit and stobe the clock.
186 	 */
187 	for (i = RTK_EECMD_LEN + addr_len; i > 0; i--) {
188 		if (d & (1 << (i - 1))) {
189 			EE_SET(RTK_EE_DATAIN);
190 		} else {
191 			EE_CLR(RTK_EE_DATAIN);
192 		}
193 		DELAY(4);
194 		EE_SET(RTK_EE_CLK);
195 		DELAY(4);
196 		EE_CLR(RTK_EE_CLK);
197 		DELAY(4);
198 	}
199 }
200 
201 /*
202  * Read a word of data stored in the EEPROM at address 'addr.'
203  */
204 uint16_t
205 rtk_read_eeprom(struct rtk_softc *sc, int addr, int addr_len)
206 {
207 	uint16_t word;
208 	int i;
209 
210 	/* Enter EEPROM access mode. */
211 	CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_PROGRAM|RTK_EE_SEL);
212 
213 	/*
214 	 * Send address of word we want to read.
215 	 */
216 	rtk_eeprom_putbyte(sc, addr, addr_len);
217 
218 	CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_PROGRAM|RTK_EE_SEL);
219 
220 	/*
221 	 * Start reading bits from EEPROM.
222 	 */
223 	word = 0;
224 	for (i = 16; i > 0; i--) {
225 		EE_SET(RTK_EE_CLK);
226 		DELAY(4);
227 		if (CSR_READ_1(sc, RTK_EECMD) & RTK_EE_DATAOUT)
228 			word |= 1 << (i - 1);
229 		EE_CLR(RTK_EE_CLK);
230 		DELAY(4);
231 	}
232 
233 	/* Turn off EEPROM access mode. */
234 	CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
235 
236 	return word;
237 }
238 
239 /*
240  * MII access routines are provided for the 8129, which
241  * doesn't have a built-in PHY. For the 8139, we fake things
242  * up by diverting rtk_phy_readreg()/rtk_phy_writereg() to the
243  * direct access PHY registers.
244  */
245 #define MII_SET(x)					\
246 	CSR_WRITE_1(sc, RTK_MII,			\
247 		CSR_READ_1(sc, RTK_MII) | (x))
248 
249 #define MII_CLR(x)					\
250 	CSR_WRITE_1(sc, RTK_MII,			\
251 		CSR_READ_1(sc, RTK_MII) & ~(x))
252 
253 /*
254  * Sync the PHYs by setting data bit and strobing the clock 32 times.
255  */
256 STATIC void
257 rtk_mii_sync(struct rtk_softc *sc)
258 {
259 	int i;
260 
261 	MII_SET(RTK_MII_DIR|RTK_MII_DATAOUT);
262 
263 	for (i = 0; i < 32; i++) {
264 		MII_SET(RTK_MII_CLK);
265 		DELAY(1);
266 		MII_CLR(RTK_MII_CLK);
267 		DELAY(1);
268 	}
269 }
270 
271 /*
272  * Clock a series of bits through the MII.
273  */
274 STATIC void
275 rtk_mii_send(struct rtk_softc *sc, uint32_t bits, int cnt)
276 {
277 	int i;
278 
279 	MII_CLR(RTK_MII_CLK);
280 
281 	for (i = cnt; i > 0; i--) {
282 		if (bits & (1 << (i - 1))) {
283 			MII_SET(RTK_MII_DATAOUT);
284 		} else {
285 			MII_CLR(RTK_MII_DATAOUT);
286 		}
287 		DELAY(1);
288 		MII_CLR(RTK_MII_CLK);
289 		DELAY(1);
290 		MII_SET(RTK_MII_CLK);
291 	}
292 }
293 
294 /*
295  * Read an PHY register through the MII.
296  */
297 STATIC int
298 rtk_mii_readreg(struct rtk_softc *sc, struct rtk_mii_frame *frame)
299 {
300 	int i, ack, s;
301 
302 	s = splnet();
303 
304 	/*
305 	 * Set up frame for RX.
306 	 */
307 	frame->mii_stdelim = RTK_MII_STARTDELIM;
308 	frame->mii_opcode = RTK_MII_READOP;
309 	frame->mii_turnaround = 0;
310 	frame->mii_data = 0;
311 
312 	CSR_WRITE_2(sc, RTK_MII, 0);
313 
314 	/*
315 	 * Turn on data xmit.
316 	 */
317 	MII_SET(RTK_MII_DIR);
318 
319 	rtk_mii_sync(sc);
320 
321 	/*
322 	 * Send command/address info.
323 	 */
324 	rtk_mii_send(sc, frame->mii_stdelim, 2);
325 	rtk_mii_send(sc, frame->mii_opcode, 2);
326 	rtk_mii_send(sc, frame->mii_phyaddr, 5);
327 	rtk_mii_send(sc, frame->mii_regaddr, 5);
328 
329 	/* Idle bit */
330 	MII_CLR((RTK_MII_CLK|RTK_MII_DATAOUT));
331 	DELAY(1);
332 	MII_SET(RTK_MII_CLK);
333 	DELAY(1);
334 
335 	/* Turn off xmit. */
336 	MII_CLR(RTK_MII_DIR);
337 
338 	/* Check for ack */
339 	MII_CLR(RTK_MII_CLK);
340 	DELAY(1);
341 	ack = CSR_READ_2(sc, RTK_MII) & RTK_MII_DATAIN;
342 	MII_SET(RTK_MII_CLK);
343 	DELAY(1);
344 
345 	/*
346 	 * Now try reading data bits. If the ack failed, we still
347 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
348 	 */
349 	if (ack) {
350 		for (i = 0; i < 16; i++) {
351 			MII_CLR(RTK_MII_CLK);
352 			DELAY(1);
353 			MII_SET(RTK_MII_CLK);
354 			DELAY(1);
355 		}
356 		goto fail;
357 	}
358 
359 	for (i = 16; i > 0; i--) {
360 		MII_CLR(RTK_MII_CLK);
361 		DELAY(1);
362 		if (!ack) {
363 			if (CSR_READ_2(sc, RTK_MII) & RTK_MII_DATAIN)
364 				frame->mii_data |= 1 << (i - 1);
365 			DELAY(1);
366 		}
367 		MII_SET(RTK_MII_CLK);
368 		DELAY(1);
369 	}
370 
371  fail:
372 	MII_CLR(RTK_MII_CLK);
373 	DELAY(1);
374 	MII_SET(RTK_MII_CLK);
375 	DELAY(1);
376 
377 	splx(s);
378 
379 	if (ack)
380 		return 1;
381 	return 0;
382 }
383 
384 /*
385  * Write to a PHY register through the MII.
386  */
387 STATIC int
388 rtk_mii_writereg(struct rtk_softc *sc, struct rtk_mii_frame *frame)
389 {
390 	int s;
391 
392 	s = splnet();
393 	/*
394 	 * Set up frame for TX.
395 	 */
396 	frame->mii_stdelim = RTK_MII_STARTDELIM;
397 	frame->mii_opcode = RTK_MII_WRITEOP;
398 	frame->mii_turnaround = RTK_MII_TURNAROUND;
399 
400 	/*
401 	 * Turn on data output.
402 	 */
403 	MII_SET(RTK_MII_DIR);
404 
405 	rtk_mii_sync(sc);
406 
407 	rtk_mii_send(sc, frame->mii_stdelim, 2);
408 	rtk_mii_send(sc, frame->mii_opcode, 2);
409 	rtk_mii_send(sc, frame->mii_phyaddr, 5);
410 	rtk_mii_send(sc, frame->mii_regaddr, 5);
411 	rtk_mii_send(sc, frame->mii_turnaround, 2);
412 	rtk_mii_send(sc, frame->mii_data, 16);
413 
414 	/* Idle bit. */
415 	MII_SET(RTK_MII_CLK);
416 	DELAY(1);
417 	MII_CLR(RTK_MII_CLK);
418 	DELAY(1);
419 
420 	/*
421 	 * Turn off xmit.
422 	 */
423 	MII_CLR(RTK_MII_DIR);
424 
425 	splx(s);
426 
427 	return 0;
428 }
429 
430 STATIC int
431 rtk_phy_readreg(struct device *self, int phy, int reg)
432 {
433 	struct rtk_softc *sc = (void *)self;
434 	struct rtk_mii_frame frame;
435 	int rval;
436 	int rtk8139_reg;
437 
438 	if (sc->rtk_type == RTK_8139) {
439 		if (phy != 7)
440 			return 0;
441 
442 		switch (reg) {
443 		case MII_BMCR:
444 			rtk8139_reg = RTK_BMCR;
445 			break;
446 		case MII_BMSR:
447 			rtk8139_reg = RTK_BMSR;
448 			break;
449 		case MII_ANAR:
450 			rtk8139_reg = RTK_ANAR;
451 			break;
452 		case MII_ANER:
453 			rtk8139_reg = RTK_ANER;
454 			break;
455 		case MII_ANLPAR:
456 			rtk8139_reg = RTK_LPAR;
457 			break;
458 		default:
459 #if 0
460 			printf("%s: bad phy register\n", sc->sc_dev.dv_xname);
461 #endif
462 			return 0;
463 		}
464 		rval = CSR_READ_2(sc, rtk8139_reg);
465 		return rval;
466 	}
467 
468 	memset((char *)&frame, 0, sizeof(frame));
469 
470 	frame.mii_phyaddr = phy;
471 	frame.mii_regaddr = reg;
472 	rtk_mii_readreg(sc, &frame);
473 
474 	return frame.mii_data;
475 }
476 
477 STATIC void rtk_phy_writereg(struct device *self, int phy, int reg, int data)
478 {
479 	struct rtk_softc *sc = (void *)self;
480 	struct rtk_mii_frame frame;
481 	int rtk8139_reg;
482 
483 	if (sc->rtk_type == RTK_8139) {
484 		if (phy != 7)
485 			return;
486 
487 		switch (reg) {
488 		case MII_BMCR:
489 			rtk8139_reg = RTK_BMCR;
490 			break;
491 		case MII_BMSR:
492 			rtk8139_reg = RTK_BMSR;
493 			break;
494 		case MII_ANAR:
495 			rtk8139_reg = RTK_ANAR;
496 			break;
497 		case MII_ANER:
498 			rtk8139_reg = RTK_ANER;
499 			break;
500 		case MII_ANLPAR:
501 			rtk8139_reg = RTK_LPAR;
502 			break;
503 		default:
504 #if 0
505 			printf("%s: bad phy register\n", sc->sc_dev.dv_xname);
506 #endif
507 			return;
508 		}
509 		CSR_WRITE_2(sc, rtk8139_reg, data);
510 		return;
511 	}
512 
513 	memset((char *)&frame, 0, sizeof(frame));
514 
515 	frame.mii_phyaddr = phy;
516 	frame.mii_regaddr = reg;
517 	frame.mii_data = data;
518 
519 	rtk_mii_writereg(sc, &frame);
520 }
521 
522 STATIC void
523 rtk_phy_statchg(struct device *v __unused)
524 {
525 
526 	/* Nothing to do. */
527 }
528 
529 #define	rtk_calchash(addr) \
530 	(ether_crc32_be((addr), ETHER_ADDR_LEN) >> 26)
531 
532 /*
533  * Program the 64-bit multicast hash filter.
534  */
535 void
536 rtk_setmulti(struct rtk_softc *sc)
537 {
538 	struct ifnet *ifp;
539 	uint32_t hashes[2] = { 0, 0 };
540 	uint32_t rxfilt;
541 	struct ether_multi *enm;
542 	struct ether_multistep step;
543 	int h, mcnt;
544 
545 	ifp = &sc->ethercom.ec_if;
546 
547 	rxfilt = CSR_READ_4(sc, RTK_RXCFG);
548 
549 	if (ifp->if_flags & IFF_PROMISC) {
550  allmulti:
551 		ifp->if_flags |= IFF_ALLMULTI;
552 		rxfilt |= RTK_RXCFG_RX_MULTI;
553 		CSR_WRITE_4(sc, RTK_RXCFG, rxfilt);
554 		CSR_WRITE_4(sc, RTK_MAR0, 0xFFFFFFFF);
555 		CSR_WRITE_4(sc, RTK_MAR4, 0xFFFFFFFF);
556 		return;
557 	}
558 
559 	/* first, zot all the existing hash bits */
560 	CSR_WRITE_4(sc, RTK_MAR0, 0);
561 	CSR_WRITE_4(sc, RTK_MAR4, 0);
562 
563 	/* now program new ones */
564 	ETHER_FIRST_MULTI(step, &sc->ethercom, enm);
565 	mcnt = 0;
566 	while (enm != NULL) {
567 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
568 		    ETHER_ADDR_LEN) != 0)
569 			goto allmulti;
570 
571 		h = rtk_calchash(enm->enm_addrlo);
572 		if (h < 32)
573 			hashes[0] |= (1 << h);
574 		else
575 			hashes[1] |= (1 << (h - 32));
576 		mcnt++;
577 		ETHER_NEXT_MULTI(step, enm);
578 	}
579 
580 	ifp->if_flags &= ~IFF_ALLMULTI;
581 
582 	if (mcnt)
583 		rxfilt |= RTK_RXCFG_RX_MULTI;
584 	else
585 		rxfilt &= ~RTK_RXCFG_RX_MULTI;
586 
587 	CSR_WRITE_4(sc, RTK_RXCFG, rxfilt);
588 	CSR_WRITE_4(sc, RTK_MAR0, hashes[0]);
589 	CSR_WRITE_4(sc, RTK_MAR4, hashes[1]);
590 }
591 
592 void
593 rtk_reset(struct rtk_softc *sc)
594 {
595 	int i;
596 
597 	CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
598 
599 	for (i = 0; i < RTK_TIMEOUT; i++) {
600 		DELAY(10);
601 		if ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET) == 0)
602 			break;
603 	}
604 	if (i == RTK_TIMEOUT)
605 		printf("%s: reset never completed!\n", sc->sc_dev.dv_xname);
606 }
607 
608 /*
609  * Attach the interface. Allocate softc structures, do ifmedia
610  * setup and ethernet/BPF attach.
611  */
612 void
613 rtk_attach(struct rtk_softc *sc)
614 {
615 	struct ifnet *ifp;
616 	struct rtk_tx_desc *txd;
617 	uint16_t val;
618 	uint8_t eaddr[ETHER_ADDR_LEN];
619 	int error;
620 	int i, addr_len;
621 
622 	callout_init(&sc->rtk_tick_ch);
623 
624 	/*
625 	 * Check EEPROM type 9346 or 9356.
626 	 */
627 	if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
628 		addr_len = RTK_EEADDR_LEN1;
629 	else
630 		addr_len = RTK_EEADDR_LEN0;
631 
632 	/*
633 	 * Get station address.
634 	 */
635 	val = rtk_read_eeprom(sc, RTK_EE_EADDR0, addr_len);
636 	eaddr[0] = val & 0xff;
637 	eaddr[1] = val >> 8;
638 	val = rtk_read_eeprom(sc, RTK_EE_EADDR1, addr_len);
639 	eaddr[2] = val & 0xff;
640 	eaddr[3] = val >> 8;
641 	val = rtk_read_eeprom(sc, RTK_EE_EADDR2, addr_len);
642 	eaddr[4] = val & 0xff;
643 	eaddr[5] = val >> 8;
644 
645 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
646 	    RTK_RXBUFLEN + 16, PAGE_SIZE, 0, &sc->sc_dmaseg, 1, &sc->sc_dmanseg,
647 	    BUS_DMA_NOWAIT)) != 0) {
648 		printf("%s: can't allocate recv buffer, error = %d\n",
649 		    sc->sc_dev.dv_xname, error);
650 		goto fail_0;
651 	}
652 
653 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_dmaseg, sc->sc_dmanseg,
654 	    RTK_RXBUFLEN + 16, (caddr_t *)&sc->rtk_rx_buf,
655 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
656 		printf("%s: can't map recv buffer, error = %d\n",
657 		    sc->sc_dev.dv_xname, error);
658 		goto fail_1;
659 	}
660 
661 	if ((error = bus_dmamap_create(sc->sc_dmat,
662 	    RTK_RXBUFLEN + 16, 1, RTK_RXBUFLEN + 16, 0, BUS_DMA_NOWAIT,
663 	    &sc->recv_dmamap)) != 0) {
664 		printf("%s: can't create recv buffer DMA map, error = %d\n",
665 		    sc->sc_dev.dv_xname, error);
666 		goto fail_2;
667 	}
668 
669 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->recv_dmamap,
670 	    sc->rtk_rx_buf, RTK_RXBUFLEN + 16,
671 	    NULL, BUS_DMA_READ|BUS_DMA_NOWAIT)) != 0) {
672 		printf("%s: can't load recv buffer DMA map, error = %d\n",
673 		    sc->sc_dev.dv_xname, error);
674 		goto fail_3;
675 	}
676 
677 	for (i = 0; i < RTK_TX_LIST_CNT; i++) {
678 		txd = &sc->rtk_tx_descs[i];
679 		if ((error = bus_dmamap_create(sc->sc_dmat,
680 		    MCLBYTES, 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
681 		    &txd->txd_dmamap)) != 0) {
682 			printf("%s: can't create snd buffer DMA map,"
683 			    " error = %d\n", sc->sc_dev.dv_xname, error);
684 			goto fail_4;
685 		}
686 		txd->txd_txaddr = RTK_TXADDR0 + (i * 4);
687 		txd->txd_txstat = RTK_TXSTAT0 + (i * 4);
688 	}
689 	SIMPLEQ_INIT(&sc->rtk_tx_free);
690 	SIMPLEQ_INIT(&sc->rtk_tx_dirty);
691 
692 	/*
693 	 * From this point forward, the attachment cannot fail. A failure
694 	 * before this releases all resources thar may have been
695 	 * allocated.
696 	 */
697 	sc->sc_flags |= RTK_ATTACHED;
698 
699 	/* Init Early TX threshold. */
700 	sc->sc_txthresh = TXTH_256;
701 
702 	/* Reset the adapter. */
703 	rtk_reset(sc);
704 
705 	printf("%s: Ethernet address %s\n",
706 	    sc->sc_dev.dv_xname, ether_sprintf(eaddr));
707 
708 	ifp = &sc->ethercom.ec_if;
709 	ifp->if_softc = sc;
710 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
711 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
712 	ifp->if_ioctl = rtk_ioctl;
713 	ifp->if_start = rtk_start;
714 	ifp->if_watchdog = rtk_watchdog;
715 	ifp->if_init = rtk_init;
716 	ifp->if_stop = rtk_stop;
717 	IFQ_SET_READY(&ifp->if_snd);
718 
719 	/*
720 	 * Do ifmedia setup.
721 	 */
722 	sc->mii.mii_ifp = ifp;
723 	sc->mii.mii_readreg = rtk_phy_readreg;
724 	sc->mii.mii_writereg = rtk_phy_writereg;
725 	sc->mii.mii_statchg = rtk_phy_statchg;
726 	ifmedia_init(&sc->mii.mii_media, IFM_IMASK, rtk_ifmedia_upd,
727 	    rtk_ifmedia_sts);
728 	mii_attach(&sc->sc_dev, &sc->mii, 0xffffffff,
729 	    MII_PHY_ANY, MII_OFFSET_ANY, 0);
730 
731 	/* Choose a default media. */
732 	if (LIST_FIRST(&sc->mii.mii_phys) == NULL) {
733 		ifmedia_add(&sc->mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
734 		ifmedia_set(&sc->mii.mii_media, IFM_ETHER|IFM_NONE);
735 	} else {
736 		ifmedia_set(&sc->mii.mii_media, IFM_ETHER|IFM_AUTO);
737 	}
738 
739 	/*
740 	 * Call MI attach routines.
741 	 */
742 	if_attach(ifp);
743 	ether_ifattach(ifp, eaddr);
744 
745 	/*
746 	 * Make sure the interface is shutdown during reboot.
747 	 */
748 	sc->sc_sdhook = shutdownhook_establish(rtk_shutdown, sc);
749 	if (sc->sc_sdhook == NULL)
750 		printf("%s: WARNING: unable to establish shutdown hook\n",
751 		    sc->sc_dev.dv_xname);
752 	/*
753 	 * Add a suspend hook to make sure we come back up after a
754 	 * resume.
755 	 */
756 	sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
757 	    rtk_power, sc);
758 	if (sc->sc_powerhook == NULL)
759 		printf("%s: WARNING: unable to establish power hook\n",
760 		    sc->sc_dev.dv_xname);
761 
762 
763 #if NRND > 0
764 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
765 	    RND_TYPE_NET, 0);
766 #endif
767 
768 	return;
769  fail_4:
770 	for (i = 0; i < RTK_TX_LIST_CNT; i++) {
771 		txd = &sc->rtk_tx_descs[i];
772 		if (txd->txd_dmamap != NULL)
773 			bus_dmamap_destroy(sc->sc_dmat, txd->txd_dmamap);
774 	}
775  fail_3:
776 	bus_dmamap_destroy(sc->sc_dmat, sc->recv_dmamap);
777  fail_2:
778 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->rtk_rx_buf,
779 	    RTK_RXBUFLEN + 16);
780  fail_1:
781 	bus_dmamem_free(sc->sc_dmat, &sc->sc_dmaseg, sc->sc_dmanseg);
782  fail_0:
783 	return;
784 }
785 
786 /*
787  * Initialize the transmit descriptors.
788  */
789 STATIC int
790 rtk_list_tx_init(struct rtk_softc *sc)
791 {
792 	struct rtk_tx_desc *txd;
793 	int i;
794 
795 	while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_dirty)) != NULL)
796 		SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_dirty, txd_q);
797 	while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_free)) != NULL)
798 		SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_free, txd_q);
799 
800 	for (i = 0; i < RTK_TX_LIST_CNT; i++) {
801 		txd = &sc->rtk_tx_descs[i];
802 		CSR_WRITE_4(sc, txd->txd_txaddr, 0);
803 		SIMPLEQ_INSERT_TAIL(&sc->rtk_tx_free, txd, txd_q);
804 	}
805 
806 	return 0;
807 }
808 
809 /*
810  * rtk_activate:
811  *     Handle device activation/deactivation requests.
812  */
813 int
814 rtk_activate(struct device *self, enum devact act)
815 {
816 	struct rtk_softc *sc = (void *)self;
817 	int s, error;
818 
819 	error = 0;
820 	s = splnet();
821 	switch (act) {
822 	case DVACT_ACTIVATE:
823 		error = EOPNOTSUPP;
824 		break;
825 	case DVACT_DEACTIVATE:
826 		mii_activate(&sc->mii, act, MII_PHY_ANY, MII_OFFSET_ANY);
827 		if_deactivate(&sc->ethercom.ec_if);
828 		break;
829 	}
830 	splx(s);
831 
832 	return error;
833 }
834 
835 /*
836  * rtk_detach:
837  *     Detach a rtk interface.
838  */
839 int
840 rtk_detach(struct rtk_softc *sc)
841 {
842 	struct ifnet *ifp = &sc->ethercom.ec_if;
843 	struct rtk_tx_desc *txd;
844 	int i;
845 
846 	/*
847 	 * Succeed now if there isn't any work to do.
848 	 */
849 	if ((sc->sc_flags & RTK_ATTACHED) == 0)
850 		return 0;
851 
852 	/* Unhook our tick handler. */
853 	callout_stop(&sc->rtk_tick_ch);
854 
855 	/* Detach all PHYs. */
856 	mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
857 
858 	/* Delete all remaining media. */
859 	ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
860 
861 #if NRND > 0
862 	rnd_detach_source(&sc->rnd_source);
863 #endif
864 
865 	ether_ifdetach(ifp);
866 	if_detach(ifp);
867 
868 	for (i = 0; i < RTK_TX_LIST_CNT; i++) {
869 		txd = &sc->rtk_tx_descs[i];
870 		if (txd->txd_dmamap != NULL)
871 			bus_dmamap_destroy(sc->sc_dmat, txd->txd_dmamap);
872 	}
873 	bus_dmamap_destroy(sc->sc_dmat, sc->recv_dmamap);
874 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->rtk_rx_buf,
875 	    RTK_RXBUFLEN + 16);
876 	bus_dmamem_free(sc->sc_dmat, &sc->sc_dmaseg, sc->sc_dmanseg);
877 
878 	shutdownhook_disestablish(sc->sc_sdhook);
879 	powerhook_disestablish(sc->sc_powerhook);
880 
881 	return 0;
882 }
883 
884 /*
885  * rtk_enable:
886  *     Enable the RTL81X9 chip.
887  */
888 int
889 rtk_enable(struct rtk_softc *sc)
890 {
891 
892 	if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
893 		if ((*sc->sc_enable)(sc) != 0) {
894 			printf("%s: device enable failed\n",
895 			    sc->sc_dev.dv_xname);
896 			return EIO;
897 		}
898 		sc->sc_flags |= RTK_ENABLED;
899 	}
900 	return 0;
901 }
902 
903 /*
904  * rtk_disable:
905  *     Disable the RTL81X9 chip.
906  */
907 void
908 rtk_disable(struct rtk_softc *sc)
909 {
910 
911 	if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
912 		(*sc->sc_disable)(sc);
913 		sc->sc_flags &= ~RTK_ENABLED;
914 	}
915 }
916 
917 /*
918  * rtk_power:
919  *     Power management (suspend/resume) hook.
920  */
921 void
922 rtk_power(int why, void *arg)
923 {
924 	struct rtk_softc *sc = (void *)arg;
925 	struct ifnet *ifp = &sc->ethercom.ec_if;
926 	int s;
927 
928 	s = splnet();
929 	switch (why) {
930 	case PWR_SUSPEND:
931 	case PWR_STANDBY:
932 		rtk_stop(ifp, 0);
933 		if (sc->sc_power != NULL)
934 			(*sc->sc_power)(sc, why);
935 		break;
936 	case PWR_RESUME:
937 		if (ifp->if_flags & IFF_UP) {
938 			if (sc->sc_power != NULL)
939 				(*sc->sc_power)(sc, why);
940 			rtk_init(ifp);
941 		}
942 		break;
943 	case PWR_SOFTSUSPEND:
944 	case PWR_SOFTSTANDBY:
945 	case PWR_SOFTRESUME:
946 		break;
947 	}
948 	splx(s);
949 }
950 
951 /*
952  * A frame has been uploaded: pass the resulting mbuf chain up to
953  * the higher level protocols.
954  *
955  * You know there's something wrong with a PCI bus-master chip design.
956  *
957  * The receive operation is badly documented in the datasheet, so I'll
958  * attempt to document it here. The driver provides a buffer area and
959  * places its base address in the RX buffer start address register.
960  * The chip then begins copying frames into the RX buffer. Each frame
961  * is preceded by a 32-bit RX status word which specifies the length
962  * of the frame and certain other status bits. Each frame (starting with
963  * the status word) is also 32-bit aligned. The frame length is in the
964  * first 16 bits of the status word; the lower 15 bits correspond with
965  * the 'rx status register' mentioned in the datasheet.
966  *
967  * Note: to make the Alpha happy, the frame payload needs to be aligned
968  * on a 32-bit boundary. To achieve this, we copy the data to mbuf
969  * shifted forward 2 bytes.
970  */
971 STATIC void
972 rtk_rxeof(struct rtk_softc *sc)
973 {
974 	struct mbuf *m;
975 	struct ifnet *ifp;
976 	caddr_t rxbufpos, dst;
977 	u_int total_len, wrap;
978 	uint32_t rxstat;
979 	uint16_t cur_rx, new_rx;
980 	uint16_t limit;
981 	uint16_t rx_bytes, max_bytes;
982 
983 	ifp = &sc->ethercom.ec_if;
984 
985 	cur_rx = (CSR_READ_2(sc, RTK_CURRXADDR) + 16) % RTK_RXBUFLEN;
986 
987 	/* Do not try to read past this point. */
988 	limit = CSR_READ_2(sc, RTK_CURRXBUF) % RTK_RXBUFLEN;
989 
990 	if (limit < cur_rx)
991 		max_bytes = (RTK_RXBUFLEN - cur_rx) + limit;
992 	else
993 		max_bytes = limit - cur_rx;
994 	rx_bytes = 0;
995 
996 	while ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_EMPTY_RXBUF) == 0) {
997 		rxbufpos = sc->rtk_rx_buf + cur_rx;
998 		bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap, cur_rx,
999 		    RTK_RXSTAT_LEN, BUS_DMASYNC_POSTREAD);
1000 		rxstat = le32toh(*(uint32_t *)rxbufpos);
1001 		bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap, cur_rx,
1002 		    RTK_RXSTAT_LEN, BUS_DMASYNC_PREREAD);
1003 
1004 		/*
1005 		 * Here's a totally undocumented fact for you. When the
1006 		 * RealTek chip is in the process of copying a packet into
1007 		 * RAM for you, the length will be 0xfff0. If you spot a
1008 		 * packet header with this value, you need to stop. The
1009 		 * datasheet makes absolutely no mention of this and
1010 		 * RealTek should be shot for this.
1011 		 */
1012 		total_len = rxstat >> 16;
1013 		if (total_len == RTK_RXSTAT_UNFINISHED)
1014 			break;
1015 
1016 		if ((rxstat & RTK_RXSTAT_RXOK) == 0 ||
1017 		    total_len < ETHER_MIN_LEN ||
1018 		    total_len > ETHER_MAX_LEN) {
1019 			ifp->if_ierrors++;
1020 
1021 			/*
1022 			 * submitted by:[netbsd-pcmcia:00484]
1023 			 *	Takahiro Kambe <taca@sky.yamashina.kyoto.jp>
1024 			 * obtain from:
1025 			 *     FreeBSD if_rl.c rev 1.24->1.25
1026 			 *
1027 			 */
1028 #if 0
1029 			if (rxstat & (RTK_RXSTAT_BADSYM|RTK_RXSTAT_RUNT|
1030 			    RTK_RXSTAT_GIANT|RTK_RXSTAT_CRCERR|
1031 			    RTK_RXSTAT_ALIGNERR)) {
1032 				CSR_WRITE_2(sc, RTK_COMMAND, RTK_CMD_TX_ENB);
1033 				CSR_WRITE_2(sc, RTK_COMMAND,
1034 				    RTK_CMD_TX_ENB|RTK_CMD_RX_ENB);
1035 				CSR_WRITE_4(sc, RTK_RXCFG, RTK_RXCFG_CONFIG);
1036 				CSR_WRITE_4(sc, RTK_RXADDR,
1037 				    sc->recv_dmamap->dm_segs[0].ds_addr);
1038 				cur_rx = 0;
1039 			}
1040 			break;
1041 #else
1042 			rtk_init(ifp);
1043 			return;
1044 #endif
1045 		}
1046 
1047 		/* No errors; receive the packet. */
1048 		rx_bytes += total_len + RTK_RXSTAT_LEN;
1049 
1050 		/*
1051 		 * Avoid trying to read more bytes than we know
1052 		 * the chip has prepared for us.
1053 		 */
1054 		if (rx_bytes > max_bytes)
1055 			break;
1056 
1057 		/*
1058 		 * Skip the status word, wrapping around to the beginning
1059 		 * of the Rx area, if necessary.
1060 		 */
1061 		cur_rx = (cur_rx + RTK_RXSTAT_LEN) % RTK_RXBUFLEN;
1062 		rxbufpos = sc->rtk_rx_buf + cur_rx;
1063 
1064 		/*
1065 		 * Compute the number of bytes at which the packet
1066 		 * will wrap to the beginning of the ring buffer.
1067 		 */
1068 		wrap = RTK_RXBUFLEN - cur_rx;
1069 
1070 		/*
1071 		 * Compute where the next pending packet is.
1072 		 */
1073 		if (total_len > wrap)
1074 			new_rx = total_len - wrap;
1075 		else
1076 			new_rx = cur_rx + total_len;
1077 		/* Round up to 32-bit boundary. */
1078 		new_rx = ((new_rx + 3) & ~3) % RTK_RXBUFLEN;
1079 
1080 		/*
1081 		 * The RealTek chip includes the CRC with every
1082 		 * incoming packet; trim it off here.
1083 		 */
1084 		total_len -= ETHER_CRC_LEN;
1085 
1086 		/*
1087 		 * Now allocate an mbuf (and possibly a cluster) to hold
1088 		 * the packet. Note we offset the packet 2 bytes so that
1089 		 * data after the Ethernet header will be 4-byte aligned.
1090 		 */
1091 		MGETHDR(m, M_DONTWAIT, MT_DATA);
1092 		if (m == NULL) {
1093 			printf("%s: unable to allocate Rx mbuf\n",
1094 			    sc->sc_dev.dv_xname);
1095 			ifp->if_ierrors++;
1096 			goto next_packet;
1097 		}
1098 		if (total_len > (MHLEN - RTK_ETHER_ALIGN)) {
1099 			MCLGET(m, M_DONTWAIT);
1100 			if ((m->m_flags & M_EXT) == 0) {
1101 				printf("%s: unable to allocate Rx cluster\n",
1102 				    sc->sc_dev.dv_xname);
1103 				ifp->if_ierrors++;
1104 				m_freem(m);
1105 				m = NULL;
1106 				goto next_packet;
1107 			}
1108 		}
1109 		m->m_data += RTK_ETHER_ALIGN;	/* for alignment */
1110 		m->m_pkthdr.rcvif = ifp;
1111 		m->m_pkthdr.len = m->m_len = total_len;
1112 		dst = mtod(m, caddr_t);
1113 
1114 		/*
1115 		 * If the packet wraps, copy up to the wrapping point.
1116 		 */
1117 		if (total_len > wrap) {
1118 			bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
1119 			    cur_rx, wrap, BUS_DMASYNC_POSTREAD);
1120 			memcpy(dst, rxbufpos, wrap);
1121 			bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
1122 			    cur_rx, wrap, BUS_DMASYNC_PREREAD);
1123 			cur_rx = 0;
1124 			rxbufpos = sc->rtk_rx_buf;
1125 			total_len -= wrap;
1126 			dst += wrap;
1127 		}
1128 
1129 		/*
1130 		 * ...and now the rest.
1131 		 */
1132 		bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
1133 		    cur_rx, total_len, BUS_DMASYNC_POSTREAD);
1134 		memcpy(dst, rxbufpos, total_len);
1135 		bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
1136 		    cur_rx, total_len, BUS_DMASYNC_PREREAD);
1137 
1138  next_packet:
1139 		CSR_WRITE_2(sc, RTK_CURRXADDR, (new_rx - 16) % RTK_RXBUFLEN);
1140 		cur_rx = new_rx;
1141 
1142 		if (m == NULL)
1143 			continue;
1144 
1145 		ifp->if_ipackets++;
1146 
1147 #if NBPFILTER > 0
1148 		if (ifp->if_bpf)
1149 			bpf_mtap(ifp->if_bpf, m);
1150 #endif
1151 		/* pass it on. */
1152 		(*ifp->if_input)(ifp, m);
1153 	}
1154 }
1155 
1156 /*
1157  * A frame was downloaded to the chip. It's safe for us to clean up
1158  * the list buffers.
1159  */
1160 STATIC void
1161 rtk_txeof(struct rtk_softc *sc)
1162 {
1163 	struct ifnet *ifp;
1164 	struct rtk_tx_desc *txd;
1165 	uint32_t txstat;
1166 
1167 	ifp = &sc->ethercom.ec_if;
1168 
1169 	/*
1170 	 * Go through our tx list and free mbufs for those
1171 	 * frames that have been uploaded.
1172 	 */
1173 	while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_dirty)) != NULL) {
1174 		txstat = CSR_READ_4(sc, txd->txd_txstat);
1175 		if ((txstat & (RTK_TXSTAT_TX_OK|
1176 		    RTK_TXSTAT_TX_UNDERRUN|RTK_TXSTAT_TXABRT)) == 0)
1177 			break;
1178 
1179 		SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_dirty, txd_q);
1180 
1181 		bus_dmamap_sync(sc->sc_dmat, txd->txd_dmamap, 0,
1182 		    txd->txd_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1183 		bus_dmamap_unload(sc->sc_dmat, txd->txd_dmamap);
1184 		m_freem(txd->txd_mbuf);
1185 		txd->txd_mbuf = NULL;
1186 
1187 		ifp->if_collisions += (txstat & RTK_TXSTAT_COLLCNT) >> 24;
1188 
1189 		if (txstat & RTK_TXSTAT_TX_OK)
1190 			ifp->if_opackets++;
1191 		else {
1192 			ifp->if_oerrors++;
1193 
1194 			/*
1195 			 * Increase Early TX threshold if underrun occurred.
1196 			 * Increase step 64 bytes.
1197 			 */
1198 			if (txstat & RTK_TXSTAT_TX_UNDERRUN) {
1199 #ifdef DEBUG
1200 				printf("%s: transmit underrun;",
1201 				    sc->sc_dev.dv_xname);
1202 #endif
1203 				if (sc->sc_txthresh < TXTH_MAX) {
1204 					sc->sc_txthresh += 2;
1205 #ifdef DEBUG
1206 					printf(" new threshold: %d bytes",
1207 					    sc->sc_txthresh * 32);
1208 #endif
1209 				}
1210 				printf("\n");
1211 			}
1212 			if (txstat & (RTK_TXSTAT_TXABRT|RTK_TXSTAT_OUTOFWIN))
1213 				CSR_WRITE_4(sc, RTK_TXCFG, RTK_TXCFG_CONFIG);
1214 		}
1215 		SIMPLEQ_INSERT_TAIL(&sc->rtk_tx_free, txd, txd_q);
1216 		ifp->if_flags &= ~IFF_OACTIVE;
1217 	}
1218 
1219 	/* Clear the timeout timer if there is no pending packet. */
1220 	if (SIMPLEQ_EMPTY(&sc->rtk_tx_dirty))
1221 		ifp->if_timer = 0;
1222 
1223 }
1224 
1225 int
1226 rtk_intr(void *arg)
1227 {
1228 	struct rtk_softc *sc;
1229 	struct ifnet *ifp;
1230 	uint16_t status;
1231 	int handled;
1232 
1233 	sc = arg;
1234 	ifp = &sc->ethercom.ec_if;
1235 
1236 	/* Disable interrupts. */
1237 	CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1238 
1239 	handled = 0;
1240 	for (;;) {
1241 
1242 		status = CSR_READ_2(sc, RTK_ISR);
1243 		if (status)
1244 			CSR_WRITE_2(sc, RTK_ISR, status);
1245 
1246 		if ((status & RTK_INTRS) == 0)
1247 			break;
1248 
1249 		handled = 1;
1250 
1251 		if (status & RTK_ISR_RX_OK)
1252 			rtk_rxeof(sc);
1253 
1254 		if (status & RTK_ISR_RX_ERR)
1255 			rtk_rxeof(sc);
1256 
1257 		if (status & (RTK_ISR_TX_OK|RTK_ISR_TX_ERR))
1258 			rtk_txeof(sc);
1259 
1260 		if (status & RTK_ISR_SYSTEM_ERR) {
1261 			rtk_reset(sc);
1262 			rtk_init(ifp);
1263 		}
1264 	}
1265 
1266 	/* Re-enable interrupts. */
1267 	CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS);
1268 
1269 	if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
1270 		rtk_start(ifp);
1271 
1272 #if NRND > 0
1273 	if (RND_ENABLED(&sc->rnd_source))
1274 		rnd_add_uint32(&sc->rnd_source, status);
1275 #endif
1276 
1277 	return handled;
1278 }
1279 
1280 /*
1281  * Main transmit routine.
1282  */
1283 
1284 STATIC void
1285 rtk_start(struct ifnet *ifp)
1286 {
1287 	struct rtk_softc *sc;
1288 	struct rtk_tx_desc *txd;
1289 	struct mbuf *m_head, *m_new;
1290 	int error, len;
1291 
1292 	sc = ifp->if_softc;
1293 
1294 	while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_free)) != NULL) {
1295 		IFQ_POLL(&ifp->if_snd, m_head);
1296 		if (m_head == NULL)
1297 			break;
1298 		m_new = NULL;
1299 
1300 		/*
1301 		 * Load the DMA map.  If this fails, the packet didn't
1302 		 * fit in one DMA segment, and we need to copy.  Note,
1303 		 * the packet must also be aligned.
1304 		 * if the packet is too small, copy it too, so we're sure
1305 		 * so have enouth room for the pad buffer.
1306 		 */
1307 		if ((mtod(m_head, uintptr_t) & 3) != 0 ||
1308 		    m_head->m_pkthdr.len < ETHER_PAD_LEN ||
1309 		    bus_dmamap_load_mbuf(sc->sc_dmat, txd->txd_dmamap,
1310 			m_head, BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1311 			MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1312 			if (m_new == NULL) {
1313 				printf("%s: unable to allocate Tx mbuf\n",
1314 				    sc->sc_dev.dv_xname);
1315 				break;
1316 			}
1317 			if (m_head->m_pkthdr.len > MHLEN) {
1318 				MCLGET(m_new, M_DONTWAIT);
1319 				if ((m_new->m_flags & M_EXT) == 0) {
1320 					printf("%s: unable to allocate Tx "
1321 					    "cluster\n", sc->sc_dev.dv_xname);
1322 					m_freem(m_new);
1323 					break;
1324 				}
1325 			}
1326 			m_copydata(m_head, 0, m_head->m_pkthdr.len,
1327 			    mtod(m_new, caddr_t));
1328 			m_new->m_pkthdr.len = m_new->m_len =
1329 			    m_head->m_pkthdr.len;
1330 			if (m_head->m_pkthdr.len < ETHER_PAD_LEN) {
1331 				memset(
1332 				    mtod(m_new, caddr_t) + m_head->m_pkthdr.len,
1333 				    0, ETHER_PAD_LEN - m_head->m_pkthdr.len);
1334 				m_new->m_pkthdr.len = m_new->m_len =
1335 				    ETHER_PAD_LEN;
1336 			}
1337 			error = bus_dmamap_load_mbuf(sc->sc_dmat,
1338 			    txd->txd_dmamap, m_new,
1339 			    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1340 			if (error) {
1341 				printf("%s: unable to load Tx buffer, "
1342 				    "error = %d\n", sc->sc_dev.dv_xname, error);
1343 				break;
1344 			}
1345 		}
1346 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1347 #if NBPFILTER > 0
1348 		/*
1349 		 * If there's a BPF listener, bounce a copy of this frame
1350 		 * to him.
1351 		 */
1352 		if (ifp->if_bpf)
1353 			bpf_mtap(ifp->if_bpf, m_head);
1354 #endif
1355 		if (m_new != NULL) {
1356 			m_freem(m_head);
1357 			m_head = m_new;
1358 		}
1359 		txd->txd_mbuf = m_head;
1360 
1361 		SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_free, txd_q);
1362 		SIMPLEQ_INSERT_TAIL(&sc->rtk_tx_dirty, txd, txd_q);
1363 
1364 		/*
1365 		 * Transmit the frame.
1366 		 */
1367 		bus_dmamap_sync(sc->sc_dmat,
1368 		    txd->txd_dmamap, 0, txd->txd_dmamap->dm_mapsize,
1369 		    BUS_DMASYNC_PREWRITE);
1370 
1371 		len = txd->txd_dmamap->dm_segs[0].ds_len;
1372 
1373 		CSR_WRITE_4(sc, txd->txd_txaddr,
1374 		    txd->txd_dmamap->dm_segs[0].ds_addr);
1375 		CSR_WRITE_4(sc, txd->txd_txstat, RTK_TX_THRESH(sc) | len);
1376 
1377 		/*
1378 		 * Set a timeout in case the chip goes out to lunch.
1379 		 */
1380 		ifp->if_timer = 5;
1381 	}
1382 
1383 	/*
1384 	 * We broke out of the loop because all our TX slots are
1385 	 * full. Mark the NIC as busy until it drains some of the
1386 	 * packets from the queue.
1387 	 */
1388 	if (SIMPLEQ_EMPTY(&sc->rtk_tx_free))
1389 		ifp->if_flags |= IFF_OACTIVE;
1390 }
1391 
1392 STATIC int
1393 rtk_init(struct ifnet *ifp)
1394 {
1395 	struct rtk_softc *sc = ifp->if_softc;
1396 	int error, i;
1397 	uint32_t rxcfg;
1398 
1399 	if ((error = rtk_enable(sc)) != 0)
1400 		goto out;
1401 
1402 	/*
1403 	 * Cancel pending I/O.
1404 	 */
1405 	rtk_stop(ifp, 0);
1406 
1407 	/* Init our MAC address */
1408 	for (i = 0; i < ETHER_ADDR_LEN; i++) {
1409 		CSR_WRITE_1(sc, RTK_IDR0 + i, LLADDR(ifp->if_sadl)[i]);
1410 	}
1411 
1412 	/* Init the RX buffer pointer register. */
1413 	bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap, 0,
1414 	    sc->recv_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1415 	CSR_WRITE_4(sc, RTK_RXADDR, sc->recv_dmamap->dm_segs[0].ds_addr);
1416 
1417 	/* Init TX descriptors. */
1418 	rtk_list_tx_init(sc);
1419 
1420 	/* Init Early TX threshold. */
1421 	sc->sc_txthresh = TXTH_256;
1422 	/*
1423 	 * Enable transmit and receive.
1424 	 */
1425 	CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB|RTK_CMD_RX_ENB);
1426 
1427 	/*
1428 	 * Set the initial TX and RX configuration.
1429 	 */
1430 	CSR_WRITE_4(sc, RTK_TXCFG, RTK_TXCFG_CONFIG);
1431 	CSR_WRITE_4(sc, RTK_RXCFG, RTK_RXCFG_CONFIG);
1432 
1433 	/* Set the individual bit to receive frames for this host only. */
1434 	rxcfg = CSR_READ_4(sc, RTK_RXCFG);
1435 	rxcfg |= RTK_RXCFG_RX_INDIV;
1436 
1437 	/* If we want promiscuous mode, set the allframes bit. */
1438 	if (ifp->if_flags & IFF_PROMISC) {
1439 		rxcfg |= RTK_RXCFG_RX_ALLPHYS;
1440 		CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1441 	} else {
1442 		rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
1443 		CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1444 	}
1445 
1446 	/*
1447 	 * Set capture broadcast bit to capture broadcast frames.
1448 	 */
1449 	if (ifp->if_flags & IFF_BROADCAST) {
1450 		rxcfg |= RTK_RXCFG_RX_BROAD;
1451 		CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1452 	} else {
1453 		rxcfg &= ~RTK_RXCFG_RX_BROAD;
1454 		CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1455 	}
1456 
1457 	/*
1458 	 * Program the multicast filter, if necessary.
1459 	 */
1460 	rtk_setmulti(sc);
1461 
1462 	/*
1463 	 * Enable interrupts.
1464 	 */
1465 	CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS);
1466 
1467 	/* Start RX/TX process. */
1468 	CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
1469 
1470 	/* Enable receiver and transmitter. */
1471 	CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB|RTK_CMD_RX_ENB);
1472 
1473 	CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD|RTK_CFG1_FULLDUPLEX);
1474 
1475 	/*
1476 	 * Set current media.
1477 	 */
1478 	mii_mediachg(&sc->mii);
1479 
1480 	ifp->if_flags |= IFF_RUNNING;
1481 	ifp->if_flags &= ~IFF_OACTIVE;
1482 
1483 	callout_reset(&sc->rtk_tick_ch, hz, rtk_tick, sc);
1484 
1485  out:
1486 	if (error) {
1487 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1488 		ifp->if_timer = 0;
1489 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1490 	}
1491 	return error;
1492 }
1493 
1494 /*
1495  * Set media options.
1496  */
1497 STATIC int
1498 rtk_ifmedia_upd(struct ifnet *ifp)
1499 {
1500 	struct rtk_softc *sc;
1501 
1502 	sc = ifp->if_softc;
1503 
1504 	return mii_mediachg(&sc->mii);
1505 }
1506 
1507 /*
1508  * Report current media status.
1509  */
1510 STATIC void
1511 rtk_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1512 {
1513 	struct rtk_softc *sc;
1514 
1515 	sc = ifp->if_softc;
1516 
1517 	mii_pollstat(&sc->mii);
1518 	ifmr->ifm_status = sc->mii.mii_media_status;
1519 	ifmr->ifm_active = sc->mii.mii_media_active;
1520 }
1521 
1522 STATIC int
1523 rtk_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1524 {
1525 	struct rtk_softc *sc = ifp->if_softc;
1526 	struct ifreq *ifr = (struct ifreq *)data;
1527 	int s, error;
1528 
1529 	s = splnet();
1530 
1531 	switch (command) {
1532 	case SIOCGIFMEDIA:
1533 	case SIOCSIFMEDIA:
1534 		error = ifmedia_ioctl(ifp, ifr, &sc->mii.mii_media, command);
1535 		break;
1536 
1537 	default:
1538 		error = ether_ioctl(ifp, command, data);
1539 		if (error == ENETRESET) {
1540 			if (ifp->if_flags & IFF_RUNNING) {
1541 				/*
1542 				 * Multicast list has changed.  Set the
1543 				 * hardware filter accordingly.
1544 				 */
1545 				rtk_setmulti(sc);
1546 			}
1547 			error = 0;
1548 		}
1549 		break;
1550 	}
1551 
1552 	splx(s);
1553 
1554 	return error;
1555 }
1556 
1557 STATIC void
1558 rtk_watchdog(struct ifnet *ifp)
1559 {
1560 	struct rtk_softc *sc;
1561 
1562 	sc = ifp->if_softc;
1563 
1564 	printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
1565 	ifp->if_oerrors++;
1566 	rtk_txeof(sc);
1567 	rtk_rxeof(sc);
1568 	rtk_init(ifp);
1569 }
1570 
1571 /*
1572  * Stop the adapter and free any mbufs allocated to the
1573  * RX and TX lists.
1574  */
1575 STATIC void
1576 rtk_stop(struct ifnet *ifp, int disable)
1577 {
1578 	struct rtk_softc *sc = ifp->if_softc;
1579 	struct rtk_tx_desc *txd;
1580 
1581 	callout_stop(&sc->rtk_tick_ch);
1582 
1583 	mii_down(&sc->mii);
1584 
1585 	CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
1586 	CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1587 
1588 	/*
1589 	 * Free the TX list buffers.
1590 	 */
1591 	while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_dirty)) != NULL) {
1592 		SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_dirty, txd_q);
1593 		bus_dmamap_unload(sc->sc_dmat, txd->txd_dmamap);
1594 		m_freem(txd->txd_mbuf);
1595 		txd->txd_mbuf = NULL;
1596 		CSR_WRITE_4(sc, txd->txd_txaddr, 0);
1597 	}
1598 
1599 	if (disable)
1600 		rtk_disable(sc);
1601 
1602 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1603 	ifp->if_timer = 0;
1604 }
1605 
1606 /*
1607  * Stop all chip I/O so that the kernel's probe routines don't
1608  * get confused by errant DMAs when rebooting.
1609  */
1610 STATIC void
1611 rtk_shutdown(void *arg)
1612 {
1613 	struct rtk_softc *sc = (struct rtk_softc *)arg;
1614 
1615 	rtk_stop(&sc->ethercom.ec_if, 0);
1616 }
1617 
1618 STATIC void
1619 rtk_tick(void *arg)
1620 {
1621 	struct rtk_softc *sc = arg;
1622 	int s;
1623 
1624 	s = splnet();
1625 	mii_tick(&sc->mii);
1626 	splx(s);
1627 
1628 	callout_reset(&sc->rtk_tick_ch, hz, rtk_tick, sc);
1629 }
1630