xref: /netbsd-src/sys/dev/ic/rtl81x9.c (revision aaf4ece63a859a04e37cf3a7229b5fab0157cc06)
1 /*	$NetBSD: rtl81x9.c,v 1.52 2005/12/08 18:06:42 xtraeme Exp $	*/
2 
3 /*
4  * Copyright (c) 1997, 1998
5  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  *	FreeBSD Id: if_rl.c,v 1.17 1999/06/19 20:17:37 wpaul Exp
35  */
36 
37 /*
38  * RealTek 8129/8139 PCI NIC driver
39  *
40  * Supports several extremely cheap PCI 10/100 adapters based on
41  * the RealTek chipset. Datasheets can be obtained from
42  * www.realtek.com.tw.
43  *
44  * Written by Bill Paul <wpaul@ctr.columbia.edu>
45  * Electrical Engineering Department
46  * Columbia University, New York City
47  */
48 
49 /*
50  * The RealTek 8139 PCI NIC redefines the meaning of 'low end.' This is
51  * probably the worst PCI ethernet controller ever made, with the possible
52  * exception of the FEAST chip made by SMC. The 8139 supports bus-master
53  * DMA, but it has a terrible interface that nullifies any performance
54  * gains that bus-master DMA usually offers.
55  *
56  * For transmission, the chip offers a series of four TX descriptor
57  * registers. Each transmit frame must be in a contiguous buffer, aligned
58  * on a longword (32-bit) boundary. This means we almost always have to
59  * do mbuf copies in order to transmit a frame, except in the unlikely
60  * case where a) the packet fits into a single mbuf, and b) the packet
61  * is 32-bit aligned within the mbuf's data area. The presence of only
62  * four descriptor registers means that we can never have more than four
63  * packets queued for transmission at any one time.
64  *
65  * Reception is not much better. The driver has to allocate a single large
66  * buffer area (up to 64K in size) into which the chip will DMA received
67  * frames. Because we don't know where within this region received packets
68  * will begin or end, we have no choice but to copy data from the buffer
69  * area into mbufs in order to pass the packets up to the higher protocol
70  * levels.
71  *
72  * It's impossible given this rotten design to really achieve decent
73  * performance at 100Mbps, unless you happen to have a 400MHz PII or
74  * some equally overmuscled CPU to drive it.
75  *
76  * On the bright side, the 8139 does have a built-in PHY, although
77  * rather than using an MDIO serial interface like most other NICs, the
78  * PHY registers are directly accessible through the 8139's register
79  * space. The 8139 supports autonegotiation, as well as a 64-bit multicast
80  * filter.
81  *
82  * The 8129 chip is an older version of the 8139 that uses an external PHY
83  * chip. The 8129 has a serial MDIO interface for accessing the MII where
84  * the 8139 lets you directly access the on-board PHY registers. We need
85  * to select which interface to use depending on the chip type.
86  */
87 
88 #include <sys/cdefs.h>
89 __KERNEL_RCSID(0, "$NetBSD: rtl81x9.c,v 1.52 2005/12/08 18:06:42 xtraeme Exp $");
90 
91 #include "bpfilter.h"
92 #include "rnd.h"
93 
94 #include <sys/param.h>
95 #include <sys/systm.h>
96 #include <sys/callout.h>
97 #include <sys/device.h>
98 #include <sys/sockio.h>
99 #include <sys/mbuf.h>
100 #include <sys/malloc.h>
101 #include <sys/kernel.h>
102 #include <sys/socket.h>
103 
104 #include <uvm/uvm_extern.h>
105 
106 #include <net/if.h>
107 #include <net/if_arp.h>
108 #include <net/if_ether.h>
109 #include <net/if_dl.h>
110 #include <net/if_media.h>
111 
112 #if NBPFILTER > 0
113 #include <net/bpf.h>
114 #endif
115 #if NRND > 0
116 #include <sys/rnd.h>
117 #endif
118 
119 #include <machine/bus.h>
120 #include <machine/endian.h>
121 
122 #include <dev/mii/mii.h>
123 #include <dev/mii/miivar.h>
124 
125 #include <dev/ic/rtl81x9reg.h>
126 #include <dev/ic/rtl81x9var.h>
127 
128 #if defined(DEBUG)
129 #define STATIC
130 #else
131 #define STATIC static
132 #endif
133 
134 STATIC void rtk_reset		(struct rtk_softc *);
135 STATIC void rtk_rxeof		(struct rtk_softc *);
136 STATIC void rtk_txeof		(struct rtk_softc *);
137 STATIC void rtk_start		(struct ifnet *);
138 STATIC int rtk_ioctl		(struct ifnet *, u_long, caddr_t);
139 STATIC int rtk_init		(struct ifnet *);
140 STATIC void rtk_stop		(struct ifnet *, int);
141 
142 STATIC void rtk_watchdog(struct ifnet *);
143 STATIC void rtk_shutdown(void *);
144 STATIC int rtk_ifmedia_upd(struct ifnet *);
145 STATIC void rtk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
146 
147 STATIC void rtk_eeprom_putbyte(struct rtk_softc *, int, int);
148 STATIC void rtk_mii_sync(struct rtk_softc *);
149 STATIC void rtk_mii_send(struct rtk_softc *, u_int32_t, int);
150 STATIC int rtk_mii_readreg(struct rtk_softc *, struct rtk_mii_frame *);
151 STATIC int rtk_mii_writereg(struct rtk_softc *, struct rtk_mii_frame *);
152 
153 STATIC int rtk_phy_readreg(struct device *, int, int);
154 STATIC void rtk_phy_writereg(struct device *, int, int, int);
155 STATIC void rtk_phy_statchg(struct device *);
156 STATIC void rtk_tick		(void *);
157 
158 STATIC int rtk_enable		(struct rtk_softc *);
159 STATIC void rtk_disable		(struct rtk_softc *);
160 STATIC void rtk_power		(int, void *);
161 
162 STATIC int rtk_list_tx_init(struct rtk_softc *);
163 
164 #define EE_SET(x)					\
165 	CSR_WRITE_1(sc, RTK_EECMD,			\
166 		CSR_READ_1(sc, RTK_EECMD) | (x))
167 
168 #define EE_CLR(x)					\
169 	CSR_WRITE_1(sc, RTK_EECMD,			\
170 		CSR_READ_1(sc, RTK_EECMD) & ~(x))
171 
172 #define ETHER_PAD_LEN (ETHER_MIN_LEN - ETHER_CRC_LEN)
173 
174 /*
175  * Send a read command and address to the EEPROM, check for ACK.
176  */
177 STATIC void
178 rtk_eeprom_putbyte(sc, addr, addr_len)
179 	struct rtk_softc	*sc;
180 	int			addr, addr_len;
181 {
182 	int			d, i;
183 
184 	d = (RTK_EECMD_READ << addr_len) | addr;
185 
186 	/*
187 	 * Feed in each bit and stobe the clock.
188 	 */
189 	for (i = RTK_EECMD_LEN + addr_len; i > 0; i--) {
190 		if (d & (1 << (i - 1))) {
191 			EE_SET(RTK_EE_DATAIN);
192 		} else {
193 			EE_CLR(RTK_EE_DATAIN);
194 		}
195 		DELAY(4);
196 		EE_SET(RTK_EE_CLK);
197 		DELAY(4);
198 		EE_CLR(RTK_EE_CLK);
199 		DELAY(4);
200 	}
201 }
202 
203 /*
204  * Read a word of data stored in the EEPROM at address 'addr.'
205  */
206 u_int16_t
207 rtk_read_eeprom(sc, addr, addr_len)
208 	struct rtk_softc	*sc;
209 	int			addr, addr_len;
210 {
211 	u_int16_t		word = 0;
212 	int			i;
213 
214 	/* Enter EEPROM access mode. */
215 	CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_PROGRAM|RTK_EE_SEL);
216 
217 	/*
218 	 * Send address of word we want to read.
219 	 */
220 	rtk_eeprom_putbyte(sc, addr, addr_len);
221 
222 	CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_PROGRAM|RTK_EE_SEL);
223 
224 	/*
225 	 * Start reading bits from EEPROM.
226 	 */
227 	for (i = 16; i > 0; i--) {
228 		EE_SET(RTK_EE_CLK);
229 		DELAY(4);
230 		if (CSR_READ_1(sc, RTK_EECMD) & RTK_EE_DATAOUT)
231 			word |= 1 << (i - 1);
232 		EE_CLR(RTK_EE_CLK);
233 		DELAY(4);
234 	}
235 
236 	/* Turn off EEPROM access mode. */
237 	CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
238 
239 	return (word);
240 }
241 
242 /*
243  * MII access routines are provided for the 8129, which
244  * doesn't have a built-in PHY. For the 8139, we fake things
245  * up by diverting rtk_phy_readreg()/rtk_phy_writereg() to the
246  * direct access PHY registers.
247  */
248 #define MII_SET(x)					\
249 	CSR_WRITE_1(sc, RTK_MII,			\
250 		CSR_READ_1(sc, RTK_MII) | (x))
251 
252 #define MII_CLR(x)					\
253 	CSR_WRITE_1(sc, RTK_MII,			\
254 		CSR_READ_1(sc, RTK_MII) & ~(x))
255 
256 /*
257  * Sync the PHYs by setting data bit and strobing the clock 32 times.
258  */
259 STATIC void
260 rtk_mii_sync(sc)
261 	struct rtk_softc	*sc;
262 {
263 	int			i;
264 
265 	MII_SET(RTK_MII_DIR|RTK_MII_DATAOUT);
266 
267 	for (i = 0; i < 32; i++) {
268 		MII_SET(RTK_MII_CLK);
269 		DELAY(1);
270 		MII_CLR(RTK_MII_CLK);
271 		DELAY(1);
272 	}
273 }
274 
275 /*
276  * Clock a series of bits through the MII.
277  */
278 STATIC void
279 rtk_mii_send(sc, bits, cnt)
280 	struct rtk_softc	*sc;
281 	u_int32_t		bits;
282 	int			cnt;
283 {
284 	int			i;
285 
286 	MII_CLR(RTK_MII_CLK);
287 
288 	for (i = cnt; i > 0; i--) {
289                 if (bits & (1 << (i - 1))) {
290 			MII_SET(RTK_MII_DATAOUT);
291                 } else {
292 			MII_CLR(RTK_MII_DATAOUT);
293                 }
294 		DELAY(1);
295 		MII_CLR(RTK_MII_CLK);
296 		DELAY(1);
297 		MII_SET(RTK_MII_CLK);
298 	}
299 }
300 
301 /*
302  * Read an PHY register through the MII.
303  */
304 STATIC int
305 rtk_mii_readreg(sc, frame)
306 	struct rtk_softc	*sc;
307 	struct rtk_mii_frame	*frame;
308 {
309 	int			i, ack, s;
310 
311 	s = splnet();
312 
313 	/*
314 	 * Set up frame for RX.
315 	 */
316 	frame->mii_stdelim = RTK_MII_STARTDELIM;
317 	frame->mii_opcode = RTK_MII_READOP;
318 	frame->mii_turnaround = 0;
319 	frame->mii_data = 0;
320 
321 	CSR_WRITE_2(sc, RTK_MII, 0);
322 
323 	/*
324  	 * Turn on data xmit.
325 	 */
326 	MII_SET(RTK_MII_DIR);
327 
328 	rtk_mii_sync(sc);
329 
330 	/*
331 	 * Send command/address info.
332 	 */
333 	rtk_mii_send(sc, frame->mii_stdelim, 2);
334 	rtk_mii_send(sc, frame->mii_opcode, 2);
335 	rtk_mii_send(sc, frame->mii_phyaddr, 5);
336 	rtk_mii_send(sc, frame->mii_regaddr, 5);
337 
338 	/* Idle bit */
339 	MII_CLR((RTK_MII_CLK|RTK_MII_DATAOUT));
340 	DELAY(1);
341 	MII_SET(RTK_MII_CLK);
342 	DELAY(1);
343 
344 	/* Turn off xmit. */
345 	MII_CLR(RTK_MII_DIR);
346 
347 	/* Check for ack */
348 	MII_CLR(RTK_MII_CLK);
349 	DELAY(1);
350 	MII_SET(RTK_MII_CLK);
351 	DELAY(1);
352 	ack = CSR_READ_2(sc, RTK_MII) & RTK_MII_DATAIN;
353 
354 	/*
355 	 * Now try reading data bits. If the ack failed, we still
356 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
357 	 */
358 	if (ack) {
359 		for (i = 0; i < 16; i++) {
360 			MII_CLR(RTK_MII_CLK);
361 			DELAY(1);
362 			MII_SET(RTK_MII_CLK);
363 			DELAY(1);
364 		}
365 		goto fail;
366 	}
367 
368 	for (i = 16; i > 0; i--) {
369 		MII_CLR(RTK_MII_CLK);
370 		DELAY(1);
371 		if (!ack) {
372 			if (CSR_READ_2(sc, RTK_MII) & RTK_MII_DATAIN)
373 				frame->mii_data |= 1 << (i - 1);
374 			DELAY(1);
375 		}
376 		MII_SET(RTK_MII_CLK);
377 		DELAY(1);
378 	}
379 
380  fail:
381 	MII_CLR(RTK_MII_CLK);
382 	DELAY(1);
383 	MII_SET(RTK_MII_CLK);
384 	DELAY(1);
385 
386 	splx(s);
387 
388 	if (ack)
389 		return (1);
390 	return (0);
391 }
392 
393 /*
394  * Write to a PHY register through the MII.
395  */
396 STATIC int
397 rtk_mii_writereg(sc, frame)
398 	struct rtk_softc	*sc;
399 	struct rtk_mii_frame	*frame;
400 {
401 	int			s;
402 
403 	s = splnet();
404 	/*
405 	 * Set up frame for TX.
406 	 */
407 	frame->mii_stdelim = RTK_MII_STARTDELIM;
408 	frame->mii_opcode = RTK_MII_WRITEOP;
409 	frame->mii_turnaround = RTK_MII_TURNAROUND;
410 
411 	/*
412  	 * Turn on data output.
413 	 */
414 	MII_SET(RTK_MII_DIR);
415 
416 	rtk_mii_sync(sc);
417 
418 	rtk_mii_send(sc, frame->mii_stdelim, 2);
419 	rtk_mii_send(sc, frame->mii_opcode, 2);
420 	rtk_mii_send(sc, frame->mii_phyaddr, 5);
421 	rtk_mii_send(sc, frame->mii_regaddr, 5);
422 	rtk_mii_send(sc, frame->mii_turnaround, 2);
423 	rtk_mii_send(sc, frame->mii_data, 16);
424 
425 	/* Idle bit. */
426 	MII_SET(RTK_MII_CLK);
427 	DELAY(1);
428 	MII_CLR(RTK_MII_CLK);
429 	DELAY(1);
430 
431 	/*
432 	 * Turn off xmit.
433 	 */
434 	MII_CLR(RTK_MII_DIR);
435 
436 	splx(s);
437 
438 	return (0);
439 }
440 
441 STATIC int
442 rtk_phy_readreg(self, phy, reg)
443 	struct device		*self;
444 	int			phy, reg;
445 {
446 	struct rtk_softc	*sc = (void *)self;
447 	struct rtk_mii_frame	frame;
448 	int			rval = 0;
449 	int			rtk8139_reg = 0;
450 
451 	if (sc->rtk_type == RTK_8139) {
452 		if (phy != 7)
453 			return (0);
454 
455 		switch(reg) {
456 		case MII_BMCR:
457 			rtk8139_reg = RTK_BMCR;
458 			break;
459 		case MII_BMSR:
460 			rtk8139_reg = RTK_BMSR;
461 			break;
462 		case MII_ANAR:
463 			rtk8139_reg = RTK_ANAR;
464 			break;
465 		case MII_ANER:
466 			rtk8139_reg = RTK_ANER;
467 			break;
468 		case MII_ANLPAR:
469 			rtk8139_reg = RTK_LPAR;
470 			break;
471 		default:
472 #if 0
473 			printf("%s: bad phy register\n", sc->sc_dev.dv_xname);
474 #endif
475 			return (0);
476 		}
477 		rval = CSR_READ_2(sc, rtk8139_reg);
478 		return (rval);
479 	}
480 
481 	memset((char *)&frame, 0, sizeof(frame));
482 
483 	frame.mii_phyaddr = phy;
484 	frame.mii_regaddr = reg;
485 	rtk_mii_readreg(sc, &frame);
486 
487 	return (frame.mii_data);
488 }
489 
490 STATIC void rtk_phy_writereg(self, phy, reg, data)
491 	struct device		*self;
492 	int			phy, reg;
493 	int			data;
494 {
495 	struct rtk_softc	*sc = (void *)self;
496 	struct rtk_mii_frame	frame;
497 	int			rtk8139_reg = 0;
498 
499 	if (sc->rtk_type == RTK_8139) {
500 		if (phy != 7)
501 			return;
502 
503 		switch(reg) {
504 		case MII_BMCR:
505 			rtk8139_reg = RTK_BMCR;
506 			break;
507 		case MII_BMSR:
508 			rtk8139_reg = RTK_BMSR;
509 			break;
510 		case MII_ANAR:
511 			rtk8139_reg = RTK_ANAR;
512 			break;
513 		case MII_ANER:
514 			rtk8139_reg = RTK_ANER;
515 			break;
516 		case MII_ANLPAR:
517 			rtk8139_reg = RTK_LPAR;
518 			break;
519 		default:
520 #if 0
521 			printf("%s: bad phy register\n", sc->sc_dev.dv_xname);
522 #endif
523 			return;
524 		}
525 		CSR_WRITE_2(sc, rtk8139_reg, data);
526 		return;
527 	}
528 
529 	memset((char *)&frame, 0, sizeof(frame));
530 
531 	frame.mii_phyaddr = phy;
532 	frame.mii_regaddr = reg;
533 	frame.mii_data = data;
534 
535 	rtk_mii_writereg(sc, &frame);
536 }
537 
538 STATIC void
539 rtk_phy_statchg(v)
540 	struct device *v;
541 {
542 
543 	/* Nothing to do. */
544 }
545 
546 #define	rtk_calchash(addr) \
547 	(ether_crc32_be((addr), ETHER_ADDR_LEN) >> 26)
548 
549 /*
550  * Program the 64-bit multicast hash filter.
551  */
552 void
553 rtk_setmulti(sc)
554 	struct rtk_softc	*sc;
555 {
556 	struct ifnet		*ifp;
557 	int			h = 0;
558 	u_int32_t		hashes[2] = { 0, 0 };
559 	u_int32_t		rxfilt;
560 	int			mcnt = 0;
561 	struct ether_multi *enm;
562 	struct ether_multistep step;
563 
564 	ifp = &sc->ethercom.ec_if;
565 
566 	rxfilt = CSR_READ_4(sc, RTK_RXCFG);
567 
568 	if (ifp->if_flags & IFF_PROMISC) {
569 allmulti:
570 		ifp->if_flags |= IFF_ALLMULTI;
571 		rxfilt |= RTK_RXCFG_RX_MULTI;
572 		CSR_WRITE_4(sc, RTK_RXCFG, rxfilt);
573 		CSR_WRITE_4(sc, RTK_MAR0, 0xFFFFFFFF);
574 		CSR_WRITE_4(sc, RTK_MAR4, 0xFFFFFFFF);
575 		return;
576 	}
577 
578 	/* first, zot all the existing hash bits */
579 	CSR_WRITE_4(sc, RTK_MAR0, 0);
580 	CSR_WRITE_4(sc, RTK_MAR4, 0);
581 
582 	/* now program new ones */
583 	ETHER_FIRST_MULTI(step, &sc->ethercom, enm);
584 	while (enm != NULL) {
585 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
586 		    ETHER_ADDR_LEN) != 0)
587 			goto allmulti;
588 
589 		h = rtk_calchash(enm->enm_addrlo);
590 		if (h < 32)
591 			hashes[0] |= (1 << h);
592 		else
593 			hashes[1] |= (1 << (h - 32));
594 		mcnt++;
595 		ETHER_NEXT_MULTI(step, enm);
596 	}
597 
598 	ifp->if_flags &= ~IFF_ALLMULTI;
599 
600 	if (mcnt)
601 		rxfilt |= RTK_RXCFG_RX_MULTI;
602 	else
603 		rxfilt &= ~RTK_RXCFG_RX_MULTI;
604 
605 	CSR_WRITE_4(sc, RTK_RXCFG, rxfilt);
606 	CSR_WRITE_4(sc, RTK_MAR0, hashes[0]);
607 	CSR_WRITE_4(sc, RTK_MAR4, hashes[1]);
608 }
609 
610 void
611 rtk_reset(sc)
612 	struct rtk_softc	*sc;
613 {
614 	int			i;
615 
616 	CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
617 
618 	for (i = 0; i < RTK_TIMEOUT; i++) {
619 		DELAY(10);
620 		if ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET) == 0)
621 			break;
622 	}
623 	if (i == RTK_TIMEOUT)
624 		printf("%s: reset never completed!\n", sc->sc_dev.dv_xname);
625 }
626 
627 /*
628  * Attach the interface. Allocate softc structures, do ifmedia
629  * setup and ethernet/BPF attach.
630  */
631 void
632 rtk_attach(sc)
633 	struct rtk_softc *sc;
634 {
635 	struct ifnet *ifp;
636 	struct rtk_tx_desc *txd;
637 	u_int16_t val;
638 	u_int8_t eaddr[ETHER_ADDR_LEN];
639 	int error;
640 	int i, addr_len;
641 
642 	callout_init(&sc->rtk_tick_ch);
643 
644 	/*
645 	 * Check EEPROM type 9346 or 9356.
646 	 */
647 	if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
648 		addr_len = RTK_EEADDR_LEN1;
649 	else
650 		addr_len = RTK_EEADDR_LEN0;
651 
652 	/*
653 	 * Get station address.
654 	 */
655 	val = rtk_read_eeprom(sc, RTK_EE_EADDR0, addr_len);
656 	eaddr[0] = val & 0xff;
657 	eaddr[1] = val >> 8;
658 	val = rtk_read_eeprom(sc, RTK_EE_EADDR1, addr_len);
659 	eaddr[2] = val & 0xff;
660 	eaddr[3] = val >> 8;
661 	val = rtk_read_eeprom(sc, RTK_EE_EADDR2, addr_len);
662 	eaddr[4] = val & 0xff;
663 	eaddr[5] = val >> 8;
664 
665 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
666 	    RTK_RXBUFLEN + 16, PAGE_SIZE, 0, &sc->sc_dmaseg, 1, &sc->sc_dmanseg,
667 	    BUS_DMA_NOWAIT)) != 0) {
668 		printf("%s: can't allocate recv buffer, error = %d\n",
669 		       sc->sc_dev.dv_xname, error);
670 		goto fail_0;
671 	}
672 
673 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_dmaseg, sc->sc_dmanseg,
674 	    RTK_RXBUFLEN + 16, (caddr_t *)&sc->rtk_rx_buf,
675 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
676 		printf("%s: can't map recv buffer, error = %d\n",
677 		       sc->sc_dev.dv_xname, error);
678 		goto fail_1;
679 	}
680 
681 	if ((error = bus_dmamap_create(sc->sc_dmat,
682 	    RTK_RXBUFLEN + 16, 1, RTK_RXBUFLEN + 16, 0, BUS_DMA_NOWAIT,
683 	    &sc->recv_dmamap)) != 0) {
684 		printf("%s: can't create recv buffer DMA map, error = %d\n",
685 		       sc->sc_dev.dv_xname, error);
686 		goto fail_2;
687 	}
688 
689 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->recv_dmamap,
690 	    sc->rtk_rx_buf, RTK_RXBUFLEN + 16,
691 	    NULL, BUS_DMA_READ|BUS_DMA_NOWAIT)) != 0) {
692 		printf("%s: can't load recv buffer DMA map, error = %d\n",
693 		       sc->sc_dev.dv_xname, error);
694 		goto fail_3;
695 	}
696 
697 	for (i = 0; i < RTK_TX_LIST_CNT; i++) {
698 		txd = &sc->rtk_tx_descs[i];
699 		if ((error = bus_dmamap_create(sc->sc_dmat,
700 		    MCLBYTES, 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
701 		    &txd->txd_dmamap)) != 0) {
702 			printf("%s: can't create snd buffer DMA map,"
703 			    " error = %d\n", sc->sc_dev.dv_xname, error);
704 			goto fail_4;
705 		}
706 		txd->txd_txaddr = RTK_TXADDR0 + (i * 4);
707 		txd->txd_txstat = RTK_TXSTAT0 + (i * 4);
708 	}
709 	SIMPLEQ_INIT(&sc->rtk_tx_free);
710 	SIMPLEQ_INIT(&sc->rtk_tx_dirty);
711 
712 	/*
713 	 * From this point forward, the attachment cannot fail. A failure
714 	 * before this releases all resources thar may have been
715 	 * allocated.
716 	 */
717 	sc->sc_flags |= RTK_ATTACHED;
718 
719 	/* Init Early TX threshold. */
720 	sc->sc_txthresh = TXTH_256;
721 
722 	/* Reset the adapter. */
723 	rtk_reset(sc);
724 
725 	printf("%s: Ethernet address %s\n",
726 	    sc->sc_dev.dv_xname, ether_sprintf(eaddr));
727 
728 	ifp = &sc->ethercom.ec_if;
729 	ifp->if_softc = sc;
730 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
731 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
732 	ifp->if_ioctl = rtk_ioctl;
733 	ifp->if_start = rtk_start;
734 	ifp->if_watchdog = rtk_watchdog;
735 	ifp->if_init = rtk_init;
736 	ifp->if_stop = rtk_stop;
737 	IFQ_SET_READY(&ifp->if_snd);
738 
739 	/*
740 	 * Do ifmedia setup.
741 	 */
742 	sc->mii.mii_ifp = ifp;
743 	sc->mii.mii_readreg = rtk_phy_readreg;
744 	sc->mii.mii_writereg = rtk_phy_writereg;
745 	sc->mii.mii_statchg = rtk_phy_statchg;
746 	ifmedia_init(&sc->mii.mii_media, IFM_IMASK, rtk_ifmedia_upd, rtk_ifmedia_sts);
747 	mii_attach(&sc->sc_dev, &sc->mii, 0xffffffff,
748 	    MII_PHY_ANY, MII_OFFSET_ANY, 0);
749 
750 	/* Choose a default media. */
751 	if (LIST_FIRST(&sc->mii.mii_phys) == NULL) {
752 		ifmedia_add(&sc->mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
753 		ifmedia_set(&sc->mii.mii_media, IFM_ETHER|IFM_NONE);
754 	} else {
755 		ifmedia_set(&sc->mii.mii_media, IFM_ETHER|IFM_AUTO);
756 	}
757 
758 	/*
759 	 * Call MI attach routines.
760 	 */
761 	if_attach(ifp);
762 	ether_ifattach(ifp, eaddr);
763 
764 	/*
765 	 * Make sure the interface is shutdown during reboot.
766 	 */
767 	sc->sc_sdhook = shutdownhook_establish(rtk_shutdown, sc);
768 	if (sc->sc_sdhook == NULL)
769 		printf("%s: WARNING: unable to establish shutdown hook\n",
770 		    sc->sc_dev.dv_xname);
771 	/*
772 	 * Add a suspend hook to make sure we come back up after a
773 	 * resume.
774 	 */
775 	sc->sc_powerhook = powerhook_establish(rtk_power, sc);
776 	if (sc->sc_powerhook == NULL)
777 		printf("%s: WARNING: unable to establish power hook\n",
778 		    sc->sc_dev.dv_xname);
779 
780 
781 #if NRND > 0
782 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
783 	    RND_TYPE_NET, 0);
784 #endif
785 
786 	return;
787  fail_4:
788 	for (i = 0; i < RTK_TX_LIST_CNT; i++) {
789 		txd = &sc->rtk_tx_descs[i];
790 		if (txd->txd_dmamap != NULL)
791 			bus_dmamap_destroy(sc->sc_dmat, txd->txd_dmamap);
792 	}
793  fail_3:
794 	bus_dmamap_destroy(sc->sc_dmat, sc->recv_dmamap);
795  fail_2:
796 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->rtk_rx_buf,
797 	    RTK_RXBUFLEN + 16);
798  fail_1:
799 	bus_dmamem_free(sc->sc_dmat, &sc->sc_dmaseg, sc->sc_dmanseg);
800  fail_0:
801 	return;
802 }
803 
804 /*
805  * Initialize the transmit descriptors.
806  */
807 STATIC int
808 rtk_list_tx_init(sc)
809 	struct rtk_softc	*sc;
810 {
811 	struct rtk_tx_desc *txd;
812 	int i;
813 
814 	while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_dirty)) != NULL)
815 		SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_dirty, txd_q);
816 	while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_free)) != NULL)
817 		SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_free, txd_q);
818 
819 	for (i = 0; i < RTK_TX_LIST_CNT; i++) {
820 		txd = &sc->rtk_tx_descs[i];
821 		CSR_WRITE_4(sc, txd->txd_txaddr, 0);
822 		SIMPLEQ_INSERT_TAIL(&sc->rtk_tx_free, txd, txd_q);
823 	}
824 
825 	return (0);
826 }
827 
828 /*
829  * rtk_activate:
830  *     Handle device activation/deactivation requests.
831  */
832 int
833 rtk_activate(self, act)
834 	struct device *self;
835 	enum devact act;
836 {
837 	struct rtk_softc *sc = (void *) self;
838 	int s, error = 0;
839 
840 	s = splnet();
841 	switch (act) {
842 	case DVACT_ACTIVATE:
843 		error = EOPNOTSUPP;
844 		break;
845 	case DVACT_DEACTIVATE:
846 		mii_activate(&sc->mii, act, MII_PHY_ANY, MII_OFFSET_ANY);
847 		if_deactivate(&sc->ethercom.ec_if);
848 		break;
849 	}
850 	splx(s);
851 
852 	return (error);
853 }
854 
855 /*
856  * rtk_detach:
857  *     Detach a rtk interface.
858  */
859 int
860 rtk_detach(sc)
861 	struct rtk_softc *sc;
862 {
863 	struct ifnet *ifp = &sc->ethercom.ec_if;
864 	struct rtk_tx_desc *txd;
865 	int i;
866 
867 	/*
868 	 * Succeed now if there isn't any work to do.
869 	 */
870 	if ((sc->sc_flags & RTK_ATTACHED) == 0)
871 		return (0);
872 
873 	/* Unhook our tick handler. */
874 	callout_stop(&sc->rtk_tick_ch);
875 
876 	/* Detach all PHYs. */
877 	mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
878 
879 	/* Delete all remaining media. */
880 	ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
881 
882 #if NRND > 0
883 	rnd_detach_source(&sc->rnd_source);
884 #endif
885 
886 	ether_ifdetach(ifp);
887 	if_detach(ifp);
888 
889 	for (i = 0; i < RTK_TX_LIST_CNT; i++) {
890 		txd = &sc->rtk_tx_descs[i];
891 		if (txd->txd_dmamap != NULL)
892 			bus_dmamap_destroy(sc->sc_dmat, txd->txd_dmamap);
893 	}
894 	bus_dmamap_destroy(sc->sc_dmat, sc->recv_dmamap);
895 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->rtk_rx_buf,
896 	    RTK_RXBUFLEN + 16);
897 	bus_dmamem_free(sc->sc_dmat, &sc->sc_dmaseg, sc->sc_dmanseg);
898 
899 	shutdownhook_disestablish(sc->sc_sdhook);
900 	powerhook_disestablish(sc->sc_powerhook);
901 
902 	return (0);
903 }
904 
905 /*
906  * rtk_enable:
907  *     Enable the RTL81X9 chip.
908  */
909 int
910 rtk_enable(sc)
911 	struct rtk_softc *sc;
912 {
913 
914 	if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
915 		if ((*sc->sc_enable)(sc) != 0) {
916 			printf("%s: device enable failed\n",
917 			    sc->sc_dev.dv_xname);
918 			return (EIO);
919 		}
920 		sc->sc_flags |= RTK_ENABLED;
921 	}
922 	return (0);
923 }
924 
925 /*
926  * rtk_disable:
927  *     Disable the RTL81X9 chip.
928  */
929 void
930 rtk_disable(sc)
931 	struct rtk_softc *sc;
932 {
933 
934 	if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
935 		(*sc->sc_disable)(sc);
936 		sc->sc_flags &= ~RTK_ENABLED;
937 	}
938 }
939 
940 /*
941  * rtk_power:
942  *     Power management (suspend/resume) hook.
943  */
944 void
945 rtk_power(why, arg)
946 	int why;
947 	void *arg;
948 {
949 	struct rtk_softc *sc = (void *) arg;
950 	struct ifnet *ifp = &sc->ethercom.ec_if;
951 	int s;
952 
953 	s = splnet();
954 	switch (why) {
955 	case PWR_SUSPEND:
956 	case PWR_STANDBY:
957 		rtk_stop(ifp, 0);
958 		if (sc->sc_power != NULL)
959 			(*sc->sc_power)(sc, why);
960 		break;
961 	case PWR_RESUME:
962 		if (ifp->if_flags & IFF_UP) {
963 			if (sc->sc_power != NULL)
964 				(*sc->sc_power)(sc, why);
965 			rtk_init(ifp);
966 		}
967 		break;
968 	case PWR_SOFTSUSPEND:
969 	case PWR_SOFTSTANDBY:
970 	case PWR_SOFTRESUME:
971 		break;
972 	}
973 	splx(s);
974 }
975 
976 /*
977  * A frame has been uploaded: pass the resulting mbuf chain up to
978  * the higher level protocols.
979  *
980  * You know there's something wrong with a PCI bus-master chip design.
981  *
982  * The receive operation is badly documented in the datasheet, so I'll
983  * attempt to document it here. The driver provides a buffer area and
984  * places its base address in the RX buffer start address register.
985  * The chip then begins copying frames into the RX buffer. Each frame
986  * is preceded by a 32-bit RX status word which specifies the length
987  * of the frame and certain other status bits. Each frame (starting with
988  * the status word) is also 32-bit aligned. The frame length is in the
989  * first 16 bits of the status word; the lower 15 bits correspond with
990  * the 'rx status register' mentioned in the datasheet.
991  *
992  * Note: to make the Alpha happy, the frame payload needs to be aligned
993  * on a 32-bit boundary. To achieve this, we copy the data to mbuf
994  * shifted forward 2 bytes.
995  */
996 STATIC void
997 rtk_rxeof(sc)
998 	struct rtk_softc	*sc;
999 {
1000         struct mbuf		*m;
1001         struct ifnet		*ifp;
1002 	caddr_t			rxbufpos, dst;
1003 	u_int			total_len, wrap = 0;
1004 	u_int32_t		rxstat;
1005 	u_int16_t		cur_rx, new_rx;
1006 	u_int16_t		limit;
1007 	u_int16_t		rx_bytes = 0, max_bytes;
1008 
1009 	ifp = &sc->ethercom.ec_if;
1010 
1011 	cur_rx = (CSR_READ_2(sc, RTK_CURRXADDR) + 16) % RTK_RXBUFLEN;
1012 
1013 	/* Do not try to read past this point. */
1014 	limit = CSR_READ_2(sc, RTK_CURRXBUF) % RTK_RXBUFLEN;
1015 
1016 	if (limit < cur_rx)
1017 		max_bytes = (RTK_RXBUFLEN - cur_rx) + limit;
1018 	else
1019 		max_bytes = limit - cur_rx;
1020 
1021 	while((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_EMPTY_RXBUF) == 0) {
1022 		rxbufpos = sc->rtk_rx_buf + cur_rx;
1023 		bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap, cur_rx,
1024 		    RTK_RXSTAT_LEN, BUS_DMASYNC_POSTREAD);
1025 		rxstat = le32toh(*(u_int32_t *)rxbufpos);
1026 		bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap, cur_rx,
1027 		    RTK_RXSTAT_LEN, BUS_DMASYNC_PREREAD);
1028 
1029 		/*
1030 		 * Here's a totally undocumented fact for you. When the
1031 		 * RealTek chip is in the process of copying a packet into
1032 		 * RAM for you, the length will be 0xfff0. If you spot a
1033 		 * packet header with this value, you need to stop. The
1034 		 * datasheet makes absolutely no mention of this and
1035 		 * RealTek should be shot for this.
1036 		 */
1037 		total_len = rxstat >> 16;
1038 		if (total_len == RTK_RXSTAT_UNFINISHED)
1039 			break;
1040 
1041 		if ((rxstat & RTK_RXSTAT_RXOK) == 0 ||
1042 		    total_len > ETHER_MAX_LEN) {
1043 			ifp->if_ierrors++;
1044 
1045 			/*
1046 			 * submitted by:[netbsd-pcmcia:00484]
1047 			 *	Takahiro Kambe <taca@sky.yamashina.kyoto.jp>
1048 			 * obtain from:
1049 			 *     FreeBSD if_rl.c rev 1.24->1.25
1050 			 *
1051 			 */
1052 #if 0
1053 			if (rxstat & (RTK_RXSTAT_BADSYM|RTK_RXSTAT_RUNT|
1054 			    RTK_RXSTAT_GIANT|RTK_RXSTAT_CRCERR|
1055 			    RTK_RXSTAT_ALIGNERR)) {
1056 				CSR_WRITE_2(sc, RTK_COMMAND, RTK_CMD_TX_ENB);
1057 				CSR_WRITE_2(sc, RTK_COMMAND,
1058 				    RTK_CMD_TX_ENB|RTK_CMD_RX_ENB);
1059 				CSR_WRITE_4(sc, RTK_RXCFG, RTK_RXCFG_CONFIG);
1060 				CSR_WRITE_4(sc, RTK_RXADDR,
1061 				    sc->recv_dmamap->dm_segs[0].ds_addr);
1062 				cur_rx = 0;
1063 			}
1064 			break;
1065 #else
1066 			rtk_init(ifp);
1067 			return;
1068 #endif
1069 		}
1070 
1071 		/* No errors; receive the packet. */
1072 		rx_bytes += total_len + RTK_RXSTAT_LEN;
1073 
1074 		/*
1075 		 * Avoid trying to read more bytes than we know
1076 		 * the chip has prepared for us.
1077 		 */
1078 		if (rx_bytes > max_bytes)
1079 			break;
1080 
1081 		/*
1082 		 * Skip the status word, wrapping around to the beginning
1083 		 * of the Rx area, if necessary.
1084 		 */
1085 		cur_rx = (cur_rx + RTK_RXSTAT_LEN) % RTK_RXBUFLEN;
1086 		rxbufpos = sc->rtk_rx_buf + cur_rx;
1087 
1088 		/*
1089 		 * Compute the number of bytes at which the packet
1090 		 * will wrap to the beginning of the ring buffer.
1091 		 */
1092 		wrap = RTK_RXBUFLEN - cur_rx;
1093 
1094 		/*
1095 		 * Compute where the next pending packet is.
1096 		 */
1097 		if (total_len > wrap)
1098 			new_rx = total_len - wrap;
1099 		else
1100 			new_rx = cur_rx + total_len;
1101 		/* Round up to 32-bit boundary. */
1102 		new_rx = (new_rx + 3) & ~3;
1103 
1104 		/*
1105 		 * Now allocate an mbuf (and possibly a cluster) to hold
1106 		 * the packet. Note we offset the packet 2 bytes so that
1107 		 * data after the Ethernet header will be 4-byte aligned.
1108 		 */
1109 		MGETHDR(m, M_DONTWAIT, MT_DATA);
1110 		if (m == NULL) {
1111 			printf("%s: unable to allocate Rx mbuf\n",
1112 			    sc->sc_dev.dv_xname);
1113 			ifp->if_ierrors++;
1114 			goto next_packet;
1115 		}
1116 		if (total_len > (MHLEN - RTK_ETHER_ALIGN)) {
1117 			MCLGET(m, M_DONTWAIT);
1118 			if ((m->m_flags & M_EXT) == 0) {
1119 				printf("%s: unable to allocate Rx cluster\n",
1120 				    sc->sc_dev.dv_xname);
1121 				ifp->if_ierrors++;
1122 				m_freem(m);
1123 				m = NULL;
1124 				goto next_packet;
1125 			}
1126 		}
1127 		m->m_data += RTK_ETHER_ALIGN;	/* for alignment */
1128 		m->m_pkthdr.rcvif = ifp;
1129 		m->m_pkthdr.len = m->m_len = total_len;
1130 		dst = mtod(m, caddr_t);
1131 
1132 		/*
1133 		 * If the packet wraps, copy up to the wrapping point.
1134 		 */
1135 		if (total_len > wrap) {
1136 			bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
1137 			    cur_rx, wrap, BUS_DMASYNC_POSTREAD);
1138 			memcpy(dst, rxbufpos, wrap);
1139 			bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
1140 			    cur_rx, wrap, BUS_DMASYNC_PREREAD);
1141 			cur_rx = 0;
1142 			rxbufpos = sc->rtk_rx_buf;
1143 			total_len -= wrap;
1144 			dst += wrap;
1145 		}
1146 
1147 		/*
1148 		 * ...and now the rest.
1149 		 */
1150 		bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
1151 		    cur_rx, total_len, BUS_DMASYNC_POSTREAD);
1152 		memcpy(dst, rxbufpos, total_len);
1153 		bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
1154 		    cur_rx, total_len, BUS_DMASYNC_PREREAD);
1155 
1156  next_packet:
1157 		CSR_WRITE_2(sc, RTK_CURRXADDR, new_rx - 16);
1158 		cur_rx = new_rx;
1159 
1160 		if (m == NULL)
1161 			continue;
1162 
1163 		/*
1164 		 * The RealTek chip includes the CRC with every
1165 		 * incoming packet.
1166 		 */
1167 		m->m_flags |= M_HASFCS;
1168 
1169 		ifp->if_ipackets++;
1170 
1171 #if NBPFILTER > 0
1172 		if (ifp->if_bpf)
1173 			bpf_mtap(ifp->if_bpf, m);
1174 #endif
1175 		/* pass it on. */
1176 		(*ifp->if_input)(ifp, m);
1177 	}
1178 }
1179 
1180 /*
1181  * A frame was downloaded to the chip. It's safe for us to clean up
1182  * the list buffers.
1183  */
1184 STATIC void
1185 rtk_txeof(sc)
1186 	struct rtk_softc	*sc;
1187 {
1188 	struct ifnet *ifp;
1189 	struct rtk_tx_desc *txd;
1190 	u_int32_t txstat;
1191 
1192 	ifp = &sc->ethercom.ec_if;
1193 
1194 	/* Clear the timeout timer. */
1195 	ifp->if_timer = 0;
1196 
1197 	/*
1198 	 * Go through our tx list and free mbufs for those
1199 	 * frames that have been uploaded.
1200 	 */
1201 	while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_dirty)) != NULL) {
1202 		txstat = CSR_READ_4(sc, txd->txd_txstat);
1203 		if ((txstat & (RTK_TXSTAT_TX_OK|
1204 		    RTK_TXSTAT_TX_UNDERRUN|RTK_TXSTAT_TXABRT)) == 0)
1205 			break;
1206 
1207 		SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_dirty, txd_q);
1208 
1209 		bus_dmamap_sync(sc->sc_dmat, txd->txd_dmamap, 0,
1210 		    txd->txd_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1211 		bus_dmamap_unload(sc->sc_dmat, txd->txd_dmamap);
1212 		m_freem(txd->txd_mbuf);
1213 		txd->txd_mbuf = NULL;
1214 
1215 		ifp->if_collisions += (txstat & RTK_TXSTAT_COLLCNT) >> 24;
1216 
1217 		if (txstat & RTK_TXSTAT_TX_OK)
1218 			ifp->if_opackets++;
1219 		else {
1220 			ifp->if_oerrors++;
1221 
1222 			/*
1223 			 * Increase Early TX threshold if underrun occurred.
1224 			 * Increase step 64 bytes.
1225 			 */
1226 			if (txstat & RTK_TXSTAT_TX_UNDERRUN) {
1227 #ifdef DEBUG
1228 				printf("%s: transmit underrun;",
1229 				    sc->sc_dev.dv_xname);
1230 #endif
1231 				if (sc->sc_txthresh < TXTH_MAX) {
1232 					sc->sc_txthresh += 2;
1233 #ifdef DEBUG
1234 					printf(" new threshold: %d bytes",
1235 					    sc->sc_txthresh * 32);
1236 #endif
1237 				}
1238 				printf("\n");
1239 			}
1240 			if (txstat & (RTK_TXSTAT_TXABRT|RTK_TXSTAT_OUTOFWIN))
1241 				CSR_WRITE_4(sc, RTK_TXCFG, RTK_TXCFG_CONFIG);
1242 		}
1243 		SIMPLEQ_INSERT_TAIL(&sc->rtk_tx_free, txd, txd_q);
1244 		ifp->if_flags &= ~IFF_OACTIVE;
1245 	}
1246 }
1247 
1248 int
1249 rtk_intr(arg)
1250 	void			*arg;
1251 {
1252 	struct rtk_softc	*sc;
1253 	struct ifnet		*ifp;
1254 	u_int16_t		status;
1255 	int handled = 0;
1256 
1257 	sc = arg;
1258 	ifp = &sc->ethercom.ec_if;
1259 
1260 	/* Disable interrupts. */
1261 	CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1262 
1263 	for (;;) {
1264 
1265 		status = CSR_READ_2(sc, RTK_ISR);
1266 		if (status)
1267 			CSR_WRITE_2(sc, RTK_ISR, status);
1268 
1269 		handled = 1;
1270 
1271 		if ((status & RTK_INTRS) == 0)
1272 			break;
1273 
1274 		if (status & RTK_ISR_RX_OK)
1275 			rtk_rxeof(sc);
1276 
1277 		if (status & RTK_ISR_RX_ERR)
1278 			rtk_rxeof(sc);
1279 
1280 		if (status & (RTK_ISR_TX_OK|RTK_ISR_TX_ERR))
1281 			rtk_txeof(sc);
1282 
1283 		if (status & RTK_ISR_SYSTEM_ERR) {
1284 			rtk_reset(sc);
1285 			rtk_init(ifp);
1286 		}
1287 	}
1288 
1289 	/* Re-enable interrupts. */
1290 	CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS);
1291 
1292 	if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
1293 		rtk_start(ifp);
1294 
1295 #if NRND > 0
1296 	if (RND_ENABLED(&sc->rnd_source))
1297 		rnd_add_uint32(&sc->rnd_source, status);
1298 #endif
1299 
1300 	return (handled);
1301 }
1302 
1303 /*
1304  * Main transmit routine.
1305  */
1306 
1307 STATIC void
1308 rtk_start(ifp)
1309 	struct ifnet		*ifp;
1310 {
1311 	struct rtk_softc *sc;
1312 	struct rtk_tx_desc *txd;
1313 	struct mbuf *m_head = NULL, *m_new;
1314 	int error, len;
1315 
1316 	sc = ifp->if_softc;
1317 
1318 	while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_free)) != NULL) {
1319 		IFQ_POLL(&ifp->if_snd, m_head);
1320 		if (m_head == NULL)
1321 			break;
1322 		m_new = NULL;
1323 
1324 		/*
1325 		 * Load the DMA map.  If this fails, the packet didn't
1326 		 * fit in one DMA segment, and we need to copy.  Note,
1327 		 * the packet must also be aligned.
1328 		 * if the packet is too small, copy it too, so we're sure
1329 		 * so have enouth room for the pad buffer.
1330 		 */
1331 		if ((mtod(m_head, uintptr_t) & 3) != 0 ||
1332 		    m_head->m_pkthdr.len < ETHER_PAD_LEN ||
1333 		    bus_dmamap_load_mbuf(sc->sc_dmat, txd->txd_dmamap,
1334 			m_head, BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1335 			MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1336 			if (m_new == NULL) {
1337 				printf("%s: unable to allocate Tx mbuf\n",
1338 				    sc->sc_dev.dv_xname);
1339 				break;
1340 			}
1341 			if (m_head->m_pkthdr.len > MHLEN) {
1342 				MCLGET(m_new, M_DONTWAIT);
1343 				if ((m_new->m_flags & M_EXT) == 0) {
1344 					printf("%s: unable to allocate Tx "
1345 					    "cluster\n", sc->sc_dev.dv_xname);
1346 					m_freem(m_new);
1347 					break;
1348 				}
1349 			}
1350 			m_copydata(m_head, 0, m_head->m_pkthdr.len,
1351 			    mtod(m_new, caddr_t));
1352 			m_new->m_pkthdr.len = m_new->m_len =
1353 			    m_head->m_pkthdr.len;
1354 			if (m_head->m_pkthdr.len < ETHER_PAD_LEN) {
1355 				memset(
1356 				    mtod(m_new, caddr_t) + m_head->m_pkthdr.len,
1357 				    0, ETHER_PAD_LEN - m_head->m_pkthdr.len);
1358 				m_new->m_pkthdr.len = m_new->m_len =
1359 				    ETHER_PAD_LEN;
1360 			}
1361 			error = bus_dmamap_load_mbuf(sc->sc_dmat,
1362 			    txd->txd_dmamap, m_new,
1363 			    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1364 			if (error) {
1365 				printf("%s: unable to load Tx buffer, "
1366 				    "error = %d\n", sc->sc_dev.dv_xname, error);
1367 				break;
1368 			}
1369 		}
1370 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1371 #if NBPFILTER > 0
1372 		/*
1373 		 * If there's a BPF listener, bounce a copy of this frame
1374 		 * to him.
1375 		 */
1376 		if (ifp->if_bpf)
1377 			bpf_mtap(ifp->if_bpf, m_head);
1378 #endif
1379 		if (m_new != NULL) {
1380 			m_freem(m_head);
1381 			m_head = m_new;
1382 		}
1383 		txd->txd_mbuf = m_head;
1384 
1385 		SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_free, txd_q);
1386 		SIMPLEQ_INSERT_TAIL(&sc->rtk_tx_dirty, txd, txd_q);
1387 
1388 		/*
1389 		 * Transmit the frame.
1390 	 	 */
1391 		bus_dmamap_sync(sc->sc_dmat,
1392 		    txd->txd_dmamap, 0, txd->txd_dmamap->dm_mapsize,
1393 		    BUS_DMASYNC_PREWRITE);
1394 
1395 		len = txd->txd_dmamap->dm_segs[0].ds_len;
1396 
1397 		CSR_WRITE_4(sc, txd->txd_txaddr,
1398 		    txd->txd_dmamap->dm_segs[0].ds_addr);
1399 		CSR_WRITE_4(sc, txd->txd_txstat, RTK_TX_THRESH(sc) | len);
1400 	}
1401 
1402 	/*
1403 	 * We broke out of the loop because all our TX slots are
1404 	 * full. Mark the NIC as busy until it drains some of the
1405 	 * packets from the queue.
1406 	 */
1407 	if (SIMPLEQ_EMPTY(&sc->rtk_tx_free))
1408 		ifp->if_flags |= IFF_OACTIVE;
1409 
1410 	/*
1411 	 * Set a timeout in case the chip goes out to lunch.
1412 	 */
1413 	ifp->if_timer = 5;
1414 }
1415 
1416 STATIC int
1417 rtk_init(ifp)
1418 	struct ifnet *ifp;
1419 {
1420 	struct rtk_softc	*sc = ifp->if_softc;
1421 	int			error = 0, i;
1422 	u_int32_t		rxcfg;
1423 
1424 	if ((error = rtk_enable(sc)) != 0)
1425 		goto out;
1426 
1427 	/*
1428 	 * Cancel pending I/O.
1429 	 */
1430 	rtk_stop(ifp, 0);
1431 
1432 	/* Init our MAC address */
1433 	for (i = 0; i < ETHER_ADDR_LEN; i++) {
1434 		CSR_WRITE_1(sc, RTK_IDR0 + i, LLADDR(ifp->if_sadl)[i]);
1435 	}
1436 
1437 	/* Init the RX buffer pointer register. */
1438 	bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap, 0,
1439 	    sc->recv_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1440 	CSR_WRITE_4(sc, RTK_RXADDR, sc->recv_dmamap->dm_segs[0].ds_addr);
1441 
1442 	/* Init TX descriptors. */
1443 	rtk_list_tx_init(sc);
1444 
1445 	/* Init Early TX threshold. */
1446 	sc->sc_txthresh = TXTH_256;
1447 	/*
1448 	 * Enable transmit and receive.
1449 	 */
1450 	CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB|RTK_CMD_RX_ENB);
1451 
1452 	/*
1453 	 * Set the initial TX and RX configuration.
1454 	 */
1455 	CSR_WRITE_4(sc, RTK_TXCFG, RTK_TXCFG_CONFIG);
1456 	CSR_WRITE_4(sc, RTK_RXCFG, RTK_RXCFG_CONFIG);
1457 
1458 	/* Set the individual bit to receive frames for this host only. */
1459 	rxcfg = CSR_READ_4(sc, RTK_RXCFG);
1460 	rxcfg |= RTK_RXCFG_RX_INDIV;
1461 
1462 	/* If we want promiscuous mode, set the allframes bit. */
1463 	if (ifp->if_flags & IFF_PROMISC) {
1464 		rxcfg |= RTK_RXCFG_RX_ALLPHYS;
1465 		CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1466 	} else {
1467 		rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
1468 		CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1469 	}
1470 
1471 	/*
1472 	 * Set capture broadcast bit to capture broadcast frames.
1473 	 */
1474 	if (ifp->if_flags & IFF_BROADCAST) {
1475 		rxcfg |= RTK_RXCFG_RX_BROAD;
1476 		CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1477 	} else {
1478 		rxcfg &= ~RTK_RXCFG_RX_BROAD;
1479 		CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1480 	}
1481 
1482 	/*
1483 	 * Program the multicast filter, if necessary.
1484 	 */
1485 	rtk_setmulti(sc);
1486 
1487 	/*
1488 	 * Enable interrupts.
1489 	 */
1490 	CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS);
1491 
1492 	/* Start RX/TX process. */
1493 	CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
1494 
1495 	/* Enable receiver and transmitter. */
1496 	CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB|RTK_CMD_RX_ENB);
1497 
1498 	CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD|RTK_CFG1_FULLDUPLEX);
1499 
1500 	/*
1501 	 * Set current media.
1502 	 */
1503 	mii_mediachg(&sc->mii);
1504 
1505 	ifp->if_flags |= IFF_RUNNING;
1506 	ifp->if_flags &= ~IFF_OACTIVE;
1507 
1508 	callout_reset(&sc->rtk_tick_ch, hz, rtk_tick, sc);
1509 
1510  out:
1511 	if (error) {
1512 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1513 		ifp->if_timer = 0;
1514 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1515 	}
1516 	return (error);
1517 }
1518 
1519 /*
1520  * Set media options.
1521  */
1522 STATIC int
1523 rtk_ifmedia_upd(ifp)
1524 	struct ifnet		*ifp;
1525 {
1526 	struct rtk_softc	*sc;
1527 
1528 	sc = ifp->if_softc;
1529 
1530 	return (mii_mediachg(&sc->mii));
1531 }
1532 
1533 /*
1534  * Report current media status.
1535  */
1536 STATIC void
1537 rtk_ifmedia_sts(ifp, ifmr)
1538 	struct ifnet		*ifp;
1539 	struct ifmediareq	*ifmr;
1540 {
1541 	struct rtk_softc	*sc;
1542 
1543 	sc = ifp->if_softc;
1544 
1545 	mii_pollstat(&sc->mii);
1546 	ifmr->ifm_status = sc->mii.mii_media_status;
1547 	ifmr->ifm_active = sc->mii.mii_media_active;
1548 }
1549 
1550 STATIC int
1551 rtk_ioctl(ifp, command, data)
1552 	struct ifnet		*ifp;
1553 	u_long			command;
1554 	caddr_t			data;
1555 {
1556 	struct rtk_softc	*sc = ifp->if_softc;
1557 	struct ifreq		*ifr = (struct ifreq *) data;
1558 	int			s, error = 0;
1559 
1560 	s = splnet();
1561 
1562 	switch (command) {
1563 	case SIOCGIFMEDIA:
1564 	case SIOCSIFMEDIA:
1565 		error = ifmedia_ioctl(ifp, ifr, &sc->mii.mii_media, command);
1566 		break;
1567 
1568 	default:
1569 		error = ether_ioctl(ifp, command, data);
1570 		if (error == ENETRESET) {
1571 			if (ifp->if_flags & IFF_RUNNING) {
1572 				/*
1573 				 * Multicast list has changed.  Set the
1574 				 * hardware filter accordingly.
1575 				 */
1576 				rtk_setmulti(sc);
1577 			}
1578 			error = 0;
1579 		}
1580 		break;
1581 	}
1582 
1583 	splx(s);
1584 
1585 	return (error);
1586 }
1587 
1588 STATIC void
1589 rtk_watchdog(ifp)
1590 	struct ifnet		*ifp;
1591 {
1592 	struct rtk_softc	*sc;
1593 
1594 	sc = ifp->if_softc;
1595 
1596 	printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
1597 	ifp->if_oerrors++;
1598 	rtk_txeof(sc);
1599 	rtk_rxeof(sc);
1600 	rtk_init(ifp);
1601 }
1602 
1603 /*
1604  * Stop the adapter and free any mbufs allocated to the
1605  * RX and TX lists.
1606  */
1607 STATIC void
1608 rtk_stop(ifp, disable)
1609 	struct ifnet *ifp;
1610 	int disable;
1611 {
1612 	struct rtk_softc *sc = ifp->if_softc;
1613 	struct rtk_tx_desc *txd;
1614 
1615 	callout_stop(&sc->rtk_tick_ch);
1616 
1617 	mii_down(&sc->mii);
1618 
1619 	CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
1620 	CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1621 
1622 	/*
1623 	 * Free the TX list buffers.
1624 	 */
1625 	while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_dirty)) != NULL) {
1626 		SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_dirty, txd_q);
1627 		bus_dmamap_unload(sc->sc_dmat, txd->txd_dmamap);
1628 		m_freem(txd->txd_mbuf);
1629 		txd->txd_mbuf = NULL;
1630 		CSR_WRITE_4(sc, txd->txd_txaddr, 0);
1631 	}
1632 
1633 	if (disable)
1634 		rtk_disable(sc);
1635 
1636 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1637 	ifp->if_timer = 0;
1638 }
1639 
1640 /*
1641  * Stop all chip I/O so that the kernel's probe routines don't
1642  * get confused by errant DMAs when rebooting.
1643  */
1644 STATIC void
1645 rtk_shutdown(vsc)
1646 	void			*vsc;
1647 {
1648 	struct rtk_softc	*sc = (struct rtk_softc *)vsc;
1649 
1650 	rtk_stop(&sc->ethercom.ec_if, 0);
1651 }
1652 
1653 STATIC void
1654 rtk_tick(arg)
1655 	void *arg;
1656 {
1657 	struct rtk_softc *sc = arg;
1658 	int s = splnet();
1659 
1660 	mii_tick(&sc->mii);
1661 	splx(s);
1662 
1663 	callout_reset(&sc->rtk_tick_ch, hz, rtk_tick, sc);
1664 }
1665