xref: /netbsd-src/sys/dev/ic/rtl81x9.c (revision 82d56013d7b633d116a93943de88e08335357a7c)
1 /*	$NetBSD: rtl81x9.c,v 1.111 2020/03/12 03:01:46 thorpej Exp $	*/
2 
3 /*
4  * Copyright (c) 1997, 1998
5  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  *	FreeBSD Id: if_rl.c,v 1.17 1999/06/19 20:17:37 wpaul Exp
35  */
36 
37 /*
38  * RealTek 8129/8139 PCI NIC driver
39  *
40  * Supports several extremely cheap PCI 10/100 adapters based on
41  * the RealTek chipset. Datasheets can be obtained from
42  * www.realtek.com.tw.
43  *
44  * Written by Bill Paul <wpaul@ctr.columbia.edu>
45  * Electrical Engineering Department
46  * Columbia University, New York City
47  */
48 
49 /*
50  * The RealTek 8139 PCI NIC redefines the meaning of 'low end.' This is
51  * probably the worst PCI ethernet controller ever made, with the possible
52  * exception of the FEAST chip made by SMC. The 8139 supports bus-master
53  * DMA, but it has a terrible interface that nullifies any performance
54  * gains that bus-master DMA usually offers.
55  *
56  * For transmission, the chip offers a series of four TX descriptor
57  * registers. Each transmit frame must be in a contiguous buffer, aligned
58  * on a longword (32-bit) boundary. This means we almost always have to
59  * do mbuf copies in order to transmit a frame, except in the unlikely
60  * case where a) the packet fits into a single mbuf, and b) the packet
61  * is 32-bit aligned within the mbuf's data area. The presence of only
62  * four descriptor registers means that we can never have more than four
63  * packets queued for transmission at any one time.
64  *
65  * Reception is not much better. The driver has to allocate a single large
66  * buffer area (up to 64K in size) into which the chip will DMA received
67  * frames. Because we don't know where within this region received packets
68  * will begin or end, we have no choice but to copy data from the buffer
69  * area into mbufs in order to pass the packets up to the higher protocol
70  * levels.
71  *
72  * It's impossible given this rotten design to really achieve decent
73  * performance at 100Mbps, unless you happen to have a 400MHz PII or
74  * some equally overmuscled CPU to drive it.
75  *
76  * On the bright side, the 8139 does have a built-in PHY, although
77  * rather than using an MDIO serial interface like most other NICs, the
78  * PHY registers are directly accessible through the 8139's register
79  * space. The 8139 supports autonegotiation, as well as a 64-bit multicast
80  * filter.
81  *
82  * The 8129 chip is an older version of the 8139 that uses an external PHY
83  * chip. The 8129 has a serial MDIO interface for accessing the MII where
84  * the 8139 lets you directly access the on-board PHY registers. We need
85  * to select which interface to use depending on the chip type.
86  */
87 
88 #include <sys/cdefs.h>
89 __KERNEL_RCSID(0, "$NetBSD: rtl81x9.c,v 1.111 2020/03/12 03:01:46 thorpej Exp $");
90 
91 
92 #include <sys/param.h>
93 #include <sys/systm.h>
94 #include <sys/callout.h>
95 #include <sys/device.h>
96 #include <sys/sockio.h>
97 #include <sys/mbuf.h>
98 #include <sys/malloc.h>
99 #include <sys/kernel.h>
100 #include <sys/socket.h>
101 
102 #include <net/if.h>
103 #include <net/if_arp.h>
104 #include <net/if_ether.h>
105 #include <net/if_dl.h>
106 #include <net/if_media.h>
107 
108 #include <net/bpf.h>
109 #include <sys/rndsource.h>
110 
111 #include <sys/bus.h>
112 #include <machine/endian.h>
113 
114 #include <dev/mii/mii.h>
115 #include <dev/mii/miivar.h>
116 
117 #include <dev/ic/rtl81x9reg.h>
118 #include <dev/ic/rtl81x9var.h>
119 
120 static void rtk_reset(struct rtk_softc *);
121 static void rtk_rxeof(struct rtk_softc *);
122 static void rtk_txeof(struct rtk_softc *);
123 static void rtk_start(struct ifnet *);
124 static int rtk_ioctl(struct ifnet *, u_long, void *);
125 static int rtk_init(struct ifnet *);
126 static void rtk_stop(struct ifnet *, int);
127 
128 static void rtk_watchdog(struct ifnet *);
129 
130 static void rtk_eeprom_putbyte(struct rtk_softc *, int, int);
131 static void rtk_mii_sync(struct rtk_softc *);
132 static void rtk_mii_send(struct rtk_softc *, uint32_t, int);
133 static int rtk_mii_readreg(struct rtk_softc *, struct rtk_mii_frame *);
134 static int rtk_mii_writereg(struct rtk_softc *, struct rtk_mii_frame *);
135 
136 static int rtk_phy_readreg(device_t, int, int, uint16_t *);
137 static int rtk_phy_writereg(device_t, int, int, uint16_t);
138 static void rtk_phy_statchg(struct ifnet *);
139 static void rtk_tick(void *);
140 
141 static int rtk_enable(struct rtk_softc *);
142 static void rtk_disable(struct rtk_softc *);
143 
144 static void rtk_list_tx_init(struct rtk_softc *);
145 
146 #define EE_SET(x)					\
147 	CSR_WRITE_1(sc, RTK_EECMD,			\
148 		CSR_READ_1(sc, RTK_EECMD) | (x))
149 
150 #define EE_CLR(x)					\
151 	CSR_WRITE_1(sc, RTK_EECMD,			\
152 		CSR_READ_1(sc, RTK_EECMD) & ~(x))
153 
154 #define EE_DELAY()	DELAY(100)
155 
156 #define ETHER_PAD_LEN (ETHER_MIN_LEN - ETHER_CRC_LEN)
157 
158 /*
159  * Send a read command and address to the EEPROM, check for ACK.
160  */
161 static void
162 rtk_eeprom_putbyte(struct rtk_softc *sc, int addr, int addr_len)
163 {
164 	int d, i;
165 
166 	d = (RTK_EECMD_READ << addr_len) | addr;
167 
168 	/*
169 	 * Feed in each bit and stobe the clock.
170 	 */
171 	for (i = RTK_EECMD_LEN + addr_len; i > 0; i--) {
172 		if (d & (1 << (i - 1))) {
173 			EE_SET(RTK_EE_DATAIN);
174 		} else {
175 			EE_CLR(RTK_EE_DATAIN);
176 		}
177 		EE_DELAY();
178 		EE_SET(RTK_EE_CLK);
179 		EE_DELAY();
180 		EE_CLR(RTK_EE_CLK);
181 		EE_DELAY();
182 	}
183 }
184 
185 /*
186  * Read a word of data stored in the EEPROM at address 'addr.'
187  */
188 uint16_t
189 rtk_read_eeprom(struct rtk_softc *sc, int addr, int addr_len)
190 {
191 	uint16_t word;
192 	int i;
193 
194 	/* Enter EEPROM access mode. */
195 	CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_PROGRAM);
196 	EE_DELAY();
197 	EE_SET(RTK_EE_SEL);
198 
199 	/*
200 	 * Send address of word we want to read.
201 	 */
202 	rtk_eeprom_putbyte(sc, addr, addr_len);
203 
204 	/*
205 	 * Start reading bits from EEPROM.
206 	 */
207 	word = 0;
208 	for (i = 16; i > 0; i--) {
209 		EE_SET(RTK_EE_CLK);
210 		EE_DELAY();
211 		if (CSR_READ_1(sc, RTK_EECMD) & RTK_EE_DATAOUT)
212 			word |= 1 << (i - 1);
213 		EE_CLR(RTK_EE_CLK);
214 		EE_DELAY();
215 	}
216 
217 	/* Turn off EEPROM access mode. */
218 	CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
219 
220 	return word;
221 }
222 
223 /*
224  * MII access routines are provided for the 8129, which
225  * doesn't have a built-in PHY. For the 8139, we fake things
226  * up by diverting rtk_phy_readreg()/rtk_phy_writereg() to the
227  * direct access PHY registers.
228  */
229 #define MII_SET(x)					\
230 	CSR_WRITE_1(sc, RTK_MII,			\
231 		CSR_READ_1(sc, RTK_MII) | (x))
232 
233 #define MII_CLR(x)					\
234 	CSR_WRITE_1(sc, RTK_MII,			\
235 		CSR_READ_1(sc, RTK_MII) & ~(x))
236 
237 /*
238  * Sync the PHYs by setting data bit and strobing the clock 32 times.
239  */
240 static void
241 rtk_mii_sync(struct rtk_softc *sc)
242 {
243 	int i;
244 
245 	MII_SET(RTK_MII_DIR | RTK_MII_DATAOUT);
246 
247 	for (i = 0; i < 32; i++) {
248 		MII_SET(RTK_MII_CLK);
249 		DELAY(1);
250 		MII_CLR(RTK_MII_CLK);
251 		DELAY(1);
252 	}
253 }
254 
255 /*
256  * Clock a series of bits through the MII.
257  */
258 static void
259 rtk_mii_send(struct rtk_softc *sc, uint32_t bits, int cnt)
260 {
261 	int i;
262 
263 	MII_CLR(RTK_MII_CLK);
264 
265 	for (i = cnt; i > 0; i--) {
266 		if (bits & (1 << (i - 1))) {
267 			MII_SET(RTK_MII_DATAOUT);
268 		} else {
269 			MII_CLR(RTK_MII_DATAOUT);
270 		}
271 		DELAY(1);
272 		MII_CLR(RTK_MII_CLK);
273 		DELAY(1);
274 		MII_SET(RTK_MII_CLK);
275 	}
276 }
277 
278 /*
279  * Read an PHY register through the MII.
280  */
281 static int
282 rtk_mii_readreg(struct rtk_softc *sc, struct rtk_mii_frame *frame)
283 {
284 	int i, ack, s, rv = 0;
285 
286 	s = splnet();
287 
288 	/*
289 	 * Set up frame for RX.
290 	 */
291 	frame->mii_stdelim = RTK_MII_STARTDELIM;
292 	frame->mii_opcode = RTK_MII_READOP;
293 	frame->mii_turnaround = 0;
294 	frame->mii_data = 0;
295 
296 	CSR_WRITE_2(sc, RTK_MII, 0);
297 
298 	/*
299 	 * Turn on data xmit.
300 	 */
301 	MII_SET(RTK_MII_DIR);
302 
303 	rtk_mii_sync(sc);
304 
305 	/*
306 	 * Send command/address info.
307 	 */
308 	rtk_mii_send(sc, frame->mii_stdelim, 2);
309 	rtk_mii_send(sc, frame->mii_opcode, 2);
310 	rtk_mii_send(sc, frame->mii_phyaddr, 5);
311 	rtk_mii_send(sc, frame->mii_regaddr, 5);
312 
313 	/* Idle bit */
314 	MII_CLR((RTK_MII_CLK | RTK_MII_DATAOUT));
315 	DELAY(1);
316 	MII_SET(RTK_MII_CLK);
317 	DELAY(1);
318 
319 	/* Turn off xmit. */
320 	MII_CLR(RTK_MII_DIR);
321 
322 	/* Check for ack */
323 	MII_CLR(RTK_MII_CLK);
324 	DELAY(1);
325 	ack = CSR_READ_2(sc, RTK_MII) & RTK_MII_DATAIN;
326 	MII_SET(RTK_MII_CLK);
327 	DELAY(1);
328 
329 	/*
330 	 * Now try reading data bits. If the ack failed, we still
331 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
332 	 */
333 	if (ack) {
334 		for (i = 0; i < 16; i++) {
335 			MII_CLR(RTK_MII_CLK);
336 			DELAY(1);
337 			MII_SET(RTK_MII_CLK);
338 			DELAY(1);
339 		}
340 		rv = -1;
341 		goto fail;
342 	}
343 
344 	for (i = 16; i > 0; i--) {
345 		MII_CLR(RTK_MII_CLK);
346 		DELAY(1);
347 		if (!ack) {
348 			if (CSR_READ_2(sc, RTK_MII) & RTK_MII_DATAIN)
349 				frame->mii_data |= 1 << (i - 1);
350 			DELAY(1);
351 		}
352 		MII_SET(RTK_MII_CLK);
353 		DELAY(1);
354 	}
355 
356  fail:
357 	MII_CLR(RTK_MII_CLK);
358 	DELAY(1);
359 	MII_SET(RTK_MII_CLK);
360 	DELAY(1);
361 
362 	splx(s);
363 
364 	return rv;
365 }
366 
367 /*
368  * Write to a PHY register through the MII.
369  */
370 static int
371 rtk_mii_writereg(struct rtk_softc *sc, struct rtk_mii_frame *frame)
372 {
373 	int s;
374 
375 	s = splnet();
376 	/*
377 	 * Set up frame for TX.
378 	 */
379 	frame->mii_stdelim = RTK_MII_STARTDELIM;
380 	frame->mii_opcode = RTK_MII_WRITEOP;
381 	frame->mii_turnaround = RTK_MII_TURNAROUND;
382 
383 	/*
384 	 * Turn on data output.
385 	 */
386 	MII_SET(RTK_MII_DIR);
387 
388 	rtk_mii_sync(sc);
389 
390 	rtk_mii_send(sc, frame->mii_stdelim, 2);
391 	rtk_mii_send(sc, frame->mii_opcode, 2);
392 	rtk_mii_send(sc, frame->mii_phyaddr, 5);
393 	rtk_mii_send(sc, frame->mii_regaddr, 5);
394 	rtk_mii_send(sc, frame->mii_turnaround, 2);
395 	rtk_mii_send(sc, frame->mii_data, 16);
396 
397 	/* Idle bit. */
398 	MII_SET(RTK_MII_CLK);
399 	DELAY(1);
400 	MII_CLR(RTK_MII_CLK);
401 	DELAY(1);
402 
403 	/*
404 	 * Turn off xmit.
405 	 */
406 	MII_CLR(RTK_MII_DIR);
407 
408 	splx(s);
409 
410 	return 0;
411 }
412 
413 static int
414 rtk_phy_readreg(device_t self, int phy, int reg, uint16_t *val)
415 {
416 	struct rtk_softc *sc = device_private(self);
417 	struct rtk_mii_frame frame;
418 	int rv;
419 	int rtk8139_reg;
420 
421 	if ((sc->sc_quirk & RTKQ_8129) == 0) {
422 		if (phy != 7)
423 			return -1;
424 
425 		switch (reg) {
426 		case MII_BMCR:
427 			rtk8139_reg = RTK_BMCR;
428 			break;
429 		case MII_BMSR:
430 			rtk8139_reg = RTK_BMSR;
431 			break;
432 		case MII_ANAR:
433 			rtk8139_reg = RTK_ANAR;
434 			break;
435 		case MII_ANER:
436 			rtk8139_reg = RTK_ANER;
437 			break;
438 		case MII_ANLPAR:
439 			rtk8139_reg = RTK_LPAR;
440 			break;
441 		case MII_PHYIDR1:
442 		case MII_PHYIDR2:
443 			*val = 0;
444 			return 0;
445 		default:
446 #if 0
447 			printf("%s: bad phy register\n", device_xname(self));
448 #endif
449 			return -1;
450 		}
451 		*val = CSR_READ_2(sc, rtk8139_reg);
452 		return 0;
453 	}
454 
455 	memset(&frame, 0, sizeof(frame));
456 
457 	frame.mii_phyaddr = phy;
458 	frame.mii_regaddr = reg;
459 	rv = rtk_mii_readreg(sc, &frame);
460 	*val = frame.mii_data;
461 
462 	return rv;
463 }
464 
465 static int
466 rtk_phy_writereg(device_t self, int phy, int reg, uint16_t val)
467 {
468 	struct rtk_softc *sc = device_private(self);
469 	struct rtk_mii_frame frame;
470 	int rtk8139_reg;
471 
472 	if ((sc->sc_quirk & RTKQ_8129) == 0) {
473 		if (phy != 7)
474 			return -1;
475 
476 		switch (reg) {
477 		case MII_BMCR:
478 			rtk8139_reg = RTK_BMCR;
479 			break;
480 		case MII_BMSR:
481 			rtk8139_reg = RTK_BMSR;
482 			break;
483 		case MII_ANAR:
484 			rtk8139_reg = RTK_ANAR;
485 			break;
486 		case MII_ANER:
487 			rtk8139_reg = RTK_ANER;
488 			break;
489 		case MII_ANLPAR:
490 			rtk8139_reg = RTK_LPAR;
491 			break;
492 		default:
493 #if 0
494 			printf("%s: bad phy register\n", device_xname(self));
495 #endif
496 			return -1;
497 		}
498 		CSR_WRITE_2(sc, rtk8139_reg, val);
499 		return 0;
500 	}
501 
502 	memset(&frame, 0, sizeof(frame));
503 
504 	frame.mii_phyaddr = phy;
505 	frame.mii_regaddr = reg;
506 	frame.mii_data = val;
507 
508 	return rtk_mii_writereg(sc, &frame);
509 }
510 
511 static void
512 rtk_phy_statchg(struct ifnet *ifp)
513 {
514 
515 	/* Nothing to do. */
516 }
517 
518 #define	rtk_calchash(addr) \
519 	(ether_crc32_be((addr), ETHER_ADDR_LEN) >> 26)
520 
521 /*
522  * Program the 64-bit multicast hash filter.
523  */
524 void
525 rtk_setmulti(struct rtk_softc *sc)
526 {
527 	struct ethercom *ec = &sc->ethercom;
528 	struct ifnet *ifp = &ec->ec_if;
529 	uint32_t hashes[2] = { 0, 0 };
530 	uint32_t rxfilt;
531 	struct ether_multi *enm;
532 	struct ether_multistep step;
533 	int h, mcnt;
534 
535 	rxfilt = CSR_READ_4(sc, RTK_RXCFG);
536 
537 	if (ifp->if_flags & IFF_PROMISC) {
538  allmulti:
539 		ifp->if_flags |= IFF_ALLMULTI;
540 		rxfilt |= RTK_RXCFG_RX_MULTI;
541 		CSR_WRITE_4(sc, RTK_RXCFG, rxfilt);
542 		CSR_WRITE_4(sc, RTK_MAR0, 0xFFFFFFFF);
543 		CSR_WRITE_4(sc, RTK_MAR4, 0xFFFFFFFF);
544 		return;
545 	}
546 
547 	/* first, zot all the existing hash bits */
548 	CSR_WRITE_4(sc, RTK_MAR0, 0);
549 	CSR_WRITE_4(sc, RTK_MAR4, 0);
550 
551 	/* now program new ones */
552 	ETHER_LOCK(ec);
553 	ETHER_FIRST_MULTI(step, ec, enm);
554 	mcnt = 0;
555 	while (enm != NULL) {
556 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
557 		    ETHER_ADDR_LEN) != 0) {
558 			ETHER_UNLOCK(ec);
559 			goto allmulti;
560 		}
561 
562 		h = rtk_calchash(enm->enm_addrlo);
563 		if (h < 32)
564 			hashes[0] |= __BIT(h);
565 		else
566 			hashes[1] |= __BIT(h - 32);
567 		mcnt++;
568 		ETHER_NEXT_MULTI(step, enm);
569 	}
570 	ETHER_UNLOCK(ec);
571 
572 	ifp->if_flags &= ~IFF_ALLMULTI;
573 
574 	if (mcnt)
575 		rxfilt |= RTK_RXCFG_RX_MULTI;
576 	else
577 		rxfilt &= ~RTK_RXCFG_RX_MULTI;
578 
579 	CSR_WRITE_4(sc, RTK_RXCFG, rxfilt);
580 
581 	/*
582 	 * For some unfathomable reason, RealTek decided to reverse
583 	 * the order of the multicast hash registers in the PCI Express
584 	 * parts. This means we have to write the hash pattern in reverse
585 	 * order for those devices.
586 	 */
587 	if ((sc->sc_quirk & RTKQ_PCIE) != 0) {
588 		CSR_WRITE_4(sc, RTK_MAR0, bswap32(hashes[1]));
589 		CSR_WRITE_4(sc, RTK_MAR4, bswap32(hashes[0]));
590 	} else {
591 		CSR_WRITE_4(sc, RTK_MAR0, hashes[0]);
592 		CSR_WRITE_4(sc, RTK_MAR4, hashes[1]);
593 	}
594 }
595 
596 void
597 rtk_reset(struct rtk_softc *sc)
598 {
599 	int i;
600 
601 	CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
602 
603 	for (i = 0; i < RTK_TIMEOUT; i++) {
604 		DELAY(10);
605 		if ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET) == 0)
606 			break;
607 	}
608 	if (i == RTK_TIMEOUT)
609 		printf("%s: reset never completed!\n",
610 		    device_xname(sc->sc_dev));
611 }
612 
613 /*
614  * Attach the interface. Allocate softc structures, do ifmedia
615  * setup and ethernet/BPF attach.
616  */
617 void
618 rtk_attach(struct rtk_softc *sc)
619 {
620 	device_t self = sc->sc_dev;
621 	struct ifnet *ifp;
622 	struct mii_data * const mii = &sc->mii;
623 	struct rtk_tx_desc *txd;
624 	uint16_t val;
625 	uint8_t eaddr[ETHER_ADDR_LEN];
626 	int error;
627 	int i, addr_len;
628 
629 	callout_init(&sc->rtk_tick_ch, 0);
630 	callout_setfunc(&sc->rtk_tick_ch, rtk_tick, sc);
631 
632 	/*
633 	 * Check EEPROM type 9346 or 9356.
634 	 */
635 	if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
636 		addr_len = RTK_EEADDR_LEN1;
637 	else
638 		addr_len = RTK_EEADDR_LEN0;
639 
640 	/*
641 	 * Get station address.
642 	 */
643 	val = rtk_read_eeprom(sc, RTK_EE_EADDR0, addr_len);
644 	eaddr[0] = val & 0xff;
645 	eaddr[1] = val >> 8;
646 	val = rtk_read_eeprom(sc, RTK_EE_EADDR1, addr_len);
647 	eaddr[2] = val & 0xff;
648 	eaddr[3] = val >> 8;
649 	val = rtk_read_eeprom(sc, RTK_EE_EADDR2, addr_len);
650 	eaddr[4] = val & 0xff;
651 	eaddr[5] = val >> 8;
652 
653 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
654 	    RTK_RXBUFLEN + 16, PAGE_SIZE, 0, &sc->sc_dmaseg, 1, &sc->sc_dmanseg,
655 	    BUS_DMA_NOWAIT)) != 0) {
656 		aprint_error_dev(self,
657 		    "can't allocate recv buffer, error = %d\n", error);
658 		goto fail_0;
659 	}
660 
661 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_dmaseg, sc->sc_dmanseg,
662 	    RTK_RXBUFLEN + 16, (void **)&sc->rtk_rx_buf,
663 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
664 		aprint_error_dev(self,
665 		    "can't map recv buffer, error = %d\n", error);
666 		goto fail_1;
667 	}
668 
669 	if ((error = bus_dmamap_create(sc->sc_dmat,
670 	    RTK_RXBUFLEN + 16, 1, RTK_RXBUFLEN + 16, 0, BUS_DMA_NOWAIT,
671 	    &sc->recv_dmamap)) != 0) {
672 		aprint_error_dev(self,
673 		    "can't create recv buffer DMA map, error = %d\n", error);
674 		goto fail_2;
675 	}
676 
677 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->recv_dmamap,
678 	    sc->rtk_rx_buf, RTK_RXBUFLEN + 16,
679 	    NULL, BUS_DMA_READ | BUS_DMA_NOWAIT)) != 0) {
680 		aprint_error_dev(self,
681 		    "can't load recv buffer DMA map, error = %d\n", error);
682 		goto fail_3;
683 	}
684 
685 	for (i = 0; i < RTK_TX_LIST_CNT; i++) {
686 		txd = &sc->rtk_tx_descs[i];
687 		if ((error = bus_dmamap_create(sc->sc_dmat,
688 		    MCLBYTES, 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
689 		    &txd->txd_dmamap)) != 0) {
690 			aprint_error_dev(self,
691 			    "can't create snd buffer DMA map, error = %d\n",
692 			    error);
693 			goto fail_4;
694 		}
695 		txd->txd_txaddr = RTK_TXADDR0 + (i * 4);
696 		txd->txd_txstat = RTK_TXSTAT0 + (i * 4);
697 	}
698 	SIMPLEQ_INIT(&sc->rtk_tx_free);
699 	SIMPLEQ_INIT(&sc->rtk_tx_dirty);
700 
701 	/*
702 	 * From this point forward, the attachment cannot fail. A failure
703 	 * before this releases all resources thar may have been
704 	 * allocated.
705 	 */
706 	sc->sc_flags |= RTK_ATTACHED;
707 
708 	/* Reset the adapter. */
709 	rtk_reset(sc);
710 
711 	aprint_normal_dev(self, "Ethernet address %s\n", ether_sprintf(eaddr));
712 
713 	ifp = &sc->ethercom.ec_if;
714 	ifp->if_softc = sc;
715 	strcpy(ifp->if_xname, device_xname(self));
716 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
717 	ifp->if_ioctl = rtk_ioctl;
718 	ifp->if_start = rtk_start;
719 	ifp->if_watchdog = rtk_watchdog;
720 	ifp->if_init = rtk_init;
721 	ifp->if_stop = rtk_stop;
722 	IFQ_SET_READY(&ifp->if_snd);
723 
724 	/*
725 	 * Do ifmedia setup.
726 	 */
727 	mii->mii_ifp = ifp;
728 	mii->mii_readreg = rtk_phy_readreg;
729 	mii->mii_writereg = rtk_phy_writereg;
730 	mii->mii_statchg = rtk_phy_statchg;
731 	sc->ethercom.ec_mii = mii;
732 	ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
733 	    ether_mediastatus);
734 	mii_attach(self, mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY, 0);
735 
736 	/* Choose a default media. */
737 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
738 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
739 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
740 	} else
741 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
742 
743 	/*
744 	 * Call MI attach routines.
745 	 */
746 	if_attach(ifp);
747 	if_deferred_start_init(ifp, NULL);
748 	ether_ifattach(ifp, eaddr);
749 
750 	rnd_attach_source(&sc->rnd_source, device_xname(self),
751 	    RND_TYPE_NET, RND_FLAG_DEFAULT);
752 
753 	return;
754  fail_4:
755 	for (i = 0; i < RTK_TX_LIST_CNT; i++) {
756 		txd = &sc->rtk_tx_descs[i];
757 		if (txd->txd_dmamap != NULL)
758 			bus_dmamap_destroy(sc->sc_dmat, txd->txd_dmamap);
759 	}
760  fail_3:
761 	bus_dmamap_destroy(sc->sc_dmat, sc->recv_dmamap);
762  fail_2:
763 	bus_dmamem_unmap(sc->sc_dmat, sc->rtk_rx_buf,
764 	    RTK_RXBUFLEN + 16);
765  fail_1:
766 	bus_dmamem_free(sc->sc_dmat, &sc->sc_dmaseg, sc->sc_dmanseg);
767  fail_0:
768 	return;
769 }
770 
771 /*
772  * Initialize the transmit descriptors.
773  */
774 static void
775 rtk_list_tx_init(struct rtk_softc *sc)
776 {
777 	struct rtk_tx_desc *txd;
778 	int i;
779 
780 	while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_dirty)) != NULL)
781 		SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_dirty, txd_q);
782 	while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_free)) != NULL)
783 		SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_free, txd_q);
784 
785 	for (i = 0; i < RTK_TX_LIST_CNT; i++) {
786 		txd = &sc->rtk_tx_descs[i];
787 		CSR_WRITE_4(sc, txd->txd_txaddr, 0);
788 		SIMPLEQ_INSERT_TAIL(&sc->rtk_tx_free, txd, txd_q);
789 	}
790 }
791 
792 /*
793  * rtk_activate:
794  *     Handle device activation/deactivation requests.
795  */
796 int
797 rtk_activate(device_t self, enum devact act)
798 {
799 	struct rtk_softc *sc = device_private(self);
800 
801 	switch (act) {
802 	case DVACT_DEACTIVATE:
803 		if_deactivate(&sc->ethercom.ec_if);
804 		return 0;
805 	default:
806 		return EOPNOTSUPP;
807 	}
808 }
809 
810 /*
811  * rtk_detach:
812  *     Detach a rtk interface.
813  */
814 int
815 rtk_detach(struct rtk_softc *sc)
816 {
817 	struct ifnet *ifp = &sc->ethercom.ec_if;
818 	struct rtk_tx_desc *txd;
819 	int i;
820 
821 	/*
822 	 * Succeed now if there isn't any work to do.
823 	 */
824 	if ((sc->sc_flags & RTK_ATTACHED) == 0)
825 		return 0;
826 
827 	/* Unhook our tick handler. */
828 	callout_stop(&sc->rtk_tick_ch);
829 
830 	/* Detach all PHYs. */
831 	mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
832 
833 	rnd_detach_source(&sc->rnd_source);
834 
835 	ether_ifdetach(ifp);
836 	if_detach(ifp);
837 
838 	/* Delete all remaining media. */
839 	ifmedia_fini(&sc->mii.mii_media);
840 
841 	for (i = 0; i < RTK_TX_LIST_CNT; i++) {
842 		txd = &sc->rtk_tx_descs[i];
843 		if (txd->txd_dmamap != NULL)
844 			bus_dmamap_destroy(sc->sc_dmat, txd->txd_dmamap);
845 	}
846 	bus_dmamap_destroy(sc->sc_dmat, sc->recv_dmamap);
847 	bus_dmamem_unmap(sc->sc_dmat, sc->rtk_rx_buf,
848 	    RTK_RXBUFLEN + 16);
849 	bus_dmamem_free(sc->sc_dmat, &sc->sc_dmaseg, sc->sc_dmanseg);
850 
851 	/* we don't want to run again */
852 	sc->sc_flags &= ~RTK_ATTACHED;
853 
854 	return 0;
855 }
856 
857 /*
858  * rtk_enable:
859  *     Enable the RTL81X9 chip.
860  */
861 int
862 rtk_enable(struct rtk_softc *sc)
863 {
864 
865 	if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
866 		if ((*sc->sc_enable)(sc) != 0) {
867 			printf("%s: device enable failed\n",
868 			    device_xname(sc->sc_dev));
869 			return EIO;
870 		}
871 		sc->sc_flags |= RTK_ENABLED;
872 	}
873 	return 0;
874 }
875 
876 /*
877  * rtk_disable:
878  *     Disable the RTL81X9 chip.
879  */
880 void
881 rtk_disable(struct rtk_softc *sc)
882 {
883 
884 	if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
885 		(*sc->sc_disable)(sc);
886 		sc->sc_flags &= ~RTK_ENABLED;
887 	}
888 }
889 
890 /*
891  * A frame has been uploaded: pass the resulting mbuf chain up to
892  * the higher level protocols.
893  *
894  * You know there's something wrong with a PCI bus-master chip design.
895  *
896  * The receive operation is badly documented in the datasheet, so I'll
897  * attempt to document it here. The driver provides a buffer area and
898  * places its base address in the RX buffer start address register.
899  * The chip then begins copying frames into the RX buffer. Each frame
900  * is preceded by a 32-bit RX status word which specifies the length
901  * of the frame and certain other status bits. Each frame (starting with
902  * the status word) is also 32-bit aligned. The frame length is in the
903  * first 16 bits of the status word; the lower 15 bits correspond with
904  * the 'rx status register' mentioned in the datasheet.
905  *
906  * Note: to make the Alpha happy, the frame payload needs to be aligned
907  * on a 32-bit boundary. To achieve this, we copy the data to mbuf
908  * shifted forward 2 bytes.
909  */
910 static void
911 rtk_rxeof(struct rtk_softc *sc)
912 {
913 	struct mbuf *m;
914 	struct ifnet *ifp;
915 	uint8_t *rxbufpos, *dst;
916 	u_int total_len, wrap;
917 	uint32_t rxstat;
918 	uint16_t cur_rx, new_rx;
919 	uint16_t limit;
920 	uint16_t rx_bytes, max_bytes;
921 
922 	ifp = &sc->ethercom.ec_if;
923 
924 	cur_rx = (CSR_READ_2(sc, RTK_CURRXADDR) + 16) % RTK_RXBUFLEN;
925 
926 	/* Do not try to read past this point. */
927 	limit = CSR_READ_2(sc, RTK_CURRXBUF) % RTK_RXBUFLEN;
928 
929 	if (limit < cur_rx)
930 		max_bytes = (RTK_RXBUFLEN - cur_rx) + limit;
931 	else
932 		max_bytes = limit - cur_rx;
933 	rx_bytes = 0;
934 
935 	while ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_EMPTY_RXBUF) == 0) {
936 		rxbufpos = sc->rtk_rx_buf + cur_rx;
937 		bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap, cur_rx,
938 		    RTK_RXSTAT_LEN, BUS_DMASYNC_POSTREAD);
939 		rxstat = le32toh(*(uint32_t *)rxbufpos);
940 		bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap, cur_rx,
941 		    RTK_RXSTAT_LEN, BUS_DMASYNC_PREREAD);
942 
943 		/*
944 		 * Here's a totally undocumented fact for you. When the
945 		 * RealTek chip is in the process of copying a packet into
946 		 * RAM for you, the length will be 0xfff0. If you spot a
947 		 * packet header with this value, you need to stop. The
948 		 * datasheet makes absolutely no mention of this and
949 		 * RealTek should be shot for this.
950 		 */
951 		total_len = rxstat >> 16;
952 		if (total_len == RTK_RXSTAT_UNFINISHED)
953 			break;
954 
955 		if ((rxstat & RTK_RXSTAT_RXOK) == 0 ||
956 		    total_len < ETHER_MIN_LEN ||
957 		    total_len > (MCLBYTES - RTK_ETHER_ALIGN)) {
958 			if_statinc(ifp, if_ierrors);
959 
960 			/*
961 			 * submitted by:[netbsd-pcmcia:00484]
962 			 *	Takahiro Kambe <taca@sky.yamashina.kyoto.jp>
963 			 * obtain from:
964 			 *     FreeBSD if_rl.c rev 1.24->1.25
965 			 *
966 			 */
967 #if 0
968 			if (rxstat & (RTK_RXSTAT_BADSYM | RTK_RXSTAT_RUNT |
969 			    RTK_RXSTAT_GIANT | RTK_RXSTAT_CRCERR |
970 			    RTK_RXSTAT_ALIGNERR)) {
971 				CSR_WRITE_2(sc, RTK_COMMAND, RTK_CMD_TX_ENB);
972 				CSR_WRITE_2(sc, RTK_COMMAND,
973 				    RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
974 				CSR_WRITE_4(sc, RTK_RXCFG, RTK_RXCFG_CONFIG);
975 				CSR_WRITE_4(sc, RTK_RXADDR,
976 				    sc->recv_dmamap->dm_segs[0].ds_addr);
977 				cur_rx = 0;
978 			}
979 			break;
980 #else
981 			rtk_init(ifp);
982 			return;
983 #endif
984 		}
985 
986 		/* No errors; receive the packet. */
987 		rx_bytes += total_len + RTK_RXSTAT_LEN;
988 
989 		/*
990 		 * Avoid trying to read more bytes than we know
991 		 * the chip has prepared for us.
992 		 */
993 		if (rx_bytes > max_bytes)
994 			break;
995 
996 		/*
997 		 * Skip the status word, wrapping around to the beginning
998 		 * of the Rx area, if necessary.
999 		 */
1000 		cur_rx = (cur_rx + RTK_RXSTAT_LEN) % RTK_RXBUFLEN;
1001 		rxbufpos = sc->rtk_rx_buf + cur_rx;
1002 
1003 		/*
1004 		 * Compute the number of bytes at which the packet
1005 		 * will wrap to the beginning of the ring buffer.
1006 		 */
1007 		wrap = RTK_RXBUFLEN - cur_rx;
1008 
1009 		/*
1010 		 * Compute where the next pending packet is.
1011 		 */
1012 		if (total_len > wrap)
1013 			new_rx = total_len - wrap;
1014 		else
1015 			new_rx = cur_rx + total_len;
1016 		/* Round up to 32-bit boundary. */
1017 		new_rx = roundup2(new_rx, sizeof(uint32_t)) % RTK_RXBUFLEN;
1018 
1019 		/*
1020 		 * The RealTek chip includes the CRC with every
1021 		 * incoming packet; trim it off here.
1022 		 */
1023 		total_len -= ETHER_CRC_LEN;
1024 
1025 		/*
1026 		 * Now allocate an mbuf (and possibly a cluster) to hold
1027 		 * the packet. Note we offset the packet 2 bytes so that
1028 		 * data after the Ethernet header will be 4-byte aligned.
1029 		 */
1030 		MGETHDR(m, M_DONTWAIT, MT_DATA);
1031 		if (m == NULL) {
1032 			printf("%s: unable to allocate Rx mbuf\n",
1033 			    device_xname(sc->sc_dev));
1034 			if_statinc(ifp, if_ierrors);
1035 			goto next_packet;
1036 		}
1037 		MCLAIM(m, &sc->ethercom.ec_rx_mowner);
1038 		if (total_len > (MHLEN - RTK_ETHER_ALIGN)) {
1039 			MCLGET(m, M_DONTWAIT);
1040 			if ((m->m_flags & M_EXT) == 0) {
1041 				printf("%s: unable to allocate Rx cluster\n",
1042 				    device_xname(sc->sc_dev));
1043 				if_statinc(ifp, if_ierrors);
1044 				m_freem(m);
1045 				m = NULL;
1046 				goto next_packet;
1047 			}
1048 		}
1049 		m->m_data += RTK_ETHER_ALIGN;	/* for alignment */
1050 		m_set_rcvif(m, ifp);
1051 		m->m_pkthdr.len = m->m_len = total_len;
1052 		dst = mtod(m, void *);
1053 
1054 		/*
1055 		 * If the packet wraps, copy up to the wrapping point.
1056 		 */
1057 		if (total_len > wrap) {
1058 			bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
1059 			    cur_rx, wrap, BUS_DMASYNC_POSTREAD);
1060 			memcpy(dst, rxbufpos, wrap);
1061 			bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
1062 			    cur_rx, wrap, BUS_DMASYNC_PREREAD);
1063 			cur_rx = 0;
1064 			rxbufpos = sc->rtk_rx_buf;
1065 			total_len -= wrap;
1066 			dst += wrap;
1067 		}
1068 
1069 		/*
1070 		 * ...and now the rest.
1071 		 */
1072 		bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
1073 		    cur_rx, total_len, BUS_DMASYNC_POSTREAD);
1074 		memcpy(dst, rxbufpos, total_len);
1075 		bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
1076 		    cur_rx, total_len, BUS_DMASYNC_PREREAD);
1077 
1078  next_packet:
1079 		CSR_WRITE_2(sc, RTK_CURRXADDR, (new_rx - 16) % RTK_RXBUFLEN);
1080 		cur_rx = new_rx;
1081 
1082 		if (m == NULL)
1083 			continue;
1084 
1085 		/* pass it on. */
1086 		if_percpuq_enqueue(ifp->if_percpuq, m);
1087 	}
1088 }
1089 
1090 /*
1091  * A frame was downloaded to the chip. It's safe for us to clean up
1092  * the list buffers.
1093  */
1094 static void
1095 rtk_txeof(struct rtk_softc *sc)
1096 {
1097 	struct ifnet *ifp;
1098 	struct rtk_tx_desc *txd;
1099 	uint32_t txstat;
1100 
1101 	ifp = &sc->ethercom.ec_if;
1102 
1103 	/*
1104 	 * Go through our tx list and free mbufs for those
1105 	 * frames that have been uploaded.
1106 	 */
1107 	while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_dirty)) != NULL) {
1108 		txstat = CSR_READ_4(sc, txd->txd_txstat);
1109 		if ((txstat & (RTK_TXSTAT_TX_OK |
1110 		    RTK_TXSTAT_TX_UNDERRUN | RTK_TXSTAT_TXABRT)) == 0)
1111 			break;
1112 
1113 		SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_dirty, txd_q);
1114 
1115 		bus_dmamap_sync(sc->sc_dmat, txd->txd_dmamap, 0,
1116 		    txd->txd_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1117 		bus_dmamap_unload(sc->sc_dmat, txd->txd_dmamap);
1118 		m_freem(txd->txd_mbuf);
1119 		txd->txd_mbuf = NULL;
1120 
1121 		net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
1122 		if_statadd_ref(nsr, if_collisions,
1123 		    (txstat & RTK_TXSTAT_COLLCNT) >> 24);
1124 
1125 		if (txstat & RTK_TXSTAT_TX_OK)
1126 			if_statinc_ref(nsr, if_opackets);
1127 		else {
1128 			if_statinc_ref(nsr, if_oerrors);
1129 
1130 			/*
1131 			 * Increase Early TX threshold if underrun occurred.
1132 			 * Increase step 64 bytes.
1133 			 */
1134 			if (txstat & RTK_TXSTAT_TX_UNDERRUN) {
1135 #ifdef DEBUG
1136 				printf("%s: transmit underrun;",
1137 				    device_xname(sc->sc_dev));
1138 #endif
1139 				if (sc->sc_txthresh < RTK_TXTH_MAX) {
1140 					sc->sc_txthresh += 2;
1141 #ifdef DEBUG
1142 					printf(" new threshold: %d bytes",
1143 					    sc->sc_txthresh * 32);
1144 #endif
1145 				}
1146 #ifdef DEBUG
1147 				printf("\n");
1148 #endif
1149 			}
1150 			if (txstat & (RTK_TXSTAT_TXABRT | RTK_TXSTAT_OUTOFWIN))
1151 				CSR_WRITE_4(sc, RTK_TXCFG, RTK_TXCFG_CONFIG);
1152 		}
1153 		IF_STAT_PUTREF(ifp);
1154 		SIMPLEQ_INSERT_TAIL(&sc->rtk_tx_free, txd, txd_q);
1155 		ifp->if_flags &= ~IFF_OACTIVE;
1156 	}
1157 
1158 	/* Clear the timeout timer if there is no pending packet. */
1159 	if (SIMPLEQ_EMPTY(&sc->rtk_tx_dirty))
1160 		ifp->if_timer = 0;
1161 
1162 }
1163 
1164 int
1165 rtk_intr(void *arg)
1166 {
1167 	struct rtk_softc *sc;
1168 	struct ifnet *ifp;
1169 	uint16_t status;
1170 	int handled;
1171 
1172 	sc = arg;
1173 	ifp = &sc->ethercom.ec_if;
1174 
1175 	if (!device_has_power(sc->sc_dev))
1176 		return 0;
1177 
1178 	/* Disable interrupts. */
1179 	CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1180 
1181 	handled = 0;
1182 	for (;;) {
1183 
1184 		status = CSR_READ_2(sc, RTK_ISR);
1185 
1186 		if (status == 0xffff)
1187 			break; /* Card is gone... */
1188 
1189 		if (status)
1190 			CSR_WRITE_2(sc, RTK_ISR, status);
1191 
1192 		if ((status & RTK_INTRS) == 0)
1193 			break;
1194 
1195 		handled = 1;
1196 
1197 		if (status & RTK_ISR_RX_OK)
1198 			rtk_rxeof(sc);
1199 
1200 		if (status & RTK_ISR_RX_ERR)
1201 			rtk_rxeof(sc);
1202 
1203 		if (status & (RTK_ISR_TX_OK | RTK_ISR_TX_ERR))
1204 			rtk_txeof(sc);
1205 
1206 		if (status & RTK_ISR_SYSTEM_ERR) {
1207 			rtk_reset(sc);
1208 			rtk_init(ifp);
1209 		}
1210 	}
1211 
1212 	/* Re-enable interrupts. */
1213 	CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS);
1214 
1215 	if_schedule_deferred_start(ifp);
1216 
1217 	rnd_add_uint32(&sc->rnd_source, status);
1218 
1219 	return handled;
1220 }
1221 
1222 /*
1223  * Main transmit routine.
1224  */
1225 
1226 static void
1227 rtk_start(struct ifnet *ifp)
1228 {
1229 	struct rtk_softc *sc;
1230 	struct rtk_tx_desc *txd;
1231 	struct mbuf *m_head, *m_new;
1232 	int error, len;
1233 
1234 	sc = ifp->if_softc;
1235 
1236 	while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_free)) != NULL) {
1237 		IFQ_POLL(&ifp->if_snd, m_head);
1238 		if (m_head == NULL)
1239 			break;
1240 		m_new = NULL;
1241 
1242 		/*
1243 		 * Load the DMA map.  If this fails, the packet didn't
1244 		 * fit in one DMA segment, and we need to copy.  Note,
1245 		 * the packet must also be aligned.
1246 		 * if the packet is too small, copy it too, so we're sure
1247 		 * so have enough room for the pad buffer.
1248 		 */
1249 		if ((mtod(m_head, uintptr_t) & 3) != 0 ||
1250 		    m_head->m_pkthdr.len < ETHER_PAD_LEN ||
1251 		    bus_dmamap_load_mbuf(sc->sc_dmat, txd->txd_dmamap,
1252 			m_head, BUS_DMA_WRITE | BUS_DMA_NOWAIT) != 0) {
1253 			MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1254 			if (m_new == NULL) {
1255 				printf("%s: unable to allocate Tx mbuf\n",
1256 				    device_xname(sc->sc_dev));
1257 				break;
1258 			}
1259 			MCLAIM(m_new, &sc->ethercom.ec_rx_mowner);
1260 			if (m_head->m_pkthdr.len > MHLEN) {
1261 				MCLGET(m_new, M_DONTWAIT);
1262 				if ((m_new->m_flags & M_EXT) == 0) {
1263 					printf("%s: unable to allocate Tx "
1264 					    "cluster\n",
1265 					    device_xname(sc->sc_dev));
1266 					m_freem(m_new);
1267 					break;
1268 				}
1269 			}
1270 			m_copydata(m_head, 0, m_head->m_pkthdr.len,
1271 			    mtod(m_new, void *));
1272 			m_new->m_pkthdr.len = m_new->m_len =
1273 			    m_head->m_pkthdr.len;
1274 			if (m_head->m_pkthdr.len < ETHER_PAD_LEN) {
1275 				memset(
1276 				    mtod(m_new, char *) + m_head->m_pkthdr.len,
1277 				    0, ETHER_PAD_LEN - m_head->m_pkthdr.len);
1278 				m_new->m_pkthdr.len = m_new->m_len =
1279 				    ETHER_PAD_LEN;
1280 			}
1281 			error = bus_dmamap_load_mbuf(sc->sc_dmat,
1282 			    txd->txd_dmamap, m_new,
1283 			    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1284 			if (error) {
1285 				printf("%s: unable to load Tx buffer, "
1286 				    "error = %d\n",
1287 				    device_xname(sc->sc_dev), error);
1288 				break;
1289 			}
1290 		}
1291 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1292 		/*
1293 		 * If there's a BPF listener, bounce a copy of this frame
1294 		 * to him.
1295 		 */
1296 		bpf_mtap(ifp, m_head, BPF_D_OUT);
1297 		if (m_new != NULL) {
1298 			m_freem(m_head);
1299 			m_head = m_new;
1300 		}
1301 		txd->txd_mbuf = m_head;
1302 
1303 		SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_free, txd_q);
1304 		SIMPLEQ_INSERT_TAIL(&sc->rtk_tx_dirty, txd, txd_q);
1305 
1306 		/*
1307 		 * Transmit the frame.
1308 		 */
1309 		bus_dmamap_sync(sc->sc_dmat,
1310 		    txd->txd_dmamap, 0, txd->txd_dmamap->dm_mapsize,
1311 		    BUS_DMASYNC_PREWRITE);
1312 
1313 		len = txd->txd_dmamap->dm_segs[0].ds_len;
1314 
1315 		CSR_WRITE_4(sc, txd->txd_txaddr,
1316 		    txd->txd_dmamap->dm_segs[0].ds_addr);
1317 		CSR_WRITE_4(sc, txd->txd_txstat,
1318 		    RTK_TXSTAT_THRESH(sc->sc_txthresh) | len);
1319 
1320 		/*
1321 		 * Set a timeout in case the chip goes out to lunch.
1322 		 */
1323 		ifp->if_timer = 5;
1324 	}
1325 
1326 	/*
1327 	 * We broke out of the loop because all our TX slots are
1328 	 * full. Mark the NIC as busy until it drains some of the
1329 	 * packets from the queue.
1330 	 */
1331 	if (SIMPLEQ_EMPTY(&sc->rtk_tx_free))
1332 		ifp->if_flags |= IFF_OACTIVE;
1333 }
1334 
1335 static int
1336 rtk_init(struct ifnet *ifp)
1337 {
1338 	struct rtk_softc *sc = ifp->if_softc;
1339 	int error, i;
1340 	uint32_t rxcfg;
1341 
1342 	if ((error = rtk_enable(sc)) != 0)
1343 		goto out;
1344 
1345 	/*
1346 	 * Cancel pending I/O.
1347 	 */
1348 	rtk_stop(ifp, 0);
1349 
1350 	/* Init our MAC address */
1351 	for (i = 0; i < ETHER_ADDR_LEN; i++) {
1352 		CSR_WRITE_1(sc, RTK_IDR0 + i, CLLADDR(ifp->if_sadl)[i]);
1353 	}
1354 
1355 	/* Init the RX buffer pointer register. */
1356 	bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap, 0,
1357 	    sc->recv_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1358 	CSR_WRITE_4(sc, RTK_RXADDR, sc->recv_dmamap->dm_segs[0].ds_addr);
1359 
1360 	/* Init TX descriptors. */
1361 	rtk_list_tx_init(sc);
1362 
1363 	/* Init Early TX threshold. */
1364 	sc->sc_txthresh = RTK_TXTH_256;
1365 	/*
1366 	 * Enable transmit and receive.
1367 	 */
1368 	CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1369 
1370 	/*
1371 	 * Set the initial TX and RX configuration.
1372 	 */
1373 	CSR_WRITE_4(sc, RTK_TXCFG, RTK_TXCFG_CONFIG);
1374 	CSR_WRITE_4(sc, RTK_RXCFG, RTK_RXCFG_CONFIG);
1375 
1376 	/* Set the individual bit to receive frames for this host only. */
1377 	rxcfg = CSR_READ_4(sc, RTK_RXCFG);
1378 	rxcfg |= RTK_RXCFG_RX_INDIV;
1379 
1380 	/* If we want promiscuous mode, set the allframes bit. */
1381 	if (ifp->if_flags & IFF_PROMISC) {
1382 		rxcfg |= RTK_RXCFG_RX_ALLPHYS;
1383 		CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1384 	} else {
1385 		rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
1386 		CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1387 	}
1388 
1389 	/*
1390 	 * Set capture broadcast bit to capture broadcast frames.
1391 	 */
1392 	if (ifp->if_flags & IFF_BROADCAST) {
1393 		rxcfg |= RTK_RXCFG_RX_BROAD;
1394 		CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1395 	} else {
1396 		rxcfg &= ~RTK_RXCFG_RX_BROAD;
1397 		CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1398 	}
1399 
1400 	/*
1401 	 * Program the multicast filter, if necessary.
1402 	 */
1403 	rtk_setmulti(sc);
1404 
1405 	/*
1406 	 * Enable interrupts.
1407 	 */
1408 	CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS);
1409 
1410 	/* Start RX/TX process. */
1411 	CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
1412 
1413 	/* Enable receiver and transmitter. */
1414 	CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1415 
1416 	CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD | RTK_CFG1_FULLDUPLEX);
1417 
1418 	/*
1419 	 * Set current media.
1420 	 */
1421 	if ((error = ether_mediachange(ifp)) != 0)
1422 		goto out;
1423 
1424 	ifp->if_flags |= IFF_RUNNING;
1425 	ifp->if_flags &= ~IFF_OACTIVE;
1426 
1427 	callout_schedule(&sc->rtk_tick_ch, hz);
1428 
1429  out:
1430 	if (error) {
1431 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1432 		ifp->if_timer = 0;
1433 		printf("%s: interface not running\n", device_xname(sc->sc_dev));
1434 	}
1435 	return error;
1436 }
1437 
1438 static int
1439 rtk_ioctl(struct ifnet *ifp, u_long command, void *data)
1440 {
1441 	struct rtk_softc *sc = ifp->if_softc;
1442 	int s, error;
1443 
1444 	s = splnet();
1445 	error = ether_ioctl(ifp, command, data);
1446 	if (error == ENETRESET) {
1447 		if (ifp->if_flags & IFF_RUNNING) {
1448 			/*
1449 			 * Multicast list has changed.  Set the
1450 			 * hardware filter accordingly.
1451 			 */
1452 			rtk_setmulti(sc);
1453 		}
1454 		error = 0;
1455 	}
1456 	splx(s);
1457 
1458 	return error;
1459 }
1460 
1461 static void
1462 rtk_watchdog(struct ifnet *ifp)
1463 {
1464 	struct rtk_softc *sc;
1465 
1466 	sc = ifp->if_softc;
1467 
1468 	printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
1469 	if_statinc(ifp, if_oerrors);
1470 	rtk_txeof(sc);
1471 	rtk_rxeof(sc);
1472 	rtk_init(ifp);
1473 }
1474 
1475 /*
1476  * Stop the adapter and free any mbufs allocated to the
1477  * RX and TX lists.
1478  */
1479 static void
1480 rtk_stop(struct ifnet *ifp, int disable)
1481 {
1482 	struct rtk_softc *sc = ifp->if_softc;
1483 	struct rtk_tx_desc *txd;
1484 
1485 	callout_stop(&sc->rtk_tick_ch);
1486 
1487 	mii_down(&sc->mii);
1488 
1489 	CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
1490 	CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1491 
1492 	/*
1493 	 * Free the TX list buffers.
1494 	 */
1495 	while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_dirty)) != NULL) {
1496 		SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_dirty, txd_q);
1497 		bus_dmamap_unload(sc->sc_dmat, txd->txd_dmamap);
1498 		m_freem(txd->txd_mbuf);
1499 		txd->txd_mbuf = NULL;
1500 		CSR_WRITE_4(sc, txd->txd_txaddr, 0);
1501 	}
1502 
1503 	if (disable)
1504 		rtk_disable(sc);
1505 
1506 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1507 	ifp->if_timer = 0;
1508 }
1509 
1510 static void
1511 rtk_tick(void *arg)
1512 {
1513 	struct rtk_softc *sc = arg;
1514 	int s;
1515 
1516 	s = splnet();
1517 	mii_tick(&sc->mii);
1518 	splx(s);
1519 
1520 	callout_schedule(&sc->rtk_tick_ch, hz);
1521 }
1522