xref: /netbsd-src/sys/dev/ic/rtl81x9.c (revision 7fa608457b817eca6e0977b37f758ae064f3c99c)
1 /*	$NetBSD: rtl81x9.c,v 1.78 2007/11/06 02:29:20 uwe Exp $	*/
2 
3 /*
4  * Copyright (c) 1997, 1998
5  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  *	FreeBSD Id: if_rl.c,v 1.17 1999/06/19 20:17:37 wpaul Exp
35  */
36 
37 /*
38  * RealTek 8129/8139 PCI NIC driver
39  *
40  * Supports several extremely cheap PCI 10/100 adapters based on
41  * the RealTek chipset. Datasheets can be obtained from
42  * www.realtek.com.tw.
43  *
44  * Written by Bill Paul <wpaul@ctr.columbia.edu>
45  * Electrical Engineering Department
46  * Columbia University, New York City
47  */
48 
49 /*
50  * The RealTek 8139 PCI NIC redefines the meaning of 'low end.' This is
51  * probably the worst PCI ethernet controller ever made, with the possible
52  * exception of the FEAST chip made by SMC. The 8139 supports bus-master
53  * DMA, but it has a terrible interface that nullifies any performance
54  * gains that bus-master DMA usually offers.
55  *
56  * For transmission, the chip offers a series of four TX descriptor
57  * registers. Each transmit frame must be in a contiguous buffer, aligned
58  * on a longword (32-bit) boundary. This means we almost always have to
59  * do mbuf copies in order to transmit a frame, except in the unlikely
60  * case where a) the packet fits into a single mbuf, and b) the packet
61  * is 32-bit aligned within the mbuf's data area. The presence of only
62  * four descriptor registers means that we can never have more than four
63  * packets queued for transmission at any one time.
64  *
65  * Reception is not much better. The driver has to allocate a single large
66  * buffer area (up to 64K in size) into which the chip will DMA received
67  * frames. Because we don't know where within this region received packets
68  * will begin or end, we have no choice but to copy data from the buffer
69  * area into mbufs in order to pass the packets up to the higher protocol
70  * levels.
71  *
72  * It's impossible given this rotten design to really achieve decent
73  * performance at 100Mbps, unless you happen to have a 400MHz PII or
74  * some equally overmuscled CPU to drive it.
75  *
76  * On the bright side, the 8139 does have a built-in PHY, although
77  * rather than using an MDIO serial interface like most other NICs, the
78  * PHY registers are directly accessible through the 8139's register
79  * space. The 8139 supports autonegotiation, as well as a 64-bit multicast
80  * filter.
81  *
82  * The 8129 chip is an older version of the 8139 that uses an external PHY
83  * chip. The 8129 has a serial MDIO interface for accessing the MII where
84  * the 8139 lets you directly access the on-board PHY registers. We need
85  * to select which interface to use depending on the chip type.
86  */
87 
88 #include <sys/cdefs.h>
89 __KERNEL_RCSID(0, "$NetBSD: rtl81x9.c,v 1.78 2007/11/06 02:29:20 uwe Exp $");
90 
91 #include "bpfilter.h"
92 #include "rnd.h"
93 
94 #include <sys/param.h>
95 #include <sys/systm.h>
96 #include <sys/callout.h>
97 #include <sys/device.h>
98 #include <sys/sockio.h>
99 #include <sys/mbuf.h>
100 #include <sys/malloc.h>
101 #include <sys/kernel.h>
102 #include <sys/socket.h>
103 
104 #include <uvm/uvm_extern.h>
105 
106 #include <net/if.h>
107 #include <net/if_arp.h>
108 #include <net/if_ether.h>
109 #include <net/if_dl.h>
110 #include <net/if_media.h>
111 
112 #if NBPFILTER > 0
113 #include <net/bpf.h>
114 #endif
115 #if NRND > 0
116 #include <sys/rnd.h>
117 #endif
118 
119 #include <sys/bus.h>
120 #include <machine/endian.h>
121 
122 #include <dev/mii/mii.h>
123 #include <dev/mii/miivar.h>
124 
125 #include <dev/ic/rtl81x9reg.h>
126 #include <dev/ic/rtl81x9var.h>
127 
128 #if defined(DEBUG)
129 #define STATIC
130 #else
131 #define STATIC static
132 #endif
133 
134 STATIC void rtk_reset(struct rtk_softc *);
135 STATIC void rtk_rxeof(struct rtk_softc *);
136 STATIC void rtk_txeof(struct rtk_softc *);
137 STATIC void rtk_start(struct ifnet *);
138 STATIC int rtk_ioctl(struct ifnet *, u_long, void *);
139 STATIC int rtk_init(struct ifnet *);
140 STATIC void rtk_stop(struct ifnet *, int);
141 
142 STATIC void rtk_watchdog(struct ifnet *);
143 STATIC void rtk_shutdown(void *);
144 STATIC int rtk_ifmedia_upd(struct ifnet *);
145 STATIC void rtk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
146 
147 STATIC void rtk_eeprom_putbyte(struct rtk_softc *, int, int);
148 STATIC void rtk_mii_sync(struct rtk_softc *);
149 STATIC void rtk_mii_send(struct rtk_softc *, uint32_t, int);
150 STATIC int rtk_mii_readreg(struct rtk_softc *, struct rtk_mii_frame *);
151 STATIC int rtk_mii_writereg(struct rtk_softc *, struct rtk_mii_frame *);
152 
153 STATIC int rtk_phy_readreg(device_t, int, int);
154 STATIC void rtk_phy_writereg(device_t, int, int, int);
155 STATIC void rtk_phy_statchg(device_t);
156 STATIC void rtk_tick(void *);
157 
158 STATIC int rtk_enable(struct rtk_softc *);
159 STATIC void rtk_disable(struct rtk_softc *);
160 STATIC void rtk_power(int, void *);
161 
162 STATIC void rtk_list_tx_init(struct rtk_softc *);
163 
164 #define EE_SET(x)					\
165 	CSR_WRITE_1(sc, RTK_EECMD,			\
166 		CSR_READ_1(sc, RTK_EECMD) | (x))
167 
168 #define EE_CLR(x)					\
169 	CSR_WRITE_1(sc, RTK_EECMD,			\
170 		CSR_READ_1(sc, RTK_EECMD) & ~(x))
171 
172 #define EE_DELAY()	DELAY(100)
173 
174 #define ETHER_PAD_LEN (ETHER_MIN_LEN - ETHER_CRC_LEN)
175 
176 /*
177  * Send a read command and address to the EEPROM, check for ACK.
178  */
179 STATIC void
180 rtk_eeprom_putbyte(struct rtk_softc *sc, int addr, int addr_len)
181 {
182 	int d, i;
183 
184 	d = (RTK_EECMD_READ << addr_len) | addr;
185 
186 	/*
187 	 * Feed in each bit and stobe the clock.
188 	 */
189 	for (i = RTK_EECMD_LEN + addr_len; i > 0; i--) {
190 		if (d & (1 << (i - 1))) {
191 			EE_SET(RTK_EE_DATAIN);
192 		} else {
193 			EE_CLR(RTK_EE_DATAIN);
194 		}
195 		EE_DELAY();
196 		EE_SET(RTK_EE_CLK);
197 		EE_DELAY();
198 		EE_CLR(RTK_EE_CLK);
199 		EE_DELAY();
200 	}
201 }
202 
203 /*
204  * Read a word of data stored in the EEPROM at address 'addr.'
205  */
206 uint16_t
207 rtk_read_eeprom(struct rtk_softc *sc, int addr, int addr_len)
208 {
209 	uint16_t word;
210 	int i;
211 
212 	/* Enter EEPROM access mode. */
213 	CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_PROGRAM);
214 	EE_DELAY();
215 	EE_SET(RTK_EE_SEL);
216 
217 	/*
218 	 * Send address of word we want to read.
219 	 */
220 	rtk_eeprom_putbyte(sc, addr, addr_len);
221 
222 	/*
223 	 * Start reading bits from EEPROM.
224 	 */
225 	word = 0;
226 	for (i = 16; i > 0; i--) {
227 		EE_SET(RTK_EE_CLK);
228 		EE_DELAY();
229 		if (CSR_READ_1(sc, RTK_EECMD) & RTK_EE_DATAOUT)
230 			word |= 1 << (i - 1);
231 		EE_CLR(RTK_EE_CLK);
232 		EE_DELAY();
233 	}
234 
235 	/* Turn off EEPROM access mode. */
236 	CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
237 
238 	return word;
239 }
240 
241 /*
242  * MII access routines are provided for the 8129, which
243  * doesn't have a built-in PHY. For the 8139, we fake things
244  * up by diverting rtk_phy_readreg()/rtk_phy_writereg() to the
245  * direct access PHY registers.
246  */
247 #define MII_SET(x)					\
248 	CSR_WRITE_1(sc, RTK_MII,			\
249 		CSR_READ_1(sc, RTK_MII) | (x))
250 
251 #define MII_CLR(x)					\
252 	CSR_WRITE_1(sc, RTK_MII,			\
253 		CSR_READ_1(sc, RTK_MII) & ~(x))
254 
255 /*
256  * Sync the PHYs by setting data bit and strobing the clock 32 times.
257  */
258 STATIC void
259 rtk_mii_sync(struct rtk_softc *sc)
260 {
261 	int i;
262 
263 	MII_SET(RTK_MII_DIR|RTK_MII_DATAOUT);
264 
265 	for (i = 0; i < 32; i++) {
266 		MII_SET(RTK_MII_CLK);
267 		DELAY(1);
268 		MII_CLR(RTK_MII_CLK);
269 		DELAY(1);
270 	}
271 }
272 
273 /*
274  * Clock a series of bits through the MII.
275  */
276 STATIC void
277 rtk_mii_send(struct rtk_softc *sc, uint32_t bits, int cnt)
278 {
279 	int i;
280 
281 	MII_CLR(RTK_MII_CLK);
282 
283 	for (i = cnt; i > 0; i--) {
284 		if (bits & (1 << (i - 1))) {
285 			MII_SET(RTK_MII_DATAOUT);
286 		} else {
287 			MII_CLR(RTK_MII_DATAOUT);
288 		}
289 		DELAY(1);
290 		MII_CLR(RTK_MII_CLK);
291 		DELAY(1);
292 		MII_SET(RTK_MII_CLK);
293 	}
294 }
295 
296 /*
297  * Read an PHY register through the MII.
298  */
299 STATIC int
300 rtk_mii_readreg(struct rtk_softc *sc, struct rtk_mii_frame *frame)
301 {
302 	int i, ack, s;
303 
304 	s = splnet();
305 
306 	/*
307 	 * Set up frame for RX.
308 	 */
309 	frame->mii_stdelim = RTK_MII_STARTDELIM;
310 	frame->mii_opcode = RTK_MII_READOP;
311 	frame->mii_turnaround = 0;
312 	frame->mii_data = 0;
313 
314 	CSR_WRITE_2(sc, RTK_MII, 0);
315 
316 	/*
317 	 * Turn on data xmit.
318 	 */
319 	MII_SET(RTK_MII_DIR);
320 
321 	rtk_mii_sync(sc);
322 
323 	/*
324 	 * Send command/address info.
325 	 */
326 	rtk_mii_send(sc, frame->mii_stdelim, 2);
327 	rtk_mii_send(sc, frame->mii_opcode, 2);
328 	rtk_mii_send(sc, frame->mii_phyaddr, 5);
329 	rtk_mii_send(sc, frame->mii_regaddr, 5);
330 
331 	/* Idle bit */
332 	MII_CLR((RTK_MII_CLK|RTK_MII_DATAOUT));
333 	DELAY(1);
334 	MII_SET(RTK_MII_CLK);
335 	DELAY(1);
336 
337 	/* Turn off xmit. */
338 	MII_CLR(RTK_MII_DIR);
339 
340 	/* Check for ack */
341 	MII_CLR(RTK_MII_CLK);
342 	DELAY(1);
343 	ack = CSR_READ_2(sc, RTK_MII) & RTK_MII_DATAIN;
344 	MII_SET(RTK_MII_CLK);
345 	DELAY(1);
346 
347 	/*
348 	 * Now try reading data bits. If the ack failed, we still
349 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
350 	 */
351 	if (ack) {
352 		for (i = 0; i < 16; i++) {
353 			MII_CLR(RTK_MII_CLK);
354 			DELAY(1);
355 			MII_SET(RTK_MII_CLK);
356 			DELAY(1);
357 		}
358 		goto fail;
359 	}
360 
361 	for (i = 16; i > 0; i--) {
362 		MII_CLR(RTK_MII_CLK);
363 		DELAY(1);
364 		if (!ack) {
365 			if (CSR_READ_2(sc, RTK_MII) & RTK_MII_DATAIN)
366 				frame->mii_data |= 1 << (i - 1);
367 			DELAY(1);
368 		}
369 		MII_SET(RTK_MII_CLK);
370 		DELAY(1);
371 	}
372 
373  fail:
374 	MII_CLR(RTK_MII_CLK);
375 	DELAY(1);
376 	MII_SET(RTK_MII_CLK);
377 	DELAY(1);
378 
379 	splx(s);
380 
381 	if (ack)
382 		return 1;
383 	return 0;
384 }
385 
386 /*
387  * Write to a PHY register through the MII.
388  */
389 STATIC int
390 rtk_mii_writereg(struct rtk_softc *sc, struct rtk_mii_frame *frame)
391 {
392 	int s;
393 
394 	s = splnet();
395 	/*
396 	 * Set up frame for TX.
397 	 */
398 	frame->mii_stdelim = RTK_MII_STARTDELIM;
399 	frame->mii_opcode = RTK_MII_WRITEOP;
400 	frame->mii_turnaround = RTK_MII_TURNAROUND;
401 
402 	/*
403 	 * Turn on data output.
404 	 */
405 	MII_SET(RTK_MII_DIR);
406 
407 	rtk_mii_sync(sc);
408 
409 	rtk_mii_send(sc, frame->mii_stdelim, 2);
410 	rtk_mii_send(sc, frame->mii_opcode, 2);
411 	rtk_mii_send(sc, frame->mii_phyaddr, 5);
412 	rtk_mii_send(sc, frame->mii_regaddr, 5);
413 	rtk_mii_send(sc, frame->mii_turnaround, 2);
414 	rtk_mii_send(sc, frame->mii_data, 16);
415 
416 	/* Idle bit. */
417 	MII_SET(RTK_MII_CLK);
418 	DELAY(1);
419 	MII_CLR(RTK_MII_CLK);
420 	DELAY(1);
421 
422 	/*
423 	 * Turn off xmit.
424 	 */
425 	MII_CLR(RTK_MII_DIR);
426 
427 	splx(s);
428 
429 	return 0;
430 }
431 
432 STATIC int
433 rtk_phy_readreg(device_t self, int phy, int reg)
434 {
435 	struct rtk_softc *sc = device_private(self);
436 	struct rtk_mii_frame frame;
437 	int rval;
438 	int rtk8139_reg;
439 
440 	if ((sc->sc_quirk & RTKQ_8129) == 0) {
441 		if (phy != 7)
442 			return 0;
443 
444 		switch (reg) {
445 		case MII_BMCR:
446 			rtk8139_reg = RTK_BMCR;
447 			break;
448 		case MII_BMSR:
449 			rtk8139_reg = RTK_BMSR;
450 			break;
451 		case MII_ANAR:
452 			rtk8139_reg = RTK_ANAR;
453 			break;
454 		case MII_ANER:
455 			rtk8139_reg = RTK_ANER;
456 			break;
457 		case MII_ANLPAR:
458 			rtk8139_reg = RTK_LPAR;
459 			break;
460 		default:
461 #if 0
462 			printf("%s: bad phy register\n", device_xname(self));
463 #endif
464 			return 0;
465 		}
466 		rval = CSR_READ_2(sc, rtk8139_reg);
467 		return rval;
468 	}
469 
470 	memset((char *)&frame, 0, sizeof(frame));
471 
472 	frame.mii_phyaddr = phy;
473 	frame.mii_regaddr = reg;
474 	rtk_mii_readreg(sc, &frame);
475 
476 	return frame.mii_data;
477 }
478 
479 STATIC void
480 rtk_phy_writereg(device_t self, int phy, int reg, int data)
481 {
482 	struct rtk_softc *sc = device_private(self);
483 	struct rtk_mii_frame frame;
484 	int rtk8139_reg;
485 
486 	if ((sc->sc_quirk & RTKQ_8129) == 0) {
487 		if (phy != 7)
488 			return;
489 
490 		switch (reg) {
491 		case MII_BMCR:
492 			rtk8139_reg = RTK_BMCR;
493 			break;
494 		case MII_BMSR:
495 			rtk8139_reg = RTK_BMSR;
496 			break;
497 		case MII_ANAR:
498 			rtk8139_reg = RTK_ANAR;
499 			break;
500 		case MII_ANER:
501 			rtk8139_reg = RTK_ANER;
502 			break;
503 		case MII_ANLPAR:
504 			rtk8139_reg = RTK_LPAR;
505 			break;
506 		default:
507 #if 0
508 			printf("%s: bad phy register\n", device_xname(self));
509 #endif
510 			return;
511 		}
512 		CSR_WRITE_2(sc, rtk8139_reg, data);
513 		return;
514 	}
515 
516 	memset((char *)&frame, 0, sizeof(frame));
517 
518 	frame.mii_phyaddr = phy;
519 	frame.mii_regaddr = reg;
520 	frame.mii_data = data;
521 
522 	rtk_mii_writereg(sc, &frame);
523 }
524 
525 STATIC void
526 rtk_phy_statchg(device_t v)
527 {
528 
529 	/* Nothing to do. */
530 }
531 
532 #define	rtk_calchash(addr) \
533 	(ether_crc32_be((addr), ETHER_ADDR_LEN) >> 26)
534 
535 /*
536  * Program the 64-bit multicast hash filter.
537  */
538 void
539 rtk_setmulti(struct rtk_softc *sc)
540 {
541 	struct ifnet *ifp;
542 	uint32_t hashes[2] = { 0, 0 };
543 	uint32_t rxfilt;
544 	struct ether_multi *enm;
545 	struct ether_multistep step;
546 	int h, mcnt;
547 
548 	ifp = &sc->ethercom.ec_if;
549 
550 	rxfilt = CSR_READ_4(sc, RTK_RXCFG);
551 
552 	if (ifp->if_flags & IFF_PROMISC) {
553  allmulti:
554 		ifp->if_flags |= IFF_ALLMULTI;
555 		rxfilt |= RTK_RXCFG_RX_MULTI;
556 		CSR_WRITE_4(sc, RTK_RXCFG, rxfilt);
557 		CSR_WRITE_4(sc, RTK_MAR0, 0xFFFFFFFF);
558 		CSR_WRITE_4(sc, RTK_MAR4, 0xFFFFFFFF);
559 		return;
560 	}
561 
562 	/* first, zot all the existing hash bits */
563 	CSR_WRITE_4(sc, RTK_MAR0, 0);
564 	CSR_WRITE_4(sc, RTK_MAR4, 0);
565 
566 	/* now program new ones */
567 	ETHER_FIRST_MULTI(step, &sc->ethercom, enm);
568 	mcnt = 0;
569 	while (enm != NULL) {
570 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
571 		    ETHER_ADDR_LEN) != 0)
572 			goto allmulti;
573 
574 		h = rtk_calchash(enm->enm_addrlo);
575 		if (h < 32)
576 			hashes[0] |= (1 << h);
577 		else
578 			hashes[1] |= (1 << (h - 32));
579 		mcnt++;
580 		ETHER_NEXT_MULTI(step, enm);
581 	}
582 
583 	ifp->if_flags &= ~IFF_ALLMULTI;
584 
585 	if (mcnt)
586 		rxfilt |= RTK_RXCFG_RX_MULTI;
587 	else
588 		rxfilt &= ~RTK_RXCFG_RX_MULTI;
589 
590 	CSR_WRITE_4(sc, RTK_RXCFG, rxfilt);
591 
592 	/*
593 	 * For some unfathomable reason, RealTek decided to reverse
594 	 * the order of the multicast hash registers in the PCI Express
595 	 * parts. This means we have to write the hash pattern in reverse
596 	 * order for those devices.
597 	 */
598 	if ((sc->sc_quirk & RTKQ_PCIE) != 0) {
599 		CSR_WRITE_4(sc, RTK_MAR0, bswap32(hashes[1]));
600 		CSR_WRITE_4(sc, RTK_MAR4, bswap32(hashes[0]));
601 	} else {
602 		CSR_WRITE_4(sc, RTK_MAR0, hashes[0]);
603 		CSR_WRITE_4(sc, RTK_MAR4, hashes[1]);
604 	}
605 }
606 
607 void
608 rtk_reset(struct rtk_softc *sc)
609 {
610 	int i;
611 
612 	CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
613 
614 	for (i = 0; i < RTK_TIMEOUT; i++) {
615 		DELAY(10);
616 		if ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET) == 0)
617 			break;
618 	}
619 	if (i == RTK_TIMEOUT)
620 		printf("%s: reset never completed!\n", device_xname(&sc->sc_dev));
621 }
622 
623 /*
624  * Attach the interface. Allocate softc structures, do ifmedia
625  * setup and ethernet/BPF attach.
626  */
627 void
628 rtk_attach(struct rtk_softc *sc)
629 {
630 	device_t self = &sc->sc_dev;
631 	struct ifnet *ifp;
632 	struct rtk_tx_desc *txd;
633 	uint16_t val;
634 	uint8_t eaddr[ETHER_ADDR_LEN];
635 	int error;
636 	int i, addr_len;
637 
638 	callout_init(&sc->rtk_tick_ch, 0);
639 
640 	/*
641 	 * Check EEPROM type 9346 or 9356.
642 	 */
643 	if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
644 		addr_len = RTK_EEADDR_LEN1;
645 	else
646 		addr_len = RTK_EEADDR_LEN0;
647 
648 	/*
649 	 * Get station address.
650 	 */
651 	val = rtk_read_eeprom(sc, RTK_EE_EADDR0, addr_len);
652 	eaddr[0] = val & 0xff;
653 	eaddr[1] = val >> 8;
654 	val = rtk_read_eeprom(sc, RTK_EE_EADDR1, addr_len);
655 	eaddr[2] = val & 0xff;
656 	eaddr[3] = val >> 8;
657 	val = rtk_read_eeprom(sc, RTK_EE_EADDR2, addr_len);
658 	eaddr[4] = val & 0xff;
659 	eaddr[5] = val >> 8;
660 
661 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
662 	    RTK_RXBUFLEN + 16, PAGE_SIZE, 0, &sc->sc_dmaseg, 1, &sc->sc_dmanseg,
663 	    BUS_DMA_NOWAIT)) != 0) {
664 		aprint_error_dev(self,
665 			"can't allocate recv buffer, error = %d\n", error);
666 		goto fail_0;
667 	}
668 
669 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_dmaseg, sc->sc_dmanseg,
670 	    RTK_RXBUFLEN + 16, (void **)&sc->rtk_rx_buf,
671 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
672 		aprint_error_dev(self,
673 			"can't map recv buffer, error = %d\n", error);
674 		goto fail_1;
675 	}
676 
677 	if ((error = bus_dmamap_create(sc->sc_dmat,
678 	    RTK_RXBUFLEN + 16, 1, RTK_RXBUFLEN + 16, 0, BUS_DMA_NOWAIT,
679 	    &sc->recv_dmamap)) != 0) {
680 		aprint_error_dev(self,
681 			"can't create recv buffer DMA map, error = %d\n", error);
682 		goto fail_2;
683 	}
684 
685 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->recv_dmamap,
686 	    sc->rtk_rx_buf, RTK_RXBUFLEN + 16,
687 	    NULL, BUS_DMA_READ|BUS_DMA_NOWAIT)) != 0) {
688 		aprint_error_dev(self,
689 			"can't load recv buffer DMA map, error = %d\n", error);
690 		goto fail_3;
691 	}
692 
693 	for (i = 0; i < RTK_TX_LIST_CNT; i++) {
694 		txd = &sc->rtk_tx_descs[i];
695 		if ((error = bus_dmamap_create(sc->sc_dmat,
696 		    MCLBYTES, 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
697 		    &txd->txd_dmamap)) != 0) {
698 			aprint_error_dev(self,
699 				"can't create snd buffer DMA map,"
700 				" error = %d\n", error);
701 			goto fail_4;
702 		}
703 		txd->txd_txaddr = RTK_TXADDR0 + (i * 4);
704 		txd->txd_txstat = RTK_TXSTAT0 + (i * 4);
705 	}
706 	SIMPLEQ_INIT(&sc->rtk_tx_free);
707 	SIMPLEQ_INIT(&sc->rtk_tx_dirty);
708 
709 	/*
710 	 * From this point forward, the attachment cannot fail. A failure
711 	 * before this releases all resources thar may have been
712 	 * allocated.
713 	 */
714 	sc->sc_flags |= RTK_ATTACHED;
715 
716 	/* Reset the adapter. */
717 	rtk_reset(sc);
718 
719 	aprint_normal_dev(self, "Ethernet address %s\n", ether_sprintf(eaddr));
720 
721 	ifp = &sc->ethercom.ec_if;
722 	ifp->if_softc = sc;
723 	strcpy(ifp->if_xname, device_xname(self));
724 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
725 	ifp->if_ioctl = rtk_ioctl;
726 	ifp->if_start = rtk_start;
727 	ifp->if_watchdog = rtk_watchdog;
728 	ifp->if_init = rtk_init;
729 	ifp->if_stop = rtk_stop;
730 	IFQ_SET_READY(&ifp->if_snd);
731 
732 	/*
733 	 * Do ifmedia setup.
734 	 */
735 	sc->mii.mii_ifp = ifp;
736 	sc->mii.mii_readreg = rtk_phy_readreg;
737 	sc->mii.mii_writereg = rtk_phy_writereg;
738 	sc->mii.mii_statchg = rtk_phy_statchg;
739 	ifmedia_init(&sc->mii.mii_media, IFM_IMASK, rtk_ifmedia_upd,
740 	    rtk_ifmedia_sts);
741 	mii_attach(self, &sc->mii, 0xffffffff,
742 	    MII_PHY_ANY, MII_OFFSET_ANY, 0);
743 
744 	/* Choose a default media. */
745 	if (LIST_FIRST(&sc->mii.mii_phys) == NULL) {
746 		ifmedia_add(&sc->mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
747 		ifmedia_set(&sc->mii.mii_media, IFM_ETHER|IFM_NONE);
748 	} else {
749 		ifmedia_set(&sc->mii.mii_media, IFM_ETHER|IFM_AUTO);
750 	}
751 
752 	/*
753 	 * Call MI attach routines.
754 	 */
755 	if_attach(ifp);
756 	ether_ifattach(ifp, eaddr);
757 
758 	/*
759 	 * Make sure the interface is shutdown during reboot.
760 	 */
761 	sc->sc_sdhook = shutdownhook_establish(rtk_shutdown, sc);
762 	if (sc->sc_sdhook == NULL)
763 		aprint_error_dev(self,
764 			"WARNING: unable to establish shutdown hook\n");
765 	/*
766 	 * Add a suspend hook to make sure we come back up after a
767 	 * resume.
768 	 */
769 	sc->sc_powerhook = powerhook_establish(device_xname(self),
770 	    rtk_power, sc);
771 	if (sc->sc_powerhook == NULL)
772 		aprint_error_dev(self,
773 			"WARNING: unable to establish power hook\n");
774 
775 
776 #if NRND > 0
777 	rnd_attach_source(&sc->rnd_source, device_xname(self),
778 	    RND_TYPE_NET, 0);
779 #endif
780 
781 	return;
782  fail_4:
783 	for (i = 0; i < RTK_TX_LIST_CNT; i++) {
784 		txd = &sc->rtk_tx_descs[i];
785 		if (txd->txd_dmamap != NULL)
786 			bus_dmamap_destroy(sc->sc_dmat, txd->txd_dmamap);
787 	}
788  fail_3:
789 	bus_dmamap_destroy(sc->sc_dmat, sc->recv_dmamap);
790  fail_2:
791 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->rtk_rx_buf,
792 	    RTK_RXBUFLEN + 16);
793  fail_1:
794 	bus_dmamem_free(sc->sc_dmat, &sc->sc_dmaseg, sc->sc_dmanseg);
795  fail_0:
796 	return;
797 }
798 
799 /*
800  * Initialize the transmit descriptors.
801  */
802 STATIC void
803 rtk_list_tx_init(struct rtk_softc *sc)
804 {
805 	struct rtk_tx_desc *txd;
806 	int i;
807 
808 	while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_dirty)) != NULL)
809 		SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_dirty, txd_q);
810 	while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_free)) != NULL)
811 		SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_free, txd_q);
812 
813 	for (i = 0; i < RTK_TX_LIST_CNT; i++) {
814 		txd = &sc->rtk_tx_descs[i];
815 		CSR_WRITE_4(sc, txd->txd_txaddr, 0);
816 		SIMPLEQ_INSERT_TAIL(&sc->rtk_tx_free, txd, txd_q);
817 	}
818 }
819 
820 /*
821  * rtk_activate:
822  *     Handle device activation/deactivation requests.
823  */
824 int
825 rtk_activate(device_t self, enum devact act)
826 {
827 	struct rtk_softc *sc = device_private(self);
828 	int s, error;
829 
830 	error = 0;
831 	s = splnet();
832 	switch (act) {
833 	case DVACT_ACTIVATE:
834 		error = EOPNOTSUPP;
835 		break;
836 	case DVACT_DEACTIVATE:
837 		mii_activate(&sc->mii, act, MII_PHY_ANY, MII_OFFSET_ANY);
838 		if_deactivate(&sc->ethercom.ec_if);
839 		break;
840 	}
841 	splx(s);
842 
843 	return error;
844 }
845 
846 /*
847  * rtk_detach:
848  *     Detach a rtk interface.
849  */
850 int
851 rtk_detach(struct rtk_softc *sc)
852 {
853 	struct ifnet *ifp = &sc->ethercom.ec_if;
854 	struct rtk_tx_desc *txd;
855 	int i;
856 
857 	/*
858 	 * Succeed now if there isn't any work to do.
859 	 */
860 	if ((sc->sc_flags & RTK_ATTACHED) == 0)
861 		return 0;
862 
863 	/* Unhook our tick handler. */
864 	callout_stop(&sc->rtk_tick_ch);
865 
866 	/* Detach all PHYs. */
867 	mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
868 
869 	/* Delete all remaining media. */
870 	ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
871 
872 #if NRND > 0
873 	rnd_detach_source(&sc->rnd_source);
874 #endif
875 
876 	ether_ifdetach(ifp);
877 	if_detach(ifp);
878 
879 	for (i = 0; i < RTK_TX_LIST_CNT; i++) {
880 		txd = &sc->rtk_tx_descs[i];
881 		if (txd->txd_dmamap != NULL)
882 			bus_dmamap_destroy(sc->sc_dmat, txd->txd_dmamap);
883 	}
884 	bus_dmamap_destroy(sc->sc_dmat, sc->recv_dmamap);
885 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->rtk_rx_buf,
886 	    RTK_RXBUFLEN + 16);
887 	bus_dmamem_free(sc->sc_dmat, &sc->sc_dmaseg, sc->sc_dmanseg);
888 
889 	shutdownhook_disestablish(sc->sc_sdhook);
890 	powerhook_disestablish(sc->sc_powerhook);
891 
892 	return 0;
893 }
894 
895 /*
896  * rtk_enable:
897  *     Enable the RTL81X9 chip.
898  */
899 int
900 rtk_enable(struct rtk_softc *sc)
901 {
902 
903 	if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
904 		if ((*sc->sc_enable)(sc) != 0) {
905 			printf("%s: device enable failed\n",
906 			    device_xname(&sc->sc_dev));
907 			return EIO;
908 		}
909 		sc->sc_flags |= RTK_ENABLED;
910 	}
911 	return 0;
912 }
913 
914 /*
915  * rtk_disable:
916  *     Disable the RTL81X9 chip.
917  */
918 void
919 rtk_disable(struct rtk_softc *sc)
920 {
921 
922 	if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
923 		(*sc->sc_disable)(sc);
924 		sc->sc_flags &= ~RTK_ENABLED;
925 	}
926 }
927 
928 /*
929  * rtk_power:
930  *     Power management (suspend/resume) hook.
931  */
932 void
933 rtk_power(int why, void *arg)
934 {
935 	struct rtk_softc *sc = (void *)arg;
936 	struct ifnet *ifp = &sc->ethercom.ec_if;
937 	int s;
938 
939 	s = splnet();
940 	switch (why) {
941 	case PWR_SUSPEND:
942 	case PWR_STANDBY:
943 		rtk_stop(ifp, 0);
944 		if (sc->sc_power != NULL)
945 			(*sc->sc_power)(sc, why);
946 		break;
947 	case PWR_RESUME:
948 		if (ifp->if_flags & IFF_UP) {
949 			if (sc->sc_power != NULL)
950 				(*sc->sc_power)(sc, why);
951 			rtk_init(ifp);
952 		}
953 		break;
954 	case PWR_SOFTSUSPEND:
955 	case PWR_SOFTSTANDBY:
956 	case PWR_SOFTRESUME:
957 		break;
958 	}
959 	splx(s);
960 }
961 
962 /*
963  * A frame has been uploaded: pass the resulting mbuf chain up to
964  * the higher level protocols.
965  *
966  * You know there's something wrong with a PCI bus-master chip design.
967  *
968  * The receive operation is badly documented in the datasheet, so I'll
969  * attempt to document it here. The driver provides a buffer area and
970  * places its base address in the RX buffer start address register.
971  * The chip then begins copying frames into the RX buffer. Each frame
972  * is preceded by a 32-bit RX status word which specifies the length
973  * of the frame and certain other status bits. Each frame (starting with
974  * the status word) is also 32-bit aligned. The frame length is in the
975  * first 16 bits of the status word; the lower 15 bits correspond with
976  * the 'rx status register' mentioned in the datasheet.
977  *
978  * Note: to make the Alpha happy, the frame payload needs to be aligned
979  * on a 32-bit boundary. To achieve this, we copy the data to mbuf
980  * shifted forward 2 bytes.
981  */
982 STATIC void
983 rtk_rxeof(struct rtk_softc *sc)
984 {
985 	struct mbuf *m;
986 	struct ifnet *ifp;
987 	char *rxbufpos, *dst;
988 	u_int total_len, wrap;
989 	uint32_t rxstat;
990 	uint16_t cur_rx, new_rx;
991 	uint16_t limit;
992 	uint16_t rx_bytes, max_bytes;
993 
994 	ifp = &sc->ethercom.ec_if;
995 
996 	cur_rx = (CSR_READ_2(sc, RTK_CURRXADDR) + 16) % RTK_RXBUFLEN;
997 
998 	/* Do not try to read past this point. */
999 	limit = CSR_READ_2(sc, RTK_CURRXBUF) % RTK_RXBUFLEN;
1000 
1001 	if (limit < cur_rx)
1002 		max_bytes = (RTK_RXBUFLEN - cur_rx) + limit;
1003 	else
1004 		max_bytes = limit - cur_rx;
1005 	rx_bytes = 0;
1006 
1007 	while ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_EMPTY_RXBUF) == 0) {
1008 		rxbufpos = (char *)sc->rtk_rx_buf + cur_rx;
1009 		bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap, cur_rx,
1010 		    RTK_RXSTAT_LEN, BUS_DMASYNC_POSTREAD);
1011 		rxstat = le32toh(*(uint32_t *)rxbufpos);
1012 		bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap, cur_rx,
1013 		    RTK_RXSTAT_LEN, BUS_DMASYNC_PREREAD);
1014 
1015 		/*
1016 		 * Here's a totally undocumented fact for you. When the
1017 		 * RealTek chip is in the process of copying a packet into
1018 		 * RAM for you, the length will be 0xfff0. If you spot a
1019 		 * packet header with this value, you need to stop. The
1020 		 * datasheet makes absolutely no mention of this and
1021 		 * RealTek should be shot for this.
1022 		 */
1023 		total_len = rxstat >> 16;
1024 		if (total_len == RTK_RXSTAT_UNFINISHED)
1025 			break;
1026 
1027 		if ((rxstat & RTK_RXSTAT_RXOK) == 0 ||
1028 		    total_len < ETHER_MIN_LEN ||
1029 		    total_len > (MCLBYTES - RTK_ETHER_ALIGN)) {
1030 			ifp->if_ierrors++;
1031 
1032 			/*
1033 			 * submitted by:[netbsd-pcmcia:00484]
1034 			 *	Takahiro Kambe <taca@sky.yamashina.kyoto.jp>
1035 			 * obtain from:
1036 			 *     FreeBSD if_rl.c rev 1.24->1.25
1037 			 *
1038 			 */
1039 #if 0
1040 			if (rxstat & (RTK_RXSTAT_BADSYM|RTK_RXSTAT_RUNT|
1041 			    RTK_RXSTAT_GIANT|RTK_RXSTAT_CRCERR|
1042 			    RTK_RXSTAT_ALIGNERR)) {
1043 				CSR_WRITE_2(sc, RTK_COMMAND, RTK_CMD_TX_ENB);
1044 				CSR_WRITE_2(sc, RTK_COMMAND,
1045 				    RTK_CMD_TX_ENB|RTK_CMD_RX_ENB);
1046 				CSR_WRITE_4(sc, RTK_RXCFG, RTK_RXCFG_CONFIG);
1047 				CSR_WRITE_4(sc, RTK_RXADDR,
1048 				    sc->recv_dmamap->dm_segs[0].ds_addr);
1049 				cur_rx = 0;
1050 			}
1051 			break;
1052 #else
1053 			rtk_init(ifp);
1054 			return;
1055 #endif
1056 		}
1057 
1058 		/* No errors; receive the packet. */
1059 		rx_bytes += total_len + RTK_RXSTAT_LEN;
1060 
1061 		/*
1062 		 * Avoid trying to read more bytes than we know
1063 		 * the chip has prepared for us.
1064 		 */
1065 		if (rx_bytes > max_bytes)
1066 			break;
1067 
1068 		/*
1069 		 * Skip the status word, wrapping around to the beginning
1070 		 * of the Rx area, if necessary.
1071 		 */
1072 		cur_rx = (cur_rx + RTK_RXSTAT_LEN) % RTK_RXBUFLEN;
1073 		rxbufpos = (char *)sc->rtk_rx_buf + cur_rx;
1074 
1075 		/*
1076 		 * Compute the number of bytes at which the packet
1077 		 * will wrap to the beginning of the ring buffer.
1078 		 */
1079 		wrap = RTK_RXBUFLEN - cur_rx;
1080 
1081 		/*
1082 		 * Compute where the next pending packet is.
1083 		 */
1084 		if (total_len > wrap)
1085 			new_rx = total_len - wrap;
1086 		else
1087 			new_rx = cur_rx + total_len;
1088 		/* Round up to 32-bit boundary. */
1089 		new_rx = ((new_rx + 3) & ~3) % RTK_RXBUFLEN;
1090 
1091 		/*
1092 		 * The RealTek chip includes the CRC with every
1093 		 * incoming packet; trim it off here.
1094 		 */
1095 		total_len -= ETHER_CRC_LEN;
1096 
1097 		/*
1098 		 * Now allocate an mbuf (and possibly a cluster) to hold
1099 		 * the packet. Note we offset the packet 2 bytes so that
1100 		 * data after the Ethernet header will be 4-byte aligned.
1101 		 */
1102 		MGETHDR(m, M_DONTWAIT, MT_DATA);
1103 		if (m == NULL) {
1104 			printf("%s: unable to allocate Rx mbuf\n",
1105 			    device_xname(&sc->sc_dev));
1106 			ifp->if_ierrors++;
1107 			goto next_packet;
1108 		}
1109 		if (total_len > (MHLEN - RTK_ETHER_ALIGN)) {
1110 			MCLGET(m, M_DONTWAIT);
1111 			if ((m->m_flags & M_EXT) == 0) {
1112 				printf("%s: unable to allocate Rx cluster\n",
1113 				    device_xname(&sc->sc_dev));
1114 				ifp->if_ierrors++;
1115 				m_freem(m);
1116 				m = NULL;
1117 				goto next_packet;
1118 			}
1119 		}
1120 		m->m_data += RTK_ETHER_ALIGN;	/* for alignment */
1121 		m->m_pkthdr.rcvif = ifp;
1122 		m->m_pkthdr.len = m->m_len = total_len;
1123 		dst = mtod(m, void *);
1124 
1125 		/*
1126 		 * If the packet wraps, copy up to the wrapping point.
1127 		 */
1128 		if (total_len > wrap) {
1129 			bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
1130 			    cur_rx, wrap, BUS_DMASYNC_POSTREAD);
1131 			memcpy(dst, rxbufpos, wrap);
1132 			bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
1133 			    cur_rx, wrap, BUS_DMASYNC_PREREAD);
1134 			cur_rx = 0;
1135 			rxbufpos = sc->rtk_rx_buf;
1136 			total_len -= wrap;
1137 			dst += wrap;
1138 		}
1139 
1140 		/*
1141 		 * ...and now the rest.
1142 		 */
1143 		bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
1144 		    cur_rx, total_len, BUS_DMASYNC_POSTREAD);
1145 		memcpy(dst, rxbufpos, total_len);
1146 		bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
1147 		    cur_rx, total_len, BUS_DMASYNC_PREREAD);
1148 
1149  next_packet:
1150 		CSR_WRITE_2(sc, RTK_CURRXADDR, (new_rx - 16) % RTK_RXBUFLEN);
1151 		cur_rx = new_rx;
1152 
1153 		if (m == NULL)
1154 			continue;
1155 
1156 		ifp->if_ipackets++;
1157 
1158 #if NBPFILTER > 0
1159 		if (ifp->if_bpf)
1160 			bpf_mtap(ifp->if_bpf, m);
1161 #endif
1162 		/* pass it on. */
1163 		(*ifp->if_input)(ifp, m);
1164 	}
1165 }
1166 
1167 /*
1168  * A frame was downloaded to the chip. It's safe for us to clean up
1169  * the list buffers.
1170  */
1171 STATIC void
1172 rtk_txeof(struct rtk_softc *sc)
1173 {
1174 	struct ifnet *ifp;
1175 	struct rtk_tx_desc *txd;
1176 	uint32_t txstat;
1177 
1178 	ifp = &sc->ethercom.ec_if;
1179 
1180 	/*
1181 	 * Go through our tx list and free mbufs for those
1182 	 * frames that have been uploaded.
1183 	 */
1184 	while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_dirty)) != NULL) {
1185 		txstat = CSR_READ_4(sc, txd->txd_txstat);
1186 		if ((txstat & (RTK_TXSTAT_TX_OK|
1187 		    RTK_TXSTAT_TX_UNDERRUN|RTK_TXSTAT_TXABRT)) == 0)
1188 			break;
1189 
1190 		SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_dirty, txd_q);
1191 
1192 		bus_dmamap_sync(sc->sc_dmat, txd->txd_dmamap, 0,
1193 		    txd->txd_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1194 		bus_dmamap_unload(sc->sc_dmat, txd->txd_dmamap);
1195 		m_freem(txd->txd_mbuf);
1196 		txd->txd_mbuf = NULL;
1197 
1198 		ifp->if_collisions += (txstat & RTK_TXSTAT_COLLCNT) >> 24;
1199 
1200 		if (txstat & RTK_TXSTAT_TX_OK)
1201 			ifp->if_opackets++;
1202 		else {
1203 			ifp->if_oerrors++;
1204 
1205 			/*
1206 			 * Increase Early TX threshold if underrun occurred.
1207 			 * Increase step 64 bytes.
1208 			 */
1209 			if (txstat & RTK_TXSTAT_TX_UNDERRUN) {
1210 #ifdef DEBUG
1211 				printf("%s: transmit underrun;",
1212 				    device_xname(&sc->sc_dev));
1213 #endif
1214 				if (sc->sc_txthresh < RTK_TXTH_MAX) {
1215 					sc->sc_txthresh += 2;
1216 #ifdef DEBUG
1217 					printf(" new threshold: %d bytes",
1218 					    sc->sc_txthresh * 32);
1219 #endif
1220 				}
1221 				printf("\n");
1222 			}
1223 			if (txstat & (RTK_TXSTAT_TXABRT|RTK_TXSTAT_OUTOFWIN))
1224 				CSR_WRITE_4(sc, RTK_TXCFG, RTK_TXCFG_CONFIG);
1225 		}
1226 		SIMPLEQ_INSERT_TAIL(&sc->rtk_tx_free, txd, txd_q);
1227 		ifp->if_flags &= ~IFF_OACTIVE;
1228 	}
1229 
1230 	/* Clear the timeout timer if there is no pending packet. */
1231 	if (SIMPLEQ_EMPTY(&sc->rtk_tx_dirty))
1232 		ifp->if_timer = 0;
1233 
1234 }
1235 
1236 int
1237 rtk_intr(void *arg)
1238 {
1239 	struct rtk_softc *sc;
1240 	struct ifnet *ifp;
1241 	uint16_t status;
1242 	int handled;
1243 
1244 	sc = arg;
1245 	ifp = &sc->ethercom.ec_if;
1246 
1247 	/* Disable interrupts. */
1248 	CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1249 
1250 	handled = 0;
1251 	for (;;) {
1252 
1253 		status = CSR_READ_2(sc, RTK_ISR);
1254 
1255 		if (status == 0xffff)
1256 			break; /* Card is gone... */
1257 
1258 		if (status)
1259 			CSR_WRITE_2(sc, RTK_ISR, status);
1260 
1261 		if ((status & RTK_INTRS) == 0)
1262 			break;
1263 
1264 		handled = 1;
1265 
1266 		if (status & RTK_ISR_RX_OK)
1267 			rtk_rxeof(sc);
1268 
1269 		if (status & RTK_ISR_RX_ERR)
1270 			rtk_rxeof(sc);
1271 
1272 		if (status & (RTK_ISR_TX_OK|RTK_ISR_TX_ERR))
1273 			rtk_txeof(sc);
1274 
1275 		if (status & RTK_ISR_SYSTEM_ERR) {
1276 			rtk_reset(sc);
1277 			rtk_init(ifp);
1278 		}
1279 	}
1280 
1281 	/* Re-enable interrupts. */
1282 	CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS);
1283 
1284 	if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
1285 		rtk_start(ifp);
1286 
1287 #if NRND > 0
1288 	if (RND_ENABLED(&sc->rnd_source))
1289 		rnd_add_uint32(&sc->rnd_source, status);
1290 #endif
1291 
1292 	return handled;
1293 }
1294 
1295 /*
1296  * Main transmit routine.
1297  */
1298 
1299 STATIC void
1300 rtk_start(struct ifnet *ifp)
1301 {
1302 	struct rtk_softc *sc;
1303 	struct rtk_tx_desc *txd;
1304 	struct mbuf *m_head, *m_new;
1305 	int error, len;
1306 
1307 	sc = ifp->if_softc;
1308 
1309 	while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_free)) != NULL) {
1310 		IFQ_POLL(&ifp->if_snd, m_head);
1311 		if (m_head == NULL)
1312 			break;
1313 		m_new = NULL;
1314 
1315 		/*
1316 		 * Load the DMA map.  If this fails, the packet didn't
1317 		 * fit in one DMA segment, and we need to copy.  Note,
1318 		 * the packet must also be aligned.
1319 		 * if the packet is too small, copy it too, so we're sure
1320 		 * so have enouth room for the pad buffer.
1321 		 */
1322 		if ((mtod(m_head, uintptr_t) & 3) != 0 ||
1323 		    m_head->m_pkthdr.len < ETHER_PAD_LEN ||
1324 		    bus_dmamap_load_mbuf(sc->sc_dmat, txd->txd_dmamap,
1325 			m_head, BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1326 			MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1327 			if (m_new == NULL) {
1328 				printf("%s: unable to allocate Tx mbuf\n",
1329 				    device_xname(&sc->sc_dev));
1330 				break;
1331 			}
1332 			if (m_head->m_pkthdr.len > MHLEN) {
1333 				MCLGET(m_new, M_DONTWAIT);
1334 				if ((m_new->m_flags & M_EXT) == 0) {
1335 					printf("%s: unable to allocate Tx "
1336 					    "cluster\n", device_xname(&sc->sc_dev));
1337 					m_freem(m_new);
1338 					break;
1339 				}
1340 			}
1341 			m_copydata(m_head, 0, m_head->m_pkthdr.len,
1342 			    mtod(m_new, void *));
1343 			m_new->m_pkthdr.len = m_new->m_len =
1344 			    m_head->m_pkthdr.len;
1345 			if (m_head->m_pkthdr.len < ETHER_PAD_LEN) {
1346 				memset(
1347 				    mtod(m_new, char *) + m_head->m_pkthdr.len,
1348 				    0, ETHER_PAD_LEN - m_head->m_pkthdr.len);
1349 				m_new->m_pkthdr.len = m_new->m_len =
1350 				    ETHER_PAD_LEN;
1351 			}
1352 			error = bus_dmamap_load_mbuf(sc->sc_dmat,
1353 			    txd->txd_dmamap, m_new,
1354 			    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1355 			if (error) {
1356 				printf("%s: unable to load Tx buffer, "
1357 				    "error = %d\n", device_xname(&sc->sc_dev), error);
1358 				break;
1359 			}
1360 		}
1361 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1362 #if NBPFILTER > 0
1363 		/*
1364 		 * If there's a BPF listener, bounce a copy of this frame
1365 		 * to him.
1366 		 */
1367 		if (ifp->if_bpf)
1368 			bpf_mtap(ifp->if_bpf, m_head);
1369 #endif
1370 		if (m_new != NULL) {
1371 			m_freem(m_head);
1372 			m_head = m_new;
1373 		}
1374 		txd->txd_mbuf = m_head;
1375 
1376 		SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_free, txd_q);
1377 		SIMPLEQ_INSERT_TAIL(&sc->rtk_tx_dirty, txd, txd_q);
1378 
1379 		/*
1380 		 * Transmit the frame.
1381 		 */
1382 		bus_dmamap_sync(sc->sc_dmat,
1383 		    txd->txd_dmamap, 0, txd->txd_dmamap->dm_mapsize,
1384 		    BUS_DMASYNC_PREWRITE);
1385 
1386 		len = txd->txd_dmamap->dm_segs[0].ds_len;
1387 
1388 		CSR_WRITE_4(sc, txd->txd_txaddr,
1389 		    txd->txd_dmamap->dm_segs[0].ds_addr);
1390 		CSR_WRITE_4(sc, txd->txd_txstat,
1391 		    RTK_TXSTAT_THRESH(sc->sc_txthresh) | len);
1392 
1393 		/*
1394 		 * Set a timeout in case the chip goes out to lunch.
1395 		 */
1396 		ifp->if_timer = 5;
1397 	}
1398 
1399 	/*
1400 	 * We broke out of the loop because all our TX slots are
1401 	 * full. Mark the NIC as busy until it drains some of the
1402 	 * packets from the queue.
1403 	 */
1404 	if (SIMPLEQ_EMPTY(&sc->rtk_tx_free))
1405 		ifp->if_flags |= IFF_OACTIVE;
1406 }
1407 
1408 STATIC int
1409 rtk_init(struct ifnet *ifp)
1410 {
1411 	struct rtk_softc *sc = ifp->if_softc;
1412 	int error, i;
1413 	uint32_t rxcfg;
1414 
1415 	if ((error = rtk_enable(sc)) != 0)
1416 		goto out;
1417 
1418 	/*
1419 	 * Cancel pending I/O.
1420 	 */
1421 	rtk_stop(ifp, 0);
1422 
1423 	/* Init our MAC address */
1424 	for (i = 0; i < ETHER_ADDR_LEN; i++) {
1425 		CSR_WRITE_1(sc, RTK_IDR0 + i, CLLADDR(ifp->if_sadl)[i]);
1426 	}
1427 
1428 	/* Init the RX buffer pointer register. */
1429 	bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap, 0,
1430 	    sc->recv_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1431 	CSR_WRITE_4(sc, RTK_RXADDR, sc->recv_dmamap->dm_segs[0].ds_addr);
1432 
1433 	/* Init TX descriptors. */
1434 	rtk_list_tx_init(sc);
1435 
1436 	/* Init Early TX threshold. */
1437 	sc->sc_txthresh = RTK_TXTH_256;
1438 	/*
1439 	 * Enable transmit and receive.
1440 	 */
1441 	CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB|RTK_CMD_RX_ENB);
1442 
1443 	/*
1444 	 * Set the initial TX and RX configuration.
1445 	 */
1446 	CSR_WRITE_4(sc, RTK_TXCFG, RTK_TXCFG_CONFIG);
1447 	CSR_WRITE_4(sc, RTK_RXCFG, RTK_RXCFG_CONFIG);
1448 
1449 	/* Set the individual bit to receive frames for this host only. */
1450 	rxcfg = CSR_READ_4(sc, RTK_RXCFG);
1451 	rxcfg |= RTK_RXCFG_RX_INDIV;
1452 
1453 	/* If we want promiscuous mode, set the allframes bit. */
1454 	if (ifp->if_flags & IFF_PROMISC) {
1455 		rxcfg |= RTK_RXCFG_RX_ALLPHYS;
1456 		CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1457 	} else {
1458 		rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
1459 		CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1460 	}
1461 
1462 	/*
1463 	 * Set capture broadcast bit to capture broadcast frames.
1464 	 */
1465 	if (ifp->if_flags & IFF_BROADCAST) {
1466 		rxcfg |= RTK_RXCFG_RX_BROAD;
1467 		CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1468 	} else {
1469 		rxcfg &= ~RTK_RXCFG_RX_BROAD;
1470 		CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1471 	}
1472 
1473 	/*
1474 	 * Program the multicast filter, if necessary.
1475 	 */
1476 	rtk_setmulti(sc);
1477 
1478 	/*
1479 	 * Enable interrupts.
1480 	 */
1481 	CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS);
1482 
1483 	/* Start RX/TX process. */
1484 	CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
1485 
1486 	/* Enable receiver and transmitter. */
1487 	CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB|RTK_CMD_RX_ENB);
1488 
1489 	CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD|RTK_CFG1_FULLDUPLEX);
1490 
1491 	/*
1492 	 * Set current media.
1493 	 */
1494 	mii_mediachg(&sc->mii);
1495 
1496 	ifp->if_flags |= IFF_RUNNING;
1497 	ifp->if_flags &= ~IFF_OACTIVE;
1498 
1499 	callout_reset(&sc->rtk_tick_ch, hz, rtk_tick, sc);
1500 
1501  out:
1502 	if (error) {
1503 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1504 		ifp->if_timer = 0;
1505 		printf("%s: interface not running\n", device_xname(&sc->sc_dev));
1506 	}
1507 	return error;
1508 }
1509 
1510 /*
1511  * Set media options.
1512  */
1513 STATIC int
1514 rtk_ifmedia_upd(struct ifnet *ifp)
1515 {
1516 	struct rtk_softc *sc;
1517 
1518 	sc = ifp->if_softc;
1519 
1520 	return mii_mediachg(&sc->mii);
1521 }
1522 
1523 /*
1524  * Report current media status.
1525  */
1526 STATIC void
1527 rtk_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1528 {
1529 	struct rtk_softc *sc;
1530 
1531 	sc = ifp->if_softc;
1532 
1533 	mii_pollstat(&sc->mii);
1534 	ifmr->ifm_status = sc->mii.mii_media_status;
1535 	ifmr->ifm_active = sc->mii.mii_media_active;
1536 }
1537 
1538 STATIC int
1539 rtk_ioctl(struct ifnet *ifp, u_long command, void *data)
1540 {
1541 	struct rtk_softc *sc = ifp->if_softc;
1542 	struct ifreq *ifr = (struct ifreq *)data;
1543 	int s, error;
1544 
1545 	s = splnet();
1546 
1547 	switch (command) {
1548 	case SIOCGIFMEDIA:
1549 	case SIOCSIFMEDIA:
1550 		error = ifmedia_ioctl(ifp, ifr, &sc->mii.mii_media, command);
1551 		break;
1552 
1553 	default:
1554 		error = ether_ioctl(ifp, command, data);
1555 		if (error == ENETRESET) {
1556 			if (ifp->if_flags & IFF_RUNNING) {
1557 				/*
1558 				 * Multicast list has changed.  Set the
1559 				 * hardware filter accordingly.
1560 				 */
1561 				rtk_setmulti(sc);
1562 			}
1563 			error = 0;
1564 		}
1565 		break;
1566 	}
1567 
1568 	splx(s);
1569 
1570 	return error;
1571 }
1572 
1573 STATIC void
1574 rtk_watchdog(struct ifnet *ifp)
1575 {
1576 	struct rtk_softc *sc;
1577 
1578 	sc = ifp->if_softc;
1579 
1580 	printf("%s: watchdog timeout\n", device_xname(&sc->sc_dev));
1581 	ifp->if_oerrors++;
1582 	rtk_txeof(sc);
1583 	rtk_rxeof(sc);
1584 	rtk_init(ifp);
1585 }
1586 
1587 /*
1588  * Stop the adapter and free any mbufs allocated to the
1589  * RX and TX lists.
1590  */
1591 STATIC void
1592 rtk_stop(struct ifnet *ifp, int disable)
1593 {
1594 	struct rtk_softc *sc = ifp->if_softc;
1595 	struct rtk_tx_desc *txd;
1596 
1597 	callout_stop(&sc->rtk_tick_ch);
1598 
1599 	mii_down(&sc->mii);
1600 
1601 	CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
1602 	CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1603 
1604 	/*
1605 	 * Free the TX list buffers.
1606 	 */
1607 	while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_dirty)) != NULL) {
1608 		SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_dirty, txd_q);
1609 		bus_dmamap_unload(sc->sc_dmat, txd->txd_dmamap);
1610 		m_freem(txd->txd_mbuf);
1611 		txd->txd_mbuf = NULL;
1612 		CSR_WRITE_4(sc, txd->txd_txaddr, 0);
1613 	}
1614 
1615 	if (disable)
1616 		rtk_disable(sc);
1617 
1618 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1619 	ifp->if_timer = 0;
1620 }
1621 
1622 /*
1623  * Stop all chip I/O so that the kernel's probe routines don't
1624  * get confused by errant DMAs when rebooting.
1625  */
1626 STATIC void
1627 rtk_shutdown(void *arg)
1628 {
1629 	struct rtk_softc *sc = (struct rtk_softc *)arg;
1630 
1631 	rtk_stop(&sc->ethercom.ec_if, 0);
1632 }
1633 
1634 STATIC void
1635 rtk_tick(void *arg)
1636 {
1637 	struct rtk_softc *sc = arg;
1638 	int s;
1639 
1640 	s = splnet();
1641 	mii_tick(&sc->mii);
1642 	splx(s);
1643 
1644 	callout_reset(&sc->rtk_tick_ch, hz, rtk_tick, sc);
1645 }
1646