1 /* $NetBSD: rtl8169.c,v 1.29 2006/10/13 11:06:15 yamt Exp $ */ 2 3 /* 4 * Copyright (c) 1997, 1998-2003 5 * Bill Paul <wpaul@windriver.com>. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. All advertising materials mentioning features or use of this software 16 * must display the following acknowledgement: 17 * This product includes software developed by Bill Paul. 18 * 4. Neither the name of the author nor the names of any co-contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD 26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 32 * THE POSSIBILITY OF SUCH DAMAGE. 33 */ 34 35 #include <sys/cdefs.h> 36 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/re/if_re.c,v 1.20 2004/04/11 20:34:08 ru Exp $ */ 37 38 /* 39 * RealTek 8139C+/8169/8169S/8110S PCI NIC driver 40 * 41 * Written by Bill Paul <wpaul@windriver.com> 42 * Senior Networking Software Engineer 43 * Wind River Systems 44 */ 45 46 /* 47 * This driver is designed to support RealTek's next generation of 48 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently 49 * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S 50 * and the RTL8110S. 51 * 52 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible 53 * with the older 8139 family, however it also supports a special 54 * C+ mode of operation that provides several new performance enhancing 55 * features. These include: 56 * 57 * o Descriptor based DMA mechanism. Each descriptor represents 58 * a single packet fragment. Data buffers may be aligned on 59 * any byte boundary. 60 * 61 * o 64-bit DMA 62 * 63 * o TCP/IP checksum offload for both RX and TX 64 * 65 * o High and normal priority transmit DMA rings 66 * 67 * o VLAN tag insertion and extraction 68 * 69 * o TCP large send (segmentation offload) 70 * 71 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+ 72 * programming API is fairly straightforward. The RX filtering, EEPROM 73 * access and PHY access is the same as it is on the older 8139 series 74 * chips. 75 * 76 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the 77 * same programming API and feature set as the 8139C+ with the following 78 * differences and additions: 79 * 80 * o 1000Mbps mode 81 * 82 * o Jumbo frames 83 * 84 * o GMII and TBI ports/registers for interfacing with copper 85 * or fiber PHYs 86 * 87 * o RX and TX DMA rings can have up to 1024 descriptors 88 * (the 8139C+ allows a maximum of 64) 89 * 90 * o Slight differences in register layout from the 8139C+ 91 * 92 * The TX start and timer interrupt registers are at different locations 93 * on the 8169 than they are on the 8139C+. Also, the status word in the 94 * RX descriptor has a slightly different bit layout. The 8169 does not 95 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska' 96 * copper gigE PHY. 97 * 98 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs 99 * (the 'S' stands for 'single-chip'). These devices have the same 100 * programming API as the older 8169, but also have some vendor-specific 101 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard 102 * part designed to be pin-compatible with the RealTek 8100 10/100 chip. 103 * 104 * This driver takes advantage of the RX and TX checksum offload and 105 * VLAN tag insertion/extraction features. It also implements TX 106 * interrupt moderation using the timer interrupt registers, which 107 * significantly reduces TX interrupt load. There is also support 108 * for jumbo frames, however the 8169/8169S/8110S can not transmit 109 * jumbo frames larger than 7.5K, so the max MTU possible with this 110 * driver is 7500 bytes. 111 */ 112 113 #include "bpfilter.h" 114 #include "vlan.h" 115 116 #include <sys/param.h> 117 #include <sys/endian.h> 118 #include <sys/systm.h> 119 #include <sys/sockio.h> 120 #include <sys/mbuf.h> 121 #include <sys/malloc.h> 122 #include <sys/kernel.h> 123 #include <sys/socket.h> 124 #include <sys/device.h> 125 126 #include <net/if.h> 127 #include <net/if_arp.h> 128 #include <net/if_dl.h> 129 #include <net/if_ether.h> 130 #include <net/if_media.h> 131 #include <net/if_vlanvar.h> 132 133 #include <netinet/in_systm.h> /* XXX for IP_MAXPACKET */ 134 #include <netinet/in.h> /* XXX for IP_MAXPACKET */ 135 #include <netinet/ip.h> /* XXX for IP_MAXPACKET */ 136 137 #if NBPFILTER > 0 138 #include <net/bpf.h> 139 #endif 140 141 #include <machine/bus.h> 142 143 #include <dev/mii/mii.h> 144 #include <dev/mii/miivar.h> 145 146 #include <dev/pci/pcireg.h> 147 #include <dev/pci/pcivar.h> 148 #include <dev/pci/pcidevs.h> 149 150 #include <dev/ic/rtl81x9reg.h> 151 #include <dev/ic/rtl81x9var.h> 152 153 #include <dev/ic/rtl8169var.h> 154 155 156 static int re_encap(struct rtk_softc *, struct mbuf *, int *); 157 158 static int re_newbuf(struct rtk_softc *, int, struct mbuf *); 159 static int re_rx_list_init(struct rtk_softc *); 160 static int re_tx_list_init(struct rtk_softc *); 161 static void re_rxeof(struct rtk_softc *); 162 static void re_txeof(struct rtk_softc *); 163 static void re_tick(void *); 164 static void re_start(struct ifnet *); 165 static int re_ioctl(struct ifnet *, u_long, caddr_t); 166 static int re_init(struct ifnet *); 167 static void re_stop(struct ifnet *, int); 168 static void re_watchdog(struct ifnet *); 169 170 static void re_shutdown(void *); 171 static int re_enable(struct rtk_softc *); 172 static void re_disable(struct rtk_softc *); 173 static void re_power(int, void *); 174 175 static int re_ifmedia_upd(struct ifnet *); 176 static void re_ifmedia_sts(struct ifnet *, struct ifmediareq *); 177 178 static int re_gmii_readreg(struct device *, int, int); 179 static void re_gmii_writereg(struct device *, int, int, int); 180 181 static int re_miibus_readreg(struct device *, int, int); 182 static void re_miibus_writereg(struct device *, int, int, int); 183 static void re_miibus_statchg(struct device *); 184 185 static void re_reset(struct rtk_softc *); 186 187 static int 188 re_gmii_readreg(struct device *self, int phy, int reg) 189 { 190 struct rtk_softc *sc = (void *)self; 191 u_int32_t rval; 192 int i; 193 194 if (phy != 7) 195 return 0; 196 197 /* Let the rgephy driver read the GMEDIASTAT register */ 198 199 if (reg == RTK_GMEDIASTAT) { 200 rval = CSR_READ_1(sc, RTK_GMEDIASTAT); 201 return rval; 202 } 203 204 CSR_WRITE_4(sc, RTK_PHYAR, reg << 16); 205 DELAY(1000); 206 207 for (i = 0; i < RTK_TIMEOUT; i++) { 208 rval = CSR_READ_4(sc, RTK_PHYAR); 209 if (rval & RTK_PHYAR_BUSY) 210 break; 211 DELAY(100); 212 } 213 214 if (i == RTK_TIMEOUT) { 215 aprint_error("%s: PHY read failed\n", sc->sc_dev.dv_xname); 216 return 0; 217 } 218 219 return rval & RTK_PHYAR_PHYDATA; 220 } 221 222 static void 223 re_gmii_writereg(struct device *dev, int phy __unused, int reg, int data) 224 { 225 struct rtk_softc *sc = (void *)dev; 226 u_int32_t rval; 227 int i; 228 229 CSR_WRITE_4(sc, RTK_PHYAR, (reg << 16) | 230 (data & RTK_PHYAR_PHYDATA) | RTK_PHYAR_BUSY); 231 DELAY(1000); 232 233 for (i = 0; i < RTK_TIMEOUT; i++) { 234 rval = CSR_READ_4(sc, RTK_PHYAR); 235 if (!(rval & RTK_PHYAR_BUSY)) 236 break; 237 DELAY(100); 238 } 239 240 if (i == RTK_TIMEOUT) { 241 aprint_error("%s: PHY write reg %x <- %x failed\n", 242 sc->sc_dev.dv_xname, reg, data); 243 return; 244 } 245 246 return; 247 } 248 249 static int 250 re_miibus_readreg(struct device *dev, int phy, int reg) 251 { 252 struct rtk_softc *sc = (void *)dev; 253 u_int16_t rval = 0; 254 u_int16_t re8139_reg = 0; 255 int s; 256 257 s = splnet(); 258 259 if (sc->rtk_type == RTK_8169) { 260 rval = re_gmii_readreg(dev, phy, reg); 261 splx(s); 262 return rval; 263 } 264 265 /* Pretend the internal PHY is only at address 0 */ 266 if (phy) { 267 splx(s); 268 return 0; 269 } 270 switch (reg) { 271 case MII_BMCR: 272 re8139_reg = RTK_BMCR; 273 break; 274 case MII_BMSR: 275 re8139_reg = RTK_BMSR; 276 break; 277 case MII_ANAR: 278 re8139_reg = RTK_ANAR; 279 break; 280 case MII_ANER: 281 re8139_reg = RTK_ANER; 282 break; 283 case MII_ANLPAR: 284 re8139_reg = RTK_LPAR; 285 break; 286 case MII_PHYIDR1: 287 case MII_PHYIDR2: 288 splx(s); 289 return 0; 290 /* 291 * Allow the rlphy driver to read the media status 292 * register. If we have a link partner which does not 293 * support NWAY, this is the register which will tell 294 * us the results of parallel detection. 295 */ 296 case RTK_MEDIASTAT: 297 rval = CSR_READ_1(sc, RTK_MEDIASTAT); 298 splx(s); 299 return rval; 300 default: 301 aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname); 302 splx(s); 303 return 0; 304 } 305 rval = CSR_READ_2(sc, re8139_reg); 306 splx(s); 307 return rval; 308 } 309 310 static void 311 re_miibus_writereg(struct device *dev, int phy, int reg, int data) 312 { 313 struct rtk_softc *sc = (void *)dev; 314 u_int16_t re8139_reg = 0; 315 int s; 316 317 s = splnet(); 318 319 if (sc->rtk_type == RTK_8169) { 320 re_gmii_writereg(dev, phy, reg, data); 321 splx(s); 322 return; 323 } 324 325 /* Pretend the internal PHY is only at address 0 */ 326 if (phy) { 327 splx(s); 328 return; 329 } 330 switch (reg) { 331 case MII_BMCR: 332 re8139_reg = RTK_BMCR; 333 break; 334 case MII_BMSR: 335 re8139_reg = RTK_BMSR; 336 break; 337 case MII_ANAR: 338 re8139_reg = RTK_ANAR; 339 break; 340 case MII_ANER: 341 re8139_reg = RTK_ANER; 342 break; 343 case MII_ANLPAR: 344 re8139_reg = RTK_LPAR; 345 break; 346 case MII_PHYIDR1: 347 case MII_PHYIDR2: 348 splx(s); 349 return; 350 break; 351 default: 352 aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname); 353 splx(s); 354 return; 355 } 356 CSR_WRITE_2(sc, re8139_reg, data); 357 splx(s); 358 return; 359 } 360 361 static void 362 re_miibus_statchg(struct device *dev __unused) 363 { 364 365 return; 366 } 367 368 static void 369 re_reset(struct rtk_softc *sc) 370 { 371 register int i; 372 373 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET); 374 375 for (i = 0; i < RTK_TIMEOUT; i++) { 376 DELAY(10); 377 if (!(CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET)) 378 break; 379 } 380 if (i == RTK_TIMEOUT) 381 aprint_error("%s: reset never completed!\n", 382 sc->sc_dev.dv_xname); 383 384 /* 385 * NB: Realtek-supplied Linux driver does this only for 386 * MCFG_METHOD_2, which corresponds to sc->sc_rev == 2. 387 */ 388 if (1) /* XXX check softc flag for 8169s version */ 389 CSR_WRITE_1(sc, 0x82, 1); 390 391 return; 392 } 393 394 /* 395 * The following routine is designed to test for a defect on some 396 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64# 397 * lines connected to the bus, however for a 32-bit only card, they 398 * should be pulled high. The result of this defect is that the 399 * NIC will not work right if you plug it into a 64-bit slot: DMA 400 * operations will be done with 64-bit transfers, which will fail 401 * because the 64-bit data lines aren't connected. 402 * 403 * There's no way to work around this (short of talking a soldering 404 * iron to the board), however we can detect it. The method we use 405 * here is to put the NIC into digital loopback mode, set the receiver 406 * to promiscuous mode, and then try to send a frame. We then compare 407 * the frame data we sent to what was received. If the data matches, 408 * then the NIC is working correctly, otherwise we know the user has 409 * a defective NIC which has been mistakenly plugged into a 64-bit PCI 410 * slot. In the latter case, there's no way the NIC can work correctly, 411 * so we print out a message on the console and abort the device attach. 412 */ 413 414 int 415 re_diag(struct rtk_softc *sc) 416 { 417 struct ifnet *ifp = &sc->ethercom.ec_if; 418 struct mbuf *m0; 419 struct ether_header *eh; 420 struct rtk_desc *cur_rx; 421 bus_dmamap_t dmamap; 422 u_int16_t status; 423 u_int32_t rxstat; 424 int total_len, i, s, error = 0; 425 u_int8_t dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' }; 426 u_int8_t src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' }; 427 428 /* Allocate a single mbuf */ 429 430 MGETHDR(m0, M_DONTWAIT, MT_DATA); 431 if (m0 == NULL) 432 return ENOBUFS; 433 434 /* 435 * Initialize the NIC in test mode. This sets the chip up 436 * so that it can send and receive frames, but performs the 437 * following special functions: 438 * - Puts receiver in promiscuous mode 439 * - Enables digital loopback mode 440 * - Leaves interrupts turned off 441 */ 442 443 ifp->if_flags |= IFF_PROMISC; 444 sc->rtk_testmode = 1; 445 re_init(ifp); 446 re_stop(ifp, 0); 447 DELAY(100000); 448 re_init(ifp); 449 450 /* Put some data in the mbuf */ 451 452 eh = mtod(m0, struct ether_header *); 453 bcopy((char *)&dst, eh->ether_dhost, ETHER_ADDR_LEN); 454 bcopy((char *)&src, eh->ether_shost, ETHER_ADDR_LEN); 455 eh->ether_type = htons(ETHERTYPE_IP); 456 m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN; 457 458 /* 459 * Queue the packet, start transmission. 460 */ 461 462 CSR_WRITE_2(sc, RTK_ISR, 0xFFFF); 463 s = splnet(); 464 IF_ENQUEUE(&ifp->if_snd, m0); 465 re_start(ifp); 466 splx(s); 467 m0 = NULL; 468 469 /* Wait for it to propagate through the chip */ 470 471 DELAY(100000); 472 for (i = 0; i < RTK_TIMEOUT; i++) { 473 status = CSR_READ_2(sc, RTK_ISR); 474 if ((status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK)) == 475 (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK)) 476 break; 477 DELAY(10); 478 } 479 if (i == RTK_TIMEOUT) { 480 aprint_error("%s: diagnostic failed, failed to receive packet " 481 "in loopback mode\n", sc->sc_dev.dv_xname); 482 error = EIO; 483 goto done; 484 } 485 486 /* 487 * The packet should have been dumped into the first 488 * entry in the RX DMA ring. Grab it from there. 489 */ 490 491 dmamap = sc->rtk_ldata.rtk_rx_list_map; 492 bus_dmamap_sync(sc->sc_dmat, 493 dmamap, 0, dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); 494 dmamap = sc->rtk_ldata.rtk_rx_dmamap[0]; 495 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize, 496 BUS_DMASYNC_POSTREAD); 497 bus_dmamap_unload(sc->sc_dmat, 498 sc->rtk_ldata.rtk_rx_dmamap[0]); 499 500 m0 = sc->rtk_ldata.rtk_rx_mbuf[0]; 501 sc->rtk_ldata.rtk_rx_mbuf[0] = NULL; 502 eh = mtod(m0, struct ether_header *); 503 504 cur_rx = &sc->rtk_ldata.rtk_rx_list[0]; 505 total_len = RTK_RXBYTES(cur_rx); 506 rxstat = le32toh(cur_rx->rtk_cmdstat); 507 508 if (total_len != ETHER_MIN_LEN) { 509 aprint_error("%s: diagnostic failed, received short packet\n", 510 sc->sc_dev.dv_xname); 511 error = EIO; 512 goto done; 513 } 514 515 /* Test that the received packet data matches what we sent. */ 516 517 if (bcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) || 518 bcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) || 519 ntohs(eh->ether_type) != ETHERTYPE_IP) { 520 aprint_error("%s: WARNING, DMA FAILURE!\n", 521 sc->sc_dev.dv_xname); 522 aprint_error("%s: expected TX data: %s", 523 sc->sc_dev.dv_xname, ether_sprintf(dst)); 524 aprint_error("/%s/0x%x\n", ether_sprintf(src), ETHERTYPE_IP); 525 aprint_error("%s: received RX data: %s", 526 sc->sc_dev.dv_xname, 527 ether_sprintf(eh->ether_dhost)); 528 aprint_error("/%s/0x%x\n", ether_sprintf(eh->ether_shost), 529 ntohs(eh->ether_type)); 530 aprint_error("%s: You may have a defective 32-bit NIC plugged " 531 "into a 64-bit PCI slot.\n", sc->sc_dev.dv_xname); 532 aprint_error("%s: Please re-install the NIC in a 32-bit slot " 533 "for proper operation.\n", sc->sc_dev.dv_xname); 534 aprint_error("%s: Read the re(4) man page for more details.\n", 535 sc->sc_dev.dv_xname); 536 error = EIO; 537 } 538 539 done: 540 /* Turn interface off, release resources */ 541 542 sc->rtk_testmode = 0; 543 ifp->if_flags &= ~IFF_PROMISC; 544 re_stop(ifp, 0); 545 if (m0 != NULL) 546 m_freem(m0); 547 548 return error; 549 } 550 551 552 /* 553 * Attach the interface. Allocate softc structures, do ifmedia 554 * setup and ethernet/BPF attach. 555 */ 556 void 557 re_attach(struct rtk_softc *sc) 558 { 559 u_char eaddr[ETHER_ADDR_LEN]; 560 u_int16_t val; 561 struct ifnet *ifp; 562 int error = 0, i, addr_len; 563 564 565 /* XXX JRS: bus-attach-independent code begins approximately here */ 566 567 /* Reset the adapter. */ 568 re_reset(sc); 569 570 if (sc->rtk_type == RTK_8169) { 571 uint32_t hwrev; 572 573 /* Revision of 8169/8169S/8110s in bits 30..26, 23 */ 574 hwrev = CSR_READ_4(sc, RTK_TXCFG) & 0x7c800000; 575 if (hwrev == (0x1 << 28)) { 576 sc->sc_rev = 4; 577 } else if (hwrev == (0x1 << 26)) { 578 sc->sc_rev = 3; 579 } else if (hwrev == (0x1 << 23)) { 580 sc->sc_rev = 2; 581 } else 582 sc->sc_rev = 1; 583 584 /* Set RX length mask */ 585 586 sc->rtk_rxlenmask = RTK_RDESC_STAT_GFRAGLEN; 587 588 /* Force station address autoload from the EEPROM */ 589 590 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_AUTOLOAD); 591 for (i = 0; i < RTK_TIMEOUT; i++) { 592 if (!(CSR_READ_1(sc, RTK_EECMD) & RTK_EEMODE_AUTOLOAD)) 593 break; 594 DELAY(100); 595 } 596 if (i == RTK_TIMEOUT) 597 aprint_error("%s: eeprom autoload timed out\n", 598 sc->sc_dev.dv_xname); 599 600 for (i = 0; i < ETHER_ADDR_LEN; i++) 601 eaddr[i] = CSR_READ_1(sc, RTK_IDR0 + i); 602 603 sc->rtk_ldata.rtk_tx_desc_cnt = RTK_TX_DESC_CNT_8169; 604 } else { 605 606 /* Set RX length mask */ 607 608 sc->rtk_rxlenmask = RTK_RDESC_STAT_FRAGLEN; 609 610 if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129) 611 addr_len = RTK_EEADDR_LEN1; 612 else 613 addr_len = RTK_EEADDR_LEN0; 614 615 /* 616 * Get station address from the EEPROM. 617 */ 618 for (i = 0; i < 3; i++) { 619 val = rtk_read_eeprom(sc, RTK_EE_EADDR0 + i, addr_len); 620 eaddr[(i * 2) + 0] = val & 0xff; 621 eaddr[(i * 2) + 1] = val >> 8; 622 } 623 624 sc->rtk_ldata.rtk_tx_desc_cnt = RTK_TX_DESC_CNT_8139; 625 } 626 627 aprint_normal("%s: Ethernet address %s\n", 628 sc->sc_dev.dv_xname, ether_sprintf(eaddr)); 629 630 if (sc->rtk_ldata.rtk_tx_desc_cnt > 631 PAGE_SIZE / sizeof(struct rtk_desc)) { 632 sc->rtk_ldata.rtk_tx_desc_cnt = 633 PAGE_SIZE / sizeof(struct rtk_desc); 634 } 635 636 aprint_verbose("%s: using %d tx descriptors\n", 637 sc->sc_dev.dv_xname, sc->rtk_ldata.rtk_tx_desc_cnt); 638 639 /* Allocate DMA'able memory for the TX ring */ 640 if ((error = bus_dmamem_alloc(sc->sc_dmat, RTK_TX_LIST_SZ(sc), 641 RTK_ETHER_ALIGN, 0, &sc->rtk_ldata.rtk_tx_listseg, 642 1, &sc->rtk_ldata.rtk_tx_listnseg, BUS_DMA_NOWAIT)) != 0) { 643 aprint_error("%s: can't allocate tx listseg, error = %d\n", 644 sc->sc_dev.dv_xname, error); 645 goto fail_0; 646 } 647 648 /* Load the map for the TX ring. */ 649 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->rtk_ldata.rtk_tx_listseg, 650 sc->rtk_ldata.rtk_tx_listnseg, RTK_TX_LIST_SZ(sc), 651 (caddr_t *)&sc->rtk_ldata.rtk_tx_list, 652 BUS_DMA_NOWAIT)) != 0) { 653 aprint_error("%s: can't map tx list, error = %d\n", 654 sc->sc_dev.dv_xname, error); 655 goto fail_1; 656 } 657 memset(sc->rtk_ldata.rtk_tx_list, 0, RTK_TX_LIST_SZ(sc)); 658 659 if ((error = bus_dmamap_create(sc->sc_dmat, RTK_TX_LIST_SZ(sc), 1, 660 RTK_TX_LIST_SZ(sc), 0, BUS_DMA_ALLOCNOW, 661 &sc->rtk_ldata.rtk_tx_list_map)) != 0) { 662 aprint_error("%s: can't create tx list map, error = %d\n", 663 sc->sc_dev.dv_xname, error); 664 goto fail_2; 665 } 666 667 668 if ((error = bus_dmamap_load(sc->sc_dmat, 669 sc->rtk_ldata.rtk_tx_list_map, sc->rtk_ldata.rtk_tx_list, 670 RTK_TX_LIST_SZ(sc), NULL, BUS_DMA_NOWAIT)) != 0) { 671 aprint_error("%s: can't load tx list, error = %d\n", 672 sc->sc_dev.dv_xname, error); 673 goto fail_3; 674 } 675 676 /* Create DMA maps for TX buffers */ 677 for (i = 0; i < RTK_TX_QLEN; i++) { 678 error = bus_dmamap_create(sc->sc_dmat, 679 round_page(IP_MAXPACKET), 680 RTK_TX_DESC_CNT(sc) - 4, RTK_TDESC_CMD_FRAGLEN, 681 0, BUS_DMA_ALLOCNOW, 682 &sc->rtk_ldata.rtk_txq[i].txq_dmamap); 683 if (error) { 684 aprint_error("%s: can't create DMA map for TX\n", 685 sc->sc_dev.dv_xname); 686 goto fail_4; 687 } 688 } 689 690 /* Allocate DMA'able memory for the RX ring */ 691 if ((error = bus_dmamem_alloc(sc->sc_dmat, RTK_RX_LIST_SZ, 692 RTK_RING_ALIGN, 0, &sc->rtk_ldata.rtk_rx_listseg, 1, 693 &sc->rtk_ldata.rtk_rx_listnseg, BUS_DMA_NOWAIT)) != 0) { 694 aprint_error("%s: can't allocate rx listseg, error = %d\n", 695 sc->sc_dev.dv_xname, error); 696 goto fail_4; 697 } 698 699 /* Load the map for the RX ring. */ 700 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->rtk_ldata.rtk_rx_listseg, 701 sc->rtk_ldata.rtk_rx_listnseg, RTK_RX_LIST_SZ, 702 (caddr_t *)&sc->rtk_ldata.rtk_rx_list, 703 BUS_DMA_NOWAIT)) != 0) { 704 aprint_error("%s: can't map rx list, error = %d\n", 705 sc->sc_dev.dv_xname, error); 706 goto fail_5; 707 } 708 memset(sc->rtk_ldata.rtk_rx_list, 0, RTK_RX_LIST_SZ); 709 710 if ((error = bus_dmamap_create(sc->sc_dmat, RTK_RX_LIST_SZ, 1, 711 RTK_RX_LIST_SZ, 0, BUS_DMA_ALLOCNOW, 712 &sc->rtk_ldata.rtk_rx_list_map)) != 0) { 713 aprint_error("%s: can't create rx list map, error = %d\n", 714 sc->sc_dev.dv_xname, error); 715 goto fail_6; 716 } 717 718 if ((error = bus_dmamap_load(sc->sc_dmat, 719 sc->rtk_ldata.rtk_rx_list_map, sc->rtk_ldata.rtk_rx_list, 720 RTK_RX_LIST_SZ, NULL, BUS_DMA_NOWAIT)) != 0) { 721 aprint_error("%s: can't load rx list, error = %d\n", 722 sc->sc_dev.dv_xname, error); 723 goto fail_7; 724 } 725 726 /* Create DMA maps for RX buffers */ 727 for (i = 0; i < RTK_RX_DESC_CNT; i++) { 728 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 729 0, BUS_DMA_ALLOCNOW, &sc->rtk_ldata.rtk_rx_dmamap[i]); 730 if (error) { 731 aprint_error("%s: can't create DMA map for RX\n", 732 sc->sc_dev.dv_xname); 733 goto fail_8; 734 } 735 } 736 737 /* 738 * Record interface as attached. From here, we should not fail. 739 */ 740 sc->sc_flags |= RTK_ATTACHED; 741 742 ifp = &sc->ethercom.ec_if; 743 ifp->if_softc = sc; 744 strcpy(ifp->if_xname, sc->sc_dev.dv_xname); 745 ifp->if_mtu = ETHERMTU; 746 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 747 ifp->if_ioctl = re_ioctl; 748 sc->ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU; 749 750 /* 751 * This is a way to disable hw VLAN tagging by default 752 * (RE_VLAN is undefined), as it is problematic. PR 32643 753 */ 754 755 #ifdef RE_VLAN 756 sc->ethercom.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING; 757 #endif 758 ifp->if_start = re_start; 759 ifp->if_stop = re_stop; 760 761 /* 762 * IFCAP_CSUM_IPv4_Tx seems broken for small packets. 763 */ 764 765 ifp->if_capabilities |= 766 /* IFCAP_CSUM_IPv4_Tx | */ IFCAP_CSUM_IPv4_Rx | 767 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx | 768 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx | 769 IFCAP_TSOv4; 770 ifp->if_watchdog = re_watchdog; 771 ifp->if_init = re_init; 772 if (sc->rtk_type == RTK_8169) 773 ifp->if_baudrate = 1000000000; 774 else 775 ifp->if_baudrate = 100000000; 776 ifp->if_snd.ifq_maxlen = RTK_IFQ_MAXLEN; 777 ifp->if_capenable = ifp->if_capabilities; 778 IFQ_SET_READY(&ifp->if_snd); 779 780 callout_init(&sc->rtk_tick_ch); 781 782 /* Do MII setup */ 783 sc->mii.mii_ifp = ifp; 784 sc->mii.mii_readreg = re_miibus_readreg; 785 sc->mii.mii_writereg = re_miibus_writereg; 786 sc->mii.mii_statchg = re_miibus_statchg; 787 ifmedia_init(&sc->mii.mii_media, IFM_IMASK, re_ifmedia_upd, 788 re_ifmedia_sts); 789 mii_attach(&sc->sc_dev, &sc->mii, 0xffffffff, MII_PHY_ANY, 790 MII_OFFSET_ANY, 0); 791 ifmedia_set(&sc->mii.mii_media, IFM_ETHER | IFM_AUTO); 792 793 /* 794 * Call MI attach routine. 795 */ 796 if_attach(ifp); 797 ether_ifattach(ifp, eaddr); 798 799 800 /* 801 * Make sure the interface is shutdown during reboot. 802 */ 803 sc->sc_sdhook = shutdownhook_establish(re_shutdown, sc); 804 if (sc->sc_sdhook == NULL) 805 aprint_error("%s: WARNING: unable to establish shutdown hook\n", 806 sc->sc_dev.dv_xname); 807 /* 808 * Add a suspend hook to make sure we come back up after a 809 * resume. 810 */ 811 sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname, 812 re_power, sc); 813 if (sc->sc_powerhook == NULL) 814 aprint_error("%s: WARNING: unable to establish power hook\n", 815 sc->sc_dev.dv_xname); 816 817 818 return; 819 820 fail_8: 821 /* Destroy DMA maps for RX buffers. */ 822 for (i = 0; i < RTK_RX_DESC_CNT; i++) 823 if (sc->rtk_ldata.rtk_rx_dmamap[i] != NULL) 824 bus_dmamap_destroy(sc->sc_dmat, 825 sc->rtk_ldata.rtk_rx_dmamap[i]); 826 827 /* Free DMA'able memory for the RX ring. */ 828 bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map); 829 fail_7: 830 bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map); 831 fail_6: 832 bus_dmamem_unmap(sc->sc_dmat, 833 (caddr_t)sc->rtk_ldata.rtk_rx_list, RTK_RX_LIST_SZ); 834 fail_5: 835 bus_dmamem_free(sc->sc_dmat, 836 &sc->rtk_ldata.rtk_rx_listseg, sc->rtk_ldata.rtk_rx_listnseg); 837 838 fail_4: 839 /* Destroy DMA maps for TX buffers. */ 840 for (i = 0; i < RTK_TX_QLEN; i++) 841 if (sc->rtk_ldata.rtk_txq[i].txq_dmamap != NULL) 842 bus_dmamap_destroy(sc->sc_dmat, 843 sc->rtk_ldata.rtk_txq[i].txq_dmamap); 844 845 /* Free DMA'able memory for the TX ring. */ 846 bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map); 847 fail_3: 848 bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map); 849 fail_2: 850 bus_dmamem_unmap(sc->sc_dmat, 851 (caddr_t)sc->rtk_ldata.rtk_tx_list, RTK_TX_LIST_SZ(sc)); 852 fail_1: 853 bus_dmamem_free(sc->sc_dmat, 854 &sc->rtk_ldata.rtk_tx_listseg, sc->rtk_ldata.rtk_tx_listnseg); 855 fail_0: 856 return; 857 } 858 859 860 /* 861 * re_activate: 862 * Handle device activation/deactivation requests. 863 */ 864 int 865 re_activate(struct device *self, enum devact act) 866 { 867 struct rtk_softc *sc = (void *) self; 868 int s, error = 0; 869 870 s = splnet(); 871 switch (act) { 872 case DVACT_ACTIVATE: 873 error = EOPNOTSUPP; 874 break; 875 case DVACT_DEACTIVATE: 876 mii_activate(&sc->mii, act, MII_PHY_ANY, MII_OFFSET_ANY); 877 if_deactivate(&sc->ethercom.ec_if); 878 break; 879 } 880 splx(s); 881 882 return error; 883 } 884 885 /* 886 * re_detach: 887 * Detach a rtk interface. 888 */ 889 int 890 re_detach(struct rtk_softc *sc) 891 { 892 struct ifnet *ifp = &sc->ethercom.ec_if; 893 int i; 894 895 /* 896 * Succeed now if there isn't any work to do. 897 */ 898 if ((sc->sc_flags & RTK_ATTACHED) == 0) 899 return 0; 900 901 /* Unhook our tick handler. */ 902 callout_stop(&sc->rtk_tick_ch); 903 904 /* Detach all PHYs. */ 905 mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY); 906 907 /* Delete all remaining media. */ 908 ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY); 909 910 ether_ifdetach(ifp); 911 if_detach(ifp); 912 913 /* XXX undo re_allocmem() */ 914 915 /* Destroy DMA maps for RX buffers. */ 916 for (i = 0; i < RTK_RX_DESC_CNT; i++) 917 if (sc->rtk_ldata.rtk_rx_dmamap[i] != NULL) 918 bus_dmamap_destroy(sc->sc_dmat, 919 sc->rtk_ldata.rtk_rx_dmamap[i]); 920 921 /* Free DMA'able memory for the RX ring. */ 922 bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map); 923 bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map); 924 bus_dmamem_unmap(sc->sc_dmat, 925 (caddr_t)sc->rtk_ldata.rtk_rx_list, RTK_RX_LIST_SZ); 926 bus_dmamem_free(sc->sc_dmat, 927 &sc->rtk_ldata.rtk_rx_listseg, sc->rtk_ldata.rtk_rx_listnseg); 928 929 /* Destroy DMA maps for TX buffers. */ 930 for (i = 0; i < RTK_TX_QLEN; i++) 931 if (sc->rtk_ldata.rtk_txq[i].txq_dmamap != NULL) 932 bus_dmamap_destroy(sc->sc_dmat, 933 sc->rtk_ldata.rtk_txq[i].txq_dmamap); 934 935 /* Free DMA'able memory for the TX ring. */ 936 bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map); 937 bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map); 938 bus_dmamem_unmap(sc->sc_dmat, 939 (caddr_t)sc->rtk_ldata.rtk_tx_list, RTK_TX_LIST_SZ(sc)); 940 bus_dmamem_free(sc->sc_dmat, 941 &sc->rtk_ldata.rtk_tx_listseg, sc->rtk_ldata.rtk_tx_listnseg); 942 943 944 shutdownhook_disestablish(sc->sc_sdhook); 945 powerhook_disestablish(sc->sc_powerhook); 946 947 return 0; 948 } 949 950 /* 951 * re_enable: 952 * Enable the RTL81X9 chip. 953 */ 954 static int 955 re_enable(struct rtk_softc *sc) 956 { 957 if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) { 958 if ((*sc->sc_enable)(sc) != 0) { 959 aprint_error("%s: device enable failed\n", 960 sc->sc_dev.dv_xname); 961 return EIO; 962 } 963 sc->sc_flags |= RTK_ENABLED; 964 } 965 return 0; 966 } 967 968 /* 969 * re_disable: 970 * Disable the RTL81X9 chip. 971 */ 972 static void 973 re_disable(struct rtk_softc *sc) 974 { 975 976 if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) { 977 (*sc->sc_disable)(sc); 978 sc->sc_flags &= ~RTK_ENABLED; 979 } 980 } 981 982 /* 983 * re_power: 984 * Power management (suspend/resume) hook. 985 */ 986 void 987 re_power(int why, void *arg) 988 { 989 struct rtk_softc *sc = (void *) arg; 990 struct ifnet *ifp = &sc->ethercom.ec_if; 991 int s; 992 993 s = splnet(); 994 switch (why) { 995 case PWR_SUSPEND: 996 case PWR_STANDBY: 997 re_stop(ifp, 0); 998 if (sc->sc_power != NULL) 999 (*sc->sc_power)(sc, why); 1000 break; 1001 case PWR_RESUME: 1002 if (ifp->if_flags & IFF_UP) { 1003 if (sc->sc_power != NULL) 1004 (*sc->sc_power)(sc, why); 1005 re_init(ifp); 1006 } 1007 break; 1008 case PWR_SOFTSUSPEND: 1009 case PWR_SOFTSTANDBY: 1010 case PWR_SOFTRESUME: 1011 break; 1012 } 1013 splx(s); 1014 } 1015 1016 1017 static int 1018 re_newbuf(struct rtk_softc *sc, int idx, struct mbuf *m) 1019 { 1020 struct mbuf *n = NULL; 1021 bus_dmamap_t map; 1022 struct rtk_desc *d; 1023 u_int32_t cmdstat; 1024 int error; 1025 1026 if (m == NULL) { 1027 MGETHDR(n, M_DONTWAIT, MT_DATA); 1028 if (n == NULL) 1029 return ENOBUFS; 1030 m = n; 1031 1032 MCLGET(m, M_DONTWAIT); 1033 if (!(m->m_flags & M_EXT)) { 1034 m_freem(m); 1035 return ENOBUFS; 1036 } 1037 } else 1038 m->m_data = m->m_ext.ext_buf; 1039 1040 /* 1041 * Initialize mbuf length fields and fixup 1042 * alignment so that the frame payload is 1043 * longword aligned. 1044 */ 1045 m->m_len = m->m_pkthdr.len = MCLBYTES; 1046 m_adj(m, RTK_ETHER_ALIGN); 1047 1048 map = sc->rtk_ldata.rtk_rx_dmamap[idx]; 1049 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m, 1050 BUS_DMA_READ|BUS_DMA_NOWAIT); 1051 1052 if (error) 1053 goto out; 1054 1055 d = &sc->rtk_ldata.rtk_rx_list[idx]; 1056 if (le32toh(d->rtk_cmdstat) & RTK_RDESC_STAT_OWN) 1057 goto out; 1058 1059 cmdstat = map->dm_segs[0].ds_len; 1060 d->rtk_bufaddr_lo = htole32(RTK_ADDR_LO(map->dm_segs[0].ds_addr)); 1061 d->rtk_bufaddr_hi = htole32(RTK_ADDR_HI(map->dm_segs[0].ds_addr)); 1062 if (idx == (RTK_RX_DESC_CNT - 1)) 1063 cmdstat |= RTK_RDESC_CMD_EOR; 1064 d->rtk_cmdstat = htole32(cmdstat); 1065 1066 sc->rtk_ldata.rtk_rx_list[idx].rtk_cmdstat |= 1067 htole32(RTK_RDESC_CMD_OWN); 1068 sc->rtk_ldata.rtk_rx_mbuf[idx] = m; 1069 1070 bus_dmamap_sync(sc->sc_dmat, sc->rtk_ldata.rtk_rx_dmamap[idx], 0, 1071 sc->rtk_ldata.rtk_rx_dmamap[idx]->dm_mapsize, 1072 BUS_DMASYNC_PREREAD); 1073 1074 return 0; 1075 out: 1076 if (n != NULL) 1077 m_freem(n); 1078 return ENOMEM; 1079 } 1080 1081 static int 1082 re_tx_list_init(struct rtk_softc *sc) 1083 { 1084 int i; 1085 1086 memset(sc->rtk_ldata.rtk_tx_list, 0, RTK_TX_LIST_SZ(sc)); 1087 for (i = 0; i < RTK_TX_QLEN; i++) { 1088 sc->rtk_ldata.rtk_txq[i].txq_mbuf = NULL; 1089 } 1090 1091 bus_dmamap_sync(sc->sc_dmat, 1092 sc->rtk_ldata.rtk_tx_list_map, 0, 1093 sc->rtk_ldata.rtk_tx_list_map->dm_mapsize, BUS_DMASYNC_PREWRITE); 1094 sc->rtk_ldata.rtk_txq_prodidx = 0; 1095 sc->rtk_ldata.rtk_txq_considx = 0; 1096 sc->rtk_ldata.rtk_tx_free = RTK_TX_DESC_CNT(sc); 1097 sc->rtk_ldata.rtk_tx_nextfree = 0; 1098 1099 return 0; 1100 } 1101 1102 static int 1103 re_rx_list_init(struct rtk_softc *sc) 1104 { 1105 int i; 1106 1107 memset((char *)sc->rtk_ldata.rtk_rx_list, 0, RTK_RX_LIST_SZ); 1108 memset((char *)&sc->rtk_ldata.rtk_rx_mbuf, 0, 1109 (RTK_RX_DESC_CNT * sizeof(struct mbuf *))); 1110 1111 for (i = 0; i < RTK_RX_DESC_CNT; i++) { 1112 if (re_newbuf(sc, i, NULL) == ENOBUFS) 1113 return ENOBUFS; 1114 } 1115 1116 /* Flush the RX descriptors */ 1117 1118 bus_dmamap_sync(sc->sc_dmat, 1119 sc->rtk_ldata.rtk_rx_list_map, 1120 0, sc->rtk_ldata.rtk_rx_list_map->dm_mapsize, 1121 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); 1122 1123 sc->rtk_ldata.rtk_rx_prodidx = 0; 1124 sc->rtk_head = sc->rtk_tail = NULL; 1125 1126 return 0; 1127 } 1128 1129 /* 1130 * RX handler for C+ and 8169. For the gigE chips, we support 1131 * the reception of jumbo frames that have been fragmented 1132 * across multiple 2K mbuf cluster buffers. 1133 */ 1134 static void 1135 re_rxeof(struct rtk_softc *sc) 1136 { 1137 struct mbuf *m; 1138 struct ifnet *ifp; 1139 int i, total_len; 1140 struct rtk_desc *cur_rx; 1141 u_int32_t rxstat, rxvlan; 1142 1143 ifp = &sc->ethercom.ec_if; 1144 i = sc->rtk_ldata.rtk_rx_prodidx; 1145 1146 /* Invalidate the descriptor memory */ 1147 1148 bus_dmamap_sync(sc->sc_dmat, 1149 sc->rtk_ldata.rtk_rx_list_map, 1150 0, sc->rtk_ldata.rtk_rx_list_map->dm_mapsize, 1151 BUS_DMASYNC_POSTREAD); 1152 1153 while (!RTK_OWN(&sc->rtk_ldata.rtk_rx_list[i])) { 1154 1155 cur_rx = &sc->rtk_ldata.rtk_rx_list[i]; 1156 m = sc->rtk_ldata.rtk_rx_mbuf[i]; 1157 total_len = RTK_RXBYTES(cur_rx); 1158 rxstat = le32toh(cur_rx->rtk_cmdstat); 1159 rxvlan = le32toh(cur_rx->rtk_vlanctl); 1160 1161 /* Invalidate the RX mbuf and unload its map */ 1162 1163 bus_dmamap_sync(sc->sc_dmat, 1164 sc->rtk_ldata.rtk_rx_dmamap[i], 1165 0, sc->rtk_ldata.rtk_rx_dmamap[i]->dm_mapsize, 1166 BUS_DMASYNC_POSTREAD); 1167 bus_dmamap_unload(sc->sc_dmat, 1168 sc->rtk_ldata.rtk_rx_dmamap[i]); 1169 1170 if (!(rxstat & RTK_RDESC_STAT_EOF)) { 1171 m->m_len = MCLBYTES - RTK_ETHER_ALIGN; 1172 if (sc->rtk_head == NULL) 1173 sc->rtk_head = sc->rtk_tail = m; 1174 else { 1175 m->m_flags &= ~M_PKTHDR; 1176 sc->rtk_tail->m_next = m; 1177 sc->rtk_tail = m; 1178 } 1179 re_newbuf(sc, i, NULL); 1180 RTK_RX_DESC_INC(sc, i); 1181 continue; 1182 } 1183 1184 /* 1185 * NOTE: for the 8139C+, the frame length field 1186 * is always 12 bits in size, but for the gigE chips, 1187 * it is 13 bits (since the max RX frame length is 16K). 1188 * Unfortunately, all 32 bits in the status word 1189 * were already used, so to make room for the extra 1190 * length bit, RealTek took out the 'frame alignment 1191 * error' bit and shifted the other status bits 1192 * over one slot. The OWN, EOR, FS and LS bits are 1193 * still in the same places. We have already extracted 1194 * the frame length and checked the OWN bit, so rather 1195 * than using an alternate bit mapping, we shift the 1196 * status bits one space to the right so we can evaluate 1197 * them using the 8169 status as though it was in the 1198 * same format as that of the 8139C+. 1199 */ 1200 if (sc->rtk_type == RTK_8169) 1201 rxstat >>= 1; 1202 1203 if (rxstat & RTK_RDESC_STAT_RXERRSUM) { 1204 ifp->if_ierrors++; 1205 /* 1206 * If this is part of a multi-fragment packet, 1207 * discard all the pieces. 1208 */ 1209 if (sc->rtk_head != NULL) { 1210 m_freem(sc->rtk_head); 1211 sc->rtk_head = sc->rtk_tail = NULL; 1212 } 1213 re_newbuf(sc, i, m); 1214 RTK_RX_DESC_INC(sc, i); 1215 continue; 1216 } 1217 1218 /* 1219 * If allocating a replacement mbuf fails, 1220 * reload the current one. 1221 */ 1222 1223 if (re_newbuf(sc, i, NULL)) { 1224 ifp->if_ierrors++; 1225 if (sc->rtk_head != NULL) { 1226 m_freem(sc->rtk_head); 1227 sc->rtk_head = sc->rtk_tail = NULL; 1228 } 1229 re_newbuf(sc, i, m); 1230 RTK_RX_DESC_INC(sc, i); 1231 continue; 1232 } 1233 1234 RTK_RX_DESC_INC(sc, i); 1235 1236 if (sc->rtk_head != NULL) { 1237 m->m_len = total_len % (MCLBYTES - RTK_ETHER_ALIGN); 1238 /* 1239 * Special case: if there's 4 bytes or less 1240 * in this buffer, the mbuf can be discarded: 1241 * the last 4 bytes is the CRC, which we don't 1242 * care about anyway. 1243 */ 1244 if (m->m_len <= ETHER_CRC_LEN) { 1245 sc->rtk_tail->m_len -= 1246 (ETHER_CRC_LEN - m->m_len); 1247 m_freem(m); 1248 } else { 1249 m->m_len -= ETHER_CRC_LEN; 1250 m->m_flags &= ~M_PKTHDR; 1251 sc->rtk_tail->m_next = m; 1252 } 1253 m = sc->rtk_head; 1254 sc->rtk_head = sc->rtk_tail = NULL; 1255 m->m_pkthdr.len = total_len - ETHER_CRC_LEN; 1256 } else 1257 m->m_pkthdr.len = m->m_len = 1258 (total_len - ETHER_CRC_LEN); 1259 1260 ifp->if_ipackets++; 1261 m->m_pkthdr.rcvif = ifp; 1262 1263 /* Do RX checksumming if enabled */ 1264 1265 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) { 1266 1267 /* Check IP header checksum */ 1268 if (rxstat & RTK_RDESC_STAT_PROTOID) 1269 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;; 1270 if (rxstat & RTK_RDESC_STAT_IPSUMBAD) 1271 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD; 1272 } 1273 1274 /* Check TCP/UDP checksum */ 1275 if (RTK_TCPPKT(rxstat) && 1276 (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx)) { 1277 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4; 1278 if (rxstat & RTK_RDESC_STAT_TCPSUMBAD) 1279 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD; 1280 } 1281 if (RTK_UDPPKT(rxstat) && 1282 (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx)) { 1283 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4; 1284 if (rxstat & RTK_RDESC_STAT_UDPSUMBAD) 1285 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD; 1286 } 1287 1288 #ifdef RE_VLAN 1289 if (rxvlan & RTK_RDESC_VLANCTL_TAG) { 1290 VLAN_INPUT_TAG(ifp, m, 1291 be16toh(rxvlan & RTK_RDESC_VLANCTL_DATA), 1292 continue); 1293 } 1294 #endif 1295 #if NBPFILTER > 0 1296 if (ifp->if_bpf) 1297 bpf_mtap(ifp->if_bpf, m); 1298 #endif 1299 (*ifp->if_input)(ifp, m); 1300 } 1301 1302 /* Flush the RX DMA ring */ 1303 1304 bus_dmamap_sync(sc->sc_dmat, 1305 sc->rtk_ldata.rtk_rx_list_map, 1306 0, sc->rtk_ldata.rtk_rx_list_map->dm_mapsize, 1307 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); 1308 1309 sc->rtk_ldata.rtk_rx_prodidx = i; 1310 1311 return; 1312 } 1313 1314 static void 1315 re_txeof(struct rtk_softc *sc) 1316 { 1317 struct ifnet *ifp; 1318 int idx; 1319 boolean_t done = FALSE; 1320 1321 ifp = &sc->ethercom.ec_if; 1322 idx = sc->rtk_ldata.rtk_txq_considx; 1323 1324 /* Invalidate the TX descriptor list */ 1325 1326 bus_dmamap_sync(sc->sc_dmat, 1327 sc->rtk_ldata.rtk_tx_list_map, 1328 0, sc->rtk_ldata.rtk_tx_list_map->dm_mapsize, 1329 BUS_DMASYNC_POSTREAD); 1330 1331 while (/* CONSTCOND */ 1) { 1332 struct rtk_txq *txq = &sc->rtk_ldata.rtk_txq[idx]; 1333 int descidx; 1334 u_int32_t txstat; 1335 1336 if (txq->txq_mbuf == NULL) { 1337 KASSERT(idx == sc->rtk_ldata.rtk_txq_prodidx); 1338 break; 1339 } 1340 1341 descidx = txq->txq_descidx; 1342 txstat = 1343 le32toh(sc->rtk_ldata.rtk_tx_list[descidx].rtk_cmdstat); 1344 KASSERT((txstat & RTK_TDESC_CMD_EOF) != 0); 1345 if (txstat & RTK_TDESC_CMD_OWN) 1346 break; 1347 1348 sc->rtk_ldata.rtk_tx_free += txq->txq_dmamap->dm_nsegs; 1349 KASSERT(sc->rtk_ldata.rtk_tx_free <= RTK_TX_DESC_CNT(sc)); 1350 bus_dmamap_unload(sc->sc_dmat, txq->txq_dmamap); 1351 m_freem(txq->txq_mbuf); 1352 txq->txq_mbuf = NULL; 1353 1354 if (txstat & (RTK_TDESC_STAT_EXCESSCOL | RTK_TDESC_STAT_COLCNT)) 1355 ifp->if_collisions++; 1356 if (txstat & RTK_TDESC_STAT_TXERRSUM) 1357 ifp->if_oerrors++; 1358 else 1359 ifp->if_opackets++; 1360 1361 idx = (idx + 1) % RTK_TX_QLEN; 1362 done = TRUE; 1363 } 1364 1365 /* No changes made to the TX ring, so no flush needed */ 1366 1367 if (done) { 1368 sc->rtk_ldata.rtk_txq_considx = idx; 1369 ifp->if_flags &= ~IFF_OACTIVE; 1370 ifp->if_timer = 0; 1371 } 1372 1373 /* 1374 * If not all descriptors have been released reaped yet, 1375 * reload the timer so that we will eventually get another 1376 * interrupt that will cause us to re-enter this routine. 1377 * This is done in case the transmitter has gone idle. 1378 */ 1379 if (sc->rtk_ldata.rtk_tx_free != RTK_TX_DESC_CNT(sc)) 1380 CSR_WRITE_4(sc, RTK_TIMERCNT, 1); 1381 1382 return; 1383 } 1384 1385 /* 1386 * Stop all chip I/O so that the kernel's probe routines don't 1387 * get confused by errant DMAs when rebooting. 1388 */ 1389 static void 1390 re_shutdown(void *vsc) 1391 1392 { 1393 struct rtk_softc *sc = (struct rtk_softc *)vsc; 1394 1395 re_stop(&sc->ethercom.ec_if, 0); 1396 } 1397 1398 1399 static void 1400 re_tick(void *xsc) 1401 { 1402 struct rtk_softc *sc = xsc; 1403 int s; 1404 1405 /*XXX: just return for 8169S/8110S with rev 2 or newer phy */ 1406 s = splnet(); 1407 1408 mii_tick(&sc->mii); 1409 splx(s); 1410 1411 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc); 1412 } 1413 1414 #ifdef DEVICE_POLLING 1415 static void 1416 re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count) 1417 { 1418 struct rtk_softc *sc = ifp->if_softc; 1419 1420 RTK_LOCK(sc); 1421 if (!(ifp->if_capenable & IFCAP_POLLING)) { 1422 ether_poll_deregister(ifp); 1423 cmd = POLL_DEREGISTER; 1424 } 1425 if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */ 1426 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS); 1427 goto done; 1428 } 1429 1430 sc->rxcycles = count; 1431 re_rxeof(sc); 1432 re_txeof(sc); 1433 1434 if (IFQ_IS_EMPTY(&ifp->if_snd) == 0) 1435 (*ifp->if_start)(ifp); 1436 1437 if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */ 1438 u_int16_t status; 1439 1440 status = CSR_READ_2(sc, RTK_ISR); 1441 if (status == 0xffff) 1442 goto done; 1443 if (status) 1444 CSR_WRITE_2(sc, RTK_ISR, status); 1445 1446 /* 1447 * XXX check behaviour on receiver stalls. 1448 */ 1449 1450 if (status & RTK_ISR_SYSTEM_ERR) { 1451 re_reset(sc); 1452 re_init(sc); 1453 } 1454 } 1455 done: 1456 RTK_UNLOCK(sc); 1457 } 1458 #endif /* DEVICE_POLLING */ 1459 1460 int 1461 re_intr(void *arg) 1462 { 1463 struct rtk_softc *sc = arg; 1464 struct ifnet *ifp; 1465 u_int16_t status; 1466 int handled = 0; 1467 1468 ifp = &sc->ethercom.ec_if; 1469 1470 if (!(ifp->if_flags & IFF_UP)) 1471 return 0; 1472 1473 #ifdef DEVICE_POLLING 1474 if (ifp->if_flags & IFF_POLLING) 1475 goto done; 1476 if ((ifp->if_capenable & IFCAP_POLLING) && 1477 ether_poll_register(re_poll, ifp)) { /* ok, disable interrupts */ 1478 CSR_WRITE_2(sc, RTK_IMR, 0x0000); 1479 re_poll(ifp, 0, 1); 1480 goto done; 1481 } 1482 #endif /* DEVICE_POLLING */ 1483 1484 for (;;) { 1485 1486 status = CSR_READ_2(sc, RTK_ISR); 1487 /* If the card has gone away the read returns 0xffff. */ 1488 if (status == 0xffff) 1489 break; 1490 if (status) { 1491 handled = 1; 1492 CSR_WRITE_2(sc, RTK_ISR, status); 1493 } 1494 1495 if ((status & RTK_INTRS_CPLUS) == 0) 1496 break; 1497 1498 if ((status & RTK_ISR_RX_OK) || 1499 (status & RTK_ISR_RX_ERR)) 1500 re_rxeof(sc); 1501 1502 if ((status & RTK_ISR_TIMEOUT_EXPIRED) || 1503 (status & RTK_ISR_TX_ERR) || 1504 (status & RTK_ISR_TX_DESC_UNAVAIL)) 1505 re_txeof(sc); 1506 1507 if (status & RTK_ISR_SYSTEM_ERR) { 1508 re_reset(sc); 1509 re_init(ifp); 1510 } 1511 1512 if (status & RTK_ISR_LINKCHG) { 1513 callout_stop(&sc->rtk_tick_ch); 1514 re_tick(sc); 1515 } 1516 } 1517 1518 if (ifp->if_flags & IFF_UP) /* kludge for interrupt during re_init() */ 1519 if (IFQ_IS_EMPTY(&ifp->if_snd) == 0) 1520 (*ifp->if_start)(ifp); 1521 1522 #ifdef DEVICE_POLLING 1523 done: 1524 #endif 1525 1526 return handled; 1527 } 1528 1529 static int 1530 re_encap(struct rtk_softc *sc, struct mbuf *m, int *idx) 1531 { 1532 bus_dmamap_t map; 1533 int error, i, startidx, curidx; 1534 #ifdef RE_VLAN 1535 struct m_tag *mtag; 1536 #endif 1537 struct rtk_desc *d; 1538 u_int32_t cmdstat, rtk_flags; 1539 struct rtk_txq *txq; 1540 1541 if (sc->rtk_ldata.rtk_tx_free <= 4) { 1542 return EFBIG; 1543 } 1544 1545 /* 1546 * Set up checksum offload. Note: checksum offload bits must 1547 * appear in all descriptors of a multi-descriptor transmit 1548 * attempt. (This is according to testing done with an 8169 1549 * chip. I'm not sure if this is a requirement or a bug.) 1550 */ 1551 1552 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) { 1553 u_int32_t segsz = m->m_pkthdr.segsz; 1554 1555 rtk_flags = RTK_TDESC_CMD_LGSEND | 1556 (segsz << RTK_TDESC_CMD_MSSVAL_SHIFT); 1557 } else { 1558 1559 /* 1560 * set RTK_TDESC_CMD_IPCSUM if any checksum offloading 1561 * is requested. otherwise, RTK_TDESC_CMD_TCPCSUM/ 1562 * RTK_TDESC_CMD_UDPCSUM doesn't make effects. 1563 */ 1564 1565 rtk_flags = 0; 1566 if ((m->m_pkthdr.csum_flags & 1567 (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) != 0) { 1568 rtk_flags |= RTK_TDESC_CMD_IPCSUM; 1569 if (m->m_pkthdr.csum_flags & M_CSUM_TCPv4) { 1570 rtk_flags |= RTK_TDESC_CMD_TCPCSUM; 1571 } else if (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) { 1572 rtk_flags |= RTK_TDESC_CMD_UDPCSUM; 1573 } 1574 } 1575 } 1576 1577 txq = &sc->rtk_ldata.rtk_txq[*idx]; 1578 map = txq->txq_dmamap; 1579 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m, 1580 BUS_DMA_WRITE|BUS_DMA_NOWAIT); 1581 1582 if (error) { 1583 /* XXX try to defrag if EFBIG? */ 1584 1585 aprint_error("%s: can't map mbuf (error %d)\n", 1586 sc->sc_dev.dv_xname, error); 1587 1588 return error; 1589 } 1590 1591 if (map->dm_nsegs > sc->rtk_ldata.rtk_tx_free - 4) { 1592 error = EFBIG; 1593 goto fail_unload; 1594 } 1595 1596 /* 1597 * Make sure that the caches are synchronized before we 1598 * ask the chip to start DMA for the packet data. 1599 */ 1600 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize, 1601 BUS_DMASYNC_PREWRITE); 1602 1603 /* 1604 * Map the segment array into descriptors. Note that we set the 1605 * start-of-frame and end-of-frame markers for either TX or RX, but 1606 * they really only have meaning in the TX case. (In the RX case, 1607 * it's the chip that tells us where packets begin and end.) 1608 * We also keep track of the end of the ring and set the 1609 * end-of-ring bits as needed, and we set the ownership bits 1610 * in all except the very first descriptor. (The caller will 1611 * set this descriptor later when it start transmission or 1612 * reception.) 1613 */ 1614 i = 0; 1615 curidx = startidx = sc->rtk_ldata.rtk_tx_nextfree; 1616 while (1) { 1617 d = &sc->rtk_ldata.rtk_tx_list[curidx]; 1618 if (le32toh(d->rtk_cmdstat) & RTK_TDESC_STAT_OWN) { 1619 while (i > 0) { 1620 sc->rtk_ldata.rtk_tx_list[ 1621 (curidx + RTK_TX_DESC_CNT(sc) - i) % 1622 RTK_TX_DESC_CNT(sc)].rtk_cmdstat = 0; 1623 i--; 1624 } 1625 error = ENOBUFS; 1626 goto fail_unload; 1627 } 1628 1629 cmdstat = map->dm_segs[i].ds_len; 1630 d->rtk_bufaddr_lo = 1631 htole32(RTK_ADDR_LO(map->dm_segs[i].ds_addr)); 1632 d->rtk_bufaddr_hi = 1633 htole32(RTK_ADDR_HI(map->dm_segs[i].ds_addr)); 1634 if (i == 0) 1635 cmdstat |= RTK_TDESC_CMD_SOF; 1636 else 1637 cmdstat |= RTK_TDESC_CMD_OWN; 1638 if (curidx == (RTK_TX_DESC_CNT(sc) - 1)) 1639 cmdstat |= RTK_TDESC_CMD_EOR; 1640 d->rtk_cmdstat = htole32(cmdstat | rtk_flags); 1641 i++; 1642 if (i == map->dm_nsegs) 1643 break; 1644 RTK_TX_DESC_INC(sc, curidx); 1645 } 1646 1647 d->rtk_cmdstat |= htole32(RTK_TDESC_CMD_EOF); 1648 1649 txq->txq_mbuf = m; 1650 sc->rtk_ldata.rtk_tx_free -= map->dm_nsegs; 1651 1652 /* 1653 * Set up hardware VLAN tagging. Note: vlan tag info must 1654 * appear in the first descriptor of a multi-descriptor 1655 * transmission attempt. 1656 */ 1657 1658 #ifdef RE_VLAN 1659 if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m)) != NULL) { 1660 sc->rtk_ldata.rtk_tx_list[startidx].rtk_vlanctl = 1661 htole32(htons(VLAN_TAG_VALUE(mtag)) | 1662 RTK_TDESC_VLANCTL_TAG); 1663 } 1664 #endif 1665 1666 /* Transfer ownership of packet to the chip. */ 1667 1668 sc->rtk_ldata.rtk_tx_list[curidx].rtk_cmdstat |= 1669 htole32(RTK_TDESC_CMD_OWN); 1670 if (startidx != curidx) 1671 sc->rtk_ldata.rtk_tx_list[startidx].rtk_cmdstat |= 1672 htole32(RTK_TDESC_CMD_OWN); 1673 1674 txq->txq_descidx = curidx; 1675 RTK_TX_DESC_INC(sc, curidx); 1676 sc->rtk_ldata.rtk_tx_nextfree = curidx; 1677 *idx = (*idx + 1) % RTK_TX_QLEN; 1678 1679 return 0; 1680 1681 fail_unload: 1682 bus_dmamap_unload(sc->sc_dmat, map); 1683 1684 return error; 1685 } 1686 1687 /* 1688 * Main transmit routine for C+ and gigE NICs. 1689 */ 1690 1691 static void 1692 re_start(struct ifnet *ifp) 1693 { 1694 struct rtk_softc *sc; 1695 int idx; 1696 boolean_t done = FALSE; 1697 1698 sc = ifp->if_softc; 1699 1700 idx = sc->rtk_ldata.rtk_txq_prodidx; 1701 while (/* CONSTCOND */ 1) { 1702 struct mbuf *m; 1703 int error; 1704 1705 IFQ_POLL(&ifp->if_snd, m); 1706 if (m == NULL) 1707 break; 1708 1709 if (sc->rtk_ldata.rtk_txq[idx].txq_mbuf != NULL) { 1710 KASSERT(idx == sc->rtk_ldata.rtk_txq_considx); 1711 ifp->if_flags |= IFF_OACTIVE; 1712 break; 1713 } 1714 1715 error = re_encap(sc, m, &idx); 1716 if (error == EFBIG && 1717 sc->rtk_ldata.rtk_tx_free == RTK_TX_DESC_CNT(sc)) { 1718 IFQ_DEQUEUE(&ifp->if_snd, m); 1719 m_freem(m); 1720 ifp->if_oerrors++; 1721 continue; 1722 } 1723 if (error) { 1724 ifp->if_flags |= IFF_OACTIVE; 1725 break; 1726 } 1727 1728 IFQ_DEQUEUE(&ifp->if_snd, m); 1729 1730 #if NBPFILTER > 0 1731 /* 1732 * If there's a BPF listener, bounce a copy of this frame 1733 * to him. 1734 */ 1735 if (ifp->if_bpf) 1736 bpf_mtap(ifp->if_bpf, m); 1737 #endif 1738 1739 done = TRUE; 1740 } 1741 1742 if (!done) { 1743 return; 1744 } 1745 sc->rtk_ldata.rtk_txq_prodidx = idx; 1746 1747 /* Flush the TX descriptors */ 1748 1749 bus_dmamap_sync(sc->sc_dmat, 1750 sc->rtk_ldata.rtk_tx_list_map, 1751 0, sc->rtk_ldata.rtk_tx_list_map->dm_mapsize, 1752 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); 1753 1754 /* 1755 * RealTek put the TX poll request register in a different 1756 * location on the 8169 gigE chip. I don't know why. 1757 */ 1758 1759 if (sc->rtk_type == RTK_8169) 1760 CSR_WRITE_2(sc, RTK_GTXSTART, RTK_TXSTART_START); 1761 else 1762 CSR_WRITE_2(sc, RTK_TXSTART, RTK_TXSTART_START); 1763 1764 /* 1765 * Use the countdown timer for interrupt moderation. 1766 * 'TX done' interrupts are disabled. Instead, we reset the 1767 * countdown timer, which will begin counting until it hits 1768 * the value in the TIMERINT register, and then trigger an 1769 * interrupt. Each time we write to the TIMERCNT register, 1770 * the timer count is reset to 0. 1771 */ 1772 CSR_WRITE_4(sc, RTK_TIMERCNT, 1); 1773 1774 /* 1775 * Set a timeout in case the chip goes out to lunch. 1776 */ 1777 ifp->if_timer = 5; 1778 1779 return; 1780 } 1781 1782 static int 1783 re_init(struct ifnet *ifp) 1784 { 1785 struct rtk_softc *sc = ifp->if_softc; 1786 u_int32_t rxcfg = 0; 1787 u_int32_t reg; 1788 int error; 1789 1790 if ((error = re_enable(sc)) != 0) 1791 goto out; 1792 1793 /* 1794 * Cancel pending I/O and free all RX/TX buffers. 1795 */ 1796 re_stop(ifp, 0); 1797 1798 /* 1799 * Enable C+ RX and TX mode, as well as VLAN stripping and 1800 * RX checksum offload. We must configure the C+ register 1801 * before all others. 1802 */ 1803 reg = 0; 1804 1805 /* 1806 * XXX: Realtek docs say bits 0 and 1 are reserved, for 8169S/8110S. 1807 * FreeBSD drivers set these bits anyway (for 8139C+?). 1808 * So far, it works. 1809 */ 1810 1811 /* 1812 * XXX: For 8169 and 8196S revs below 2, set bit 14. 1813 * For 8169S/8110S rev 2 and above, do not set bit 14. 1814 */ 1815 if (sc->rtk_type == RTK_8169 && sc->sc_rev == 1) 1816 reg |= (0x1 << 14) | RTK_CPLUSCMD_PCI_MRW;; 1817 1818 if (1) {/* not for 8169S ? */ 1819 reg |= 1820 #ifdef RE_VLAN 1821 RTK_CPLUSCMD_VLANSTRIP | 1822 #endif 1823 (ifp->if_capenable & 1824 (IFCAP_CSUM_IPv4_Rx | IFCAP_CSUM_TCPv4_Rx | 1825 IFCAP_CSUM_UDPv4_Rx) ? 1826 RTK_CPLUSCMD_RXCSUM_ENB : 0); 1827 } 1828 1829 CSR_WRITE_2(sc, RTK_CPLUS_CMD, 1830 reg | RTK_CPLUSCMD_RXENB | RTK_CPLUSCMD_TXENB); 1831 1832 /* XXX: from Realtek-supplied Linux driver. Wholly undocumented. */ 1833 if (sc->rtk_type == RTK_8169) 1834 CSR_WRITE_2(sc, RTK_CPLUS_CMD+0x2, 0x0000); 1835 1836 DELAY(10000); 1837 1838 /* 1839 * Init our MAC address. Even though the chipset 1840 * documentation doesn't mention it, we need to enter "Config 1841 * register write enable" mode to modify the ID registers. 1842 */ 1843 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_WRITECFG); 1844 memcpy(®, LLADDR(ifp->if_sadl), 4); 1845 CSR_WRITE_STREAM_4(sc, RTK_IDR0, reg); 1846 reg = 0; 1847 memcpy(®, LLADDR(ifp->if_sadl) + 4, 4); 1848 CSR_WRITE_STREAM_4(sc, RTK_IDR4, reg); 1849 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF); 1850 1851 /* 1852 * For C+ mode, initialize the RX descriptors and mbufs. 1853 */ 1854 re_rx_list_init(sc); 1855 re_tx_list_init(sc); 1856 1857 /* 1858 * Enable transmit and receive. 1859 */ 1860 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB); 1861 1862 /* 1863 * Set the initial TX and RX configuration. 1864 */ 1865 if (sc->rtk_testmode) { 1866 if (sc->rtk_type == RTK_8169) 1867 CSR_WRITE_4(sc, RTK_TXCFG, 1868 RTK_TXCFG_CONFIG | RTK_LOOPTEST_ON); 1869 else 1870 CSR_WRITE_4(sc, RTK_TXCFG, 1871 RTK_TXCFG_CONFIG | RTK_LOOPTEST_ON_CPLUS); 1872 } else 1873 CSR_WRITE_4(sc, RTK_TXCFG, RTK_TXCFG_CONFIG); 1874 CSR_WRITE_4(sc, RTK_RXCFG, RTK_RXCFG_CONFIG); 1875 1876 /* Set the individual bit to receive frames for this host only. */ 1877 rxcfg = CSR_READ_4(sc, RTK_RXCFG); 1878 rxcfg |= RTK_RXCFG_RX_INDIV; 1879 1880 /* If we want promiscuous mode, set the allframes bit. */ 1881 if (ifp->if_flags & IFF_PROMISC) 1882 rxcfg |= RTK_RXCFG_RX_ALLPHYS; 1883 else 1884 rxcfg &= ~RTK_RXCFG_RX_ALLPHYS; 1885 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg); 1886 1887 /* 1888 * Set capture broadcast bit to capture broadcast frames. 1889 */ 1890 if (ifp->if_flags & IFF_BROADCAST) 1891 rxcfg |= RTK_RXCFG_RX_BROAD; 1892 else 1893 rxcfg &= ~RTK_RXCFG_RX_BROAD; 1894 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg); 1895 1896 /* 1897 * Program the multicast filter, if necessary. 1898 */ 1899 rtk_setmulti(sc); 1900 1901 #ifdef DEVICE_POLLING 1902 /* 1903 * Disable interrupts if we are polling. 1904 */ 1905 if (ifp->if_flags & IFF_POLLING) 1906 CSR_WRITE_2(sc, RTK_IMR, 0); 1907 else /* otherwise ... */ 1908 #endif /* DEVICE_POLLING */ 1909 /* 1910 * Enable interrupts. 1911 */ 1912 if (sc->rtk_testmode) 1913 CSR_WRITE_2(sc, RTK_IMR, 0); 1914 else 1915 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS); 1916 1917 /* Start RX/TX process. */ 1918 CSR_WRITE_4(sc, RTK_MISSEDPKT, 0); 1919 #ifdef notdef 1920 /* Enable receiver and transmitter. */ 1921 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB); 1922 #endif 1923 /* 1924 * Load the addresses of the RX and TX lists into the chip. 1925 */ 1926 1927 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_HI, 1928 RTK_ADDR_HI(sc->rtk_ldata.rtk_rx_list_map->dm_segs[0].ds_addr)); 1929 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_LO, 1930 RTK_ADDR_LO(sc->rtk_ldata.rtk_rx_list_map->dm_segs[0].ds_addr)); 1931 1932 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_HI, 1933 RTK_ADDR_HI(sc->rtk_ldata.rtk_tx_list_map->dm_segs[0].ds_addr)); 1934 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_LO, 1935 RTK_ADDR_LO(sc->rtk_ldata.rtk_tx_list_map->dm_segs[0].ds_addr)); 1936 1937 CSR_WRITE_1(sc, RTK_EARLY_TX_THRESH, 16); 1938 1939 /* 1940 * Initialize the timer interrupt register so that 1941 * a timer interrupt will be generated once the timer 1942 * reaches a certain number of ticks. The timer is 1943 * reloaded on each transmit. This gives us TX interrupt 1944 * moderation, which dramatically improves TX frame rate. 1945 */ 1946 1947 if (sc->rtk_type == RTK_8169) 1948 CSR_WRITE_4(sc, RTK_TIMERINT_8169, 0x800); 1949 else 1950 CSR_WRITE_4(sc, RTK_TIMERINT, 0x400); 1951 1952 /* 1953 * For 8169 gigE NICs, set the max allowed RX packet 1954 * size so we can receive jumbo frames. 1955 */ 1956 if (sc->rtk_type == RTK_8169) 1957 CSR_WRITE_2(sc, RTK_MAXRXPKTLEN, 16383); 1958 1959 if (sc->rtk_testmode) 1960 return 0; 1961 1962 mii_mediachg(&sc->mii); 1963 1964 CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD | RTK_CFG1_FULLDUPLEX); 1965 1966 ifp->if_flags |= IFF_RUNNING; 1967 ifp->if_flags &= ~IFF_OACTIVE; 1968 1969 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc); 1970 1971 out: 1972 if (error) { 1973 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 1974 ifp->if_timer = 0; 1975 aprint_error("%s: interface not running\n", 1976 sc->sc_dev.dv_xname); 1977 } 1978 1979 return error; 1980 1981 } 1982 1983 /* 1984 * Set media options. 1985 */ 1986 static int 1987 re_ifmedia_upd(struct ifnet *ifp) 1988 { 1989 struct rtk_softc *sc; 1990 1991 sc = ifp->if_softc; 1992 1993 return mii_mediachg(&sc->mii); 1994 } 1995 1996 /* 1997 * Report current media status. 1998 */ 1999 static void 2000 re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) 2001 { 2002 struct rtk_softc *sc; 2003 2004 sc = ifp->if_softc; 2005 2006 mii_pollstat(&sc->mii); 2007 ifmr->ifm_active = sc->mii.mii_media_active; 2008 ifmr->ifm_status = sc->mii.mii_media_status; 2009 2010 return; 2011 } 2012 2013 static int 2014 re_ioctl(struct ifnet *ifp, u_long command, caddr_t data) 2015 { 2016 struct rtk_softc *sc = ifp->if_softc; 2017 struct ifreq *ifr = (struct ifreq *) data; 2018 int s, error = 0; 2019 2020 s = splnet(); 2021 2022 switch (command) { 2023 case SIOCSIFMTU: 2024 if (ifr->ifr_mtu > RTK_JUMBO_MTU) 2025 error = EINVAL; 2026 ifp->if_mtu = ifr->ifr_mtu; 2027 break; 2028 case SIOCGIFMEDIA: 2029 case SIOCSIFMEDIA: 2030 error = ifmedia_ioctl(ifp, ifr, &sc->mii.mii_media, command); 2031 break; 2032 default: 2033 error = ether_ioctl(ifp, command, data); 2034 if (error == ENETRESET) { 2035 if (ifp->if_flags & IFF_RUNNING) 2036 rtk_setmulti(sc); 2037 error = 0; 2038 } 2039 break; 2040 } 2041 2042 splx(s); 2043 2044 return error; 2045 } 2046 2047 static void 2048 re_watchdog(struct ifnet *ifp) 2049 { 2050 struct rtk_softc *sc; 2051 int s; 2052 2053 sc = ifp->if_softc; 2054 s = splnet(); 2055 aprint_error("%s: watchdog timeout\n", sc->sc_dev.dv_xname); 2056 ifp->if_oerrors++; 2057 2058 re_txeof(sc); 2059 re_rxeof(sc); 2060 2061 re_init(ifp); 2062 2063 splx(s); 2064 } 2065 2066 /* 2067 * Stop the adapter and free any mbufs allocated to the 2068 * RX and TX lists. 2069 */ 2070 static void 2071 re_stop(struct ifnet *ifp, int disable) 2072 { 2073 register int i; 2074 struct rtk_softc *sc = ifp->if_softc; 2075 2076 callout_stop(&sc->rtk_tick_ch); 2077 2078 #ifdef DEVICE_POLLING 2079 ether_poll_deregister(ifp); 2080 #endif /* DEVICE_POLLING */ 2081 2082 mii_down(&sc->mii); 2083 2084 CSR_WRITE_1(sc, RTK_COMMAND, 0x00); 2085 CSR_WRITE_2(sc, RTK_IMR, 0x0000); 2086 2087 if (sc->rtk_head != NULL) { 2088 m_freem(sc->rtk_head); 2089 sc->rtk_head = sc->rtk_tail = NULL; 2090 } 2091 2092 /* Free the TX list buffers. */ 2093 for (i = 0; i < RTK_TX_QLEN; i++) { 2094 if (sc->rtk_ldata.rtk_txq[i].txq_mbuf != NULL) { 2095 bus_dmamap_unload(sc->sc_dmat, 2096 sc->rtk_ldata.rtk_txq[i].txq_dmamap); 2097 m_freem(sc->rtk_ldata.rtk_txq[i].txq_mbuf); 2098 sc->rtk_ldata.rtk_txq[i].txq_mbuf = NULL; 2099 } 2100 } 2101 2102 /* Free the RX list buffers. */ 2103 for (i = 0; i < RTK_RX_DESC_CNT; i++) { 2104 if (sc->rtk_ldata.rtk_rx_mbuf[i] != NULL) { 2105 bus_dmamap_unload(sc->sc_dmat, 2106 sc->rtk_ldata.rtk_rx_dmamap[i]); 2107 m_freem(sc->rtk_ldata.rtk_rx_mbuf[i]); 2108 sc->rtk_ldata.rtk_rx_mbuf[i] = NULL; 2109 } 2110 } 2111 2112 if (disable) 2113 re_disable(sc); 2114 2115 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 2116 ifp->if_timer = 0; 2117 2118 return; 2119 } 2120