xref: /netbsd-src/sys/dev/ic/rtl8169.c (revision bf1e9b32e27832f0c493206710fb8b58a980838a)
1 /*	$NetBSD: rtl8169.c,v 1.20 2005/05/19 20:11:24 briggs Exp $	*/
2 
3 /*
4  * Copyright (c) 1997, 1998-2003
5  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 #include <sys/cdefs.h>
36 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/re/if_re.c,v 1.20 2004/04/11 20:34:08 ru Exp $ */
37 
38 /*
39  * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
40  *
41  * Written by Bill Paul <wpaul@windriver.com>
42  * Senior Networking Software Engineer
43  * Wind River Systems
44  */
45 
46 /*
47  * This driver is designed to support RealTek's next generation of
48  * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
49  * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
50  * and the RTL8110S.
51  *
52  * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
53  * with the older 8139 family, however it also supports a special
54  * C+ mode of operation that provides several new performance enhancing
55  * features. These include:
56  *
57  *	o Descriptor based DMA mechanism. Each descriptor represents
58  *	  a single packet fragment. Data buffers may be aligned on
59  *	  any byte boundary.
60  *
61  *	o 64-bit DMA
62  *
63  *	o TCP/IP checksum offload for both RX and TX
64  *
65  *	o High and normal priority transmit DMA rings
66  *
67  *	o VLAN tag insertion and extraction
68  *
69  *	o TCP large send (segmentation offload)
70  *
71  * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
72  * programming API is fairly straightforward. The RX filtering, EEPROM
73  * access and PHY access is the same as it is on the older 8139 series
74  * chips.
75  *
76  * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
77  * same programming API and feature set as the 8139C+ with the following
78  * differences and additions:
79  *
80  *	o 1000Mbps mode
81  *
82  *	o Jumbo frames
83  *
84  * 	o GMII and TBI ports/registers for interfacing with copper
85  *	  or fiber PHYs
86  *
87  *      o RX and TX DMA rings can have up to 1024 descriptors
88  *        (the 8139C+ allows a maximum of 64)
89  *
90  *	o Slight differences in register layout from the 8139C+
91  *
92  * The TX start and timer interrupt registers are at different locations
93  * on the 8169 than they are on the 8139C+. Also, the status word in the
94  * RX descriptor has a slightly different bit layout. The 8169 does not
95  * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
96  * copper gigE PHY.
97  *
98  * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
99  * (the 'S' stands for 'single-chip'). These devices have the same
100  * programming API as the older 8169, but also have some vendor-specific
101  * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
102  * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
103  *
104  * This driver takes advantage of the RX and TX checksum offload and
105  * VLAN tag insertion/extraction features. It also implements TX
106  * interrupt moderation using the timer interrupt registers, which
107  * significantly reduces TX interrupt load. There is also support
108  * for jumbo frames, however the 8169/8169S/8110S can not transmit
109  * jumbo frames larger than 7.5K, so the max MTU possible with this
110  * driver is 7500 bytes.
111  */
112 
113 #include "bpfilter.h"
114 #include "vlan.h"
115 
116 #include <sys/param.h>
117 #include <sys/endian.h>
118 #include <sys/systm.h>
119 #include <sys/sockio.h>
120 #include <sys/mbuf.h>
121 #include <sys/malloc.h>
122 #include <sys/kernel.h>
123 #include <sys/socket.h>
124 #include <sys/device.h>
125 
126 #include <net/if.h>
127 #include <net/if_arp.h>
128 #include <net/if_dl.h>
129 #include <net/if_ether.h>
130 #include <net/if_media.h>
131 #include <net/if_vlanvar.h>
132 
133 #include <netinet/in_systm.h>	/* XXX for IP_MAXPACKET */
134 #include <netinet/in.h>		/* XXX for IP_MAXPACKET */
135 #include <netinet/ip.h>		/* XXX for IP_MAXPACKET */
136 
137 #if NBPFILTER > 0
138 #include <net/bpf.h>
139 #endif
140 
141 #include <machine/bus.h>
142 
143 #include <dev/mii/mii.h>
144 #include <dev/mii/miivar.h>
145 
146 #include <dev/pci/pcireg.h>
147 #include <dev/pci/pcivar.h>
148 #include <dev/pci/pcidevs.h>
149 
150 #include <dev/ic/rtl81x9reg.h>
151 #include <dev/ic/rtl81x9var.h>
152 
153 #include <dev/ic/rtl8169var.h>
154 
155 
156 static int re_encap(struct rtk_softc *, struct mbuf *, int *);
157 
158 static int re_newbuf(struct rtk_softc *, int, struct mbuf *);
159 static int re_rx_list_init(struct rtk_softc *);
160 static int re_tx_list_init(struct rtk_softc *);
161 static void re_rxeof(struct rtk_softc *);
162 static void re_txeof(struct rtk_softc *);
163 static void re_tick(void *);
164 static void re_start(struct ifnet *);
165 static int re_ioctl(struct ifnet *, u_long, caddr_t);
166 static int re_init(struct ifnet *);
167 static void re_stop(struct ifnet *, int);
168 static void re_watchdog(struct ifnet *);
169 
170 static void re_shutdown(void *);
171 static int re_enable(struct rtk_softc *);
172 static void re_disable(struct rtk_softc *);
173 static void re_power(int, void *);
174 
175 static int re_ifmedia_upd(struct ifnet *);
176 static void re_ifmedia_sts(struct ifnet *, struct ifmediareq *);
177 
178 static int re_gmii_readreg(struct device *, int, int);
179 static void re_gmii_writereg(struct device *, int, int, int);
180 
181 static int re_miibus_readreg(struct device *, int, int);
182 static void re_miibus_writereg(struct device *, int, int, int);
183 static void re_miibus_statchg(struct device *);
184 
185 static void re_reset(struct rtk_softc *);
186 
187 static int
188 re_gmii_readreg(struct device *self, int phy, int reg)
189 {
190 	struct rtk_softc	*sc = (void *)self;
191 	u_int32_t		rval;
192 	int			i;
193 
194 	if (phy != 7)
195 		return 0;
196 
197 	/* Let the rgephy driver read the GMEDIASTAT register */
198 
199 	if (reg == RTK_GMEDIASTAT) {
200 		rval = CSR_READ_1(sc, RTK_GMEDIASTAT);
201 		return rval;
202 	}
203 
204 	CSR_WRITE_4(sc, RTK_PHYAR, reg << 16);
205 	DELAY(1000);
206 
207 	for (i = 0; i < RTK_TIMEOUT; i++) {
208 		rval = CSR_READ_4(sc, RTK_PHYAR);
209 		if (rval & RTK_PHYAR_BUSY)
210 			break;
211 		DELAY(100);
212 	}
213 
214 	if (i == RTK_TIMEOUT) {
215 		aprint_error("%s: PHY read failed\n", sc->sc_dev.dv_xname);
216 		return 0;
217 	}
218 
219 	return rval & RTK_PHYAR_PHYDATA;
220 }
221 
222 static void
223 re_gmii_writereg(struct device *dev, int phy, int reg, int data)
224 {
225 	struct rtk_softc	*sc = (void *)dev;
226 	u_int32_t		rval;
227 	int			i;
228 
229 	CSR_WRITE_4(sc, RTK_PHYAR, (reg << 16) |
230 	    (data & RTK_PHYAR_PHYDATA) | RTK_PHYAR_BUSY);
231 	DELAY(1000);
232 
233 	for (i = 0; i < RTK_TIMEOUT; i++) {
234 		rval = CSR_READ_4(sc, RTK_PHYAR);
235 		if (!(rval & RTK_PHYAR_BUSY))
236 			break;
237 		DELAY(100);
238 	}
239 
240 	if (i == RTK_TIMEOUT) {
241 		aprint_error("%s: PHY write reg %x <- %x failed\n",
242 		    sc->sc_dev.dv_xname, reg, data);
243 		return;
244 	}
245 
246 	return;
247 }
248 
249 static int
250 re_miibus_readreg(struct device *dev, int phy, int reg)
251 {
252 	struct rtk_softc	*sc = (void *)dev;
253 	u_int16_t		rval = 0;
254 	u_int16_t		re8139_reg = 0;
255 	int			s;
256 
257 	s = splnet();
258 
259 	if (sc->rtk_type == RTK_8169) {
260 		rval = re_gmii_readreg(dev, phy, reg);
261 		splx(s);
262 		return rval;
263 	}
264 
265 	/* Pretend the internal PHY is only at address 0 */
266 	if (phy) {
267 		splx(s);
268 		return 0;
269 	}
270 	switch (reg) {
271 	case MII_BMCR:
272 		re8139_reg = RTK_BMCR;
273 		break;
274 	case MII_BMSR:
275 		re8139_reg = RTK_BMSR;
276 		break;
277 	case MII_ANAR:
278 		re8139_reg = RTK_ANAR;
279 		break;
280 	case MII_ANER:
281 		re8139_reg = RTK_ANER;
282 		break;
283 	case MII_ANLPAR:
284 		re8139_reg = RTK_LPAR;
285 		break;
286 	case MII_PHYIDR1:
287 	case MII_PHYIDR2:
288 		splx(s);
289 		return 0;
290 	/*
291 	 * Allow the rlphy driver to read the media status
292 	 * register. If we have a link partner which does not
293 	 * support NWAY, this is the register which will tell
294 	 * us the results of parallel detection.
295 	 */
296 	case RTK_MEDIASTAT:
297 		rval = CSR_READ_1(sc, RTK_MEDIASTAT);
298 		splx(s);
299 		return rval;
300 	default:
301 		aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
302 		splx(s);
303 		return 0;
304 	}
305 	rval = CSR_READ_2(sc, re8139_reg);
306 	splx(s);
307 	return rval;
308 }
309 
310 static void
311 re_miibus_writereg(struct device *dev, int phy, int reg, int data)
312 {
313 	struct rtk_softc	*sc = (void *)dev;
314 	u_int16_t		re8139_reg = 0;
315 	int			s;
316 
317 	s = splnet();
318 
319 	if (sc->rtk_type == RTK_8169) {
320 		re_gmii_writereg(dev, phy, reg, data);
321 		splx(s);
322 		return;
323 	}
324 
325 	/* Pretend the internal PHY is only at address 0 */
326 	if (phy) {
327 		splx(s);
328 		return;
329 	}
330 	switch (reg) {
331 	case MII_BMCR:
332 		re8139_reg = RTK_BMCR;
333 		break;
334 	case MII_BMSR:
335 		re8139_reg = RTK_BMSR;
336 		break;
337 	case MII_ANAR:
338 		re8139_reg = RTK_ANAR;
339 		break;
340 	case MII_ANER:
341 		re8139_reg = RTK_ANER;
342 		break;
343 	case MII_ANLPAR:
344 		re8139_reg = RTK_LPAR;
345 		break;
346 	case MII_PHYIDR1:
347 	case MII_PHYIDR2:
348 		splx(s);
349 		return;
350 		break;
351 	default:
352 		aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
353 		splx(s);
354 		return;
355 	}
356 	CSR_WRITE_2(sc, re8139_reg, data);
357 	splx(s);
358 	return;
359 }
360 
361 static void
362 re_miibus_statchg(struct device *dev)
363 {
364 
365 	return;
366 }
367 
368 static void
369 re_reset(struct rtk_softc *sc)
370 {
371 	register int		i;
372 
373 	CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
374 
375 	for (i = 0; i < RTK_TIMEOUT; i++) {
376 		DELAY(10);
377 		if (!(CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET))
378 			break;
379 	}
380 	if (i == RTK_TIMEOUT)
381 		aprint_error("%s: reset never completed!\n",
382 		    sc->sc_dev.dv_xname);
383 
384 	/*
385 	 * NB: Realtek-supplied Linux driver does this only for
386 	 * MCFG_METHOD_2, which corresponds to sc->sc_rev == 2.
387 	 */
388 	if (1) /* XXX check softc flag for 8169s version */
389 		CSR_WRITE_1(sc, 0x82, 1);
390 
391 	return;
392 }
393 
394 /*
395  * The following routine is designed to test for a defect on some
396  * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
397  * lines connected to the bus, however for a 32-bit only card, they
398  * should be pulled high. The result of this defect is that the
399  * NIC will not work right if you plug it into a 64-bit slot: DMA
400  * operations will be done with 64-bit transfers, which will fail
401  * because the 64-bit data lines aren't connected.
402  *
403  * There's no way to work around this (short of talking a soldering
404  * iron to the board), however we can detect it. The method we use
405  * here is to put the NIC into digital loopback mode, set the receiver
406  * to promiscuous mode, and then try to send a frame. We then compare
407  * the frame data we sent to what was received. If the data matches,
408  * then the NIC is working correctly, otherwise we know the user has
409  * a defective NIC which has been mistakenly plugged into a 64-bit PCI
410  * slot. In the latter case, there's no way the NIC can work correctly,
411  * so we print out a message on the console and abort the device attach.
412  */
413 
414 int
415 re_diag(struct rtk_softc *sc)
416 {
417 	struct ifnet		*ifp = &sc->ethercom.ec_if;
418 	struct mbuf		*m0;
419 	struct ether_header	*eh;
420 	struct rtk_desc		*cur_rx;
421 	bus_dmamap_t		dmamap;
422 	u_int16_t		status;
423 	u_int32_t		rxstat;
424 	int			total_len, i, s, error = 0;
425 	u_int8_t		dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
426 	u_int8_t		src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
427 
428 	/* Allocate a single mbuf */
429 
430 	MGETHDR(m0, M_DONTWAIT, MT_DATA);
431 	if (m0 == NULL)
432 		return ENOBUFS;
433 
434 	/*
435 	 * Initialize the NIC in test mode. This sets the chip up
436 	 * so that it can send and receive frames, but performs the
437 	 * following special functions:
438 	 * - Puts receiver in promiscuous mode
439 	 * - Enables digital loopback mode
440 	 * - Leaves interrupts turned off
441 	 */
442 
443 	ifp->if_flags |= IFF_PROMISC;
444 	sc->rtk_testmode = 1;
445 	re_init(ifp);
446 	re_stop(ifp, 0);
447 	DELAY(100000);
448 	re_init(ifp);
449 
450 	/* Put some data in the mbuf */
451 
452 	eh = mtod(m0, struct ether_header *);
453 	bcopy((char *)&dst, eh->ether_dhost, ETHER_ADDR_LEN);
454 	bcopy((char *)&src, eh->ether_shost, ETHER_ADDR_LEN);
455 	eh->ether_type = htons(ETHERTYPE_IP);
456 	m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
457 
458 	/*
459 	 * Queue the packet, start transmission.
460 	 */
461 
462 	CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
463 	s = splnet();
464 	IF_ENQUEUE(&ifp->if_snd, m0);
465 	re_start(ifp);
466 	splx(s);
467 	m0 = NULL;
468 
469 	/* Wait for it to propagate through the chip */
470 
471 	DELAY(100000);
472 	for (i = 0; i < RTK_TIMEOUT; i++) {
473 		status = CSR_READ_2(sc, RTK_ISR);
474 		if ((status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK)) ==
475 		    (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK))
476 			break;
477 		DELAY(10);
478 	}
479 	if (i == RTK_TIMEOUT) {
480 		aprint_error("%s: diagnostic failed, failed to receive packet "
481 		    "in loopback mode\n", sc->sc_dev.dv_xname);
482 		error = EIO;
483 		goto done;
484 	}
485 
486 	/*
487 	 * The packet should have been dumped into the first
488 	 * entry in the RX DMA ring. Grab it from there.
489 	 */
490 
491 	dmamap = sc->rtk_ldata.rtk_rx_list_map;
492 	bus_dmamap_sync(sc->sc_dmat,
493 	    dmamap, 0, dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
494 	dmamap = sc->rtk_ldata.rtk_rx_dmamap[0];
495 	bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
496 	    BUS_DMASYNC_POSTREAD);
497 	bus_dmamap_unload(sc->sc_dmat,
498 	    sc->rtk_ldata.rtk_rx_dmamap[0]);
499 
500 	m0 = sc->rtk_ldata.rtk_rx_mbuf[0];
501 	sc->rtk_ldata.rtk_rx_mbuf[0] = NULL;
502 	eh = mtod(m0, struct ether_header *);
503 
504 	cur_rx = &sc->rtk_ldata.rtk_rx_list[0];
505 	total_len = RTK_RXBYTES(cur_rx);
506 	rxstat = le32toh(cur_rx->rtk_cmdstat);
507 
508 	if (total_len != ETHER_MIN_LEN) {
509 		aprint_error("%s: diagnostic failed, received short packet\n",
510 		    sc->sc_dev.dv_xname);
511 		error = EIO;
512 		goto done;
513 	}
514 
515 	/* Test that the received packet data matches what we sent. */
516 
517 	if (bcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
518 	    bcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
519 	    ntohs(eh->ether_type) != ETHERTYPE_IP) {
520 		aprint_error("%s: WARNING, DMA FAILURE!\n",
521 		    sc->sc_dev.dv_xname);
522 		aprint_error("%s: expected TX data: %s",
523 		    sc->sc_dev.dv_xname, ether_sprintf(dst));
524 		aprint_error("/%s/0x%x\n", ether_sprintf(src), ETHERTYPE_IP);
525 		aprint_error("%s: received RX data: %s",
526 		    sc->sc_dev.dv_xname,
527 		    ether_sprintf(eh->ether_dhost));
528 		aprint_error("/%s/0x%x\n", ether_sprintf(eh->ether_shost),
529 		    ntohs(eh->ether_type));
530 		aprint_error("%s: You may have a defective 32-bit NIC plugged "
531 		    "into a 64-bit PCI slot.\n", sc->sc_dev.dv_xname);
532 		aprint_error("%s: Please re-install the NIC in a 32-bit slot "
533 		    "for proper operation.\n", sc->sc_dev.dv_xname);
534 		aprint_error("%s: Read the re(4) man page for more details.\n",
535 		    sc->sc_dev.dv_xname);
536 		error = EIO;
537 	}
538 
539 done:
540 	/* Turn interface off, release resources */
541 
542 	sc->rtk_testmode = 0;
543 	ifp->if_flags &= ~IFF_PROMISC;
544 	re_stop(ifp, 0);
545 	if (m0 != NULL)
546 		m_freem(m0);
547 
548 	return error;
549 }
550 
551 
552 /*
553  * Attach the interface. Allocate softc structures, do ifmedia
554  * setup and ethernet/BPF attach.
555  */
556 void
557 re_attach(struct rtk_softc *sc)
558 {
559 	u_char			eaddr[ETHER_ADDR_LEN];
560 	u_int16_t		val;
561 	struct ifnet		*ifp;
562 	int			error = 0, i, addr_len;
563 
564 
565 	/* XXX JRS: bus-attach-independent code begins approximately here */
566 
567 	/* Reset the adapter. */
568 	re_reset(sc);
569 
570 	if (sc->rtk_type == RTK_8169) {
571 		uint32_t hwrev;
572 
573 		/* Revision of 8169/8169S/8110s in bits 30..26, 23 */
574 		hwrev = CSR_READ_4(sc, RTK_TXCFG) & 0x7c800000;
575 		if (hwrev == (0x1 << 28)) {
576 			sc->sc_rev = 4;
577 		} else if (hwrev == (0x1 << 26)) {
578 			sc->sc_rev = 3;
579 		} else if (hwrev == (0x1 << 23)) {
580 			sc->sc_rev = 2;
581 		} else
582 			sc->sc_rev = 1;
583 
584 		/* Set RX length mask */
585 
586 		sc->rtk_rxlenmask = RTK_RDESC_STAT_GFRAGLEN;
587 
588 		/* Force station address autoload from the EEPROM */
589 
590 		CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_AUTOLOAD);
591 		for (i = 0; i < RTK_TIMEOUT; i++) {
592 			if (!(CSR_READ_1(sc, RTK_EECMD) & RTK_EEMODE_AUTOLOAD))
593 				break;
594 			DELAY(100);
595 		}
596 		if (i == RTK_TIMEOUT)
597 			aprint_error("%s: eeprom autoload timed out\n",
598 			    sc->sc_dev.dv_xname);
599 
600 		for (i = 0; i < ETHER_ADDR_LEN; i++)
601 			eaddr[i] = CSR_READ_1(sc, RTK_IDR0 + i);
602 
603 		sc->rtk_ldata.rtk_tx_desc_cnt = RTK_TX_DESC_CNT_8169;
604 	} else {
605 
606 		/* Set RX length mask */
607 
608 		sc->rtk_rxlenmask = RTK_RDESC_STAT_FRAGLEN;
609 
610 		if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
611 			addr_len = RTK_EEADDR_LEN1;
612 		else
613 			addr_len = RTK_EEADDR_LEN0;
614 
615 		/*
616 		 * Get station address from the EEPROM.
617 		 */
618 		for (i = 0; i < 3; i++) {
619 			val = rtk_read_eeprom(sc, RTK_EE_EADDR0 + i, addr_len);
620 			eaddr[(i * 2) + 0] = val & 0xff;
621 			eaddr[(i * 2) + 1] = val >> 8;
622 		}
623 
624 		sc->rtk_ldata.rtk_tx_desc_cnt = RTK_TX_DESC_CNT_8139;
625 	}
626 
627 	aprint_normal("%s: Ethernet address %s\n",
628 	    sc->sc_dev.dv_xname, ether_sprintf(eaddr));
629 
630 	if (sc->rtk_ldata.rtk_tx_desc_cnt >
631 	    PAGE_SIZE / sizeof(struct rtk_desc)) {
632 		sc->rtk_ldata.rtk_tx_desc_cnt =
633 		    PAGE_SIZE / sizeof(struct rtk_desc);
634 	}
635 
636 	aprint_verbose("%s: using %d tx descriptors\n",
637 	    sc->sc_dev.dv_xname, sc->rtk_ldata.rtk_tx_desc_cnt);
638 
639 	/* Allocate DMA'able memory for the TX ring */
640 	if ((error = bus_dmamem_alloc(sc->sc_dmat, RTK_TX_LIST_SZ(sc),
641 		    RTK_ETHER_ALIGN, 0, &sc->rtk_ldata.rtk_tx_listseg,
642 		    1, &sc->rtk_ldata.rtk_tx_listnseg, BUS_DMA_NOWAIT)) != 0) {
643 		aprint_error("%s: can't allocate tx listseg, error = %d\n",
644 		    sc->sc_dev.dv_xname, error);
645 		goto fail_0;
646 	}
647 
648 	/* Load the map for the TX ring. */
649 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->rtk_ldata.rtk_tx_listseg,
650 		    sc->rtk_ldata.rtk_tx_listnseg, RTK_TX_LIST_SZ(sc),
651 		    (caddr_t *)&sc->rtk_ldata.rtk_tx_list,
652 		    BUS_DMA_NOWAIT)) != 0) {
653 		aprint_error("%s: can't map tx list, error = %d\n",
654 		    sc->sc_dev.dv_xname, error);
655 	  	goto fail_1;
656 	}
657 	memset(sc->rtk_ldata.rtk_tx_list, 0, RTK_TX_LIST_SZ(sc));
658 
659 	if ((error = bus_dmamap_create(sc->sc_dmat, RTK_TX_LIST_SZ(sc), 1,
660 		    RTK_TX_LIST_SZ(sc), 0, BUS_DMA_ALLOCNOW,
661 		    &sc->rtk_ldata.rtk_tx_list_map)) != 0) {
662 		aprint_error("%s: can't create tx list map, error = %d\n",
663 		    sc->sc_dev.dv_xname, error);
664 		goto fail_2;
665 	}
666 
667 
668 	if ((error = bus_dmamap_load(sc->sc_dmat,
669 		    sc->rtk_ldata.rtk_tx_list_map, sc->rtk_ldata.rtk_tx_list,
670 		    RTK_TX_LIST_SZ(sc), NULL, BUS_DMA_NOWAIT)) != 0) {
671 		aprint_error("%s: can't load tx list, error = %d\n",
672 		    sc->sc_dev.dv_xname, error);
673 		goto fail_3;
674 	}
675 
676 	/* Create DMA maps for TX buffers */
677 	for (i = 0; i < RTK_TX_QLEN; i++) {
678 		error = bus_dmamap_create(sc->sc_dmat,
679 		    round_page(IP_MAXPACKET),
680 		    RTK_TX_DESC_CNT(sc) - 4, RTK_TDESC_CMD_FRAGLEN,
681 		    0, BUS_DMA_ALLOCNOW,
682 		    &sc->rtk_ldata.rtk_txq[i].txq_dmamap);
683 		if (error) {
684 			aprint_error("%s: can't create DMA map for TX\n",
685 			    sc->sc_dev.dv_xname);
686 			goto fail_4;
687 		}
688 	}
689 
690 	/* Allocate DMA'able memory for the RX ring */
691         if ((error = bus_dmamem_alloc(sc->sc_dmat, RTK_RX_LIST_SZ,
692 		    RTK_RING_ALIGN, 0, &sc->rtk_ldata.rtk_rx_listseg, 1,
693 		    &sc->rtk_ldata.rtk_rx_listnseg, BUS_DMA_NOWAIT)) != 0) {
694 		aprint_error("%s: can't allocate rx listseg, error = %d\n",
695 		    sc->sc_dev.dv_xname, error);
696 		goto fail_4;
697 	}
698 
699 	/* Load the map for the RX ring. */
700 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->rtk_ldata.rtk_rx_listseg,
701 		    sc->rtk_ldata.rtk_rx_listnseg, RTK_RX_LIST_SZ,
702 		    (caddr_t *)&sc->rtk_ldata.rtk_rx_list,
703 		    BUS_DMA_NOWAIT)) != 0) {
704 		aprint_error("%s: can't map rx list, error = %d\n",
705 		    sc->sc_dev.dv_xname, error);
706 		goto fail_5;
707 	}
708 	memset(sc->rtk_ldata.rtk_rx_list, 0, RTK_RX_LIST_SZ);
709 
710 	if ((error = bus_dmamap_create(sc->sc_dmat, RTK_RX_LIST_SZ, 1,
711 		    RTK_RX_LIST_SZ, 0, BUS_DMA_ALLOCNOW,
712 		    &sc->rtk_ldata.rtk_rx_list_map)) != 0) {
713 		aprint_error("%s: can't create rx list map, error = %d\n",
714 		    sc->sc_dev.dv_xname, error);
715 		goto fail_6;
716 	}
717 
718 	if ((error = bus_dmamap_load(sc->sc_dmat,
719 		    sc->rtk_ldata.rtk_rx_list_map, sc->rtk_ldata.rtk_rx_list,
720 		    RTK_RX_LIST_SZ, NULL, BUS_DMA_NOWAIT)) != 0) {
721 		aprint_error("%s: can't load rx list, error = %d\n",
722 		    sc->sc_dev.dv_xname, error);
723 		goto fail_7;
724 	}
725 
726 	/* Create DMA maps for RX buffers */
727 	for (i = 0; i < RTK_RX_DESC_CNT; i++) {
728 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
729 		    0, BUS_DMA_ALLOCNOW, &sc->rtk_ldata.rtk_rx_dmamap[i]);
730 		if (error) {
731 			aprint_error("%s: can't create DMA map for RX\n",
732 			    sc->sc_dev.dv_xname);
733 			goto fail_8;
734 		}
735 	}
736 
737 	/*
738 	 * Record interface as attached. From here, we should not fail.
739 	 */
740 	sc->sc_flags |= RTK_ATTACHED;
741 
742 	ifp = &sc->ethercom.ec_if;
743 	ifp->if_softc = sc;
744 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
745 	ifp->if_mtu = ETHERMTU;
746 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
747 	ifp->if_ioctl = re_ioctl;
748 	sc->ethercom.ec_capabilities |=
749 	    ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
750 	ifp->if_start = re_start;
751 	ifp->if_stop = re_stop;
752 
753 	/*
754 	 * IFCAP_CSUM_IPv4_Tx seems broken for small packets.
755 	 */
756 
757 	ifp->if_capabilities |=
758 	    /* IFCAP_CSUM_IPv4_Tx | */ IFCAP_CSUM_IPv4_Rx |
759 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
760 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
761 	    IFCAP_TSOv4;
762 	ifp->if_watchdog = re_watchdog;
763 	ifp->if_init = re_init;
764 	if (sc->rtk_type == RTK_8169)
765 		ifp->if_baudrate = 1000000000;
766 	else
767 		ifp->if_baudrate = 100000000;
768 	ifp->if_snd.ifq_maxlen = RTK_IFQ_MAXLEN;
769 	ifp->if_capenable = ifp->if_capabilities;
770 	IFQ_SET_READY(&ifp->if_snd);
771 
772 	callout_init(&sc->rtk_tick_ch);
773 
774 	/* Do MII setup */
775 	sc->mii.mii_ifp = ifp;
776 	sc->mii.mii_readreg = re_miibus_readreg;
777 	sc->mii.mii_writereg = re_miibus_writereg;
778 	sc->mii.mii_statchg = re_miibus_statchg;
779 	ifmedia_init(&sc->mii.mii_media, IFM_IMASK, re_ifmedia_upd,
780 	    re_ifmedia_sts);
781 	mii_attach(&sc->sc_dev, &sc->mii, 0xffffffff, MII_PHY_ANY,
782 	    MII_OFFSET_ANY, 0);
783 	ifmedia_set(&sc->mii.mii_media, IFM_ETHER | IFM_AUTO);
784 
785 	/*
786 	 * Call MI attach routine.
787 	 */
788 	if_attach(ifp);
789 	ether_ifattach(ifp, eaddr);
790 
791 
792 	/*
793 	 * Make sure the interface is shutdown during reboot.
794 	 */
795 	sc->sc_sdhook = shutdownhook_establish(re_shutdown, sc);
796 	if (sc->sc_sdhook == NULL)
797 		aprint_error("%s: WARNING: unable to establish shutdown hook\n",
798 		    sc->sc_dev.dv_xname);
799 	/*
800 	 * Add a suspend hook to make sure we come back up after a
801 	 * resume.
802 	 */
803 	sc->sc_powerhook = powerhook_establish(re_power, sc);
804 	if (sc->sc_powerhook == NULL)
805 		aprint_error("%s: WARNING: unable to establish power hook\n",
806 		    sc->sc_dev.dv_xname);
807 
808 
809 	return;
810 
811 fail_8:
812 	/* Destroy DMA maps for RX buffers. */
813 	for (i = 0; i < RTK_RX_DESC_CNT; i++)
814 		if (sc->rtk_ldata.rtk_rx_dmamap[i] != NULL)
815 			bus_dmamap_destroy(sc->sc_dmat,
816 			    sc->rtk_ldata.rtk_rx_dmamap[i]);
817 
818 	/* Free DMA'able memory for the RX ring. */
819 	bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
820 fail_7:
821 	bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
822 fail_6:
823 	bus_dmamem_unmap(sc->sc_dmat,
824 	    (caddr_t)sc->rtk_ldata.rtk_rx_list, RTK_RX_LIST_SZ);
825 fail_5:
826 	bus_dmamem_free(sc->sc_dmat,
827 	    &sc->rtk_ldata.rtk_rx_listseg, sc->rtk_ldata.rtk_rx_listnseg);
828 
829 fail_4:
830 	/* Destroy DMA maps for TX buffers. */
831 	for (i = 0; i < RTK_TX_QLEN; i++)
832 		if (sc->rtk_ldata.rtk_txq[i].txq_dmamap != NULL)
833 			bus_dmamap_destroy(sc->sc_dmat,
834 			    sc->rtk_ldata.rtk_txq[i].txq_dmamap);
835 
836 	/* Free DMA'able memory for the TX ring. */
837 	bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
838 fail_3:
839 	bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
840 fail_2:
841 	bus_dmamem_unmap(sc->sc_dmat,
842 	    (caddr_t)sc->rtk_ldata.rtk_tx_list, RTK_TX_LIST_SZ(sc));
843 fail_1:
844 	bus_dmamem_free(sc->sc_dmat,
845 	    &sc->rtk_ldata.rtk_tx_listseg, sc->rtk_ldata.rtk_tx_listnseg);
846 fail_0:
847 	return;
848 }
849 
850 
851 /*
852  * re_activate:
853  *     Handle device activation/deactivation requests.
854  */
855 int
856 re_activate(struct device *self, enum devact act)
857 {
858 	struct rtk_softc *sc = (void *) self;
859 	int s, error = 0;
860 
861 	s = splnet();
862 	switch (act) {
863 	case DVACT_ACTIVATE:
864 		error = EOPNOTSUPP;
865 		break;
866 	case DVACT_DEACTIVATE:
867 		mii_activate(&sc->mii, act, MII_PHY_ANY, MII_OFFSET_ANY);
868 		if_deactivate(&sc->ethercom.ec_if);
869 		break;
870 	}
871 	splx(s);
872 
873 	return error;
874 }
875 
876 /*
877  * re_detach:
878  *     Detach a rtk interface.
879  */
880 int
881 re_detach(struct rtk_softc *sc)
882 {
883 	struct ifnet *ifp = &sc->ethercom.ec_if;
884 	int i;
885 
886 	/*
887 	 * Succeed now if there isn't any work to do.
888 	 */
889 	if ((sc->sc_flags & RTK_ATTACHED) == 0)
890 		return 0;
891 
892 	/* Unhook our tick handler. */
893 	callout_stop(&sc->rtk_tick_ch);
894 
895 	/* Detach all PHYs. */
896 	mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
897 
898 	/* Delete all remaining media. */
899 	ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
900 
901 	ether_ifdetach(ifp);
902 	if_detach(ifp);
903 
904 	/* XXX undo re_allocmem() */
905 
906 	/* Destroy DMA maps for RX buffers. */
907 	for (i = 0; i < RTK_RX_DESC_CNT; i++)
908 		if (sc->rtk_ldata.rtk_rx_dmamap[i] != NULL)
909 			bus_dmamap_destroy(sc->sc_dmat,
910 			    sc->rtk_ldata.rtk_rx_dmamap[i]);
911 
912 	/* Free DMA'able memory for the RX ring. */
913 	bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
914 	bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
915 	bus_dmamem_unmap(sc->sc_dmat,
916 	    (caddr_t)sc->rtk_ldata.rtk_rx_list, RTK_RX_LIST_SZ);
917 	bus_dmamem_free(sc->sc_dmat,
918 	    &sc->rtk_ldata.rtk_rx_listseg, sc->rtk_ldata.rtk_rx_listnseg);
919 
920 	/* Destroy DMA maps for TX buffers. */
921 	for (i = 0; i < RTK_TX_QLEN; i++)
922 		if (sc->rtk_ldata.rtk_txq[i].txq_dmamap != NULL)
923 			bus_dmamap_destroy(sc->sc_dmat,
924 			    sc->rtk_ldata.rtk_txq[i].txq_dmamap);
925 
926 	/* Free DMA'able memory for the TX ring. */
927 	bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
928 	bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
929 	bus_dmamem_unmap(sc->sc_dmat,
930 	    (caddr_t)sc->rtk_ldata.rtk_tx_list, RTK_TX_LIST_SZ(sc));
931 	bus_dmamem_free(sc->sc_dmat,
932 	    &sc->rtk_ldata.rtk_tx_listseg, sc->rtk_ldata.rtk_tx_listnseg);
933 
934 
935 	shutdownhook_disestablish(sc->sc_sdhook);
936 	powerhook_disestablish(sc->sc_powerhook);
937 
938 	return 0;
939 }
940 
941 /*
942  * re_enable:
943  *     Enable the RTL81X9 chip.
944  */
945 static int
946 re_enable(struct rtk_softc *sc)
947 {
948 	if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
949 		if ((*sc->sc_enable)(sc) != 0) {
950 			aprint_error("%s: device enable failed\n",
951 			    sc->sc_dev.dv_xname);
952 			return EIO;
953 		}
954 		sc->sc_flags |= RTK_ENABLED;
955 	}
956 	return 0;
957 }
958 
959 /*
960  * re_disable:
961  *     Disable the RTL81X9 chip.
962  */
963 static void
964 re_disable(struct rtk_softc *sc)
965 {
966 
967 	if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
968 		(*sc->sc_disable)(sc);
969 		sc->sc_flags &= ~RTK_ENABLED;
970 	}
971 }
972 
973 /*
974  * re_power:
975  *     Power management (suspend/resume) hook.
976  */
977 void
978 re_power(int why, void *arg)
979 {
980 	struct rtk_softc *sc = (void *) arg;
981 	struct ifnet *ifp = &sc->ethercom.ec_if;
982 	int s;
983 
984 	s = splnet();
985 	switch (why) {
986 	case PWR_SUSPEND:
987 	case PWR_STANDBY:
988 		re_stop(ifp, 0);
989 		if (sc->sc_power != NULL)
990 			(*sc->sc_power)(sc, why);
991 		break;
992 	case PWR_RESUME:
993 		if (ifp->if_flags & IFF_UP) {
994 			if (sc->sc_power != NULL)
995 				(*sc->sc_power)(sc, why);
996 			re_init(ifp);
997 		}
998 		break;
999 	case PWR_SOFTSUSPEND:
1000 	case PWR_SOFTSTANDBY:
1001 	case PWR_SOFTRESUME:
1002 		break;
1003 	}
1004 	splx(s);
1005 }
1006 
1007 
1008 static int
1009 re_newbuf(struct rtk_softc *sc, int idx, struct mbuf *m)
1010 {
1011 	struct mbuf		*n = NULL;
1012 	bus_dmamap_t		map;
1013 	struct rtk_desc		*d;
1014 	u_int32_t		cmdstat;
1015 	int			error;
1016 
1017 	if (m == NULL) {
1018 		MGETHDR(n, M_DONTWAIT, MT_DATA);
1019 		if (n == NULL)
1020 			return ENOBUFS;
1021 		m = n;
1022 
1023 		MCLGET(m, M_DONTWAIT);
1024 		if (!(m->m_flags & M_EXT)) {
1025 			m_freem(m);
1026 			return ENOBUFS;
1027 		}
1028 	} else
1029 		m->m_data = m->m_ext.ext_buf;
1030 
1031 	/*
1032 	 * Initialize mbuf length fields and fixup
1033 	 * alignment so that the frame payload is
1034 	 * longword aligned.
1035 	 */
1036 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1037 	m_adj(m, RTK_ETHER_ALIGN);
1038 
1039 	map = sc->rtk_ldata.rtk_rx_dmamap[idx];
1040 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m, BUS_DMA_NOWAIT);
1041 
1042 	if (error)
1043 		goto out;
1044 
1045 	d = &sc->rtk_ldata.rtk_rx_list[idx];
1046 	if (le32toh(d->rtk_cmdstat) & RTK_RDESC_STAT_OWN)
1047 		goto out;
1048 
1049 	cmdstat = map->dm_segs[0].ds_len;
1050 	d->rtk_bufaddr_lo = htole32(RTK_ADDR_LO(map->dm_segs[0].ds_addr));
1051 	d->rtk_bufaddr_hi = htole32(RTK_ADDR_HI(map->dm_segs[0].ds_addr));
1052 	if (idx == (RTK_RX_DESC_CNT - 1))
1053 		cmdstat |= RTK_RDESC_CMD_EOR;
1054 	d->rtk_cmdstat = htole32(cmdstat);
1055 
1056 	sc->rtk_ldata.rtk_rx_list[idx].rtk_cmdstat |=
1057 	    htole32(RTK_RDESC_CMD_OWN);
1058 	sc->rtk_ldata.rtk_rx_mbuf[idx] = m;
1059 
1060 	bus_dmamap_sync(sc->sc_dmat, sc->rtk_ldata.rtk_rx_dmamap[idx], 0,
1061 	    sc->rtk_ldata.rtk_rx_dmamap[idx]->dm_mapsize,
1062 	    BUS_DMASYNC_PREREAD);
1063 
1064 	return 0;
1065 out:
1066 	if (n != NULL)
1067 		m_freem(n);
1068 	return ENOMEM;
1069 }
1070 
1071 static int
1072 re_tx_list_init(struct rtk_softc *sc)
1073 {
1074 	int i;
1075 
1076 	memset(sc->rtk_ldata.rtk_tx_list, 0, RTK_TX_LIST_SZ(sc));
1077 	for (i = 0; i < RTK_TX_QLEN; i++) {
1078 		sc->rtk_ldata.rtk_txq[i].txq_mbuf = NULL;
1079 	}
1080 
1081 	bus_dmamap_sync(sc->sc_dmat,
1082 	    sc->rtk_ldata.rtk_tx_list_map, 0,
1083 	    sc->rtk_ldata.rtk_tx_list_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1084 	sc->rtk_ldata.rtk_txq_prodidx = 0;
1085 	sc->rtk_ldata.rtk_txq_considx = 0;
1086 	sc->rtk_ldata.rtk_tx_free = RTK_TX_DESC_CNT(sc);
1087 	sc->rtk_ldata.rtk_tx_nextfree = 0;
1088 
1089 	return 0;
1090 }
1091 
1092 static int
1093 re_rx_list_init(struct rtk_softc *sc)
1094 {
1095 	int			i;
1096 
1097 	memset((char *)sc->rtk_ldata.rtk_rx_list, 0, RTK_RX_LIST_SZ);
1098 	memset((char *)&sc->rtk_ldata.rtk_rx_mbuf, 0,
1099 	    (RTK_RX_DESC_CNT * sizeof(struct mbuf *)));
1100 
1101 	for (i = 0; i < RTK_RX_DESC_CNT; i++) {
1102 		if (re_newbuf(sc, i, NULL) == ENOBUFS)
1103 			return ENOBUFS;
1104 	}
1105 
1106 	/* Flush the RX descriptors */
1107 
1108 	bus_dmamap_sync(sc->sc_dmat,
1109 	    sc->rtk_ldata.rtk_rx_list_map,
1110 	    0, sc->rtk_ldata.rtk_rx_list_map->dm_mapsize,
1111 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1112 
1113 	sc->rtk_ldata.rtk_rx_prodidx = 0;
1114 	sc->rtk_head = sc->rtk_tail = NULL;
1115 
1116 	return 0;
1117 }
1118 
1119 /*
1120  * RX handler for C+ and 8169. For the gigE chips, we support
1121  * the reception of jumbo frames that have been fragmented
1122  * across multiple 2K mbuf cluster buffers.
1123  */
1124 static void
1125 re_rxeof(struct rtk_softc *sc)
1126 {
1127 	struct mbuf		*m;
1128 	struct ifnet		*ifp;
1129 	int			i, total_len;
1130 	struct rtk_desc		*cur_rx;
1131 	u_int32_t		rxstat, rxvlan;
1132 
1133 	ifp = &sc->ethercom.ec_if;
1134 	i = sc->rtk_ldata.rtk_rx_prodidx;
1135 
1136 	/* Invalidate the descriptor memory */
1137 
1138 	bus_dmamap_sync(sc->sc_dmat,
1139 	    sc->rtk_ldata.rtk_rx_list_map,
1140 	    0, sc->rtk_ldata.rtk_rx_list_map->dm_mapsize,
1141 	    BUS_DMASYNC_POSTREAD);
1142 
1143 	while (!RTK_OWN(&sc->rtk_ldata.rtk_rx_list[i])) {
1144 
1145 		cur_rx = &sc->rtk_ldata.rtk_rx_list[i];
1146 		m = sc->rtk_ldata.rtk_rx_mbuf[i];
1147 		total_len = RTK_RXBYTES(cur_rx);
1148 		rxstat = le32toh(cur_rx->rtk_cmdstat);
1149 		rxvlan = le32toh(cur_rx->rtk_vlanctl);
1150 
1151 		/* Invalidate the RX mbuf and unload its map */
1152 
1153 		bus_dmamap_sync(sc->sc_dmat,
1154 		    sc->rtk_ldata.rtk_rx_dmamap[i],
1155 		    0, sc->rtk_ldata.rtk_rx_dmamap[i]->dm_mapsize,
1156 		    BUS_DMASYNC_POSTREAD);
1157 		bus_dmamap_unload(sc->sc_dmat,
1158 		    sc->rtk_ldata.rtk_rx_dmamap[i]);
1159 
1160 		if (!(rxstat & RTK_RDESC_STAT_EOF)) {
1161 			m->m_len = MCLBYTES - RTK_ETHER_ALIGN;
1162 			if (sc->rtk_head == NULL)
1163 				sc->rtk_head = sc->rtk_tail = m;
1164 			else {
1165 				m->m_flags &= ~M_PKTHDR;
1166 				sc->rtk_tail->m_next = m;
1167 				sc->rtk_tail = m;
1168 			}
1169 			re_newbuf(sc, i, NULL);
1170 			RTK_RX_DESC_INC(sc, i);
1171 			continue;
1172 		}
1173 
1174 		/*
1175 		 * NOTE: for the 8139C+, the frame length field
1176 		 * is always 12 bits in size, but for the gigE chips,
1177 		 * it is 13 bits (since the max RX frame length is 16K).
1178 		 * Unfortunately, all 32 bits in the status word
1179 		 * were already used, so to make room for the extra
1180 		 * length bit, RealTek took out the 'frame alignment
1181 		 * error' bit and shifted the other status bits
1182 		 * over one slot. The OWN, EOR, FS and LS bits are
1183 		 * still in the same places. We have already extracted
1184 		 * the frame length and checked the OWN bit, so rather
1185 		 * than using an alternate bit mapping, we shift the
1186 		 * status bits one space to the right so we can evaluate
1187 		 * them using the 8169 status as though it was in the
1188 		 * same format as that of the 8139C+.
1189 		 */
1190 		if (sc->rtk_type == RTK_8169)
1191 			rxstat >>= 1;
1192 
1193 		if (rxstat & RTK_RDESC_STAT_RXERRSUM) {
1194 			ifp->if_ierrors++;
1195 			/*
1196 			 * If this is part of a multi-fragment packet,
1197 			 * discard all the pieces.
1198 			 */
1199 			if (sc->rtk_head != NULL) {
1200 				m_freem(sc->rtk_head);
1201 				sc->rtk_head = sc->rtk_tail = NULL;
1202 			}
1203 			re_newbuf(sc, i, m);
1204 			RTK_RX_DESC_INC(sc, i);
1205 			continue;
1206 		}
1207 
1208 		/*
1209 		 * If allocating a replacement mbuf fails,
1210 		 * reload the current one.
1211 		 */
1212 
1213 		if (re_newbuf(sc, i, NULL)) {
1214 			ifp->if_ierrors++;
1215 			if (sc->rtk_head != NULL) {
1216 				m_freem(sc->rtk_head);
1217 				sc->rtk_head = sc->rtk_tail = NULL;
1218 			}
1219 			re_newbuf(sc, i, m);
1220 			RTK_RX_DESC_INC(sc, i);
1221 			continue;
1222 		}
1223 
1224 		RTK_RX_DESC_INC(sc, i);
1225 
1226 		if (sc->rtk_head != NULL) {
1227 			m->m_len = total_len % (MCLBYTES - RTK_ETHER_ALIGN);
1228 			/*
1229 			 * Special case: if there's 4 bytes or less
1230 			 * in this buffer, the mbuf can be discarded:
1231 			 * the last 4 bytes is the CRC, which we don't
1232 			 * care about anyway.
1233 			 */
1234 			if (m->m_len <= ETHER_CRC_LEN) {
1235 				sc->rtk_tail->m_len -=
1236 				    (ETHER_CRC_LEN - m->m_len);
1237 				m_freem(m);
1238 			} else {
1239 				m->m_len -= ETHER_CRC_LEN;
1240 				m->m_flags &= ~M_PKTHDR;
1241 				sc->rtk_tail->m_next = m;
1242 			}
1243 			m = sc->rtk_head;
1244 			sc->rtk_head = sc->rtk_tail = NULL;
1245 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1246 		} else
1247 			m->m_pkthdr.len = m->m_len =
1248 			    (total_len - ETHER_CRC_LEN);
1249 
1250 		ifp->if_ipackets++;
1251 		m->m_pkthdr.rcvif = ifp;
1252 
1253 		/* Do RX checksumming if enabled */
1254 
1255 		if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
1256 
1257 			/* Check IP header checksum */
1258 			if (rxstat & RTK_RDESC_STAT_PROTOID)
1259 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4;;
1260 			if (rxstat & RTK_RDESC_STAT_IPSUMBAD)
1261 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1262 		}
1263 
1264 		/* Check TCP/UDP checksum */
1265 		if (RTK_TCPPKT(rxstat) &&
1266 		    (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx)) {
1267 			m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1268 			if (rxstat & RTK_RDESC_STAT_TCPSUMBAD)
1269 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1270 		}
1271 		if (RTK_UDPPKT(rxstat) &&
1272 		    (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx)) {
1273 			m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1274 			if (rxstat & RTK_RDESC_STAT_UDPSUMBAD)
1275 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1276 		}
1277 
1278 		if (rxvlan & RTK_RDESC_VLANCTL_TAG) {
1279 			VLAN_INPUT_TAG(ifp, m,
1280 			     be16toh(rxvlan & RTK_RDESC_VLANCTL_DATA),
1281 			     continue);
1282 		}
1283 #if NBPFILTER > 0
1284 		if (ifp->if_bpf)
1285 			bpf_mtap(ifp->if_bpf, m);
1286 #endif
1287 		(*ifp->if_input)(ifp, m);
1288 	}
1289 
1290 	/* Flush the RX DMA ring */
1291 
1292 	bus_dmamap_sync(sc->sc_dmat,
1293 	    sc->rtk_ldata.rtk_rx_list_map,
1294 	    0, sc->rtk_ldata.rtk_rx_list_map->dm_mapsize,
1295 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1296 
1297 	sc->rtk_ldata.rtk_rx_prodidx = i;
1298 
1299 	return;
1300 }
1301 
1302 static void
1303 re_txeof(struct rtk_softc *sc)
1304 {
1305 	struct ifnet		*ifp;
1306 	int			idx;
1307 
1308 	ifp = &sc->ethercom.ec_if;
1309 	idx = sc->rtk_ldata.rtk_txq_considx;
1310 
1311 	/* Invalidate the TX descriptor list */
1312 
1313 	bus_dmamap_sync(sc->sc_dmat,
1314 	    sc->rtk_ldata.rtk_tx_list_map,
1315 	    0, sc->rtk_ldata.rtk_tx_list_map->dm_mapsize,
1316 	    BUS_DMASYNC_POSTREAD);
1317 
1318 	while (/* CONSTCOND */ 1) {
1319 		struct rtk_txq *txq = &sc->rtk_ldata.rtk_txq[idx];
1320 		int descidx;
1321 		u_int32_t txstat;
1322 
1323 		if (txq->txq_mbuf == NULL) {
1324 			KASSERT(idx == sc->rtk_ldata.rtk_txq_prodidx);
1325 			break;
1326 		}
1327 
1328 		descidx = txq->txq_descidx;
1329 		txstat =
1330 		    le32toh(sc->rtk_ldata.rtk_tx_list[descidx].rtk_cmdstat);
1331 		KASSERT((txstat & RTK_TDESC_CMD_EOF) != 0);
1332 		if (txstat & RTK_TDESC_CMD_OWN)
1333 			break;
1334 
1335 		sc->rtk_ldata.rtk_tx_free += txq->txq_dmamap->dm_nsegs;
1336 		KASSERT(sc->rtk_ldata.rtk_tx_free <= RTK_TX_DESC_CNT(sc));
1337 		bus_dmamap_unload(sc->sc_dmat, txq->txq_dmamap);
1338 		m_freem(txq->txq_mbuf);
1339 		txq->txq_mbuf = NULL;
1340 
1341 		if (txstat & (RTK_TDESC_STAT_EXCESSCOL | RTK_TDESC_STAT_COLCNT))
1342 			ifp->if_collisions++;
1343 		if (txstat & RTK_TDESC_STAT_TXERRSUM)
1344 			ifp->if_oerrors++;
1345 		else
1346 			ifp->if_opackets++;
1347 
1348 		idx = (idx + 1) % RTK_TX_QLEN;
1349 	}
1350 
1351 	/* No changes made to the TX ring, so no flush needed */
1352 
1353 	if (idx != sc->rtk_ldata.rtk_txq_considx) {
1354 		sc->rtk_ldata.rtk_txq_considx = idx;
1355 		ifp->if_flags &= ~IFF_OACTIVE;
1356 		ifp->if_timer = 0;
1357 	}
1358 
1359 	/*
1360 	 * If not all descriptors have been released reaped yet,
1361 	 * reload the timer so that we will eventually get another
1362 	 * interrupt that will cause us to re-enter this routine.
1363 	 * This is done in case the transmitter has gone idle.
1364 	 */
1365 	if (sc->rtk_ldata.rtk_tx_free != RTK_TX_DESC_CNT(sc))
1366 		CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1367 
1368 	return;
1369 }
1370 
1371 /*
1372  * Stop all chip I/O so that the kernel's probe routines don't
1373  * get confused by errant DMAs when rebooting.
1374  */
1375 static void
1376 re_shutdown(void *vsc)
1377 
1378 {
1379 	struct rtk_softc	*sc = (struct rtk_softc *)vsc;
1380 
1381 	re_stop(&sc->ethercom.ec_if, 0);
1382 }
1383 
1384 
1385 static void
1386 re_tick(void *xsc)
1387 {
1388 	struct rtk_softc	*sc = xsc;
1389 	int s;
1390 
1391 	/*XXX: just return for 8169S/8110S with rev 2 or newer phy */
1392 	s = splnet();
1393 
1394 	mii_tick(&sc->mii);
1395 	splx(s);
1396 
1397 	callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1398 }
1399 
1400 #ifdef DEVICE_POLLING
1401 static void
1402 re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1403 {
1404 	struct rtk_softc *sc = ifp->if_softc;
1405 
1406 	RTK_LOCK(sc);
1407 	if (!(ifp->if_capenable & IFCAP_POLLING)) {
1408 		ether_poll_deregister(ifp);
1409 		cmd = POLL_DEREGISTER;
1410 	}
1411 	if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
1412 		CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1413 		goto done;
1414 	}
1415 
1416 	sc->rxcycles = count;
1417 	re_rxeof(sc);
1418 	re_txeof(sc);
1419 
1420 	if (ifp->if_snd.ifq_head != NULL)
1421 		(*ifp->if_start)(ifp);
1422 
1423 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1424 		u_int16_t       status;
1425 
1426 		status = CSR_READ_2(sc, RTK_ISR);
1427 		if (status == 0xffff)
1428 			goto done;
1429 		if (status)
1430 			CSR_WRITE_2(sc, RTK_ISR, status);
1431 
1432 		/*
1433 		 * XXX check behaviour on receiver stalls.
1434 		 */
1435 
1436 		if (status & RTK_ISR_SYSTEM_ERR) {
1437 			re_reset(sc);
1438 			re_init(sc);
1439 		}
1440 	}
1441 done:
1442 	RTK_UNLOCK(sc);
1443 }
1444 #endif /* DEVICE_POLLING */
1445 
1446 int
1447 re_intr(void *arg)
1448 {
1449 	struct rtk_softc	*sc = arg;
1450 	struct ifnet		*ifp;
1451 	u_int16_t		status;
1452 	int			handled = 0;
1453 
1454 	ifp = &sc->ethercom.ec_if;
1455 
1456 	if (!(ifp->if_flags & IFF_UP))
1457 		return 0;
1458 
1459 #ifdef DEVICE_POLLING
1460 	if (ifp->if_flags & IFF_POLLING)
1461 		goto done;
1462 	if ((ifp->if_capenable & IFCAP_POLLING) &&
1463 	    ether_poll_register(re_poll, ifp)) { /* ok, disable interrupts */
1464 		CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1465 		re_poll(ifp, 0, 1);
1466 		goto done;
1467 	}
1468 #endif /* DEVICE_POLLING */
1469 
1470 	for (;;) {
1471 
1472 		status = CSR_READ_2(sc, RTK_ISR);
1473 		/* If the card has gone away the read returns 0xffff. */
1474 		if (status == 0xffff)
1475 			break;
1476 		if (status) {
1477 			handled = 1;
1478 			CSR_WRITE_2(sc, RTK_ISR, status);
1479 		}
1480 
1481 		if ((status & RTK_INTRS_CPLUS) == 0)
1482 			break;
1483 
1484 		if ((status & RTK_ISR_RX_OK) ||
1485 		    (status & RTK_ISR_RX_ERR))
1486 			re_rxeof(sc);
1487 
1488 		if ((status & RTK_ISR_TIMEOUT_EXPIRED) ||
1489 		    (status & RTK_ISR_TX_ERR) ||
1490 		    (status & RTK_ISR_TX_DESC_UNAVAIL))
1491 			re_txeof(sc);
1492 
1493 		if (status & RTK_ISR_SYSTEM_ERR) {
1494 			re_reset(sc);
1495 			re_init(ifp);
1496 		}
1497 
1498 		if (status & RTK_ISR_LINKCHG) {
1499 			callout_stop(&sc->rtk_tick_ch);
1500 			re_tick(sc);
1501 		}
1502 	}
1503 
1504 	if (ifp->if_flags & IFF_UP) /* kludge for interrupt during re_init() */
1505 		if (ifp->if_snd.ifq_head != NULL)
1506 			(*ifp->if_start)(ifp);
1507 
1508 #ifdef DEVICE_POLLING
1509 done:
1510 #endif
1511 
1512 	return handled;
1513 }
1514 
1515 static int
1516 re_encap(struct rtk_softc *sc, struct mbuf *m, int *idx)
1517 {
1518 	bus_dmamap_t		map;
1519 	int			error, i, startidx, curidx;
1520 	struct m_tag		*mtag;
1521 	struct rtk_desc		*d;
1522 	u_int32_t		cmdstat, rtk_flags;
1523 	struct rtk_txq		*txq;
1524 
1525 	if (sc->rtk_ldata.rtk_tx_free <= 4) {
1526 		return EFBIG;
1527 	}
1528 
1529 	/*
1530 	 * Set up checksum offload. Note: checksum offload bits must
1531 	 * appear in all descriptors of a multi-descriptor transmit
1532 	 * attempt. (This is according to testing done with an 8169
1533 	 * chip. I'm not sure if this is a requirement or a bug.)
1534 	 */
1535 
1536 	if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
1537 		u_int32_t segsz = m->m_pkthdr.segsz;
1538 
1539 		rtk_flags = RTK_TDESC_CMD_LGSEND |
1540 		    (segsz << RTK_TDESC_CMD_MSSVAL_SHIFT);
1541 	} else {
1542 
1543 		/*
1544 		 * set RTK_TDESC_CMD_IPCSUM if any checksum offloading
1545 		 * is requested.  otherwise, RTK_TDESC_CMD_TCPCSUM/
1546 		 * RTK_TDESC_CMD_UDPCSUM doesn't make effects.
1547 		 */
1548 
1549 		rtk_flags = 0;
1550 		if ((m->m_pkthdr.csum_flags &
1551 		    (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) != 0) {
1552 			rtk_flags |= RTK_TDESC_CMD_IPCSUM;
1553 			if (m->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1554 				rtk_flags |= RTK_TDESC_CMD_TCPCSUM;
1555 			} else if (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1556 				rtk_flags |= RTK_TDESC_CMD_UDPCSUM;
1557 			}
1558 		}
1559 	}
1560 
1561 	txq = &sc->rtk_ldata.rtk_txq[*idx];
1562 	map = txq->txq_dmamap;
1563 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m, BUS_DMA_NOWAIT);
1564 
1565 	if (error) {
1566 		/* XXX try to defrag if EFBIG? */
1567 
1568 		aprint_error("%s: can't map mbuf (error %d)\n",
1569 		    sc->sc_dev.dv_xname, error);
1570 
1571 		return error;
1572 	}
1573 
1574 	if (map->dm_nsegs > sc->rtk_ldata.rtk_tx_free - 4) {
1575 		error = EFBIG;
1576 		goto fail_unload;
1577 	}
1578 
1579 	/*
1580 	 * Make sure that the caches are synchronized before we
1581 	 * ask the chip to start DMA for the packet data.
1582 	 */
1583 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1584 		BUS_DMASYNC_PREWRITE);
1585 
1586 	/*
1587 	 * Map the segment array into descriptors. Note that we set the
1588 	 * start-of-frame and end-of-frame markers for either TX or RX, but
1589 	 * they really only have meaning in the TX case. (In the RX case,
1590 	 * it's the chip that tells us where packets begin and end.)
1591 	 * We also keep track of the end of the ring and set the
1592 	 * end-of-ring bits as needed, and we set the ownership bits
1593 	 * in all except the very first descriptor. (The caller will
1594 	 * set this descriptor later when it start transmission or
1595 	 * reception.)
1596 	 */
1597 	i = 0;
1598 	curidx = startidx = sc->rtk_ldata.rtk_tx_nextfree;
1599 	while (1) {
1600 		d = &sc->rtk_ldata.rtk_tx_list[curidx];
1601 		if (le32toh(d->rtk_cmdstat) & RTK_TDESC_STAT_OWN) {
1602 			while (i > 0) {
1603 				sc->rtk_ldata.rtk_tx_list[
1604 				    (curidx + RTK_TX_DESC_CNT(sc) - i) %
1605 				    RTK_TX_DESC_CNT(sc)].rtk_cmdstat = 0;
1606 				i--;
1607 			}
1608 			error = ENOBUFS;
1609 			goto fail_unload;
1610 		}
1611 
1612 		cmdstat = map->dm_segs[i].ds_len;
1613 		d->rtk_bufaddr_lo =
1614 		    htole32(RTK_ADDR_LO(map->dm_segs[i].ds_addr));
1615 		d->rtk_bufaddr_hi =
1616 		    htole32(RTK_ADDR_HI(map->dm_segs[i].ds_addr));
1617 		if (i == 0)
1618 			cmdstat |= RTK_TDESC_CMD_SOF;
1619 		else
1620 			cmdstat |= RTK_TDESC_CMD_OWN;
1621 		if (curidx == (RTK_TX_DESC_CNT(sc) - 1))
1622 			cmdstat |= RTK_TDESC_CMD_EOR;
1623 		d->rtk_cmdstat = htole32(cmdstat | rtk_flags);
1624 		i++;
1625 		if (i == map->dm_nsegs)
1626 			break;
1627 		RTK_TX_DESC_INC(sc, curidx);
1628 	}
1629 
1630 	d->rtk_cmdstat |= htole32(RTK_TDESC_CMD_EOF);
1631 
1632 	txq->txq_mbuf = m;
1633 	sc->rtk_ldata.rtk_tx_free -= map->dm_nsegs;
1634 
1635 	/*
1636 	 * Set up hardware VLAN tagging. Note: vlan tag info must
1637 	 * appear in the first descriptor of a multi-descriptor
1638 	 * transmission attempt.
1639 	 */
1640 
1641 	if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m)) != NULL) {
1642 		sc->rtk_ldata.rtk_tx_list[startidx].rtk_vlanctl =
1643 		    htole32(htons(VLAN_TAG_VALUE(mtag)) |
1644 		    RTK_TDESC_VLANCTL_TAG);
1645 	}
1646 
1647 	/* Transfer ownership of packet to the chip. */
1648 
1649 	sc->rtk_ldata.rtk_tx_list[curidx].rtk_cmdstat |=
1650 	    htole32(RTK_TDESC_CMD_OWN);
1651 	if (startidx != curidx)
1652 		sc->rtk_ldata.rtk_tx_list[startidx].rtk_cmdstat |=
1653 		    htole32(RTK_TDESC_CMD_OWN);
1654 
1655 	txq->txq_descidx = curidx;
1656 	RTK_TX_DESC_INC(sc, curidx);
1657 	sc->rtk_ldata.rtk_tx_nextfree = curidx;
1658 	*idx = (*idx + 1) % RTK_TX_QLEN;
1659 
1660 	return 0;
1661 
1662 fail_unload:
1663 	bus_dmamap_unload(sc->sc_dmat, map);
1664 
1665 	return error;
1666 }
1667 
1668 /*
1669  * Main transmit routine for C+ and gigE NICs.
1670  */
1671 
1672 static void
1673 re_start(struct ifnet *ifp)
1674 {
1675 	struct rtk_softc	*sc;
1676 	int			idx;
1677 
1678 	sc = ifp->if_softc;
1679 
1680 	idx = sc->rtk_ldata.rtk_txq_prodidx;
1681 	while (/* CONSTCOND */ 1) {
1682 		struct mbuf *m;
1683 		int error;
1684 
1685 		IFQ_POLL(&ifp->if_snd, m);
1686 		if (m == NULL)
1687 			break;
1688 
1689 		if (sc->rtk_ldata.rtk_txq[idx].txq_mbuf != NULL) {
1690 			KASSERT(idx == sc->rtk_ldata.rtk_txq_considx);
1691 			ifp->if_flags |= IFF_OACTIVE;
1692 			break;
1693 		}
1694 
1695 		error = re_encap(sc, m, &idx);
1696 		if (error == EFBIG &&
1697 		    sc->rtk_ldata.rtk_tx_free == RTK_TX_DESC_CNT(sc)) {
1698 			IFQ_DEQUEUE(&ifp->if_snd, m);
1699 			m_freem(m);
1700 			ifp->if_oerrors++;
1701 			continue;
1702 		}
1703 		if (error) {
1704 			ifp->if_flags |= IFF_OACTIVE;
1705 			break;
1706 		}
1707 
1708 		IFQ_DEQUEUE(&ifp->if_snd, m);
1709 
1710 #if NBPFILTER > 0
1711 		/*
1712 		 * If there's a BPF listener, bounce a copy of this frame
1713 		 * to him.
1714 		 */
1715 		if (ifp->if_bpf)
1716 			bpf_mtap(ifp->if_bpf, m);
1717 #endif
1718 	}
1719 
1720 	if (sc->rtk_ldata.rtk_txq_prodidx == idx) {
1721 		return;
1722 	}
1723 	sc->rtk_ldata.rtk_txq_prodidx = idx;
1724 
1725 	/* Flush the TX descriptors */
1726 
1727 	bus_dmamap_sync(sc->sc_dmat,
1728 	    sc->rtk_ldata.rtk_tx_list_map,
1729 	    0, sc->rtk_ldata.rtk_tx_list_map->dm_mapsize,
1730 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1731 
1732 	/*
1733 	 * RealTek put the TX poll request register in a different
1734 	 * location on the 8169 gigE chip. I don't know why.
1735 	 */
1736 
1737 	if (sc->rtk_type == RTK_8169)
1738 		CSR_WRITE_2(sc, RTK_GTXSTART, RTK_TXSTART_START);
1739 	else
1740 		CSR_WRITE_2(sc, RTK_TXSTART, RTK_TXSTART_START);
1741 
1742 	/*
1743 	 * Use the countdown timer for interrupt moderation.
1744 	 * 'TX done' interrupts are disabled. Instead, we reset the
1745 	 * countdown timer, which will begin counting until it hits
1746 	 * the value in the TIMERINT register, and then trigger an
1747 	 * interrupt. Each time we write to the TIMERCNT register,
1748 	 * the timer count is reset to 0.
1749 	 */
1750 	CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1751 
1752 	/*
1753 	 * Set a timeout in case the chip goes out to lunch.
1754 	 */
1755 	ifp->if_timer = 5;
1756 
1757 	return;
1758 }
1759 
1760 static int
1761 re_init(struct ifnet *ifp)
1762 {
1763 	struct rtk_softc	*sc = ifp->if_softc;
1764 	u_int32_t		rxcfg = 0;
1765 	u_int32_t		reg;
1766 	int error;
1767 
1768 	if ((error = re_enable(sc)) != 0)
1769 		goto out;
1770 
1771 	/*
1772 	 * Cancel pending I/O and free all RX/TX buffers.
1773 	 */
1774 	re_stop(ifp, 0);
1775 
1776 	/*
1777 	 * Enable C+ RX and TX mode, as well as VLAN stripping and
1778 	 * RX checksum offload. We must configure the C+ register
1779 	 * before all others.
1780 	 */
1781 	reg = 0;
1782 
1783 	/*
1784 	 * XXX: Realtek docs say bits 0 and 1 are reserved, for 8169S/8110S.
1785 	 * FreeBSD  drivers set these bits anyway (for 8139C+?).
1786 	 * So far, it works.
1787 	 */
1788 
1789 	/*
1790 	 * XXX: For 8169 and 8196S revs below 2, set bit 14.
1791 	 * For 8169S/8110S rev 2 and above, do not set bit 14.
1792 	 */
1793 	if (sc->rtk_type == RTK_8169 && sc->sc_rev == 1)
1794 		reg |= (0x1 << 14) | RTK_CPLUSCMD_PCI_MRW;;
1795 
1796 	if (1)  {/* not for 8169S ? */
1797 		reg |= RTK_CPLUSCMD_VLANSTRIP |
1798 		    (ifp->if_capenable &
1799 		    (IFCAP_CSUM_IPv4_Rx | IFCAP_CSUM_TCPv4_Rx |
1800 		     IFCAP_CSUM_UDPv4_Rx) ?
1801 		    RTK_CPLUSCMD_RXCSUM_ENB : 0);
1802 	}
1803 
1804 	CSR_WRITE_2(sc, RTK_CPLUS_CMD,
1805 	    reg | RTK_CPLUSCMD_RXENB | RTK_CPLUSCMD_TXENB);
1806 
1807 	/* XXX: from Realtek-supplied Linux driver. Wholly undocumented. */
1808 	if (sc->rtk_type == RTK_8169)
1809 		CSR_WRITE_2(sc, RTK_CPLUS_CMD+0x2, 0x0000);
1810 
1811 	DELAY(10000);
1812 
1813 	/*
1814 	 * Init our MAC address.  Even though the chipset
1815 	 * documentation doesn't mention it, we need to enter "Config
1816 	 * register write enable" mode to modify the ID registers.
1817 	 */
1818 	CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_WRITECFG);
1819 	memcpy(&reg, LLADDR(ifp->if_sadl), 4);
1820 	CSR_WRITE_STREAM_4(sc, RTK_IDR0, reg);
1821 	reg = 0;
1822 	memcpy(&reg, LLADDR(ifp->if_sadl) + 4, 4);
1823 	CSR_WRITE_STREAM_4(sc, RTK_IDR4, reg);
1824 	CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
1825 
1826 	/*
1827 	 * For C+ mode, initialize the RX descriptors and mbufs.
1828 	 */
1829 	re_rx_list_init(sc);
1830 	re_tx_list_init(sc);
1831 
1832 	/*
1833 	 * Enable transmit and receive.
1834 	 */
1835 	CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1836 
1837 	/*
1838 	 * Set the initial TX and RX configuration.
1839 	 */
1840 	if (sc->rtk_testmode) {
1841 		if (sc->rtk_type == RTK_8169)
1842 			CSR_WRITE_4(sc, RTK_TXCFG,
1843 			    RTK_TXCFG_CONFIG | RTK_LOOPTEST_ON);
1844 		else
1845 			CSR_WRITE_4(sc, RTK_TXCFG,
1846 			    RTK_TXCFG_CONFIG | RTK_LOOPTEST_ON_CPLUS);
1847 	} else
1848 		CSR_WRITE_4(sc, RTK_TXCFG, RTK_TXCFG_CONFIG);
1849 	CSR_WRITE_4(sc, RTK_RXCFG, RTK_RXCFG_CONFIG);
1850 
1851 	/* Set the individual bit to receive frames for this host only. */
1852 	rxcfg = CSR_READ_4(sc, RTK_RXCFG);
1853 	rxcfg |= RTK_RXCFG_RX_INDIV;
1854 
1855 	/* If we want promiscuous mode, set the allframes bit. */
1856 	if (ifp->if_flags & IFF_PROMISC)
1857 		rxcfg |= RTK_RXCFG_RX_ALLPHYS;
1858 	else
1859 		rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
1860 	CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1861 
1862 	/*
1863 	 * Set capture broadcast bit to capture broadcast frames.
1864 	 */
1865 	if (ifp->if_flags & IFF_BROADCAST)
1866 		rxcfg |= RTK_RXCFG_RX_BROAD;
1867 	else
1868 		rxcfg &= ~RTK_RXCFG_RX_BROAD;
1869 	CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1870 
1871 	/*
1872 	 * Program the multicast filter, if necessary.
1873 	 */
1874 	rtk_setmulti(sc);
1875 
1876 #ifdef DEVICE_POLLING
1877 	/*
1878 	 * Disable interrupts if we are polling.
1879 	 */
1880 	if (ifp->if_flags & IFF_POLLING)
1881 		CSR_WRITE_2(sc, RTK_IMR, 0);
1882 	else	/* otherwise ... */
1883 #endif /* DEVICE_POLLING */
1884 	/*
1885 	 * Enable interrupts.
1886 	 */
1887 	if (sc->rtk_testmode)
1888 		CSR_WRITE_2(sc, RTK_IMR, 0);
1889 	else
1890 		CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1891 
1892 	/* Start RX/TX process. */
1893 	CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
1894 #ifdef notdef
1895 	/* Enable receiver and transmitter. */
1896 	CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1897 #endif
1898 	/*
1899 	 * Load the addresses of the RX and TX lists into the chip.
1900 	 */
1901 
1902 	CSR_WRITE_4(sc, RTK_RXLIST_ADDR_HI,
1903 	    RTK_ADDR_HI(sc->rtk_ldata.rtk_rx_list_map->dm_segs[0].ds_addr));
1904 	CSR_WRITE_4(sc, RTK_RXLIST_ADDR_LO,
1905 	    RTK_ADDR_LO(sc->rtk_ldata.rtk_rx_list_map->dm_segs[0].ds_addr));
1906 
1907 	CSR_WRITE_4(sc, RTK_TXLIST_ADDR_HI,
1908 	    RTK_ADDR_HI(sc->rtk_ldata.rtk_tx_list_map->dm_segs[0].ds_addr));
1909 	CSR_WRITE_4(sc, RTK_TXLIST_ADDR_LO,
1910 	    RTK_ADDR_LO(sc->rtk_ldata.rtk_tx_list_map->dm_segs[0].ds_addr));
1911 
1912 	CSR_WRITE_1(sc, RTK_EARLY_TX_THRESH, 16);
1913 
1914 	/*
1915 	 * Initialize the timer interrupt register so that
1916 	 * a timer interrupt will be generated once the timer
1917 	 * reaches a certain number of ticks. The timer is
1918 	 * reloaded on each transmit. This gives us TX interrupt
1919 	 * moderation, which dramatically improves TX frame rate.
1920 	 */
1921 
1922 	if (sc->rtk_type == RTK_8169)
1923 		CSR_WRITE_4(sc, RTK_TIMERINT_8169, 0x800);
1924 	else
1925 		CSR_WRITE_4(sc, RTK_TIMERINT, 0x400);
1926 
1927 	/*
1928 	 * For 8169 gigE NICs, set the max allowed RX packet
1929 	 * size so we can receive jumbo frames.
1930 	 */
1931 	if (sc->rtk_type == RTK_8169)
1932 		CSR_WRITE_2(sc, RTK_MAXRXPKTLEN, 16383);
1933 
1934 	if (sc->rtk_testmode)
1935 		return 0;
1936 
1937 	mii_mediachg(&sc->mii);
1938 
1939 	CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD | RTK_CFG1_FULLDUPLEX);
1940 
1941 	ifp->if_flags |= IFF_RUNNING;
1942 	ifp->if_flags &= ~IFF_OACTIVE;
1943 
1944 	callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1945 
1946 out:
1947 	if (error) {
1948 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1949 		ifp->if_timer = 0;
1950 		aprint_error("%s: interface not running\n",
1951 		    sc->sc_dev.dv_xname);
1952 	}
1953 
1954 	return error;
1955 
1956 }
1957 
1958 /*
1959  * Set media options.
1960  */
1961 static int
1962 re_ifmedia_upd(struct ifnet *ifp)
1963 {
1964 	struct rtk_softc	*sc;
1965 
1966 	sc = ifp->if_softc;
1967 
1968 	return mii_mediachg(&sc->mii);
1969 }
1970 
1971 /*
1972  * Report current media status.
1973  */
1974 static void
1975 re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1976 {
1977 	struct rtk_softc	*sc;
1978 
1979 	sc = ifp->if_softc;
1980 
1981 	mii_pollstat(&sc->mii);
1982 	ifmr->ifm_active = sc->mii.mii_media_active;
1983 	ifmr->ifm_status = sc->mii.mii_media_status;
1984 
1985 	return;
1986 }
1987 
1988 static int
1989 re_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1990 {
1991 	struct rtk_softc	*sc = ifp->if_softc;
1992 	struct ifreq		*ifr = (struct ifreq *) data;
1993 	int			s, error = 0;
1994 
1995 	s = splnet();
1996 
1997 	switch (command) {
1998 	case SIOCSIFMTU:
1999 		if (ifr->ifr_mtu > RTK_JUMBO_MTU)
2000 			error = EINVAL;
2001 		ifp->if_mtu = ifr->ifr_mtu;
2002 		break;
2003 	case SIOCGIFMEDIA:
2004 	case SIOCSIFMEDIA:
2005 		error = ifmedia_ioctl(ifp, ifr, &sc->mii.mii_media, command);
2006 		break;
2007 	default:
2008 		error = ether_ioctl(ifp, command, data);
2009 		if (error == ENETRESET) {
2010 			if (ifp->if_flags & IFF_RUNNING)
2011 				rtk_setmulti(sc);
2012 			error = 0;
2013 		}
2014 		break;
2015 	}
2016 
2017 	splx(s);
2018 
2019 	return error;
2020 }
2021 
2022 static void
2023 re_watchdog(struct ifnet *ifp)
2024 {
2025 	struct rtk_softc	*sc;
2026 	int			s;
2027 
2028 	sc = ifp->if_softc;
2029 	s = splnet();
2030 	aprint_error("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
2031 	ifp->if_oerrors++;
2032 
2033 	re_txeof(sc);
2034 	re_rxeof(sc);
2035 
2036 	re_init(ifp);
2037 
2038 	splx(s);
2039 }
2040 
2041 /*
2042  * Stop the adapter and free any mbufs allocated to the
2043  * RX and TX lists.
2044  */
2045 static void
2046 re_stop(struct ifnet *ifp, int disable)
2047 {
2048 	register int		i;
2049 	struct rtk_softc *sc = ifp->if_softc;
2050 
2051 	callout_stop(&sc->rtk_tick_ch);
2052 
2053 #ifdef DEVICE_POLLING
2054 	ether_poll_deregister(ifp);
2055 #endif /* DEVICE_POLLING */
2056 
2057 	mii_down(&sc->mii);
2058 
2059 	CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
2060 	CSR_WRITE_2(sc, RTK_IMR, 0x0000);
2061 
2062 	if (sc->rtk_head != NULL) {
2063 		m_freem(sc->rtk_head);
2064 		sc->rtk_head = sc->rtk_tail = NULL;
2065 	}
2066 
2067 	/* Free the TX list buffers. */
2068 	for (i = 0; i < RTK_TX_QLEN; i++) {
2069 		if (sc->rtk_ldata.rtk_txq[i].txq_mbuf != NULL) {
2070 			bus_dmamap_unload(sc->sc_dmat,
2071 			    sc->rtk_ldata.rtk_txq[i].txq_dmamap);
2072 			m_freem(sc->rtk_ldata.rtk_txq[i].txq_mbuf);
2073 			sc->rtk_ldata.rtk_txq[i].txq_mbuf = NULL;
2074 		}
2075 	}
2076 
2077 	/* Free the RX list buffers. */
2078 	for (i = 0; i < RTK_RX_DESC_CNT; i++) {
2079 		if (sc->rtk_ldata.rtk_rx_mbuf[i] != NULL) {
2080 			bus_dmamap_unload(sc->sc_dmat,
2081 			    sc->rtk_ldata.rtk_rx_dmamap[i]);
2082 			m_freem(sc->rtk_ldata.rtk_rx_mbuf[i]);
2083 			sc->rtk_ldata.rtk_rx_mbuf[i] = NULL;
2084 		}
2085 	}
2086 
2087 	if (disable)
2088 		re_disable(sc);
2089 
2090 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2091 	ifp->if_timer = 0;
2092 
2093 	return;
2094 }
2095