xref: /netbsd-src/sys/dev/ic/rtl8169.c (revision aaf4ece63a859a04e37cf3a7229b5fab0157cc06)
1 /*	$NetBSD: rtl8169.c,v 1.22 2005/12/11 12:21:28 christos Exp $	*/
2 
3 /*
4  * Copyright (c) 1997, 1998-2003
5  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 #include <sys/cdefs.h>
36 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/re/if_re.c,v 1.20 2004/04/11 20:34:08 ru Exp $ */
37 
38 /*
39  * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
40  *
41  * Written by Bill Paul <wpaul@windriver.com>
42  * Senior Networking Software Engineer
43  * Wind River Systems
44  */
45 
46 /*
47  * This driver is designed to support RealTek's next generation of
48  * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
49  * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
50  * and the RTL8110S.
51  *
52  * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
53  * with the older 8139 family, however it also supports a special
54  * C+ mode of operation that provides several new performance enhancing
55  * features. These include:
56  *
57  *	o Descriptor based DMA mechanism. Each descriptor represents
58  *	  a single packet fragment. Data buffers may be aligned on
59  *	  any byte boundary.
60  *
61  *	o 64-bit DMA
62  *
63  *	o TCP/IP checksum offload for both RX and TX
64  *
65  *	o High and normal priority transmit DMA rings
66  *
67  *	o VLAN tag insertion and extraction
68  *
69  *	o TCP large send (segmentation offload)
70  *
71  * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
72  * programming API is fairly straightforward. The RX filtering, EEPROM
73  * access and PHY access is the same as it is on the older 8139 series
74  * chips.
75  *
76  * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
77  * same programming API and feature set as the 8139C+ with the following
78  * differences and additions:
79  *
80  *	o 1000Mbps mode
81  *
82  *	o Jumbo frames
83  *
84  * 	o GMII and TBI ports/registers for interfacing with copper
85  *	  or fiber PHYs
86  *
87  *      o RX and TX DMA rings can have up to 1024 descriptors
88  *        (the 8139C+ allows a maximum of 64)
89  *
90  *	o Slight differences in register layout from the 8139C+
91  *
92  * The TX start and timer interrupt registers are at different locations
93  * on the 8169 than they are on the 8139C+. Also, the status word in the
94  * RX descriptor has a slightly different bit layout. The 8169 does not
95  * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
96  * copper gigE PHY.
97  *
98  * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
99  * (the 'S' stands for 'single-chip'). These devices have the same
100  * programming API as the older 8169, but also have some vendor-specific
101  * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
102  * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
103  *
104  * This driver takes advantage of the RX and TX checksum offload and
105  * VLAN tag insertion/extraction features. It also implements TX
106  * interrupt moderation using the timer interrupt registers, which
107  * significantly reduces TX interrupt load. There is also support
108  * for jumbo frames, however the 8169/8169S/8110S can not transmit
109  * jumbo frames larger than 7.5K, so the max MTU possible with this
110  * driver is 7500 bytes.
111  */
112 
113 #include "bpfilter.h"
114 #include "vlan.h"
115 
116 #include <sys/param.h>
117 #include <sys/endian.h>
118 #include <sys/systm.h>
119 #include <sys/sockio.h>
120 #include <sys/mbuf.h>
121 #include <sys/malloc.h>
122 #include <sys/kernel.h>
123 #include <sys/socket.h>
124 #include <sys/device.h>
125 
126 #include <net/if.h>
127 #include <net/if_arp.h>
128 #include <net/if_dl.h>
129 #include <net/if_ether.h>
130 #include <net/if_media.h>
131 #include <net/if_vlanvar.h>
132 
133 #include <netinet/in_systm.h>	/* XXX for IP_MAXPACKET */
134 #include <netinet/in.h>		/* XXX for IP_MAXPACKET */
135 #include <netinet/ip.h>		/* XXX for IP_MAXPACKET */
136 
137 #if NBPFILTER > 0
138 #include <net/bpf.h>
139 #endif
140 
141 #include <machine/bus.h>
142 
143 #include <dev/mii/mii.h>
144 #include <dev/mii/miivar.h>
145 
146 #include <dev/pci/pcireg.h>
147 #include <dev/pci/pcivar.h>
148 #include <dev/pci/pcidevs.h>
149 
150 #include <dev/ic/rtl81x9reg.h>
151 #include <dev/ic/rtl81x9var.h>
152 
153 #include <dev/ic/rtl8169var.h>
154 
155 
156 static int re_encap(struct rtk_softc *, struct mbuf *, int *);
157 
158 static int re_newbuf(struct rtk_softc *, int, struct mbuf *);
159 static int re_rx_list_init(struct rtk_softc *);
160 static int re_tx_list_init(struct rtk_softc *);
161 static void re_rxeof(struct rtk_softc *);
162 static void re_txeof(struct rtk_softc *);
163 static void re_tick(void *);
164 static void re_start(struct ifnet *);
165 static int re_ioctl(struct ifnet *, u_long, caddr_t);
166 static int re_init(struct ifnet *);
167 static void re_stop(struct ifnet *, int);
168 static void re_watchdog(struct ifnet *);
169 
170 static void re_shutdown(void *);
171 static int re_enable(struct rtk_softc *);
172 static void re_disable(struct rtk_softc *);
173 static void re_power(int, void *);
174 
175 static int re_ifmedia_upd(struct ifnet *);
176 static void re_ifmedia_sts(struct ifnet *, struct ifmediareq *);
177 
178 static int re_gmii_readreg(struct device *, int, int);
179 static void re_gmii_writereg(struct device *, int, int, int);
180 
181 static int re_miibus_readreg(struct device *, int, int);
182 static void re_miibus_writereg(struct device *, int, int, int);
183 static void re_miibus_statchg(struct device *);
184 
185 static void re_reset(struct rtk_softc *);
186 
187 static int
188 re_gmii_readreg(struct device *self, int phy, int reg)
189 {
190 	struct rtk_softc	*sc = (void *)self;
191 	u_int32_t		rval;
192 	int			i;
193 
194 	if (phy != 7)
195 		return 0;
196 
197 	/* Let the rgephy driver read the GMEDIASTAT register */
198 
199 	if (reg == RTK_GMEDIASTAT) {
200 		rval = CSR_READ_1(sc, RTK_GMEDIASTAT);
201 		return rval;
202 	}
203 
204 	CSR_WRITE_4(sc, RTK_PHYAR, reg << 16);
205 	DELAY(1000);
206 
207 	for (i = 0; i < RTK_TIMEOUT; i++) {
208 		rval = CSR_READ_4(sc, RTK_PHYAR);
209 		if (rval & RTK_PHYAR_BUSY)
210 			break;
211 		DELAY(100);
212 	}
213 
214 	if (i == RTK_TIMEOUT) {
215 		aprint_error("%s: PHY read failed\n", sc->sc_dev.dv_xname);
216 		return 0;
217 	}
218 
219 	return rval & RTK_PHYAR_PHYDATA;
220 }
221 
222 static void
223 re_gmii_writereg(struct device *dev, int phy, int reg, int data)
224 {
225 	struct rtk_softc	*sc = (void *)dev;
226 	u_int32_t		rval;
227 	int			i;
228 
229 	CSR_WRITE_4(sc, RTK_PHYAR, (reg << 16) |
230 	    (data & RTK_PHYAR_PHYDATA) | RTK_PHYAR_BUSY);
231 	DELAY(1000);
232 
233 	for (i = 0; i < RTK_TIMEOUT; i++) {
234 		rval = CSR_READ_4(sc, RTK_PHYAR);
235 		if (!(rval & RTK_PHYAR_BUSY))
236 			break;
237 		DELAY(100);
238 	}
239 
240 	if (i == RTK_TIMEOUT) {
241 		aprint_error("%s: PHY write reg %x <- %x failed\n",
242 		    sc->sc_dev.dv_xname, reg, data);
243 		return;
244 	}
245 
246 	return;
247 }
248 
249 static int
250 re_miibus_readreg(struct device *dev, int phy, int reg)
251 {
252 	struct rtk_softc	*sc = (void *)dev;
253 	u_int16_t		rval = 0;
254 	u_int16_t		re8139_reg = 0;
255 	int			s;
256 
257 	s = splnet();
258 
259 	if (sc->rtk_type == RTK_8169) {
260 		rval = re_gmii_readreg(dev, phy, reg);
261 		splx(s);
262 		return rval;
263 	}
264 
265 	/* Pretend the internal PHY is only at address 0 */
266 	if (phy) {
267 		splx(s);
268 		return 0;
269 	}
270 	switch (reg) {
271 	case MII_BMCR:
272 		re8139_reg = RTK_BMCR;
273 		break;
274 	case MII_BMSR:
275 		re8139_reg = RTK_BMSR;
276 		break;
277 	case MII_ANAR:
278 		re8139_reg = RTK_ANAR;
279 		break;
280 	case MII_ANER:
281 		re8139_reg = RTK_ANER;
282 		break;
283 	case MII_ANLPAR:
284 		re8139_reg = RTK_LPAR;
285 		break;
286 	case MII_PHYIDR1:
287 	case MII_PHYIDR2:
288 		splx(s);
289 		return 0;
290 	/*
291 	 * Allow the rlphy driver to read the media status
292 	 * register. If we have a link partner which does not
293 	 * support NWAY, this is the register which will tell
294 	 * us the results of parallel detection.
295 	 */
296 	case RTK_MEDIASTAT:
297 		rval = CSR_READ_1(sc, RTK_MEDIASTAT);
298 		splx(s);
299 		return rval;
300 	default:
301 		aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
302 		splx(s);
303 		return 0;
304 	}
305 	rval = CSR_READ_2(sc, re8139_reg);
306 	splx(s);
307 	return rval;
308 }
309 
310 static void
311 re_miibus_writereg(struct device *dev, int phy, int reg, int data)
312 {
313 	struct rtk_softc	*sc = (void *)dev;
314 	u_int16_t		re8139_reg = 0;
315 	int			s;
316 
317 	s = splnet();
318 
319 	if (sc->rtk_type == RTK_8169) {
320 		re_gmii_writereg(dev, phy, reg, data);
321 		splx(s);
322 		return;
323 	}
324 
325 	/* Pretend the internal PHY is only at address 0 */
326 	if (phy) {
327 		splx(s);
328 		return;
329 	}
330 	switch (reg) {
331 	case MII_BMCR:
332 		re8139_reg = RTK_BMCR;
333 		break;
334 	case MII_BMSR:
335 		re8139_reg = RTK_BMSR;
336 		break;
337 	case MII_ANAR:
338 		re8139_reg = RTK_ANAR;
339 		break;
340 	case MII_ANER:
341 		re8139_reg = RTK_ANER;
342 		break;
343 	case MII_ANLPAR:
344 		re8139_reg = RTK_LPAR;
345 		break;
346 	case MII_PHYIDR1:
347 	case MII_PHYIDR2:
348 		splx(s);
349 		return;
350 		break;
351 	default:
352 		aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
353 		splx(s);
354 		return;
355 	}
356 	CSR_WRITE_2(sc, re8139_reg, data);
357 	splx(s);
358 	return;
359 }
360 
361 static void
362 re_miibus_statchg(struct device *dev)
363 {
364 
365 	return;
366 }
367 
368 static void
369 re_reset(struct rtk_softc *sc)
370 {
371 	register int		i;
372 
373 	CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
374 
375 	for (i = 0; i < RTK_TIMEOUT; i++) {
376 		DELAY(10);
377 		if (!(CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET))
378 			break;
379 	}
380 	if (i == RTK_TIMEOUT)
381 		aprint_error("%s: reset never completed!\n",
382 		    sc->sc_dev.dv_xname);
383 
384 	/*
385 	 * NB: Realtek-supplied Linux driver does this only for
386 	 * MCFG_METHOD_2, which corresponds to sc->sc_rev == 2.
387 	 */
388 	if (1) /* XXX check softc flag for 8169s version */
389 		CSR_WRITE_1(sc, 0x82, 1);
390 
391 	return;
392 }
393 
394 /*
395  * The following routine is designed to test for a defect on some
396  * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
397  * lines connected to the bus, however for a 32-bit only card, they
398  * should be pulled high. The result of this defect is that the
399  * NIC will not work right if you plug it into a 64-bit slot: DMA
400  * operations will be done with 64-bit transfers, which will fail
401  * because the 64-bit data lines aren't connected.
402  *
403  * There's no way to work around this (short of talking a soldering
404  * iron to the board), however we can detect it. The method we use
405  * here is to put the NIC into digital loopback mode, set the receiver
406  * to promiscuous mode, and then try to send a frame. We then compare
407  * the frame data we sent to what was received. If the data matches,
408  * then the NIC is working correctly, otherwise we know the user has
409  * a defective NIC which has been mistakenly plugged into a 64-bit PCI
410  * slot. In the latter case, there's no way the NIC can work correctly,
411  * so we print out a message on the console and abort the device attach.
412  */
413 
414 int
415 re_diag(struct rtk_softc *sc)
416 {
417 	struct ifnet		*ifp = &sc->ethercom.ec_if;
418 	struct mbuf		*m0;
419 	struct ether_header	*eh;
420 	struct rtk_desc		*cur_rx;
421 	bus_dmamap_t		dmamap;
422 	u_int16_t		status;
423 	u_int32_t		rxstat;
424 	int			total_len, i, s, error = 0;
425 	u_int8_t		dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
426 	u_int8_t		src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
427 
428 	/* Allocate a single mbuf */
429 
430 	MGETHDR(m0, M_DONTWAIT, MT_DATA);
431 	if (m0 == NULL)
432 		return ENOBUFS;
433 
434 	/*
435 	 * Initialize the NIC in test mode. This sets the chip up
436 	 * so that it can send and receive frames, but performs the
437 	 * following special functions:
438 	 * - Puts receiver in promiscuous mode
439 	 * - Enables digital loopback mode
440 	 * - Leaves interrupts turned off
441 	 */
442 
443 	ifp->if_flags |= IFF_PROMISC;
444 	sc->rtk_testmode = 1;
445 	re_init(ifp);
446 	re_stop(ifp, 0);
447 	DELAY(100000);
448 	re_init(ifp);
449 
450 	/* Put some data in the mbuf */
451 
452 	eh = mtod(m0, struct ether_header *);
453 	bcopy((char *)&dst, eh->ether_dhost, ETHER_ADDR_LEN);
454 	bcopy((char *)&src, eh->ether_shost, ETHER_ADDR_LEN);
455 	eh->ether_type = htons(ETHERTYPE_IP);
456 	m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
457 
458 	/*
459 	 * Queue the packet, start transmission.
460 	 */
461 
462 	CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
463 	s = splnet();
464 	IF_ENQUEUE(&ifp->if_snd, m0);
465 	re_start(ifp);
466 	splx(s);
467 	m0 = NULL;
468 
469 	/* Wait for it to propagate through the chip */
470 
471 	DELAY(100000);
472 	for (i = 0; i < RTK_TIMEOUT; i++) {
473 		status = CSR_READ_2(sc, RTK_ISR);
474 		if ((status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK)) ==
475 		    (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK))
476 			break;
477 		DELAY(10);
478 	}
479 	if (i == RTK_TIMEOUT) {
480 		aprint_error("%s: diagnostic failed, failed to receive packet "
481 		    "in loopback mode\n", sc->sc_dev.dv_xname);
482 		error = EIO;
483 		goto done;
484 	}
485 
486 	/*
487 	 * The packet should have been dumped into the first
488 	 * entry in the RX DMA ring. Grab it from there.
489 	 */
490 
491 	dmamap = sc->rtk_ldata.rtk_rx_list_map;
492 	bus_dmamap_sync(sc->sc_dmat,
493 	    dmamap, 0, dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
494 	dmamap = sc->rtk_ldata.rtk_rx_dmamap[0];
495 	bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
496 	    BUS_DMASYNC_POSTREAD);
497 	bus_dmamap_unload(sc->sc_dmat,
498 	    sc->rtk_ldata.rtk_rx_dmamap[0]);
499 
500 	m0 = sc->rtk_ldata.rtk_rx_mbuf[0];
501 	sc->rtk_ldata.rtk_rx_mbuf[0] = NULL;
502 	eh = mtod(m0, struct ether_header *);
503 
504 	cur_rx = &sc->rtk_ldata.rtk_rx_list[0];
505 	total_len = RTK_RXBYTES(cur_rx);
506 	rxstat = le32toh(cur_rx->rtk_cmdstat);
507 
508 	if (total_len != ETHER_MIN_LEN) {
509 		aprint_error("%s: diagnostic failed, received short packet\n",
510 		    sc->sc_dev.dv_xname);
511 		error = EIO;
512 		goto done;
513 	}
514 
515 	/* Test that the received packet data matches what we sent. */
516 
517 	if (bcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
518 	    bcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
519 	    ntohs(eh->ether_type) != ETHERTYPE_IP) {
520 		aprint_error("%s: WARNING, DMA FAILURE!\n",
521 		    sc->sc_dev.dv_xname);
522 		aprint_error("%s: expected TX data: %s",
523 		    sc->sc_dev.dv_xname, ether_sprintf(dst));
524 		aprint_error("/%s/0x%x\n", ether_sprintf(src), ETHERTYPE_IP);
525 		aprint_error("%s: received RX data: %s",
526 		    sc->sc_dev.dv_xname,
527 		    ether_sprintf(eh->ether_dhost));
528 		aprint_error("/%s/0x%x\n", ether_sprintf(eh->ether_shost),
529 		    ntohs(eh->ether_type));
530 		aprint_error("%s: You may have a defective 32-bit NIC plugged "
531 		    "into a 64-bit PCI slot.\n", sc->sc_dev.dv_xname);
532 		aprint_error("%s: Please re-install the NIC in a 32-bit slot "
533 		    "for proper operation.\n", sc->sc_dev.dv_xname);
534 		aprint_error("%s: Read the re(4) man page for more details.\n",
535 		    sc->sc_dev.dv_xname);
536 		error = EIO;
537 	}
538 
539 done:
540 	/* Turn interface off, release resources */
541 
542 	sc->rtk_testmode = 0;
543 	ifp->if_flags &= ~IFF_PROMISC;
544 	re_stop(ifp, 0);
545 	if (m0 != NULL)
546 		m_freem(m0);
547 
548 	return error;
549 }
550 
551 
552 /*
553  * Attach the interface. Allocate softc structures, do ifmedia
554  * setup and ethernet/BPF attach.
555  */
556 void
557 re_attach(struct rtk_softc *sc)
558 {
559 	u_char			eaddr[ETHER_ADDR_LEN];
560 	u_int16_t		val;
561 	struct ifnet		*ifp;
562 	int			error = 0, i, addr_len;
563 
564 
565 	/* XXX JRS: bus-attach-independent code begins approximately here */
566 
567 	/* Reset the adapter. */
568 	re_reset(sc);
569 
570 	if (sc->rtk_type == RTK_8169) {
571 		uint32_t hwrev;
572 
573 		/* Revision of 8169/8169S/8110s in bits 30..26, 23 */
574 		hwrev = CSR_READ_4(sc, RTK_TXCFG) & 0x7c800000;
575 		if (hwrev == (0x1 << 28)) {
576 			sc->sc_rev = 4;
577 		} else if (hwrev == (0x1 << 26)) {
578 			sc->sc_rev = 3;
579 		} else if (hwrev == (0x1 << 23)) {
580 			sc->sc_rev = 2;
581 		} else
582 			sc->sc_rev = 1;
583 
584 		/* Set RX length mask */
585 
586 		sc->rtk_rxlenmask = RTK_RDESC_STAT_GFRAGLEN;
587 
588 		/* Force station address autoload from the EEPROM */
589 
590 		CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_AUTOLOAD);
591 		for (i = 0; i < RTK_TIMEOUT; i++) {
592 			if (!(CSR_READ_1(sc, RTK_EECMD) & RTK_EEMODE_AUTOLOAD))
593 				break;
594 			DELAY(100);
595 		}
596 		if (i == RTK_TIMEOUT)
597 			aprint_error("%s: eeprom autoload timed out\n",
598 			    sc->sc_dev.dv_xname);
599 
600 		for (i = 0; i < ETHER_ADDR_LEN; i++)
601 			eaddr[i] = CSR_READ_1(sc, RTK_IDR0 + i);
602 
603 		sc->rtk_ldata.rtk_tx_desc_cnt = RTK_TX_DESC_CNT_8169;
604 	} else {
605 
606 		/* Set RX length mask */
607 
608 		sc->rtk_rxlenmask = RTK_RDESC_STAT_FRAGLEN;
609 
610 		if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
611 			addr_len = RTK_EEADDR_LEN1;
612 		else
613 			addr_len = RTK_EEADDR_LEN0;
614 
615 		/*
616 		 * Get station address from the EEPROM.
617 		 */
618 		for (i = 0; i < 3; i++) {
619 			val = rtk_read_eeprom(sc, RTK_EE_EADDR0 + i, addr_len);
620 			eaddr[(i * 2) + 0] = val & 0xff;
621 			eaddr[(i * 2) + 1] = val >> 8;
622 		}
623 
624 		sc->rtk_ldata.rtk_tx_desc_cnt = RTK_TX_DESC_CNT_8139;
625 	}
626 
627 	aprint_normal("%s: Ethernet address %s\n",
628 	    sc->sc_dev.dv_xname, ether_sprintf(eaddr));
629 
630 	if (sc->rtk_ldata.rtk_tx_desc_cnt >
631 	    PAGE_SIZE / sizeof(struct rtk_desc)) {
632 		sc->rtk_ldata.rtk_tx_desc_cnt =
633 		    PAGE_SIZE / sizeof(struct rtk_desc);
634 	}
635 
636 	aprint_verbose("%s: using %d tx descriptors\n",
637 	    sc->sc_dev.dv_xname, sc->rtk_ldata.rtk_tx_desc_cnt);
638 
639 	/* Allocate DMA'able memory for the TX ring */
640 	if ((error = bus_dmamem_alloc(sc->sc_dmat, RTK_TX_LIST_SZ(sc),
641 		    RTK_ETHER_ALIGN, 0, &sc->rtk_ldata.rtk_tx_listseg,
642 		    1, &sc->rtk_ldata.rtk_tx_listnseg, BUS_DMA_NOWAIT)) != 0) {
643 		aprint_error("%s: can't allocate tx listseg, error = %d\n",
644 		    sc->sc_dev.dv_xname, error);
645 		goto fail_0;
646 	}
647 
648 	/* Load the map for the TX ring. */
649 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->rtk_ldata.rtk_tx_listseg,
650 		    sc->rtk_ldata.rtk_tx_listnseg, RTK_TX_LIST_SZ(sc),
651 		    (caddr_t *)&sc->rtk_ldata.rtk_tx_list,
652 		    BUS_DMA_NOWAIT)) != 0) {
653 		aprint_error("%s: can't map tx list, error = %d\n",
654 		    sc->sc_dev.dv_xname, error);
655 	  	goto fail_1;
656 	}
657 	memset(sc->rtk_ldata.rtk_tx_list, 0, RTK_TX_LIST_SZ(sc));
658 
659 	if ((error = bus_dmamap_create(sc->sc_dmat, RTK_TX_LIST_SZ(sc), 1,
660 		    RTK_TX_LIST_SZ(sc), 0, BUS_DMA_ALLOCNOW,
661 		    &sc->rtk_ldata.rtk_tx_list_map)) != 0) {
662 		aprint_error("%s: can't create tx list map, error = %d\n",
663 		    sc->sc_dev.dv_xname, error);
664 		goto fail_2;
665 	}
666 
667 
668 	if ((error = bus_dmamap_load(sc->sc_dmat,
669 		    sc->rtk_ldata.rtk_tx_list_map, sc->rtk_ldata.rtk_tx_list,
670 		    RTK_TX_LIST_SZ(sc), NULL, BUS_DMA_NOWAIT)) != 0) {
671 		aprint_error("%s: can't load tx list, error = %d\n",
672 		    sc->sc_dev.dv_xname, error);
673 		goto fail_3;
674 	}
675 
676 	/* Create DMA maps for TX buffers */
677 	for (i = 0; i < RTK_TX_QLEN; i++) {
678 		error = bus_dmamap_create(sc->sc_dmat,
679 		    round_page(IP_MAXPACKET),
680 		    RTK_TX_DESC_CNT(sc) - 4, RTK_TDESC_CMD_FRAGLEN,
681 		    0, BUS_DMA_ALLOCNOW,
682 		    &sc->rtk_ldata.rtk_txq[i].txq_dmamap);
683 		if (error) {
684 			aprint_error("%s: can't create DMA map for TX\n",
685 			    sc->sc_dev.dv_xname);
686 			goto fail_4;
687 		}
688 	}
689 
690 	/* Allocate DMA'able memory for the RX ring */
691         if ((error = bus_dmamem_alloc(sc->sc_dmat, RTK_RX_LIST_SZ,
692 		    RTK_RING_ALIGN, 0, &sc->rtk_ldata.rtk_rx_listseg, 1,
693 		    &sc->rtk_ldata.rtk_rx_listnseg, BUS_DMA_NOWAIT)) != 0) {
694 		aprint_error("%s: can't allocate rx listseg, error = %d\n",
695 		    sc->sc_dev.dv_xname, error);
696 		goto fail_4;
697 	}
698 
699 	/* Load the map for the RX ring. */
700 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->rtk_ldata.rtk_rx_listseg,
701 		    sc->rtk_ldata.rtk_rx_listnseg, RTK_RX_LIST_SZ,
702 		    (caddr_t *)&sc->rtk_ldata.rtk_rx_list,
703 		    BUS_DMA_NOWAIT)) != 0) {
704 		aprint_error("%s: can't map rx list, error = %d\n",
705 		    sc->sc_dev.dv_xname, error);
706 		goto fail_5;
707 	}
708 	memset(sc->rtk_ldata.rtk_rx_list, 0, RTK_RX_LIST_SZ);
709 
710 	if ((error = bus_dmamap_create(sc->sc_dmat, RTK_RX_LIST_SZ, 1,
711 		    RTK_RX_LIST_SZ, 0, BUS_DMA_ALLOCNOW,
712 		    &sc->rtk_ldata.rtk_rx_list_map)) != 0) {
713 		aprint_error("%s: can't create rx list map, error = %d\n",
714 		    sc->sc_dev.dv_xname, error);
715 		goto fail_6;
716 	}
717 
718 	if ((error = bus_dmamap_load(sc->sc_dmat,
719 		    sc->rtk_ldata.rtk_rx_list_map, sc->rtk_ldata.rtk_rx_list,
720 		    RTK_RX_LIST_SZ, NULL, BUS_DMA_NOWAIT)) != 0) {
721 		aprint_error("%s: can't load rx list, error = %d\n",
722 		    sc->sc_dev.dv_xname, error);
723 		goto fail_7;
724 	}
725 
726 	/* Create DMA maps for RX buffers */
727 	for (i = 0; i < RTK_RX_DESC_CNT; i++) {
728 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
729 		    0, BUS_DMA_ALLOCNOW, &sc->rtk_ldata.rtk_rx_dmamap[i]);
730 		if (error) {
731 			aprint_error("%s: can't create DMA map for RX\n",
732 			    sc->sc_dev.dv_xname);
733 			goto fail_8;
734 		}
735 	}
736 
737 	/*
738 	 * Record interface as attached. From here, we should not fail.
739 	 */
740 	sc->sc_flags |= RTK_ATTACHED;
741 
742 	ifp = &sc->ethercom.ec_if;
743 	ifp->if_softc = sc;
744 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
745 	ifp->if_mtu = ETHERMTU;
746 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
747 	ifp->if_ioctl = re_ioctl;
748 	sc->ethercom.ec_capabilities |=
749 	    ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
750 	ifp->if_start = re_start;
751 	ifp->if_stop = re_stop;
752 
753 	/*
754 	 * IFCAP_CSUM_IPv4_Tx seems broken for small packets.
755 	 */
756 
757 	ifp->if_capabilities |=
758 	    /* IFCAP_CSUM_IPv4_Tx | */ IFCAP_CSUM_IPv4_Rx |
759 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
760 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
761 	    IFCAP_TSOv4;
762 	ifp->if_watchdog = re_watchdog;
763 	ifp->if_init = re_init;
764 	if (sc->rtk_type == RTK_8169)
765 		ifp->if_baudrate = 1000000000;
766 	else
767 		ifp->if_baudrate = 100000000;
768 	ifp->if_snd.ifq_maxlen = RTK_IFQ_MAXLEN;
769 	ifp->if_capenable = ifp->if_capabilities;
770 	IFQ_SET_READY(&ifp->if_snd);
771 
772 	callout_init(&sc->rtk_tick_ch);
773 
774 	/* Do MII setup */
775 	sc->mii.mii_ifp = ifp;
776 	sc->mii.mii_readreg = re_miibus_readreg;
777 	sc->mii.mii_writereg = re_miibus_writereg;
778 	sc->mii.mii_statchg = re_miibus_statchg;
779 	ifmedia_init(&sc->mii.mii_media, IFM_IMASK, re_ifmedia_upd,
780 	    re_ifmedia_sts);
781 	mii_attach(&sc->sc_dev, &sc->mii, 0xffffffff, MII_PHY_ANY,
782 	    MII_OFFSET_ANY, 0);
783 	ifmedia_set(&sc->mii.mii_media, IFM_ETHER | IFM_AUTO);
784 
785 	/*
786 	 * Call MI attach routine.
787 	 */
788 	if_attach(ifp);
789 	ether_ifattach(ifp, eaddr);
790 
791 
792 	/*
793 	 * Make sure the interface is shutdown during reboot.
794 	 */
795 	sc->sc_sdhook = shutdownhook_establish(re_shutdown, sc);
796 	if (sc->sc_sdhook == NULL)
797 		aprint_error("%s: WARNING: unable to establish shutdown hook\n",
798 		    sc->sc_dev.dv_xname);
799 	/*
800 	 * Add a suspend hook to make sure we come back up after a
801 	 * resume.
802 	 */
803 	sc->sc_powerhook = powerhook_establish(re_power, sc);
804 	if (sc->sc_powerhook == NULL)
805 		aprint_error("%s: WARNING: unable to establish power hook\n",
806 		    sc->sc_dev.dv_xname);
807 
808 
809 	return;
810 
811 fail_8:
812 	/* Destroy DMA maps for RX buffers. */
813 	for (i = 0; i < RTK_RX_DESC_CNT; i++)
814 		if (sc->rtk_ldata.rtk_rx_dmamap[i] != NULL)
815 			bus_dmamap_destroy(sc->sc_dmat,
816 			    sc->rtk_ldata.rtk_rx_dmamap[i]);
817 
818 	/* Free DMA'able memory for the RX ring. */
819 	bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
820 fail_7:
821 	bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
822 fail_6:
823 	bus_dmamem_unmap(sc->sc_dmat,
824 	    (caddr_t)sc->rtk_ldata.rtk_rx_list, RTK_RX_LIST_SZ);
825 fail_5:
826 	bus_dmamem_free(sc->sc_dmat,
827 	    &sc->rtk_ldata.rtk_rx_listseg, sc->rtk_ldata.rtk_rx_listnseg);
828 
829 fail_4:
830 	/* Destroy DMA maps for TX buffers. */
831 	for (i = 0; i < RTK_TX_QLEN; i++)
832 		if (sc->rtk_ldata.rtk_txq[i].txq_dmamap != NULL)
833 			bus_dmamap_destroy(sc->sc_dmat,
834 			    sc->rtk_ldata.rtk_txq[i].txq_dmamap);
835 
836 	/* Free DMA'able memory for the TX ring. */
837 	bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
838 fail_3:
839 	bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
840 fail_2:
841 	bus_dmamem_unmap(sc->sc_dmat,
842 	    (caddr_t)sc->rtk_ldata.rtk_tx_list, RTK_TX_LIST_SZ(sc));
843 fail_1:
844 	bus_dmamem_free(sc->sc_dmat,
845 	    &sc->rtk_ldata.rtk_tx_listseg, sc->rtk_ldata.rtk_tx_listnseg);
846 fail_0:
847 	return;
848 }
849 
850 
851 /*
852  * re_activate:
853  *     Handle device activation/deactivation requests.
854  */
855 int
856 re_activate(struct device *self, enum devact act)
857 {
858 	struct rtk_softc *sc = (void *) self;
859 	int s, error = 0;
860 
861 	s = splnet();
862 	switch (act) {
863 	case DVACT_ACTIVATE:
864 		error = EOPNOTSUPP;
865 		break;
866 	case DVACT_DEACTIVATE:
867 		mii_activate(&sc->mii, act, MII_PHY_ANY, MII_OFFSET_ANY);
868 		if_deactivate(&sc->ethercom.ec_if);
869 		break;
870 	}
871 	splx(s);
872 
873 	return error;
874 }
875 
876 /*
877  * re_detach:
878  *     Detach a rtk interface.
879  */
880 int
881 re_detach(struct rtk_softc *sc)
882 {
883 	struct ifnet *ifp = &sc->ethercom.ec_if;
884 	int i;
885 
886 	/*
887 	 * Succeed now if there isn't any work to do.
888 	 */
889 	if ((sc->sc_flags & RTK_ATTACHED) == 0)
890 		return 0;
891 
892 	/* Unhook our tick handler. */
893 	callout_stop(&sc->rtk_tick_ch);
894 
895 	/* Detach all PHYs. */
896 	mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
897 
898 	/* Delete all remaining media. */
899 	ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
900 
901 	ether_ifdetach(ifp);
902 	if_detach(ifp);
903 
904 	/* XXX undo re_allocmem() */
905 
906 	/* Destroy DMA maps for RX buffers. */
907 	for (i = 0; i < RTK_RX_DESC_CNT; i++)
908 		if (sc->rtk_ldata.rtk_rx_dmamap[i] != NULL)
909 			bus_dmamap_destroy(sc->sc_dmat,
910 			    sc->rtk_ldata.rtk_rx_dmamap[i]);
911 
912 	/* Free DMA'able memory for the RX ring. */
913 	bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
914 	bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
915 	bus_dmamem_unmap(sc->sc_dmat,
916 	    (caddr_t)sc->rtk_ldata.rtk_rx_list, RTK_RX_LIST_SZ);
917 	bus_dmamem_free(sc->sc_dmat,
918 	    &sc->rtk_ldata.rtk_rx_listseg, sc->rtk_ldata.rtk_rx_listnseg);
919 
920 	/* Destroy DMA maps for TX buffers. */
921 	for (i = 0; i < RTK_TX_QLEN; i++)
922 		if (sc->rtk_ldata.rtk_txq[i].txq_dmamap != NULL)
923 			bus_dmamap_destroy(sc->sc_dmat,
924 			    sc->rtk_ldata.rtk_txq[i].txq_dmamap);
925 
926 	/* Free DMA'able memory for the TX ring. */
927 	bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
928 	bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
929 	bus_dmamem_unmap(sc->sc_dmat,
930 	    (caddr_t)sc->rtk_ldata.rtk_tx_list, RTK_TX_LIST_SZ(sc));
931 	bus_dmamem_free(sc->sc_dmat,
932 	    &sc->rtk_ldata.rtk_tx_listseg, sc->rtk_ldata.rtk_tx_listnseg);
933 
934 
935 	shutdownhook_disestablish(sc->sc_sdhook);
936 	powerhook_disestablish(sc->sc_powerhook);
937 
938 	return 0;
939 }
940 
941 /*
942  * re_enable:
943  *     Enable the RTL81X9 chip.
944  */
945 static int
946 re_enable(struct rtk_softc *sc)
947 {
948 	if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
949 		if ((*sc->sc_enable)(sc) != 0) {
950 			aprint_error("%s: device enable failed\n",
951 			    sc->sc_dev.dv_xname);
952 			return EIO;
953 		}
954 		sc->sc_flags |= RTK_ENABLED;
955 	}
956 	return 0;
957 }
958 
959 /*
960  * re_disable:
961  *     Disable the RTL81X9 chip.
962  */
963 static void
964 re_disable(struct rtk_softc *sc)
965 {
966 
967 	if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
968 		(*sc->sc_disable)(sc);
969 		sc->sc_flags &= ~RTK_ENABLED;
970 	}
971 }
972 
973 /*
974  * re_power:
975  *     Power management (suspend/resume) hook.
976  */
977 void
978 re_power(int why, void *arg)
979 {
980 	struct rtk_softc *sc = (void *) arg;
981 	struct ifnet *ifp = &sc->ethercom.ec_if;
982 	int s;
983 
984 	s = splnet();
985 	switch (why) {
986 	case PWR_SUSPEND:
987 	case PWR_STANDBY:
988 		re_stop(ifp, 0);
989 		if (sc->sc_power != NULL)
990 			(*sc->sc_power)(sc, why);
991 		break;
992 	case PWR_RESUME:
993 		if (ifp->if_flags & IFF_UP) {
994 			if (sc->sc_power != NULL)
995 				(*sc->sc_power)(sc, why);
996 			re_init(ifp);
997 		}
998 		break;
999 	case PWR_SOFTSUSPEND:
1000 	case PWR_SOFTSTANDBY:
1001 	case PWR_SOFTRESUME:
1002 		break;
1003 	}
1004 	splx(s);
1005 }
1006 
1007 
1008 static int
1009 re_newbuf(struct rtk_softc *sc, int idx, struct mbuf *m)
1010 {
1011 	struct mbuf		*n = NULL;
1012 	bus_dmamap_t		map;
1013 	struct rtk_desc		*d;
1014 	u_int32_t		cmdstat;
1015 	int			error;
1016 
1017 	if (m == NULL) {
1018 		MGETHDR(n, M_DONTWAIT, MT_DATA);
1019 		if (n == NULL)
1020 			return ENOBUFS;
1021 		m = n;
1022 
1023 		MCLGET(m, M_DONTWAIT);
1024 		if (!(m->m_flags & M_EXT)) {
1025 			m_freem(m);
1026 			return ENOBUFS;
1027 		}
1028 	} else
1029 		m->m_data = m->m_ext.ext_buf;
1030 
1031 	/*
1032 	 * Initialize mbuf length fields and fixup
1033 	 * alignment so that the frame payload is
1034 	 * longword aligned.
1035 	 */
1036 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1037 	m_adj(m, RTK_ETHER_ALIGN);
1038 
1039 	map = sc->rtk_ldata.rtk_rx_dmamap[idx];
1040 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1041 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
1042 
1043 	if (error)
1044 		goto out;
1045 
1046 	d = &sc->rtk_ldata.rtk_rx_list[idx];
1047 	if (le32toh(d->rtk_cmdstat) & RTK_RDESC_STAT_OWN)
1048 		goto out;
1049 
1050 	cmdstat = map->dm_segs[0].ds_len;
1051 	d->rtk_bufaddr_lo = htole32(RTK_ADDR_LO(map->dm_segs[0].ds_addr));
1052 	d->rtk_bufaddr_hi = htole32(RTK_ADDR_HI(map->dm_segs[0].ds_addr));
1053 	if (idx == (RTK_RX_DESC_CNT - 1))
1054 		cmdstat |= RTK_RDESC_CMD_EOR;
1055 	d->rtk_cmdstat = htole32(cmdstat);
1056 
1057 	sc->rtk_ldata.rtk_rx_list[idx].rtk_cmdstat |=
1058 	    htole32(RTK_RDESC_CMD_OWN);
1059 	sc->rtk_ldata.rtk_rx_mbuf[idx] = m;
1060 
1061 	bus_dmamap_sync(sc->sc_dmat, sc->rtk_ldata.rtk_rx_dmamap[idx], 0,
1062 	    sc->rtk_ldata.rtk_rx_dmamap[idx]->dm_mapsize,
1063 	    BUS_DMASYNC_PREREAD);
1064 
1065 	return 0;
1066 out:
1067 	if (n != NULL)
1068 		m_freem(n);
1069 	return ENOMEM;
1070 }
1071 
1072 static int
1073 re_tx_list_init(struct rtk_softc *sc)
1074 {
1075 	int i;
1076 
1077 	memset(sc->rtk_ldata.rtk_tx_list, 0, RTK_TX_LIST_SZ(sc));
1078 	for (i = 0; i < RTK_TX_QLEN; i++) {
1079 		sc->rtk_ldata.rtk_txq[i].txq_mbuf = NULL;
1080 	}
1081 
1082 	bus_dmamap_sync(sc->sc_dmat,
1083 	    sc->rtk_ldata.rtk_tx_list_map, 0,
1084 	    sc->rtk_ldata.rtk_tx_list_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1085 	sc->rtk_ldata.rtk_txq_prodidx = 0;
1086 	sc->rtk_ldata.rtk_txq_considx = 0;
1087 	sc->rtk_ldata.rtk_tx_free = RTK_TX_DESC_CNT(sc);
1088 	sc->rtk_ldata.rtk_tx_nextfree = 0;
1089 
1090 	return 0;
1091 }
1092 
1093 static int
1094 re_rx_list_init(struct rtk_softc *sc)
1095 {
1096 	int			i;
1097 
1098 	memset((char *)sc->rtk_ldata.rtk_rx_list, 0, RTK_RX_LIST_SZ);
1099 	memset((char *)&sc->rtk_ldata.rtk_rx_mbuf, 0,
1100 	    (RTK_RX_DESC_CNT * sizeof(struct mbuf *)));
1101 
1102 	for (i = 0; i < RTK_RX_DESC_CNT; i++) {
1103 		if (re_newbuf(sc, i, NULL) == ENOBUFS)
1104 			return ENOBUFS;
1105 	}
1106 
1107 	/* Flush the RX descriptors */
1108 
1109 	bus_dmamap_sync(sc->sc_dmat,
1110 	    sc->rtk_ldata.rtk_rx_list_map,
1111 	    0, sc->rtk_ldata.rtk_rx_list_map->dm_mapsize,
1112 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1113 
1114 	sc->rtk_ldata.rtk_rx_prodidx = 0;
1115 	sc->rtk_head = sc->rtk_tail = NULL;
1116 
1117 	return 0;
1118 }
1119 
1120 /*
1121  * RX handler for C+ and 8169. For the gigE chips, we support
1122  * the reception of jumbo frames that have been fragmented
1123  * across multiple 2K mbuf cluster buffers.
1124  */
1125 static void
1126 re_rxeof(struct rtk_softc *sc)
1127 {
1128 	struct mbuf		*m;
1129 	struct ifnet		*ifp;
1130 	int			i, total_len;
1131 	struct rtk_desc		*cur_rx;
1132 	u_int32_t		rxstat, rxvlan;
1133 
1134 	ifp = &sc->ethercom.ec_if;
1135 	i = sc->rtk_ldata.rtk_rx_prodidx;
1136 
1137 	/* Invalidate the descriptor memory */
1138 
1139 	bus_dmamap_sync(sc->sc_dmat,
1140 	    sc->rtk_ldata.rtk_rx_list_map,
1141 	    0, sc->rtk_ldata.rtk_rx_list_map->dm_mapsize,
1142 	    BUS_DMASYNC_POSTREAD);
1143 
1144 	while (!RTK_OWN(&sc->rtk_ldata.rtk_rx_list[i])) {
1145 
1146 		cur_rx = &sc->rtk_ldata.rtk_rx_list[i];
1147 		m = sc->rtk_ldata.rtk_rx_mbuf[i];
1148 		total_len = RTK_RXBYTES(cur_rx);
1149 		rxstat = le32toh(cur_rx->rtk_cmdstat);
1150 		rxvlan = le32toh(cur_rx->rtk_vlanctl);
1151 
1152 		/* Invalidate the RX mbuf and unload its map */
1153 
1154 		bus_dmamap_sync(sc->sc_dmat,
1155 		    sc->rtk_ldata.rtk_rx_dmamap[i],
1156 		    0, sc->rtk_ldata.rtk_rx_dmamap[i]->dm_mapsize,
1157 		    BUS_DMASYNC_POSTREAD);
1158 		bus_dmamap_unload(sc->sc_dmat,
1159 		    sc->rtk_ldata.rtk_rx_dmamap[i]);
1160 
1161 		if (!(rxstat & RTK_RDESC_STAT_EOF)) {
1162 			m->m_len = MCLBYTES - RTK_ETHER_ALIGN;
1163 			if (sc->rtk_head == NULL)
1164 				sc->rtk_head = sc->rtk_tail = m;
1165 			else {
1166 				m->m_flags &= ~M_PKTHDR;
1167 				sc->rtk_tail->m_next = m;
1168 				sc->rtk_tail = m;
1169 			}
1170 			re_newbuf(sc, i, NULL);
1171 			RTK_RX_DESC_INC(sc, i);
1172 			continue;
1173 		}
1174 
1175 		/*
1176 		 * NOTE: for the 8139C+, the frame length field
1177 		 * is always 12 bits in size, but for the gigE chips,
1178 		 * it is 13 bits (since the max RX frame length is 16K).
1179 		 * Unfortunately, all 32 bits in the status word
1180 		 * were already used, so to make room for the extra
1181 		 * length bit, RealTek took out the 'frame alignment
1182 		 * error' bit and shifted the other status bits
1183 		 * over one slot. The OWN, EOR, FS and LS bits are
1184 		 * still in the same places. We have already extracted
1185 		 * the frame length and checked the OWN bit, so rather
1186 		 * than using an alternate bit mapping, we shift the
1187 		 * status bits one space to the right so we can evaluate
1188 		 * them using the 8169 status as though it was in the
1189 		 * same format as that of the 8139C+.
1190 		 */
1191 		if (sc->rtk_type == RTK_8169)
1192 			rxstat >>= 1;
1193 
1194 		if (rxstat & RTK_RDESC_STAT_RXERRSUM) {
1195 			ifp->if_ierrors++;
1196 			/*
1197 			 * If this is part of a multi-fragment packet,
1198 			 * discard all the pieces.
1199 			 */
1200 			if (sc->rtk_head != NULL) {
1201 				m_freem(sc->rtk_head);
1202 				sc->rtk_head = sc->rtk_tail = NULL;
1203 			}
1204 			re_newbuf(sc, i, m);
1205 			RTK_RX_DESC_INC(sc, i);
1206 			continue;
1207 		}
1208 
1209 		/*
1210 		 * If allocating a replacement mbuf fails,
1211 		 * reload the current one.
1212 		 */
1213 
1214 		if (re_newbuf(sc, i, NULL)) {
1215 			ifp->if_ierrors++;
1216 			if (sc->rtk_head != NULL) {
1217 				m_freem(sc->rtk_head);
1218 				sc->rtk_head = sc->rtk_tail = NULL;
1219 			}
1220 			re_newbuf(sc, i, m);
1221 			RTK_RX_DESC_INC(sc, i);
1222 			continue;
1223 		}
1224 
1225 		RTK_RX_DESC_INC(sc, i);
1226 
1227 		if (sc->rtk_head != NULL) {
1228 			m->m_len = total_len % (MCLBYTES - RTK_ETHER_ALIGN);
1229 			/*
1230 			 * Special case: if there's 4 bytes or less
1231 			 * in this buffer, the mbuf can be discarded:
1232 			 * the last 4 bytes is the CRC, which we don't
1233 			 * care about anyway.
1234 			 */
1235 			if (m->m_len <= ETHER_CRC_LEN) {
1236 				sc->rtk_tail->m_len -=
1237 				    (ETHER_CRC_LEN - m->m_len);
1238 				m_freem(m);
1239 			} else {
1240 				m->m_len -= ETHER_CRC_LEN;
1241 				m->m_flags &= ~M_PKTHDR;
1242 				sc->rtk_tail->m_next = m;
1243 			}
1244 			m = sc->rtk_head;
1245 			sc->rtk_head = sc->rtk_tail = NULL;
1246 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1247 		} else
1248 			m->m_pkthdr.len = m->m_len =
1249 			    (total_len - ETHER_CRC_LEN);
1250 
1251 		ifp->if_ipackets++;
1252 		m->m_pkthdr.rcvif = ifp;
1253 
1254 		/* Do RX checksumming if enabled */
1255 
1256 		if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
1257 
1258 			/* Check IP header checksum */
1259 			if (rxstat & RTK_RDESC_STAT_PROTOID)
1260 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4;;
1261 			if (rxstat & RTK_RDESC_STAT_IPSUMBAD)
1262 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1263 		}
1264 
1265 		/* Check TCP/UDP checksum */
1266 		if (RTK_TCPPKT(rxstat) &&
1267 		    (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx)) {
1268 			m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1269 			if (rxstat & RTK_RDESC_STAT_TCPSUMBAD)
1270 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1271 		}
1272 		if (RTK_UDPPKT(rxstat) &&
1273 		    (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx)) {
1274 			m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1275 			if (rxstat & RTK_RDESC_STAT_UDPSUMBAD)
1276 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1277 		}
1278 
1279 		if (rxvlan & RTK_RDESC_VLANCTL_TAG) {
1280 			VLAN_INPUT_TAG(ifp, m,
1281 			     be16toh(rxvlan & RTK_RDESC_VLANCTL_DATA),
1282 			     continue);
1283 		}
1284 #if NBPFILTER > 0
1285 		if (ifp->if_bpf)
1286 			bpf_mtap(ifp->if_bpf, m);
1287 #endif
1288 		(*ifp->if_input)(ifp, m);
1289 	}
1290 
1291 	/* Flush the RX DMA ring */
1292 
1293 	bus_dmamap_sync(sc->sc_dmat,
1294 	    sc->rtk_ldata.rtk_rx_list_map,
1295 	    0, sc->rtk_ldata.rtk_rx_list_map->dm_mapsize,
1296 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1297 
1298 	sc->rtk_ldata.rtk_rx_prodidx = i;
1299 
1300 	return;
1301 }
1302 
1303 static void
1304 re_txeof(struct rtk_softc *sc)
1305 {
1306 	struct ifnet		*ifp;
1307 	int			idx;
1308 
1309 	ifp = &sc->ethercom.ec_if;
1310 	idx = sc->rtk_ldata.rtk_txq_considx;
1311 
1312 	/* Invalidate the TX descriptor list */
1313 
1314 	bus_dmamap_sync(sc->sc_dmat,
1315 	    sc->rtk_ldata.rtk_tx_list_map,
1316 	    0, sc->rtk_ldata.rtk_tx_list_map->dm_mapsize,
1317 	    BUS_DMASYNC_POSTREAD);
1318 
1319 	while (/* CONSTCOND */ 1) {
1320 		struct rtk_txq *txq = &sc->rtk_ldata.rtk_txq[idx];
1321 		int descidx;
1322 		u_int32_t txstat;
1323 
1324 		if (txq->txq_mbuf == NULL) {
1325 			KASSERT(idx == sc->rtk_ldata.rtk_txq_prodidx);
1326 			break;
1327 		}
1328 
1329 		descidx = txq->txq_descidx;
1330 		txstat =
1331 		    le32toh(sc->rtk_ldata.rtk_tx_list[descidx].rtk_cmdstat);
1332 		KASSERT((txstat & RTK_TDESC_CMD_EOF) != 0);
1333 		if (txstat & RTK_TDESC_CMD_OWN)
1334 			break;
1335 
1336 		sc->rtk_ldata.rtk_tx_free += txq->txq_dmamap->dm_nsegs;
1337 		KASSERT(sc->rtk_ldata.rtk_tx_free <= RTK_TX_DESC_CNT(sc));
1338 		bus_dmamap_unload(sc->sc_dmat, txq->txq_dmamap);
1339 		m_freem(txq->txq_mbuf);
1340 		txq->txq_mbuf = NULL;
1341 
1342 		if (txstat & (RTK_TDESC_STAT_EXCESSCOL | RTK_TDESC_STAT_COLCNT))
1343 			ifp->if_collisions++;
1344 		if (txstat & RTK_TDESC_STAT_TXERRSUM)
1345 			ifp->if_oerrors++;
1346 		else
1347 			ifp->if_opackets++;
1348 
1349 		idx = (idx + 1) % RTK_TX_QLEN;
1350 	}
1351 
1352 	/* No changes made to the TX ring, so no flush needed */
1353 
1354 	if (idx != sc->rtk_ldata.rtk_txq_considx) {
1355 		sc->rtk_ldata.rtk_txq_considx = idx;
1356 		ifp->if_flags &= ~IFF_OACTIVE;
1357 		ifp->if_timer = 0;
1358 	}
1359 
1360 	/*
1361 	 * If not all descriptors have been released reaped yet,
1362 	 * reload the timer so that we will eventually get another
1363 	 * interrupt that will cause us to re-enter this routine.
1364 	 * This is done in case the transmitter has gone idle.
1365 	 */
1366 	if (sc->rtk_ldata.rtk_tx_free != RTK_TX_DESC_CNT(sc))
1367 		CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1368 
1369 	return;
1370 }
1371 
1372 /*
1373  * Stop all chip I/O so that the kernel's probe routines don't
1374  * get confused by errant DMAs when rebooting.
1375  */
1376 static void
1377 re_shutdown(void *vsc)
1378 
1379 {
1380 	struct rtk_softc	*sc = (struct rtk_softc *)vsc;
1381 
1382 	re_stop(&sc->ethercom.ec_if, 0);
1383 }
1384 
1385 
1386 static void
1387 re_tick(void *xsc)
1388 {
1389 	struct rtk_softc	*sc = xsc;
1390 	int s;
1391 
1392 	/*XXX: just return for 8169S/8110S with rev 2 or newer phy */
1393 	s = splnet();
1394 
1395 	mii_tick(&sc->mii);
1396 	splx(s);
1397 
1398 	callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1399 }
1400 
1401 #ifdef DEVICE_POLLING
1402 static void
1403 re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1404 {
1405 	struct rtk_softc *sc = ifp->if_softc;
1406 
1407 	RTK_LOCK(sc);
1408 	if (!(ifp->if_capenable & IFCAP_POLLING)) {
1409 		ether_poll_deregister(ifp);
1410 		cmd = POLL_DEREGISTER;
1411 	}
1412 	if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
1413 		CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1414 		goto done;
1415 	}
1416 
1417 	sc->rxcycles = count;
1418 	re_rxeof(sc);
1419 	re_txeof(sc);
1420 
1421 	if (ifp->if_snd.ifq_head != NULL)
1422 		(*ifp->if_start)(ifp);
1423 
1424 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1425 		u_int16_t       status;
1426 
1427 		status = CSR_READ_2(sc, RTK_ISR);
1428 		if (status == 0xffff)
1429 			goto done;
1430 		if (status)
1431 			CSR_WRITE_2(sc, RTK_ISR, status);
1432 
1433 		/*
1434 		 * XXX check behaviour on receiver stalls.
1435 		 */
1436 
1437 		if (status & RTK_ISR_SYSTEM_ERR) {
1438 			re_reset(sc);
1439 			re_init(sc);
1440 		}
1441 	}
1442 done:
1443 	RTK_UNLOCK(sc);
1444 }
1445 #endif /* DEVICE_POLLING */
1446 
1447 int
1448 re_intr(void *arg)
1449 {
1450 	struct rtk_softc	*sc = arg;
1451 	struct ifnet		*ifp;
1452 	u_int16_t		status;
1453 	int			handled = 0;
1454 
1455 	ifp = &sc->ethercom.ec_if;
1456 
1457 	if (!(ifp->if_flags & IFF_UP))
1458 		return 0;
1459 
1460 #ifdef DEVICE_POLLING
1461 	if (ifp->if_flags & IFF_POLLING)
1462 		goto done;
1463 	if ((ifp->if_capenable & IFCAP_POLLING) &&
1464 	    ether_poll_register(re_poll, ifp)) { /* ok, disable interrupts */
1465 		CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1466 		re_poll(ifp, 0, 1);
1467 		goto done;
1468 	}
1469 #endif /* DEVICE_POLLING */
1470 
1471 	for (;;) {
1472 
1473 		status = CSR_READ_2(sc, RTK_ISR);
1474 		/* If the card has gone away the read returns 0xffff. */
1475 		if (status == 0xffff)
1476 			break;
1477 		if (status) {
1478 			handled = 1;
1479 			CSR_WRITE_2(sc, RTK_ISR, status);
1480 		}
1481 
1482 		if ((status & RTK_INTRS_CPLUS) == 0)
1483 			break;
1484 
1485 		if ((status & RTK_ISR_RX_OK) ||
1486 		    (status & RTK_ISR_RX_ERR))
1487 			re_rxeof(sc);
1488 
1489 		if ((status & RTK_ISR_TIMEOUT_EXPIRED) ||
1490 		    (status & RTK_ISR_TX_ERR) ||
1491 		    (status & RTK_ISR_TX_DESC_UNAVAIL))
1492 			re_txeof(sc);
1493 
1494 		if (status & RTK_ISR_SYSTEM_ERR) {
1495 			re_reset(sc);
1496 			re_init(ifp);
1497 		}
1498 
1499 		if (status & RTK_ISR_LINKCHG) {
1500 			callout_stop(&sc->rtk_tick_ch);
1501 			re_tick(sc);
1502 		}
1503 	}
1504 
1505 	if (ifp->if_flags & IFF_UP) /* kludge for interrupt during re_init() */
1506 		if (ifp->if_snd.ifq_head != NULL)
1507 			(*ifp->if_start)(ifp);
1508 
1509 #ifdef DEVICE_POLLING
1510 done:
1511 #endif
1512 
1513 	return handled;
1514 }
1515 
1516 static int
1517 re_encap(struct rtk_softc *sc, struct mbuf *m, int *idx)
1518 {
1519 	bus_dmamap_t		map;
1520 	int			error, i, startidx, curidx;
1521 	struct m_tag		*mtag;
1522 	struct rtk_desc		*d;
1523 	u_int32_t		cmdstat, rtk_flags;
1524 	struct rtk_txq		*txq;
1525 
1526 	if (sc->rtk_ldata.rtk_tx_free <= 4) {
1527 		return EFBIG;
1528 	}
1529 
1530 	/*
1531 	 * Set up checksum offload. Note: checksum offload bits must
1532 	 * appear in all descriptors of a multi-descriptor transmit
1533 	 * attempt. (This is according to testing done with an 8169
1534 	 * chip. I'm not sure if this is a requirement or a bug.)
1535 	 */
1536 
1537 	if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
1538 		u_int32_t segsz = m->m_pkthdr.segsz;
1539 
1540 		rtk_flags = RTK_TDESC_CMD_LGSEND |
1541 		    (segsz << RTK_TDESC_CMD_MSSVAL_SHIFT);
1542 	} else {
1543 
1544 		/*
1545 		 * set RTK_TDESC_CMD_IPCSUM if any checksum offloading
1546 		 * is requested.  otherwise, RTK_TDESC_CMD_TCPCSUM/
1547 		 * RTK_TDESC_CMD_UDPCSUM doesn't make effects.
1548 		 */
1549 
1550 		rtk_flags = 0;
1551 		if ((m->m_pkthdr.csum_flags &
1552 		    (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) != 0) {
1553 			rtk_flags |= RTK_TDESC_CMD_IPCSUM;
1554 			if (m->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1555 				rtk_flags |= RTK_TDESC_CMD_TCPCSUM;
1556 			} else if (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1557 				rtk_flags |= RTK_TDESC_CMD_UDPCSUM;
1558 			}
1559 		}
1560 	}
1561 
1562 	txq = &sc->rtk_ldata.rtk_txq[*idx];
1563 	map = txq->txq_dmamap;
1564 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1565 	    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1566 
1567 	if (error) {
1568 		/* XXX try to defrag if EFBIG? */
1569 
1570 		aprint_error("%s: can't map mbuf (error %d)\n",
1571 		    sc->sc_dev.dv_xname, error);
1572 
1573 		return error;
1574 	}
1575 
1576 	if (map->dm_nsegs > sc->rtk_ldata.rtk_tx_free - 4) {
1577 		error = EFBIG;
1578 		goto fail_unload;
1579 	}
1580 
1581 	/*
1582 	 * Make sure that the caches are synchronized before we
1583 	 * ask the chip to start DMA for the packet data.
1584 	 */
1585 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1586 		BUS_DMASYNC_PREWRITE);
1587 
1588 	/*
1589 	 * Map the segment array into descriptors. Note that we set the
1590 	 * start-of-frame and end-of-frame markers for either TX or RX, but
1591 	 * they really only have meaning in the TX case. (In the RX case,
1592 	 * it's the chip that tells us where packets begin and end.)
1593 	 * We also keep track of the end of the ring and set the
1594 	 * end-of-ring bits as needed, and we set the ownership bits
1595 	 * in all except the very first descriptor. (The caller will
1596 	 * set this descriptor later when it start transmission or
1597 	 * reception.)
1598 	 */
1599 	i = 0;
1600 	curidx = startidx = sc->rtk_ldata.rtk_tx_nextfree;
1601 	while (1) {
1602 		d = &sc->rtk_ldata.rtk_tx_list[curidx];
1603 		if (le32toh(d->rtk_cmdstat) & RTK_TDESC_STAT_OWN) {
1604 			while (i > 0) {
1605 				sc->rtk_ldata.rtk_tx_list[
1606 				    (curidx + RTK_TX_DESC_CNT(sc) - i) %
1607 				    RTK_TX_DESC_CNT(sc)].rtk_cmdstat = 0;
1608 				i--;
1609 			}
1610 			error = ENOBUFS;
1611 			goto fail_unload;
1612 		}
1613 
1614 		cmdstat = map->dm_segs[i].ds_len;
1615 		d->rtk_bufaddr_lo =
1616 		    htole32(RTK_ADDR_LO(map->dm_segs[i].ds_addr));
1617 		d->rtk_bufaddr_hi =
1618 		    htole32(RTK_ADDR_HI(map->dm_segs[i].ds_addr));
1619 		if (i == 0)
1620 			cmdstat |= RTK_TDESC_CMD_SOF;
1621 		else
1622 			cmdstat |= RTK_TDESC_CMD_OWN;
1623 		if (curidx == (RTK_TX_DESC_CNT(sc) - 1))
1624 			cmdstat |= RTK_TDESC_CMD_EOR;
1625 		d->rtk_cmdstat = htole32(cmdstat | rtk_flags);
1626 		i++;
1627 		if (i == map->dm_nsegs)
1628 			break;
1629 		RTK_TX_DESC_INC(sc, curidx);
1630 	}
1631 
1632 	d->rtk_cmdstat |= htole32(RTK_TDESC_CMD_EOF);
1633 
1634 	txq->txq_mbuf = m;
1635 	sc->rtk_ldata.rtk_tx_free -= map->dm_nsegs;
1636 
1637 	/*
1638 	 * Set up hardware VLAN tagging. Note: vlan tag info must
1639 	 * appear in the first descriptor of a multi-descriptor
1640 	 * transmission attempt.
1641 	 */
1642 
1643 	if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m)) != NULL) {
1644 		sc->rtk_ldata.rtk_tx_list[startidx].rtk_vlanctl =
1645 		    htole32(htons(VLAN_TAG_VALUE(mtag)) |
1646 		    RTK_TDESC_VLANCTL_TAG);
1647 	}
1648 
1649 	/* Transfer ownership of packet to the chip. */
1650 
1651 	sc->rtk_ldata.rtk_tx_list[curidx].rtk_cmdstat |=
1652 	    htole32(RTK_TDESC_CMD_OWN);
1653 	if (startidx != curidx)
1654 		sc->rtk_ldata.rtk_tx_list[startidx].rtk_cmdstat |=
1655 		    htole32(RTK_TDESC_CMD_OWN);
1656 
1657 	txq->txq_descidx = curidx;
1658 	RTK_TX_DESC_INC(sc, curidx);
1659 	sc->rtk_ldata.rtk_tx_nextfree = curidx;
1660 	*idx = (*idx + 1) % RTK_TX_QLEN;
1661 
1662 	return 0;
1663 
1664 fail_unload:
1665 	bus_dmamap_unload(sc->sc_dmat, map);
1666 
1667 	return error;
1668 }
1669 
1670 /*
1671  * Main transmit routine for C+ and gigE NICs.
1672  */
1673 
1674 static void
1675 re_start(struct ifnet *ifp)
1676 {
1677 	struct rtk_softc	*sc;
1678 	int			idx;
1679 
1680 	sc = ifp->if_softc;
1681 
1682 	idx = sc->rtk_ldata.rtk_txq_prodidx;
1683 	while (/* CONSTCOND */ 1) {
1684 		struct mbuf *m;
1685 		int error;
1686 
1687 		IFQ_POLL(&ifp->if_snd, m);
1688 		if (m == NULL)
1689 			break;
1690 
1691 		if (sc->rtk_ldata.rtk_txq[idx].txq_mbuf != NULL) {
1692 			KASSERT(idx == sc->rtk_ldata.rtk_txq_considx);
1693 			ifp->if_flags |= IFF_OACTIVE;
1694 			break;
1695 		}
1696 
1697 		error = re_encap(sc, m, &idx);
1698 		if (error == EFBIG &&
1699 		    sc->rtk_ldata.rtk_tx_free == RTK_TX_DESC_CNT(sc)) {
1700 			IFQ_DEQUEUE(&ifp->if_snd, m);
1701 			m_freem(m);
1702 			ifp->if_oerrors++;
1703 			continue;
1704 		}
1705 		if (error) {
1706 			ifp->if_flags |= IFF_OACTIVE;
1707 			break;
1708 		}
1709 
1710 		IFQ_DEQUEUE(&ifp->if_snd, m);
1711 
1712 #if NBPFILTER > 0
1713 		/*
1714 		 * If there's a BPF listener, bounce a copy of this frame
1715 		 * to him.
1716 		 */
1717 		if (ifp->if_bpf)
1718 			bpf_mtap(ifp->if_bpf, m);
1719 #endif
1720 	}
1721 
1722 	if (sc->rtk_ldata.rtk_txq_prodidx == idx) {
1723 		return;
1724 	}
1725 	sc->rtk_ldata.rtk_txq_prodidx = idx;
1726 
1727 	/* Flush the TX descriptors */
1728 
1729 	bus_dmamap_sync(sc->sc_dmat,
1730 	    sc->rtk_ldata.rtk_tx_list_map,
1731 	    0, sc->rtk_ldata.rtk_tx_list_map->dm_mapsize,
1732 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1733 
1734 	/*
1735 	 * RealTek put the TX poll request register in a different
1736 	 * location on the 8169 gigE chip. I don't know why.
1737 	 */
1738 
1739 	if (sc->rtk_type == RTK_8169)
1740 		CSR_WRITE_2(sc, RTK_GTXSTART, RTK_TXSTART_START);
1741 	else
1742 		CSR_WRITE_2(sc, RTK_TXSTART, RTK_TXSTART_START);
1743 
1744 	/*
1745 	 * Use the countdown timer for interrupt moderation.
1746 	 * 'TX done' interrupts are disabled. Instead, we reset the
1747 	 * countdown timer, which will begin counting until it hits
1748 	 * the value in the TIMERINT register, and then trigger an
1749 	 * interrupt. Each time we write to the TIMERCNT register,
1750 	 * the timer count is reset to 0.
1751 	 */
1752 	CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1753 
1754 	/*
1755 	 * Set a timeout in case the chip goes out to lunch.
1756 	 */
1757 	ifp->if_timer = 5;
1758 
1759 	return;
1760 }
1761 
1762 static int
1763 re_init(struct ifnet *ifp)
1764 {
1765 	struct rtk_softc	*sc = ifp->if_softc;
1766 	u_int32_t		rxcfg = 0;
1767 	u_int32_t		reg;
1768 	int error;
1769 
1770 	if ((error = re_enable(sc)) != 0)
1771 		goto out;
1772 
1773 	/*
1774 	 * Cancel pending I/O and free all RX/TX buffers.
1775 	 */
1776 	re_stop(ifp, 0);
1777 
1778 	/*
1779 	 * Enable C+ RX and TX mode, as well as VLAN stripping and
1780 	 * RX checksum offload. We must configure the C+ register
1781 	 * before all others.
1782 	 */
1783 	reg = 0;
1784 
1785 	/*
1786 	 * XXX: Realtek docs say bits 0 and 1 are reserved, for 8169S/8110S.
1787 	 * FreeBSD  drivers set these bits anyway (for 8139C+?).
1788 	 * So far, it works.
1789 	 */
1790 
1791 	/*
1792 	 * XXX: For 8169 and 8196S revs below 2, set bit 14.
1793 	 * For 8169S/8110S rev 2 and above, do not set bit 14.
1794 	 */
1795 	if (sc->rtk_type == RTK_8169 && sc->sc_rev == 1)
1796 		reg |= (0x1 << 14) | RTK_CPLUSCMD_PCI_MRW;;
1797 
1798 	if (1)  {/* not for 8169S ? */
1799 		reg |= RTK_CPLUSCMD_VLANSTRIP |
1800 		    (ifp->if_capenable &
1801 		    (IFCAP_CSUM_IPv4_Rx | IFCAP_CSUM_TCPv4_Rx |
1802 		     IFCAP_CSUM_UDPv4_Rx) ?
1803 		    RTK_CPLUSCMD_RXCSUM_ENB : 0);
1804 	}
1805 
1806 	CSR_WRITE_2(sc, RTK_CPLUS_CMD,
1807 	    reg | RTK_CPLUSCMD_RXENB | RTK_CPLUSCMD_TXENB);
1808 
1809 	/* XXX: from Realtek-supplied Linux driver. Wholly undocumented. */
1810 	if (sc->rtk_type == RTK_8169)
1811 		CSR_WRITE_2(sc, RTK_CPLUS_CMD+0x2, 0x0000);
1812 
1813 	DELAY(10000);
1814 
1815 	/*
1816 	 * Init our MAC address.  Even though the chipset
1817 	 * documentation doesn't mention it, we need to enter "Config
1818 	 * register write enable" mode to modify the ID registers.
1819 	 */
1820 	CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_WRITECFG);
1821 	memcpy(&reg, LLADDR(ifp->if_sadl), 4);
1822 	CSR_WRITE_STREAM_4(sc, RTK_IDR0, reg);
1823 	reg = 0;
1824 	memcpy(&reg, LLADDR(ifp->if_sadl) + 4, 4);
1825 	CSR_WRITE_STREAM_4(sc, RTK_IDR4, reg);
1826 	CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
1827 
1828 	/*
1829 	 * For C+ mode, initialize the RX descriptors and mbufs.
1830 	 */
1831 	re_rx_list_init(sc);
1832 	re_tx_list_init(sc);
1833 
1834 	/*
1835 	 * Enable transmit and receive.
1836 	 */
1837 	CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1838 
1839 	/*
1840 	 * Set the initial TX and RX configuration.
1841 	 */
1842 	if (sc->rtk_testmode) {
1843 		if (sc->rtk_type == RTK_8169)
1844 			CSR_WRITE_4(sc, RTK_TXCFG,
1845 			    RTK_TXCFG_CONFIG | RTK_LOOPTEST_ON);
1846 		else
1847 			CSR_WRITE_4(sc, RTK_TXCFG,
1848 			    RTK_TXCFG_CONFIG | RTK_LOOPTEST_ON_CPLUS);
1849 	} else
1850 		CSR_WRITE_4(sc, RTK_TXCFG, RTK_TXCFG_CONFIG);
1851 	CSR_WRITE_4(sc, RTK_RXCFG, RTK_RXCFG_CONFIG);
1852 
1853 	/* Set the individual bit to receive frames for this host only. */
1854 	rxcfg = CSR_READ_4(sc, RTK_RXCFG);
1855 	rxcfg |= RTK_RXCFG_RX_INDIV;
1856 
1857 	/* If we want promiscuous mode, set the allframes bit. */
1858 	if (ifp->if_flags & IFF_PROMISC)
1859 		rxcfg |= RTK_RXCFG_RX_ALLPHYS;
1860 	else
1861 		rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
1862 	CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1863 
1864 	/*
1865 	 * Set capture broadcast bit to capture broadcast frames.
1866 	 */
1867 	if (ifp->if_flags & IFF_BROADCAST)
1868 		rxcfg |= RTK_RXCFG_RX_BROAD;
1869 	else
1870 		rxcfg &= ~RTK_RXCFG_RX_BROAD;
1871 	CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1872 
1873 	/*
1874 	 * Program the multicast filter, if necessary.
1875 	 */
1876 	rtk_setmulti(sc);
1877 
1878 #ifdef DEVICE_POLLING
1879 	/*
1880 	 * Disable interrupts if we are polling.
1881 	 */
1882 	if (ifp->if_flags & IFF_POLLING)
1883 		CSR_WRITE_2(sc, RTK_IMR, 0);
1884 	else	/* otherwise ... */
1885 #endif /* DEVICE_POLLING */
1886 	/*
1887 	 * Enable interrupts.
1888 	 */
1889 	if (sc->rtk_testmode)
1890 		CSR_WRITE_2(sc, RTK_IMR, 0);
1891 	else
1892 		CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1893 
1894 	/* Start RX/TX process. */
1895 	CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
1896 #ifdef notdef
1897 	/* Enable receiver and transmitter. */
1898 	CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1899 #endif
1900 	/*
1901 	 * Load the addresses of the RX and TX lists into the chip.
1902 	 */
1903 
1904 	CSR_WRITE_4(sc, RTK_RXLIST_ADDR_HI,
1905 	    RTK_ADDR_HI(sc->rtk_ldata.rtk_rx_list_map->dm_segs[0].ds_addr));
1906 	CSR_WRITE_4(sc, RTK_RXLIST_ADDR_LO,
1907 	    RTK_ADDR_LO(sc->rtk_ldata.rtk_rx_list_map->dm_segs[0].ds_addr));
1908 
1909 	CSR_WRITE_4(sc, RTK_TXLIST_ADDR_HI,
1910 	    RTK_ADDR_HI(sc->rtk_ldata.rtk_tx_list_map->dm_segs[0].ds_addr));
1911 	CSR_WRITE_4(sc, RTK_TXLIST_ADDR_LO,
1912 	    RTK_ADDR_LO(sc->rtk_ldata.rtk_tx_list_map->dm_segs[0].ds_addr));
1913 
1914 	CSR_WRITE_1(sc, RTK_EARLY_TX_THRESH, 16);
1915 
1916 	/*
1917 	 * Initialize the timer interrupt register so that
1918 	 * a timer interrupt will be generated once the timer
1919 	 * reaches a certain number of ticks. The timer is
1920 	 * reloaded on each transmit. This gives us TX interrupt
1921 	 * moderation, which dramatically improves TX frame rate.
1922 	 */
1923 
1924 	if (sc->rtk_type == RTK_8169)
1925 		CSR_WRITE_4(sc, RTK_TIMERINT_8169, 0x800);
1926 	else
1927 		CSR_WRITE_4(sc, RTK_TIMERINT, 0x400);
1928 
1929 	/*
1930 	 * For 8169 gigE NICs, set the max allowed RX packet
1931 	 * size so we can receive jumbo frames.
1932 	 */
1933 	if (sc->rtk_type == RTK_8169)
1934 		CSR_WRITE_2(sc, RTK_MAXRXPKTLEN, 16383);
1935 
1936 	if (sc->rtk_testmode)
1937 		return 0;
1938 
1939 	mii_mediachg(&sc->mii);
1940 
1941 	CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD | RTK_CFG1_FULLDUPLEX);
1942 
1943 	ifp->if_flags |= IFF_RUNNING;
1944 	ifp->if_flags &= ~IFF_OACTIVE;
1945 
1946 	callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1947 
1948 out:
1949 	if (error) {
1950 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1951 		ifp->if_timer = 0;
1952 		aprint_error("%s: interface not running\n",
1953 		    sc->sc_dev.dv_xname);
1954 	}
1955 
1956 	return error;
1957 
1958 }
1959 
1960 /*
1961  * Set media options.
1962  */
1963 static int
1964 re_ifmedia_upd(struct ifnet *ifp)
1965 {
1966 	struct rtk_softc	*sc;
1967 
1968 	sc = ifp->if_softc;
1969 
1970 	return mii_mediachg(&sc->mii);
1971 }
1972 
1973 /*
1974  * Report current media status.
1975  */
1976 static void
1977 re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1978 {
1979 	struct rtk_softc	*sc;
1980 
1981 	sc = ifp->if_softc;
1982 
1983 	mii_pollstat(&sc->mii);
1984 	ifmr->ifm_active = sc->mii.mii_media_active;
1985 	ifmr->ifm_status = sc->mii.mii_media_status;
1986 
1987 	return;
1988 }
1989 
1990 static int
1991 re_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1992 {
1993 	struct rtk_softc	*sc = ifp->if_softc;
1994 	struct ifreq		*ifr = (struct ifreq *) data;
1995 	int			s, error = 0;
1996 
1997 	s = splnet();
1998 
1999 	switch (command) {
2000 	case SIOCSIFMTU:
2001 		if (ifr->ifr_mtu > RTK_JUMBO_MTU)
2002 			error = EINVAL;
2003 		ifp->if_mtu = ifr->ifr_mtu;
2004 		break;
2005 	case SIOCGIFMEDIA:
2006 	case SIOCSIFMEDIA:
2007 		error = ifmedia_ioctl(ifp, ifr, &sc->mii.mii_media, command);
2008 		break;
2009 	default:
2010 		error = ether_ioctl(ifp, command, data);
2011 		if (error == ENETRESET) {
2012 			if (ifp->if_flags & IFF_RUNNING)
2013 				rtk_setmulti(sc);
2014 			error = 0;
2015 		}
2016 		break;
2017 	}
2018 
2019 	splx(s);
2020 
2021 	return error;
2022 }
2023 
2024 static void
2025 re_watchdog(struct ifnet *ifp)
2026 {
2027 	struct rtk_softc	*sc;
2028 	int			s;
2029 
2030 	sc = ifp->if_softc;
2031 	s = splnet();
2032 	aprint_error("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
2033 	ifp->if_oerrors++;
2034 
2035 	re_txeof(sc);
2036 	re_rxeof(sc);
2037 
2038 	re_init(ifp);
2039 
2040 	splx(s);
2041 }
2042 
2043 /*
2044  * Stop the adapter and free any mbufs allocated to the
2045  * RX and TX lists.
2046  */
2047 static void
2048 re_stop(struct ifnet *ifp, int disable)
2049 {
2050 	register int		i;
2051 	struct rtk_softc *sc = ifp->if_softc;
2052 
2053 	callout_stop(&sc->rtk_tick_ch);
2054 
2055 #ifdef DEVICE_POLLING
2056 	ether_poll_deregister(ifp);
2057 #endif /* DEVICE_POLLING */
2058 
2059 	mii_down(&sc->mii);
2060 
2061 	CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
2062 	CSR_WRITE_2(sc, RTK_IMR, 0x0000);
2063 
2064 	if (sc->rtk_head != NULL) {
2065 		m_freem(sc->rtk_head);
2066 		sc->rtk_head = sc->rtk_tail = NULL;
2067 	}
2068 
2069 	/* Free the TX list buffers. */
2070 	for (i = 0; i < RTK_TX_QLEN; i++) {
2071 		if (sc->rtk_ldata.rtk_txq[i].txq_mbuf != NULL) {
2072 			bus_dmamap_unload(sc->sc_dmat,
2073 			    sc->rtk_ldata.rtk_txq[i].txq_dmamap);
2074 			m_freem(sc->rtk_ldata.rtk_txq[i].txq_mbuf);
2075 			sc->rtk_ldata.rtk_txq[i].txq_mbuf = NULL;
2076 		}
2077 	}
2078 
2079 	/* Free the RX list buffers. */
2080 	for (i = 0; i < RTK_RX_DESC_CNT; i++) {
2081 		if (sc->rtk_ldata.rtk_rx_mbuf[i] != NULL) {
2082 			bus_dmamap_unload(sc->sc_dmat,
2083 			    sc->rtk_ldata.rtk_rx_dmamap[i]);
2084 			m_freem(sc->rtk_ldata.rtk_rx_mbuf[i]);
2085 			sc->rtk_ldata.rtk_rx_mbuf[i] = NULL;
2086 		}
2087 	}
2088 
2089 	if (disable)
2090 		re_disable(sc);
2091 
2092 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2093 	ifp->if_timer = 0;
2094 
2095 	return;
2096 }
2097