1 /* $NetBSD: rtl8169.c,v 1.128 2009/09/15 19:29:17 dyoung Exp $ */ 2 3 /* 4 * Copyright (c) 1997, 1998-2003 5 * Bill Paul <wpaul@windriver.com>. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. All advertising materials mentioning features or use of this software 16 * must display the following acknowledgement: 17 * This product includes software developed by Bill Paul. 18 * 4. Neither the name of the author nor the names of any co-contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD 26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 32 * THE POSSIBILITY OF SUCH DAMAGE. 33 */ 34 35 #include <sys/cdefs.h> 36 __KERNEL_RCSID(0, "$NetBSD: rtl8169.c,v 1.128 2009/09/15 19:29:17 dyoung Exp $"); 37 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/re/if_re.c,v 1.20 2004/04/11 20:34:08 ru Exp $ */ 38 39 /* 40 * RealTek 8139C+/8169/8169S/8110S PCI NIC driver 41 * 42 * Written by Bill Paul <wpaul@windriver.com> 43 * Senior Networking Software Engineer 44 * Wind River Systems 45 */ 46 47 /* 48 * This driver is designed to support RealTek's next generation of 49 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently 50 * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S 51 * and the RTL8110S. 52 * 53 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible 54 * with the older 8139 family, however it also supports a special 55 * C+ mode of operation that provides several new performance enhancing 56 * features. These include: 57 * 58 * o Descriptor based DMA mechanism. Each descriptor represents 59 * a single packet fragment. Data buffers may be aligned on 60 * any byte boundary. 61 * 62 * o 64-bit DMA 63 * 64 * o TCP/IP checksum offload for both RX and TX 65 * 66 * o High and normal priority transmit DMA rings 67 * 68 * o VLAN tag insertion and extraction 69 * 70 * o TCP large send (segmentation offload) 71 * 72 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+ 73 * programming API is fairly straightforward. The RX filtering, EEPROM 74 * access and PHY access is the same as it is on the older 8139 series 75 * chips. 76 * 77 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the 78 * same programming API and feature set as the 8139C+ with the following 79 * differences and additions: 80 * 81 * o 1000Mbps mode 82 * 83 * o Jumbo frames 84 * 85 * o GMII and TBI ports/registers for interfacing with copper 86 * or fiber PHYs 87 * 88 * o RX and TX DMA rings can have up to 1024 descriptors 89 * (the 8139C+ allows a maximum of 64) 90 * 91 * o Slight differences in register layout from the 8139C+ 92 * 93 * The TX start and timer interrupt registers are at different locations 94 * on the 8169 than they are on the 8139C+. Also, the status word in the 95 * RX descriptor has a slightly different bit layout. The 8169 does not 96 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska' 97 * copper gigE PHY. 98 * 99 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs 100 * (the 'S' stands for 'single-chip'). These devices have the same 101 * programming API as the older 8169, but also have some vendor-specific 102 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard 103 * part designed to be pin-compatible with the RealTek 8100 10/100 chip. 104 * 105 * This driver takes advantage of the RX and TX checksum offload and 106 * VLAN tag insertion/extraction features. It also implements TX 107 * interrupt moderation using the timer interrupt registers, which 108 * significantly reduces TX interrupt load. There is also support 109 * for jumbo frames, however the 8169/8169S/8110S can not transmit 110 * jumbo frames larger than 7.5K, so the max MTU possible with this 111 * driver is 7500 bytes. 112 */ 113 114 #include "bpfilter.h" 115 116 #include <sys/param.h> 117 #include <sys/endian.h> 118 #include <sys/systm.h> 119 #include <sys/sockio.h> 120 #include <sys/mbuf.h> 121 #include <sys/malloc.h> 122 #include <sys/kernel.h> 123 #include <sys/socket.h> 124 #include <sys/device.h> 125 126 #include <net/if.h> 127 #include <net/if_arp.h> 128 #include <net/if_dl.h> 129 #include <net/if_ether.h> 130 #include <net/if_media.h> 131 #include <net/if_vlanvar.h> 132 133 #include <netinet/in_systm.h> /* XXX for IP_MAXPACKET */ 134 #include <netinet/in.h> /* XXX for IP_MAXPACKET */ 135 #include <netinet/ip.h> /* XXX for IP_MAXPACKET */ 136 137 #if NBPFILTER > 0 138 #include <net/bpf.h> 139 #endif 140 141 #include <sys/bus.h> 142 143 #include <dev/mii/mii.h> 144 #include <dev/mii/miivar.h> 145 146 #include <dev/ic/rtl81x9reg.h> 147 #include <dev/ic/rtl81x9var.h> 148 149 #include <dev/ic/rtl8169var.h> 150 151 static inline void re_set_bufaddr(struct re_desc *, bus_addr_t); 152 153 static int re_newbuf(struct rtk_softc *, int, struct mbuf *); 154 static int re_rx_list_init(struct rtk_softc *); 155 static int re_tx_list_init(struct rtk_softc *); 156 static void re_rxeof(struct rtk_softc *); 157 static void re_txeof(struct rtk_softc *); 158 static void re_tick(void *); 159 static void re_start(struct ifnet *); 160 static int re_ioctl(struct ifnet *, u_long, void *); 161 static int re_init(struct ifnet *); 162 static void re_stop(struct ifnet *, int); 163 static void re_watchdog(struct ifnet *); 164 165 static int re_enable(struct rtk_softc *); 166 static void re_disable(struct rtk_softc *); 167 168 static int re_gmii_readreg(device_t, int, int); 169 static void re_gmii_writereg(device_t, int, int, int); 170 171 static int re_miibus_readreg(device_t, int, int); 172 static void re_miibus_writereg(device_t, int, int, int); 173 static void re_miibus_statchg(device_t); 174 175 static void re_reset(struct rtk_softc *); 176 177 static inline void 178 re_set_bufaddr(struct re_desc *d, bus_addr_t addr) 179 { 180 181 d->re_bufaddr_lo = htole32((uint32_t)addr); 182 if (sizeof(bus_addr_t) == sizeof(uint64_t)) 183 d->re_bufaddr_hi = htole32((uint64_t)addr >> 32); 184 else 185 d->re_bufaddr_hi = 0; 186 } 187 188 static int 189 re_gmii_readreg(device_t dev, int phy, int reg) 190 { 191 struct rtk_softc *sc = device_private(dev); 192 uint32_t rval; 193 int i; 194 195 if (phy != 7) 196 return 0; 197 198 /* Let the rgephy driver read the GMEDIASTAT register */ 199 200 if (reg == RTK_GMEDIASTAT) { 201 rval = CSR_READ_1(sc, RTK_GMEDIASTAT); 202 return rval; 203 } 204 205 CSR_WRITE_4(sc, RTK_PHYAR, reg << 16); 206 DELAY(1000); 207 208 for (i = 0; i < RTK_TIMEOUT; i++) { 209 rval = CSR_READ_4(sc, RTK_PHYAR); 210 if (rval & RTK_PHYAR_BUSY) 211 break; 212 DELAY(100); 213 } 214 215 if (i == RTK_TIMEOUT) { 216 printf("%s: PHY read failed\n", device_xname(sc->sc_dev)); 217 return 0; 218 } 219 220 return rval & RTK_PHYAR_PHYDATA; 221 } 222 223 static void 224 re_gmii_writereg(device_t dev, int phy, int reg, int data) 225 { 226 struct rtk_softc *sc = device_private(dev); 227 uint32_t rval; 228 int i; 229 230 CSR_WRITE_4(sc, RTK_PHYAR, (reg << 16) | 231 (data & RTK_PHYAR_PHYDATA) | RTK_PHYAR_BUSY); 232 DELAY(1000); 233 234 for (i = 0; i < RTK_TIMEOUT; i++) { 235 rval = CSR_READ_4(sc, RTK_PHYAR); 236 if (!(rval & RTK_PHYAR_BUSY)) 237 break; 238 DELAY(100); 239 } 240 241 if (i == RTK_TIMEOUT) { 242 printf("%s: PHY write reg %x <- %x failed\n", 243 device_xname(sc->sc_dev), reg, data); 244 } 245 } 246 247 static int 248 re_miibus_readreg(device_t dev, int phy, int reg) 249 { 250 struct rtk_softc *sc = device_private(dev); 251 uint16_t rval = 0; 252 uint16_t re8139_reg = 0; 253 int s; 254 255 s = splnet(); 256 257 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) { 258 rval = re_gmii_readreg(dev, phy, reg); 259 splx(s); 260 return rval; 261 } 262 263 /* Pretend the internal PHY is only at address 0 */ 264 if (phy) { 265 splx(s); 266 return 0; 267 } 268 switch (reg) { 269 case MII_BMCR: 270 re8139_reg = RTK_BMCR; 271 break; 272 case MII_BMSR: 273 re8139_reg = RTK_BMSR; 274 break; 275 case MII_ANAR: 276 re8139_reg = RTK_ANAR; 277 break; 278 case MII_ANER: 279 re8139_reg = RTK_ANER; 280 break; 281 case MII_ANLPAR: 282 re8139_reg = RTK_LPAR; 283 break; 284 case MII_PHYIDR1: 285 case MII_PHYIDR2: 286 splx(s); 287 return 0; 288 /* 289 * Allow the rlphy driver to read the media status 290 * register. If we have a link partner which does not 291 * support NWAY, this is the register which will tell 292 * us the results of parallel detection. 293 */ 294 case RTK_MEDIASTAT: 295 rval = CSR_READ_1(sc, RTK_MEDIASTAT); 296 splx(s); 297 return rval; 298 default: 299 printf("%s: bad phy register\n", device_xname(sc->sc_dev)); 300 splx(s); 301 return 0; 302 } 303 rval = CSR_READ_2(sc, re8139_reg); 304 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0 && re8139_reg == RTK_BMCR) { 305 /* 8139C+ has different bit layout. */ 306 rval &= ~(BMCR_LOOP | BMCR_ISO); 307 } 308 splx(s); 309 return rval; 310 } 311 312 static void 313 re_miibus_writereg(device_t dev, int phy, int reg, int data) 314 { 315 struct rtk_softc *sc = device_private(dev); 316 uint16_t re8139_reg = 0; 317 int s; 318 319 s = splnet(); 320 321 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) { 322 re_gmii_writereg(dev, phy, reg, data); 323 splx(s); 324 return; 325 } 326 327 /* Pretend the internal PHY is only at address 0 */ 328 if (phy) { 329 splx(s); 330 return; 331 } 332 switch (reg) { 333 case MII_BMCR: 334 re8139_reg = RTK_BMCR; 335 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0) { 336 /* 8139C+ has different bit layout. */ 337 data &= ~(BMCR_LOOP | BMCR_ISO); 338 } 339 break; 340 case MII_BMSR: 341 re8139_reg = RTK_BMSR; 342 break; 343 case MII_ANAR: 344 re8139_reg = RTK_ANAR; 345 break; 346 case MII_ANER: 347 re8139_reg = RTK_ANER; 348 break; 349 case MII_ANLPAR: 350 re8139_reg = RTK_LPAR; 351 break; 352 case MII_PHYIDR1: 353 case MII_PHYIDR2: 354 splx(s); 355 return; 356 break; 357 default: 358 printf("%s: bad phy register\n", device_xname(sc->sc_dev)); 359 splx(s); 360 return; 361 } 362 CSR_WRITE_2(sc, re8139_reg, data); 363 splx(s); 364 return; 365 } 366 367 static void 368 re_miibus_statchg(device_t dev) 369 { 370 371 return; 372 } 373 374 static void 375 re_reset(struct rtk_softc *sc) 376 { 377 int i; 378 379 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET); 380 381 for (i = 0; i < RTK_TIMEOUT; i++) { 382 DELAY(10); 383 if ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET) == 0) 384 break; 385 } 386 if (i == RTK_TIMEOUT) 387 printf("%s: reset never completed!\n", 388 device_xname(sc->sc_dev)); 389 390 /* 391 * NB: Realtek-supplied FreeBSD driver does this only for MACFG_3, 392 * but also says "Rtl8169s sigle chip detected". 393 */ 394 if ((sc->sc_quirk & RTKQ_MACLDPS) != 0) 395 CSR_WRITE_1(sc, RTK_LDPS, 1); 396 397 } 398 399 /* 400 * The following routine is designed to test for a defect on some 401 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64# 402 * lines connected to the bus, however for a 32-bit only card, they 403 * should be pulled high. The result of this defect is that the 404 * NIC will not work right if you plug it into a 64-bit slot: DMA 405 * operations will be done with 64-bit transfers, which will fail 406 * because the 64-bit data lines aren't connected. 407 * 408 * There's no way to work around this (short of talking a soldering 409 * iron to the board), however we can detect it. The method we use 410 * here is to put the NIC into digital loopback mode, set the receiver 411 * to promiscuous mode, and then try to send a frame. We then compare 412 * the frame data we sent to what was received. If the data matches, 413 * then the NIC is working correctly, otherwise we know the user has 414 * a defective NIC which has been mistakenly plugged into a 64-bit PCI 415 * slot. In the latter case, there's no way the NIC can work correctly, 416 * so we print out a message on the console and abort the device attach. 417 */ 418 419 int 420 re_diag(struct rtk_softc *sc) 421 { 422 struct ifnet *ifp = &sc->ethercom.ec_if; 423 struct mbuf *m0; 424 struct ether_header *eh; 425 struct re_rxsoft *rxs; 426 struct re_desc *cur_rx; 427 bus_dmamap_t dmamap; 428 uint16_t status; 429 uint32_t rxstat; 430 int total_len, i, s, error = 0; 431 static const uint8_t dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' }; 432 static const uint8_t src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' }; 433 434 /* Allocate a single mbuf */ 435 436 MGETHDR(m0, M_DONTWAIT, MT_DATA); 437 if (m0 == NULL) 438 return ENOBUFS; 439 440 /* 441 * Initialize the NIC in test mode. This sets the chip up 442 * so that it can send and receive frames, but performs the 443 * following special functions: 444 * - Puts receiver in promiscuous mode 445 * - Enables digital loopback mode 446 * - Leaves interrupts turned off 447 */ 448 449 ifp->if_flags |= IFF_PROMISC; 450 sc->re_testmode = 1; 451 re_init(ifp); 452 re_stop(ifp, 0); 453 DELAY(100000); 454 re_init(ifp); 455 456 /* Put some data in the mbuf */ 457 458 eh = mtod(m0, struct ether_header *); 459 memcpy(eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN); 460 memcpy(eh->ether_shost, (char *)&src, ETHER_ADDR_LEN); 461 eh->ether_type = htons(ETHERTYPE_IP); 462 m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN; 463 464 /* 465 * Queue the packet, start transmission. 466 */ 467 468 CSR_WRITE_2(sc, RTK_ISR, 0xFFFF); 469 s = splnet(); 470 IF_ENQUEUE(&ifp->if_snd, m0); 471 re_start(ifp); 472 splx(s); 473 m0 = NULL; 474 475 /* Wait for it to propagate through the chip */ 476 477 DELAY(100000); 478 for (i = 0; i < RTK_TIMEOUT; i++) { 479 status = CSR_READ_2(sc, RTK_ISR); 480 if ((status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK)) == 481 (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK)) 482 break; 483 DELAY(10); 484 } 485 if (i == RTK_TIMEOUT) { 486 aprint_error_dev(sc->sc_dev, 487 "diagnostic failed, failed to receive packet " 488 "in loopback mode\n"); 489 error = EIO; 490 goto done; 491 } 492 493 /* 494 * The packet should have been dumped into the first 495 * entry in the RX DMA ring. Grab it from there. 496 */ 497 498 rxs = &sc->re_ldata.re_rxsoft[0]; 499 dmamap = rxs->rxs_dmamap; 500 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize, 501 BUS_DMASYNC_POSTREAD); 502 bus_dmamap_unload(sc->sc_dmat, dmamap); 503 504 m0 = rxs->rxs_mbuf; 505 rxs->rxs_mbuf = NULL; 506 eh = mtod(m0, struct ether_header *); 507 508 RE_RXDESCSYNC(sc, 0, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 509 cur_rx = &sc->re_ldata.re_rx_list[0]; 510 rxstat = le32toh(cur_rx->re_cmdstat); 511 total_len = rxstat & sc->re_rxlenmask; 512 513 if (total_len != ETHER_MIN_LEN) { 514 aprint_error_dev(sc->sc_dev, 515 "diagnostic failed, received short packet\n"); 516 error = EIO; 517 goto done; 518 } 519 520 /* Test that the received packet data matches what we sent. */ 521 522 if (memcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) || 523 memcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) || 524 ntohs(eh->ether_type) != ETHERTYPE_IP) { 525 aprint_error_dev(sc->sc_dev, "WARNING, DMA FAILURE!\n" 526 "expected TX data: %s/%s/0x%x\n" 527 "received RX data: %s/%s/0x%x\n" 528 "You may have a defective 32-bit NIC plugged " 529 "into a 64-bit PCI slot.\n" 530 "Please re-install the NIC in a 32-bit slot " 531 "for proper operation.\n" 532 "Read the re(4) man page for more details.\n" , 533 ether_sprintf(dst), ether_sprintf(src), ETHERTYPE_IP, 534 ether_sprintf(eh->ether_dhost), 535 ether_sprintf(eh->ether_shost), ntohs(eh->ether_type)); 536 error = EIO; 537 } 538 539 done: 540 /* Turn interface off, release resources */ 541 542 sc->re_testmode = 0; 543 ifp->if_flags &= ~IFF_PROMISC; 544 re_stop(ifp, 0); 545 if (m0 != NULL) 546 m_freem(m0); 547 548 return error; 549 } 550 551 552 /* 553 * Attach the interface. Allocate softc structures, do ifmedia 554 * setup and ethernet/BPF attach. 555 */ 556 void 557 re_attach(struct rtk_softc *sc) 558 { 559 uint8_t eaddr[ETHER_ADDR_LEN]; 560 uint16_t val; 561 struct ifnet *ifp; 562 int error = 0, i, addr_len; 563 564 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) { 565 uint32_t hwrev; 566 567 /* Revision of 8169/8169S/8110s in bits 30..26, 23 */ 568 hwrev = CSR_READ_4(sc, RTK_TXCFG) & RTK_TXCFG_HWREV; 569 switch (hwrev) { 570 case RTK_HWREV_8169: 571 sc->sc_quirk |= RTKQ_8169NONS; 572 break; 573 case RTK_HWREV_8169S: 574 case RTK_HWREV_8110S: 575 case RTK_HWREV_8169_8110SB: 576 case RTK_HWREV_8169_8110SC: 577 sc->sc_quirk |= RTKQ_MACLDPS; 578 break; 579 case RTK_HWREV_8168_SPIN1: 580 case RTK_HWREV_8168_SPIN2: 581 case RTK_HWREV_8168_SPIN3: 582 sc->sc_quirk |= RTKQ_MACSTAT; 583 break; 584 case RTK_HWREV_8168C: 585 case RTK_HWREV_8168C_SPIN2: 586 case RTK_HWREV_8168CP: 587 case RTK_HWREV_8168D: 588 case RTK_HWREV_8168DP: 589 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD | 590 RTKQ_MACSTAT | RTKQ_CMDSTOP; 591 /* 592 * From FreeBSD driver: 593 * 594 * These (8168/8111) controllers support jumbo frame 595 * but it seems that enabling it requires touching 596 * additional magic registers. Depending on MAC 597 * revisions some controllers need to disable 598 * checksum offload. So disable jumbo frame until 599 * I have better idea what it really requires to 600 * make it support. 601 * RTL8168C/CP : supports up to 6KB jumbo frame. 602 * RTL8111C/CP : supports up to 9KB jumbo frame. 603 */ 604 sc->sc_quirk |= RTKQ_NOJUMBO; 605 break; 606 case RTK_HWREV_8100E: 607 case RTK_HWREV_8100E_SPIN2: 608 case RTK_HWREV_8101E: 609 sc->sc_quirk |= RTKQ_NOJUMBO; 610 break; 611 case RTK_HWREV_8102E: 612 case RTK_HWREV_8102EL: 613 case RTK_HWREV_8103E: 614 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD | 615 RTKQ_MACSTAT | RTKQ_CMDSTOP | RTKQ_NOJUMBO; 616 break; 617 default: 618 aprint_normal_dev(sc->sc_dev, 619 "Unknown revision (0x%08x)\n", hwrev); 620 /* assume the latest features */ 621 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD; 622 sc->sc_quirk |= RTKQ_NOJUMBO; 623 } 624 625 /* Set RX length mask */ 626 sc->re_rxlenmask = RE_RDESC_STAT_GFRAGLEN; 627 sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8169; 628 } else { 629 sc->sc_quirk |= RTKQ_NOJUMBO; 630 631 /* Set RX length mask */ 632 sc->re_rxlenmask = RE_RDESC_STAT_FRAGLEN; 633 sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8139; 634 } 635 636 /* Reset the adapter. */ 637 re_reset(sc); 638 639 if ((sc->sc_quirk & RTKQ_NOEECMD) != 0) { 640 /* 641 * Get station address from ID registers. 642 */ 643 for (i = 0; i < ETHER_ADDR_LEN; i++) 644 eaddr[i] = CSR_READ_1(sc, RTK_IDR0 + i); 645 } else { 646 /* 647 * Get station address from the EEPROM. 648 */ 649 if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129) 650 addr_len = RTK_EEADDR_LEN1; 651 else 652 addr_len = RTK_EEADDR_LEN0; 653 654 /* 655 * Get station address from the EEPROM. 656 */ 657 for (i = 0; i < ETHER_ADDR_LEN / 2; i++) { 658 val = rtk_read_eeprom(sc, RTK_EE_EADDR0 + i, addr_len); 659 eaddr[(i * 2) + 0] = val & 0xff; 660 eaddr[(i * 2) + 1] = val >> 8; 661 } 662 } 663 664 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n", 665 ether_sprintf(eaddr)); 666 667 if (sc->re_ldata.re_tx_desc_cnt > 668 PAGE_SIZE / sizeof(struct re_desc)) { 669 sc->re_ldata.re_tx_desc_cnt = 670 PAGE_SIZE / sizeof(struct re_desc); 671 } 672 673 aprint_verbose_dev(sc->sc_dev, "using %d tx descriptors\n", 674 sc->re_ldata.re_tx_desc_cnt); 675 KASSERT(RE_NEXT_TX_DESC(sc, RE_TX_DESC_CNT(sc) - 1) == 0); 676 677 /* Allocate DMA'able memory for the TX ring */ 678 if ((error = bus_dmamem_alloc(sc->sc_dmat, RE_TX_LIST_SZ(sc), 679 RE_RING_ALIGN, 0, &sc->re_ldata.re_tx_listseg, 1, 680 &sc->re_ldata.re_tx_listnseg, BUS_DMA_NOWAIT)) != 0) { 681 aprint_error_dev(sc->sc_dev, 682 "can't allocate tx listseg, error = %d\n", error); 683 goto fail_0; 684 } 685 686 /* Load the map for the TX ring. */ 687 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_tx_listseg, 688 sc->re_ldata.re_tx_listnseg, RE_TX_LIST_SZ(sc), 689 (void **)&sc->re_ldata.re_tx_list, 690 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) { 691 aprint_error_dev(sc->sc_dev, 692 "can't map tx list, error = %d\n", error); 693 goto fail_1; 694 } 695 memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc)); 696 697 if ((error = bus_dmamap_create(sc->sc_dmat, RE_TX_LIST_SZ(sc), 1, 698 RE_TX_LIST_SZ(sc), 0, 0, 699 &sc->re_ldata.re_tx_list_map)) != 0) { 700 aprint_error_dev(sc->sc_dev, 701 "can't create tx list map, error = %d\n", error); 702 goto fail_2; 703 } 704 705 706 if ((error = bus_dmamap_load(sc->sc_dmat, 707 sc->re_ldata.re_tx_list_map, sc->re_ldata.re_tx_list, 708 RE_TX_LIST_SZ(sc), NULL, BUS_DMA_NOWAIT)) != 0) { 709 aprint_error_dev(sc->sc_dev, 710 "can't load tx list, error = %d\n", error); 711 goto fail_3; 712 } 713 714 /* Create DMA maps for TX buffers */ 715 for (i = 0; i < RE_TX_QLEN; i++) { 716 error = bus_dmamap_create(sc->sc_dmat, 717 round_page(IP_MAXPACKET), 718 RE_TX_DESC_CNT(sc), RE_TDESC_CMD_FRAGLEN, 719 0, 0, &sc->re_ldata.re_txq[i].txq_dmamap); 720 if (error) { 721 aprint_error_dev(sc->sc_dev, 722 "can't create DMA map for TX\n"); 723 goto fail_4; 724 } 725 } 726 727 /* Allocate DMA'able memory for the RX ring */ 728 /* XXX see also a comment about RE_RX_DMAMEM_SZ in rtl81x9var.h */ 729 if ((error = bus_dmamem_alloc(sc->sc_dmat, 730 RE_RX_DMAMEM_SZ, RE_RING_ALIGN, 0, &sc->re_ldata.re_rx_listseg, 1, 731 &sc->re_ldata.re_rx_listnseg, BUS_DMA_NOWAIT)) != 0) { 732 aprint_error_dev(sc->sc_dev, 733 "can't allocate rx listseg, error = %d\n", error); 734 goto fail_4; 735 } 736 737 /* Load the map for the RX ring. */ 738 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_rx_listseg, 739 sc->re_ldata.re_rx_listnseg, RE_RX_DMAMEM_SZ, 740 (void **)&sc->re_ldata.re_rx_list, 741 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) { 742 aprint_error_dev(sc->sc_dev, 743 "can't map rx list, error = %d\n", error); 744 goto fail_5; 745 } 746 memset(sc->re_ldata.re_rx_list, 0, RE_RX_DMAMEM_SZ); 747 748 if ((error = bus_dmamap_create(sc->sc_dmat, 749 RE_RX_DMAMEM_SZ, 1, RE_RX_DMAMEM_SZ, 0, 0, 750 &sc->re_ldata.re_rx_list_map)) != 0) { 751 aprint_error_dev(sc->sc_dev, 752 "can't create rx list map, error = %d\n", error); 753 goto fail_6; 754 } 755 756 if ((error = bus_dmamap_load(sc->sc_dmat, 757 sc->re_ldata.re_rx_list_map, sc->re_ldata.re_rx_list, 758 RE_RX_DMAMEM_SZ, NULL, BUS_DMA_NOWAIT)) != 0) { 759 aprint_error_dev(sc->sc_dev, 760 "can't load rx list, error = %d\n", error); 761 goto fail_7; 762 } 763 764 /* Create DMA maps for RX buffers */ 765 for (i = 0; i < RE_RX_DESC_CNT; i++) { 766 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 767 0, 0, &sc->re_ldata.re_rxsoft[i].rxs_dmamap); 768 if (error) { 769 aprint_error_dev(sc->sc_dev, 770 "can't create DMA map for RX\n"); 771 goto fail_8; 772 } 773 } 774 775 /* 776 * Record interface as attached. From here, we should not fail. 777 */ 778 sc->sc_flags |= RTK_ATTACHED; 779 780 ifp = &sc->ethercom.ec_if; 781 ifp->if_softc = sc; 782 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ); 783 ifp->if_mtu = ETHERMTU; 784 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 785 ifp->if_ioctl = re_ioctl; 786 sc->ethercom.ec_capabilities |= 787 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING; 788 ifp->if_start = re_start; 789 ifp->if_stop = re_stop; 790 791 /* 792 * IFCAP_CSUM_IPv4_Tx on re(4) is broken for small packets, 793 * so we have a workaround to handle the bug by padding 794 * such packets manually. 795 */ 796 ifp->if_capabilities |= 797 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx | 798 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx | 799 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx | 800 IFCAP_TSOv4; 801 802 /* 803 * XXX 804 * Still have no idea how to make TSO work on 8168C, 8168CP, 805 * 8102E, 8111C and 8111CP. 806 */ 807 if ((sc->sc_quirk & RTKQ_DESCV2) != 0) 808 ifp->if_capabilities &= ~IFCAP_TSOv4; 809 810 ifp->if_watchdog = re_watchdog; 811 ifp->if_init = re_init; 812 ifp->if_snd.ifq_maxlen = RE_IFQ_MAXLEN; 813 ifp->if_capenable = ifp->if_capabilities; 814 IFQ_SET_READY(&ifp->if_snd); 815 816 callout_init(&sc->rtk_tick_ch, 0); 817 818 /* Do MII setup */ 819 sc->mii.mii_ifp = ifp; 820 sc->mii.mii_readreg = re_miibus_readreg; 821 sc->mii.mii_writereg = re_miibus_writereg; 822 sc->mii.mii_statchg = re_miibus_statchg; 823 sc->ethercom.ec_mii = &sc->mii; 824 ifmedia_init(&sc->mii.mii_media, IFM_IMASK, ether_mediachange, 825 ether_mediastatus); 826 mii_attach(sc->sc_dev, &sc->mii, 0xffffffff, MII_PHY_ANY, 827 MII_OFFSET_ANY, 0); 828 ifmedia_set(&sc->mii.mii_media, IFM_ETHER | IFM_AUTO); 829 830 /* 831 * Call MI attach routine. 832 */ 833 if_attach(ifp); 834 ether_ifattach(ifp, eaddr); 835 836 if (pmf_device_register(sc->sc_dev, NULL, NULL)) 837 pmf_class_network_register(sc->sc_dev, ifp); 838 else 839 aprint_error_dev(sc->sc_dev, 840 "couldn't establish power handler\n"); 841 842 return; 843 844 fail_8: 845 /* Destroy DMA maps for RX buffers. */ 846 for (i = 0; i < RE_RX_DESC_CNT; i++) 847 if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL) 848 bus_dmamap_destroy(sc->sc_dmat, 849 sc->re_ldata.re_rxsoft[i].rxs_dmamap); 850 851 /* Free DMA'able memory for the RX ring. */ 852 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map); 853 fail_7: 854 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map); 855 fail_6: 856 bus_dmamem_unmap(sc->sc_dmat, 857 (void *)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ); 858 fail_5: 859 bus_dmamem_free(sc->sc_dmat, 860 &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg); 861 862 fail_4: 863 /* Destroy DMA maps for TX buffers. */ 864 for (i = 0; i < RE_TX_QLEN; i++) 865 if (sc->re_ldata.re_txq[i].txq_dmamap != NULL) 866 bus_dmamap_destroy(sc->sc_dmat, 867 sc->re_ldata.re_txq[i].txq_dmamap); 868 869 /* Free DMA'able memory for the TX ring. */ 870 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map); 871 fail_3: 872 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map); 873 fail_2: 874 bus_dmamem_unmap(sc->sc_dmat, 875 (void *)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc)); 876 fail_1: 877 bus_dmamem_free(sc->sc_dmat, 878 &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg); 879 fail_0: 880 return; 881 } 882 883 884 /* 885 * re_activate: 886 * Handle device activation/deactivation requests. 887 */ 888 int 889 re_activate(device_t self, enum devact act) 890 { 891 struct rtk_softc *sc = device_private(self); 892 893 switch (act) { 894 case DVACT_DEACTIVATE: 895 if_deactivate(&sc->ethercom.ec_if); 896 return 0; 897 default: 898 return EOPNOTSUPP; 899 } 900 } 901 902 /* 903 * re_detach: 904 * Detach a rtk interface. 905 */ 906 int 907 re_detach(struct rtk_softc *sc) 908 { 909 struct ifnet *ifp = &sc->ethercom.ec_if; 910 int i; 911 912 /* 913 * Succeed now if there isn't any work to do. 914 */ 915 if ((sc->sc_flags & RTK_ATTACHED) == 0) 916 return 0; 917 918 /* Unhook our tick handler. */ 919 callout_stop(&sc->rtk_tick_ch); 920 921 /* Detach all PHYs. */ 922 mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY); 923 924 /* Delete all remaining media. */ 925 ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY); 926 927 ether_ifdetach(ifp); 928 if_detach(ifp); 929 930 /* Destroy DMA maps for RX buffers. */ 931 for (i = 0; i < RE_RX_DESC_CNT; i++) 932 if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL) 933 bus_dmamap_destroy(sc->sc_dmat, 934 sc->re_ldata.re_rxsoft[i].rxs_dmamap); 935 936 /* Free DMA'able memory for the RX ring. */ 937 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map); 938 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map); 939 bus_dmamem_unmap(sc->sc_dmat, 940 (void *)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ); 941 bus_dmamem_free(sc->sc_dmat, 942 &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg); 943 944 /* Destroy DMA maps for TX buffers. */ 945 for (i = 0; i < RE_TX_QLEN; i++) 946 if (sc->re_ldata.re_txq[i].txq_dmamap != NULL) 947 bus_dmamap_destroy(sc->sc_dmat, 948 sc->re_ldata.re_txq[i].txq_dmamap); 949 950 /* Free DMA'able memory for the TX ring. */ 951 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map); 952 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map); 953 bus_dmamem_unmap(sc->sc_dmat, 954 (void *)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc)); 955 bus_dmamem_free(sc->sc_dmat, 956 &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg); 957 958 pmf_device_deregister(sc->sc_dev); 959 960 return 0; 961 } 962 963 /* 964 * re_enable: 965 * Enable the RTL81X9 chip. 966 */ 967 static int 968 re_enable(struct rtk_softc *sc) 969 { 970 971 if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) { 972 if ((*sc->sc_enable)(sc) != 0) { 973 printf("%s: device enable failed\n", 974 device_xname(sc->sc_dev)); 975 return EIO; 976 } 977 sc->sc_flags |= RTK_ENABLED; 978 } 979 return 0; 980 } 981 982 /* 983 * re_disable: 984 * Disable the RTL81X9 chip. 985 */ 986 static void 987 re_disable(struct rtk_softc *sc) 988 { 989 990 if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) { 991 (*sc->sc_disable)(sc); 992 sc->sc_flags &= ~RTK_ENABLED; 993 } 994 } 995 996 static int 997 re_newbuf(struct rtk_softc *sc, int idx, struct mbuf *m) 998 { 999 struct mbuf *n = NULL; 1000 bus_dmamap_t map; 1001 struct re_desc *d; 1002 struct re_rxsoft *rxs; 1003 uint32_t cmdstat; 1004 int error; 1005 1006 if (m == NULL) { 1007 MGETHDR(n, M_DONTWAIT, MT_DATA); 1008 if (n == NULL) 1009 return ENOBUFS; 1010 1011 MCLGET(n, M_DONTWAIT); 1012 if ((n->m_flags & M_EXT) == 0) { 1013 m_freem(n); 1014 return ENOBUFS; 1015 } 1016 m = n; 1017 } else 1018 m->m_data = m->m_ext.ext_buf; 1019 1020 /* 1021 * Initialize mbuf length fields and fixup 1022 * alignment so that the frame payload is 1023 * longword aligned. 1024 */ 1025 m->m_len = m->m_pkthdr.len = MCLBYTES - RE_ETHER_ALIGN; 1026 m->m_data += RE_ETHER_ALIGN; 1027 1028 rxs = &sc->re_ldata.re_rxsoft[idx]; 1029 map = rxs->rxs_dmamap; 1030 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m, 1031 BUS_DMA_READ|BUS_DMA_NOWAIT); 1032 1033 if (error) 1034 goto out; 1035 1036 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize, 1037 BUS_DMASYNC_PREREAD); 1038 1039 d = &sc->re_ldata.re_rx_list[idx]; 1040 #ifdef DIAGNOSTIC 1041 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 1042 cmdstat = le32toh(d->re_cmdstat); 1043 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD); 1044 if (cmdstat & RE_RDESC_STAT_OWN) { 1045 panic("%s: tried to map busy RX descriptor", 1046 device_xname(sc->sc_dev)); 1047 } 1048 #endif 1049 1050 rxs->rxs_mbuf = m; 1051 1052 d->re_vlanctl = 0; 1053 cmdstat = map->dm_segs[0].ds_len; 1054 if (idx == (RE_RX_DESC_CNT - 1)) 1055 cmdstat |= RE_RDESC_CMD_EOR; 1056 re_set_bufaddr(d, map->dm_segs[0].ds_addr); 1057 d->re_cmdstat = htole32(cmdstat); 1058 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 1059 cmdstat |= RE_RDESC_CMD_OWN; 1060 d->re_cmdstat = htole32(cmdstat); 1061 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 1062 1063 return 0; 1064 out: 1065 if (n != NULL) 1066 m_freem(n); 1067 return ENOMEM; 1068 } 1069 1070 static int 1071 re_tx_list_init(struct rtk_softc *sc) 1072 { 1073 int i; 1074 1075 memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc)); 1076 for (i = 0; i < RE_TX_QLEN; i++) { 1077 sc->re_ldata.re_txq[i].txq_mbuf = NULL; 1078 } 1079 1080 bus_dmamap_sync(sc->sc_dmat, 1081 sc->re_ldata.re_tx_list_map, 0, 1082 sc->re_ldata.re_tx_list_map->dm_mapsize, 1083 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 1084 sc->re_ldata.re_txq_prodidx = 0; 1085 sc->re_ldata.re_txq_considx = 0; 1086 sc->re_ldata.re_txq_free = RE_TX_QLEN; 1087 sc->re_ldata.re_tx_free = RE_TX_DESC_CNT(sc); 1088 sc->re_ldata.re_tx_nextfree = 0; 1089 1090 return 0; 1091 } 1092 1093 static int 1094 re_rx_list_init(struct rtk_softc *sc) 1095 { 1096 int i; 1097 1098 memset(sc->re_ldata.re_rx_list, 0, RE_RX_LIST_SZ); 1099 1100 for (i = 0; i < RE_RX_DESC_CNT; i++) { 1101 if (re_newbuf(sc, i, NULL) == ENOBUFS) 1102 return ENOBUFS; 1103 } 1104 1105 sc->re_ldata.re_rx_prodidx = 0; 1106 sc->re_head = sc->re_tail = NULL; 1107 1108 return 0; 1109 } 1110 1111 /* 1112 * RX handler for C+ and 8169. For the gigE chips, we support 1113 * the reception of jumbo frames that have been fragmented 1114 * across multiple 2K mbuf cluster buffers. 1115 */ 1116 static void 1117 re_rxeof(struct rtk_softc *sc) 1118 { 1119 struct mbuf *m; 1120 struct ifnet *ifp; 1121 int i, total_len; 1122 struct re_desc *cur_rx; 1123 struct re_rxsoft *rxs; 1124 uint32_t rxstat, rxvlan; 1125 1126 ifp = &sc->ethercom.ec_if; 1127 1128 for (i = sc->re_ldata.re_rx_prodidx;; i = RE_NEXT_RX_DESC(sc, i)) { 1129 cur_rx = &sc->re_ldata.re_rx_list[i]; 1130 RE_RXDESCSYNC(sc, i, 1131 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 1132 rxstat = le32toh(cur_rx->re_cmdstat); 1133 rxvlan = le32toh(cur_rx->re_vlanctl); 1134 RE_RXDESCSYNC(sc, i, BUS_DMASYNC_PREREAD); 1135 if ((rxstat & RE_RDESC_STAT_OWN) != 0) { 1136 break; 1137 } 1138 total_len = rxstat & sc->re_rxlenmask; 1139 rxs = &sc->re_ldata.re_rxsoft[i]; 1140 m = rxs->rxs_mbuf; 1141 1142 /* Invalidate the RX mbuf and unload its map */ 1143 1144 bus_dmamap_sync(sc->sc_dmat, 1145 rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize, 1146 BUS_DMASYNC_POSTREAD); 1147 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap); 1148 1149 if ((rxstat & RE_RDESC_STAT_EOF) == 0) { 1150 m->m_len = MCLBYTES - RE_ETHER_ALIGN; 1151 if (sc->re_head == NULL) 1152 sc->re_head = sc->re_tail = m; 1153 else { 1154 m->m_flags &= ~M_PKTHDR; 1155 sc->re_tail->m_next = m; 1156 sc->re_tail = m; 1157 } 1158 re_newbuf(sc, i, NULL); 1159 continue; 1160 } 1161 1162 /* 1163 * NOTE: for the 8139C+, the frame length field 1164 * is always 12 bits in size, but for the gigE chips, 1165 * it is 13 bits (since the max RX frame length is 16K). 1166 * Unfortunately, all 32 bits in the status word 1167 * were already used, so to make room for the extra 1168 * length bit, RealTek took out the 'frame alignment 1169 * error' bit and shifted the other status bits 1170 * over one slot. The OWN, EOR, FS and LS bits are 1171 * still in the same places. We have already extracted 1172 * the frame length and checked the OWN bit, so rather 1173 * than using an alternate bit mapping, we shift the 1174 * status bits one space to the right so we can evaluate 1175 * them using the 8169 status as though it was in the 1176 * same format as that of the 8139C+. 1177 */ 1178 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) 1179 rxstat >>= 1; 1180 1181 if (__predict_false((rxstat & RE_RDESC_STAT_RXERRSUM) != 0)) { 1182 #ifdef RE_DEBUG 1183 printf("%s: RX error (rxstat = 0x%08x)", 1184 device_xname(sc->sc_dev), rxstat); 1185 if (rxstat & RE_RDESC_STAT_FRALIGN) 1186 printf(", frame alignment error"); 1187 if (rxstat & RE_RDESC_STAT_BUFOFLOW) 1188 printf(", out of buffer space"); 1189 if (rxstat & RE_RDESC_STAT_FIFOOFLOW) 1190 printf(", FIFO overrun"); 1191 if (rxstat & RE_RDESC_STAT_GIANT) 1192 printf(", giant packet"); 1193 if (rxstat & RE_RDESC_STAT_RUNT) 1194 printf(", runt packet"); 1195 if (rxstat & RE_RDESC_STAT_CRCERR) 1196 printf(", CRC error"); 1197 printf("\n"); 1198 #endif 1199 ifp->if_ierrors++; 1200 /* 1201 * If this is part of a multi-fragment packet, 1202 * discard all the pieces. 1203 */ 1204 if (sc->re_head != NULL) { 1205 m_freem(sc->re_head); 1206 sc->re_head = sc->re_tail = NULL; 1207 } 1208 re_newbuf(sc, i, m); 1209 continue; 1210 } 1211 1212 /* 1213 * If allocating a replacement mbuf fails, 1214 * reload the current one. 1215 */ 1216 1217 if (__predict_false(re_newbuf(sc, i, NULL) != 0)) { 1218 ifp->if_ierrors++; 1219 if (sc->re_head != NULL) { 1220 m_freem(sc->re_head); 1221 sc->re_head = sc->re_tail = NULL; 1222 } 1223 re_newbuf(sc, i, m); 1224 continue; 1225 } 1226 1227 if (sc->re_head != NULL) { 1228 m->m_len = total_len % (MCLBYTES - RE_ETHER_ALIGN); 1229 /* 1230 * Special case: if there's 4 bytes or less 1231 * in this buffer, the mbuf can be discarded: 1232 * the last 4 bytes is the CRC, which we don't 1233 * care about anyway. 1234 */ 1235 if (m->m_len <= ETHER_CRC_LEN) { 1236 sc->re_tail->m_len -= 1237 (ETHER_CRC_LEN - m->m_len); 1238 m_freem(m); 1239 } else { 1240 m->m_len -= ETHER_CRC_LEN; 1241 m->m_flags &= ~M_PKTHDR; 1242 sc->re_tail->m_next = m; 1243 } 1244 m = sc->re_head; 1245 sc->re_head = sc->re_tail = NULL; 1246 m->m_pkthdr.len = total_len - ETHER_CRC_LEN; 1247 } else 1248 m->m_pkthdr.len = m->m_len = 1249 (total_len - ETHER_CRC_LEN); 1250 1251 ifp->if_ipackets++; 1252 m->m_pkthdr.rcvif = ifp; 1253 1254 /* Do RX checksumming */ 1255 if ((sc->sc_quirk & RTKQ_DESCV2) == 0) { 1256 /* Check IP header checksum */ 1257 if ((rxstat & RE_RDESC_STAT_PROTOID) != 0) { 1258 m->m_pkthdr.csum_flags |= M_CSUM_IPv4; 1259 if (rxstat & RE_RDESC_STAT_IPSUMBAD) 1260 m->m_pkthdr.csum_flags |= 1261 M_CSUM_IPv4_BAD; 1262 1263 /* Check TCP/UDP checksum */ 1264 if (RE_TCPPKT(rxstat)) { 1265 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4; 1266 if (rxstat & RE_RDESC_STAT_TCPSUMBAD) 1267 m->m_pkthdr.csum_flags |= 1268 M_CSUM_TCP_UDP_BAD; 1269 } else if (RE_UDPPKT(rxstat)) { 1270 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4; 1271 if (rxstat & RE_RDESC_STAT_UDPSUMBAD) 1272 m->m_pkthdr.csum_flags |= 1273 M_CSUM_TCP_UDP_BAD; 1274 } 1275 } 1276 } else { 1277 /* Check IPv4 header checksum */ 1278 if ((rxvlan & RE_RDESC_VLANCTL_IPV4) != 0) { 1279 m->m_pkthdr.csum_flags |= M_CSUM_IPv4; 1280 if (rxstat & RE_RDESC_STAT_IPSUMBAD) 1281 m->m_pkthdr.csum_flags |= 1282 M_CSUM_IPv4_BAD; 1283 1284 /* Check TCPv4/UDPv4 checksum */ 1285 if (RE_TCPPKT(rxstat)) { 1286 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4; 1287 if (rxstat & RE_RDESC_STAT_TCPSUMBAD) 1288 m->m_pkthdr.csum_flags |= 1289 M_CSUM_TCP_UDP_BAD; 1290 } else if (RE_UDPPKT(rxstat)) { 1291 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4; 1292 if (rxstat & RE_RDESC_STAT_UDPSUMBAD) 1293 m->m_pkthdr.csum_flags |= 1294 M_CSUM_TCP_UDP_BAD; 1295 } 1296 } 1297 /* XXX Check TCPv6/UDPv6 checksum? */ 1298 } 1299 1300 if (rxvlan & RE_RDESC_VLANCTL_TAG) { 1301 VLAN_INPUT_TAG(ifp, m, 1302 bswap16(rxvlan & RE_RDESC_VLANCTL_DATA), 1303 continue); 1304 } 1305 #if NBPFILTER > 0 1306 if (ifp->if_bpf) 1307 bpf_mtap(ifp->if_bpf, m); 1308 #endif 1309 (*ifp->if_input)(ifp, m); 1310 } 1311 1312 sc->re_ldata.re_rx_prodidx = i; 1313 } 1314 1315 static void 1316 re_txeof(struct rtk_softc *sc) 1317 { 1318 struct ifnet *ifp; 1319 struct re_txq *txq; 1320 uint32_t txstat; 1321 int idx, descidx; 1322 1323 ifp = &sc->ethercom.ec_if; 1324 1325 for (idx = sc->re_ldata.re_txq_considx; 1326 sc->re_ldata.re_txq_free < RE_TX_QLEN; 1327 idx = RE_NEXT_TXQ(sc, idx), sc->re_ldata.re_txq_free++) { 1328 txq = &sc->re_ldata.re_txq[idx]; 1329 KASSERT(txq->txq_mbuf != NULL); 1330 1331 descidx = txq->txq_descidx; 1332 RE_TXDESCSYNC(sc, descidx, 1333 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 1334 txstat = 1335 le32toh(sc->re_ldata.re_tx_list[descidx].re_cmdstat); 1336 RE_TXDESCSYNC(sc, descidx, BUS_DMASYNC_PREREAD); 1337 KASSERT((txstat & RE_TDESC_CMD_EOF) != 0); 1338 if (txstat & RE_TDESC_CMD_OWN) { 1339 break; 1340 } 1341 1342 sc->re_ldata.re_tx_free += txq->txq_nsegs; 1343 KASSERT(sc->re_ldata.re_tx_free <= RE_TX_DESC_CNT(sc)); 1344 bus_dmamap_sync(sc->sc_dmat, txq->txq_dmamap, 1345 0, txq->txq_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE); 1346 bus_dmamap_unload(sc->sc_dmat, txq->txq_dmamap); 1347 m_freem(txq->txq_mbuf); 1348 txq->txq_mbuf = NULL; 1349 1350 if (txstat & (RE_TDESC_STAT_EXCESSCOL | RE_TDESC_STAT_COLCNT)) 1351 ifp->if_collisions++; 1352 if (txstat & RE_TDESC_STAT_TXERRSUM) 1353 ifp->if_oerrors++; 1354 else 1355 ifp->if_opackets++; 1356 } 1357 1358 sc->re_ldata.re_txq_considx = idx; 1359 1360 if (sc->re_ldata.re_txq_free > RE_NTXDESC_RSVD) 1361 ifp->if_flags &= ~IFF_OACTIVE; 1362 1363 /* 1364 * If not all descriptors have been released reaped yet, 1365 * reload the timer so that we will eventually get another 1366 * interrupt that will cause us to re-enter this routine. 1367 * This is done in case the transmitter has gone idle. 1368 */ 1369 if (sc->re_ldata.re_txq_free < RE_TX_QLEN) { 1370 CSR_WRITE_4(sc, RTK_TIMERCNT, 1); 1371 if ((sc->sc_quirk & RTKQ_PCIE) != 0) { 1372 /* 1373 * Some chips will ignore a second TX request 1374 * issued while an existing transmission is in 1375 * progress. If the transmitter goes idle but 1376 * there are still packets waiting to be sent, 1377 * we need to restart the channel here to flush 1378 * them out. This only seems to be required with 1379 * the PCIe devices. 1380 */ 1381 CSR_WRITE_1(sc, RTK_GTXSTART, RTK_TXSTART_START); 1382 } 1383 } else 1384 ifp->if_timer = 0; 1385 } 1386 1387 static void 1388 re_tick(void *arg) 1389 { 1390 struct rtk_softc *sc = arg; 1391 int s; 1392 1393 /* XXX: just return for 8169S/8110S with rev 2 or newer phy */ 1394 s = splnet(); 1395 1396 mii_tick(&sc->mii); 1397 splx(s); 1398 1399 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc); 1400 } 1401 1402 int 1403 re_intr(void *arg) 1404 { 1405 struct rtk_softc *sc = arg; 1406 struct ifnet *ifp; 1407 uint16_t status; 1408 int handled = 0; 1409 1410 if (!device_has_power(sc->sc_dev)) 1411 return 0; 1412 1413 ifp = &sc->ethercom.ec_if; 1414 1415 if ((ifp->if_flags & IFF_UP) == 0) 1416 return 0; 1417 1418 for (;;) { 1419 1420 status = CSR_READ_2(sc, RTK_ISR); 1421 /* If the card has gone away the read returns 0xffff. */ 1422 if (status == 0xffff) 1423 break; 1424 if (status) { 1425 handled = 1; 1426 CSR_WRITE_2(sc, RTK_ISR, status); 1427 } 1428 1429 if ((status & RTK_INTRS_CPLUS) == 0) 1430 break; 1431 1432 if (status & (RTK_ISR_RX_OK | RTK_ISR_RX_ERR)) 1433 re_rxeof(sc); 1434 1435 if (status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_TX_ERR | 1436 RTK_ISR_TX_DESC_UNAVAIL)) 1437 re_txeof(sc); 1438 1439 if (status & RTK_ISR_SYSTEM_ERR) { 1440 re_init(ifp); 1441 } 1442 1443 if (status & RTK_ISR_LINKCHG) { 1444 callout_stop(&sc->rtk_tick_ch); 1445 re_tick(sc); 1446 } 1447 } 1448 1449 if (handled && !IFQ_IS_EMPTY(&ifp->if_snd)) 1450 re_start(ifp); 1451 1452 return handled; 1453 } 1454 1455 1456 1457 /* 1458 * Main transmit routine for C+ and gigE NICs. 1459 */ 1460 1461 static void 1462 re_start(struct ifnet *ifp) 1463 { 1464 struct rtk_softc *sc; 1465 struct mbuf *m; 1466 bus_dmamap_t map; 1467 struct re_txq *txq; 1468 struct re_desc *d; 1469 struct m_tag *mtag; 1470 uint32_t cmdstat, re_flags, vlanctl; 1471 int ofree, idx, error, nsegs, seg; 1472 int startdesc, curdesc, lastdesc; 1473 bool pad; 1474 1475 sc = ifp->if_softc; 1476 ofree = sc->re_ldata.re_txq_free; 1477 1478 for (idx = sc->re_ldata.re_txq_prodidx;; idx = RE_NEXT_TXQ(sc, idx)) { 1479 1480 IFQ_POLL(&ifp->if_snd, m); 1481 if (m == NULL) 1482 break; 1483 1484 if (sc->re_ldata.re_txq_free == 0 || 1485 sc->re_ldata.re_tx_free == 0) { 1486 /* no more free slots left */ 1487 ifp->if_flags |= IFF_OACTIVE; 1488 break; 1489 } 1490 1491 /* 1492 * Set up checksum offload. Note: checksum offload bits must 1493 * appear in all descriptors of a multi-descriptor transmit 1494 * attempt. (This is according to testing done with an 8169 1495 * chip. I'm not sure if this is a requirement or a bug.) 1496 */ 1497 1498 vlanctl = 0; 1499 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) { 1500 uint32_t segsz = m->m_pkthdr.segsz; 1501 1502 re_flags = RE_TDESC_CMD_LGSEND | 1503 (segsz << RE_TDESC_CMD_MSSVAL_SHIFT); 1504 } else { 1505 /* 1506 * set RE_TDESC_CMD_IPCSUM if any checksum offloading 1507 * is requested. otherwise, RE_TDESC_CMD_TCPCSUM/ 1508 * RE_TDESC_CMD_UDPCSUM doesn't make effects. 1509 */ 1510 re_flags = 0; 1511 if ((m->m_pkthdr.csum_flags & 1512 (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) 1513 != 0) { 1514 if ((sc->sc_quirk & RTKQ_DESCV2) == 0) { 1515 re_flags |= RE_TDESC_CMD_IPCSUM; 1516 if (m->m_pkthdr.csum_flags & 1517 M_CSUM_TCPv4) { 1518 re_flags |= 1519 RE_TDESC_CMD_TCPCSUM; 1520 } else if (m->m_pkthdr.csum_flags & 1521 M_CSUM_UDPv4) { 1522 re_flags |= 1523 RE_TDESC_CMD_UDPCSUM; 1524 } 1525 } else { 1526 vlanctl |= RE_TDESC_VLANCTL_IPCSUM; 1527 if (m->m_pkthdr.csum_flags & 1528 M_CSUM_TCPv4) { 1529 vlanctl |= 1530 RE_TDESC_VLANCTL_TCPCSUM; 1531 } else if (m->m_pkthdr.csum_flags & 1532 M_CSUM_UDPv4) { 1533 vlanctl |= 1534 RE_TDESC_VLANCTL_UDPCSUM; 1535 } 1536 } 1537 } 1538 } 1539 1540 txq = &sc->re_ldata.re_txq[idx]; 1541 map = txq->txq_dmamap; 1542 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m, 1543 BUS_DMA_WRITE|BUS_DMA_NOWAIT); 1544 1545 if (__predict_false(error)) { 1546 /* XXX try to defrag if EFBIG? */ 1547 printf("%s: can't map mbuf (error %d)\n", 1548 device_xname(sc->sc_dev), error); 1549 1550 IFQ_DEQUEUE(&ifp->if_snd, m); 1551 m_freem(m); 1552 ifp->if_oerrors++; 1553 continue; 1554 } 1555 1556 nsegs = map->dm_nsegs; 1557 pad = false; 1558 if (__predict_false(m->m_pkthdr.len <= RE_IP4CSUMTX_PADLEN && 1559 (re_flags & RE_TDESC_CMD_IPCSUM) != 0 && 1560 (sc->sc_quirk & RTKQ_DESCV2) == 0)) { 1561 pad = true; 1562 nsegs++; 1563 } 1564 1565 if (nsegs > sc->re_ldata.re_tx_free) { 1566 /* 1567 * Not enough free descriptors to transmit this packet. 1568 */ 1569 ifp->if_flags |= IFF_OACTIVE; 1570 bus_dmamap_unload(sc->sc_dmat, map); 1571 break; 1572 } 1573 1574 IFQ_DEQUEUE(&ifp->if_snd, m); 1575 1576 /* 1577 * Make sure that the caches are synchronized before we 1578 * ask the chip to start DMA for the packet data. 1579 */ 1580 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize, 1581 BUS_DMASYNC_PREWRITE); 1582 1583 /* 1584 * Set up hardware VLAN tagging. Note: vlan tag info must 1585 * appear in all descriptors of a multi-descriptor 1586 * transmission attempt. 1587 */ 1588 if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m)) != NULL) 1589 vlanctl |= bswap16(VLAN_TAG_VALUE(mtag)) | 1590 RE_TDESC_VLANCTL_TAG; 1591 1592 /* 1593 * Map the segment array into descriptors. 1594 * Note that we set the start-of-frame and 1595 * end-of-frame markers for either TX or RX, 1596 * but they really only have meaning in the TX case. 1597 * (In the RX case, it's the chip that tells us 1598 * where packets begin and end.) 1599 * We also keep track of the end of the ring 1600 * and set the end-of-ring bits as needed, 1601 * and we set the ownership bits in all except 1602 * the very first descriptor. (The caller will 1603 * set this descriptor later when it start 1604 * transmission or reception.) 1605 */ 1606 curdesc = startdesc = sc->re_ldata.re_tx_nextfree; 1607 lastdesc = -1; 1608 for (seg = 0; seg < map->dm_nsegs; 1609 seg++, curdesc = RE_NEXT_TX_DESC(sc, curdesc)) { 1610 d = &sc->re_ldata.re_tx_list[curdesc]; 1611 #ifdef DIAGNOSTIC 1612 RE_TXDESCSYNC(sc, curdesc, 1613 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 1614 cmdstat = le32toh(d->re_cmdstat); 1615 RE_TXDESCSYNC(sc, curdesc, BUS_DMASYNC_PREREAD); 1616 if (cmdstat & RE_TDESC_STAT_OWN) { 1617 panic("%s: tried to map busy TX descriptor", 1618 device_xname(sc->sc_dev)); 1619 } 1620 #endif 1621 1622 d->re_vlanctl = htole32(vlanctl); 1623 re_set_bufaddr(d, map->dm_segs[seg].ds_addr); 1624 cmdstat = re_flags | map->dm_segs[seg].ds_len; 1625 if (seg == 0) 1626 cmdstat |= RE_TDESC_CMD_SOF; 1627 else 1628 cmdstat |= RE_TDESC_CMD_OWN; 1629 if (curdesc == (RE_TX_DESC_CNT(sc) - 1)) 1630 cmdstat |= RE_TDESC_CMD_EOR; 1631 if (seg == nsegs - 1) { 1632 cmdstat |= RE_TDESC_CMD_EOF; 1633 lastdesc = curdesc; 1634 } 1635 d->re_cmdstat = htole32(cmdstat); 1636 RE_TXDESCSYNC(sc, curdesc, 1637 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 1638 } 1639 if (__predict_false(pad)) { 1640 d = &sc->re_ldata.re_tx_list[curdesc]; 1641 d->re_vlanctl = htole32(vlanctl); 1642 re_set_bufaddr(d, RE_TXPADDADDR(sc)); 1643 cmdstat = re_flags | 1644 RE_TDESC_CMD_OWN | RE_TDESC_CMD_EOF | 1645 (RE_IP4CSUMTX_PADLEN + 1 - m->m_pkthdr.len); 1646 if (curdesc == (RE_TX_DESC_CNT(sc) - 1)) 1647 cmdstat |= RE_TDESC_CMD_EOR; 1648 d->re_cmdstat = htole32(cmdstat); 1649 RE_TXDESCSYNC(sc, curdesc, 1650 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 1651 lastdesc = curdesc; 1652 curdesc = RE_NEXT_TX_DESC(sc, curdesc); 1653 } 1654 KASSERT(lastdesc != -1); 1655 1656 /* Transfer ownership of packet to the chip. */ 1657 1658 sc->re_ldata.re_tx_list[startdesc].re_cmdstat |= 1659 htole32(RE_TDESC_CMD_OWN); 1660 RE_TXDESCSYNC(sc, startdesc, 1661 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 1662 1663 /* update info of TX queue and descriptors */ 1664 txq->txq_mbuf = m; 1665 txq->txq_descidx = lastdesc; 1666 txq->txq_nsegs = nsegs; 1667 1668 sc->re_ldata.re_txq_free--; 1669 sc->re_ldata.re_tx_free -= nsegs; 1670 sc->re_ldata.re_tx_nextfree = curdesc; 1671 1672 #if NBPFILTER > 0 1673 /* 1674 * If there's a BPF listener, bounce a copy of this frame 1675 * to him. 1676 */ 1677 if (ifp->if_bpf) 1678 bpf_mtap(ifp->if_bpf, m); 1679 #endif 1680 } 1681 1682 if (sc->re_ldata.re_txq_free < ofree) { 1683 /* 1684 * TX packets are enqueued. 1685 */ 1686 sc->re_ldata.re_txq_prodidx = idx; 1687 1688 /* 1689 * Start the transmitter to poll. 1690 * 1691 * RealTek put the TX poll request register in a different 1692 * location on the 8169 gigE chip. I don't know why. 1693 */ 1694 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0) 1695 CSR_WRITE_1(sc, RTK_TXSTART, RTK_TXSTART_START); 1696 else 1697 CSR_WRITE_1(sc, RTK_GTXSTART, RTK_TXSTART_START); 1698 1699 /* 1700 * Use the countdown timer for interrupt moderation. 1701 * 'TX done' interrupts are disabled. Instead, we reset the 1702 * countdown timer, which will begin counting until it hits 1703 * the value in the TIMERINT register, and then trigger an 1704 * interrupt. Each time we write to the TIMERCNT register, 1705 * the timer count is reset to 0. 1706 */ 1707 CSR_WRITE_4(sc, RTK_TIMERCNT, 1); 1708 1709 /* 1710 * Set a timeout in case the chip goes out to lunch. 1711 */ 1712 ifp->if_timer = 5; 1713 } 1714 } 1715 1716 static int 1717 re_init(struct ifnet *ifp) 1718 { 1719 struct rtk_softc *sc = ifp->if_softc; 1720 const uint8_t *enaddr; 1721 uint32_t rxcfg = 0; 1722 uint32_t reg; 1723 uint16_t cfg; 1724 int error; 1725 1726 if ((error = re_enable(sc)) != 0) 1727 goto out; 1728 1729 /* 1730 * Cancel pending I/O and free all RX/TX buffers. 1731 */ 1732 re_stop(ifp, 0); 1733 1734 re_reset(sc); 1735 1736 /* 1737 * Enable C+ RX and TX mode, as well as VLAN stripping and 1738 * RX checksum offload. We must configure the C+ register 1739 * before all others. 1740 */ 1741 cfg = RE_CPLUSCMD_PCI_MRW; 1742 1743 /* 1744 * XXX: For old 8169 set bit 14. 1745 * For 8169S/8110S and above, do not set bit 14. 1746 */ 1747 if ((sc->sc_quirk & RTKQ_8169NONS) != 0) 1748 cfg |= (0x1 << 14); 1749 1750 if ((ifp->if_capenable & ETHERCAP_VLAN_HWTAGGING) != 0) 1751 cfg |= RE_CPLUSCMD_VLANSTRIP; 1752 if ((ifp->if_capenable & (IFCAP_CSUM_IPv4_Rx | 1753 IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx)) != 0) 1754 cfg |= RE_CPLUSCMD_RXCSUM_ENB; 1755 if ((sc->sc_quirk & RTKQ_MACSTAT) != 0) { 1756 cfg |= RE_CPLUSCMD_MACSTAT_DIS; 1757 cfg |= RE_CPLUSCMD_TXENB; 1758 } else 1759 cfg |= RE_CPLUSCMD_RXENB | RE_CPLUSCMD_TXENB; 1760 1761 CSR_WRITE_2(sc, RTK_CPLUS_CMD, cfg); 1762 1763 /* XXX: from Realtek-supplied Linux driver. Wholly undocumented. */ 1764 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) 1765 CSR_WRITE_2(sc, RTK_IM, 0x0000); 1766 1767 DELAY(10000); 1768 1769 /* 1770 * Init our MAC address. Even though the chipset 1771 * documentation doesn't mention it, we need to enter "Config 1772 * register write enable" mode to modify the ID registers. 1773 */ 1774 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_WRITECFG); 1775 enaddr = CLLADDR(ifp->if_sadl); 1776 reg = enaddr[0] | (enaddr[1] << 8) | 1777 (enaddr[2] << 16) | (enaddr[3] << 24); 1778 CSR_WRITE_4(sc, RTK_IDR0, reg); 1779 reg = enaddr[4] | (enaddr[5] << 8); 1780 CSR_WRITE_4(sc, RTK_IDR4, reg); 1781 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF); 1782 1783 /* 1784 * For C+ mode, initialize the RX descriptors and mbufs. 1785 */ 1786 re_rx_list_init(sc); 1787 re_tx_list_init(sc); 1788 1789 /* 1790 * Load the addresses of the RX and TX lists into the chip. 1791 */ 1792 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_HI, 1793 RE_ADDR_HI(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr)); 1794 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_LO, 1795 RE_ADDR_LO(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr)); 1796 1797 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_HI, 1798 RE_ADDR_HI(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr)); 1799 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_LO, 1800 RE_ADDR_LO(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr)); 1801 1802 /* 1803 * Enable transmit and receive. 1804 */ 1805 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB); 1806 1807 /* 1808 * Set the initial TX and RX configuration. 1809 */ 1810 if (sc->re_testmode && (sc->sc_quirk & RTKQ_8169NONS) != 0) { 1811 /* test mode is needed only for old 8169 */ 1812 CSR_WRITE_4(sc, RTK_TXCFG, 1813 RE_TXCFG_CONFIG | RTK_LOOPTEST_ON); 1814 } else 1815 CSR_WRITE_4(sc, RTK_TXCFG, RE_TXCFG_CONFIG); 1816 1817 CSR_WRITE_1(sc, RTK_EARLY_TX_THRESH, 16); 1818 1819 CSR_WRITE_4(sc, RTK_RXCFG, RE_RXCFG_CONFIG); 1820 1821 /* Set the individual bit to receive frames for this host only. */ 1822 rxcfg = CSR_READ_4(sc, RTK_RXCFG); 1823 rxcfg |= RTK_RXCFG_RX_INDIV; 1824 1825 /* If we want promiscuous mode, set the allframes bit. */ 1826 if (ifp->if_flags & IFF_PROMISC) 1827 rxcfg |= RTK_RXCFG_RX_ALLPHYS; 1828 else 1829 rxcfg &= ~RTK_RXCFG_RX_ALLPHYS; 1830 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg); 1831 1832 /* 1833 * Set capture broadcast bit to capture broadcast frames. 1834 */ 1835 if (ifp->if_flags & IFF_BROADCAST) 1836 rxcfg |= RTK_RXCFG_RX_BROAD; 1837 else 1838 rxcfg &= ~RTK_RXCFG_RX_BROAD; 1839 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg); 1840 1841 /* 1842 * Program the multicast filter, if necessary. 1843 */ 1844 rtk_setmulti(sc); 1845 1846 /* 1847 * Enable interrupts. 1848 */ 1849 if (sc->re_testmode) 1850 CSR_WRITE_2(sc, RTK_IMR, 0); 1851 else 1852 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS); 1853 1854 /* Start RX/TX process. */ 1855 CSR_WRITE_4(sc, RTK_MISSEDPKT, 0); 1856 #ifdef notdef 1857 /* Enable receiver and transmitter. */ 1858 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB); 1859 #endif 1860 1861 /* 1862 * Initialize the timer interrupt register so that 1863 * a timer interrupt will be generated once the timer 1864 * reaches a certain number of ticks. The timer is 1865 * reloaded on each transmit. This gives us TX interrupt 1866 * moderation, which dramatically improves TX frame rate. 1867 */ 1868 1869 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0) 1870 CSR_WRITE_4(sc, RTK_TIMERINT, 0x400); 1871 else { 1872 CSR_WRITE_4(sc, RTK_TIMERINT_8169, 0x800); 1873 1874 /* 1875 * For 8169 gigE NICs, set the max allowed RX packet 1876 * size so we can receive jumbo frames. 1877 */ 1878 CSR_WRITE_2(sc, RTK_MAXRXPKTLEN, 16383); 1879 } 1880 1881 if (sc->re_testmode) 1882 return 0; 1883 1884 CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD); 1885 1886 ifp->if_flags |= IFF_RUNNING; 1887 ifp->if_flags &= ~IFF_OACTIVE; 1888 1889 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc); 1890 1891 out: 1892 if (error) { 1893 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 1894 ifp->if_timer = 0; 1895 printf("%s: interface not running\n", 1896 device_xname(sc->sc_dev)); 1897 } 1898 1899 return error; 1900 } 1901 1902 static int 1903 re_ioctl(struct ifnet *ifp, u_long command, void *data) 1904 { 1905 struct rtk_softc *sc = ifp->if_softc; 1906 struct ifreq *ifr = data; 1907 int s, error = 0; 1908 1909 s = splnet(); 1910 1911 switch (command) { 1912 case SIOCSIFMTU: 1913 /* 1914 * Disable jumbo frames if it's not supported. 1915 */ 1916 if ((sc->sc_quirk & RTKQ_NOJUMBO) != 0 && 1917 ifr->ifr_mtu > ETHERMTU) { 1918 error = EINVAL; 1919 break; 1920 } 1921 1922 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU_JUMBO) 1923 error = EINVAL; 1924 else if ((error = ifioctl_common(ifp, command, data)) == 1925 ENETRESET) 1926 error = 0; 1927 break; 1928 default: 1929 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET) 1930 break; 1931 1932 error = 0; 1933 1934 if (command == SIOCSIFCAP) 1935 error = (*ifp->if_init)(ifp); 1936 else if (command != SIOCADDMULTI && command != SIOCDELMULTI) 1937 ; 1938 else if (ifp->if_flags & IFF_RUNNING) 1939 rtk_setmulti(sc); 1940 break; 1941 } 1942 1943 splx(s); 1944 1945 return error; 1946 } 1947 1948 static void 1949 re_watchdog(struct ifnet *ifp) 1950 { 1951 struct rtk_softc *sc; 1952 int s; 1953 1954 sc = ifp->if_softc; 1955 s = splnet(); 1956 printf("%s: watchdog timeout\n", device_xname(sc->sc_dev)); 1957 ifp->if_oerrors++; 1958 1959 re_txeof(sc); 1960 re_rxeof(sc); 1961 1962 re_init(ifp); 1963 1964 splx(s); 1965 } 1966 1967 /* 1968 * Stop the adapter and free any mbufs allocated to the 1969 * RX and TX lists. 1970 */ 1971 static void 1972 re_stop(struct ifnet *ifp, int disable) 1973 { 1974 int i; 1975 struct rtk_softc *sc = ifp->if_softc; 1976 1977 callout_stop(&sc->rtk_tick_ch); 1978 1979 mii_down(&sc->mii); 1980 1981 if ((sc->sc_quirk & RTKQ_CMDSTOP) != 0) 1982 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_STOPREQ | RTK_CMD_TX_ENB | 1983 RTK_CMD_RX_ENB); 1984 else 1985 CSR_WRITE_1(sc, RTK_COMMAND, 0x00); 1986 DELAY(1000); 1987 CSR_WRITE_2(sc, RTK_IMR, 0x0000); 1988 CSR_WRITE_2(sc, RTK_ISR, 0xFFFF); 1989 1990 if (sc->re_head != NULL) { 1991 m_freem(sc->re_head); 1992 sc->re_head = sc->re_tail = NULL; 1993 } 1994 1995 /* Free the TX list buffers. */ 1996 for (i = 0; i < RE_TX_QLEN; i++) { 1997 if (sc->re_ldata.re_txq[i].txq_mbuf != NULL) { 1998 bus_dmamap_unload(sc->sc_dmat, 1999 sc->re_ldata.re_txq[i].txq_dmamap); 2000 m_freem(sc->re_ldata.re_txq[i].txq_mbuf); 2001 sc->re_ldata.re_txq[i].txq_mbuf = NULL; 2002 } 2003 } 2004 2005 /* Free the RX list buffers. */ 2006 for (i = 0; i < RE_RX_DESC_CNT; i++) { 2007 if (sc->re_ldata.re_rxsoft[i].rxs_mbuf != NULL) { 2008 bus_dmamap_unload(sc->sc_dmat, 2009 sc->re_ldata.re_rxsoft[i].rxs_dmamap); 2010 m_freem(sc->re_ldata.re_rxsoft[i].rxs_mbuf); 2011 sc->re_ldata.re_rxsoft[i].rxs_mbuf = NULL; 2012 } 2013 } 2014 2015 if (disable) 2016 re_disable(sc); 2017 2018 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 2019 ifp->if_timer = 0; 2020 } 2021