1 /* $NetBSD: rtl8169.c,v 1.168 2021/09/04 19:27:43 jakllsch Exp $ */ 2 3 /* 4 * Copyright (c) 1997, 1998-2003 5 * Bill Paul <wpaul@windriver.com>. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. All advertising materials mentioning features or use of this software 16 * must display the following acknowledgement: 17 * This product includes software developed by Bill Paul. 18 * 4. Neither the name of the author nor the names of any co-contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD 26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 32 * THE POSSIBILITY OF SUCH DAMAGE. 33 */ 34 35 #include <sys/cdefs.h> 36 __KERNEL_RCSID(0, "$NetBSD: rtl8169.c,v 1.168 2021/09/04 19:27:43 jakllsch Exp $"); 37 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/re/if_re.c,v 1.20 2004/04/11 20:34:08 ru Exp $ */ 38 39 /* 40 * RealTek 8139C+/8169/8169S/8168/8110S PCI NIC driver 41 * 42 * Written by Bill Paul <wpaul@windriver.com> 43 * Senior Networking Software Engineer 44 * Wind River Systems 45 */ 46 47 /* 48 * This driver is designed to support RealTek's next generation of 49 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently 50 * six devices in this family: the RTL8139C+, the RTL8169, the RTL8169S, 51 * RTL8110S, the RTL8168 and the RTL8111. 52 * 53 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible 54 * with the older 8139 family, however it also supports a special 55 * C+ mode of operation that provides several new performance enhancing 56 * features. These include: 57 * 58 * o Descriptor based DMA mechanism. Each descriptor represents 59 * a single packet fragment. Data buffers may be aligned on 60 * any byte boundary. 61 * 62 * o 64-bit DMA 63 * 64 * o TCP/IP checksum offload for both RX and TX 65 * 66 * o High and normal priority transmit DMA rings 67 * 68 * o VLAN tag insertion and extraction 69 * 70 * o TCP large send (segmentation offload) 71 * 72 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+ 73 * programming API is fairly straightforward. The RX filtering, EEPROM 74 * access and PHY access is the same as it is on the older 8139 series 75 * chips. 76 * 77 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the 78 * same programming API and feature set as the 8139C+ with the following 79 * differences and additions: 80 * 81 * o 1000Mbps mode 82 * 83 * o Jumbo frames 84 * 85 * o GMII and TBI ports/registers for interfacing with copper 86 * or fiber PHYs 87 * 88 * o RX and TX DMA rings can have up to 1024 descriptors 89 * (the 8139C+ allows a maximum of 64) 90 * 91 * o Slight differences in register layout from the 8139C+ 92 * 93 * The TX start and timer interrupt registers are at different locations 94 * on the 8169 than they are on the 8139C+. Also, the status word in the 95 * RX descriptor has a slightly different bit layout. The 8169 does not 96 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska' 97 * copper gigE PHY. 98 * 99 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs 100 * (the 'S' stands for 'single-chip'). These devices have the same 101 * programming API as the older 8169, but also have some vendor-specific 102 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard 103 * part designed to be pin-compatible with the RealTek 8100 10/100 chip. 104 * 105 * This driver takes advantage of the RX and TX checksum offload and 106 * VLAN tag insertion/extraction features. It also implements TX 107 * interrupt moderation using the timer interrupt registers, which 108 * significantly reduces TX interrupt load. There is also support 109 * for jumbo frames, however the 8169/8169S/8110S can not transmit 110 * jumbo frames larger than 7.5K, so the max MTU possible with this 111 * driver is 7500 bytes. 112 */ 113 114 115 #include <sys/param.h> 116 #include <sys/endian.h> 117 #include <sys/systm.h> 118 #include <sys/sockio.h> 119 #include <sys/mbuf.h> 120 #include <sys/malloc.h> 121 #include <sys/kernel.h> 122 #include <sys/socket.h> 123 #include <sys/device.h> 124 125 #include <net/if.h> 126 #include <net/if_arp.h> 127 #include <net/if_dl.h> 128 #include <net/if_ether.h> 129 #include <net/if_media.h> 130 #include <net/if_vlanvar.h> 131 132 #include <netinet/in_systm.h> /* XXX for IP_MAXPACKET */ 133 #include <netinet/in.h> /* XXX for IP_MAXPACKET */ 134 #include <netinet/ip.h> /* XXX for IP_MAXPACKET */ 135 136 #include <net/bpf.h> 137 #include <sys/rndsource.h> 138 139 #include <sys/bus.h> 140 141 #include <dev/mii/mii.h> 142 #include <dev/mii/miivar.h> 143 144 #include <dev/ic/rtl81x9reg.h> 145 #include <dev/ic/rtl81x9var.h> 146 147 #include <dev/ic/rtl8169var.h> 148 149 static inline void re_set_bufaddr(struct re_desc *, bus_addr_t); 150 151 static int re_newbuf(struct rtk_softc *, int, struct mbuf *); 152 static int re_rx_list_init(struct rtk_softc *); 153 static int re_tx_list_init(struct rtk_softc *); 154 static void re_rxeof(struct rtk_softc *); 155 static void re_txeof(struct rtk_softc *); 156 static void re_tick(void *); 157 static void re_start(struct ifnet *); 158 static int re_ioctl(struct ifnet *, u_long, void *); 159 static int re_init(struct ifnet *); 160 static void re_stop(struct ifnet *, int); 161 static void re_watchdog(struct ifnet *); 162 163 static int re_enable(struct rtk_softc *); 164 static void re_disable(struct rtk_softc *); 165 166 static int re_gmii_readreg(device_t, int, int, uint16_t *); 167 static int re_gmii_writereg(device_t, int, int, uint16_t); 168 169 static int re_miibus_readreg(device_t, int, int, uint16_t *); 170 static int re_miibus_writereg(device_t, int, int, uint16_t); 171 static void re_miibus_statchg(struct ifnet *); 172 173 static void re_reset(struct rtk_softc *); 174 175 static const struct re_revision { 176 uint32_t re_chipid; 177 const char *re_name; 178 } re_revisions[] = { 179 { RTK_HWREV_8100, "RTL8100" }, 180 { RTK_HWREV_8100E, "RTL8100E" }, 181 { RTK_HWREV_8100E_SPIN2, "RTL8100E 2" }, 182 { RTK_HWREV_8101, "RTL8101" }, 183 { RTK_HWREV_8101E, "RTL8101E" }, 184 { RTK_HWREV_8102E, "RTL8102E" }, 185 { RTK_HWREV_8106E, "RTL8106E" }, 186 { RTK_HWREV_8401E, "RTL8401E" }, 187 { RTK_HWREV_8402, "RTL8402" }, 188 { RTK_HWREV_8411, "RTL8411" }, 189 { RTK_HWREV_8411B, "RTL8411B" }, 190 { RTK_HWREV_8102EL, "RTL8102EL" }, 191 { RTK_HWREV_8102EL_SPIN1, "RTL8102EL 1" }, 192 { RTK_HWREV_8103E, "RTL8103E" }, 193 { RTK_HWREV_8110S, "RTL8110S" }, 194 { RTK_HWREV_8139CPLUS, "RTL8139C+" }, 195 { RTK_HWREV_8168B_SPIN1, "RTL8168 1" }, 196 { RTK_HWREV_8168B_SPIN2, "RTL8168 2" }, 197 { RTK_HWREV_8168B_SPIN3, "RTL8168 3" }, 198 { RTK_HWREV_8168C, "RTL8168C/8111C" }, 199 { RTK_HWREV_8168C_SPIN2, "RTL8168C/8111C" }, 200 { RTK_HWREV_8168CP, "RTL8168CP/8111CP" }, 201 { RTK_HWREV_8168F, "RTL8168F/8111F" }, 202 { RTK_HWREV_8168G, "RTL8168G/8111G" }, 203 { RTK_HWREV_8168GU, "RTL8168GU/8111GU" }, 204 { RTK_HWREV_8168H, "RTL8168H/8111H" }, 205 { RTK_HWREV_8105E, "RTL8105E" }, 206 { RTK_HWREV_8105E_SPIN1, "RTL8105E" }, 207 { RTK_HWREV_8168D, "RTL8168D/8111D" }, 208 { RTK_HWREV_8168DP, "RTL8168DP/8111DP" }, 209 { RTK_HWREV_8168E, "RTL8168E/8111E" }, 210 { RTK_HWREV_8168E_VL, "RTL8168E/8111E-VL" }, 211 { RTK_HWREV_8168EP, "RTL8168EP/8111EP" }, 212 { RTK_HWREV_8168FP, "RTL8168FP/8117" }, 213 { RTK_HWREV_8169, "RTL8169" }, 214 { RTK_HWREV_8169_8110SB, "RTL8169/8110SB" }, 215 { RTK_HWREV_8169_8110SBL, "RTL8169SBL" }, 216 { RTK_HWREV_8169_8110SC, "RTL8169/8110SCd" }, 217 { RTK_HWREV_8169_8110SCE, "RTL8169/8110SCe" }, 218 { RTK_HWREV_8169S, "RTL8169S" }, 219 220 { 0, NULL } 221 }; 222 223 static inline void 224 re_set_bufaddr(struct re_desc *d, bus_addr_t addr) 225 { 226 227 d->re_bufaddr_lo = htole32(RE_ADDR_LO(addr)); 228 d->re_bufaddr_hi = htole32(RE_ADDR_HI(addr)); 229 } 230 231 static int 232 re_gmii_readreg(device_t dev, int phy, int reg, uint16_t *val) 233 { 234 struct rtk_softc *sc = device_private(dev); 235 uint32_t data; 236 int i; 237 238 if (phy != 7) 239 return -1; 240 241 /* Let the rgephy driver read the GMEDIASTAT register */ 242 243 if (reg == RTK_GMEDIASTAT) { 244 *val = CSR_READ_1(sc, RTK_GMEDIASTAT); 245 return 0; 246 } 247 248 CSR_WRITE_4(sc, RTK_PHYAR, reg << 16); 249 DELAY(1000); 250 251 for (i = 0; i < RTK_TIMEOUT; i++) { 252 data = CSR_READ_4(sc, RTK_PHYAR); 253 if (data & RTK_PHYAR_BUSY) 254 break; 255 DELAY(100); 256 } 257 258 if (i == RTK_TIMEOUT) { 259 printf("%s: PHY read failed\n", device_xname(sc->sc_dev)); 260 return ETIMEDOUT; 261 } 262 263 *val = data & RTK_PHYAR_PHYDATA; 264 return 0; 265 } 266 267 static int 268 re_gmii_writereg(device_t dev, int phy, int reg, uint16_t val) 269 { 270 struct rtk_softc *sc = device_private(dev); 271 uint32_t data; 272 int i; 273 274 CSR_WRITE_4(sc, RTK_PHYAR, (reg << 16) | 275 (val & RTK_PHYAR_PHYDATA) | RTK_PHYAR_BUSY); 276 DELAY(1000); 277 278 for (i = 0; i < RTK_TIMEOUT; i++) { 279 data = CSR_READ_4(sc, RTK_PHYAR); 280 if (!(data & RTK_PHYAR_BUSY)) 281 break; 282 DELAY(100); 283 } 284 285 if (i == RTK_TIMEOUT) { 286 printf("%s: PHY write reg %x <- %hx failed\n", 287 device_xname(sc->sc_dev), reg, val); 288 return ETIMEDOUT; 289 } 290 291 return 0; 292 } 293 294 static int 295 re_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val) 296 { 297 struct rtk_softc *sc = device_private(dev); 298 uint16_t re8139_reg = 0; 299 int s, rv = 0; 300 301 s = splnet(); 302 303 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) { 304 rv = re_gmii_readreg(dev, phy, reg, val); 305 splx(s); 306 return rv; 307 } 308 309 /* Pretend the internal PHY is only at address 0 */ 310 if (phy) { 311 splx(s); 312 return -1; 313 } 314 switch (reg) { 315 case MII_BMCR: 316 re8139_reg = RTK_BMCR; 317 break; 318 case MII_BMSR: 319 re8139_reg = RTK_BMSR; 320 break; 321 case MII_ANAR: 322 re8139_reg = RTK_ANAR; 323 break; 324 case MII_ANER: 325 re8139_reg = RTK_ANER; 326 break; 327 case MII_ANLPAR: 328 re8139_reg = RTK_LPAR; 329 break; 330 case MII_PHYIDR1: 331 case MII_PHYIDR2: 332 *val = 0; 333 splx(s); 334 return 0; 335 /* 336 * Allow the rlphy driver to read the media status 337 * register. If we have a link partner which does not 338 * support NWAY, this is the register which will tell 339 * us the results of parallel detection. 340 */ 341 case RTK_MEDIASTAT: 342 *val = CSR_READ_1(sc, RTK_MEDIASTAT); 343 splx(s); 344 return 0; 345 default: 346 printf("%s: bad phy register\n", device_xname(sc->sc_dev)); 347 splx(s); 348 return -1; 349 } 350 *val = CSR_READ_2(sc, re8139_reg); 351 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0 && re8139_reg == RTK_BMCR) { 352 /* 8139C+ has different bit layout. */ 353 *val &= ~(BMCR_LOOP | BMCR_ISO); 354 } 355 splx(s); 356 return 0; 357 } 358 359 static int 360 re_miibus_writereg(device_t dev, int phy, int reg, uint16_t val) 361 { 362 struct rtk_softc *sc = device_private(dev); 363 uint16_t re8139_reg = 0; 364 int s, rv; 365 366 s = splnet(); 367 368 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) { 369 rv = re_gmii_writereg(dev, phy, reg, val); 370 splx(s); 371 return rv; 372 } 373 374 /* Pretend the internal PHY is only at address 0 */ 375 if (phy) { 376 splx(s); 377 return -1; 378 } 379 switch (reg) { 380 case MII_BMCR: 381 re8139_reg = RTK_BMCR; 382 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0) { 383 /* 8139C+ has different bit layout. */ 384 val &= ~(BMCR_LOOP | BMCR_ISO); 385 } 386 break; 387 case MII_BMSR: 388 re8139_reg = RTK_BMSR; 389 break; 390 case MII_ANAR: 391 re8139_reg = RTK_ANAR; 392 break; 393 case MII_ANER: 394 re8139_reg = RTK_ANER; 395 break; 396 case MII_ANLPAR: 397 re8139_reg = RTK_LPAR; 398 break; 399 case MII_PHYIDR1: 400 case MII_PHYIDR2: 401 splx(s); 402 return 0; 403 break; 404 default: 405 printf("%s: bad phy register\n", device_xname(sc->sc_dev)); 406 splx(s); 407 return -1; 408 } 409 CSR_WRITE_2(sc, re8139_reg, val); 410 splx(s); 411 return 0; 412 } 413 414 static void 415 re_miibus_statchg(struct ifnet *ifp) 416 { 417 418 return; 419 } 420 421 static void 422 re_reset(struct rtk_softc *sc) 423 { 424 int i; 425 426 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET); 427 428 for (i = 0; i < RTK_TIMEOUT; i++) { 429 DELAY(10); 430 if ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET) == 0) 431 break; 432 } 433 if (i == RTK_TIMEOUT) 434 printf("%s: reset never completed!\n", 435 device_xname(sc->sc_dev)); 436 437 /* 438 * NB: Realtek-supplied FreeBSD driver does this only for MACFG_3, 439 * but also says "Rtl8169s sigle chip detected". 440 */ 441 if ((sc->sc_quirk & RTKQ_MACLDPS) != 0) 442 CSR_WRITE_1(sc, RTK_LDPS, 1); 443 444 } 445 446 /* 447 * The following routine is designed to test for a defect on some 448 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64# 449 * lines connected to the bus, however for a 32-bit only card, they 450 * should be pulled high. The result of this defect is that the 451 * NIC will not work right if you plug it into a 64-bit slot: DMA 452 * operations will be done with 64-bit transfers, which will fail 453 * because the 64-bit data lines aren't connected. 454 * 455 * There's no way to work around this (short of talking a soldering 456 * iron to the board), however we can detect it. The method we use 457 * here is to put the NIC into digital loopback mode, set the receiver 458 * to promiscuous mode, and then try to send a frame. We then compare 459 * the frame data we sent to what was received. If the data matches, 460 * then the NIC is working correctly, otherwise we know the user has 461 * a defective NIC which has been mistakenly plugged into a 64-bit PCI 462 * slot. In the latter case, there's no way the NIC can work correctly, 463 * so we print out a message on the console and abort the device attach. 464 */ 465 466 int 467 re_diag(struct rtk_softc *sc) 468 { 469 struct ifnet *ifp = &sc->ethercom.ec_if; 470 struct mbuf *m0; 471 struct ether_header *eh; 472 struct re_rxsoft *rxs; 473 struct re_desc *cur_rx; 474 bus_dmamap_t dmamap; 475 uint16_t status; 476 uint32_t rxstat; 477 int total_len, i, s, error = 0; 478 static const uint8_t dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' }; 479 static const uint8_t src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' }; 480 481 /* Allocate a single mbuf */ 482 483 MGETHDR(m0, M_DONTWAIT, MT_DATA); 484 if (m0 == NULL) 485 return ENOBUFS; 486 487 /* 488 * Initialize the NIC in test mode. This sets the chip up 489 * so that it can send and receive frames, but performs the 490 * following special functions: 491 * - Puts receiver in promiscuous mode 492 * - Enables digital loopback mode 493 * - Leaves interrupts turned off 494 */ 495 496 ifp->if_flags |= IFF_PROMISC; 497 sc->re_testmode = 1; 498 re_init(ifp); 499 re_stop(ifp, 0); 500 DELAY(100000); 501 re_init(ifp); 502 503 /* Put some data in the mbuf */ 504 505 eh = mtod(m0, struct ether_header *); 506 memcpy(eh->ether_dhost, &dst, ETHER_ADDR_LEN); 507 memcpy(eh->ether_shost, &src, ETHER_ADDR_LEN); 508 eh->ether_type = htons(ETHERTYPE_IP); 509 m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN; 510 511 /* 512 * Queue the packet, start transmission. 513 */ 514 515 CSR_WRITE_2(sc, RTK_ISR, 0xFFFF); 516 s = splnet(); 517 IF_ENQUEUE(&ifp->if_snd, m0); 518 re_start(ifp); 519 splx(s); 520 m0 = NULL; 521 522 /* Wait for it to propagate through the chip */ 523 524 DELAY(100000); 525 for (i = 0; i < RTK_TIMEOUT; i++) { 526 status = CSR_READ_2(sc, RTK_ISR); 527 if ((status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK)) == 528 (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK)) 529 break; 530 DELAY(10); 531 } 532 if (i == RTK_TIMEOUT) { 533 aprint_error_dev(sc->sc_dev, 534 "diagnostic failed, failed to receive packet " 535 "in loopback mode\n"); 536 error = EIO; 537 goto done; 538 } 539 540 /* 541 * The packet should have been dumped into the first 542 * entry in the RX DMA ring. Grab it from there. 543 */ 544 545 rxs = &sc->re_ldata.re_rxsoft[0]; 546 dmamap = rxs->rxs_dmamap; 547 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize, 548 BUS_DMASYNC_POSTREAD); 549 bus_dmamap_unload(sc->sc_dmat, dmamap); 550 551 m0 = rxs->rxs_mbuf; 552 rxs->rxs_mbuf = NULL; 553 eh = mtod(m0, struct ether_header *); 554 555 RE_RXDESCSYNC(sc, 0, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 556 cur_rx = &sc->re_ldata.re_rx_list[0]; 557 rxstat = le32toh(cur_rx->re_cmdstat); 558 total_len = rxstat & sc->re_rxlenmask; 559 560 if (total_len != ETHER_MIN_LEN) { 561 aprint_error_dev(sc->sc_dev, 562 "diagnostic failed, received short packet\n"); 563 error = EIO; 564 goto done; 565 } 566 567 /* Test that the received packet data matches what we sent. */ 568 569 if (memcmp(&eh->ether_dhost, &dst, ETHER_ADDR_LEN) || 570 memcmp(&eh->ether_shost, &src, ETHER_ADDR_LEN) || 571 ntohs(eh->ether_type) != ETHERTYPE_IP) { 572 aprint_error_dev(sc->sc_dev, "WARNING, DMA FAILURE!\n" 573 "expected TX data: %s/%s/0x%x\n" 574 "received RX data: %s/%s/0x%x\n" 575 "You may have a defective 32-bit NIC plugged " 576 "into a 64-bit PCI slot.\n" 577 "Please re-install the NIC in a 32-bit slot " 578 "for proper operation.\n" 579 "Read the re(4) man page for more details.\n" , 580 ether_sprintf(dst), ether_sprintf(src), ETHERTYPE_IP, 581 ether_sprintf(eh->ether_dhost), 582 ether_sprintf(eh->ether_shost), ntohs(eh->ether_type)); 583 error = EIO; 584 } 585 586 done: 587 /* Turn interface off, release resources */ 588 589 sc->re_testmode = 0; 590 ifp->if_flags &= ~IFF_PROMISC; 591 re_stop(ifp, 0); 592 if (m0 != NULL) 593 m_freem(m0); 594 595 return error; 596 } 597 598 599 /* 600 * Attach the interface. Allocate softc structures, do ifmedia 601 * setup and ethernet/BPF attach. 602 */ 603 void 604 re_attach(struct rtk_softc *sc) 605 { 606 uint8_t eaddr[ETHER_ADDR_LEN]; 607 struct ifnet *ifp; 608 struct mii_data *mii = &sc->mii; 609 int error = 0, i; 610 const struct re_revision *rr; 611 const char *re_name = NULL; 612 613 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) { 614 /* Revision of 8169/8169S/8110s in bits 30..26, 23 */ 615 sc->sc_hwrev = CSR_READ_4(sc, RTK_TXCFG) & RTK_TXCFG_HWREV; 616 617 for (rr = re_revisions; rr->re_name != NULL; rr++) { 618 if (rr->re_chipid == sc->sc_hwrev) 619 re_name = rr->re_name; 620 } 621 622 if (re_name == NULL) 623 aprint_normal_dev(sc->sc_dev, 624 "unknown ASIC (0x%04x)\n", sc->sc_hwrev >> 16); 625 else 626 aprint_normal_dev(sc->sc_dev, 627 "%s (0x%04x)\n", re_name, sc->sc_hwrev >> 16); 628 629 switch (sc->sc_hwrev) { 630 case RTK_HWREV_8169: 631 sc->sc_quirk |= RTKQ_8169NONS; 632 break; 633 case RTK_HWREV_8169S: 634 case RTK_HWREV_8110S: 635 case RTK_HWREV_8169_8110SB: 636 case RTK_HWREV_8169_8110SBL: 637 case RTK_HWREV_8169_8110SC: 638 sc->sc_quirk |= RTKQ_MACLDPS; 639 break; 640 case RTK_HWREV_8168B_SPIN1: 641 case RTK_HWREV_8168B_SPIN2: 642 case RTK_HWREV_8168B_SPIN3: 643 sc->sc_quirk |= RTKQ_MACSTAT; 644 break; 645 case RTK_HWREV_8168C: 646 case RTK_HWREV_8168C_SPIN2: 647 case RTK_HWREV_8168CP: 648 case RTK_HWREV_8168D: 649 case RTK_HWREV_8168DP: 650 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD | 651 RTKQ_MACSTAT | RTKQ_CMDSTOP; 652 /* 653 * From FreeBSD driver: 654 * 655 * These (8168/8111) controllers support jumbo frame 656 * but it seems that enabling it requires touching 657 * additional magic registers. Depending on MAC 658 * revisions some controllers need to disable 659 * checksum offload. So disable jumbo frame until 660 * I have better idea what it really requires to 661 * make it support. 662 * RTL8168C/CP : supports up to 6KB jumbo frame. 663 * RTL8111C/CP : supports up to 9KB jumbo frame. 664 */ 665 sc->sc_quirk |= RTKQ_NOJUMBO; 666 break; 667 case RTK_HWREV_8168E: 668 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD | 669 RTKQ_MACSTAT | RTKQ_CMDSTOP | RTKQ_PHYWAKE_PM | 670 RTKQ_NOJUMBO; 671 break; 672 case RTK_HWREV_8168E_VL: 673 case RTK_HWREV_8168F: 674 case RTK_HWREV_8411: 675 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD | 676 RTKQ_MACSTAT | RTKQ_CMDSTOP | RTKQ_NOJUMBO; 677 break; 678 case RTK_HWREV_8168EP: 679 case RTK_HWREV_8168FP: 680 case RTK_HWREV_8168G: 681 case RTK_HWREV_8168GU: 682 case RTK_HWREV_8168H: 683 case RTK_HWREV_8411B: 684 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD | 685 RTKQ_MACSTAT | RTKQ_CMDSTOP | RTKQ_NOJUMBO | 686 RTKQ_RXDV_GATED | RTKQ_TXRXEN_LATER; 687 break; 688 case RTK_HWREV_8100E: 689 case RTK_HWREV_8100E_SPIN2: 690 case RTK_HWREV_8101E: 691 sc->sc_quirk |= RTKQ_NOJUMBO; 692 break; 693 case RTK_HWREV_8102E: 694 case RTK_HWREV_8102EL: 695 case RTK_HWREV_8102EL_SPIN1: 696 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD | 697 RTKQ_MACSTAT | RTKQ_CMDSTOP | RTKQ_NOJUMBO; 698 break; 699 case RTK_HWREV_8103E: 700 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD | 701 RTKQ_MACSTAT | RTKQ_CMDSTOP; 702 break; 703 case RTK_HWREV_8401E: 704 case RTK_HWREV_8105E: 705 case RTK_HWREV_8105E_SPIN1: /* XXX */ 706 case RTK_HWREV_8106E: 707 sc->sc_quirk |= RTKQ_PHYWAKE_PM | 708 RTKQ_DESCV2 | RTKQ_NOEECMD | RTKQ_MACSTAT | 709 RTKQ_CMDSTOP; 710 break; 711 case RTK_HWREV_8402: 712 sc->sc_quirk |= RTKQ_PHYWAKE_PM | 713 RTKQ_DESCV2 | RTKQ_NOEECMD | RTKQ_MACSTAT | 714 RTKQ_CMDSTOP; /* CMDSTOP_WAIT_TXQ */ 715 break; 716 default: 717 aprint_normal_dev(sc->sc_dev, "Use default quirks\n"); 718 /* assume the latest features */ 719 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD; 720 sc->sc_quirk |= RTKQ_NOJUMBO; 721 } 722 723 /* Set RX length mask */ 724 sc->re_rxlenmask = RE_RDESC_STAT_GFRAGLEN; 725 sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8169; 726 } else { 727 sc->sc_quirk |= RTKQ_NOJUMBO; 728 729 /* Set RX length mask */ 730 sc->re_rxlenmask = RE_RDESC_STAT_FRAGLEN; 731 sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8139; 732 } 733 734 /* Reset the adapter. */ 735 re_reset(sc); 736 737 /* 738 * RTL81x9 chips automatically read EEPROM to init MAC address, 739 * and some NAS override its MAC address per own configuration, 740 * so no need to explicitely read EEPROM and set ID registers. 741 */ 742 #ifdef RE_USE_EECMD 743 if ((sc->sc_quirk & RTKQ_NOEECMD) != 0) { 744 /* 745 * Get station address from ID registers. 746 */ 747 for (i = 0; i < ETHER_ADDR_LEN; i++) 748 eaddr[i] = CSR_READ_1(sc, RTK_IDR0 + i); 749 } else { 750 uint16_t val; 751 int addr_len; 752 753 /* 754 * Get station address from the EEPROM. 755 */ 756 if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129) 757 addr_len = RTK_EEADDR_LEN1; 758 else 759 addr_len = RTK_EEADDR_LEN0; 760 761 /* 762 * Get station address from the EEPROM. 763 */ 764 for (i = 0; i < ETHER_ADDR_LEN / 2; i++) { 765 val = rtk_read_eeprom(sc, RTK_EE_EADDR0 + i, addr_len); 766 eaddr[(i * 2) + 0] = val & 0xff; 767 eaddr[(i * 2) + 1] = val >> 8; 768 } 769 } 770 #else 771 /* 772 * Get station address from ID registers. 773 */ 774 for (i = 0; i < ETHER_ADDR_LEN; i++) 775 eaddr[i] = CSR_READ_1(sc, RTK_IDR0 + i); 776 #endif 777 778 /* Take PHY out of power down mode. */ 779 if ((sc->sc_quirk & RTKQ_PHYWAKE_PM) != 0) 780 CSR_WRITE_1(sc, RTK_PMCH, CSR_READ_1(sc, RTK_PMCH) | 0x80); 781 782 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n", 783 ether_sprintf(eaddr)); 784 785 if (sc->re_ldata.re_tx_desc_cnt > 786 PAGE_SIZE / sizeof(struct re_desc)) { 787 sc->re_ldata.re_tx_desc_cnt = 788 PAGE_SIZE / sizeof(struct re_desc); 789 } 790 791 aprint_verbose_dev(sc->sc_dev, "using %d tx descriptors\n", 792 sc->re_ldata.re_tx_desc_cnt); 793 KASSERT(RE_NEXT_TX_DESC(sc, RE_TX_DESC_CNT(sc) - 1) == 0); 794 795 /* Allocate DMA'able memory for the TX ring */ 796 if ((error = bus_dmamem_alloc(sc->sc_dmat, RE_TX_LIST_SZ(sc), 797 RE_RING_ALIGN, 0, &sc->re_ldata.re_tx_listseg, 1, 798 &sc->re_ldata.re_tx_listnseg, BUS_DMA_NOWAIT)) != 0) { 799 aprint_error_dev(sc->sc_dev, 800 "can't allocate tx listseg, error = %d\n", error); 801 goto fail_0; 802 } 803 804 /* Load the map for the TX ring. */ 805 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_tx_listseg, 806 sc->re_ldata.re_tx_listnseg, RE_TX_LIST_SZ(sc), 807 (void **)&sc->re_ldata.re_tx_list, 808 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) { 809 aprint_error_dev(sc->sc_dev, 810 "can't map tx list, error = %d\n", error); 811 goto fail_1; 812 } 813 memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc)); 814 815 if ((error = bus_dmamap_create(sc->sc_dmat, RE_TX_LIST_SZ(sc), 1, 816 RE_TX_LIST_SZ(sc), 0, 0, 817 &sc->re_ldata.re_tx_list_map)) != 0) { 818 aprint_error_dev(sc->sc_dev, 819 "can't create tx list map, error = %d\n", error); 820 goto fail_2; 821 } 822 823 824 if ((error = bus_dmamap_load(sc->sc_dmat, 825 sc->re_ldata.re_tx_list_map, sc->re_ldata.re_tx_list, 826 RE_TX_LIST_SZ(sc), NULL, BUS_DMA_NOWAIT)) != 0) { 827 aprint_error_dev(sc->sc_dev, 828 "can't load tx list, error = %d\n", error); 829 goto fail_3; 830 } 831 832 /* Create DMA maps for TX buffers */ 833 for (i = 0; i < RE_TX_QLEN; i++) { 834 error = bus_dmamap_create(sc->sc_dmat, 835 round_page(IP_MAXPACKET), 836 RE_TX_DESC_CNT(sc), RE_TDESC_CMD_FRAGLEN, 837 0, 0, &sc->re_ldata.re_txq[i].txq_dmamap); 838 if (error) { 839 aprint_error_dev(sc->sc_dev, 840 "can't create DMA map for TX\n"); 841 goto fail_4; 842 } 843 } 844 845 /* Allocate DMA'able memory for the RX ring */ 846 /* XXX see also a comment about RE_RX_DMAMEM_SZ in rtl81x9var.h */ 847 if ((error = bus_dmamem_alloc(sc->sc_dmat, 848 RE_RX_DMAMEM_SZ, RE_RING_ALIGN, 0, &sc->re_ldata.re_rx_listseg, 1, 849 &sc->re_ldata.re_rx_listnseg, BUS_DMA_NOWAIT)) != 0) { 850 aprint_error_dev(sc->sc_dev, 851 "can't allocate rx listseg, error = %d\n", error); 852 goto fail_4; 853 } 854 855 /* Load the map for the RX ring. */ 856 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_rx_listseg, 857 sc->re_ldata.re_rx_listnseg, RE_RX_DMAMEM_SZ, 858 (void **)&sc->re_ldata.re_rx_list, 859 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) { 860 aprint_error_dev(sc->sc_dev, 861 "can't map rx list, error = %d\n", error); 862 goto fail_5; 863 } 864 memset(sc->re_ldata.re_rx_list, 0, RE_RX_DMAMEM_SZ); 865 866 if ((error = bus_dmamap_create(sc->sc_dmat, 867 RE_RX_DMAMEM_SZ, 1, RE_RX_DMAMEM_SZ, 0, 0, 868 &sc->re_ldata.re_rx_list_map)) != 0) { 869 aprint_error_dev(sc->sc_dev, 870 "can't create rx list map, error = %d\n", error); 871 goto fail_6; 872 } 873 874 if ((error = bus_dmamap_load(sc->sc_dmat, 875 sc->re_ldata.re_rx_list_map, sc->re_ldata.re_rx_list, 876 RE_RX_DMAMEM_SZ, NULL, BUS_DMA_NOWAIT)) != 0) { 877 aprint_error_dev(sc->sc_dev, 878 "can't load rx list, error = %d\n", error); 879 goto fail_7; 880 } 881 882 /* Create DMA maps for RX buffers */ 883 for (i = 0; i < RE_RX_DESC_CNT; i++) { 884 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 885 0, 0, &sc->re_ldata.re_rxsoft[i].rxs_dmamap); 886 if (error) { 887 aprint_error_dev(sc->sc_dev, 888 "can't create DMA map for RX\n"); 889 goto fail_8; 890 } 891 } 892 893 /* 894 * Record interface as attached. From here, we should not fail. 895 */ 896 sc->sc_flags |= RTK_ATTACHED; 897 898 ifp = &sc->ethercom.ec_if; 899 ifp->if_softc = sc; 900 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ); 901 ifp->if_mtu = ETHERMTU; 902 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 903 ifp->if_ioctl = re_ioctl; 904 sc->ethercom.ec_capabilities |= 905 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING; 906 ifp->if_start = re_start; 907 ifp->if_stop = re_stop; 908 909 /* 910 * IFCAP_CSUM_IPv4_Tx on re(4) is broken for small packets, 911 * so we have a workaround to handle the bug by padding 912 * such packets manually. 913 */ 914 ifp->if_capabilities |= 915 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx | 916 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx | 917 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx | 918 IFCAP_TSOv4; 919 920 ifp->if_watchdog = re_watchdog; 921 ifp->if_init = re_init; 922 ifp->if_snd.ifq_maxlen = RE_IFQ_MAXLEN; 923 ifp->if_capenable = ifp->if_capabilities; 924 IFQ_SET_READY(&ifp->if_snd); 925 926 callout_init(&sc->rtk_tick_ch, 0); 927 callout_setfunc(&sc->rtk_tick_ch, re_tick, sc); 928 929 /* Do MII setup */ 930 mii->mii_ifp = ifp; 931 mii->mii_readreg = re_miibus_readreg; 932 mii->mii_writereg = re_miibus_writereg; 933 mii->mii_statchg = re_miibus_statchg; 934 sc->ethercom.ec_mii = mii; 935 ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange, 936 ether_mediastatus); 937 mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY, 938 MII_OFFSET_ANY, 0); 939 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO); 940 941 /* 942 * Call MI attach routine. 943 */ 944 if_attach(ifp); 945 if_deferred_start_init(ifp, NULL); 946 ether_ifattach(ifp, eaddr); 947 948 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev), 949 RND_TYPE_NET, RND_FLAG_DEFAULT); 950 951 if (pmf_device_register(sc->sc_dev, NULL, NULL)) 952 pmf_class_network_register(sc->sc_dev, ifp); 953 else 954 aprint_error_dev(sc->sc_dev, 955 "couldn't establish power handler\n"); 956 957 return; 958 959 fail_8: 960 /* Destroy DMA maps for RX buffers. */ 961 for (i = 0; i < RE_RX_DESC_CNT; i++) 962 if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL) 963 bus_dmamap_destroy(sc->sc_dmat, 964 sc->re_ldata.re_rxsoft[i].rxs_dmamap); 965 966 /* Free DMA'able memory for the RX ring. */ 967 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map); 968 fail_7: 969 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map); 970 fail_6: 971 bus_dmamem_unmap(sc->sc_dmat, 972 (void *)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ); 973 fail_5: 974 bus_dmamem_free(sc->sc_dmat, 975 &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg); 976 977 fail_4: 978 /* Destroy DMA maps for TX buffers. */ 979 for (i = 0; i < RE_TX_QLEN; i++) 980 if (sc->re_ldata.re_txq[i].txq_dmamap != NULL) 981 bus_dmamap_destroy(sc->sc_dmat, 982 sc->re_ldata.re_txq[i].txq_dmamap); 983 984 /* Free DMA'able memory for the TX ring. */ 985 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map); 986 fail_3: 987 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map); 988 fail_2: 989 bus_dmamem_unmap(sc->sc_dmat, 990 (void *)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc)); 991 fail_1: 992 bus_dmamem_free(sc->sc_dmat, 993 &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg); 994 fail_0: 995 return; 996 } 997 998 999 /* 1000 * re_activate: 1001 * Handle device activation/deactivation requests. 1002 */ 1003 int 1004 re_activate(device_t self, enum devact act) 1005 { 1006 struct rtk_softc *sc = device_private(self); 1007 1008 switch (act) { 1009 case DVACT_DEACTIVATE: 1010 if_deactivate(&sc->ethercom.ec_if); 1011 return 0; 1012 default: 1013 return EOPNOTSUPP; 1014 } 1015 } 1016 1017 /* 1018 * re_detach: 1019 * Detach a rtk interface. 1020 */ 1021 int 1022 re_detach(struct rtk_softc *sc) 1023 { 1024 struct ifnet *ifp = &sc->ethercom.ec_if; 1025 int i; 1026 1027 /* 1028 * Succeed now if there isn't any work to do. 1029 */ 1030 if ((sc->sc_flags & RTK_ATTACHED) == 0) 1031 return 0; 1032 1033 /* Unhook our tick handler. */ 1034 callout_stop(&sc->rtk_tick_ch); 1035 1036 /* Detach all PHYs. */ 1037 mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY); 1038 1039 rnd_detach_source(&sc->rnd_source); 1040 ether_ifdetach(ifp); 1041 if_detach(ifp); 1042 1043 /* Delete all remaining media. */ 1044 ifmedia_fini(&sc->mii.mii_media); 1045 1046 /* Destroy DMA maps for RX buffers. */ 1047 for (i = 0; i < RE_RX_DESC_CNT; i++) 1048 if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL) 1049 bus_dmamap_destroy(sc->sc_dmat, 1050 sc->re_ldata.re_rxsoft[i].rxs_dmamap); 1051 1052 /* Free DMA'able memory for the RX ring. */ 1053 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map); 1054 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map); 1055 bus_dmamem_unmap(sc->sc_dmat, 1056 (void *)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ); 1057 bus_dmamem_free(sc->sc_dmat, 1058 &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg); 1059 1060 /* Destroy DMA maps for TX buffers. */ 1061 for (i = 0; i < RE_TX_QLEN; i++) 1062 if (sc->re_ldata.re_txq[i].txq_dmamap != NULL) 1063 bus_dmamap_destroy(sc->sc_dmat, 1064 sc->re_ldata.re_txq[i].txq_dmamap); 1065 1066 /* Free DMA'able memory for the TX ring. */ 1067 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map); 1068 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map); 1069 bus_dmamem_unmap(sc->sc_dmat, 1070 (void *)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc)); 1071 bus_dmamem_free(sc->sc_dmat, 1072 &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg); 1073 1074 pmf_device_deregister(sc->sc_dev); 1075 1076 /* we don't want to run again */ 1077 sc->sc_flags &= ~RTK_ATTACHED; 1078 1079 return 0; 1080 } 1081 1082 /* 1083 * re_enable: 1084 * Enable the RTL81X9 chip. 1085 */ 1086 static int 1087 re_enable(struct rtk_softc *sc) 1088 { 1089 1090 if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) { 1091 if ((*sc->sc_enable)(sc) != 0) { 1092 printf("%s: device enable failed\n", 1093 device_xname(sc->sc_dev)); 1094 return EIO; 1095 } 1096 sc->sc_flags |= RTK_ENABLED; 1097 } 1098 return 0; 1099 } 1100 1101 /* 1102 * re_disable: 1103 * Disable the RTL81X9 chip. 1104 */ 1105 static void 1106 re_disable(struct rtk_softc *sc) 1107 { 1108 1109 if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) { 1110 (*sc->sc_disable)(sc); 1111 sc->sc_flags &= ~RTK_ENABLED; 1112 } 1113 } 1114 1115 static int 1116 re_newbuf(struct rtk_softc *sc, int idx, struct mbuf *m) 1117 { 1118 struct mbuf *n = NULL; 1119 bus_dmamap_t map; 1120 struct re_desc *d; 1121 struct re_rxsoft *rxs; 1122 uint32_t cmdstat; 1123 int error; 1124 1125 if (m == NULL) { 1126 MGETHDR(n, M_DONTWAIT, MT_DATA); 1127 if (n == NULL) 1128 return ENOBUFS; 1129 1130 MCLAIM(n, &sc->ethercom.ec_rx_mowner); 1131 MCLGET(n, M_DONTWAIT); 1132 if ((n->m_flags & M_EXT) == 0) { 1133 m_freem(n); 1134 return ENOBUFS; 1135 } 1136 m = n; 1137 } else 1138 m->m_data = m->m_ext.ext_buf; 1139 1140 /* 1141 * Initialize mbuf length fields and fixup 1142 * alignment so that the frame payload is 1143 * longword aligned. 1144 */ 1145 m->m_len = m->m_pkthdr.len = MCLBYTES - RE_ETHER_ALIGN; 1146 m->m_data += RE_ETHER_ALIGN; 1147 1148 rxs = &sc->re_ldata.re_rxsoft[idx]; 1149 map = rxs->rxs_dmamap; 1150 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m, 1151 BUS_DMA_READ|BUS_DMA_NOWAIT); 1152 1153 if (error) 1154 goto out; 1155 1156 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize, 1157 BUS_DMASYNC_PREREAD); 1158 1159 d = &sc->re_ldata.re_rx_list[idx]; 1160 #ifdef DIAGNOSTIC 1161 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 1162 cmdstat = le32toh(d->re_cmdstat); 1163 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD); 1164 if (cmdstat & RE_RDESC_STAT_OWN) { 1165 panic("%s: tried to map busy RX descriptor", 1166 device_xname(sc->sc_dev)); 1167 } 1168 #endif 1169 1170 rxs->rxs_mbuf = m; 1171 1172 d->re_vlanctl = 0; 1173 cmdstat = map->dm_segs[0].ds_len; 1174 if (idx == (RE_RX_DESC_CNT - 1)) 1175 cmdstat |= RE_RDESC_CMD_EOR; 1176 re_set_bufaddr(d, map->dm_segs[0].ds_addr); 1177 d->re_cmdstat = htole32(cmdstat); 1178 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 1179 cmdstat |= RE_RDESC_CMD_OWN; 1180 d->re_cmdstat = htole32(cmdstat); 1181 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 1182 1183 return 0; 1184 out: 1185 if (n != NULL) 1186 m_freem(n); 1187 return ENOMEM; 1188 } 1189 1190 static int 1191 re_tx_list_init(struct rtk_softc *sc) 1192 { 1193 int i; 1194 1195 memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc)); 1196 for (i = 0; i < RE_TX_QLEN; i++) { 1197 sc->re_ldata.re_txq[i].txq_mbuf = NULL; 1198 } 1199 1200 bus_dmamap_sync(sc->sc_dmat, 1201 sc->re_ldata.re_tx_list_map, 0, 1202 sc->re_ldata.re_tx_list_map->dm_mapsize, 1203 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 1204 sc->re_ldata.re_txq_prodidx = 0; 1205 sc->re_ldata.re_txq_considx = 0; 1206 sc->re_ldata.re_txq_free = RE_TX_QLEN; 1207 sc->re_ldata.re_tx_free = RE_TX_DESC_CNT(sc); 1208 sc->re_ldata.re_tx_nextfree = 0; 1209 1210 return 0; 1211 } 1212 1213 static int 1214 re_rx_list_init(struct rtk_softc *sc) 1215 { 1216 int i; 1217 1218 memset(sc->re_ldata.re_rx_list, 0, RE_RX_LIST_SZ); 1219 1220 for (i = 0; i < RE_RX_DESC_CNT; i++) { 1221 if (re_newbuf(sc, i, NULL) == ENOBUFS) 1222 return ENOBUFS; 1223 } 1224 1225 sc->re_ldata.re_rx_prodidx = 0; 1226 sc->re_head = sc->re_tail = NULL; 1227 1228 return 0; 1229 } 1230 1231 /* 1232 * RX handler for C+ and 8169. For the gigE chips, we support 1233 * the reception of jumbo frames that have been fragmented 1234 * across multiple 2K mbuf cluster buffers. 1235 */ 1236 static void 1237 re_rxeof(struct rtk_softc *sc) 1238 { 1239 struct mbuf *m; 1240 struct ifnet *ifp; 1241 int i, total_len; 1242 struct re_desc *cur_rx; 1243 struct re_rxsoft *rxs; 1244 uint32_t rxstat, rxvlan; 1245 1246 ifp = &sc->ethercom.ec_if; 1247 1248 for (i = sc->re_ldata.re_rx_prodidx;; i = RE_NEXT_RX_DESC(sc, i)) { 1249 cur_rx = &sc->re_ldata.re_rx_list[i]; 1250 RE_RXDESCSYNC(sc, i, 1251 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 1252 rxstat = le32toh(cur_rx->re_cmdstat); 1253 rxvlan = le32toh(cur_rx->re_vlanctl); 1254 RE_RXDESCSYNC(sc, i, BUS_DMASYNC_PREREAD); 1255 if ((rxstat & RE_RDESC_STAT_OWN) != 0) { 1256 break; 1257 } 1258 total_len = rxstat & sc->re_rxlenmask; 1259 rxs = &sc->re_ldata.re_rxsoft[i]; 1260 m = rxs->rxs_mbuf; 1261 1262 /* Invalidate the RX mbuf and unload its map */ 1263 1264 bus_dmamap_sync(sc->sc_dmat, 1265 rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize, 1266 BUS_DMASYNC_POSTREAD); 1267 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap); 1268 1269 if ((rxstat & RE_RDESC_STAT_EOF) == 0) { 1270 m->m_len = MCLBYTES - RE_ETHER_ALIGN; 1271 if (sc->re_head == NULL) 1272 sc->re_head = sc->re_tail = m; 1273 else { 1274 m_remove_pkthdr(m); 1275 sc->re_tail->m_next = m; 1276 sc->re_tail = m; 1277 } 1278 re_newbuf(sc, i, NULL); 1279 continue; 1280 } 1281 1282 /* 1283 * NOTE: for the 8139C+, the frame length field 1284 * is always 12 bits in size, but for the gigE chips, 1285 * it is 13 bits (since the max RX frame length is 16K). 1286 * Unfortunately, all 32 bits in the status word 1287 * were already used, so to make room for the extra 1288 * length bit, RealTek took out the 'frame alignment 1289 * error' bit and shifted the other status bits 1290 * over one slot. The OWN, EOR, FS and LS bits are 1291 * still in the same places. We have already extracted 1292 * the frame length and checked the OWN bit, so rather 1293 * than using an alternate bit mapping, we shift the 1294 * status bits one space to the right so we can evaluate 1295 * them using the 8169 status as though it was in the 1296 * same format as that of the 8139C+. 1297 */ 1298 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) 1299 rxstat >>= 1; 1300 1301 if (__predict_false((rxstat & RE_RDESC_STAT_RXERRSUM) != 0)) { 1302 #ifdef RE_DEBUG 1303 printf("%s: RX error (rxstat = 0x%08x)", 1304 device_xname(sc->sc_dev), rxstat); 1305 if (rxstat & RE_RDESC_STAT_FRALIGN) 1306 printf(", frame alignment error"); 1307 if (rxstat & RE_RDESC_STAT_BUFOFLOW) 1308 printf(", out of buffer space"); 1309 if (rxstat & RE_RDESC_STAT_FIFOOFLOW) 1310 printf(", FIFO overrun"); 1311 if (rxstat & RE_RDESC_STAT_GIANT) 1312 printf(", giant packet"); 1313 if (rxstat & RE_RDESC_STAT_RUNT) 1314 printf(", runt packet"); 1315 if (rxstat & RE_RDESC_STAT_CRCERR) 1316 printf(", CRC error"); 1317 printf("\n"); 1318 #endif 1319 if_statinc(ifp, if_ierrors); 1320 /* 1321 * If this is part of a multi-fragment packet, 1322 * discard all the pieces. 1323 */ 1324 if (sc->re_head != NULL) { 1325 m_freem(sc->re_head); 1326 sc->re_head = sc->re_tail = NULL; 1327 } 1328 re_newbuf(sc, i, m); 1329 continue; 1330 } 1331 1332 /* 1333 * If allocating a replacement mbuf fails, 1334 * reload the current one. 1335 */ 1336 1337 if (__predict_false(re_newbuf(sc, i, NULL) != 0)) { 1338 if_statinc(ifp, if_ierrors); 1339 if (sc->re_head != NULL) { 1340 m_freem(sc->re_head); 1341 sc->re_head = sc->re_tail = NULL; 1342 } 1343 re_newbuf(sc, i, m); 1344 continue; 1345 } 1346 1347 if (sc->re_head != NULL) { 1348 m->m_len = total_len % (MCLBYTES - RE_ETHER_ALIGN); 1349 /* 1350 * Special case: if there's 4 bytes or less 1351 * in this buffer, the mbuf can be discarded: 1352 * the last 4 bytes is the CRC, which we don't 1353 * care about anyway. 1354 */ 1355 if (m->m_len <= ETHER_CRC_LEN) { 1356 sc->re_tail->m_len -= 1357 (ETHER_CRC_LEN - m->m_len); 1358 m_freem(m); 1359 } else { 1360 m->m_len -= ETHER_CRC_LEN; 1361 m_remove_pkthdr(m); 1362 sc->re_tail->m_next = m; 1363 } 1364 m = sc->re_head; 1365 sc->re_head = sc->re_tail = NULL; 1366 m->m_pkthdr.len = total_len - ETHER_CRC_LEN; 1367 } else 1368 m->m_pkthdr.len = m->m_len = 1369 (total_len - ETHER_CRC_LEN); 1370 1371 m_set_rcvif(m, ifp); 1372 1373 /* Do RX checksumming */ 1374 if ((sc->sc_quirk & RTKQ_DESCV2) == 0) { 1375 /* Check IP header checksum */ 1376 if ((rxstat & RE_RDESC_STAT_PROTOID) != 0) { 1377 m->m_pkthdr.csum_flags |= M_CSUM_IPv4; 1378 if (rxstat & RE_RDESC_STAT_IPSUMBAD) 1379 m->m_pkthdr.csum_flags |= 1380 M_CSUM_IPv4_BAD; 1381 1382 /* Check TCP/UDP checksum */ 1383 if (RE_TCPPKT(rxstat)) { 1384 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4; 1385 if (rxstat & RE_RDESC_STAT_TCPSUMBAD) 1386 m->m_pkthdr.csum_flags |= 1387 M_CSUM_TCP_UDP_BAD; 1388 } else if (RE_UDPPKT(rxstat)) { 1389 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4; 1390 if (rxstat & RE_RDESC_STAT_UDPSUMBAD) { 1391 /* 1392 * XXX: 8139C+ thinks UDP csum 1393 * 0xFFFF is bad, force software 1394 * calculation. 1395 */ 1396 if (sc->sc_quirk & RTKQ_8139CPLUS) 1397 m->m_pkthdr.csum_flags 1398 &= ~M_CSUM_UDPv4; 1399 else 1400 m->m_pkthdr.csum_flags 1401 |= M_CSUM_TCP_UDP_BAD; 1402 } 1403 } 1404 } 1405 } else { 1406 /* Check IPv4 header checksum */ 1407 if ((rxvlan & RE_RDESC_VLANCTL_IPV4) != 0) { 1408 m->m_pkthdr.csum_flags |= M_CSUM_IPv4; 1409 if (rxstat & RE_RDESC_STAT_IPSUMBAD) 1410 m->m_pkthdr.csum_flags |= 1411 M_CSUM_IPv4_BAD; 1412 1413 /* Check TCPv4/UDPv4 checksum */ 1414 if (RE_TCPPKT(rxstat)) { 1415 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4; 1416 if (rxstat & RE_RDESC_STAT_TCPSUMBAD) 1417 m->m_pkthdr.csum_flags |= 1418 M_CSUM_TCP_UDP_BAD; 1419 } else if (RE_UDPPKT(rxstat)) { 1420 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4; 1421 if (rxstat & RE_RDESC_STAT_UDPSUMBAD) 1422 m->m_pkthdr.csum_flags |= 1423 M_CSUM_TCP_UDP_BAD; 1424 } 1425 } 1426 /* XXX Check TCPv6/UDPv6 checksum? */ 1427 } 1428 1429 if (rxvlan & RE_RDESC_VLANCTL_TAG) { 1430 vlan_set_tag(m, 1431 bswap16(rxvlan & RE_RDESC_VLANCTL_DATA)); 1432 } 1433 if_percpuq_enqueue(ifp->if_percpuq, m); 1434 } 1435 1436 sc->re_ldata.re_rx_prodidx = i; 1437 } 1438 1439 static void 1440 re_txeof(struct rtk_softc *sc) 1441 { 1442 struct ifnet *ifp; 1443 struct re_txq *txq; 1444 uint32_t txstat; 1445 int idx, descidx; 1446 1447 ifp = &sc->ethercom.ec_if; 1448 1449 for (idx = sc->re_ldata.re_txq_considx; 1450 sc->re_ldata.re_txq_free < RE_TX_QLEN; 1451 idx = RE_NEXT_TXQ(sc, idx), sc->re_ldata.re_txq_free++) { 1452 txq = &sc->re_ldata.re_txq[idx]; 1453 KASSERT(txq->txq_mbuf != NULL); 1454 1455 descidx = txq->txq_descidx; 1456 RE_TXDESCSYNC(sc, descidx, 1457 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 1458 txstat = 1459 le32toh(sc->re_ldata.re_tx_list[descidx].re_cmdstat); 1460 RE_TXDESCSYNC(sc, descidx, BUS_DMASYNC_PREREAD); 1461 KASSERT((txstat & RE_TDESC_CMD_EOF) != 0); 1462 if (txstat & RE_TDESC_CMD_OWN) { 1463 break; 1464 } 1465 1466 sc->re_ldata.re_tx_free += txq->txq_nsegs; 1467 KASSERT(sc->re_ldata.re_tx_free <= RE_TX_DESC_CNT(sc)); 1468 bus_dmamap_sync(sc->sc_dmat, txq->txq_dmamap, 1469 0, txq->txq_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE); 1470 bus_dmamap_unload(sc->sc_dmat, txq->txq_dmamap); 1471 m_freem(txq->txq_mbuf); 1472 txq->txq_mbuf = NULL; 1473 1474 net_stat_ref_t nsr = IF_STAT_GETREF(ifp); 1475 if (txstat & (RE_TDESC_STAT_EXCESSCOL | RE_TDESC_STAT_COLCNT)) 1476 if_statinc_ref(nsr, if_collisions); 1477 if (txstat & RE_TDESC_STAT_TXERRSUM) 1478 if_statinc_ref(nsr, if_oerrors); 1479 else 1480 if_statinc_ref(nsr, if_opackets); 1481 IF_STAT_PUTREF(ifp); 1482 } 1483 1484 sc->re_ldata.re_txq_considx = idx; 1485 1486 if (sc->re_ldata.re_txq_free > RE_NTXDESC_RSVD) 1487 ifp->if_flags &= ~IFF_OACTIVE; 1488 1489 /* 1490 * If not all descriptors have been released reaped yet, 1491 * reload the timer so that we will eventually get another 1492 * interrupt that will cause us to re-enter this routine. 1493 * This is done in case the transmitter has gone idle. 1494 */ 1495 if (sc->re_ldata.re_txq_free < RE_TX_QLEN) { 1496 if ((sc->sc_quirk & RTKQ_IM_HW) == 0) 1497 CSR_WRITE_4(sc, RTK_TIMERCNT, 1); 1498 if ((sc->sc_quirk & RTKQ_PCIE) != 0) { 1499 /* 1500 * Some chips will ignore a second TX request 1501 * issued while an existing transmission is in 1502 * progress. If the transmitter goes idle but 1503 * there are still packets waiting to be sent, 1504 * we need to restart the channel here to flush 1505 * them out. This only seems to be required with 1506 * the PCIe devices. 1507 */ 1508 CSR_WRITE_1(sc, RTK_GTXSTART, RTK_TXSTART_START); 1509 } 1510 } else 1511 ifp->if_timer = 0; 1512 } 1513 1514 static void 1515 re_tick(void *arg) 1516 { 1517 struct rtk_softc *sc = arg; 1518 int s; 1519 1520 /* XXX: just return for 8169S/8110S with rev 2 or newer phy */ 1521 s = splnet(); 1522 1523 mii_tick(&sc->mii); 1524 splx(s); 1525 1526 callout_schedule(&sc->rtk_tick_ch, hz); 1527 } 1528 1529 int 1530 re_intr(void *arg) 1531 { 1532 struct rtk_softc *sc = arg; 1533 struct ifnet *ifp; 1534 uint16_t status; 1535 int handled = 0; 1536 1537 if (!device_has_power(sc->sc_dev)) 1538 return 0; 1539 1540 ifp = &sc->ethercom.ec_if; 1541 1542 if ((ifp->if_flags & IFF_UP) == 0) 1543 return 0; 1544 1545 const uint16_t status_mask = (sc->sc_quirk & RTKQ_IM_HW) ? 1546 RTK_INTRS_IM_HW : RTK_INTRS_CPLUS; 1547 1548 for (;;) { 1549 1550 status = CSR_READ_2(sc, RTK_ISR); 1551 /* If the card has gone away the read returns 0xffff. */ 1552 if (status == 0xffff) 1553 break; 1554 if (status) { 1555 handled = 1; 1556 CSR_WRITE_2(sc, RTK_ISR, status); 1557 } 1558 1559 if ((status & status_mask) == 0) 1560 break; 1561 1562 if (status & (RTK_ISR_RX_OK | RTK_ISR_RX_ERR)) 1563 re_rxeof(sc); 1564 1565 if (status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_TX_ERR | 1566 RTK_ISR_TX_DESC_UNAVAIL | RTK_ISR_TX_OK)) 1567 re_txeof(sc); 1568 1569 if (status & RTK_ISR_SYSTEM_ERR) { 1570 re_init(ifp); 1571 } 1572 1573 if (status & RTK_ISR_LINKCHG) { 1574 callout_stop(&sc->rtk_tick_ch); 1575 re_tick(sc); 1576 } 1577 } 1578 1579 if (handled) 1580 if_schedule_deferred_start(ifp); 1581 1582 rnd_add_uint32(&sc->rnd_source, status); 1583 1584 return handled; 1585 } 1586 1587 1588 1589 /* 1590 * Main transmit routine for C+ and gigE NICs. 1591 */ 1592 1593 static void 1594 re_start(struct ifnet *ifp) 1595 { 1596 struct rtk_softc *sc; 1597 struct mbuf *m; 1598 bus_dmamap_t map; 1599 struct re_txq *txq; 1600 struct re_desc *d; 1601 uint32_t cmdstat, re_flags, vlanctl; 1602 int ofree, idx, error, nsegs, seg; 1603 int startdesc, curdesc, lastdesc; 1604 bool pad; 1605 1606 sc = ifp->if_softc; 1607 ofree = sc->re_ldata.re_txq_free; 1608 1609 for (idx = sc->re_ldata.re_txq_prodidx;; idx = RE_NEXT_TXQ(sc, idx)) { 1610 1611 IFQ_POLL(&ifp->if_snd, m); 1612 if (m == NULL) 1613 break; 1614 1615 if (sc->re_ldata.re_txq_free == 0 || 1616 sc->re_ldata.re_tx_free == 0) { 1617 /* no more free slots left */ 1618 ifp->if_flags |= IFF_OACTIVE; 1619 break; 1620 } 1621 1622 /* 1623 * Set up checksum offload. Note: checksum offload bits must 1624 * appear in all descriptors of a multi-descriptor transmit 1625 * attempt. (This is according to testing done with an 8169 1626 * chip. I'm not sure if this is a requirement or a bug.) 1627 */ 1628 1629 vlanctl = 0; 1630 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) { 1631 uint32_t segsz = m->m_pkthdr.segsz; 1632 1633 if ((sc->sc_quirk & RTKQ_DESCV2) == 0) { 1634 re_flags = RE_TDESC_CMD_LGSEND | 1635 (segsz << RE_TDESC_CMD_MSSVAL_SHIFT); 1636 } else { 1637 re_flags = RE_TDESC_CMD_LGSEND_V4; 1638 vlanctl |= 1639 (segsz << RE_TDESC_VLANCTL_MSSVAL_SHIFT); 1640 } 1641 } else { 1642 /* 1643 * set RE_TDESC_CMD_IPCSUM if any checksum offloading 1644 * is requested. otherwise, RE_TDESC_CMD_TCPCSUM/ 1645 * RE_TDESC_CMD_UDPCSUM doesn't make effects. 1646 */ 1647 re_flags = 0; 1648 if ((m->m_pkthdr.csum_flags & 1649 (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) 1650 != 0) { 1651 if ((sc->sc_quirk & RTKQ_DESCV2) == 0) { 1652 re_flags |= RE_TDESC_CMD_IPCSUM; 1653 if (m->m_pkthdr.csum_flags & 1654 M_CSUM_TCPv4) { 1655 re_flags |= 1656 RE_TDESC_CMD_TCPCSUM; 1657 } else if (m->m_pkthdr.csum_flags & 1658 M_CSUM_UDPv4) { 1659 re_flags |= 1660 RE_TDESC_CMD_UDPCSUM; 1661 } 1662 } else { 1663 vlanctl |= RE_TDESC_VLANCTL_IPCSUM; 1664 if (m->m_pkthdr.csum_flags & 1665 M_CSUM_TCPv4) { 1666 vlanctl |= 1667 RE_TDESC_VLANCTL_TCPCSUM; 1668 } else if (m->m_pkthdr.csum_flags & 1669 M_CSUM_UDPv4) { 1670 vlanctl |= 1671 RE_TDESC_VLANCTL_UDPCSUM; 1672 } 1673 } 1674 } 1675 } 1676 1677 txq = &sc->re_ldata.re_txq[idx]; 1678 map = txq->txq_dmamap; 1679 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m, 1680 BUS_DMA_WRITE|BUS_DMA_NOWAIT); 1681 1682 if (__predict_false(error)) { 1683 /* XXX try to defrag if EFBIG? */ 1684 printf("%s: can't map mbuf (error %d)\n", 1685 device_xname(sc->sc_dev), error); 1686 1687 IFQ_DEQUEUE(&ifp->if_snd, m); 1688 m_freem(m); 1689 if_statinc(ifp, if_oerrors); 1690 continue; 1691 } 1692 1693 nsegs = map->dm_nsegs; 1694 pad = false; 1695 if (__predict_false(m->m_pkthdr.len <= RE_IP4CSUMTX_PADLEN && 1696 (re_flags & RE_TDESC_CMD_IPCSUM) != 0 && 1697 (sc->sc_quirk & RTKQ_DESCV2) == 0)) { 1698 pad = true; 1699 nsegs++; 1700 } 1701 1702 if (nsegs > sc->re_ldata.re_tx_free) { 1703 /* 1704 * Not enough free descriptors to transmit this packet. 1705 */ 1706 ifp->if_flags |= IFF_OACTIVE; 1707 bus_dmamap_unload(sc->sc_dmat, map); 1708 break; 1709 } 1710 1711 IFQ_DEQUEUE(&ifp->if_snd, m); 1712 1713 /* 1714 * Make sure that the caches are synchronized before we 1715 * ask the chip to start DMA for the packet data. 1716 */ 1717 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize, 1718 BUS_DMASYNC_PREWRITE); 1719 1720 /* 1721 * Set up hardware VLAN tagging. Note: vlan tag info must 1722 * appear in all descriptors of a multi-descriptor 1723 * transmission attempt. 1724 */ 1725 if (vlan_has_tag(m)) 1726 vlanctl |= bswap16(vlan_get_tag(m)) | 1727 RE_TDESC_VLANCTL_TAG; 1728 1729 /* 1730 * Map the segment array into descriptors. 1731 * Note that we set the start-of-frame and 1732 * end-of-frame markers for either TX or RX, 1733 * but they really only have meaning in the TX case. 1734 * (In the RX case, it's the chip that tells us 1735 * where packets begin and end.) 1736 * We also keep track of the end of the ring 1737 * and set the end-of-ring bits as needed, 1738 * and we set the ownership bits in all except 1739 * the very first descriptor. (The caller will 1740 * set this descriptor later when it start 1741 * transmission or reception.) 1742 */ 1743 curdesc = startdesc = sc->re_ldata.re_tx_nextfree; 1744 lastdesc = -1; 1745 for (seg = 0; seg < map->dm_nsegs; 1746 seg++, curdesc = RE_NEXT_TX_DESC(sc, curdesc)) { 1747 d = &sc->re_ldata.re_tx_list[curdesc]; 1748 #ifdef DIAGNOSTIC 1749 RE_TXDESCSYNC(sc, curdesc, 1750 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 1751 cmdstat = le32toh(d->re_cmdstat); 1752 RE_TXDESCSYNC(sc, curdesc, BUS_DMASYNC_PREREAD); 1753 if (cmdstat & RE_TDESC_STAT_OWN) { 1754 panic("%s: tried to map busy TX descriptor", 1755 device_xname(sc->sc_dev)); 1756 } 1757 #endif 1758 1759 d->re_vlanctl = htole32(vlanctl); 1760 re_set_bufaddr(d, map->dm_segs[seg].ds_addr); 1761 cmdstat = re_flags | map->dm_segs[seg].ds_len; 1762 if (seg == 0) 1763 cmdstat |= RE_TDESC_CMD_SOF; 1764 else 1765 cmdstat |= RE_TDESC_CMD_OWN; 1766 if (curdesc == (RE_TX_DESC_CNT(sc) - 1)) 1767 cmdstat |= RE_TDESC_CMD_EOR; 1768 if (seg == nsegs - 1) { 1769 cmdstat |= RE_TDESC_CMD_EOF; 1770 lastdesc = curdesc; 1771 } 1772 d->re_cmdstat = htole32(cmdstat); 1773 RE_TXDESCSYNC(sc, curdesc, 1774 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 1775 } 1776 if (__predict_false(pad)) { 1777 d = &sc->re_ldata.re_tx_list[curdesc]; 1778 d->re_vlanctl = htole32(vlanctl); 1779 re_set_bufaddr(d, RE_TXPADDADDR(sc)); 1780 cmdstat = re_flags | 1781 RE_TDESC_CMD_OWN | RE_TDESC_CMD_EOF | 1782 (RE_IP4CSUMTX_PADLEN + 1 - m->m_pkthdr.len); 1783 if (curdesc == (RE_TX_DESC_CNT(sc) - 1)) 1784 cmdstat |= RE_TDESC_CMD_EOR; 1785 d->re_cmdstat = htole32(cmdstat); 1786 RE_TXDESCSYNC(sc, curdesc, 1787 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 1788 lastdesc = curdesc; 1789 curdesc = RE_NEXT_TX_DESC(sc, curdesc); 1790 } 1791 KASSERT(lastdesc != -1); 1792 1793 /* Transfer ownership of packet to the chip. */ 1794 1795 sc->re_ldata.re_tx_list[startdesc].re_cmdstat |= 1796 htole32(RE_TDESC_CMD_OWN); 1797 RE_TXDESCSYNC(sc, startdesc, 1798 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 1799 1800 /* update info of TX queue and descriptors */ 1801 txq->txq_mbuf = m; 1802 txq->txq_descidx = lastdesc; 1803 txq->txq_nsegs = nsegs; 1804 1805 sc->re_ldata.re_txq_free--; 1806 sc->re_ldata.re_tx_free -= nsegs; 1807 sc->re_ldata.re_tx_nextfree = curdesc; 1808 1809 /* 1810 * If there's a BPF listener, bounce a copy of this frame 1811 * to him. 1812 */ 1813 bpf_mtap(ifp, m, BPF_D_OUT); 1814 } 1815 1816 if (sc->re_ldata.re_txq_free < ofree) { 1817 /* 1818 * TX packets are enqueued. 1819 */ 1820 sc->re_ldata.re_txq_prodidx = idx; 1821 1822 /* 1823 * Start the transmitter to poll. 1824 * 1825 * RealTek put the TX poll request register in a different 1826 * location on the 8169 gigE chip. I don't know why. 1827 */ 1828 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0) 1829 CSR_WRITE_1(sc, RTK_TXSTART, RTK_TXSTART_START); 1830 else 1831 CSR_WRITE_1(sc, RTK_GTXSTART, RTK_TXSTART_START); 1832 1833 if ((sc->sc_quirk & RTKQ_IM_HW) == 0) { 1834 /* 1835 * Use the countdown timer for interrupt moderation. 1836 * 'TX done' interrupts are disabled. Instead, we reset 1837 * the countdown timer, which will begin counting until 1838 * it hits the value in the TIMERINT register, and then 1839 * trigger an interrupt. Each time we write to the 1840 * TIMERCNT register, the timer count is reset to 0. 1841 */ 1842 CSR_WRITE_4(sc, RTK_TIMERCNT, 1); 1843 } 1844 1845 /* 1846 * Set a timeout in case the chip goes out to lunch. 1847 */ 1848 ifp->if_timer = 5; 1849 } 1850 } 1851 1852 static int 1853 re_init(struct ifnet *ifp) 1854 { 1855 struct rtk_softc *sc = ifp->if_softc; 1856 uint32_t rxcfg = 0; 1857 uint16_t cfg; 1858 int error; 1859 #ifdef RE_USE_EECMD 1860 const uint8_t *enaddr; 1861 uint32_t reg; 1862 #endif 1863 1864 if ((error = re_enable(sc)) != 0) 1865 goto out; 1866 1867 /* 1868 * Cancel pending I/O and free all RX/TX buffers. 1869 */ 1870 re_stop(ifp, 0); 1871 1872 re_reset(sc); 1873 1874 /* 1875 * Enable C+ RX and TX mode, as well as VLAN stripping and 1876 * RX checksum offload. We must configure the C+ register 1877 * before all others. 1878 */ 1879 cfg = RE_CPLUSCMD_PCI_MRW; 1880 1881 /* 1882 * XXX: For old 8169 set bit 14. 1883 * For 8169S/8110S and above, do not set bit 14. 1884 */ 1885 if ((sc->sc_quirk & RTKQ_8169NONS) != 0) 1886 cfg |= (0x1 << 14); 1887 1888 if ((sc->ethercom.ec_capenable & ETHERCAP_VLAN_HWTAGGING) != 0) 1889 cfg |= RE_CPLUSCMD_VLANSTRIP; 1890 if ((ifp->if_capenable & (IFCAP_CSUM_IPv4_Rx | 1891 IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx)) != 0) 1892 cfg |= RE_CPLUSCMD_RXCSUM_ENB; 1893 if ((sc->sc_quirk & RTKQ_MACSTAT) != 0) { 1894 cfg |= RE_CPLUSCMD_MACSTAT_DIS; 1895 cfg |= RE_CPLUSCMD_TXENB; 1896 } else 1897 cfg |= RE_CPLUSCMD_RXENB | RE_CPLUSCMD_TXENB; 1898 1899 CSR_WRITE_2(sc, RTK_CPLUS_CMD, cfg); 1900 1901 /* XXX: from Realtek-supplied Linux driver. Wholly undocumented. */ 1902 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) { 1903 if ((sc->sc_quirk & RTKQ_IM_HW) == 0) { 1904 CSR_WRITE_2(sc, RTK_IM, 0x0000); 1905 } else { 1906 CSR_WRITE_2(sc, RTK_IM, 0x5151); 1907 } 1908 } 1909 1910 DELAY(10000); 1911 1912 #ifdef RE_USE_EECMD 1913 /* 1914 * Init our MAC address. Even though the chipset 1915 * documentation doesn't mention it, we need to enter "Config 1916 * register write enable" mode to modify the ID registers. 1917 */ 1918 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_WRITECFG); 1919 enaddr = CLLADDR(ifp->if_sadl); 1920 reg = enaddr[0] | (enaddr[1] << 8) | 1921 (enaddr[2] << 16) | (enaddr[3] << 24); 1922 CSR_WRITE_4(sc, RTK_IDR0, reg); 1923 reg = enaddr[4] | (enaddr[5] << 8); 1924 CSR_WRITE_4(sc, RTK_IDR4, reg); 1925 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF); 1926 #endif 1927 1928 /* 1929 * For C+ mode, initialize the RX descriptors and mbufs. 1930 */ 1931 re_rx_list_init(sc); 1932 re_tx_list_init(sc); 1933 1934 /* 1935 * Load the addresses of the RX and TX lists into the chip. 1936 */ 1937 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_HI, 1938 RE_ADDR_HI(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr)); 1939 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_LO, 1940 RE_ADDR_LO(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr)); 1941 1942 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_HI, 1943 RE_ADDR_HI(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr)); 1944 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_LO, 1945 RE_ADDR_LO(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr)); 1946 1947 if (sc->sc_quirk & RTKQ_RXDV_GATED) { 1948 CSR_WRITE_4(sc, RTK_MISC, 1949 CSR_READ_4(sc, RTK_MISC) & ~RTK_MISC_RXDV_GATED_EN); 1950 } 1951 1952 /* 1953 * Enable transmit and receive. 1954 */ 1955 if ((sc->sc_quirk & RTKQ_TXRXEN_LATER) == 0) 1956 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB); 1957 1958 /* 1959 * Set the initial TX and RX configuration. 1960 */ 1961 if (sc->re_testmode && (sc->sc_quirk & RTKQ_8169NONS) != 0) { 1962 /* test mode is needed only for old 8169 */ 1963 CSR_WRITE_4(sc, RTK_TXCFG, 1964 RE_TXCFG_CONFIG | RTK_LOOPTEST_ON); 1965 } else 1966 CSR_WRITE_4(sc, RTK_TXCFG, RE_TXCFG_CONFIG); 1967 1968 CSR_WRITE_1(sc, RTK_EARLY_TX_THRESH, 16); 1969 1970 CSR_WRITE_4(sc, RTK_RXCFG, RE_RXCFG_CONFIG); 1971 1972 /* Set the individual bit to receive frames for this host only. */ 1973 rxcfg = CSR_READ_4(sc, RTK_RXCFG); 1974 rxcfg |= RTK_RXCFG_RX_INDIV; 1975 1976 /* If we want promiscuous mode, set the allframes bit. */ 1977 if (ifp->if_flags & IFF_PROMISC) 1978 rxcfg |= RTK_RXCFG_RX_ALLPHYS; 1979 else 1980 rxcfg &= ~RTK_RXCFG_RX_ALLPHYS; 1981 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg); 1982 1983 /* 1984 * Set capture broadcast bit to capture broadcast frames. 1985 */ 1986 if (ifp->if_flags & IFF_BROADCAST) 1987 rxcfg |= RTK_RXCFG_RX_BROAD; 1988 else 1989 rxcfg &= ~RTK_RXCFG_RX_BROAD; 1990 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg); 1991 1992 /* 1993 * Program the multicast filter, if necessary. 1994 */ 1995 rtk_setmulti(sc); 1996 1997 /* 1998 * some chips require to enable TX/RX *AFTER* TX/RX configuration 1999 */ 2000 if ((sc->sc_quirk & RTKQ_TXRXEN_LATER) != 0) 2001 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB); 2002 2003 /* 2004 * Enable interrupts. 2005 */ 2006 if (sc->re_testmode) 2007 CSR_WRITE_2(sc, RTK_IMR, 0); 2008 else if ((sc->sc_quirk & RTKQ_IM_HW) != 0) 2009 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_IM_HW); 2010 else 2011 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS); 2012 2013 /* Start RX/TX process. */ 2014 CSR_WRITE_4(sc, RTK_MISSEDPKT, 0); 2015 #ifdef notdef 2016 /* Enable receiver and transmitter. */ 2017 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB); 2018 #endif 2019 2020 /* 2021 * Initialize the timer interrupt register so that 2022 * a timer interrupt will be generated once the timer 2023 * reaches a certain number of ticks. The timer is 2024 * reloaded on each transmit. This gives us TX interrupt 2025 * moderation, which dramatically improves TX frame rate. 2026 */ 2027 2028 unsigned defer; /* timer interval / ns */ 2029 unsigned period; /* busclock period / ns */ 2030 2031 /* 2032 * Maximum frame rate 2033 * 1500 byte PDU -> 81274 Hz 2034 * 46 byte PDU -> 1488096 Hz 2035 * 2036 * Deferring interrupts by up to 128us needs descriptors for 2037 * 1500 byte PDU -> 10.4 frames 2038 * 46 byte PDU -> 190.4 frames 2039 * 2040 */ 2041 defer = 128000; 2042 2043 if ((sc->sc_quirk & RTKQ_IM_HW) != 0) { 2044 period = 1; 2045 defer = 0; 2046 } else if ((sc->sc_quirk & RTKQ_PCIE) != 0) { 2047 period = 8; 2048 } else { 2049 switch (CSR_READ_1(sc, RTK_CFG2_BUSFREQ) & 0x7) { 2050 case RTK_BUSFREQ_33MHZ: 2051 period = 30; 2052 break; 2053 case RTK_BUSFREQ_66MHZ: 2054 period = 15; 2055 break; 2056 default: 2057 /* lowest possible clock */ 2058 period = 60; 2059 break; 2060 } 2061 } 2062 2063 /* Timer Interrupt register address varies */ 2064 uint16_t re8139_reg; 2065 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0) 2066 re8139_reg = RTK_TIMERINT; 2067 else 2068 re8139_reg = RTK_TIMERINT_8169; 2069 CSR_WRITE_4(sc, re8139_reg, defer / period); 2070 2071 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) { 2072 /* 2073 * For 8169 gigE NICs, set the max allowed RX packet 2074 * size so we can receive jumbo frames. 2075 */ 2076 CSR_WRITE_2(sc, RTK_MAXRXPKTLEN, 16383); 2077 } 2078 2079 if (sc->re_testmode) 2080 return 0; 2081 2082 CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD); 2083 2084 ifp->if_flags |= IFF_RUNNING; 2085 ifp->if_flags &= ~IFF_OACTIVE; 2086 2087 callout_schedule(&sc->rtk_tick_ch, hz); 2088 2089 out: 2090 if (error) { 2091 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 2092 ifp->if_timer = 0; 2093 printf("%s: interface not running\n", 2094 device_xname(sc->sc_dev)); 2095 } 2096 2097 return error; 2098 } 2099 2100 static int 2101 re_ioctl(struct ifnet *ifp, u_long command, void *data) 2102 { 2103 struct rtk_softc *sc = ifp->if_softc; 2104 struct ifreq *ifr = data; 2105 int s, error = 0; 2106 2107 s = splnet(); 2108 2109 switch (command) { 2110 case SIOCSIFMTU: 2111 /* 2112 * Disable jumbo frames if it's not supported. 2113 */ 2114 if ((sc->sc_quirk & RTKQ_NOJUMBO) != 0 && 2115 ifr->ifr_mtu > ETHERMTU) { 2116 error = EINVAL; 2117 break; 2118 } 2119 2120 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU_JUMBO) 2121 error = EINVAL; 2122 else if ((error = ifioctl_common(ifp, command, data)) == 2123 ENETRESET) 2124 error = 0; 2125 break; 2126 default: 2127 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET) 2128 break; 2129 2130 error = 0; 2131 2132 if (command == SIOCSIFCAP) 2133 error = (*ifp->if_init)(ifp); 2134 else if (command != SIOCADDMULTI && command != SIOCDELMULTI) 2135 ; 2136 else if (ifp->if_flags & IFF_RUNNING) 2137 rtk_setmulti(sc); 2138 break; 2139 } 2140 2141 splx(s); 2142 2143 return error; 2144 } 2145 2146 static void 2147 re_watchdog(struct ifnet *ifp) 2148 { 2149 struct rtk_softc *sc; 2150 int s; 2151 2152 sc = ifp->if_softc; 2153 s = splnet(); 2154 printf("%s: watchdog timeout\n", device_xname(sc->sc_dev)); 2155 if_statinc(ifp, if_oerrors); 2156 2157 re_txeof(sc); 2158 re_rxeof(sc); 2159 2160 re_init(ifp); 2161 2162 splx(s); 2163 } 2164 2165 /* 2166 * Stop the adapter and free any mbufs allocated to the 2167 * RX and TX lists. 2168 */ 2169 static void 2170 re_stop(struct ifnet *ifp, int disable) 2171 { 2172 int i; 2173 struct rtk_softc *sc = ifp->if_softc; 2174 2175 callout_stop(&sc->rtk_tick_ch); 2176 2177 mii_down(&sc->mii); 2178 2179 if ((sc->sc_quirk & RTKQ_CMDSTOP) != 0) 2180 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_STOPREQ | RTK_CMD_TX_ENB | 2181 RTK_CMD_RX_ENB); 2182 else 2183 CSR_WRITE_1(sc, RTK_COMMAND, 0x00); 2184 DELAY(1000); 2185 CSR_WRITE_2(sc, RTK_IMR, 0x0000); 2186 CSR_WRITE_2(sc, RTK_ISR, 0xFFFF); 2187 2188 if (sc->re_head != NULL) { 2189 m_freem(sc->re_head); 2190 sc->re_head = sc->re_tail = NULL; 2191 } 2192 2193 /* Free the TX list buffers. */ 2194 for (i = 0; i < RE_TX_QLEN; i++) { 2195 if (sc->re_ldata.re_txq[i].txq_mbuf != NULL) { 2196 bus_dmamap_unload(sc->sc_dmat, 2197 sc->re_ldata.re_txq[i].txq_dmamap); 2198 m_freem(sc->re_ldata.re_txq[i].txq_mbuf); 2199 sc->re_ldata.re_txq[i].txq_mbuf = NULL; 2200 } 2201 } 2202 2203 /* Free the RX list buffers. */ 2204 for (i = 0; i < RE_RX_DESC_CNT; i++) { 2205 if (sc->re_ldata.re_rxsoft[i].rxs_mbuf != NULL) { 2206 bus_dmamap_unload(sc->sc_dmat, 2207 sc->re_ldata.re_rxsoft[i].rxs_dmamap); 2208 m_freem(sc->re_ldata.re_rxsoft[i].rxs_mbuf); 2209 sc->re_ldata.re_rxsoft[i].rxs_mbuf = NULL; 2210 } 2211 } 2212 2213 if (disable) 2214 re_disable(sc); 2215 2216 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 2217 ifp->if_timer = 0; 2218 } 2219