xref: /netbsd-src/sys/dev/ic/rt2661.c (revision e89934bbf778a6d6d6894877c4da59d0c7835b0f)
1 /*	$NetBSD: rt2661.c,v 1.34 2017/02/02 10:05:35 nonaka Exp $	*/
2 /*	$OpenBSD: rt2661.c,v 1.17 2006/05/01 08:41:11 damien Exp $	*/
3 /*	$FreeBSD: rt2560.c,v 1.5 2006/06/02 19:59:31 csjp Exp $	*/
4 
5 /*-
6  * Copyright (c) 2006
7  *	Damien Bergamini <damien.bergamini@free.fr>
8  *
9  * Permission to use, copy, modify, and distribute this software for any
10  * purpose with or without fee is hereby granted, provided that the above
11  * copyright notice and this permission notice appear in all copies.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20  */
21 
22 /*-
23  * Ralink Technology RT2561, RT2561S and RT2661 chipset driver
24  * http://www.ralinktech.com/
25  */
26 
27 #include <sys/cdefs.h>
28 __KERNEL_RCSID(0, "$NetBSD: rt2661.c,v 1.34 2017/02/02 10:05:35 nonaka Exp $");
29 
30 
31 #include <sys/param.h>
32 #include <sys/sockio.h>
33 #include <sys/sysctl.h>
34 #include <sys/mbuf.h>
35 #include <sys/kernel.h>
36 #include <sys/socket.h>
37 #include <sys/systm.h>
38 #include <sys/malloc.h>
39 #include <sys/callout.h>
40 #include <sys/conf.h>
41 #include <sys/device.h>
42 
43 #include <sys/bus.h>
44 #include <machine/endian.h>
45 #include <sys/intr.h>
46 
47 #include <net/bpf.h>
48 #include <net/if.h>
49 #include <net/if_arp.h>
50 #include <net/if_dl.h>
51 #include <net/if_media.h>
52 #include <net/if_types.h>
53 #include <net/if_ether.h>
54 
55 #include <netinet/in.h>
56 #include <netinet/in_systm.h>
57 #include <netinet/in_var.h>
58 #include <netinet/ip.h>
59 
60 #include <net80211/ieee80211_var.h>
61 #include <net80211/ieee80211_amrr.h>
62 #include <net80211/ieee80211_radiotap.h>
63 
64 #include <dev/ic/rt2661reg.h>
65 #include <dev/ic/rt2661var.h>
66 
67 #include <dev/pci/pcireg.h>
68 #include <dev/pci/pcivar.h>
69 #include <dev/pci/pcidevs.h>
70 
71 #include <dev/firmload.h>
72 
73 #ifdef RAL_DEBUG
74 #define DPRINTF(x)	do { if (rt2661_debug > 0) printf x; } while (0)
75 #define DPRINTFN(n, x)	do { if (rt2661_debug >= (n)) printf x; } while (0)
76 int rt2661_debug = 0;
77 #else
78 #define DPRINTF(x)
79 #define DPRINTFN(n, x)
80 #endif
81 
82 static int	rt2661_alloc_tx_ring(struct rt2661_softc *,
83 		    struct rt2661_tx_ring *, int);
84 static void	rt2661_reset_tx_ring(struct rt2661_softc *,
85 		    struct rt2661_tx_ring *);
86 static void	rt2661_free_tx_ring(struct rt2661_softc *,
87 		    struct rt2661_tx_ring *);
88 static int	rt2661_alloc_rx_ring(struct rt2661_softc *,
89 		    struct rt2661_rx_ring *, int);
90 static void	rt2661_reset_rx_ring(struct rt2661_softc *,
91 		    struct rt2661_rx_ring *);
92 static void	rt2661_free_rx_ring(struct rt2661_softc *,
93 		    struct rt2661_rx_ring *);
94 static struct ieee80211_node *
95 		rt2661_node_alloc(struct ieee80211_node_table *);
96 static int	rt2661_media_change(struct ifnet *);
97 static void	rt2661_next_scan(void *);
98 static void	rt2661_iter_func(void *, struct ieee80211_node *);
99 static void	rt2661_updatestats(void *);
100 static void	rt2661_newassoc(struct ieee80211_node *, int);
101 static int	rt2661_newstate(struct ieee80211com *, enum ieee80211_state,
102 		    int);
103 static uint16_t	rt2661_eeprom_read(struct rt2661_softc *, uint8_t);
104 static void	rt2661_tx_intr(struct rt2661_softc *);
105 static void	rt2661_tx_dma_intr(struct rt2661_softc *,
106 		    struct rt2661_tx_ring *);
107 static void	rt2661_rx_intr(struct rt2661_softc *);
108 static void	rt2661_mcu_beacon_expire(struct rt2661_softc *);
109 static void	rt2661_mcu_wakeup(struct rt2661_softc *);
110 static void	rt2661_mcu_cmd_intr(struct rt2661_softc *);
111 int		rt2661_intr(void *);
112 static uint8_t	rt2661_rxrate(struct rt2661_rx_desc *);
113 static int	rt2661_ack_rate(struct ieee80211com *, int);
114 static uint16_t	rt2661_txtime(int, int, uint32_t);
115 static uint8_t	rt2661_plcp_signal(int);
116 static void	rt2661_setup_tx_desc(struct rt2661_softc *,
117 		    struct rt2661_tx_desc *, uint32_t, uint16_t, int, int,
118 		    const bus_dma_segment_t *, int, int);
119 static int	rt2661_tx_mgt(struct rt2661_softc *, struct mbuf *,
120 		    struct ieee80211_node *);
121 static struct mbuf *
122 		rt2661_get_rts(struct rt2661_softc *,
123 		    struct ieee80211_frame *, uint16_t);
124 static int	rt2661_tx_data(struct rt2661_softc *, struct mbuf *,
125 		    struct ieee80211_node *, int);
126 static void	rt2661_start(struct ifnet *);
127 static void	rt2661_watchdog(struct ifnet *);
128 static int	rt2661_reset(struct ifnet *);
129 static int	rt2661_ioctl(struct ifnet *, u_long, void *);
130 static void	rt2661_bbp_write(struct rt2661_softc *, uint8_t, uint8_t);
131 static uint8_t	rt2661_bbp_read(struct rt2661_softc *, uint8_t);
132 static void	rt2661_rf_write(struct rt2661_softc *, uint8_t, uint32_t);
133 static int	rt2661_tx_cmd(struct rt2661_softc *, uint8_t, uint16_t);
134 static void	rt2661_select_antenna(struct rt2661_softc *);
135 static void	rt2661_enable_mrr(struct rt2661_softc *);
136 static void	rt2661_set_txpreamble(struct rt2661_softc *);
137 static void	rt2661_set_basicrates(struct rt2661_softc *,
138 			const struct ieee80211_rateset *);
139 static void	rt2661_select_band(struct rt2661_softc *,
140 		    struct ieee80211_channel *);
141 static void	rt2661_set_chan(struct rt2661_softc *,
142 		    struct ieee80211_channel *);
143 static void	rt2661_set_bssid(struct rt2661_softc *, const uint8_t *);
144 static void	rt2661_set_macaddr(struct rt2661_softc *, const uint8_t *);
145 static void	rt2661_update_promisc(struct rt2661_softc *);
146 #if 0
147 static int	rt2661_wme_update(struct ieee80211com *);
148 #endif
149 
150 static void	rt2661_updateslot(struct ifnet *);
151 static void	rt2661_set_slottime(struct rt2661_softc *);
152 static const char *
153 		rt2661_get_rf(int);
154 static void	rt2661_read_eeprom(struct rt2661_softc *);
155 static int	rt2661_bbp_init(struct rt2661_softc *);
156 static int     	rt2661_init(struct ifnet *);
157 static void	rt2661_stop(struct ifnet *, int);
158 static int	rt2661_load_microcode(struct rt2661_softc *, const uint8_t *,
159 		    int);
160 static void	rt2661_rx_tune(struct rt2661_softc *);
161 #ifdef notyet
162 static void	rt2661_radar_start(struct rt2661_softc *);
163 static int	rt2661_radar_stop(struct rt2661_softc *);
164 #endif
165 static int	rt2661_prepare_beacon(struct rt2661_softc *);
166 static void	rt2661_enable_tsf_sync(struct rt2661_softc *);
167 static int	rt2661_get_rssi(struct rt2661_softc *, uint8_t);
168 static void	rt2661_softintr(void *);
169 
170 /*
171  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
172  */
173 static const struct ieee80211_rateset rt2661_rateset_11a =
174 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
175 
176 static const struct ieee80211_rateset rt2661_rateset_11b =
177 	{ 4, { 2, 4, 11, 22 } };
178 
179 static const struct ieee80211_rateset rt2661_rateset_11g =
180 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
181 
182 static const struct {
183 	uint32_t	reg;
184 	uint32_t	val;
185 } rt2661_def_mac[] = {
186 	RT2661_DEF_MAC
187 };
188 
189 static const struct {
190 	uint8_t	reg;
191 	uint8_t	val;
192 } rt2661_def_bbp[] = {
193 	RT2661_DEF_BBP
194 };
195 
196 static const struct rfprog {
197 	uint8_t		chan;
198 	uint32_t	r1, r2, r3, r4;
199 } rt2661_rf5225_1[] = {
200 	RT2661_RF5225_1
201 }, rt2661_rf5225_2[] = {
202 	RT2661_RF5225_2
203 };
204 
205 int
206 rt2661_attach(void *xsc, int id)
207 {
208 	struct rt2661_softc *sc = xsc;
209 	struct ieee80211com *ic = &sc->sc_ic;
210 	struct ifnet *ifp = &sc->sc_if;
211 	uint32_t val;
212 	int error, i, ntries;
213 
214 	sc->sc_id = id;
215 
216 	sc->amrr.amrr_min_success_threshold =  1;
217 	sc->amrr.amrr_max_success_threshold = 15;
218 	callout_init(&sc->scan_ch, 0);
219 	callout_init(&sc->amrr_ch, 0);
220 
221 	/* wait for NIC to initialize */
222 	for (ntries = 0; ntries < 1000; ntries++) {
223 		if ((val = RAL_READ(sc, RT2661_MAC_CSR0)) != 0)
224 			break;
225 		DELAY(1000);
226 	}
227 	if (ntries == 1000) {
228 		aprint_error_dev(sc->sc_dev, "timeout waiting for NIC to initialize\n");
229 		return EIO;
230 	}
231 
232 	/* retrieve RF rev. no and various other things from EEPROM */
233 	rt2661_read_eeprom(sc);
234 	aprint_normal_dev(sc->sc_dev, "802.11 address %s\n",
235 	    ether_sprintf(ic->ic_myaddr));
236 
237 	aprint_normal_dev(sc->sc_dev, "MAC/BBP RT%X, RF %s\n", val,
238 	    rt2661_get_rf(sc->rf_rev));
239 
240 	sc->sc_soft_ih = softint_establish(SOFTINT_NET, rt2661_softintr, sc);
241 	if (sc->sc_soft_ih == NULL) {
242 		aprint_error_dev(sc->sc_dev, "could not establish softint\n");
243 		goto fail0;
244 	}
245 
246 	/*
247 	 * Allocate Tx and Rx rings.
248 	 */
249 	error = rt2661_alloc_tx_ring(sc, &sc->txq[0], RT2661_TX_RING_COUNT);
250 	if (error != 0) {
251 		aprint_error_dev(sc->sc_dev, "could not allocate Tx ring 0\n");
252 		goto fail1;
253 	}
254 
255 	error = rt2661_alloc_tx_ring(sc, &sc->txq[1], RT2661_TX_RING_COUNT);
256 	if (error != 0) {
257 		aprint_error_dev(sc->sc_dev, "could not allocate Tx ring 1\n");
258 		goto fail2;
259 	}
260 
261 	error = rt2661_alloc_tx_ring(sc, &sc->txq[2], RT2661_TX_RING_COUNT);
262 	if (error != 0) {
263 		aprint_error_dev(sc->sc_dev, "could not allocate Tx ring 2\n");
264 		goto fail3;
265 	}
266 
267 	error = rt2661_alloc_tx_ring(sc, &sc->txq[3], RT2661_TX_RING_COUNT);
268 	if (error != 0) {
269 		aprint_error_dev(sc->sc_dev, "could not allocate Tx ring 3\n");
270 		goto fail4;
271 	}
272 
273 	error = rt2661_alloc_tx_ring(sc, &sc->mgtq, RT2661_MGT_RING_COUNT);
274 	if (error != 0) {
275 		aprint_error_dev(sc->sc_dev, "could not allocate Mgt ring\n");
276 		goto fail5;
277 	}
278 
279 	error = rt2661_alloc_rx_ring(sc, &sc->rxq, RT2661_RX_RING_COUNT);
280 	if (error != 0) {
281 		aprint_error_dev(sc->sc_dev, "could not allocate Rx ring\n");
282 		goto fail6;
283 	}
284 
285 	ifp->if_softc = sc;
286 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
287 	ifp->if_init = rt2661_init;
288 	ifp->if_stop = rt2661_stop;
289 	ifp->if_ioctl = rt2661_ioctl;
290 	ifp->if_start = rt2661_start;
291 	ifp->if_watchdog = rt2661_watchdog;
292 	IFQ_SET_READY(&ifp->if_snd);
293 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
294 
295 	ic->ic_ifp = ifp;
296 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
297 	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
298 	ic->ic_state = IEEE80211_S_INIT;
299 
300 	/* set device capabilities */
301 	ic->ic_caps =
302 	    IEEE80211_C_IBSS |		/* IBSS mode supported */
303 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
304 	    IEEE80211_C_HOSTAP |	/* HostAP mode supported */
305 	    IEEE80211_C_TXPMGT |	/* tx power management */
306 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
307 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
308 	    IEEE80211_C_WPA;		/* 802.11i */
309 
310 	if (sc->rf_rev == RT2661_RF_5225 || sc->rf_rev == RT2661_RF_5325) {
311 		/* set supported .11a rates */
312 		ic->ic_sup_rates[IEEE80211_MODE_11A] = rt2661_rateset_11a;
313 
314 		/* set supported .11a channels */
315 		for (i = 36; i <= 64; i += 4) {
316 			ic->ic_channels[i].ic_freq =
317 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
318 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
319 		}
320 		for (i = 100; i <= 140; i += 4) {
321 			ic->ic_channels[i].ic_freq =
322 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
323 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
324 		}
325 		for (i = 149; i <= 165; i += 4) {
326 			ic->ic_channels[i].ic_freq =
327 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
328 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
329 		}
330 	}
331 
332 	/* set supported .11b and .11g rates */
333 	ic->ic_sup_rates[IEEE80211_MODE_11B] = rt2661_rateset_11b;
334 	ic->ic_sup_rates[IEEE80211_MODE_11G] = rt2661_rateset_11g;
335 
336 	/* set supported .11b and .11g channels (1 through 14) */
337 	for (i = 1; i <= 14; i++) {
338 		ic->ic_channels[i].ic_freq =
339 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
340 		ic->ic_channels[i].ic_flags =
341 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
342 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
343 	}
344 
345 	if_initialize(ifp);
346 	ieee80211_ifattach(ic);
347 	/* Use common softint-based if_input */
348 	ifp->if_percpuq = if_percpuq_create(ifp);
349 	if_register(ifp);
350 
351 	ic->ic_node_alloc = rt2661_node_alloc;
352 	ic->ic_newassoc = rt2661_newassoc;
353 	ic->ic_updateslot = rt2661_updateslot;
354 	ic->ic_reset = rt2661_reset;
355 
356 	/* override state transition machine */
357 	sc->sc_newstate = ic->ic_newstate;
358 	ic->ic_newstate = rt2661_newstate;
359 	ieee80211_media_init(ic, rt2661_media_change, ieee80211_media_status);
360 
361 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
362 	    sizeof(struct ieee80211_frame) + sizeof(sc->sc_txtap),
363 	    &sc->sc_drvbpf);
364 
365 	sc->sc_rxtap_len = roundup(sizeof(sc->sc_rxtap), sizeof(u_int32_t));
366 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
367 	sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2661_RX_RADIOTAP_PRESENT);
368 
369 	sc->sc_txtap_len = roundup(sizeof(sc->sc_txtap), sizeof(u_int32_t));
370 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
371 	sc->sc_txtap.wt_ihdr.it_present = htole32(RT2661_TX_RADIOTAP_PRESENT);
372 
373 	ieee80211_announce(ic);
374 
375 	if (pmf_device_register(sc->sc_dev, NULL, NULL))
376 		pmf_class_network_register(sc->sc_dev, ifp);
377 	else
378 		aprint_error_dev(sc->sc_dev,
379 		    "couldn't establish power handler\n");
380 
381 	return 0;
382 
383 fail6:	rt2661_free_tx_ring(sc, &sc->mgtq);
384 fail5:	rt2661_free_tx_ring(sc, &sc->txq[3]);
385 fail4:	rt2661_free_tx_ring(sc, &sc->txq[2]);
386 fail3:	rt2661_free_tx_ring(sc, &sc->txq[1]);
387 fail2:	rt2661_free_tx_ring(sc, &sc->txq[0]);
388 fail1:	softint_disestablish(sc->sc_soft_ih);
389 	sc->sc_soft_ih = NULL;
390 fail0:	return ENXIO;
391 }
392 
393 int
394 rt2661_detach(void *xsc)
395 {
396 	struct rt2661_softc *sc = xsc;
397 	struct ifnet *ifp = &sc->sc_if;
398 
399 	callout_stop(&sc->scan_ch);
400 	callout_stop(&sc->amrr_ch);
401 
402 	pmf_device_deregister(sc->sc_dev);
403 
404 	ieee80211_ifdetach(&sc->sc_ic);
405 	if_detach(ifp);
406 
407 	rt2661_free_tx_ring(sc, &sc->txq[0]);
408 	rt2661_free_tx_ring(sc, &sc->txq[1]);
409 	rt2661_free_tx_ring(sc, &sc->txq[2]);
410 	rt2661_free_tx_ring(sc, &sc->txq[3]);
411 	rt2661_free_tx_ring(sc, &sc->mgtq);
412 	rt2661_free_rx_ring(sc, &sc->rxq);
413 
414 	if (sc->sc_soft_ih != NULL) {
415 		softint_disestablish(sc->sc_soft_ih);
416 		sc->sc_soft_ih = NULL;
417 	}
418 
419 	return 0;
420 }
421 
422 static int
423 rt2661_alloc_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring,
424     int count)
425 {
426 	int i, nsegs, error;
427 
428 	ring->count = count;
429 	ring->queued = 0;
430 	ring->cur = ring->next = ring->stat = 0;
431 
432 	error = bus_dmamap_create(sc->sc_dmat, count * RT2661_TX_DESC_SIZE, 1,
433 	    count * RT2661_TX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map);
434 	if (error != 0) {
435 		aprint_error_dev(sc->sc_dev, "could not create desc DMA map\n");
436 		goto fail;
437 	}
438 
439 	error = bus_dmamem_alloc(sc->sc_dmat, count * RT2661_TX_DESC_SIZE,
440 	    PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
441 	if (error != 0) {
442 		aprint_error_dev(sc->sc_dev, "could not allocate DMA memory\n");
443 		goto fail;
444 	}
445 
446 	error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
447 	    count * RT2661_TX_DESC_SIZE, (void **)&ring->desc,
448 	    BUS_DMA_NOWAIT);
449 	if (error != 0) {
450 		aprint_error_dev(sc->sc_dev, "could not map desc DMA memory\n");
451 		goto fail;
452 	}
453 
454 	error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
455 	    count * RT2661_TX_DESC_SIZE, NULL, BUS_DMA_NOWAIT);
456 	if (error != 0) {
457 		aprint_error_dev(sc->sc_dev, "could not load desc DMA map\n");
458 		goto fail;
459 	}
460 
461 	memset(ring->desc, 0, count * RT2661_TX_DESC_SIZE);
462 	ring->physaddr = ring->map->dm_segs->ds_addr;
463 
464 	ring->data = malloc(count * sizeof (struct rt2661_tx_data), M_DEVBUF,
465 	    M_NOWAIT);
466 	if (ring->data == NULL) {
467 		aprint_error_dev(sc->sc_dev, "could not allocate soft data\n");
468 		error = ENOMEM;
469 		goto fail;
470 	}
471 
472 	memset(ring->data, 0, count * sizeof (struct rt2661_tx_data));
473 	for (i = 0; i < count; i++) {
474 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
475 		    RT2661_MAX_SCATTER, MCLBYTES, 0, BUS_DMA_NOWAIT,
476 		    &ring->data[i].map);
477 		if (error != 0) {
478 			aprint_error_dev(sc->sc_dev, "could not create DMA map\n");
479 			goto fail;
480 		}
481 	}
482 
483 	return 0;
484 
485 fail:	rt2661_free_tx_ring(sc, ring);
486 	return error;
487 }
488 
489 static void
490 rt2661_reset_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring)
491 {
492 	struct rt2661_tx_desc *desc;
493 	struct rt2661_tx_data *data;
494 	int i;
495 
496 	for (i = 0; i < ring->count; i++) {
497 		desc = &ring->desc[i];
498 		data = &ring->data[i];
499 
500 		if (data->m != NULL) {
501 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
502 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
503 			bus_dmamap_unload(sc->sc_dmat, data->map);
504 			m_freem(data->m);
505 			data->m = NULL;
506 		}
507 
508 		if (data->ni != NULL) {
509 			ieee80211_free_node(data->ni);
510 			data->ni = NULL;
511 		}
512 
513 		desc->flags = 0;
514 	}
515 
516 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
517 	    BUS_DMASYNC_PREWRITE);
518 
519 	ring->queued = 0;
520 	ring->cur = ring->next = ring->stat = 0;
521 }
522 
523 
524 static void
525 rt2661_free_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring)
526 {
527 	struct rt2661_tx_data *data;
528 	int i;
529 
530 	if (ring->desc != NULL) {
531 		bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
532 		    ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
533 		bus_dmamap_unload(sc->sc_dmat, ring->map);
534 		bus_dmamem_unmap(sc->sc_dmat, (void *)ring->desc,
535 		    ring->count * RT2661_TX_DESC_SIZE);
536 		bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
537 	}
538 
539 	if (ring->data != NULL) {
540 		for (i = 0; i < ring->count; i++) {
541 			data = &ring->data[i];
542 
543 			if (data->m != NULL) {
544 				bus_dmamap_sync(sc->sc_dmat, data->map, 0,
545 				    data->map->dm_mapsize,
546 				    BUS_DMASYNC_POSTWRITE);
547 				bus_dmamap_unload(sc->sc_dmat, data->map);
548 				m_freem(data->m);
549 			}
550 
551 			if (data->ni != NULL)
552 				ieee80211_free_node(data->ni);
553 
554 			if (data->map != NULL)
555 				bus_dmamap_destroy(sc->sc_dmat, data->map);
556 		}
557 		free(ring->data, M_DEVBUF);
558 	}
559 }
560 
561 static int
562 rt2661_alloc_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring,
563     int count)
564 {
565 	struct rt2661_rx_desc *desc;
566 	struct rt2661_rx_data *data;
567 	int i, nsegs, error;
568 
569 	ring->count = count;
570 	ring->cur = ring->next = 0;
571 
572 	error = bus_dmamap_create(sc->sc_dmat, count * RT2661_RX_DESC_SIZE, 1,
573 	    count * RT2661_RX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map);
574 	if (error != 0) {
575 		aprint_error_dev(sc->sc_dev, "could not create desc DMA map\n");
576 		goto fail;
577 	}
578 
579 	error = bus_dmamem_alloc(sc->sc_dmat, count * RT2661_RX_DESC_SIZE,
580 	    PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
581 	if (error != 0) {
582 		aprint_error_dev(sc->sc_dev, "could not allocate DMA memory\n");
583 		goto fail;
584 	}
585 
586 	error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
587 	    count * RT2661_RX_DESC_SIZE, (void **)&ring->desc,
588 	    BUS_DMA_NOWAIT);
589 	if (error != 0) {
590 		aprint_error_dev(sc->sc_dev, "could not map desc DMA memory\n");
591 		goto fail;
592 	}
593 
594 	error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
595 	    count * RT2661_RX_DESC_SIZE, NULL, BUS_DMA_NOWAIT);
596 	if (error != 0) {
597 		aprint_error_dev(sc->sc_dev, "could not load desc DMA map\n");
598 		goto fail;
599 	}
600 
601 	memset(ring->desc, 0, count * RT2661_RX_DESC_SIZE);
602 	ring->physaddr = ring->map->dm_segs->ds_addr;
603 
604 	ring->data = malloc(count * sizeof (struct rt2661_rx_data), M_DEVBUF,
605 	    M_NOWAIT);
606 	if (ring->data == NULL) {
607 		aprint_error_dev(sc->sc_dev, "could not allocate soft data\n");
608 		error = ENOMEM;
609 		goto fail;
610 	}
611 
612 	/*
613 	 * Pre-allocate Rx buffers and populate Rx ring.
614 	 */
615 	memset(ring->data, 0, count * sizeof (struct rt2661_rx_data));
616 	for (i = 0; i < count; i++) {
617 		desc = &sc->rxq.desc[i];
618 		data = &sc->rxq.data[i];
619 
620 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
621 		    0, BUS_DMA_NOWAIT, &data->map);
622 		if (error != 0) {
623 			aprint_error_dev(sc->sc_dev, "could not create DMA map\n");
624 			goto fail;
625 		}
626 
627 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
628 		if (data->m == NULL) {
629 			aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf\n");
630 			error = ENOMEM;
631 			goto fail;
632 		}
633 
634 		MCLGET(data->m, M_DONTWAIT);
635 		if (!(data->m->m_flags & M_EXT)) {
636 			aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf cluster\n");
637 			error = ENOMEM;
638 			goto fail;
639 		}
640 
641 		error = bus_dmamap_load(sc->sc_dmat, data->map,
642 		    mtod(data->m, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
643 		if (error != 0) {
644 			aprint_error_dev(sc->sc_dev, "could not load rx buf DMA map");
645 			goto fail;
646 		}
647 
648 		desc->physaddr = htole32(data->map->dm_segs->ds_addr);
649 		desc->flags = htole32(RT2661_RX_BUSY);
650 	}
651 
652 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
653 	    BUS_DMASYNC_PREWRITE);
654 
655 	return 0;
656 
657 fail:	rt2661_free_rx_ring(sc, ring);
658 	return error;
659 }
660 
661 static void
662 rt2661_reset_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring)
663 {
664 	int i;
665 
666 	for (i = 0; i < ring->count; i++)
667 		ring->desc[i].flags = htole32(RT2661_RX_BUSY);
668 
669 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
670 	    BUS_DMASYNC_PREWRITE);
671 
672 	ring->cur = ring->next = 0;
673 }
674 
675 static void
676 rt2661_free_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring)
677 {
678 	struct rt2661_rx_data *data;
679 	int i;
680 
681 	if (ring->desc != NULL) {
682 		bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
683 		    ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
684 		bus_dmamap_unload(sc->sc_dmat, ring->map);
685 		bus_dmamem_unmap(sc->sc_dmat, (void *)ring->desc,
686 		    ring->count * RT2661_RX_DESC_SIZE);
687 		bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
688 	}
689 
690 	if (ring->data != NULL) {
691 		for (i = 0; i < ring->count; i++) {
692 			data = &ring->data[i];
693 
694 			if (data->m != NULL) {
695 				bus_dmamap_sync(sc->sc_dmat, data->map, 0,
696 				    data->map->dm_mapsize,
697 				    BUS_DMASYNC_POSTREAD);
698 				bus_dmamap_unload(sc->sc_dmat, data->map);
699 				m_freem(data->m);
700 			}
701 
702 			if (data->map != NULL)
703 				bus_dmamap_destroy(sc->sc_dmat, data->map);
704 		}
705 		free(ring->data, M_DEVBUF);
706 	}
707 }
708 
709 static struct ieee80211_node *
710 rt2661_node_alloc(struct ieee80211_node_table *nt)
711 {
712 	struct rt2661_node *rn;
713 
714 	rn = malloc(sizeof (struct rt2661_node), M_80211_NODE,
715 	    M_NOWAIT | M_ZERO);
716 
717 	return (rn != NULL) ? &rn->ni : NULL;
718 }
719 
720 static int
721 rt2661_media_change(struct ifnet *ifp)
722 {
723 	int error;
724 
725 	error = ieee80211_media_change(ifp);
726 	if (error != ENETRESET)
727 		return error;
728 
729 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
730 		rt2661_init(ifp);
731 
732 	return 0;
733 }
734 
735 /*
736  * This function is called periodically (every 200ms) during scanning to
737  * switch from one channel to another.
738  */
739 static void
740 rt2661_next_scan(void *arg)
741 {
742 	struct rt2661_softc *sc = arg;
743 	struct ieee80211com *ic = &sc->sc_ic;
744 	int s;
745 
746 	s = splnet();
747 	if (ic->ic_state == IEEE80211_S_SCAN)
748 		ieee80211_next_scan(ic);
749 	splx(s);
750 }
751 
752 /*
753  * This function is called for each neighbor node.
754  */
755 static void
756 rt2661_iter_func(void *arg, struct ieee80211_node *ni)
757 {
758 	struct rt2661_softc *sc = arg;
759 	struct rt2661_node *rn = (struct rt2661_node *)ni;
760 
761 	ieee80211_amrr_choose(&sc->amrr, ni, &rn->amn);
762 }
763 
764 /*
765  * This function is called periodically (every 500ms) in RUN state to update
766  * various settings like rate control statistics or Rx sensitivity.
767  */
768 static void
769 rt2661_updatestats(void *arg)
770 {
771 	struct rt2661_softc *sc = arg;
772 	struct ieee80211com *ic = &sc->sc_ic;
773 	int s;
774 
775 	s = splnet();
776 	if (ic->ic_opmode == IEEE80211_M_STA)
777 		rt2661_iter_func(sc, ic->ic_bss);
778 	else
779 		ieee80211_iterate_nodes(&ic->ic_sta, rt2661_iter_func, arg);
780 
781 	/* update rx sensitivity every 1 sec */
782 	if (++sc->ncalls & 1)
783 		rt2661_rx_tune(sc);
784 	splx(s);
785 
786 	callout_reset(&sc->amrr_ch, hz / 2, rt2661_updatestats, sc);
787 }
788 
789 static void
790 rt2661_newassoc(struct ieee80211_node *ni, int isnew)
791 {
792 	struct rt2661_softc *sc = ni->ni_ic->ic_ifp->if_softc;
793 	int i;
794 
795 	ieee80211_amrr_node_init(&sc->amrr, &((struct rt2661_node *)ni)->amn);
796 
797 	/* set rate to some reasonable initial value */
798 	for (i = ni->ni_rates.rs_nrates - 1;
799 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
800 	     i--);
801 	ni->ni_txrate = i;
802 }
803 
804 static int
805 rt2661_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
806 {
807 	struct rt2661_softc *sc = ic->ic_ifp->if_softc;
808 	enum ieee80211_state ostate;
809 	struct ieee80211_node *ni;
810 	uint32_t tmp;
811 
812 	ostate = ic->ic_state;
813 	callout_stop(&sc->scan_ch);
814 
815 	switch (nstate) {
816 	case IEEE80211_S_INIT:
817 		callout_stop(&sc->amrr_ch);
818 
819 		if (ostate == IEEE80211_S_RUN) {
820 			/* abort TSF synchronization */
821 			tmp = RAL_READ(sc, RT2661_TXRX_CSR9);
822 			RAL_WRITE(sc, RT2661_TXRX_CSR9, tmp & ~0x00ffffff);
823 		}
824 		break;
825 
826 	case IEEE80211_S_SCAN:
827 		rt2661_set_chan(sc, ic->ic_curchan);
828 		callout_reset(&sc->scan_ch, hz / 5, rt2661_next_scan, sc);
829 		break;
830 
831 	case IEEE80211_S_AUTH:
832 	case IEEE80211_S_ASSOC:
833 		rt2661_set_chan(sc, ic->ic_curchan);
834 		break;
835 
836 	case IEEE80211_S_RUN:
837 		rt2661_set_chan(sc, ic->ic_curchan);
838 
839 		ni = ic->ic_bss;
840 
841 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
842 			rt2661_set_slottime(sc);
843 			rt2661_enable_mrr(sc);
844 			rt2661_set_txpreamble(sc);
845 			rt2661_set_basicrates(sc, &ni->ni_rates);
846 			rt2661_set_bssid(sc, ni->ni_bssid);
847 		}
848 
849 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
850 		    ic->ic_opmode == IEEE80211_M_IBSS)
851 			rt2661_prepare_beacon(sc);
852 
853 		if (ic->ic_opmode == IEEE80211_M_STA) {
854 			/* fake a join to init the tx rate */
855 			rt2661_newassoc(ni, 1);
856 		}
857 
858 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
859 			sc->ncalls = 0;
860 			sc->avg_rssi = -95;	/* reset EMA */
861 			callout_reset(&sc->amrr_ch, hz / 2,
862 			    rt2661_updatestats, sc);
863 			rt2661_enable_tsf_sync(sc);
864 		}
865 		break;
866 	}
867 
868 	return sc->sc_newstate(ic, nstate, arg);
869 }
870 
871 /*
872  * Read 16 bits at address 'addr' from the serial EEPROM (either 93C46 or
873  * 93C66).
874  */
875 static uint16_t
876 rt2661_eeprom_read(struct rt2661_softc *sc, uint8_t addr)
877 {
878 	uint32_t tmp;
879 	uint16_t val;
880 	int n;
881 
882 	/* clock C once before the first command */
883 	RT2661_EEPROM_CTL(sc, 0);
884 
885 	RT2661_EEPROM_CTL(sc, RT2661_S);
886 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C);
887 	RT2661_EEPROM_CTL(sc, RT2661_S);
888 
889 	/* write start bit (1) */
890 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D);
891 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D | RT2661_C);
892 
893 	/* write READ opcode (10) */
894 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D);
895 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D | RT2661_C);
896 	RT2661_EEPROM_CTL(sc, RT2661_S);
897 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C);
898 
899 	/* write address (A5-A0 or A7-A0) */
900 	n = (RAL_READ(sc, RT2661_E2PROM_CSR) & RT2661_93C46) ? 5 : 7;
901 	for (; n >= 0; n--) {
902 		RT2661_EEPROM_CTL(sc, RT2661_S |
903 		    (((addr >> n) & 1) << RT2661_SHIFT_D));
904 		RT2661_EEPROM_CTL(sc, RT2661_S |
905 		    (((addr >> n) & 1) << RT2661_SHIFT_D) | RT2661_C);
906 	}
907 
908 	RT2661_EEPROM_CTL(sc, RT2661_S);
909 
910 	/* read data Q15-Q0 */
911 	val = 0;
912 	for (n = 15; n >= 0; n--) {
913 		RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C);
914 		tmp = RAL_READ(sc, RT2661_E2PROM_CSR);
915 		val |= ((tmp & RT2661_Q) >> RT2661_SHIFT_Q) << n;
916 		RT2661_EEPROM_CTL(sc, RT2661_S);
917 	}
918 
919 	RT2661_EEPROM_CTL(sc, 0);
920 
921 	/* clear Chip Select and clock C */
922 	RT2661_EEPROM_CTL(sc, RT2661_S);
923 	RT2661_EEPROM_CTL(sc, 0);
924 	RT2661_EEPROM_CTL(sc, RT2661_C);
925 
926 	return val;
927 }
928 
929 static void
930 rt2661_tx_intr(struct rt2661_softc *sc)
931 {
932 	struct ifnet *ifp = &sc->sc_if;
933 	struct rt2661_tx_ring *txq;
934 	struct rt2661_tx_data *data;
935 	struct rt2661_node *rn;
936 	uint32_t val;
937 	int qid, retrycnt, s;
938 
939 	s = splnet();
940 
941 	for (;;) {
942 		val = RAL_READ(sc, RT2661_STA_CSR4);
943 		if (!(val & RT2661_TX_STAT_VALID))
944 			break;
945 
946 		/* retrieve the queue in which this frame was sent */
947 		qid = RT2661_TX_QID(val);
948 		txq = (qid <= 3) ? &sc->txq[qid] : &sc->mgtq;
949 
950 		/* retrieve rate control algorithm context */
951 		data = &txq->data[txq->stat];
952 		rn = (struct rt2661_node *)data->ni;
953 
954 		/* if no frame has been sent, ignore */
955 		if (rn == NULL)
956 			continue;
957 
958 		switch (RT2661_TX_RESULT(val)) {
959 		case RT2661_TX_SUCCESS:
960 			retrycnt = RT2661_TX_RETRYCNT(val);
961 
962 			DPRINTFN(10, ("data frame sent successfully after "
963 			    "%d retries\n", retrycnt));
964 			rn->amn.amn_txcnt++;
965 			if (retrycnt > 0)
966 				rn->amn.amn_retrycnt++;
967 			ifp->if_opackets++;
968 			break;
969 
970 		case RT2661_TX_RETRY_FAIL:
971 			DPRINTFN(9, ("sending data frame failed (too much "
972 			    "retries)\n"));
973 			rn->amn.amn_txcnt++;
974 			rn->amn.amn_retrycnt++;
975 			ifp->if_oerrors++;
976 			break;
977 
978 		default:
979 			/* other failure */
980 			aprint_error_dev(sc->sc_dev, "sending data frame failed 0x%08x\n", val);
981 			ifp->if_oerrors++;
982 		}
983 
984 		ieee80211_free_node(data->ni);
985 		data->ni = NULL;
986 
987 		DPRINTFN(15, ("tx done q=%d idx=%u\n", qid, txq->stat));
988 
989 		txq->queued--;
990 		if (++txq->stat >= txq->count)	/* faster than % count */
991 			txq->stat = 0;
992 	}
993 
994 	sc->sc_tx_timer = 0;
995 	ifp->if_flags &= ~IFF_OACTIVE;
996 	rt2661_start(ifp);
997 
998 	splx(s);
999 }
1000 
1001 static void
1002 rt2661_tx_dma_intr(struct rt2661_softc *sc, struct rt2661_tx_ring *txq)
1003 {
1004 	struct rt2661_tx_desc *desc;
1005 	struct rt2661_tx_data *data;
1006 
1007 	for (;;) {
1008 		desc = &txq->desc[txq->next];
1009 		data = &txq->data[txq->next];
1010 
1011 		bus_dmamap_sync(sc->sc_dmat, txq->map,
1012 		    txq->next * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
1013 		    BUS_DMASYNC_POSTREAD);
1014 
1015 		if ((le32toh(desc->flags) & RT2661_TX_BUSY) ||
1016 		    !(le32toh(desc->flags) & RT2661_TX_VALID))
1017 			break;
1018 
1019 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1020 		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1021 		bus_dmamap_unload(sc->sc_dmat, data->map);
1022 		m_freem(data->m);
1023 		data->m = NULL;
1024 		/* node reference is released in rt2661_tx_intr() */
1025 
1026 		/* descriptor is no longer valid */
1027 		desc->flags &= ~htole32(RT2661_TX_VALID);
1028 
1029 		bus_dmamap_sync(sc->sc_dmat, txq->map,
1030 		    txq->next * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
1031 		    BUS_DMASYNC_PREWRITE);
1032 
1033 		DPRINTFN(15, ("tx dma done q=%p idx=%u\n", txq, txq->next));
1034 
1035 		if (++txq->next >= txq->count)	/* faster than % count */
1036 			txq->next = 0;
1037 	}
1038 }
1039 
1040 static void
1041 rt2661_rx_intr(struct rt2661_softc *sc)
1042 {
1043 	struct ieee80211com *ic = &sc->sc_ic;
1044 	struct ifnet *ifp = &sc->sc_if;
1045 	struct rt2661_rx_desc *desc;
1046 	struct rt2661_rx_data *data;
1047 	struct ieee80211_frame *wh;
1048 	struct ieee80211_node *ni;
1049 	struct mbuf *mnew, *m;
1050 	int error, rssi, s;
1051 
1052 	for (;;) {
1053 		desc = &sc->rxq.desc[sc->rxq.cur];
1054 		data = &sc->rxq.data[sc->rxq.cur];
1055 
1056 		bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1057 		    sc->rxq.cur * RT2661_RX_DESC_SIZE, RT2661_RX_DESC_SIZE,
1058 		    BUS_DMASYNC_POSTREAD);
1059 
1060 		if (le32toh(desc->flags) & RT2661_RX_BUSY)
1061 			break;
1062 
1063 		if ((le32toh(desc->flags) & RT2661_RX_PHY_ERROR) ||
1064 		    (le32toh(desc->flags) & RT2661_RX_CRC_ERROR)) {
1065 			/*
1066 			 * This should not happen since we did not request
1067 			 * to receive those frames when we filled TXRX_CSR0.
1068 			 */
1069 			DPRINTFN(5, ("PHY or CRC error flags 0x%08x\n",
1070 			    le32toh(desc->flags)));
1071 			ifp->if_ierrors++;
1072 			goto skip;
1073 		}
1074 
1075 		if ((le32toh(desc->flags) & RT2661_RX_CIPHER_MASK) != 0) {
1076 			ifp->if_ierrors++;
1077 			goto skip;
1078 		}
1079 
1080 		/*
1081 		 * Try to allocate a new mbuf for this ring element and load it
1082 		 * before processing the current mbuf. If the ring element
1083 		 * cannot be loaded, drop the received packet and reuse the old
1084 		 * mbuf. In the unlikely case that the old mbuf can't be
1085 		 * reloaded either, explicitly panic.
1086 		 */
1087 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1088 		if (mnew == NULL) {
1089 			ifp->if_ierrors++;
1090 			goto skip;
1091 		}
1092 
1093 		MCLGET(mnew, M_DONTWAIT);
1094 		if (!(mnew->m_flags & M_EXT)) {
1095 			m_freem(mnew);
1096 			ifp->if_ierrors++;
1097 			goto skip;
1098 		}
1099 
1100 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1101 		    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1102 		bus_dmamap_unload(sc->sc_dmat, data->map);
1103 
1104 		error = bus_dmamap_load(sc->sc_dmat, data->map,
1105 		    mtod(mnew, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
1106 		if (error != 0) {
1107 			m_freem(mnew);
1108 
1109 			/* try to reload the old mbuf */
1110 			error = bus_dmamap_load(sc->sc_dmat, data->map,
1111 			    mtod(data->m, void *), MCLBYTES, NULL,
1112 			    BUS_DMA_NOWAIT);
1113 			if (error != 0) {
1114 				/* very unlikely that it will fail... */
1115 				panic("%s: could not load old rx mbuf",
1116 				    device_xname(sc->sc_dev));
1117 			}
1118 			/* physical address may have changed */
1119 			desc->physaddr = htole32(data->map->dm_segs->ds_addr);
1120 			ifp->if_ierrors++;
1121 			goto skip;
1122 		}
1123 
1124 		/*
1125 	 	 * New mbuf successfully loaded, update Rx ring and continue
1126 		 * processing.
1127 		 */
1128 		m = data->m;
1129 		data->m = mnew;
1130 		desc->physaddr = htole32(data->map->dm_segs->ds_addr);
1131 
1132 		/* finalize mbuf */
1133 		m_set_rcvif(m, ifp);
1134 		m->m_pkthdr.len = m->m_len =
1135 		    (le32toh(desc->flags) >> 16) & 0xfff;
1136 
1137 		s = splnet();
1138 
1139 		if (sc->sc_drvbpf != NULL) {
1140 			struct rt2661_rx_radiotap_header *tap = &sc->sc_rxtap;
1141 			uint32_t tsf_lo, tsf_hi;
1142 
1143 			/* get timestamp (low and high 32 bits) */
1144 			tsf_hi = RAL_READ(sc, RT2661_TXRX_CSR13);
1145 			tsf_lo = RAL_READ(sc, RT2661_TXRX_CSR12);
1146 
1147 			tap->wr_tsf =
1148 			    htole64(((uint64_t)tsf_hi << 32) | tsf_lo);
1149 			tap->wr_flags = 0;
1150 			tap->wr_rate = rt2661_rxrate(desc);
1151 			tap->wr_chan_freq = htole16(sc->sc_curchan->ic_freq);
1152 			tap->wr_chan_flags = htole16(sc->sc_curchan->ic_flags);
1153 			tap->wr_antsignal = desc->rssi;
1154 
1155 			bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1156 		}
1157 
1158 		wh = mtod(m, struct ieee80211_frame *);
1159 		ni = ieee80211_find_rxnode(ic,
1160 		    (struct ieee80211_frame_min *)wh);
1161 
1162 		/* send the frame to the 802.11 layer */
1163 		ieee80211_input(ic, m, ni, desc->rssi, 0);
1164 
1165 		/*-
1166 		 * Keep track of the average RSSI using an Exponential Moving
1167 		 * Average (EMA) of 8 Wilder's days:
1168 		 *     avg = (1 / N) x rssi + ((N - 1) / N) x avg
1169 		 */
1170 		rssi = rt2661_get_rssi(sc, desc->rssi);
1171 		sc->avg_rssi = (rssi + 7 * sc->avg_rssi) / 8;
1172 
1173 		/* node is no longer needed */
1174 		ieee80211_free_node(ni);
1175 
1176 		splx(s);
1177 
1178 skip:		desc->flags |= htole32(RT2661_RX_BUSY);
1179 
1180 		bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1181 		    sc->rxq.cur * RT2661_RX_DESC_SIZE, RT2661_RX_DESC_SIZE,
1182 		    BUS_DMASYNC_PREWRITE);
1183 
1184 		DPRINTFN(16, ("rx intr idx=%u\n", sc->rxq.cur));
1185 
1186 		sc->rxq.cur = (sc->rxq.cur + 1) % RT2661_RX_RING_COUNT;
1187 	}
1188 
1189 	/*
1190 	 * In HostAP mode, ieee80211_input() will enqueue packets in if_snd
1191 	 * without calling if_start().
1192 	 */
1193 	s = splnet();
1194 	if (!IFQ_IS_EMPTY(&ifp->if_snd) && !(ifp->if_flags & IFF_OACTIVE))
1195 		rt2661_start(ifp);
1196 	splx(s);
1197 }
1198 
1199 /*
1200  * This function is called in HostAP or IBSS modes when it's time to send a
1201  * new beacon (every ni_intval milliseconds).
1202  */
1203 static void
1204 rt2661_mcu_beacon_expire(struct rt2661_softc *sc)
1205 {
1206 	struct ieee80211com *ic = &sc->sc_ic;
1207 
1208 	if (sc->sc_flags & RT2661_UPDATE_SLOT) {
1209 		sc->sc_flags &= ~RT2661_UPDATE_SLOT;
1210 		sc->sc_flags |= RT2661_SET_SLOTTIME;
1211 	} else if (sc->sc_flags & RT2661_SET_SLOTTIME) {
1212 		sc->sc_flags &= ~RT2661_SET_SLOTTIME;
1213 		rt2661_set_slottime(sc);
1214 	}
1215 
1216 	if (ic->ic_curmode == IEEE80211_MODE_11G) {
1217 		/* update ERP Information Element */
1218 		RAL_WRITE_1(sc, sc->erp_csr, ic->ic_bss->ni_erp);
1219 		RAL_RW_BARRIER_1(sc, sc->erp_csr);
1220 	}
1221 
1222 	DPRINTFN(15, ("beacon expired\n"));
1223 }
1224 
1225 static void
1226 rt2661_mcu_wakeup(struct rt2661_softc *sc)
1227 {
1228 	RAL_WRITE(sc, RT2661_MAC_CSR11, 5 << 16);
1229 
1230 	RAL_WRITE(sc, RT2661_SOFT_RESET_CSR, 0x7);
1231 	RAL_WRITE(sc, RT2661_IO_CNTL_CSR, 0x18);
1232 	RAL_WRITE(sc, RT2661_PCI_USEC_CSR, 0x20);
1233 
1234 	/* send wakeup command to MCU */
1235 	rt2661_tx_cmd(sc, RT2661_MCU_CMD_WAKEUP, 0);
1236 }
1237 
1238 static void
1239 rt2661_mcu_cmd_intr(struct rt2661_softc *sc)
1240 {
1241 	RAL_READ(sc, RT2661_M2H_CMD_DONE_CSR);
1242 	RAL_WRITE(sc, RT2661_M2H_CMD_DONE_CSR, 0xffffffff);
1243 }
1244 
1245 int
1246 rt2661_intr(void *arg)
1247 {
1248 	struct rt2661_softc *sc = arg;
1249 	struct ifnet *ifp = &sc->sc_if;
1250 	uint32_t r1, r2;
1251 
1252 	/* don't re-enable interrupts if we're shutting down */
1253 	if (!(ifp->if_flags & IFF_RUNNING)) {
1254 		/* disable MAC and MCU interrupts */
1255 		RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0xffffff7f);
1256 		RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0xffffffff);
1257 		return 0;
1258 	}
1259 
1260 	r1 = RAL_READ(sc, RT2661_INT_SOURCE_CSR);
1261 	r2 = RAL_READ(sc, RT2661_MCU_INT_SOURCE_CSR);
1262 
1263 	if ((r1 & RT2661_INT_CSR_ALL) == 0 && (r2 & RT2661_MCU_INT_ALL) == 0)
1264 		return 0;
1265 
1266 	/* disable interrupts */
1267 	RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0xffffff7f);
1268 	RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0xffffffff);
1269 
1270 	softint_schedule(sc->sc_soft_ih);
1271 	return 1;
1272 }
1273 
1274 static void
1275 rt2661_softintr(void *arg)
1276 {
1277 	struct rt2661_softc *sc = arg;
1278 	uint32_t r1, r2;
1279 
1280 	for (;;) {
1281 		r1 = RAL_READ(sc, RT2661_INT_SOURCE_CSR);
1282 		r2 = RAL_READ(sc, RT2661_MCU_INT_SOURCE_CSR);
1283 
1284 		if ((r1 & RT2661_INT_CSR_ALL) == 0 &&
1285 		    (r2 & RT2661_MCU_INT_ALL) == 0)
1286 			break;
1287 
1288 		RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, r1);
1289 		RAL_WRITE(sc, RT2661_MCU_INT_SOURCE_CSR, r2);
1290 
1291 		if (r1 & RT2661_MGT_DONE)
1292 			rt2661_tx_dma_intr(sc, &sc->mgtq);
1293 
1294 		if (r1 & RT2661_RX_DONE)
1295 			rt2661_rx_intr(sc);
1296 
1297 		if (r1 & RT2661_TX0_DMA_DONE)
1298 			rt2661_tx_dma_intr(sc, &sc->txq[0]);
1299 
1300 		if (r1 & RT2661_TX1_DMA_DONE)
1301 			rt2661_tx_dma_intr(sc, &sc->txq[1]);
1302 
1303 		if (r1 & RT2661_TX2_DMA_DONE)
1304 			rt2661_tx_dma_intr(sc, &sc->txq[2]);
1305 
1306 		if (r1 & RT2661_TX3_DMA_DONE)
1307 			rt2661_tx_dma_intr(sc, &sc->txq[3]);
1308 
1309 		if (r1 & RT2661_TX_DONE)
1310 			rt2661_tx_intr(sc);
1311 
1312 		if (r2 & RT2661_MCU_CMD_DONE)
1313 			rt2661_mcu_cmd_intr(sc);
1314 
1315 		if (r2 & RT2661_MCU_BEACON_EXPIRE)
1316 			rt2661_mcu_beacon_expire(sc);
1317 
1318 		if (r2 & RT2661_MCU_WAKEUP)
1319 			rt2661_mcu_wakeup(sc);
1320 	}
1321 
1322 	/* enable interrupts */
1323 	RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0x0000ff10);
1324 	RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0);
1325 }
1326 
1327 /* quickly determine if a given rate is CCK or OFDM */
1328 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1329 
1330 #define RAL_ACK_SIZE	14	/* 10 + 4(FCS) */
1331 #define RAL_CTS_SIZE	14	/* 10 + 4(FCS) */
1332 
1333 /*
1334  * This function is only used by the Rx radiotap code. It returns the rate at
1335  * which a given frame was received.
1336  */
1337 static uint8_t
1338 rt2661_rxrate(struct rt2661_rx_desc *desc)
1339 {
1340 	if (le32toh(desc->flags) & RT2661_RX_OFDM) {
1341 		/* reverse function of rt2661_plcp_signal */
1342 		switch (desc->rate & 0xf) {
1343 		case 0xb:	return 12;
1344 		case 0xf:	return 18;
1345 		case 0xa:	return 24;
1346 		case 0xe:	return 36;
1347 		case 0x9:	return 48;
1348 		case 0xd:	return 72;
1349 		case 0x8:	return 96;
1350 		case 0xc:	return 108;
1351 		}
1352 	} else {
1353 		if (desc->rate == 10)
1354 			return 2;
1355 		if (desc->rate == 20)
1356 			return 4;
1357 		if (desc->rate == 55)
1358 			return 11;
1359 		if (desc->rate == 110)
1360 			return 22;
1361 	}
1362 	return 2;	/* should not get there */
1363 }
1364 
1365 /*
1366  * Return the expected ack rate for a frame transmitted at rate `rate'.
1367  * XXX: this should depend on the destination node basic rate set.
1368  */
1369 static int
1370 rt2661_ack_rate(struct ieee80211com *ic, int rate)
1371 {
1372 	switch (rate) {
1373 	/* CCK rates */
1374 	case 2:
1375 		return 2;
1376 	case 4:
1377 	case 11:
1378 	case 22:
1379 		return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
1380 
1381 	/* OFDM rates */
1382 	case 12:
1383 	case 18:
1384 		return 12;
1385 	case 24:
1386 	case 36:
1387 		return 24;
1388 	case 48:
1389 	case 72:
1390 	case 96:
1391 	case 108:
1392 		return 48;
1393 	}
1394 
1395 	/* default to 1Mbps */
1396 	return 2;
1397 }
1398 
1399 /*
1400  * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1401  * The function automatically determines the operating mode depending on the
1402  * given rate. `flags' indicates whether short preamble is in use or not.
1403  */
1404 static uint16_t
1405 rt2661_txtime(int len, int rate, uint32_t flags)
1406 {
1407 	uint16_t txtime;
1408 
1409 	if (RAL_RATE_IS_OFDM(rate)) {
1410 		/* IEEE Std 802.11g-2003, pp. 44 */
1411 		txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1412 		txtime = 16 + 4 + 4 * txtime + 6;
1413 	} else {
1414 		/* IEEE Std 802.11b-1999, pp. 28 */
1415 		txtime = (16 * len + rate - 1) / rate;
1416 		if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1417 			txtime +=  72 + 24;
1418 		else
1419 			txtime += 144 + 48;
1420 	}
1421 	return txtime;
1422 }
1423 
1424 static uint8_t
1425 rt2661_plcp_signal(int rate)
1426 {
1427 	switch (rate) {
1428 	/* CCK rates (returned values are device-dependent) */
1429 	case 2:		return 0x0;
1430 	case 4:		return 0x1;
1431 	case 11:	return 0x2;
1432 	case 22:	return 0x3;
1433 
1434 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1435 	case 12:	return 0xb;
1436 	case 18:	return 0xf;
1437 	case 24:	return 0xa;
1438 	case 36:	return 0xe;
1439 	case 48:	return 0x9;
1440 	case 72:	return 0xd;
1441 	case 96:	return 0x8;
1442 	case 108:	return 0xc;
1443 
1444 	/* unsupported rates (should not get there) */
1445 	default:	return 0xff;
1446 	}
1447 }
1448 
1449 static void
1450 rt2661_setup_tx_desc(struct rt2661_softc *sc, struct rt2661_tx_desc *desc,
1451     uint32_t flags, uint16_t xflags, int len, int rate,
1452     const bus_dma_segment_t *segs, int nsegs, int ac)
1453 {
1454 	struct ieee80211com *ic = &sc->sc_ic;
1455 	uint16_t plcp_length;
1456 	int i, remainder;
1457 
1458 	desc->flags = htole32(flags);
1459 	desc->flags |= htole32(len << 16);
1460 
1461 	desc->xflags = htole16(xflags);
1462 	desc->xflags |= htole16(nsegs << 13);
1463 
1464 	desc->wme = htole16(
1465 	    RT2661_QID(ac) |
1466 	    RT2661_AIFSN(2) |
1467 	    RT2661_LOGCWMIN(4) |
1468 	    RT2661_LOGCWMAX(10));
1469 
1470 	/*
1471 	 * Remember in which queue this frame was sent. This field is driver
1472 	 * private data only. It will be made available by the NIC in STA_CSR4
1473 	 * on Tx interrupts.
1474 	 */
1475 	desc->qid = ac;
1476 
1477 	/* setup PLCP fields */
1478 	desc->plcp_signal  = rt2661_plcp_signal(rate);
1479 	desc->plcp_service = 4;
1480 
1481 	len += IEEE80211_CRC_LEN;
1482 	if (RAL_RATE_IS_OFDM(rate)) {
1483 		desc->flags |= htole32(RT2661_TX_OFDM);
1484 
1485 		plcp_length = len & 0xfff;
1486 		desc->plcp_length_hi = plcp_length >> 6;
1487 		desc->plcp_length_lo = plcp_length & 0x3f;
1488 	} else {
1489 		plcp_length = (16 * len + rate - 1) / rate;
1490 		if (rate == 22) {
1491 			remainder = (16 * len) % 22;
1492 			if (remainder != 0 && remainder < 7)
1493 				desc->plcp_service |= RT2661_PLCP_LENGEXT;
1494 		}
1495 		desc->plcp_length_hi = plcp_length >> 8;
1496 		desc->plcp_length_lo = plcp_length & 0xff;
1497 
1498 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1499 			desc->plcp_signal |= 0x08;
1500 	}
1501 
1502 	/* RT2x61 supports scatter with up to 5 segments */
1503 	for (i = 0; i < nsegs; i++) {
1504 		desc->addr[i] = htole32(segs[i].ds_addr);
1505 		desc->len [i] = htole16(segs[i].ds_len);
1506 	}
1507 
1508 	desc->flags |= htole32(RT2661_TX_BUSY | RT2661_TX_VALID);
1509 }
1510 
1511 static int
1512 rt2661_tx_mgt(struct rt2661_softc *sc, struct mbuf *m0,
1513     struct ieee80211_node *ni)
1514 {
1515 	struct ieee80211com *ic = &sc->sc_ic;
1516 	struct rt2661_tx_desc *desc;
1517 	struct rt2661_tx_data *data;
1518 	struct ieee80211_frame *wh;
1519 	uint16_t dur;
1520 	uint32_t flags = 0;
1521 	int rate, error;
1522 
1523 	desc = &sc->mgtq.desc[sc->mgtq.cur];
1524 	data = &sc->mgtq.data[sc->mgtq.cur];
1525 
1526 	/* send mgt frames at the lowest available rate */
1527 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1528 
1529 	wh = mtod(m0, struct ieee80211_frame *);
1530 
1531 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1532 		if (ieee80211_crypto_encap(ic, ni, m0) == NULL) {
1533 			m_freem(m0);
1534 			return ENOBUFS;
1535 		}
1536 
1537 		/* packet header may have moved, reset our local pointer */
1538 		wh = mtod(m0, struct ieee80211_frame *);
1539 	}
1540 
1541 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1542 	    BUS_DMA_NOWAIT);
1543 	if (error != 0) {
1544 		aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
1545 		    error);
1546 		m_freem(m0);
1547 		return error;
1548 	}
1549 
1550 	if (sc->sc_drvbpf != NULL) {
1551 		struct rt2661_tx_radiotap_header *tap = &sc->sc_txtap;
1552 
1553 		tap->wt_flags = 0;
1554 		tap->wt_rate = rate;
1555 		tap->wt_chan_freq = htole16(sc->sc_curchan->ic_freq);
1556 		tap->wt_chan_flags = htole16(sc->sc_curchan->ic_flags);
1557 
1558 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1559 	}
1560 
1561 	data->m = m0;
1562 	data->ni = ni;
1563 
1564 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1565 		flags |= RT2661_TX_NEED_ACK;
1566 
1567 		dur = rt2661_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) +
1568 		    sc->sifs;
1569 		*(uint16_t *)wh->i_dur = htole16(dur);
1570 
1571 		/* tell hardware to set timestamp in probe responses */
1572 		if ((wh->i_fc[0] &
1573 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1574 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1575 			flags |= RT2661_TX_TIMESTAMP;
1576 	}
1577 
1578 	rt2661_setup_tx_desc(sc, desc, flags, 0 /* XXX HWSEQ */,
1579 	    m0->m_pkthdr.len, rate, data->map->dm_segs, data->map->dm_nsegs,
1580 	    RT2661_QID_MGT);
1581 
1582 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1583 	    BUS_DMASYNC_PREWRITE);
1584 	bus_dmamap_sync(sc->sc_dmat, sc->mgtq.map,
1585 	    sc->mgtq.cur * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
1586 	    BUS_DMASYNC_PREWRITE);
1587 
1588 	DPRINTFN(10, ("sending mgt frame len=%u idx=%u rate=%u\n",
1589 	    m0->m_pkthdr.len, sc->mgtq.cur, rate));
1590 
1591 	/* kick mgt */
1592 	sc->mgtq.queued++;
1593 	sc->mgtq.cur = (sc->mgtq.cur + 1) % RT2661_MGT_RING_COUNT;
1594 	RAL_WRITE(sc, RT2661_TX_CNTL_CSR, RT2661_KICK_MGT);
1595 
1596 	return 0;
1597 }
1598 
1599 /*
1600  * Build a RTS control frame.
1601  */
1602 static struct mbuf *
1603 rt2661_get_rts(struct rt2661_softc *sc, struct ieee80211_frame *wh,
1604     uint16_t dur)
1605 {
1606 	struct ieee80211_frame_rts *rts;
1607 	struct mbuf *m;
1608 
1609 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1610 	if (m == NULL) {
1611 		sc->sc_ic.ic_stats.is_tx_nobuf++;
1612 		aprint_error_dev(sc->sc_dev, "could not allocate RTS frame\n");
1613 		return NULL;
1614 	}
1615 
1616 	rts = mtod(m, struct ieee80211_frame_rts *);
1617 
1618 	rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL |
1619 	    IEEE80211_FC0_SUBTYPE_RTS;
1620 	rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1621 	*(uint16_t *)rts->i_dur = htole16(dur);
1622 	IEEE80211_ADDR_COPY(rts->i_ra, wh->i_addr1);
1623 	IEEE80211_ADDR_COPY(rts->i_ta, wh->i_addr2);
1624 
1625 	m->m_pkthdr.len = m->m_len = sizeof (struct ieee80211_frame_rts);
1626 
1627 	return m;
1628 }
1629 
1630 static int
1631 rt2661_tx_data(struct rt2661_softc *sc, struct mbuf *m0,
1632     struct ieee80211_node *ni, int ac)
1633 {
1634 	struct ieee80211com *ic = &sc->sc_ic;
1635 	struct rt2661_tx_ring *txq = &sc->txq[ac];
1636 	struct rt2661_tx_desc *desc;
1637 	struct rt2661_tx_data *data;
1638 	struct ieee80211_frame *wh;
1639 	struct ieee80211_key *k;
1640 	struct mbuf *mnew;
1641 	uint16_t dur;
1642 	uint32_t flags = 0;
1643 	int rate, useprot, error, tid;
1644 
1645 	wh = mtod(m0, struct ieee80211_frame *);
1646 
1647 	if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
1648 		rate = ic->ic_sup_rates[ic->ic_curmode].
1649 		    rs_rates[ic->ic_fixed_rate];
1650 	} else
1651 		rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1652 	rate &= IEEE80211_RATE_VAL;
1653 	if (rate == 0)
1654 		rate = 2;	/* XXX should not happen */
1655 
1656 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1657 		k = ieee80211_crypto_encap(ic, ni, m0);
1658 		if (k == NULL) {
1659 			m_freem(m0);
1660 			return ENOBUFS;
1661 		}
1662 
1663 		/* packet header may have moved, reset our local pointer */
1664 		wh = mtod(m0, struct ieee80211_frame *);
1665 	}
1666 
1667 	/*
1668 	 * Packet Bursting: backoff after ppb=8 frames to give other STAs a
1669 	 * chance to contend for the wireless medium.
1670 	 */
1671 	tid = WME_AC_TO_TID(M_WME_GETAC(m0));
1672 	if (ic->ic_opmode == IEEE80211_M_STA && (ni->ni_txseqs[tid] & 7))
1673 		flags |= RT2661_TX_IFS_SIFS;
1674 
1675 	/*
1676 	 * IEEE Std 802.11-1999, pp 82: "A STA shall use an RTS/CTS exchange
1677 	 * for directed frames only when the length of the MPDU is greater
1678 	 * than the length threshold indicated by" ic_rtsthreshold.
1679 	 *
1680 	 * IEEE Std 802.11-2003g, pp 13: "ERP STAs shall use protection
1681 	 * mechanism (such as RTS/CTS or CTS-to-self) for ERP-OFDM MPDUs of
1682 	 * type Data or an MMPDU".
1683 	 */
1684 	useprot = !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1685 	    (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold ||
1686 	    ((ic->ic_flags & IEEE80211_F_USEPROT) && RAL_RATE_IS_OFDM(rate)));
1687 	if (useprot) {
1688 		struct mbuf *m;
1689 		int rtsrate, ackrate;
1690 
1691 		rtsrate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1692 		ackrate = rt2661_ack_rate(ic, rate);
1693 
1694 		dur = rt2661_txtime(m0->m_pkthdr.len + 4, rate, ic->ic_flags) +
1695 		      rt2661_txtime(RAL_CTS_SIZE, rtsrate, ic->ic_flags) +
1696 		      rt2661_txtime(RAL_ACK_SIZE, ackrate, ic->ic_flags) +
1697 		      3 * sc->sifs;
1698 
1699 		m = rt2661_get_rts(sc, wh, dur);
1700 		if (m == NULL) {
1701 			aprint_error_dev(sc->sc_dev, "could not allocate RTS "
1702 			    "frame\n");
1703 			m_freem(m0);
1704 			return ENOBUFS;
1705 		}
1706 
1707 		desc = &txq->desc[txq->cur];
1708 		data = &txq->data[txq->cur];
1709 
1710 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
1711 		    BUS_DMA_NOWAIT);
1712 		if (error != 0) {
1713 			aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n", error);
1714 			m_freem(m);
1715 			m_freem(m0);
1716 			return error;
1717 		}
1718 
1719 		/* avoid multiple free() of the same node for each fragment */
1720 		ieee80211_ref_node(ni);
1721 
1722 		data->m = m;
1723 		data->ni = ni;
1724 
1725 		rt2661_setup_tx_desc(sc, desc, RT2661_TX_NEED_ACK |
1726 		    RT2661_TX_MORE_FRAG, 0, m->m_pkthdr.len, rtsrate,
1727 		    data->map->dm_segs, data->map->dm_nsegs, ac);
1728 
1729 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1730 		    data->map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1731 		bus_dmamap_sync(sc->sc_dmat, txq->map,
1732 		    txq->cur * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
1733 		    BUS_DMASYNC_PREWRITE);
1734 
1735 		txq->queued++;
1736 		txq->cur = (txq->cur + 1) % RT2661_TX_RING_COUNT;
1737 
1738 		flags |= RT2661_TX_LONG_RETRY | RT2661_TX_IFS_SIFS;
1739 	}
1740 
1741 	data = &txq->data[txq->cur];
1742 	desc = &txq->desc[txq->cur];
1743 
1744 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1745 	    BUS_DMA_NOWAIT);
1746 	if (error != 0 && error != EFBIG) {
1747 		aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
1748 		    error);
1749 		m_freem(m0);
1750 		return error;
1751 	}
1752 	if (error != 0) {
1753 		/* too many fragments, linearize */
1754 
1755 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1756 		if (mnew == NULL) {
1757 			m_freem(m0);
1758 			return ENOMEM;
1759 		}
1760 
1761 		M_COPY_PKTHDR(mnew, m0);
1762 		if (m0->m_pkthdr.len > MHLEN) {
1763 			MCLGET(mnew, M_DONTWAIT);
1764 			if (!(mnew->m_flags & M_EXT)) {
1765 				m_freem(m0);
1766 				m_freem(mnew);
1767 				return ENOMEM;
1768 			}
1769 		}
1770 
1771 		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
1772 		m_freem(m0);
1773 		mnew->m_len = mnew->m_pkthdr.len;
1774 		m0 = mnew;
1775 
1776 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1777 		    BUS_DMA_NOWAIT);
1778 		if (error != 0) {
1779 			aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n", error);
1780 			m_freem(m0);
1781 			return error;
1782 		}
1783 
1784 		/* packet header have moved, reset our local pointer */
1785 		wh = mtod(m0, struct ieee80211_frame *);
1786 	}
1787 
1788 	if (sc->sc_drvbpf != NULL) {
1789 		struct rt2661_tx_radiotap_header *tap = &sc->sc_txtap;
1790 
1791 		tap->wt_flags = 0;
1792 		tap->wt_rate = rate;
1793 		tap->wt_chan_freq = htole16(sc->sc_curchan->ic_freq);
1794 		tap->wt_chan_flags = htole16(sc->sc_curchan->ic_flags);
1795 
1796 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1797 	}
1798 
1799 	data->m = m0;
1800 	data->ni = ni;
1801 
1802 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1803 		flags |= RT2661_TX_NEED_ACK;
1804 
1805 		dur = rt2661_txtime(RAL_ACK_SIZE, rt2661_ack_rate(ic, rate),
1806 		    ic->ic_flags) + sc->sifs;
1807 		*(uint16_t *)wh->i_dur = htole16(dur);
1808 	}
1809 
1810 	rt2661_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate,
1811 	    data->map->dm_segs, data->map->dm_nsegs, ac);
1812 
1813 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1814 	    BUS_DMASYNC_PREWRITE);
1815 	bus_dmamap_sync(sc->sc_dmat, txq->map, txq->cur * RT2661_TX_DESC_SIZE,
1816 	    RT2661_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
1817 
1818 	DPRINTFN(10, ("sending data frame len=%u idx=%u rate=%u\n",
1819 	    m0->m_pkthdr.len, txq->cur, rate));
1820 
1821 	/* kick Tx */
1822 	txq->queued++;
1823 	txq->cur = (txq->cur + 1) % RT2661_TX_RING_COUNT;
1824 	RAL_WRITE(sc, RT2661_TX_CNTL_CSR, 1);
1825 
1826 	return 0;
1827 }
1828 
1829 static void
1830 rt2661_start(struct ifnet *ifp)
1831 {
1832 	struct rt2661_softc *sc = ifp->if_softc;
1833 	struct ieee80211com *ic = &sc->sc_ic;
1834 	struct mbuf *m0;
1835 	struct ether_header *eh;
1836 	struct ieee80211_node *ni = NULL;
1837 
1838 	/*
1839 	 * net80211 may still try to send management frames even if the
1840 	 * IFF_RUNNING flag is not set...
1841 	 */
1842 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1843 		return;
1844 
1845 	for (;;) {
1846 		IF_POLL(&ic->ic_mgtq, m0);
1847 		if (m0 != NULL) {
1848 			if (sc->mgtq.queued >= RT2661_MGT_RING_COUNT) {
1849 				ifp->if_flags |= IFF_OACTIVE;
1850 				break;
1851 			}
1852 			IF_DEQUEUE(&ic->ic_mgtq, m0);
1853 			if (m0 == NULL)
1854 				break;
1855 
1856 			ni = M_GETCTX(m0, struct ieee80211_node *);
1857 			M_CLEARCTX(m0);
1858 			bpf_mtap3(ic->ic_rawbpf, m0);
1859 			if (rt2661_tx_mgt(sc, m0, ni) != 0)
1860 				break;
1861 
1862 		} else {
1863 			IF_POLL(&ifp->if_snd, m0);
1864 			if (m0 == NULL || ic->ic_state != IEEE80211_S_RUN)
1865 				break;
1866 
1867 			if (sc->txq[0].queued >= RT2661_TX_RING_COUNT - 1) {
1868 				/* there is no place left in this ring */
1869 				ifp->if_flags |= IFF_OACTIVE;
1870 				break;
1871 			}
1872 
1873 			IFQ_DEQUEUE(&ifp->if_snd, m0);
1874 
1875 			if (m0->m_len < sizeof (struct ether_header) &&
1876 			    !(m0 = m_pullup(m0, sizeof (struct ether_header))))
1877 				continue;
1878 
1879 			eh = mtod(m0, struct ether_header *);
1880 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1881 			if (ni == NULL) {
1882 				m_freem(m0);
1883 				ifp->if_oerrors++;
1884 				continue;
1885 			}
1886 
1887 			bpf_mtap3(ifp->if_bpf, m0);
1888 			m0 = ieee80211_encap(ic, m0, ni);
1889 			if (m0 == NULL) {
1890 				ieee80211_free_node(ni);
1891 				ifp->if_oerrors++;
1892 				continue;
1893 			}
1894 			bpf_mtap3(ic->ic_rawbpf, m0);
1895 			if (rt2661_tx_data(sc, m0, ni, 0) != 0) {
1896 				if (ni != NULL)
1897 					ieee80211_free_node(ni);
1898 				ifp->if_oerrors++;
1899 				break;
1900 			}
1901 		}
1902 
1903 		sc->sc_tx_timer = 5;
1904 		ifp->if_timer = 1;
1905 	}
1906 }
1907 
1908 static void
1909 rt2661_watchdog(struct ifnet *ifp)
1910 {
1911 	struct rt2661_softc *sc = ifp->if_softc;
1912 
1913 	ifp->if_timer = 0;
1914 
1915 	if (sc->sc_tx_timer > 0) {
1916 		if (--sc->sc_tx_timer == 0) {
1917 			aprint_error_dev(sc->sc_dev, "device timeout\n");
1918 			rt2661_init(ifp);
1919 			ifp->if_oerrors++;
1920 			return;
1921 		}
1922 		ifp->if_timer = 1;
1923 	}
1924 
1925 	ieee80211_watchdog(&sc->sc_ic);
1926 }
1927 
1928 /*
1929  * This function allows for fast channel switching in monitor mode (used by
1930  * kismet). In IBSS mode, we must explicitly reset the interface to
1931  * generate a new beacon frame.
1932  */
1933 static int
1934 rt2661_reset(struct ifnet *ifp)
1935 {
1936 	struct rt2661_softc *sc = ifp->if_softc;
1937 	struct ieee80211com *ic = &sc->sc_ic;
1938 
1939 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
1940 		return ENETRESET;
1941 
1942 	rt2661_set_chan(sc, ic->ic_curchan);
1943 
1944 	return 0;
1945 }
1946 
1947 static int
1948 rt2661_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1949 {
1950 	struct rt2661_softc *sc = ifp->if_softc;
1951 	struct ieee80211com *ic = &sc->sc_ic;
1952 	int s, error = 0;
1953 
1954 	s = splnet();
1955 
1956 	switch (cmd) {
1957 	case SIOCSIFFLAGS:
1958 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1959 			break;
1960 		if (ifp->if_flags & IFF_UP) {
1961 			if (ifp->if_flags & IFF_RUNNING)
1962 				rt2661_update_promisc(sc);
1963 			else
1964 				rt2661_init(ifp);
1965 		} else {
1966 			if (ifp->if_flags & IFF_RUNNING)
1967 				rt2661_stop(ifp, 1);
1968 		}
1969 		break;
1970 
1971 	case SIOCADDMULTI:
1972 	case SIOCDELMULTI:
1973 		/* XXX no h/w multicast filter? --dyoung */
1974 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET)
1975 			error = 0;
1976 		break;
1977 
1978 	case SIOCS80211CHANNEL:
1979 		/*
1980 		 * This allows for fast channel switching in monitor mode
1981 		 * (used by kismet). In IBSS mode, we must explicitly reset
1982 		 * the interface to generate a new beacon frame.
1983 		 */
1984 		error = ieee80211_ioctl(ic, cmd, data);
1985 		if (error == ENETRESET &&
1986 		    ic->ic_opmode == IEEE80211_M_MONITOR) {
1987 			if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1988 			     (IFF_UP | IFF_RUNNING))
1989 				rt2661_set_chan(sc, ic->ic_ibss_chan);
1990 			error = 0;
1991 		}
1992 		break;
1993 
1994 	default:
1995 		error = ieee80211_ioctl(ic, cmd, data);
1996 
1997 	}
1998 
1999 	if (error == ENETRESET) {
2000 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
2001 		    (IFF_UP | IFF_RUNNING))
2002 			rt2661_init(ifp);
2003 		error = 0;
2004 	}
2005 
2006 	splx(s);
2007 
2008 	return error;
2009 }
2010 
2011 static void
2012 rt2661_bbp_write(struct rt2661_softc *sc, uint8_t reg, uint8_t val)
2013 {
2014 	uint32_t tmp;
2015 	int ntries;
2016 
2017 	for (ntries = 0; ntries < 100; ntries++) {
2018 		if (!(RAL_READ(sc, RT2661_PHY_CSR3) & RT2661_BBP_BUSY))
2019 			break;
2020 		DELAY(1);
2021 	}
2022 	if (ntries == 100) {
2023 		aprint_error_dev(sc->sc_dev, "could not write to BBP\n");
2024 		return;
2025 	}
2026 
2027 	tmp = RT2661_BBP_BUSY | (reg & 0x7f) << 8 | val;
2028 	RAL_WRITE(sc, RT2661_PHY_CSR3, tmp);
2029 
2030 	DPRINTFN(15, ("BBP R%u <- 0x%02x\n", reg, val));
2031 }
2032 
2033 static uint8_t
2034 rt2661_bbp_read(struct rt2661_softc *sc, uint8_t reg)
2035 {
2036 	uint32_t val;
2037 	int ntries;
2038 
2039 	for (ntries = 0; ntries < 100; ntries++) {
2040 		if (!(RAL_READ(sc, RT2661_PHY_CSR3) & RT2661_BBP_BUSY))
2041 			break;
2042 		DELAY(1);
2043 	}
2044 	if (ntries == 100) {
2045 		aprint_error_dev(sc->sc_dev, "could not read from BBP\n");
2046 		return 0;
2047 	}
2048 
2049 	val = RT2661_BBP_BUSY | RT2661_BBP_READ | reg << 8;
2050 	RAL_WRITE(sc, RT2661_PHY_CSR3, val);
2051 
2052 	for (ntries = 0; ntries < 100; ntries++) {
2053 		val = RAL_READ(sc, RT2661_PHY_CSR3);
2054 		if (!(val & RT2661_BBP_BUSY))
2055 			return val & 0xff;
2056 		DELAY(1);
2057 	}
2058 
2059 	aprint_error_dev(sc->sc_dev, "could not read from BBP\n");
2060 	return 0;
2061 }
2062 
2063 static void
2064 rt2661_rf_write(struct rt2661_softc *sc, uint8_t reg, uint32_t val)
2065 {
2066 	uint32_t tmp;
2067 	int ntries;
2068 
2069 	for (ntries = 0; ntries < 100; ntries++) {
2070 		if (!(RAL_READ(sc, RT2661_PHY_CSR4) & RT2661_RF_BUSY))
2071 			break;
2072 		DELAY(1);
2073 	}
2074 	if (ntries == 100) {
2075 		aprint_error_dev(sc->sc_dev, "could not write to RF\n");
2076 		return;
2077 	}
2078 	tmp = RT2661_RF_BUSY | RT2661_RF_21BIT | (val & 0x1fffff) << 2 |
2079 	    (reg & 3);
2080 	RAL_WRITE(sc, RT2661_PHY_CSR4, tmp);
2081 
2082 	/* remember last written value in sc */
2083 	sc->rf_regs[reg] = val;
2084 
2085 	DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0x1fffff));
2086 }
2087 
2088 static int
2089 rt2661_tx_cmd(struct rt2661_softc *sc, uint8_t cmd, uint16_t arg)
2090 {
2091 	if (RAL_READ(sc, RT2661_H2M_MAILBOX_CSR) & RT2661_H2M_BUSY)
2092 		return EIO;	/* there is already a command pending */
2093 
2094 	RAL_WRITE(sc, RT2661_H2M_MAILBOX_CSR,
2095 	    RT2661_H2M_BUSY | RT2661_TOKEN_NO_INTR << 16 | arg);
2096 
2097 	RAL_WRITE(sc, RT2661_HOST_CMD_CSR, RT2661_KICK_CMD | cmd);
2098 
2099 	return 0;
2100 }
2101 
2102 static void
2103 rt2661_select_antenna(struct rt2661_softc *sc)
2104 {
2105 	uint8_t bbp4, bbp77;
2106 	uint32_t tmp;
2107 
2108 	bbp4  = rt2661_bbp_read(sc,  4);
2109 	bbp77 = rt2661_bbp_read(sc, 77);
2110 
2111 	/* TBD */
2112 
2113 	/* make sure Rx is disabled before switching antenna */
2114 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2115 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX);
2116 
2117 	rt2661_bbp_write(sc,  4, bbp4);
2118 	rt2661_bbp_write(sc, 77, bbp77);
2119 
2120 	/* restore Rx filter */
2121 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2122 }
2123 
2124 /*
2125  * Enable multi-rate retries for frames sent at OFDM rates.
2126  * In 802.11b/g mode, allow fallback to CCK rates.
2127  */
2128 static void
2129 rt2661_enable_mrr(struct rt2661_softc *sc)
2130 {
2131 	struct ieee80211com *ic = &sc->sc_ic;
2132 	uint32_t tmp;
2133 
2134 	tmp = RAL_READ(sc, RT2661_TXRX_CSR4);
2135 
2136 	tmp &= ~RT2661_MRR_CCK_FALLBACK;
2137 	if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan))
2138 		tmp |= RT2661_MRR_CCK_FALLBACK;
2139 	tmp |= RT2661_MRR_ENABLED;
2140 
2141 	RAL_WRITE(sc, RT2661_TXRX_CSR4, tmp);
2142 }
2143 
2144 static void
2145 rt2661_set_txpreamble(struct rt2661_softc *sc)
2146 {
2147 	uint32_t tmp;
2148 
2149 	tmp = RAL_READ(sc, RT2661_TXRX_CSR4);
2150 
2151 	tmp &= ~RT2661_SHORT_PREAMBLE;
2152 	if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
2153 		tmp |= RT2661_SHORT_PREAMBLE;
2154 
2155 	RAL_WRITE(sc, RT2661_TXRX_CSR4, tmp);
2156 }
2157 
2158 static void
2159 rt2661_set_basicrates(struct rt2661_softc *sc,
2160     const struct ieee80211_rateset *rs)
2161 {
2162 #define RV(r)	((r) & IEEE80211_RATE_VAL)
2163 	uint32_t mask = 0;
2164 	uint8_t rate;
2165 	int i, j;
2166 
2167 	for (i = 0; i < rs->rs_nrates; i++) {
2168 		rate = rs->rs_rates[i];
2169 
2170 		if (!(rate & IEEE80211_RATE_BASIC))
2171 			continue;
2172 
2173 		/*
2174 		 * Find h/w rate index.  We know it exists because the rate
2175 		 * set has already been negotiated.
2176 		 */
2177 		for (j = 0; rt2661_rateset_11g.rs_rates[j] != RV(rate); j++);
2178 
2179 		mask |= 1 << j;
2180 	}
2181 
2182 	RAL_WRITE(sc, RT2661_TXRX_CSR5, mask);
2183 
2184 	DPRINTF(("Setting basic rate mask to 0x%x\n", mask));
2185 #undef RV
2186 }
2187 
2188 /*
2189  * Reprogram MAC/BBP to switch to a new band.  Values taken from the reference
2190  * driver.
2191  */
2192 static void
2193 rt2661_select_band(struct rt2661_softc *sc, struct ieee80211_channel *c)
2194 {
2195 	uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
2196 	uint32_t tmp;
2197 
2198 	/* update all BBP registers that depend on the band */
2199 	bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
2200 	bbp35 = 0x50; bbp97 = 0x48; bbp98  = 0x48;
2201 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2202 		bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
2203 		bbp35 += 0x10; bbp97 += 0x10; bbp98  += 0x10;
2204 	}
2205 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
2206 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
2207 		bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
2208 	}
2209 
2210 	sc->bbp17 = bbp17;
2211 	rt2661_bbp_write(sc,  17, bbp17);
2212 	rt2661_bbp_write(sc,  96, bbp96);
2213 	rt2661_bbp_write(sc, 104, bbp104);
2214 
2215 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
2216 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
2217 		rt2661_bbp_write(sc, 75, 0x80);
2218 		rt2661_bbp_write(sc, 86, 0x80);
2219 		rt2661_bbp_write(sc, 88, 0x80);
2220 	}
2221 
2222 	rt2661_bbp_write(sc, 35, bbp35);
2223 	rt2661_bbp_write(sc, 97, bbp97);
2224 	rt2661_bbp_write(sc, 98, bbp98);
2225 
2226 	tmp = RAL_READ(sc, RT2661_PHY_CSR0);
2227 	tmp &= ~(RT2661_PA_PE_2GHZ | RT2661_PA_PE_5GHZ);
2228 	if (IEEE80211_IS_CHAN_2GHZ(c))
2229 		tmp |= RT2661_PA_PE_2GHZ;
2230 	else
2231 		tmp |= RT2661_PA_PE_5GHZ;
2232 	RAL_WRITE(sc, RT2661_PHY_CSR0, tmp);
2233 
2234 	/* 802.11a uses a 16 microseconds short interframe space */
2235 	sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10;
2236 }
2237 
2238 static void
2239 rt2661_set_chan(struct rt2661_softc *sc, struct ieee80211_channel *c)
2240 {
2241 	struct ieee80211com *ic = &sc->sc_ic;
2242 	const struct rfprog *rfprog;
2243 	uint8_t bbp3, bbp94 = RT2661_BBPR94_DEFAULT;
2244 	int8_t power;
2245 	u_int i, chan;
2246 
2247 	chan = ieee80211_chan2ieee(ic, c);
2248 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
2249 		return;
2250 
2251 	/* select the appropriate RF settings based on what EEPROM says */
2252 	rfprog = (sc->rfprog == 0) ? rt2661_rf5225_1 : rt2661_rf5225_2;
2253 
2254 	/* find the settings for this channel (we know it exists) */
2255 	for (i = 0; rfprog[i].chan != chan; i++);
2256 
2257 	power = sc->txpow[i];
2258 	if (power < 0) {
2259 		bbp94 += power;
2260 		power = 0;
2261 	} else if (power > 31) {
2262 		bbp94 += power - 31;
2263 		power = 31;
2264 	}
2265 
2266 	/*
2267 	 * If we've yet to select a channel, or we are switching from the
2268 	 * 2GHz band to the 5GHz band or vice-versa, BBP registers need to
2269 	 * be reprogrammed.
2270 	 */
2271 	if (sc->sc_curchan == NULL || c->ic_flags != sc->sc_curchan->ic_flags) {
2272 		rt2661_select_band(sc, c);
2273 		rt2661_select_antenna(sc);
2274 	}
2275 	sc->sc_curchan = c;
2276 
2277 	rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1);
2278 	rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2);
2279 	rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7);
2280 	rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10);
2281 
2282 	DELAY(200);
2283 
2284 	rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1);
2285 	rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2);
2286 	rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7 | 1);
2287 	rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10);
2288 
2289 	DELAY(200);
2290 
2291 	rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1);
2292 	rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2);
2293 	rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7);
2294 	rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10);
2295 
2296 	/* enable smart mode for MIMO-capable RFs */
2297 	bbp3 = rt2661_bbp_read(sc, 3);
2298 
2299 	bbp3 &= ~RT2661_SMART_MODE;
2300 	if (sc->rf_rev == RT2661_RF_5325 || sc->rf_rev == RT2661_RF_2529)
2301 		bbp3 |= RT2661_SMART_MODE;
2302 
2303 	rt2661_bbp_write(sc, 3, bbp3);
2304 
2305 	if (bbp94 != RT2661_BBPR94_DEFAULT)
2306 		rt2661_bbp_write(sc, 94, bbp94);
2307 
2308 	/* 5GHz radio needs a 1ms delay here */
2309 	if (IEEE80211_IS_CHAN_5GHZ(c))
2310 		DELAY(1000);
2311 }
2312 
2313 static void
2314 rt2661_set_bssid(struct rt2661_softc *sc, const uint8_t *bssid)
2315 {
2316 	uint32_t tmp;
2317 
2318 	tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
2319 	RAL_WRITE(sc, RT2661_MAC_CSR4, tmp);
2320 
2321 	tmp = bssid[4] | bssid[5] << 8 | RT2661_ONE_BSSID << 16;
2322 	RAL_WRITE(sc, RT2661_MAC_CSR5, tmp);
2323 }
2324 
2325 static void
2326 rt2661_set_macaddr(struct rt2661_softc *sc, const uint8_t *addr)
2327 {
2328 	uint32_t tmp;
2329 
2330 	tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
2331 	RAL_WRITE(sc, RT2661_MAC_CSR2, tmp);
2332 
2333 	tmp = addr[4] | addr[5] << 8 | 0xff << 16;
2334 	RAL_WRITE(sc, RT2661_MAC_CSR3, tmp);
2335 }
2336 
2337 static void
2338 rt2661_update_promisc(struct rt2661_softc *sc)
2339 {
2340 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
2341 	uint32_t tmp;
2342 
2343 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2344 
2345 	tmp &= ~RT2661_DROP_NOT_TO_ME;
2346 	if (!(ifp->if_flags & IFF_PROMISC))
2347 		tmp |= RT2661_DROP_NOT_TO_ME;
2348 
2349 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2350 
2351 	DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
2352 	    "entering" : "leaving"));
2353 }
2354 
2355 #if 0
2356 /*
2357  * Update QoS (802.11e) settings for each h/w Tx ring.
2358  */
2359 static int
2360 rt2661_wme_update(struct ieee80211com *ic)
2361 {
2362 	struct rt2661_softc *sc = ic->ic_ifp->if_softc;
2363 	const struct wmeParams *wmep;
2364 
2365 	wmep = ic->ic_wme.wme_chanParams.cap_wmeParams;
2366 
2367 	/* XXX: not sure about shifts. */
2368 	/* XXX: the reference driver plays with AC_VI settings too. */
2369 
2370 	/* update TxOp */
2371 	RAL_WRITE(sc, RT2661_AC_TXOP_CSR0,
2372 	    wmep[WME_AC_BE].wmep_txopLimit << 16 |
2373 	    wmep[WME_AC_BK].wmep_txopLimit);
2374 	RAL_WRITE(sc, RT2661_AC_TXOP_CSR1,
2375 	    wmep[WME_AC_VI].wmep_txopLimit << 16 |
2376 	    wmep[WME_AC_VO].wmep_txopLimit);
2377 
2378 	/* update CWmin */
2379 	RAL_WRITE(sc, RT2661_CWMIN_CSR,
2380 	    wmep[WME_AC_BE].wmep_logcwmin << 12 |
2381 	    wmep[WME_AC_BK].wmep_logcwmin <<  8 |
2382 	    wmep[WME_AC_VI].wmep_logcwmin <<  4 |
2383 	    wmep[WME_AC_VO].wmep_logcwmin);
2384 
2385 	/* update CWmax */
2386 	RAL_WRITE(sc, RT2661_CWMAX_CSR,
2387 	    wmep[WME_AC_BE].wmep_logcwmax << 12 |
2388 	    wmep[WME_AC_BK].wmep_logcwmax <<  8 |
2389 	    wmep[WME_AC_VI].wmep_logcwmax <<  4 |
2390 	    wmep[WME_AC_VO].wmep_logcwmax);
2391 
2392 	/* update Aifsn */
2393 	RAL_WRITE(sc, RT2661_AIFSN_CSR,
2394 	    wmep[WME_AC_BE].wmep_aifsn << 12 |
2395 	    wmep[WME_AC_BK].wmep_aifsn <<  8 |
2396 	    wmep[WME_AC_VI].wmep_aifsn <<  4 |
2397 	    wmep[WME_AC_VO].wmep_aifsn);
2398 
2399 	return 0;
2400 }
2401 #endif
2402 
2403 static void
2404 rt2661_updateslot(struct ifnet *ifp)
2405 {
2406 	struct rt2661_softc *sc = ifp->if_softc;
2407 	struct ieee80211com *ic = &sc->sc_ic;
2408 
2409 	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2410 		/*
2411 		 * In HostAP mode, we defer setting of new slot time until
2412 		 * updated ERP Information Element has propagated to all
2413 		 * associated STAs.
2414 		 */
2415 		sc->sc_flags |= RT2661_UPDATE_SLOT;
2416 	} else
2417 		rt2661_set_slottime(sc);
2418 }
2419 
2420 static void
2421 rt2661_set_slottime(struct rt2661_softc *sc)
2422 {
2423 	struct ieee80211com *ic = &sc->sc_ic;
2424 	uint8_t slottime;
2425 	uint32_t tmp;
2426 
2427 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
2428 
2429 	tmp = RAL_READ(sc, RT2661_MAC_CSR9);
2430 	tmp = (tmp & ~0xff) | slottime;
2431 	RAL_WRITE(sc, RT2661_MAC_CSR9, tmp);
2432 
2433 	DPRINTF(("setting slot time to %uus\n", slottime));
2434 }
2435 
2436 static const char *
2437 rt2661_get_rf(int rev)
2438 {
2439 	switch (rev) {
2440 	case RT2661_RF_5225:	return "RT5225";
2441 	case RT2661_RF_5325:	return "RT5325 (MIMO XR)";
2442 	case RT2661_RF_2527:	return "RT2527";
2443 	case RT2661_RF_2529:	return "RT2529 (MIMO XR)";
2444 	default:		return "unknown";
2445 	}
2446 }
2447 
2448 static void
2449 rt2661_read_eeprom(struct rt2661_softc *sc)
2450 {
2451 	struct ieee80211com *ic = &sc->sc_ic;
2452 	uint16_t val;
2453 	int i;
2454 
2455 	/* read MAC address */
2456 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC01);
2457 	ic->ic_myaddr[0] = val & 0xff;
2458 	ic->ic_myaddr[1] = val >> 8;
2459 
2460 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC23);
2461 	ic->ic_myaddr[2] = val & 0xff;
2462 	ic->ic_myaddr[3] = val >> 8;
2463 
2464 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC45);
2465 	ic->ic_myaddr[4] = val & 0xff;
2466 	ic->ic_myaddr[5] = val >> 8;
2467 
2468 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_ANTENNA);
2469 	/* XXX: test if different from 0xffff? */
2470 	sc->rf_rev   = (val >> 11) & 0x1f;
2471 	sc->hw_radio = (val >> 10) & 0x1;
2472 	sc->rx_ant   = (val >> 4)  & 0x3;
2473 	sc->tx_ant   = (val >> 2)  & 0x3;
2474 	sc->nb_ant   = val & 0x3;
2475 
2476 	DPRINTF(("RF revision=%d\n", sc->rf_rev));
2477 
2478 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_CONFIG2);
2479 	sc->ext_5ghz_lna = (val >> 6) & 0x1;
2480 	sc->ext_2ghz_lna = (val >> 4) & 0x1;
2481 
2482 	DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
2483 	    sc->ext_2ghz_lna, sc->ext_5ghz_lna));
2484 
2485 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_RSSI_2GHZ_OFFSET);
2486 	if ((val & 0xff) != 0xff)
2487 		sc->rssi_2ghz_corr = (int8_t)(val & 0xff);	/* signed */
2488 
2489 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_RSSI_5GHZ_OFFSET);
2490 	if ((val & 0xff) != 0xff)
2491 		sc->rssi_5ghz_corr = (int8_t)(val & 0xff);	/* signed */
2492 
2493 	/* adjust RSSI correction for external low-noise amplifier */
2494 	if (sc->ext_2ghz_lna)
2495 		sc->rssi_2ghz_corr -= 14;
2496 	if (sc->ext_5ghz_lna)
2497 		sc->rssi_5ghz_corr -= 14;
2498 
2499 	DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
2500 	    sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
2501 
2502 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_FREQ_OFFSET);
2503 	if ((val >> 8) != 0xff)
2504 		sc->rfprog = (val >> 8) & 0x3;
2505 	if ((val & 0xff) != 0xff)
2506 		sc->rffreq = val & 0xff;
2507 
2508 	DPRINTF(("RF prog=%d\nRF freq=%d\n", sc->rfprog, sc->rffreq));
2509 
2510 	/* read Tx power for all a/b/g channels */
2511 	for (i = 0; i < 19; i++) {
2512 		val = rt2661_eeprom_read(sc, RT2661_EEPROM_TXPOWER + i);
2513 		sc->txpow[i * 2] = (int8_t)(val >> 8);		/* signed */
2514 		DPRINTF(("Channel=%d Tx power=%d\n",
2515 		    rt2661_rf5225_1[i * 2].chan, sc->txpow[i * 2]));
2516 		sc->txpow[i * 2 + 1] = (int8_t)(val & 0xff);	/* signed */
2517 		DPRINTF(("Channel=%d Tx power=%d\n",
2518 		    rt2661_rf5225_1[i * 2 + 1].chan, sc->txpow[i * 2 + 1]));
2519 	}
2520 
2521 	/* read vendor-specific BBP values */
2522 	for (i = 0; i < 16; i++) {
2523 		val = rt2661_eeprom_read(sc, RT2661_EEPROM_BBP_BASE + i);
2524 		if (val == 0 || val == 0xffff)
2525 			continue;	/* skip invalid entries */
2526 		sc->bbp_prom[i].reg = val >> 8;
2527 		sc->bbp_prom[i].val = val & 0xff;
2528 		DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
2529 		    sc->bbp_prom[i].val));
2530 	}
2531 }
2532 
2533 static int
2534 rt2661_bbp_init(struct rt2661_softc *sc)
2535 {
2536 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
2537 	int i, ntries;
2538 	uint8_t val;
2539 
2540 	/* wait for BBP to be ready */
2541 	for (ntries = 0; ntries < 100; ntries++) {
2542 		val = rt2661_bbp_read(sc, 0);
2543 		if (val != 0 && val != 0xff)
2544 			break;
2545 		DELAY(100);
2546 	}
2547 	if (ntries == 100) {
2548 		aprint_error_dev(sc->sc_dev, "timeout waiting for BBP\n");
2549 		return EIO;
2550 	}
2551 
2552 	/* initialize BBP registers to default values */
2553 	for (i = 0; i < N(rt2661_def_bbp); i++) {
2554 		rt2661_bbp_write(sc, rt2661_def_bbp[i].reg,
2555 		    rt2661_def_bbp[i].val);
2556 	}
2557 
2558 	/* write vendor-specific BBP values (from EEPROM) */
2559 	for (i = 0; i < 16; i++) {
2560 		if (sc->bbp_prom[i].reg == 0)
2561 			continue;
2562 		rt2661_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2563 	}
2564 
2565 	return 0;
2566 #undef N
2567 }
2568 
2569 static int
2570 rt2661_init(struct ifnet *ifp)
2571 {
2572 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
2573 	struct rt2661_softc *sc = ifp->if_softc;
2574 	struct ieee80211com *ic = &sc->sc_ic;
2575 	const char *name = NULL;	/* make lint happy */
2576 	uint8_t *ucode;
2577 	size_t size;
2578 	uint32_t tmp, star[3];
2579 	int i, ntries;
2580 	firmware_handle_t fh;
2581 
2582 	/* for CardBus, power on the socket */
2583 	if (!(sc->sc_flags & RT2661_ENABLED)) {
2584 		if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
2585 			aprint_error_dev(sc->sc_dev, "could not enable device\n");
2586 			return EIO;
2587 		}
2588 		sc->sc_flags |= RT2661_ENABLED;
2589 	}
2590 
2591 	rt2661_stop(ifp, 0);
2592 
2593 	if (!(sc->sc_flags & RT2661_FWLOADED)) {
2594 		switch (sc->sc_id) {
2595 		case PCI_PRODUCT_RALINK_RT2561:
2596 			name = "ral-rt2561";
2597 			break;
2598 		case PCI_PRODUCT_RALINK_RT2561S:
2599 			name = "ral-rt2561s";
2600 			break;
2601 		case PCI_PRODUCT_RALINK_RT2661:
2602 			name = "ral-rt2661";
2603 			break;
2604 		}
2605 
2606 		if (firmware_open("ral", name, &fh) != 0) {
2607 			aprint_error_dev(sc->sc_dev, "could not open microcode %s\n", name);
2608 			rt2661_stop(ifp, 1);
2609 			return EIO;
2610 		}
2611 
2612 		size = firmware_get_size(fh);
2613 		if (!(ucode = firmware_malloc(size))) {
2614 			aprint_error_dev(sc->sc_dev, "could not alloc microcode memory\n");
2615 			firmware_close(fh);
2616 			rt2661_stop(ifp, 1);
2617 			return ENOMEM;
2618 		}
2619 
2620 		if (firmware_read(fh, 0, ucode, size) != 0) {
2621 			aprint_error_dev(sc->sc_dev, "could not read microcode %s\n", name);
2622 			firmware_free(ucode, size);
2623 			firmware_close(fh);
2624 			rt2661_stop(ifp, 1);
2625 			return EIO;
2626 		}
2627 
2628 		if (rt2661_load_microcode(sc, ucode, size) != 0) {
2629 			aprint_error_dev(sc->sc_dev, "could not load 8051 microcode\n");
2630 			firmware_free(ucode, size);
2631 			firmware_close(fh);
2632 			rt2661_stop(ifp, 1);
2633 			return EIO;
2634 		}
2635 
2636 		firmware_free(ucode, size);
2637 		firmware_close(fh);
2638 		sc->sc_flags |= RT2661_FWLOADED;
2639 	}
2640 
2641 	/* initialize Tx rings */
2642 	RAL_WRITE(sc, RT2661_AC1_BASE_CSR, sc->txq[1].physaddr);
2643 	RAL_WRITE(sc, RT2661_AC0_BASE_CSR, sc->txq[0].physaddr);
2644 	RAL_WRITE(sc, RT2661_AC2_BASE_CSR, sc->txq[2].physaddr);
2645 	RAL_WRITE(sc, RT2661_AC3_BASE_CSR, sc->txq[3].physaddr);
2646 
2647 	/* initialize Mgt ring */
2648 	RAL_WRITE(sc, RT2661_MGT_BASE_CSR, sc->mgtq.physaddr);
2649 
2650 	/* initialize Rx ring */
2651 	RAL_WRITE(sc, RT2661_RX_BASE_CSR, sc->rxq.physaddr);
2652 
2653 	/* initialize Tx rings sizes */
2654 	RAL_WRITE(sc, RT2661_TX_RING_CSR0,
2655 	    RT2661_TX_RING_COUNT << 24 |
2656 	    RT2661_TX_RING_COUNT << 16 |
2657 	    RT2661_TX_RING_COUNT <<  8 |
2658 	    RT2661_TX_RING_COUNT);
2659 
2660 	RAL_WRITE(sc, RT2661_TX_RING_CSR1,
2661 	    RT2661_TX_DESC_WSIZE << 16 |
2662 	    RT2661_TX_RING_COUNT <<  8 |	/* XXX: HCCA ring unused */
2663 	    RT2661_MGT_RING_COUNT);
2664 
2665 	/* initialize Rx rings */
2666 	RAL_WRITE(sc, RT2661_RX_RING_CSR,
2667 	    RT2661_RX_DESC_BACK  << 16 |
2668 	    RT2661_RX_DESC_WSIZE <<  8 |
2669 	    RT2661_RX_RING_COUNT);
2670 
2671 	/* XXX: some magic here */
2672 	RAL_WRITE(sc, RT2661_TX_DMA_DST_CSR, 0xaa);
2673 
2674 	/* load base addresses of all 5 Tx rings (4 data + 1 mgt) */
2675 	RAL_WRITE(sc, RT2661_LOAD_TX_RING_CSR, 0x1f);
2676 
2677 	/* load base address of Rx ring */
2678 	RAL_WRITE(sc, RT2661_RX_CNTL_CSR, 2);
2679 
2680 	/* initialize MAC registers to default values */
2681 	for (i = 0; i < N(rt2661_def_mac); i++)
2682 		RAL_WRITE(sc, rt2661_def_mac[i].reg, rt2661_def_mac[i].val);
2683 
2684 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2685 	rt2661_set_macaddr(sc, ic->ic_myaddr);
2686 
2687 	/* set host ready */
2688 	RAL_WRITE(sc, RT2661_MAC_CSR1, 3);
2689 	RAL_WRITE(sc, RT2661_MAC_CSR1, 0);
2690 
2691 	/* wait for BBP/RF to wakeup */
2692 	for (ntries = 0; ntries < 1000; ntries++) {
2693 		if (RAL_READ(sc, RT2661_MAC_CSR12) & 8)
2694 			break;
2695 		DELAY(1000);
2696 	}
2697 	if (ntries == 1000) {
2698 		printf("timeout waiting for BBP/RF to wakeup\n");
2699 		rt2661_stop(ifp, 1);
2700 		return EIO;
2701 	}
2702 
2703 	if (rt2661_bbp_init(sc) != 0) {
2704 		rt2661_stop(ifp, 1);
2705 		return EIO;
2706 	}
2707 
2708 	/* select default channel */
2709 	sc->sc_curchan = ic->ic_curchan;
2710 	rt2661_select_band(sc, sc->sc_curchan);
2711 	rt2661_select_antenna(sc);
2712 	rt2661_set_chan(sc, sc->sc_curchan);
2713 
2714 	/* update Rx filter */
2715 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0) & 0xffff;
2716 
2717 	tmp |= RT2661_DROP_PHY_ERROR | RT2661_DROP_CRC_ERROR;
2718 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2719 		tmp |= RT2661_DROP_CTL | RT2661_DROP_VER_ERROR |
2720 		       RT2661_DROP_ACKCTS;
2721 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2722 			tmp |= RT2661_DROP_TODS;
2723 		if (!(ifp->if_flags & IFF_PROMISC))
2724 			tmp |= RT2661_DROP_NOT_TO_ME;
2725 	}
2726 
2727 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2728 
2729 	/* clear STA registers */
2730 	RAL_READ_REGION_4(sc, RT2661_STA_CSR0, star, N(star));
2731 
2732 	/* initialize ASIC */
2733 	RAL_WRITE(sc, RT2661_MAC_CSR1, 4);
2734 
2735 	/* clear any pending interrupt */
2736 	RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, 0xffffffff);
2737 
2738 	/* enable interrupts */
2739 	RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0x0000ff10);
2740 	RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0);
2741 
2742 	/* kick Rx */
2743 	RAL_WRITE(sc, RT2661_RX_CNTL_CSR, 1);
2744 
2745 	ifp->if_flags &= ~IFF_OACTIVE;
2746 	ifp->if_flags |= IFF_RUNNING;
2747 
2748 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2749 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
2750 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2751 	} else
2752 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2753 
2754 	return 0;
2755 #undef N
2756 }
2757 
2758 static void
2759 rt2661_stop(struct ifnet *ifp, int disable)
2760 {
2761 	struct rt2661_softc *sc = ifp->if_softc;
2762 	struct ieee80211com *ic = &sc->sc_ic;
2763 	uint32_t tmp;
2764 
2765 	sc->sc_tx_timer = 0;
2766 	ifp->if_timer = 0;
2767 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2768 
2769 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);	/* free all nodes */
2770 
2771 	/* abort Tx (for all 5 Tx rings) */
2772 	RAL_WRITE(sc, RT2661_TX_CNTL_CSR, 0x1f << 16);
2773 
2774 	/* disable Rx (value remains after reset!) */
2775 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2776 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX);
2777 
2778 	/* reset ASIC */
2779 	RAL_WRITE(sc, RT2661_MAC_CSR1, 3);
2780 	RAL_WRITE(sc, RT2661_MAC_CSR1, 0);
2781 
2782 	/* disable interrupts */
2783 	RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0xffffff7f);
2784 	RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0xffffffff);
2785 
2786 	/* clear any pending interrupt */
2787 	RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, 0xffffffff);
2788 	RAL_WRITE(sc, RT2661_MCU_INT_SOURCE_CSR, 0xffffffff);
2789 
2790 	/* reset Tx and Rx rings */
2791 	rt2661_reset_tx_ring(sc, &sc->txq[0]);
2792 	rt2661_reset_tx_ring(sc, &sc->txq[1]);
2793 	rt2661_reset_tx_ring(sc, &sc->txq[2]);
2794 	rt2661_reset_tx_ring(sc, &sc->txq[3]);
2795 	rt2661_reset_tx_ring(sc, &sc->mgtq);
2796 	rt2661_reset_rx_ring(sc, &sc->rxq);
2797 
2798 	/* for CardBus, power down the socket */
2799 	if (disable && sc->sc_disable != NULL) {
2800 		if (sc->sc_flags & RT2661_ENABLED) {
2801 			(*sc->sc_disable)(sc);
2802 			sc->sc_flags &= ~(RT2661_ENABLED | RT2661_FWLOADED);
2803 		}
2804 	}
2805 }
2806 
2807 static int
2808 rt2661_load_microcode(struct rt2661_softc *sc, const uint8_t *ucode, int size)
2809 {
2810 	int ntries;
2811 
2812 	/* reset 8051 */
2813 	RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET);
2814 
2815 	/* cancel any pending Host to MCU command */
2816 	RAL_WRITE(sc, RT2661_H2M_MAILBOX_CSR, 0);
2817 	RAL_WRITE(sc, RT2661_M2H_CMD_DONE_CSR, 0xffffffff);
2818 	RAL_WRITE(sc, RT2661_HOST_CMD_CSR, 0);
2819 
2820 	/* write 8051's microcode */
2821 	RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET | RT2661_MCU_SEL);
2822 	RAL_WRITE_REGION_1(sc, RT2661_MCU_CODE_BASE, ucode, size);
2823 	RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET);
2824 
2825 	/* kick 8051's ass */
2826 	RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, 0);
2827 
2828 	/* wait for 8051 to initialize */
2829 	for (ntries = 0; ntries < 500; ntries++) {
2830 		if (RAL_READ(sc, RT2661_MCU_CNTL_CSR) & RT2661_MCU_READY)
2831 			break;
2832 		DELAY(100);
2833 	}
2834 	if (ntries == 500) {
2835 		printf("timeout waiting for MCU to initialize\n");
2836 		return EIO;
2837 	}
2838 	return 0;
2839 }
2840 
2841 /*
2842  * Dynamically tune Rx sensitivity (BBP register 17) based on average RSSI and
2843  * false CCA count.  This function is called periodically (every seconds) when
2844  * in the RUN state.  Values taken from the reference driver.
2845  */
2846 static void
2847 rt2661_rx_tune(struct rt2661_softc *sc)
2848 {
2849 	uint8_t bbp17;
2850 	uint16_t cca;
2851 	int lo, hi, dbm;
2852 
2853 	/*
2854 	 * Tuning range depends on operating band and on the presence of an
2855 	 * external low-noise amplifier.
2856 	 */
2857 	lo = 0x20;
2858 	if (IEEE80211_IS_CHAN_5GHZ(sc->sc_curchan))
2859 		lo += 0x08;
2860 	if ((IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan) && sc->ext_2ghz_lna) ||
2861 	    (IEEE80211_IS_CHAN_5GHZ(sc->sc_curchan) && sc->ext_5ghz_lna))
2862 		lo += 0x10;
2863 	hi = lo + 0x20;
2864 
2865 	dbm = sc->avg_rssi;
2866 	/* retrieve false CCA count since last call (clear on read) */
2867 	cca = RAL_READ(sc, RT2661_STA_CSR1) & 0xffff;
2868 
2869 	DPRINTFN(2, ("RSSI=%ddBm false CCA=%d\n", dbm, cca));
2870 
2871 	if (dbm < -74) {
2872 		/* very bad RSSI, tune using false CCA count */
2873 		bbp17 = sc->bbp17; /* current value */
2874 
2875 		hi -= 2 * (-74 - dbm);
2876 		if (hi < lo)
2877 			hi = lo;
2878 
2879 		if (bbp17 > hi)
2880 			bbp17 = hi;
2881 		else if (cca > 512)
2882 			bbp17 = min(bbp17 + 1, hi);
2883 		else if (cca < 100)
2884 			bbp17 = max(bbp17 - 1, lo);
2885 
2886 	} else if (dbm < -66) {
2887 		bbp17 = lo + 0x08;
2888 	} else if (dbm < -58) {
2889 		bbp17 = lo + 0x10;
2890 	} else if (dbm < -35) {
2891 		bbp17 = hi;
2892 	} else {	/* very good RSSI >= -35dBm */
2893 		bbp17 = 0x60;	/* very low sensitivity */
2894 	}
2895 
2896 	if (bbp17 != sc->bbp17) {
2897 		DPRINTF(("BBP17 %x->%x\n", sc->bbp17, bbp17));
2898 		rt2661_bbp_write(sc, 17, bbp17);
2899 		sc->bbp17 = bbp17;
2900 	}
2901 }
2902 
2903 #ifdef notyet
2904 /*
2905  * Enter/Leave radar detection mode.
2906  * This is for 802.11h additional regulatory domains.
2907  */
2908 static void
2909 rt2661_radar_start(struct rt2661_softc *sc)
2910 {
2911 	uint32_t tmp;
2912 
2913 	/* disable Rx */
2914 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2915 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX);
2916 
2917 	rt2661_bbp_write(sc, 82, 0x20);
2918 	rt2661_bbp_write(sc, 83, 0x00);
2919 	rt2661_bbp_write(sc, 84, 0x40);
2920 
2921 	/* save current BBP registers values */
2922 	sc->bbp18 = rt2661_bbp_read(sc, 18);
2923 	sc->bbp21 = rt2661_bbp_read(sc, 21);
2924 	sc->bbp22 = rt2661_bbp_read(sc, 22);
2925 	sc->bbp16 = rt2661_bbp_read(sc, 16);
2926 	sc->bbp17 = rt2661_bbp_read(sc, 17);
2927 	sc->bbp64 = rt2661_bbp_read(sc, 64);
2928 
2929 	rt2661_bbp_write(sc, 18, 0xff);
2930 	rt2661_bbp_write(sc, 21, 0x3f);
2931 	rt2661_bbp_write(sc, 22, 0x3f);
2932 	rt2661_bbp_write(sc, 16, 0xbd);
2933 	rt2661_bbp_write(sc, 17, sc->ext_5ghz_lna ? 0x44 : 0x34);
2934 	rt2661_bbp_write(sc, 64, 0x21);
2935 
2936 	/* restore Rx filter */
2937 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2938 }
2939 
2940 static int
2941 rt2661_radar_stop(struct rt2661_softc *sc)
2942 {
2943 	uint8_t bbp66;
2944 
2945 	/* read radar detection result */
2946 	bbp66 = rt2661_bbp_read(sc, 66);
2947 
2948 	/* restore BBP registers values */
2949 	rt2661_bbp_write(sc, 16, sc->bbp16);
2950 	rt2661_bbp_write(sc, 17, sc->bbp17);
2951 	rt2661_bbp_write(sc, 18, sc->bbp18);
2952 	rt2661_bbp_write(sc, 21, sc->bbp21);
2953 	rt2661_bbp_write(sc, 22, sc->bbp22);
2954 	rt2661_bbp_write(sc, 64, sc->bbp64);
2955 
2956 	return bbp66 == 1;
2957 }
2958 #endif
2959 
2960 static int
2961 rt2661_prepare_beacon(struct rt2661_softc *sc)
2962 {
2963 	struct ieee80211com *ic = &sc->sc_ic;
2964 	struct ieee80211_node *ni = ic->ic_bss;
2965 	struct rt2661_tx_desc desc;
2966 	struct mbuf *m0;
2967 	struct ieee80211_beacon_offsets bo;
2968 	int rate;
2969 
2970 	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2971 	if (m0 == NULL) {
2972 		aprint_error_dev(sc->sc_dev, "could not allocate beacon frame\n");
2973 		return ENOBUFS;
2974 	}
2975 
2976 	/* send beacons at the lowest available rate */
2977 	rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
2978 
2979 	rt2661_setup_tx_desc(sc, &desc, RT2661_TX_TIMESTAMP, RT2661_TX_HWSEQ,
2980 	    m0->m_pkthdr.len, rate, NULL, 0, RT2661_QID_MGT);
2981 
2982 	/* copy the first 24 bytes of Tx descriptor into NIC memory */
2983 	RAL_WRITE_REGION_1(sc, RT2661_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
2984 
2985 	/* copy beacon header and payload into NIC memory */
2986 	RAL_WRITE_REGION_1(sc, RT2661_HW_BEACON_BASE0 + 24,
2987 	    mtod(m0, uint8_t *), m0->m_pkthdr.len);
2988 
2989 	m_freem(m0);
2990 
2991 	/*
2992 	 * Store offset of ERP Information Element so that we can update it
2993 	 * dynamically when the slot time changes.
2994 	 * XXX: this is ugly since it depends on how net80211 builds beacon
2995 	 * frames but ieee80211_beacon_alloc() doesn't store offsets for us.
2996 	 */
2997 	if (ic->ic_curmode == IEEE80211_MODE_11G) {
2998 		sc->erp_csr =
2999 		    RT2661_HW_BEACON_BASE0 + 24 +
3000 		    sizeof (struct ieee80211_frame) +
3001 		    8 + 2 + 2 + 2 + ni->ni_esslen +
3002 		    2 + min(ni->ni_rates.rs_nrates, IEEE80211_RATE_SIZE) +
3003 		    2 + 1 +
3004 		    ((ic->ic_opmode == IEEE80211_M_IBSS) ? 4 : 6) +
3005 		    2;
3006 	}
3007 
3008 	return 0;
3009 }
3010 
3011 /*
3012  * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
3013  * and HostAP operating modes.
3014  */
3015 static void
3016 rt2661_enable_tsf_sync(struct rt2661_softc *sc)
3017 {
3018 	struct ieee80211com *ic = &sc->sc_ic;
3019 	uint32_t tmp;
3020 
3021 	if (ic->ic_opmode != IEEE80211_M_STA) {
3022 		/*
3023 		 * Change default 16ms TBTT adjustment to 8ms.
3024 		 * Must be done before enabling beacon generation.
3025 		 */
3026 		RAL_WRITE(sc, RT2661_TXRX_CSR10, 1 << 12 | 8);
3027 	}
3028 
3029 	tmp = RAL_READ(sc, RT2661_TXRX_CSR9) & 0xff000000;
3030 
3031 	/* set beacon interval (in 1/16ms unit) */
3032 	tmp |= ic->ic_bss->ni_intval * 16;
3033 
3034 	tmp |= RT2661_TSF_TICKING | RT2661_ENABLE_TBTT;
3035 	if (ic->ic_opmode == IEEE80211_M_STA)
3036 		tmp |= RT2661_TSF_MODE(1);
3037 	else
3038 		tmp |= RT2661_TSF_MODE(2) | RT2661_GENERATE_BEACON;
3039 
3040 	RAL_WRITE(sc, RT2661_TXRX_CSR9, tmp);
3041 }
3042 
3043 /*
3044  * Retrieve the "Received Signal Strength Indicator" from the raw values
3045  * contained in Rx descriptors.  The computation depends on which band the
3046  * frame was received.  Correction values taken from the reference driver.
3047  */
3048 static int
3049 rt2661_get_rssi(struct rt2661_softc *sc, uint8_t raw)
3050 {
3051 	int lna, agc, rssi;
3052 
3053 	lna = (raw >> 5) & 0x3;
3054 	agc = raw & 0x1f;
3055 
3056 	rssi = 2 * agc;
3057 
3058 	if (IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan)) {
3059 		rssi += sc->rssi_2ghz_corr;
3060 
3061 		if (lna == 1)
3062 			rssi -= 64;
3063 		else if (lna == 2)
3064 			rssi -= 74;
3065 		else if (lna == 3)
3066 			rssi -= 90;
3067 	} else {
3068 		rssi += sc->rssi_5ghz_corr;
3069 
3070 		if (lna == 1)
3071 			rssi -= 64;
3072 		else if (lna == 2)
3073 			rssi -= 86;
3074 		else if (lna == 3)
3075 			rssi -= 100;
3076 	}
3077 	return rssi;
3078 }
3079