1 /* $NetBSD: rt2661.c,v 1.24 2008/04/29 22:21:45 scw Exp $ */ 2 /* $OpenBSD: rt2661.c,v 1.17 2006/05/01 08:41:11 damien Exp $ */ 3 /* $FreeBSD: rt2560.c,v 1.5 2006/06/02 19:59:31 csjp Exp $ */ 4 5 /*- 6 * Copyright (c) 2006 7 * Damien Bergamini <damien.bergamini@free.fr> 8 * 9 * Permission to use, copy, modify, and distribute this software for any 10 * purpose with or without fee is hereby granted, provided that the above 11 * copyright notice and this permission notice appear in all copies. 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 20 */ 21 22 /*- 23 * Ralink Technology RT2561, RT2561S and RT2661 chipset driver 24 * http://www.ralinktech.com/ 25 */ 26 27 #include <sys/cdefs.h> 28 __KERNEL_RCSID(0, "$NetBSD: rt2661.c,v 1.24 2008/04/29 22:21:45 scw Exp $"); 29 30 #include "bpfilter.h" 31 32 #include <sys/param.h> 33 #include <sys/sockio.h> 34 #include <sys/sysctl.h> 35 #include <sys/mbuf.h> 36 #include <sys/kernel.h> 37 #include <sys/socket.h> 38 #include <sys/systm.h> 39 #include <sys/malloc.h> 40 #include <sys/callout.h> 41 #include <sys/conf.h> 42 #include <sys/device.h> 43 44 #include <sys/bus.h> 45 #include <machine/endian.h> 46 #include <sys/intr.h> 47 48 #if NBPFILTER > 0 49 #include <net/bpf.h> 50 #endif 51 #include <net/if.h> 52 #include <net/if_arp.h> 53 #include <net/if_dl.h> 54 #include <net/if_media.h> 55 #include <net/if_types.h> 56 #include <net/if_ether.h> 57 58 #include <netinet/in.h> 59 #include <netinet/in_systm.h> 60 #include <netinet/in_var.h> 61 #include <netinet/ip.h> 62 63 #include <net80211/ieee80211_var.h> 64 #include <net80211/ieee80211_amrr.h> 65 #include <net80211/ieee80211_radiotap.h> 66 67 #include <dev/ic/rt2661reg.h> 68 #include <dev/ic/rt2661var.h> 69 70 #include <dev/pci/pcireg.h> 71 #include <dev/pci/pcivar.h> 72 #include <dev/pci/pcidevs.h> 73 74 #include <dev/firmload.h> 75 76 #ifdef RAL_DEBUG 77 #define DPRINTF(x) do { if (rt2661_debug > 0) printf x; } while (0) 78 #define DPRINTFN(n, x) do { if (rt2661_debug >= (n)) printf x; } while (0) 79 int rt2661_debug = 0; 80 #else 81 #define DPRINTF(x) 82 #define DPRINTFN(n, x) 83 #endif 84 85 static int rt2661_alloc_tx_ring(struct rt2661_softc *, 86 struct rt2661_tx_ring *, int); 87 static void rt2661_reset_tx_ring(struct rt2661_softc *, 88 struct rt2661_tx_ring *); 89 static void rt2661_free_tx_ring(struct rt2661_softc *, 90 struct rt2661_tx_ring *); 91 static int rt2661_alloc_rx_ring(struct rt2661_softc *, 92 struct rt2661_rx_ring *, int); 93 static void rt2661_reset_rx_ring(struct rt2661_softc *, 94 struct rt2661_rx_ring *); 95 static void rt2661_free_rx_ring(struct rt2661_softc *, 96 struct rt2661_rx_ring *); 97 static struct ieee80211_node * 98 rt2661_node_alloc(struct ieee80211_node_table *); 99 static int rt2661_media_change(struct ifnet *); 100 static void rt2661_next_scan(void *); 101 static void rt2661_iter_func(void *, struct ieee80211_node *); 102 static void rt2661_updatestats(void *); 103 static void rt2661_newassoc(struct ieee80211_node *, int); 104 static int rt2661_newstate(struct ieee80211com *, enum ieee80211_state, 105 int); 106 static uint16_t rt2661_eeprom_read(struct rt2661_softc *, uint8_t); 107 static void rt2661_tx_intr(struct rt2661_softc *); 108 static void rt2661_tx_dma_intr(struct rt2661_softc *, 109 struct rt2661_tx_ring *); 110 static void rt2661_rx_intr(struct rt2661_softc *); 111 static void rt2661_mcu_beacon_expire(struct rt2661_softc *); 112 static void rt2661_mcu_wakeup(struct rt2661_softc *); 113 static void rt2661_mcu_cmd_intr(struct rt2661_softc *); 114 int rt2661_intr(void *); 115 #if NBPFILTER > 0 116 static uint8_t rt2661_rxrate(struct rt2661_rx_desc *); 117 #endif 118 static int rt2661_ack_rate(struct ieee80211com *, int); 119 static uint16_t rt2661_txtime(int, int, uint32_t); 120 static uint8_t rt2661_plcp_signal(int); 121 static void rt2661_setup_tx_desc(struct rt2661_softc *, 122 struct rt2661_tx_desc *, uint32_t, uint16_t, int, int, 123 const bus_dma_segment_t *, int, int); 124 static int rt2661_tx_mgt(struct rt2661_softc *, struct mbuf *, 125 struct ieee80211_node *); 126 static struct mbuf * 127 rt2661_get_rts(struct rt2661_softc *, 128 struct ieee80211_frame *, uint16_t); 129 static int rt2661_tx_data(struct rt2661_softc *, struct mbuf *, 130 struct ieee80211_node *, int); 131 static void rt2661_start(struct ifnet *); 132 static void rt2661_watchdog(struct ifnet *); 133 static int rt2661_reset(struct ifnet *); 134 static int rt2661_ioctl(struct ifnet *, u_long, void *); 135 static void rt2661_bbp_write(struct rt2661_softc *, uint8_t, uint8_t); 136 static uint8_t rt2661_bbp_read(struct rt2661_softc *, uint8_t); 137 static void rt2661_rf_write(struct rt2661_softc *, uint8_t, uint32_t); 138 static int rt2661_tx_cmd(struct rt2661_softc *, uint8_t, uint16_t); 139 static void rt2661_select_antenna(struct rt2661_softc *); 140 static void rt2661_enable_mrr(struct rt2661_softc *); 141 static void rt2661_set_txpreamble(struct rt2661_softc *); 142 static void rt2661_set_basicrates(struct rt2661_softc *, 143 const struct ieee80211_rateset *); 144 static void rt2661_select_band(struct rt2661_softc *, 145 struct ieee80211_channel *); 146 static void rt2661_set_chan(struct rt2661_softc *, 147 struct ieee80211_channel *); 148 static void rt2661_set_bssid(struct rt2661_softc *, const uint8_t *); 149 static void rt2661_set_macaddr(struct rt2661_softc *, const uint8_t *); 150 static void rt2661_update_promisc(struct rt2661_softc *); 151 #if 0 152 static int rt2661_wme_update(struct ieee80211com *); 153 #endif 154 155 static void rt2661_updateslot(struct ifnet *); 156 static void rt2661_set_slottime(struct rt2661_softc *); 157 static const char * 158 rt2661_get_rf(int); 159 static void rt2661_read_eeprom(struct rt2661_softc *); 160 static int rt2661_bbp_init(struct rt2661_softc *); 161 static int rt2661_init(struct ifnet *); 162 static void rt2661_stop(struct ifnet *, int); 163 static int rt2661_load_microcode(struct rt2661_softc *, const uint8_t *, 164 int); 165 static void rt2661_rx_tune(struct rt2661_softc *); 166 #ifdef notyet 167 static void rt2661_radar_start(struct rt2661_softc *); 168 static int rt2661_radar_stop(struct rt2661_softc *); 169 #endif 170 static int rt2661_prepare_beacon(struct rt2661_softc *); 171 static void rt2661_enable_tsf_sync(struct rt2661_softc *); 172 static int rt2661_get_rssi(struct rt2661_softc *, uint8_t); 173 174 /* 175 * Supported rates for 802.11a/b/g modes (in 500Kbps unit). 176 */ 177 static const struct ieee80211_rateset rt2661_rateset_11a = 178 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } }; 179 180 static const struct ieee80211_rateset rt2661_rateset_11b = 181 { 4, { 2, 4, 11, 22 } }; 182 183 static const struct ieee80211_rateset rt2661_rateset_11g = 184 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } }; 185 186 static const struct { 187 uint32_t reg; 188 uint32_t val; 189 } rt2661_def_mac[] = { 190 RT2661_DEF_MAC 191 }; 192 193 static const struct { 194 uint8_t reg; 195 uint8_t val; 196 } rt2661_def_bbp[] = { 197 RT2661_DEF_BBP 198 }; 199 200 static const struct rfprog { 201 uint8_t chan; 202 uint32_t r1, r2, r3, r4; 203 } rt2661_rf5225_1[] = { 204 RT2661_RF5225_1 205 }, rt2661_rf5225_2[] = { 206 RT2661_RF5225_2 207 }; 208 209 int 210 rt2661_attach(void *xsc, int id) 211 { 212 struct rt2661_softc *sc = xsc; 213 struct ieee80211com *ic = &sc->sc_ic; 214 struct ifnet *ifp = &sc->sc_if; 215 uint32_t val; 216 int error, i, ntries; 217 218 sc->sc_id = id; 219 220 sc->amrr.amrr_min_success_threshold = 1; 221 sc->amrr.amrr_max_success_threshold = 15; 222 callout_init(&sc->scan_ch, 0); 223 callout_init(&sc->amrr_ch, 0); 224 225 /* wait for NIC to initialize */ 226 for (ntries = 0; ntries < 1000; ntries++) { 227 if ((val = RAL_READ(sc, RT2661_MAC_CSR0)) != 0) 228 break; 229 DELAY(1000); 230 } 231 if (ntries == 1000) { 232 aprint_error_dev(&sc->sc_dev, "timeout waiting for NIC to initialize\n"); 233 return EIO; 234 } 235 236 /* retrieve RF rev. no and various other things from EEPROM */ 237 rt2661_read_eeprom(sc); 238 aprint_normal_dev(&sc->sc_dev, "802.11 address %s\n", 239 ether_sprintf(ic->ic_myaddr)); 240 241 aprint_normal_dev(&sc->sc_dev, "MAC/BBP RT%X, RF %s\n", val, 242 rt2661_get_rf(sc->rf_rev)); 243 244 /* 245 * Allocate Tx and Rx rings. 246 */ 247 error = rt2661_alloc_tx_ring(sc, &sc->txq[0], RT2661_TX_RING_COUNT); 248 if (error != 0) { 249 aprint_error_dev(&sc->sc_dev, "could not allocate Tx ring 0\n"); 250 goto fail1; 251 } 252 253 error = rt2661_alloc_tx_ring(sc, &sc->txq[1], RT2661_TX_RING_COUNT); 254 if (error != 0) { 255 aprint_error_dev(&sc->sc_dev, "could not allocate Tx ring 1\n"); 256 goto fail2; 257 } 258 259 error = rt2661_alloc_tx_ring(sc, &sc->txq[2], RT2661_TX_RING_COUNT); 260 if (error != 0) { 261 aprint_error_dev(&sc->sc_dev, "could not allocate Tx ring 2\n"); 262 goto fail3; 263 } 264 265 error = rt2661_alloc_tx_ring(sc, &sc->txq[3], RT2661_TX_RING_COUNT); 266 if (error != 0) { 267 aprint_error_dev(&sc->sc_dev, "could not allocate Tx ring 3\n"); 268 goto fail4; 269 } 270 271 error = rt2661_alloc_tx_ring(sc, &sc->mgtq, RT2661_MGT_RING_COUNT); 272 if (error != 0) { 273 aprint_error_dev(&sc->sc_dev, "could not allocate Mgt ring\n"); 274 goto fail5; 275 } 276 277 error = rt2661_alloc_rx_ring(sc, &sc->rxq, RT2661_RX_RING_COUNT); 278 if (error != 0) { 279 aprint_error_dev(&sc->sc_dev, "could not allocate Rx ring\n"); 280 goto fail6; 281 } 282 283 ifp->if_softc = sc; 284 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 285 ifp->if_init = rt2661_init; 286 ifp->if_stop = rt2661_stop; 287 ifp->if_ioctl = rt2661_ioctl; 288 ifp->if_start = rt2661_start; 289 ifp->if_watchdog = rt2661_watchdog; 290 IFQ_SET_READY(&ifp->if_snd); 291 memcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ); 292 293 ic->ic_ifp = ifp; 294 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 295 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 296 ic->ic_state = IEEE80211_S_INIT; 297 298 /* set device capabilities */ 299 ic->ic_caps = 300 IEEE80211_C_IBSS | /* IBSS mode supported */ 301 IEEE80211_C_MONITOR | /* monitor mode supported */ 302 IEEE80211_C_HOSTAP | /* HostAP mode supported */ 303 IEEE80211_C_TXPMGT | /* tx power management */ 304 IEEE80211_C_SHPREAMBLE | /* short preamble supported */ 305 IEEE80211_C_SHSLOT | /* short slot time supported */ 306 IEEE80211_C_WPA; /* 802.11i */ 307 308 if (sc->rf_rev == RT2661_RF_5225 || sc->rf_rev == RT2661_RF_5325) { 309 /* set supported .11a rates */ 310 ic->ic_sup_rates[IEEE80211_MODE_11A] = rt2661_rateset_11a; 311 312 /* set supported .11a channels */ 313 for (i = 36; i <= 64; i += 4) { 314 ic->ic_channels[i].ic_freq = 315 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 316 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 317 } 318 for (i = 100; i <= 140; i += 4) { 319 ic->ic_channels[i].ic_freq = 320 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 321 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 322 } 323 for (i = 149; i <= 165; i += 4) { 324 ic->ic_channels[i].ic_freq = 325 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 326 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 327 } 328 } 329 330 /* set supported .11b and .11g rates */ 331 ic->ic_sup_rates[IEEE80211_MODE_11B] = rt2661_rateset_11b; 332 ic->ic_sup_rates[IEEE80211_MODE_11G] = rt2661_rateset_11g; 333 334 /* set supported .11b and .11g channels (1 through 14) */ 335 for (i = 1; i <= 14; i++) { 336 ic->ic_channels[i].ic_freq = 337 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ); 338 ic->ic_channels[i].ic_flags = 339 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | 340 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 341 } 342 343 if_attach(ifp); 344 ieee80211_ifattach(ic); 345 ic->ic_node_alloc = rt2661_node_alloc; 346 ic->ic_newassoc = rt2661_newassoc; 347 ic->ic_updateslot = rt2661_updateslot; 348 ic->ic_reset = rt2661_reset; 349 350 /* override state transition machine */ 351 sc->sc_newstate = ic->ic_newstate; 352 ic->ic_newstate = rt2661_newstate; 353 ieee80211_media_init(ic, rt2661_media_change, ieee80211_media_status); 354 355 #if NBPFILTER > 0 356 bpfattach2(ifp, DLT_IEEE802_11_RADIO, 357 sizeof (struct ieee80211_frame) + sizeof(sc->sc_txtap), 358 &sc->sc_drvbpf); 359 360 sc->sc_rxtap_len = roundup(sizeof(sc->sc_rxtap), sizeof(u_int32_t)); 361 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); 362 sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2661_RX_RADIOTAP_PRESENT); 363 364 sc->sc_txtap_len = roundup(sizeof(sc->sc_txtap), sizeof(u_int32_t)); 365 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); 366 sc->sc_txtap.wt_ihdr.it_present = htole32(RT2661_TX_RADIOTAP_PRESENT); 367 #endif 368 369 ieee80211_announce(ic); 370 371 if (!pmf_device_register(&sc->sc_dev, NULL, NULL)) 372 aprint_error_dev(&sc->sc_dev, "couldn't establish power handler\n"); 373 else 374 pmf_class_network_register(&sc->sc_dev, ifp); 375 376 return 0; 377 378 fail6: rt2661_free_tx_ring(sc, &sc->mgtq); 379 fail5: rt2661_free_tx_ring(sc, &sc->txq[3]); 380 fail4: rt2661_free_tx_ring(sc, &sc->txq[2]); 381 fail3: rt2661_free_tx_ring(sc, &sc->txq[1]); 382 fail2: rt2661_free_tx_ring(sc, &sc->txq[0]); 383 fail1: return ENXIO; 384 } 385 386 int 387 rt2661_detach(void *xsc) 388 { 389 struct rt2661_softc *sc = xsc; 390 struct ifnet *ifp = &sc->sc_if; 391 392 callout_stop(&sc->scan_ch); 393 callout_stop(&sc->amrr_ch); 394 395 pmf_device_deregister(&sc->sc_dev); 396 397 ieee80211_ifdetach(&sc->sc_ic); 398 if_detach(ifp); 399 400 rt2661_free_tx_ring(sc, &sc->txq[0]); 401 rt2661_free_tx_ring(sc, &sc->txq[1]); 402 rt2661_free_tx_ring(sc, &sc->txq[2]); 403 rt2661_free_tx_ring(sc, &sc->txq[3]); 404 rt2661_free_tx_ring(sc, &sc->mgtq); 405 rt2661_free_rx_ring(sc, &sc->rxq); 406 407 return 0; 408 } 409 410 static int 411 rt2661_alloc_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring, 412 int count) 413 { 414 int i, nsegs, error; 415 416 ring->count = count; 417 ring->queued = 0; 418 ring->cur = ring->next = ring->stat = 0; 419 420 error = bus_dmamap_create(sc->sc_dmat, count * RT2661_TX_DESC_SIZE, 1, 421 count * RT2661_TX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map); 422 if (error != 0) { 423 aprint_error_dev(&sc->sc_dev, "could not create desc DMA map\n"); 424 goto fail; 425 } 426 427 error = bus_dmamem_alloc(sc->sc_dmat, count * RT2661_TX_DESC_SIZE, 428 PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT); 429 if (error != 0) { 430 aprint_error_dev(&sc->sc_dev, "could not allocate DMA memory\n"); 431 goto fail; 432 } 433 434 error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs, 435 count * RT2661_TX_DESC_SIZE, (void **)&ring->desc, 436 BUS_DMA_NOWAIT); 437 if (error != 0) { 438 aprint_error_dev(&sc->sc_dev, "could not map desc DMA memory\n"); 439 goto fail; 440 } 441 442 error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc, 443 count * RT2661_TX_DESC_SIZE, NULL, BUS_DMA_NOWAIT); 444 if (error != 0) { 445 aprint_error_dev(&sc->sc_dev, "could not load desc DMA map\n"); 446 goto fail; 447 } 448 449 memset(ring->desc, 0, count * RT2661_TX_DESC_SIZE); 450 ring->physaddr = ring->map->dm_segs->ds_addr; 451 452 ring->data = malloc(count * sizeof (struct rt2661_tx_data), M_DEVBUF, 453 M_NOWAIT); 454 if (ring->data == NULL) { 455 aprint_error_dev(&sc->sc_dev, "could not allocate soft data\n"); 456 error = ENOMEM; 457 goto fail; 458 } 459 460 memset(ring->data, 0, count * sizeof (struct rt2661_tx_data)); 461 for (i = 0; i < count; i++) { 462 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 463 RT2661_MAX_SCATTER, MCLBYTES, 0, BUS_DMA_NOWAIT, 464 &ring->data[i].map); 465 if (error != 0) { 466 aprint_error_dev(&sc->sc_dev, "could not create DMA map\n"); 467 goto fail; 468 } 469 } 470 471 return 0; 472 473 fail: rt2661_free_tx_ring(sc, ring); 474 return error; 475 } 476 477 static void 478 rt2661_reset_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring) 479 { 480 struct rt2661_tx_desc *desc; 481 struct rt2661_tx_data *data; 482 int i; 483 484 for (i = 0; i < ring->count; i++) { 485 desc = &ring->desc[i]; 486 data = &ring->data[i]; 487 488 if (data->m != NULL) { 489 bus_dmamap_sync(sc->sc_dmat, data->map, 0, 490 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); 491 bus_dmamap_unload(sc->sc_dmat, data->map); 492 m_freem(data->m); 493 data->m = NULL; 494 } 495 496 if (data->ni != NULL) { 497 ieee80211_free_node(data->ni); 498 data->ni = NULL; 499 } 500 501 desc->flags = 0; 502 } 503 504 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize, 505 BUS_DMASYNC_PREWRITE); 506 507 ring->queued = 0; 508 ring->cur = ring->next = ring->stat = 0; 509 } 510 511 512 static void 513 rt2661_free_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring) 514 { 515 struct rt2661_tx_data *data; 516 int i; 517 518 if (ring->desc != NULL) { 519 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, 520 ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); 521 bus_dmamap_unload(sc->sc_dmat, ring->map); 522 bus_dmamem_unmap(sc->sc_dmat, (void *)ring->desc, 523 ring->count * RT2661_TX_DESC_SIZE); 524 bus_dmamem_free(sc->sc_dmat, &ring->seg, 1); 525 } 526 527 if (ring->data != NULL) { 528 for (i = 0; i < ring->count; i++) { 529 data = &ring->data[i]; 530 531 if (data->m != NULL) { 532 bus_dmamap_sync(sc->sc_dmat, data->map, 0, 533 data->map->dm_mapsize, 534 BUS_DMASYNC_POSTWRITE); 535 bus_dmamap_unload(sc->sc_dmat, data->map); 536 m_freem(data->m); 537 } 538 539 if (data->ni != NULL) 540 ieee80211_free_node(data->ni); 541 542 if (data->map != NULL) 543 bus_dmamap_destroy(sc->sc_dmat, data->map); 544 } 545 free(ring->data, M_DEVBUF); 546 } 547 } 548 549 static int 550 rt2661_alloc_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring, 551 int count) 552 { 553 struct rt2661_rx_desc *desc; 554 struct rt2661_rx_data *data; 555 int i, nsegs, error; 556 557 ring->count = count; 558 ring->cur = ring->next = 0; 559 560 error = bus_dmamap_create(sc->sc_dmat, count * RT2661_RX_DESC_SIZE, 1, 561 count * RT2661_RX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map); 562 if (error != 0) { 563 aprint_error_dev(&sc->sc_dev, "could not create desc DMA map\n"); 564 goto fail; 565 } 566 567 error = bus_dmamem_alloc(sc->sc_dmat, count * RT2661_RX_DESC_SIZE, 568 PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT); 569 if (error != 0) { 570 aprint_error_dev(&sc->sc_dev, "could not allocate DMA memory\n"); 571 goto fail; 572 } 573 574 error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs, 575 count * RT2661_RX_DESC_SIZE, (void **)&ring->desc, 576 BUS_DMA_NOWAIT); 577 if (error != 0) { 578 aprint_error_dev(&sc->sc_dev, "could not map desc DMA memory\n"); 579 goto fail; 580 } 581 582 error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc, 583 count * RT2661_RX_DESC_SIZE, NULL, BUS_DMA_NOWAIT); 584 if (error != 0) { 585 aprint_error_dev(&sc->sc_dev, "could not load desc DMA map\n"); 586 goto fail; 587 } 588 589 memset(ring->desc, 0, count * RT2661_RX_DESC_SIZE); 590 ring->physaddr = ring->map->dm_segs->ds_addr; 591 592 ring->data = malloc(count * sizeof (struct rt2661_rx_data), M_DEVBUF, 593 M_NOWAIT); 594 if (ring->data == NULL) { 595 aprint_error_dev(&sc->sc_dev, "could not allocate soft data\n"); 596 error = ENOMEM; 597 goto fail; 598 } 599 600 /* 601 * Pre-allocate Rx buffers and populate Rx ring. 602 */ 603 memset(ring->data, 0, count * sizeof (struct rt2661_rx_data)); 604 for (i = 0; i < count; i++) { 605 desc = &sc->rxq.desc[i]; 606 data = &sc->rxq.data[i]; 607 608 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 609 0, BUS_DMA_NOWAIT, &data->map); 610 if (error != 0) { 611 aprint_error_dev(&sc->sc_dev, "could not create DMA map\n"); 612 goto fail; 613 } 614 615 MGETHDR(data->m, M_DONTWAIT, MT_DATA); 616 if (data->m == NULL) { 617 aprint_error_dev(&sc->sc_dev, "could not allocate rx mbuf\n"); 618 error = ENOMEM; 619 goto fail; 620 } 621 622 MCLGET(data->m, M_DONTWAIT); 623 if (!(data->m->m_flags & M_EXT)) { 624 aprint_error_dev(&sc->sc_dev, "could not allocate rx mbuf cluster\n"); 625 error = ENOMEM; 626 goto fail; 627 } 628 629 error = bus_dmamap_load(sc->sc_dmat, data->map, 630 mtod(data->m, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT); 631 if (error != 0) { 632 aprint_error_dev(&sc->sc_dev, "could not load rx buf DMA map"); 633 goto fail; 634 } 635 636 desc->physaddr = htole32(data->map->dm_segs->ds_addr); 637 desc->flags = htole32(RT2661_RX_BUSY); 638 } 639 640 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize, 641 BUS_DMASYNC_PREWRITE); 642 643 return 0; 644 645 fail: rt2661_free_rx_ring(sc, ring); 646 return error; 647 } 648 649 static void 650 rt2661_reset_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring) 651 { 652 int i; 653 654 for (i = 0; i < ring->count; i++) 655 ring->desc[i].flags = htole32(RT2661_RX_BUSY); 656 657 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize, 658 BUS_DMASYNC_PREWRITE); 659 660 ring->cur = ring->next = 0; 661 } 662 663 static void 664 rt2661_free_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring) 665 { 666 struct rt2661_rx_data *data; 667 int i; 668 669 if (ring->desc != NULL) { 670 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, 671 ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); 672 bus_dmamap_unload(sc->sc_dmat, ring->map); 673 bus_dmamem_unmap(sc->sc_dmat, (void *)ring->desc, 674 ring->count * RT2661_RX_DESC_SIZE); 675 bus_dmamem_free(sc->sc_dmat, &ring->seg, 1); 676 } 677 678 if (ring->data != NULL) { 679 for (i = 0; i < ring->count; i++) { 680 data = &ring->data[i]; 681 682 if (data->m != NULL) { 683 bus_dmamap_sync(sc->sc_dmat, data->map, 0, 684 data->map->dm_mapsize, 685 BUS_DMASYNC_POSTREAD); 686 bus_dmamap_unload(sc->sc_dmat, data->map); 687 m_freem(data->m); 688 } 689 690 if (data->map != NULL) 691 bus_dmamap_destroy(sc->sc_dmat, data->map); 692 } 693 free(ring->data, M_DEVBUF); 694 } 695 } 696 697 static struct ieee80211_node * 698 rt2661_node_alloc(struct ieee80211_node_table *nt) 699 { 700 struct rt2661_node *rn; 701 702 rn = malloc(sizeof (struct rt2661_node), M_80211_NODE, 703 M_NOWAIT | M_ZERO); 704 705 return (rn != NULL) ? &rn->ni : NULL; 706 } 707 708 static int 709 rt2661_media_change(struct ifnet *ifp) 710 { 711 int error; 712 713 error = ieee80211_media_change(ifp); 714 if (error != ENETRESET) 715 return error; 716 717 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) 718 rt2661_init(ifp); 719 720 return 0; 721 } 722 723 /* 724 * This function is called periodically (every 200ms) during scanning to 725 * switch from one channel to another. 726 */ 727 static void 728 rt2661_next_scan(void *arg) 729 { 730 struct rt2661_softc *sc = arg; 731 struct ieee80211com *ic = &sc->sc_ic; 732 int s; 733 734 s = splnet(); 735 if (ic->ic_state == IEEE80211_S_SCAN) 736 ieee80211_next_scan(ic); 737 splx(s); 738 } 739 740 /* 741 * This function is called for each neighbor node. 742 */ 743 static void 744 rt2661_iter_func(void *arg, struct ieee80211_node *ni) 745 { 746 struct rt2661_softc *sc = arg; 747 struct rt2661_node *rn = (struct rt2661_node *)ni; 748 749 ieee80211_amrr_choose(&sc->amrr, ni, &rn->amn); 750 } 751 752 /* 753 * This function is called periodically (every 500ms) in RUN state to update 754 * various settings like rate control statistics or Rx sensitivity. 755 */ 756 static void 757 rt2661_updatestats(void *arg) 758 { 759 struct rt2661_softc *sc = arg; 760 struct ieee80211com *ic = &sc->sc_ic; 761 int s; 762 763 s = splnet(); 764 if (ic->ic_opmode == IEEE80211_M_STA) 765 rt2661_iter_func(sc, ic->ic_bss); 766 else 767 ieee80211_iterate_nodes(&ic->ic_sta, rt2661_iter_func, arg); 768 769 /* update rx sensitivity every 1 sec */ 770 if (++sc->ncalls & 1) 771 rt2661_rx_tune(sc); 772 splx(s); 773 774 callout_reset(&sc->amrr_ch, hz / 2, rt2661_updatestats, sc); 775 } 776 777 static void 778 rt2661_newassoc(struct ieee80211_node *ni, int isnew) 779 { 780 struct rt2661_softc *sc = ni->ni_ic->ic_ifp->if_softc; 781 int i; 782 783 ieee80211_amrr_node_init(&sc->amrr, &((struct rt2661_node *)ni)->amn); 784 785 /* set rate to some reasonable initial value */ 786 for (i = ni->ni_rates.rs_nrates - 1; 787 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72; 788 i--); 789 ni->ni_txrate = i; 790 } 791 792 static int 793 rt2661_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 794 { 795 struct rt2661_softc *sc = ic->ic_ifp->if_softc; 796 enum ieee80211_state ostate; 797 struct ieee80211_node *ni; 798 uint32_t tmp; 799 800 ostate = ic->ic_state; 801 callout_stop(&sc->scan_ch); 802 803 switch (nstate) { 804 case IEEE80211_S_INIT: 805 callout_stop(&sc->amrr_ch); 806 807 if (ostate == IEEE80211_S_RUN) { 808 /* abort TSF synchronization */ 809 tmp = RAL_READ(sc, RT2661_TXRX_CSR9); 810 RAL_WRITE(sc, RT2661_TXRX_CSR9, tmp & ~0x00ffffff); 811 } 812 break; 813 814 case IEEE80211_S_SCAN: 815 rt2661_set_chan(sc, ic->ic_curchan); 816 callout_reset(&sc->scan_ch, hz / 5, rt2661_next_scan, sc); 817 break; 818 819 case IEEE80211_S_AUTH: 820 case IEEE80211_S_ASSOC: 821 rt2661_set_chan(sc, ic->ic_curchan); 822 break; 823 824 case IEEE80211_S_RUN: 825 rt2661_set_chan(sc, ic->ic_curchan); 826 827 ni = ic->ic_bss; 828 829 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 830 rt2661_set_slottime(sc); 831 rt2661_enable_mrr(sc); 832 rt2661_set_txpreamble(sc); 833 rt2661_set_basicrates(sc, &ni->ni_rates); 834 rt2661_set_bssid(sc, ni->ni_bssid); 835 } 836 837 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 838 ic->ic_opmode == IEEE80211_M_IBSS) 839 rt2661_prepare_beacon(sc); 840 841 if (ic->ic_opmode == IEEE80211_M_STA) { 842 /* fake a join to init the tx rate */ 843 rt2661_newassoc(ni, 1); 844 } 845 846 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 847 sc->ncalls = 0; 848 sc->avg_rssi = -95; /* reset EMA */ 849 callout_reset(&sc->amrr_ch, hz / 2, 850 rt2661_updatestats, sc); 851 rt2661_enable_tsf_sync(sc); 852 } 853 break; 854 } 855 856 return sc->sc_newstate(ic, nstate, arg); 857 } 858 859 /* 860 * Read 16 bits at address 'addr' from the serial EEPROM (either 93C46 or 861 * 93C66). 862 */ 863 static uint16_t 864 rt2661_eeprom_read(struct rt2661_softc *sc, uint8_t addr) 865 { 866 uint32_t tmp; 867 uint16_t val; 868 int n; 869 870 /* clock C once before the first command */ 871 RT2661_EEPROM_CTL(sc, 0); 872 873 RT2661_EEPROM_CTL(sc, RT2661_S); 874 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C); 875 RT2661_EEPROM_CTL(sc, RT2661_S); 876 877 /* write start bit (1) */ 878 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D); 879 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D | RT2661_C); 880 881 /* write READ opcode (10) */ 882 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D); 883 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D | RT2661_C); 884 RT2661_EEPROM_CTL(sc, RT2661_S); 885 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C); 886 887 /* write address (A5-A0 or A7-A0) */ 888 n = (RAL_READ(sc, RT2661_E2PROM_CSR) & RT2661_93C46) ? 5 : 7; 889 for (; n >= 0; n--) { 890 RT2661_EEPROM_CTL(sc, RT2661_S | 891 (((addr >> n) & 1) << RT2661_SHIFT_D)); 892 RT2661_EEPROM_CTL(sc, RT2661_S | 893 (((addr >> n) & 1) << RT2661_SHIFT_D) | RT2661_C); 894 } 895 896 RT2661_EEPROM_CTL(sc, RT2661_S); 897 898 /* read data Q15-Q0 */ 899 val = 0; 900 for (n = 15; n >= 0; n--) { 901 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C); 902 tmp = RAL_READ(sc, RT2661_E2PROM_CSR); 903 val |= ((tmp & RT2661_Q) >> RT2661_SHIFT_Q) << n; 904 RT2661_EEPROM_CTL(sc, RT2661_S); 905 } 906 907 RT2661_EEPROM_CTL(sc, 0); 908 909 /* clear Chip Select and clock C */ 910 RT2661_EEPROM_CTL(sc, RT2661_S); 911 RT2661_EEPROM_CTL(sc, 0); 912 RT2661_EEPROM_CTL(sc, RT2661_C); 913 914 return val; 915 } 916 917 static void 918 rt2661_tx_intr(struct rt2661_softc *sc) 919 { 920 struct ifnet *ifp = &sc->sc_if; 921 struct rt2661_tx_ring *txq; 922 struct rt2661_tx_data *data; 923 struct rt2661_node *rn; 924 uint32_t val; 925 int qid, retrycnt; 926 927 for (;;) { 928 val = RAL_READ(sc, RT2661_STA_CSR4); 929 if (!(val & RT2661_TX_STAT_VALID)) 930 break; 931 932 /* retrieve the queue in which this frame was sent */ 933 qid = RT2661_TX_QID(val); 934 txq = (qid <= 3) ? &sc->txq[qid] : &sc->mgtq; 935 936 /* retrieve rate control algorithm context */ 937 data = &txq->data[txq->stat]; 938 rn = (struct rt2661_node *)data->ni; 939 940 /* if no frame has been sent, ignore */ 941 if (rn == NULL) 942 continue; 943 944 switch (RT2661_TX_RESULT(val)) { 945 case RT2661_TX_SUCCESS: 946 retrycnt = RT2661_TX_RETRYCNT(val); 947 948 DPRINTFN(10, ("data frame sent successfully after " 949 "%d retries\n", retrycnt)); 950 rn->amn.amn_txcnt++; 951 if (retrycnt > 0) 952 rn->amn.amn_retrycnt++; 953 ifp->if_opackets++; 954 break; 955 956 case RT2661_TX_RETRY_FAIL: 957 DPRINTFN(9, ("sending data frame failed (too much " 958 "retries)\n")); 959 rn->amn.amn_txcnt++; 960 rn->amn.amn_retrycnt++; 961 ifp->if_oerrors++; 962 break; 963 964 default: 965 /* other failure */ 966 aprint_error_dev(&sc->sc_dev, "sending data frame failed 0x%08x\n", val); 967 ifp->if_oerrors++; 968 } 969 970 ieee80211_free_node(data->ni); 971 data->ni = NULL; 972 973 DPRINTFN(15, ("tx done q=%d idx=%u\n", qid, txq->stat)); 974 975 txq->queued--; 976 if (++txq->stat >= txq->count) /* faster than % count */ 977 txq->stat = 0; 978 } 979 980 sc->sc_tx_timer = 0; 981 ifp->if_flags &= ~IFF_OACTIVE; 982 rt2661_start(ifp); 983 } 984 985 static void 986 rt2661_tx_dma_intr(struct rt2661_softc *sc, struct rt2661_tx_ring *txq) 987 { 988 struct rt2661_tx_desc *desc; 989 struct rt2661_tx_data *data; 990 991 for (;;) { 992 desc = &txq->desc[txq->next]; 993 data = &txq->data[txq->next]; 994 995 bus_dmamap_sync(sc->sc_dmat, txq->map, 996 txq->next * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE, 997 BUS_DMASYNC_POSTREAD); 998 999 if ((le32toh(desc->flags) & RT2661_TX_BUSY) || 1000 !(le32toh(desc->flags) & RT2661_TX_VALID)) 1001 break; 1002 1003 bus_dmamap_sync(sc->sc_dmat, data->map, 0, 1004 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); 1005 bus_dmamap_unload(sc->sc_dmat, data->map); 1006 m_freem(data->m); 1007 data->m = NULL; 1008 /* node reference is released in rt2661_tx_intr() */ 1009 1010 /* descriptor is no longer valid */ 1011 desc->flags &= ~htole32(RT2661_TX_VALID); 1012 1013 bus_dmamap_sync(sc->sc_dmat, txq->map, 1014 txq->next * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE, 1015 BUS_DMASYNC_PREWRITE); 1016 1017 DPRINTFN(15, ("tx dma done q=%p idx=%u\n", txq, txq->next)); 1018 1019 if (++txq->next >= txq->count) /* faster than % count */ 1020 txq->next = 0; 1021 } 1022 } 1023 1024 static void 1025 rt2661_rx_intr(struct rt2661_softc *sc) 1026 { 1027 struct ieee80211com *ic = &sc->sc_ic; 1028 struct ifnet *ifp = &sc->sc_if; 1029 struct rt2661_rx_desc *desc; 1030 struct rt2661_rx_data *data; 1031 struct ieee80211_frame *wh; 1032 struct ieee80211_node *ni; 1033 struct mbuf *mnew, *m; 1034 int error, rssi; 1035 1036 for (;;) { 1037 desc = &sc->rxq.desc[sc->rxq.cur]; 1038 data = &sc->rxq.data[sc->rxq.cur]; 1039 1040 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map, 1041 sc->rxq.cur * RT2661_RX_DESC_SIZE, RT2661_RX_DESC_SIZE, 1042 BUS_DMASYNC_POSTREAD); 1043 1044 if (le32toh(desc->flags) & RT2661_RX_BUSY) 1045 break; 1046 1047 if ((le32toh(desc->flags) & RT2661_RX_PHY_ERROR) || 1048 (le32toh(desc->flags) & RT2661_RX_CRC_ERROR)) { 1049 /* 1050 * This should not happen since we did not request 1051 * to receive those frames when we filled TXRX_CSR0. 1052 */ 1053 DPRINTFN(5, ("PHY or CRC error flags 0x%08x\n", 1054 le32toh(desc->flags))); 1055 ifp->if_ierrors++; 1056 goto skip; 1057 } 1058 1059 if ((le32toh(desc->flags) & RT2661_RX_CIPHER_MASK) != 0) { 1060 ifp->if_ierrors++; 1061 goto skip; 1062 } 1063 1064 /* 1065 * Try to allocate a new mbuf for this ring element and load it 1066 * before processing the current mbuf. If the ring element 1067 * cannot be loaded, drop the received packet and reuse the old 1068 * mbuf. In the unlikely case that the old mbuf can't be 1069 * reloaded either, explicitly panic. 1070 */ 1071 MGETHDR(mnew, M_DONTWAIT, MT_DATA); 1072 if (mnew == NULL) { 1073 ifp->if_ierrors++; 1074 goto skip; 1075 } 1076 1077 MCLGET(mnew, M_DONTWAIT); 1078 if (!(mnew->m_flags & M_EXT)) { 1079 m_freem(mnew); 1080 ifp->if_ierrors++; 1081 goto skip; 1082 } 1083 1084 bus_dmamap_sync(sc->sc_dmat, data->map, 0, 1085 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD); 1086 bus_dmamap_unload(sc->sc_dmat, data->map); 1087 1088 error = bus_dmamap_load(sc->sc_dmat, data->map, 1089 mtod(mnew, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT); 1090 if (error != 0) { 1091 m_freem(mnew); 1092 1093 /* try to reload the old mbuf */ 1094 error = bus_dmamap_load(sc->sc_dmat, data->map, 1095 mtod(data->m, void *), MCLBYTES, NULL, 1096 BUS_DMA_NOWAIT); 1097 if (error != 0) { 1098 /* very unlikely that it will fail... */ 1099 panic("%s: could not load old rx mbuf", 1100 device_xname(&sc->sc_dev)); 1101 } 1102 /* physical address may have changed */ 1103 desc->physaddr = htole32(data->map->dm_segs->ds_addr); 1104 ifp->if_ierrors++; 1105 goto skip; 1106 } 1107 1108 /* 1109 * New mbuf successfully loaded, update Rx ring and continue 1110 * processing. 1111 */ 1112 m = data->m; 1113 data->m = mnew; 1114 desc->physaddr = htole32(data->map->dm_segs->ds_addr); 1115 1116 /* finalize mbuf */ 1117 m->m_pkthdr.rcvif = ifp; 1118 m->m_pkthdr.len = m->m_len = 1119 (le32toh(desc->flags) >> 16) & 0xfff; 1120 1121 #if NBPFILTER > 0 1122 if (sc->sc_drvbpf != NULL) { 1123 struct rt2661_rx_radiotap_header *tap = &sc->sc_rxtap; 1124 uint32_t tsf_lo, tsf_hi; 1125 1126 /* get timestamp (low and high 32 bits) */ 1127 tsf_hi = RAL_READ(sc, RT2661_TXRX_CSR13); 1128 tsf_lo = RAL_READ(sc, RT2661_TXRX_CSR12); 1129 1130 tap->wr_tsf = 1131 htole64(((uint64_t)tsf_hi << 32) | tsf_lo); 1132 tap->wr_flags = 0; 1133 tap->wr_rate = rt2661_rxrate(desc); 1134 tap->wr_chan_freq = htole16(sc->sc_curchan->ic_freq); 1135 tap->wr_chan_flags = htole16(sc->sc_curchan->ic_flags); 1136 tap->wr_antsignal = desc->rssi; 1137 1138 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m); 1139 } 1140 #endif 1141 1142 wh = mtod(m, struct ieee80211_frame *); 1143 ni = ieee80211_find_rxnode(ic, 1144 (struct ieee80211_frame_min *)wh); 1145 1146 /* send the frame to the 802.11 layer */ 1147 ieee80211_input(ic, m, ni, desc->rssi, 0); 1148 1149 /*- 1150 * Keep track of the average RSSI using an Exponential Moving 1151 * Average (EMA) of 8 Wilder's days: 1152 * avg = (1 / N) x rssi + ((N - 1) / N) x avg 1153 */ 1154 rssi = rt2661_get_rssi(sc, desc->rssi); 1155 sc->avg_rssi = (rssi + 7 * sc->avg_rssi) / 8; 1156 1157 /* node is no longer needed */ 1158 ieee80211_free_node(ni); 1159 1160 skip: desc->flags |= htole32(RT2661_RX_BUSY); 1161 1162 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map, 1163 sc->rxq.cur * RT2661_RX_DESC_SIZE, RT2661_RX_DESC_SIZE, 1164 BUS_DMASYNC_PREWRITE); 1165 1166 DPRINTFN(16, ("rx intr idx=%u\n", sc->rxq.cur)); 1167 1168 sc->rxq.cur = (sc->rxq.cur + 1) % RT2661_RX_RING_COUNT; 1169 } 1170 1171 /* 1172 * In HostAP mode, ieee80211_input() will enqueue packets in if_snd 1173 * without calling if_start(). 1174 */ 1175 if (!IFQ_IS_EMPTY(&ifp->if_snd) && !(ifp->if_flags & IFF_OACTIVE)) 1176 rt2661_start(ifp); 1177 } 1178 1179 /* 1180 * This function is called in HostAP or IBSS modes when it's time to send a 1181 * new beacon (every ni_intval milliseconds). 1182 */ 1183 static void 1184 rt2661_mcu_beacon_expire(struct rt2661_softc *sc) 1185 { 1186 struct ieee80211com *ic = &sc->sc_ic; 1187 1188 if (sc->sc_flags & RT2661_UPDATE_SLOT) { 1189 sc->sc_flags &= ~RT2661_UPDATE_SLOT; 1190 sc->sc_flags |= RT2661_SET_SLOTTIME; 1191 } else if (sc->sc_flags & RT2661_SET_SLOTTIME) { 1192 sc->sc_flags &= ~RT2661_SET_SLOTTIME; 1193 rt2661_set_slottime(sc); 1194 } 1195 1196 if (ic->ic_curmode == IEEE80211_MODE_11G) { 1197 /* update ERP Information Element */ 1198 RAL_WRITE_1(sc, sc->erp_csr, ic->ic_bss->ni_erp); 1199 RAL_RW_BARRIER_1(sc, sc->erp_csr); 1200 } 1201 1202 DPRINTFN(15, ("beacon expired\n")); 1203 } 1204 1205 static void 1206 rt2661_mcu_wakeup(struct rt2661_softc *sc) 1207 { 1208 RAL_WRITE(sc, RT2661_MAC_CSR11, 5 << 16); 1209 1210 RAL_WRITE(sc, RT2661_SOFT_RESET_CSR, 0x7); 1211 RAL_WRITE(sc, RT2661_IO_CNTL_CSR, 0x18); 1212 RAL_WRITE(sc, RT2661_PCI_USEC_CSR, 0x20); 1213 1214 /* send wakeup command to MCU */ 1215 rt2661_tx_cmd(sc, RT2661_MCU_CMD_WAKEUP, 0); 1216 } 1217 1218 static void 1219 rt2661_mcu_cmd_intr(struct rt2661_softc *sc) 1220 { 1221 RAL_READ(sc, RT2661_M2H_CMD_DONE_CSR); 1222 RAL_WRITE(sc, RT2661_M2H_CMD_DONE_CSR, 0xffffffff); 1223 } 1224 1225 int 1226 rt2661_intr(void *arg) 1227 { 1228 struct rt2661_softc *sc = arg; 1229 struct ifnet *ifp = &sc->sc_if; 1230 uint32_t r1, r2; 1231 int rv = 0; 1232 1233 /* don't re-enable interrupts if we're shutting down */ 1234 if (!(ifp->if_flags & IFF_RUNNING)) { 1235 /* disable MAC and MCU interrupts */ 1236 RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0xffffff7f); 1237 RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0xffffffff); 1238 return 0; 1239 } 1240 1241 for (;;) { 1242 r1 = RAL_READ(sc, RT2661_INT_SOURCE_CSR); 1243 r2 = RAL_READ(sc, RT2661_MCU_INT_SOURCE_CSR); 1244 1245 if ((r1 & RT2661_INT_CSR_ALL) == 0 && 1246 (r2 & RT2661_MCU_INT_ALL) == 0) 1247 break; 1248 1249 RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, r1); 1250 RAL_WRITE(sc, RT2661_MCU_INT_SOURCE_CSR, r2); 1251 1252 rv = 1; 1253 1254 if (r1 & RT2661_MGT_DONE) 1255 rt2661_tx_dma_intr(sc, &sc->mgtq); 1256 1257 if (r1 & RT2661_RX_DONE) 1258 rt2661_rx_intr(sc); 1259 1260 if (r1 & RT2661_TX0_DMA_DONE) 1261 rt2661_tx_dma_intr(sc, &sc->txq[0]); 1262 1263 if (r1 & RT2661_TX1_DMA_DONE) 1264 rt2661_tx_dma_intr(sc, &sc->txq[1]); 1265 1266 if (r1 & RT2661_TX2_DMA_DONE) 1267 rt2661_tx_dma_intr(sc, &sc->txq[2]); 1268 1269 if (r1 & RT2661_TX3_DMA_DONE) 1270 rt2661_tx_dma_intr(sc, &sc->txq[3]); 1271 1272 if (r1 & RT2661_TX_DONE) 1273 rt2661_tx_intr(sc); 1274 1275 if (r2 & RT2661_MCU_CMD_DONE) 1276 rt2661_mcu_cmd_intr(sc); 1277 1278 if (r2 & RT2661_MCU_BEACON_EXPIRE) 1279 rt2661_mcu_beacon_expire(sc); 1280 1281 if (r2 & RT2661_MCU_WAKEUP) 1282 rt2661_mcu_wakeup(sc); 1283 } 1284 1285 return rv; 1286 } 1287 1288 /* quickly determine if a given rate is CCK or OFDM */ 1289 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22) 1290 1291 #define RAL_ACK_SIZE 14 /* 10 + 4(FCS) */ 1292 #define RAL_CTS_SIZE 14 /* 10 + 4(FCS) */ 1293 1294 /* 1295 * This function is only used by the Rx radiotap code. It returns the rate at 1296 * which a given frame was received. 1297 */ 1298 #if NBPFILTER > 0 1299 static uint8_t 1300 rt2661_rxrate(struct rt2661_rx_desc *desc) 1301 { 1302 if (le32toh(desc->flags) & RT2661_RX_OFDM) { 1303 /* reverse function of rt2661_plcp_signal */ 1304 switch (desc->rate & 0xf) { 1305 case 0xb: return 12; 1306 case 0xf: return 18; 1307 case 0xa: return 24; 1308 case 0xe: return 36; 1309 case 0x9: return 48; 1310 case 0xd: return 72; 1311 case 0x8: return 96; 1312 case 0xc: return 108; 1313 } 1314 } else { 1315 if (desc->rate == 10) 1316 return 2; 1317 if (desc->rate == 20) 1318 return 4; 1319 if (desc->rate == 55) 1320 return 11; 1321 if (desc->rate == 110) 1322 return 22; 1323 } 1324 return 2; /* should not get there */ 1325 } 1326 #endif 1327 1328 /* 1329 * Return the expected ack rate for a frame transmitted at rate `rate'. 1330 * XXX: this should depend on the destination node basic rate set. 1331 */ 1332 static int 1333 rt2661_ack_rate(struct ieee80211com *ic, int rate) 1334 { 1335 switch (rate) { 1336 /* CCK rates */ 1337 case 2: 1338 return 2; 1339 case 4: 1340 case 11: 1341 case 22: 1342 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate; 1343 1344 /* OFDM rates */ 1345 case 12: 1346 case 18: 1347 return 12; 1348 case 24: 1349 case 36: 1350 return 24; 1351 case 48: 1352 case 72: 1353 case 96: 1354 case 108: 1355 return 48; 1356 } 1357 1358 /* default to 1Mbps */ 1359 return 2; 1360 } 1361 1362 /* 1363 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'. 1364 * The function automatically determines the operating mode depending on the 1365 * given rate. `flags' indicates whether short preamble is in use or not. 1366 */ 1367 static uint16_t 1368 rt2661_txtime(int len, int rate, uint32_t flags) 1369 { 1370 uint16_t txtime; 1371 1372 if (RAL_RATE_IS_OFDM(rate)) { 1373 /* IEEE Std 802.11g-2003, pp. 44 */ 1374 txtime = (8 + 4 * len + 3 + rate - 1) / rate; 1375 txtime = 16 + 4 + 4 * txtime + 6; 1376 } else { 1377 /* IEEE Std 802.11b-1999, pp. 28 */ 1378 txtime = (16 * len + rate - 1) / rate; 1379 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE)) 1380 txtime += 72 + 24; 1381 else 1382 txtime += 144 + 48; 1383 } 1384 return txtime; 1385 } 1386 1387 static uint8_t 1388 rt2661_plcp_signal(int rate) 1389 { 1390 switch (rate) { 1391 /* CCK rates (returned values are device-dependent) */ 1392 case 2: return 0x0; 1393 case 4: return 0x1; 1394 case 11: return 0x2; 1395 case 22: return 0x3; 1396 1397 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 1398 case 12: return 0xb; 1399 case 18: return 0xf; 1400 case 24: return 0xa; 1401 case 36: return 0xe; 1402 case 48: return 0x9; 1403 case 72: return 0xd; 1404 case 96: return 0x8; 1405 case 108: return 0xc; 1406 1407 /* unsupported rates (should not get there) */ 1408 default: return 0xff; 1409 } 1410 } 1411 1412 static void 1413 rt2661_setup_tx_desc(struct rt2661_softc *sc, struct rt2661_tx_desc *desc, 1414 uint32_t flags, uint16_t xflags, int len, int rate, 1415 const bus_dma_segment_t *segs, int nsegs, int ac) 1416 { 1417 struct ieee80211com *ic = &sc->sc_ic; 1418 uint16_t plcp_length; 1419 int i, remainder; 1420 1421 desc->flags = htole32(flags); 1422 desc->flags |= htole32(len << 16); 1423 1424 desc->xflags = htole16(xflags); 1425 desc->xflags |= htole16(nsegs << 13); 1426 1427 desc->wme = htole16( 1428 RT2661_QID(ac) | 1429 RT2661_AIFSN(2) | 1430 RT2661_LOGCWMIN(4) | 1431 RT2661_LOGCWMAX(10)); 1432 1433 /* 1434 * Remember in which queue this frame was sent. This field is driver 1435 * private data only. It will be made available by the NIC in STA_CSR4 1436 * on Tx interrupts. 1437 */ 1438 desc->qid = ac; 1439 1440 /* setup PLCP fields */ 1441 desc->plcp_signal = rt2661_plcp_signal(rate); 1442 desc->plcp_service = 4; 1443 1444 len += IEEE80211_CRC_LEN; 1445 if (RAL_RATE_IS_OFDM(rate)) { 1446 desc->flags |= htole32(RT2661_TX_OFDM); 1447 1448 plcp_length = len & 0xfff; 1449 desc->plcp_length_hi = plcp_length >> 6; 1450 desc->plcp_length_lo = plcp_length & 0x3f; 1451 } else { 1452 plcp_length = (16 * len + rate - 1) / rate; 1453 if (rate == 22) { 1454 remainder = (16 * len) % 22; 1455 if (remainder != 0 && remainder < 7) 1456 desc->plcp_service |= RT2661_PLCP_LENGEXT; 1457 } 1458 desc->plcp_length_hi = plcp_length >> 8; 1459 desc->plcp_length_lo = plcp_length & 0xff; 1460 1461 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 1462 desc->plcp_signal |= 0x08; 1463 } 1464 1465 /* RT2x61 supports scatter with up to 5 segments */ 1466 for (i = 0; i < nsegs; i++) { 1467 desc->addr[i] = htole32(segs[i].ds_addr); 1468 desc->len [i] = htole16(segs[i].ds_len); 1469 } 1470 1471 desc->flags |= htole32(RT2661_TX_BUSY | RT2661_TX_VALID); 1472 } 1473 1474 static int 1475 rt2661_tx_mgt(struct rt2661_softc *sc, struct mbuf *m0, 1476 struct ieee80211_node *ni) 1477 { 1478 struct ieee80211com *ic = &sc->sc_ic; 1479 struct rt2661_tx_desc *desc; 1480 struct rt2661_tx_data *data; 1481 struct ieee80211_frame *wh; 1482 uint16_t dur; 1483 uint32_t flags = 0; 1484 int rate, error; 1485 1486 desc = &sc->mgtq.desc[sc->mgtq.cur]; 1487 data = &sc->mgtq.data[sc->mgtq.cur]; 1488 1489 /* send mgt frames at the lowest available rate */ 1490 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2; 1491 1492 wh = mtod(m0, struct ieee80211_frame *); 1493 1494 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1495 if (ieee80211_crypto_encap(ic, ni, m0) == NULL) { 1496 m_freem(m0); 1497 return ENOBUFS; 1498 } 1499 1500 /* packet header may have moved, reset our local pointer */ 1501 wh = mtod(m0, struct ieee80211_frame *); 1502 } 1503 1504 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0, 1505 BUS_DMA_NOWAIT); 1506 if (error != 0) { 1507 aprint_error_dev(&sc->sc_dev, "could not map mbuf (error %d)\n", 1508 error); 1509 m_freem(m0); 1510 return error; 1511 } 1512 1513 #if NBPFILTER > 0 1514 if (sc->sc_drvbpf != NULL) { 1515 struct rt2661_tx_radiotap_header *tap = &sc->sc_txtap; 1516 1517 tap->wt_flags = 0; 1518 tap->wt_rate = rate; 1519 tap->wt_chan_freq = htole16(sc->sc_curchan->ic_freq); 1520 tap->wt_chan_flags = htole16(sc->sc_curchan->ic_flags); 1521 1522 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0); 1523 } 1524 #endif 1525 1526 data->m = m0; 1527 data->ni = ni; 1528 1529 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1530 flags |= RT2661_TX_NEED_ACK; 1531 1532 dur = rt2661_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) + 1533 sc->sifs; 1534 *(uint16_t *)wh->i_dur = htole16(dur); 1535 1536 /* tell hardware to set timestamp in probe responses */ 1537 if ((wh->i_fc[0] & 1538 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 1539 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP)) 1540 flags |= RT2661_TX_TIMESTAMP; 1541 } 1542 1543 rt2661_setup_tx_desc(sc, desc, flags, 0 /* XXX HWSEQ */, 1544 m0->m_pkthdr.len, rate, data->map->dm_segs, data->map->dm_nsegs, 1545 RT2661_QID_MGT); 1546 1547 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, 1548 BUS_DMASYNC_PREWRITE); 1549 bus_dmamap_sync(sc->sc_dmat, sc->mgtq.map, 1550 sc->mgtq.cur * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE, 1551 BUS_DMASYNC_PREWRITE); 1552 1553 DPRINTFN(10, ("sending mgt frame len=%u idx=%u rate=%u\n", 1554 m0->m_pkthdr.len, sc->mgtq.cur, rate)); 1555 1556 /* kick mgt */ 1557 sc->mgtq.queued++; 1558 sc->mgtq.cur = (sc->mgtq.cur + 1) % RT2661_MGT_RING_COUNT; 1559 RAL_WRITE(sc, RT2661_TX_CNTL_CSR, RT2661_KICK_MGT); 1560 1561 return 0; 1562 } 1563 1564 /* 1565 * Build a RTS control frame. 1566 */ 1567 static struct mbuf * 1568 rt2661_get_rts(struct rt2661_softc *sc, struct ieee80211_frame *wh, 1569 uint16_t dur) 1570 { 1571 struct ieee80211_frame_rts *rts; 1572 struct mbuf *m; 1573 1574 MGETHDR(m, M_DONTWAIT, MT_DATA); 1575 if (m == NULL) { 1576 sc->sc_ic.ic_stats.is_tx_nobuf++; 1577 aprint_error_dev(&sc->sc_dev, "could not allocate RTS frame\n"); 1578 return NULL; 1579 } 1580 1581 rts = mtod(m, struct ieee80211_frame_rts *); 1582 1583 rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL | 1584 IEEE80211_FC0_SUBTYPE_RTS; 1585 rts->i_fc[1] = IEEE80211_FC1_DIR_NODS; 1586 *(uint16_t *)rts->i_dur = htole16(dur); 1587 IEEE80211_ADDR_COPY(rts->i_ra, wh->i_addr1); 1588 IEEE80211_ADDR_COPY(rts->i_ta, wh->i_addr2); 1589 1590 m->m_pkthdr.len = m->m_len = sizeof (struct ieee80211_frame_rts); 1591 1592 return m; 1593 } 1594 1595 static int 1596 rt2661_tx_data(struct rt2661_softc *sc, struct mbuf *m0, 1597 struct ieee80211_node *ni, int ac) 1598 { 1599 struct ieee80211com *ic = &sc->sc_ic; 1600 struct rt2661_tx_ring *txq = &sc->txq[ac]; 1601 struct rt2661_tx_desc *desc; 1602 struct rt2661_tx_data *data; 1603 struct ieee80211_frame *wh; 1604 struct ieee80211_key *k; 1605 struct mbuf *mnew; 1606 uint16_t dur; 1607 uint32_t flags = 0; 1608 int rate, useprot, error, tid; 1609 1610 wh = mtod(m0, struct ieee80211_frame *); 1611 1612 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) { 1613 rate = ic->ic_sup_rates[ic->ic_curmode]. 1614 rs_rates[ic->ic_fixed_rate]; 1615 } else 1616 rate = ni->ni_rates.rs_rates[ni->ni_txrate]; 1617 rate &= IEEE80211_RATE_VAL; 1618 if (rate == 0) 1619 rate = 2; /* XXX should not happen */ 1620 1621 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1622 k = ieee80211_crypto_encap(ic, ni, m0); 1623 if (k == NULL) { 1624 m_freem(m0); 1625 return ENOBUFS; 1626 } 1627 1628 /* packet header may have moved, reset our local pointer */ 1629 wh = mtod(m0, struct ieee80211_frame *); 1630 } 1631 1632 /* 1633 * Packet Bursting: backoff after ppb=8 frames to give other STAs a 1634 * chance to contend for the wireless medium. 1635 */ 1636 tid = WME_AC_TO_TID(M_WME_GETAC(m0)); 1637 if (ic->ic_opmode == IEEE80211_M_STA && (ni->ni_txseqs[tid] & 7)) 1638 flags |= RT2661_TX_IFS_SIFS; 1639 1640 /* 1641 * IEEE Std 802.11-1999, pp 82: "A STA shall use an RTS/CTS exchange 1642 * for directed frames only when the length of the MPDU is greater 1643 * than the length threshold indicated by" ic_rtsthreshold. 1644 * 1645 * IEEE Std 802.11-2003g, pp 13: "ERP STAs shall use protection 1646 * mechanism (such as RTS/CTS or CTS-to-self) for ERP-OFDM MPDUs of 1647 * type Data or an MMPDU". 1648 */ 1649 useprot = !IEEE80211_IS_MULTICAST(wh->i_addr1) && 1650 (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold || 1651 ((ic->ic_flags & IEEE80211_F_USEPROT) && RAL_RATE_IS_OFDM(rate))); 1652 if (useprot) { 1653 struct mbuf *m; 1654 int rtsrate, ackrate; 1655 1656 rtsrate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2; 1657 ackrate = rt2661_ack_rate(ic, rate); 1658 1659 dur = rt2661_txtime(m0->m_pkthdr.len + 4, rate, ic->ic_flags) + 1660 rt2661_txtime(RAL_CTS_SIZE, rtsrate, ic->ic_flags) + 1661 rt2661_txtime(RAL_ACK_SIZE, ackrate, ic->ic_flags) + 1662 3 * sc->sifs; 1663 1664 m = rt2661_get_rts(sc, wh, dur); 1665 if (m == NULL) { 1666 aprint_error_dev(&sc->sc_dev, "could not allocate RTS " 1667 "frame\n"); 1668 m_freem(m0); 1669 return ENOBUFS; 1670 } 1671 1672 desc = &txq->desc[txq->cur]; 1673 data = &txq->data[txq->cur]; 1674 1675 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m, 1676 BUS_DMA_NOWAIT); 1677 if (error != 0) { 1678 aprint_error_dev(&sc->sc_dev, "could not map mbuf (error %d)\n", error); 1679 m_freem(m); 1680 m_freem(m0); 1681 return error; 1682 } 1683 1684 /* avoid multiple free() of the same node for each fragment */ 1685 ieee80211_ref_node(ni); 1686 1687 data->m = m; 1688 data->ni = ni; 1689 1690 rt2661_setup_tx_desc(sc, desc, RT2661_TX_NEED_ACK | 1691 RT2661_TX_MORE_FRAG, 0, m->m_pkthdr.len, rtsrate, 1692 data->map->dm_segs, data->map->dm_nsegs, ac); 1693 1694 bus_dmamap_sync(sc->sc_dmat, data->map, 0, 1695 data->map->dm_mapsize, BUS_DMASYNC_PREWRITE); 1696 bus_dmamap_sync(sc->sc_dmat, txq->map, 1697 txq->cur * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE, 1698 BUS_DMASYNC_PREWRITE); 1699 1700 txq->queued++; 1701 txq->cur = (txq->cur + 1) % RT2661_TX_RING_COUNT; 1702 1703 flags |= RT2661_TX_LONG_RETRY | RT2661_TX_IFS_SIFS; 1704 } 1705 1706 data = &txq->data[txq->cur]; 1707 desc = &txq->desc[txq->cur]; 1708 1709 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0, 1710 BUS_DMA_NOWAIT); 1711 if (error != 0 && error != EFBIG) { 1712 aprint_error_dev(&sc->sc_dev, "could not map mbuf (error %d)\n", 1713 error); 1714 m_freem(m0); 1715 return error; 1716 } 1717 if (error != 0) { 1718 /* too many fragments, linearize */ 1719 1720 MGETHDR(mnew, M_DONTWAIT, MT_DATA); 1721 if (mnew == NULL) { 1722 m_freem(m0); 1723 return ENOMEM; 1724 } 1725 1726 M_COPY_PKTHDR(mnew, m0); 1727 if (m0->m_pkthdr.len > MHLEN) { 1728 MCLGET(mnew, M_DONTWAIT); 1729 if (!(mnew->m_flags & M_EXT)) { 1730 m_freem(m0); 1731 m_freem(mnew); 1732 return ENOMEM; 1733 } 1734 } 1735 1736 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *)); 1737 m_freem(m0); 1738 mnew->m_len = mnew->m_pkthdr.len; 1739 m0 = mnew; 1740 1741 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0, 1742 BUS_DMA_NOWAIT); 1743 if (error != 0) { 1744 aprint_error_dev(&sc->sc_dev, "could not map mbuf (error %d)\n", error); 1745 m_freem(m0); 1746 return error; 1747 } 1748 1749 /* packet header have moved, reset our local pointer */ 1750 wh = mtod(m0, struct ieee80211_frame *); 1751 } 1752 1753 #if NBPFILTER > 0 1754 if (sc->sc_drvbpf != NULL) { 1755 struct rt2661_tx_radiotap_header *tap = &sc->sc_txtap; 1756 1757 tap->wt_flags = 0; 1758 tap->wt_rate = rate; 1759 tap->wt_chan_freq = htole16(sc->sc_curchan->ic_freq); 1760 tap->wt_chan_flags = htole16(sc->sc_curchan->ic_flags); 1761 1762 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0); 1763 } 1764 #endif 1765 1766 data->m = m0; 1767 data->ni = ni; 1768 1769 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1770 flags |= RT2661_TX_NEED_ACK; 1771 1772 dur = rt2661_txtime(RAL_ACK_SIZE, rt2661_ack_rate(ic, rate), 1773 ic->ic_flags) + sc->sifs; 1774 *(uint16_t *)wh->i_dur = htole16(dur); 1775 } 1776 1777 rt2661_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate, 1778 data->map->dm_segs, data->map->dm_nsegs, ac); 1779 1780 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, 1781 BUS_DMASYNC_PREWRITE); 1782 bus_dmamap_sync(sc->sc_dmat, txq->map, txq->cur * RT2661_TX_DESC_SIZE, 1783 RT2661_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE); 1784 1785 DPRINTFN(10, ("sending data frame len=%u idx=%u rate=%u\n", 1786 m0->m_pkthdr.len, txq->cur, rate)); 1787 1788 /* kick Tx */ 1789 txq->queued++; 1790 txq->cur = (txq->cur + 1) % RT2661_TX_RING_COUNT; 1791 RAL_WRITE(sc, RT2661_TX_CNTL_CSR, 1); 1792 1793 return 0; 1794 } 1795 1796 static void 1797 rt2661_start(struct ifnet *ifp) 1798 { 1799 struct rt2661_softc *sc = ifp->if_softc; 1800 struct ieee80211com *ic = &sc->sc_ic; 1801 struct mbuf *m0; 1802 struct ether_header *eh; 1803 struct ieee80211_node *ni = NULL; 1804 1805 /* 1806 * net80211 may still try to send management frames even if the 1807 * IFF_RUNNING flag is not set... 1808 */ 1809 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) 1810 return; 1811 1812 for (;;) { 1813 IF_POLL(&ic->ic_mgtq, m0); 1814 if (m0 != NULL) { 1815 if (sc->mgtq.queued >= RT2661_MGT_RING_COUNT) { 1816 ifp->if_flags |= IFF_OACTIVE; 1817 break; 1818 } 1819 IF_DEQUEUE(&ic->ic_mgtq, m0); 1820 if (m0 == NULL) 1821 break; 1822 1823 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif; 1824 m0->m_pkthdr.rcvif = NULL; 1825 #if NBPFILTER > 0 1826 if (ic->ic_rawbpf != NULL) 1827 bpf_mtap(ic->ic_rawbpf, m0); 1828 #endif 1829 if (rt2661_tx_mgt(sc, m0, ni) != 0) 1830 break; 1831 1832 } else { 1833 IF_POLL(&ifp->if_snd, m0); 1834 if (m0 == NULL || ic->ic_state != IEEE80211_S_RUN) 1835 break; 1836 1837 if (sc->txq[0].queued >= RT2661_TX_RING_COUNT - 1) { 1838 /* there is no place left in this ring */ 1839 ifp->if_flags |= IFF_OACTIVE; 1840 break; 1841 } 1842 1843 IFQ_DEQUEUE(&ifp->if_snd, m0); 1844 1845 if (m0->m_len < sizeof (struct ether_header) && 1846 !(m0 = m_pullup(m0, sizeof (struct ether_header)))) 1847 continue; 1848 1849 eh = mtod(m0, struct ether_header *); 1850 ni = ieee80211_find_txnode(ic, eh->ether_dhost); 1851 if (ni == NULL) { 1852 m_freem(m0); 1853 ifp->if_oerrors++; 1854 continue; 1855 } 1856 1857 #if NBPFILTER > 0 1858 if (ifp->if_bpf != NULL) 1859 bpf_mtap(ifp->if_bpf, m0); 1860 #endif 1861 m0 = ieee80211_encap(ic, m0, ni); 1862 if (m0 == NULL) { 1863 ieee80211_free_node(ni); 1864 ifp->if_oerrors++; 1865 continue; 1866 } 1867 #if NBPFILTER > 0 1868 if (ic->ic_rawbpf != NULL) 1869 bpf_mtap(ic->ic_rawbpf, m0); 1870 #endif 1871 if (rt2661_tx_data(sc, m0, ni, 0) != 0) { 1872 if (ni != NULL) 1873 ieee80211_free_node(ni); 1874 ifp->if_oerrors++; 1875 break; 1876 } 1877 } 1878 1879 sc->sc_tx_timer = 5; 1880 ifp->if_timer = 1; 1881 } 1882 } 1883 1884 static void 1885 rt2661_watchdog(struct ifnet *ifp) 1886 { 1887 struct rt2661_softc *sc = ifp->if_softc; 1888 1889 ifp->if_timer = 0; 1890 1891 if (sc->sc_tx_timer > 0) { 1892 if (--sc->sc_tx_timer == 0) { 1893 aprint_error_dev(&sc->sc_dev, "device timeout\n"); 1894 rt2661_init(ifp); 1895 ifp->if_oerrors++; 1896 return; 1897 } 1898 ifp->if_timer = 1; 1899 } 1900 1901 ieee80211_watchdog(&sc->sc_ic); 1902 } 1903 1904 /* 1905 * This function allows for fast channel switching in monitor mode (used by 1906 * kismet). In IBSS mode, we must explicitly reset the interface to 1907 * generate a new beacon frame. 1908 */ 1909 static int 1910 rt2661_reset(struct ifnet *ifp) 1911 { 1912 struct rt2661_softc *sc = ifp->if_softc; 1913 struct ieee80211com *ic = &sc->sc_ic; 1914 1915 if (ic->ic_opmode != IEEE80211_M_MONITOR) 1916 return ENETRESET; 1917 1918 rt2661_set_chan(sc, ic->ic_curchan); 1919 1920 return 0; 1921 } 1922 1923 static int 1924 rt2661_ioctl(struct ifnet *ifp, u_long cmd, void *data) 1925 { 1926 struct rt2661_softc *sc = ifp->if_softc; 1927 struct ieee80211com *ic = &sc->sc_ic; 1928 int s, error = 0; 1929 1930 s = splnet(); 1931 1932 switch (cmd) { 1933 case SIOCSIFFLAGS: 1934 if (ifp->if_flags & IFF_UP) { 1935 if (ifp->if_flags & IFF_RUNNING) 1936 rt2661_update_promisc(sc); 1937 else 1938 rt2661_init(ifp); 1939 } else { 1940 if (ifp->if_flags & IFF_RUNNING) 1941 rt2661_stop(ifp, 1); 1942 } 1943 break; 1944 1945 case SIOCADDMULTI: 1946 case SIOCDELMULTI: 1947 /* XXX no h/w multicast filter? --dyoung */ 1948 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) 1949 error = 0; 1950 break; 1951 1952 case SIOCS80211CHANNEL: 1953 /* 1954 * This allows for fast channel switching in monitor mode 1955 * (used by kismet). In IBSS mode, we must explicitly reset 1956 * the interface to generate a new beacon frame. 1957 */ 1958 error = ieee80211_ioctl(ic, cmd, data); 1959 if (error == ENETRESET && 1960 ic->ic_opmode == IEEE80211_M_MONITOR) { 1961 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == 1962 (IFF_UP | IFF_RUNNING)) 1963 rt2661_set_chan(sc, ic->ic_ibss_chan); 1964 error = 0; 1965 } 1966 break; 1967 1968 default: 1969 error = ieee80211_ioctl(ic, cmd, data); 1970 1971 } 1972 1973 if (error == ENETRESET) { 1974 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == 1975 (IFF_UP | IFF_RUNNING)) 1976 rt2661_init(ifp); 1977 error = 0; 1978 } 1979 1980 splx(s); 1981 1982 return error; 1983 } 1984 1985 static void 1986 rt2661_bbp_write(struct rt2661_softc *sc, uint8_t reg, uint8_t val) 1987 { 1988 uint32_t tmp; 1989 int ntries; 1990 1991 for (ntries = 0; ntries < 100; ntries++) { 1992 if (!(RAL_READ(sc, RT2661_PHY_CSR3) & RT2661_BBP_BUSY)) 1993 break; 1994 DELAY(1); 1995 } 1996 if (ntries == 100) { 1997 aprint_error_dev(&sc->sc_dev, "could not write to BBP\n"); 1998 return; 1999 } 2000 2001 tmp = RT2661_BBP_BUSY | (reg & 0x7f) << 8 | val; 2002 RAL_WRITE(sc, RT2661_PHY_CSR3, tmp); 2003 2004 DPRINTFN(15, ("BBP R%u <- 0x%02x\n", reg, val)); 2005 } 2006 2007 static uint8_t 2008 rt2661_bbp_read(struct rt2661_softc *sc, uint8_t reg) 2009 { 2010 uint32_t val; 2011 int ntries; 2012 2013 for (ntries = 0; ntries < 100; ntries++) { 2014 if (!(RAL_READ(sc, RT2661_PHY_CSR3) & RT2661_BBP_BUSY)) 2015 break; 2016 DELAY(1); 2017 } 2018 if (ntries == 100) { 2019 aprint_error_dev(&sc->sc_dev, "could not read from BBP\n"); 2020 return 0; 2021 } 2022 2023 val = RT2661_BBP_BUSY | RT2661_BBP_READ | reg << 8; 2024 RAL_WRITE(sc, RT2661_PHY_CSR3, val); 2025 2026 for (ntries = 0; ntries < 100; ntries++) { 2027 val = RAL_READ(sc, RT2661_PHY_CSR3); 2028 if (!(val & RT2661_BBP_BUSY)) 2029 return val & 0xff; 2030 DELAY(1); 2031 } 2032 2033 aprint_error_dev(&sc->sc_dev, "could not read from BBP\n"); 2034 return 0; 2035 } 2036 2037 static void 2038 rt2661_rf_write(struct rt2661_softc *sc, uint8_t reg, uint32_t val) 2039 { 2040 uint32_t tmp; 2041 int ntries; 2042 2043 for (ntries = 0; ntries < 100; ntries++) { 2044 if (!(RAL_READ(sc, RT2661_PHY_CSR4) & RT2661_RF_BUSY)) 2045 break; 2046 DELAY(1); 2047 } 2048 if (ntries == 100) { 2049 aprint_error_dev(&sc->sc_dev, "could not write to RF\n"); 2050 return; 2051 } 2052 tmp = RT2661_RF_BUSY | RT2661_RF_21BIT | (val & 0x1fffff) << 2 | 2053 (reg & 3); 2054 RAL_WRITE(sc, RT2661_PHY_CSR4, tmp); 2055 2056 /* remember last written value in sc */ 2057 sc->rf_regs[reg] = val; 2058 2059 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0x1fffff)); 2060 } 2061 2062 static int 2063 rt2661_tx_cmd(struct rt2661_softc *sc, uint8_t cmd, uint16_t arg) 2064 { 2065 if (RAL_READ(sc, RT2661_H2M_MAILBOX_CSR) & RT2661_H2M_BUSY) 2066 return EIO; /* there is already a command pending */ 2067 2068 RAL_WRITE(sc, RT2661_H2M_MAILBOX_CSR, 2069 RT2661_H2M_BUSY | RT2661_TOKEN_NO_INTR << 16 | arg); 2070 2071 RAL_WRITE(sc, RT2661_HOST_CMD_CSR, RT2661_KICK_CMD | cmd); 2072 2073 return 0; 2074 } 2075 2076 static void 2077 rt2661_select_antenna(struct rt2661_softc *sc) 2078 { 2079 uint8_t bbp4, bbp77; 2080 uint32_t tmp; 2081 2082 bbp4 = rt2661_bbp_read(sc, 4); 2083 bbp77 = rt2661_bbp_read(sc, 77); 2084 2085 /* TBD */ 2086 2087 /* make sure Rx is disabled before switching antenna */ 2088 tmp = RAL_READ(sc, RT2661_TXRX_CSR0); 2089 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX); 2090 2091 rt2661_bbp_write(sc, 4, bbp4); 2092 rt2661_bbp_write(sc, 77, bbp77); 2093 2094 /* restore Rx filter */ 2095 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp); 2096 } 2097 2098 /* 2099 * Enable multi-rate retries for frames sent at OFDM rates. 2100 * In 802.11b/g mode, allow fallback to CCK rates. 2101 */ 2102 static void 2103 rt2661_enable_mrr(struct rt2661_softc *sc) 2104 { 2105 struct ieee80211com *ic = &sc->sc_ic; 2106 uint32_t tmp; 2107 2108 tmp = RAL_READ(sc, RT2661_TXRX_CSR4); 2109 2110 tmp &= ~RT2661_MRR_CCK_FALLBACK; 2111 if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) 2112 tmp |= RT2661_MRR_CCK_FALLBACK; 2113 tmp |= RT2661_MRR_ENABLED; 2114 2115 RAL_WRITE(sc, RT2661_TXRX_CSR4, tmp); 2116 } 2117 2118 static void 2119 rt2661_set_txpreamble(struct rt2661_softc *sc) 2120 { 2121 uint32_t tmp; 2122 2123 tmp = RAL_READ(sc, RT2661_TXRX_CSR4); 2124 2125 tmp &= ~RT2661_SHORT_PREAMBLE; 2126 if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE) 2127 tmp |= RT2661_SHORT_PREAMBLE; 2128 2129 RAL_WRITE(sc, RT2661_TXRX_CSR4, tmp); 2130 } 2131 2132 static void 2133 rt2661_set_basicrates(struct rt2661_softc *sc, 2134 const struct ieee80211_rateset *rs) 2135 { 2136 #define RV(r) ((r) & IEEE80211_RATE_VAL) 2137 uint32_t mask = 0; 2138 uint8_t rate; 2139 int i, j; 2140 2141 for (i = 0; i < rs->rs_nrates; i++) { 2142 rate = rs->rs_rates[i]; 2143 2144 if (!(rate & IEEE80211_RATE_BASIC)) 2145 continue; 2146 2147 /* 2148 * Find h/w rate index. We know it exists because the rate 2149 * set has already been negotiated. 2150 */ 2151 for (j = 0; rt2661_rateset_11g.rs_rates[j] != RV(rate); j++); 2152 2153 mask |= 1 << j; 2154 } 2155 2156 RAL_WRITE(sc, RT2661_TXRX_CSR5, mask); 2157 2158 DPRINTF(("Setting basic rate mask to 0x%x\n", mask)); 2159 #undef RV 2160 } 2161 2162 /* 2163 * Reprogram MAC/BBP to switch to a new band. Values taken from the reference 2164 * driver. 2165 */ 2166 static void 2167 rt2661_select_band(struct rt2661_softc *sc, struct ieee80211_channel *c) 2168 { 2169 uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104; 2170 uint32_t tmp; 2171 2172 /* update all BBP registers that depend on the band */ 2173 bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c; 2174 bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48; 2175 if (IEEE80211_IS_CHAN_5GHZ(c)) { 2176 bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c; 2177 bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10; 2178 } 2179 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || 2180 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { 2181 bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10; 2182 } 2183 2184 sc->bbp17 = bbp17; 2185 rt2661_bbp_write(sc, 17, bbp17); 2186 rt2661_bbp_write(sc, 96, bbp96); 2187 rt2661_bbp_write(sc, 104, bbp104); 2188 2189 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || 2190 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { 2191 rt2661_bbp_write(sc, 75, 0x80); 2192 rt2661_bbp_write(sc, 86, 0x80); 2193 rt2661_bbp_write(sc, 88, 0x80); 2194 } 2195 2196 rt2661_bbp_write(sc, 35, bbp35); 2197 rt2661_bbp_write(sc, 97, bbp97); 2198 rt2661_bbp_write(sc, 98, bbp98); 2199 2200 tmp = RAL_READ(sc, RT2661_PHY_CSR0); 2201 tmp &= ~(RT2661_PA_PE_2GHZ | RT2661_PA_PE_5GHZ); 2202 if (IEEE80211_IS_CHAN_2GHZ(c)) 2203 tmp |= RT2661_PA_PE_2GHZ; 2204 else 2205 tmp |= RT2661_PA_PE_5GHZ; 2206 RAL_WRITE(sc, RT2661_PHY_CSR0, tmp); 2207 2208 /* 802.11a uses a 16 microseconds short interframe space */ 2209 sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10; 2210 } 2211 2212 static void 2213 rt2661_set_chan(struct rt2661_softc *sc, struct ieee80211_channel *c) 2214 { 2215 struct ieee80211com *ic = &sc->sc_ic; 2216 const struct rfprog *rfprog; 2217 uint8_t bbp3, bbp94 = RT2661_BBPR94_DEFAULT; 2218 int8_t power; 2219 u_int i, chan; 2220 2221 chan = ieee80211_chan2ieee(ic, c); 2222 if (chan == 0 || chan == IEEE80211_CHAN_ANY) 2223 return; 2224 2225 /* select the appropriate RF settings based on what EEPROM says */ 2226 rfprog = (sc->rfprog == 0) ? rt2661_rf5225_1 : rt2661_rf5225_2; 2227 2228 /* find the settings for this channel (we know it exists) */ 2229 for (i = 0; rfprog[i].chan != chan; i++); 2230 2231 power = sc->txpow[i]; 2232 if (power < 0) { 2233 bbp94 += power; 2234 power = 0; 2235 } else if (power > 31) { 2236 bbp94 += power - 31; 2237 power = 31; 2238 } 2239 2240 /* 2241 * If we've yet to select a channel, or we are switching from the 2242 * 2GHz band to the 5GHz band or vice-versa, BBP registers need to 2243 * be reprogrammed. 2244 */ 2245 if (sc->sc_curchan == NULL || c->ic_flags != sc->sc_curchan->ic_flags) { 2246 rt2661_select_band(sc, c); 2247 rt2661_select_antenna(sc); 2248 } 2249 sc->sc_curchan = c; 2250 2251 rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1); 2252 rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2); 2253 rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7); 2254 rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10); 2255 2256 DELAY(200); 2257 2258 rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1); 2259 rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2); 2260 rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7 | 1); 2261 rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10); 2262 2263 DELAY(200); 2264 2265 rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1); 2266 rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2); 2267 rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7); 2268 rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10); 2269 2270 /* enable smart mode for MIMO-capable RFs */ 2271 bbp3 = rt2661_bbp_read(sc, 3); 2272 2273 bbp3 &= ~RT2661_SMART_MODE; 2274 if (sc->rf_rev == RT2661_RF_5325 || sc->rf_rev == RT2661_RF_2529) 2275 bbp3 |= RT2661_SMART_MODE; 2276 2277 rt2661_bbp_write(sc, 3, bbp3); 2278 2279 if (bbp94 != RT2661_BBPR94_DEFAULT) 2280 rt2661_bbp_write(sc, 94, bbp94); 2281 2282 /* 5GHz radio needs a 1ms delay here */ 2283 if (IEEE80211_IS_CHAN_5GHZ(c)) 2284 DELAY(1000); 2285 } 2286 2287 static void 2288 rt2661_set_bssid(struct rt2661_softc *sc, const uint8_t *bssid) 2289 { 2290 uint32_t tmp; 2291 2292 tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24; 2293 RAL_WRITE(sc, RT2661_MAC_CSR4, tmp); 2294 2295 tmp = bssid[4] | bssid[5] << 8 | RT2661_ONE_BSSID << 16; 2296 RAL_WRITE(sc, RT2661_MAC_CSR5, tmp); 2297 } 2298 2299 static void 2300 rt2661_set_macaddr(struct rt2661_softc *sc, const uint8_t *addr) 2301 { 2302 uint32_t tmp; 2303 2304 tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24; 2305 RAL_WRITE(sc, RT2661_MAC_CSR2, tmp); 2306 2307 tmp = addr[4] | addr[5] << 8 | 0xff << 16; 2308 RAL_WRITE(sc, RT2661_MAC_CSR3, tmp); 2309 } 2310 2311 static void 2312 rt2661_update_promisc(struct rt2661_softc *sc) 2313 { 2314 struct ifnet *ifp = sc->sc_ic.ic_ifp; 2315 uint32_t tmp; 2316 2317 tmp = RAL_READ(sc, RT2661_TXRX_CSR0); 2318 2319 tmp &= ~RT2661_DROP_NOT_TO_ME; 2320 if (!(ifp->if_flags & IFF_PROMISC)) 2321 tmp |= RT2661_DROP_NOT_TO_ME; 2322 2323 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp); 2324 2325 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ? 2326 "entering" : "leaving")); 2327 } 2328 2329 #if 0 2330 /* 2331 * Update QoS (802.11e) settings for each h/w Tx ring. 2332 */ 2333 static int 2334 rt2661_wme_update(struct ieee80211com *ic) 2335 { 2336 struct rt2661_softc *sc = ic->ic_ifp->if_softc; 2337 const struct wmeParams *wmep; 2338 2339 wmep = ic->ic_wme.wme_chanParams.cap_wmeParams; 2340 2341 /* XXX: not sure about shifts. */ 2342 /* XXX: the reference driver plays with AC_VI settings too. */ 2343 2344 /* update TxOp */ 2345 RAL_WRITE(sc, RT2661_AC_TXOP_CSR0, 2346 wmep[WME_AC_BE].wmep_txopLimit << 16 | 2347 wmep[WME_AC_BK].wmep_txopLimit); 2348 RAL_WRITE(sc, RT2661_AC_TXOP_CSR1, 2349 wmep[WME_AC_VI].wmep_txopLimit << 16 | 2350 wmep[WME_AC_VO].wmep_txopLimit); 2351 2352 /* update CWmin */ 2353 RAL_WRITE(sc, RT2661_CWMIN_CSR, 2354 wmep[WME_AC_BE].wmep_logcwmin << 12 | 2355 wmep[WME_AC_BK].wmep_logcwmin << 8 | 2356 wmep[WME_AC_VI].wmep_logcwmin << 4 | 2357 wmep[WME_AC_VO].wmep_logcwmin); 2358 2359 /* update CWmax */ 2360 RAL_WRITE(sc, RT2661_CWMAX_CSR, 2361 wmep[WME_AC_BE].wmep_logcwmax << 12 | 2362 wmep[WME_AC_BK].wmep_logcwmax << 8 | 2363 wmep[WME_AC_VI].wmep_logcwmax << 4 | 2364 wmep[WME_AC_VO].wmep_logcwmax); 2365 2366 /* update Aifsn */ 2367 RAL_WRITE(sc, RT2661_AIFSN_CSR, 2368 wmep[WME_AC_BE].wmep_aifsn << 12 | 2369 wmep[WME_AC_BK].wmep_aifsn << 8 | 2370 wmep[WME_AC_VI].wmep_aifsn << 4 | 2371 wmep[WME_AC_VO].wmep_aifsn); 2372 2373 return 0; 2374 } 2375 #endif 2376 2377 static void 2378 rt2661_updateslot(struct ifnet *ifp) 2379 { 2380 struct rt2661_softc *sc = ifp->if_softc; 2381 struct ieee80211com *ic = &sc->sc_ic; 2382 2383 if (ic->ic_opmode == IEEE80211_M_HOSTAP) { 2384 /* 2385 * In HostAP mode, we defer setting of new slot time until 2386 * updated ERP Information Element has propagated to all 2387 * associated STAs. 2388 */ 2389 sc->sc_flags |= RT2661_UPDATE_SLOT; 2390 } else 2391 rt2661_set_slottime(sc); 2392 } 2393 2394 static void 2395 rt2661_set_slottime(struct rt2661_softc *sc) 2396 { 2397 struct ieee80211com *ic = &sc->sc_ic; 2398 uint8_t slottime; 2399 uint32_t tmp; 2400 2401 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20; 2402 2403 tmp = RAL_READ(sc, RT2661_MAC_CSR9); 2404 tmp = (tmp & ~0xff) | slottime; 2405 RAL_WRITE(sc, RT2661_MAC_CSR9, tmp); 2406 2407 DPRINTF(("setting slot time to %uus\n", slottime)); 2408 } 2409 2410 static const char * 2411 rt2661_get_rf(int rev) 2412 { 2413 switch (rev) { 2414 case RT2661_RF_5225: return "RT5225"; 2415 case RT2661_RF_5325: return "RT5325 (MIMO XR)"; 2416 case RT2661_RF_2527: return "RT2527"; 2417 case RT2661_RF_2529: return "RT2529 (MIMO XR)"; 2418 default: return "unknown"; 2419 } 2420 } 2421 2422 static void 2423 rt2661_read_eeprom(struct rt2661_softc *sc) 2424 { 2425 struct ieee80211com *ic = &sc->sc_ic; 2426 uint16_t val; 2427 int i; 2428 2429 /* read MAC address */ 2430 val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC01); 2431 ic->ic_myaddr[0] = val & 0xff; 2432 ic->ic_myaddr[1] = val >> 8; 2433 2434 val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC23); 2435 ic->ic_myaddr[2] = val & 0xff; 2436 ic->ic_myaddr[3] = val >> 8; 2437 2438 val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC45); 2439 ic->ic_myaddr[4] = val & 0xff; 2440 ic->ic_myaddr[5] = val >> 8; 2441 2442 val = rt2661_eeprom_read(sc, RT2661_EEPROM_ANTENNA); 2443 /* XXX: test if different from 0xffff? */ 2444 sc->rf_rev = (val >> 11) & 0x1f; 2445 sc->hw_radio = (val >> 10) & 0x1; 2446 sc->rx_ant = (val >> 4) & 0x3; 2447 sc->tx_ant = (val >> 2) & 0x3; 2448 sc->nb_ant = val & 0x3; 2449 2450 DPRINTF(("RF revision=%d\n", sc->rf_rev)); 2451 2452 val = rt2661_eeprom_read(sc, RT2661_EEPROM_CONFIG2); 2453 sc->ext_5ghz_lna = (val >> 6) & 0x1; 2454 sc->ext_2ghz_lna = (val >> 4) & 0x1; 2455 2456 DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n", 2457 sc->ext_2ghz_lna, sc->ext_5ghz_lna)); 2458 2459 val = rt2661_eeprom_read(sc, RT2661_EEPROM_RSSI_2GHZ_OFFSET); 2460 if ((val & 0xff) != 0xff) 2461 sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */ 2462 2463 val = rt2661_eeprom_read(sc, RT2661_EEPROM_RSSI_5GHZ_OFFSET); 2464 if ((val & 0xff) != 0xff) 2465 sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */ 2466 2467 /* adjust RSSI correction for external low-noise amplifier */ 2468 if (sc->ext_2ghz_lna) 2469 sc->rssi_2ghz_corr -= 14; 2470 if (sc->ext_5ghz_lna) 2471 sc->rssi_5ghz_corr -= 14; 2472 2473 DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n", 2474 sc->rssi_2ghz_corr, sc->rssi_5ghz_corr)); 2475 2476 val = rt2661_eeprom_read(sc, RT2661_EEPROM_FREQ_OFFSET); 2477 if ((val >> 8) != 0xff) 2478 sc->rfprog = (val >> 8) & 0x3; 2479 if ((val & 0xff) != 0xff) 2480 sc->rffreq = val & 0xff; 2481 2482 DPRINTF(("RF prog=%d\nRF freq=%d\n", sc->rfprog, sc->rffreq)); 2483 2484 /* read Tx power for all a/b/g channels */ 2485 for (i = 0; i < 19; i++) { 2486 val = rt2661_eeprom_read(sc, RT2661_EEPROM_TXPOWER + i); 2487 sc->txpow[i * 2] = (int8_t)(val >> 8); /* signed */ 2488 DPRINTF(("Channel=%d Tx power=%d\n", 2489 rt2661_rf5225_1[i * 2].chan, sc->txpow[i * 2])); 2490 sc->txpow[i * 2 + 1] = (int8_t)(val & 0xff); /* signed */ 2491 DPRINTF(("Channel=%d Tx power=%d\n", 2492 rt2661_rf5225_1[i * 2 + 1].chan, sc->txpow[i * 2 + 1])); 2493 } 2494 2495 /* read vendor-specific BBP values */ 2496 for (i = 0; i < 16; i++) { 2497 val = rt2661_eeprom_read(sc, RT2661_EEPROM_BBP_BASE + i); 2498 if (val == 0 || val == 0xffff) 2499 continue; /* skip invalid entries */ 2500 sc->bbp_prom[i].reg = val >> 8; 2501 sc->bbp_prom[i].val = val & 0xff; 2502 DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg, 2503 sc->bbp_prom[i].val)); 2504 } 2505 } 2506 2507 static int 2508 rt2661_bbp_init(struct rt2661_softc *sc) 2509 { 2510 #define N(a) (sizeof (a) / sizeof ((a)[0])) 2511 int i, ntries; 2512 uint8_t val; 2513 2514 /* wait for BBP to be ready */ 2515 for (ntries = 0; ntries < 100; ntries++) { 2516 val = rt2661_bbp_read(sc, 0); 2517 if (val != 0 && val != 0xff) 2518 break; 2519 DELAY(100); 2520 } 2521 if (ntries == 100) { 2522 aprint_error_dev(&sc->sc_dev, "timeout waiting for BBP\n"); 2523 return EIO; 2524 } 2525 2526 /* initialize BBP registers to default values */ 2527 for (i = 0; i < N(rt2661_def_bbp); i++) { 2528 rt2661_bbp_write(sc, rt2661_def_bbp[i].reg, 2529 rt2661_def_bbp[i].val); 2530 } 2531 2532 /* write vendor-specific BBP values (from EEPROM) */ 2533 for (i = 0; i < 16; i++) { 2534 if (sc->bbp_prom[i].reg == 0) 2535 continue; 2536 rt2661_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val); 2537 } 2538 2539 return 0; 2540 #undef N 2541 } 2542 2543 static int 2544 rt2661_init(struct ifnet *ifp) 2545 { 2546 #define N(a) (sizeof (a) / sizeof ((a)[0])) 2547 struct rt2661_softc *sc = ifp->if_softc; 2548 struct ieee80211com *ic = &sc->sc_ic; 2549 const char *name = NULL; /* make lint happy */ 2550 uint8_t *ucode; 2551 size_t size; 2552 uint32_t tmp, star[3]; 2553 int i, ntries; 2554 firmware_handle_t fh; 2555 2556 /* for CardBus, power on the socket */ 2557 if (!(sc->sc_flags & RT2661_ENABLED)) { 2558 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) { 2559 aprint_error_dev(&sc->sc_dev, "could not enable device\n"); 2560 return EIO; 2561 } 2562 sc->sc_flags |= RT2661_ENABLED; 2563 } 2564 2565 rt2661_stop(ifp, 0); 2566 2567 if (!(sc->sc_flags & RT2661_FWLOADED)) { 2568 switch (sc->sc_id) { 2569 case PCI_PRODUCT_RALINK_RT2561: 2570 name = "ral-rt2561"; 2571 break; 2572 case PCI_PRODUCT_RALINK_RT2561S: 2573 name = "ral-rt2561s"; 2574 break; 2575 case PCI_PRODUCT_RALINK_RT2661: 2576 name = "ral-rt2661"; 2577 break; 2578 } 2579 2580 if (firmware_open("ral", name, &fh) != 0) { 2581 aprint_error_dev(&sc->sc_dev, "could not open microcode %s\n", name); 2582 rt2661_stop(ifp, 1); 2583 return EIO; 2584 } 2585 2586 size = firmware_get_size(fh); 2587 if (!(ucode = firmware_malloc(size))) { 2588 aprint_error_dev(&sc->sc_dev, "could not alloc microcode memory\n"); 2589 firmware_close(fh); 2590 rt2661_stop(ifp, 1); 2591 return ENOMEM; 2592 } 2593 2594 if (firmware_read(fh, 0, ucode, size) != 0) { 2595 aprint_error_dev(&sc->sc_dev, "could not read microcode %s\n", name); 2596 firmware_free(ucode, 0); 2597 firmware_close(fh); 2598 rt2661_stop(ifp, 1); 2599 return EIO; 2600 } 2601 2602 if (rt2661_load_microcode(sc, ucode, size) != 0) { 2603 aprint_error_dev(&sc->sc_dev, "could not load 8051 microcode\n"); 2604 firmware_free(ucode, 0); 2605 firmware_close(fh); 2606 rt2661_stop(ifp, 1); 2607 return EIO; 2608 } 2609 2610 firmware_free(ucode, 0); 2611 firmware_close(fh); 2612 sc->sc_flags |= RT2661_FWLOADED; 2613 } 2614 2615 /* initialize Tx rings */ 2616 RAL_WRITE(sc, RT2661_AC1_BASE_CSR, sc->txq[1].physaddr); 2617 RAL_WRITE(sc, RT2661_AC0_BASE_CSR, sc->txq[0].physaddr); 2618 RAL_WRITE(sc, RT2661_AC2_BASE_CSR, sc->txq[2].physaddr); 2619 RAL_WRITE(sc, RT2661_AC3_BASE_CSR, sc->txq[3].physaddr); 2620 2621 /* initialize Mgt ring */ 2622 RAL_WRITE(sc, RT2661_MGT_BASE_CSR, sc->mgtq.physaddr); 2623 2624 /* initialize Rx ring */ 2625 RAL_WRITE(sc, RT2661_RX_BASE_CSR, sc->rxq.physaddr); 2626 2627 /* initialize Tx rings sizes */ 2628 RAL_WRITE(sc, RT2661_TX_RING_CSR0, 2629 RT2661_TX_RING_COUNT << 24 | 2630 RT2661_TX_RING_COUNT << 16 | 2631 RT2661_TX_RING_COUNT << 8 | 2632 RT2661_TX_RING_COUNT); 2633 2634 RAL_WRITE(sc, RT2661_TX_RING_CSR1, 2635 RT2661_TX_DESC_WSIZE << 16 | 2636 RT2661_TX_RING_COUNT << 8 | /* XXX: HCCA ring unused */ 2637 RT2661_MGT_RING_COUNT); 2638 2639 /* initialize Rx rings */ 2640 RAL_WRITE(sc, RT2661_RX_RING_CSR, 2641 RT2661_RX_DESC_BACK << 16 | 2642 RT2661_RX_DESC_WSIZE << 8 | 2643 RT2661_RX_RING_COUNT); 2644 2645 /* XXX: some magic here */ 2646 RAL_WRITE(sc, RT2661_TX_DMA_DST_CSR, 0xaa); 2647 2648 /* load base addresses of all 5 Tx rings (4 data + 1 mgt) */ 2649 RAL_WRITE(sc, RT2661_LOAD_TX_RING_CSR, 0x1f); 2650 2651 /* load base address of Rx ring */ 2652 RAL_WRITE(sc, RT2661_RX_CNTL_CSR, 2); 2653 2654 /* initialize MAC registers to default values */ 2655 for (i = 0; i < N(rt2661_def_mac); i++) 2656 RAL_WRITE(sc, rt2661_def_mac[i].reg, rt2661_def_mac[i].val); 2657 2658 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl)); 2659 rt2661_set_macaddr(sc, ic->ic_myaddr); 2660 2661 /* set host ready */ 2662 RAL_WRITE(sc, RT2661_MAC_CSR1, 3); 2663 RAL_WRITE(sc, RT2661_MAC_CSR1, 0); 2664 2665 /* wait for BBP/RF to wakeup */ 2666 for (ntries = 0; ntries < 1000; ntries++) { 2667 if (RAL_READ(sc, RT2661_MAC_CSR12) & 8) 2668 break; 2669 DELAY(1000); 2670 } 2671 if (ntries == 1000) { 2672 printf("timeout waiting for BBP/RF to wakeup\n"); 2673 rt2661_stop(ifp, 1); 2674 return EIO; 2675 } 2676 2677 if (rt2661_bbp_init(sc) != 0) { 2678 rt2661_stop(ifp, 1); 2679 return EIO; 2680 } 2681 2682 /* select default channel */ 2683 sc->sc_curchan = ic->ic_curchan; 2684 rt2661_select_band(sc, sc->sc_curchan); 2685 rt2661_select_antenna(sc); 2686 rt2661_set_chan(sc, sc->sc_curchan); 2687 2688 /* update Rx filter */ 2689 tmp = RAL_READ(sc, RT2661_TXRX_CSR0) & 0xffff; 2690 2691 tmp |= RT2661_DROP_PHY_ERROR | RT2661_DROP_CRC_ERROR; 2692 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 2693 tmp |= RT2661_DROP_CTL | RT2661_DROP_VER_ERROR | 2694 RT2661_DROP_ACKCTS; 2695 if (ic->ic_opmode != IEEE80211_M_HOSTAP) 2696 tmp |= RT2661_DROP_TODS; 2697 if (!(ifp->if_flags & IFF_PROMISC)) 2698 tmp |= RT2661_DROP_NOT_TO_ME; 2699 } 2700 2701 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp); 2702 2703 /* clear STA registers */ 2704 RAL_READ_REGION_4(sc, RT2661_STA_CSR0, star, N(star)); 2705 2706 /* initialize ASIC */ 2707 RAL_WRITE(sc, RT2661_MAC_CSR1, 4); 2708 2709 /* clear any pending interrupt */ 2710 RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, 0xffffffff); 2711 2712 /* enable interrupts */ 2713 RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0x0000ff10); 2714 RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0); 2715 2716 /* kick Rx */ 2717 RAL_WRITE(sc, RT2661_RX_CNTL_CSR, 1); 2718 2719 ifp->if_flags &= ~IFF_OACTIVE; 2720 ifp->if_flags |= IFF_RUNNING; 2721 2722 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 2723 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL) 2724 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 2725 } else 2726 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 2727 2728 return 0; 2729 #undef N 2730 } 2731 2732 static void 2733 rt2661_stop(struct ifnet *ifp, int disable) 2734 { 2735 struct rt2661_softc *sc = ifp->if_softc; 2736 struct ieee80211com *ic = &sc->sc_ic; 2737 uint32_t tmp; 2738 2739 sc->sc_tx_timer = 0; 2740 ifp->if_timer = 0; 2741 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 2742 2743 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */ 2744 2745 /* abort Tx (for all 5 Tx rings) */ 2746 RAL_WRITE(sc, RT2661_TX_CNTL_CSR, 0x1f << 16); 2747 2748 /* disable Rx (value remains after reset!) */ 2749 tmp = RAL_READ(sc, RT2661_TXRX_CSR0); 2750 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX); 2751 2752 /* reset ASIC */ 2753 RAL_WRITE(sc, RT2661_MAC_CSR1, 3); 2754 RAL_WRITE(sc, RT2661_MAC_CSR1, 0); 2755 2756 /* disable interrupts */ 2757 RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0xffffff7f); 2758 RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0xffffffff); 2759 2760 /* clear any pending interrupt */ 2761 RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, 0xffffffff); 2762 RAL_WRITE(sc, RT2661_MCU_INT_SOURCE_CSR, 0xffffffff); 2763 2764 /* reset Tx and Rx rings */ 2765 rt2661_reset_tx_ring(sc, &sc->txq[0]); 2766 rt2661_reset_tx_ring(sc, &sc->txq[1]); 2767 rt2661_reset_tx_ring(sc, &sc->txq[2]); 2768 rt2661_reset_tx_ring(sc, &sc->txq[3]); 2769 rt2661_reset_tx_ring(sc, &sc->mgtq); 2770 rt2661_reset_rx_ring(sc, &sc->rxq); 2771 2772 /* for CardBus, power down the socket */ 2773 if (disable && sc->sc_disable != NULL) { 2774 if (sc->sc_flags & RT2661_ENABLED) { 2775 (*sc->sc_disable)(sc); 2776 sc->sc_flags &= ~(RT2661_ENABLED | RT2661_FWLOADED); 2777 } 2778 } 2779 } 2780 2781 static int 2782 rt2661_load_microcode(struct rt2661_softc *sc, const uint8_t *ucode, int size) 2783 { 2784 int ntries; 2785 2786 /* reset 8051 */ 2787 RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET); 2788 2789 /* cancel any pending Host to MCU command */ 2790 RAL_WRITE(sc, RT2661_H2M_MAILBOX_CSR, 0); 2791 RAL_WRITE(sc, RT2661_M2H_CMD_DONE_CSR, 0xffffffff); 2792 RAL_WRITE(sc, RT2661_HOST_CMD_CSR, 0); 2793 2794 /* write 8051's microcode */ 2795 RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET | RT2661_MCU_SEL); 2796 RAL_WRITE_REGION_1(sc, RT2661_MCU_CODE_BASE, ucode, size); 2797 RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET); 2798 2799 /* kick 8051's ass */ 2800 RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, 0); 2801 2802 /* wait for 8051 to initialize */ 2803 for (ntries = 0; ntries < 500; ntries++) { 2804 if (RAL_READ(sc, RT2661_MCU_CNTL_CSR) & RT2661_MCU_READY) 2805 break; 2806 DELAY(100); 2807 } 2808 if (ntries == 500) { 2809 printf("timeout waiting for MCU to initialize\n"); 2810 return EIO; 2811 } 2812 return 0; 2813 } 2814 2815 /* 2816 * Dynamically tune Rx sensitivity (BBP register 17) based on average RSSI and 2817 * false CCA count. This function is called periodically (every seconds) when 2818 * in the RUN state. Values taken from the reference driver. 2819 */ 2820 static void 2821 rt2661_rx_tune(struct rt2661_softc *sc) 2822 { 2823 uint8_t bbp17; 2824 uint16_t cca; 2825 int lo, hi, dbm; 2826 2827 /* 2828 * Tuning range depends on operating band and on the presence of an 2829 * external low-noise amplifier. 2830 */ 2831 lo = 0x20; 2832 if (IEEE80211_IS_CHAN_5GHZ(sc->sc_curchan)) 2833 lo += 0x08; 2834 if ((IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan) && sc->ext_2ghz_lna) || 2835 (IEEE80211_IS_CHAN_5GHZ(sc->sc_curchan) && sc->ext_5ghz_lna)) 2836 lo += 0x10; 2837 hi = lo + 0x20; 2838 2839 dbm = sc->avg_rssi; 2840 /* retrieve false CCA count since last call (clear on read) */ 2841 cca = RAL_READ(sc, RT2661_STA_CSR1) & 0xffff; 2842 2843 DPRINTFN(2, ("RSSI=%ddBm false CCA=%d\n", dbm, cca)); 2844 2845 if (dbm < -74) { 2846 /* very bad RSSI, tune using false CCA count */ 2847 bbp17 = sc->bbp17; /* current value */ 2848 2849 hi -= 2 * (-74 - dbm); 2850 if (hi < lo) 2851 hi = lo; 2852 2853 if (bbp17 > hi) 2854 bbp17 = hi; 2855 else if (cca > 512) 2856 bbp17 = min(bbp17 + 1, hi); 2857 else if (cca < 100) 2858 bbp17 = max(bbp17 - 1, lo); 2859 2860 } else if (dbm < -66) { 2861 bbp17 = lo + 0x08; 2862 } else if (dbm < -58) { 2863 bbp17 = lo + 0x10; 2864 } else if (dbm < -35) { 2865 bbp17 = hi; 2866 } else { /* very good RSSI >= -35dBm */ 2867 bbp17 = 0x60; /* very low sensitivity */ 2868 } 2869 2870 if (bbp17 != sc->bbp17) { 2871 DPRINTF(("BBP17 %x->%x\n", sc->bbp17, bbp17)); 2872 rt2661_bbp_write(sc, 17, bbp17); 2873 sc->bbp17 = bbp17; 2874 } 2875 } 2876 2877 #ifdef notyet 2878 /* 2879 * Enter/Leave radar detection mode. 2880 * This is for 802.11h additional regulatory domains. 2881 */ 2882 static void 2883 rt2661_radar_start(struct rt2661_softc *sc) 2884 { 2885 uint32_t tmp; 2886 2887 /* disable Rx */ 2888 tmp = RAL_READ(sc, RT2661_TXRX_CSR0); 2889 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX); 2890 2891 rt2661_bbp_write(sc, 82, 0x20); 2892 rt2661_bbp_write(sc, 83, 0x00); 2893 rt2661_bbp_write(sc, 84, 0x40); 2894 2895 /* save current BBP registers values */ 2896 sc->bbp18 = rt2661_bbp_read(sc, 18); 2897 sc->bbp21 = rt2661_bbp_read(sc, 21); 2898 sc->bbp22 = rt2661_bbp_read(sc, 22); 2899 sc->bbp16 = rt2661_bbp_read(sc, 16); 2900 sc->bbp17 = rt2661_bbp_read(sc, 17); 2901 sc->bbp64 = rt2661_bbp_read(sc, 64); 2902 2903 rt2661_bbp_write(sc, 18, 0xff); 2904 rt2661_bbp_write(sc, 21, 0x3f); 2905 rt2661_bbp_write(sc, 22, 0x3f); 2906 rt2661_bbp_write(sc, 16, 0xbd); 2907 rt2661_bbp_write(sc, 17, sc->ext_5ghz_lna ? 0x44 : 0x34); 2908 rt2661_bbp_write(sc, 64, 0x21); 2909 2910 /* restore Rx filter */ 2911 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp); 2912 } 2913 2914 static int 2915 rt2661_radar_stop(struct rt2661_softc *sc) 2916 { 2917 uint8_t bbp66; 2918 2919 /* read radar detection result */ 2920 bbp66 = rt2661_bbp_read(sc, 66); 2921 2922 /* restore BBP registers values */ 2923 rt2661_bbp_write(sc, 16, sc->bbp16); 2924 rt2661_bbp_write(sc, 17, sc->bbp17); 2925 rt2661_bbp_write(sc, 18, sc->bbp18); 2926 rt2661_bbp_write(sc, 21, sc->bbp21); 2927 rt2661_bbp_write(sc, 22, sc->bbp22); 2928 rt2661_bbp_write(sc, 64, sc->bbp64); 2929 2930 return bbp66 == 1; 2931 } 2932 #endif 2933 2934 static int 2935 rt2661_prepare_beacon(struct rt2661_softc *sc) 2936 { 2937 struct ieee80211com *ic = &sc->sc_ic; 2938 struct ieee80211_node *ni = ic->ic_bss; 2939 struct rt2661_tx_desc desc; 2940 struct mbuf *m0; 2941 struct ieee80211_beacon_offsets bo; 2942 int rate; 2943 2944 m0 = ieee80211_beacon_alloc(ic, ni, &bo); 2945 if (m0 == NULL) { 2946 aprint_error_dev(&sc->sc_dev, "could not allocate beacon frame\n"); 2947 return ENOBUFS; 2948 } 2949 2950 /* send beacons at the lowest available rate */ 2951 rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2; 2952 2953 rt2661_setup_tx_desc(sc, &desc, RT2661_TX_TIMESTAMP, RT2661_TX_HWSEQ, 2954 m0->m_pkthdr.len, rate, NULL, 0, RT2661_QID_MGT); 2955 2956 /* copy the first 24 bytes of Tx descriptor into NIC memory */ 2957 RAL_WRITE_REGION_1(sc, RT2661_HW_BEACON_BASE0, (uint8_t *)&desc, 24); 2958 2959 /* copy beacon header and payload into NIC memory */ 2960 RAL_WRITE_REGION_1(sc, RT2661_HW_BEACON_BASE0 + 24, 2961 mtod(m0, uint8_t *), m0->m_pkthdr.len); 2962 2963 m_freem(m0); 2964 2965 /* 2966 * Store offset of ERP Information Element so that we can update it 2967 * dynamically when the slot time changes. 2968 * XXX: this is ugly since it depends on how net80211 builds beacon 2969 * frames but ieee80211_beacon_alloc() doesn't store offsets for us. 2970 */ 2971 if (ic->ic_curmode == IEEE80211_MODE_11G) { 2972 sc->erp_csr = 2973 RT2661_HW_BEACON_BASE0 + 24 + 2974 sizeof (struct ieee80211_frame) + 2975 8 + 2 + 2 + 2 + ni->ni_esslen + 2976 2 + min(ni->ni_rates.rs_nrates, IEEE80211_RATE_SIZE) + 2977 2 + 1 + 2978 ((ic->ic_opmode == IEEE80211_M_IBSS) ? 4 : 6) + 2979 2; 2980 } 2981 2982 return 0; 2983 } 2984 2985 /* 2986 * Enable TSF synchronization and tell h/w to start sending beacons for IBSS 2987 * and HostAP operating modes. 2988 */ 2989 static void 2990 rt2661_enable_tsf_sync(struct rt2661_softc *sc) 2991 { 2992 struct ieee80211com *ic = &sc->sc_ic; 2993 uint32_t tmp; 2994 2995 if (ic->ic_opmode != IEEE80211_M_STA) { 2996 /* 2997 * Change default 16ms TBTT adjustment to 8ms. 2998 * Must be done before enabling beacon generation. 2999 */ 3000 RAL_WRITE(sc, RT2661_TXRX_CSR10, 1 << 12 | 8); 3001 } 3002 3003 tmp = RAL_READ(sc, RT2661_TXRX_CSR9) & 0xff000000; 3004 3005 /* set beacon interval (in 1/16ms unit) */ 3006 tmp |= ic->ic_bss->ni_intval * 16; 3007 3008 tmp |= RT2661_TSF_TICKING | RT2661_ENABLE_TBTT; 3009 if (ic->ic_opmode == IEEE80211_M_STA) 3010 tmp |= RT2661_TSF_MODE(1); 3011 else 3012 tmp |= RT2661_TSF_MODE(2) | RT2661_GENERATE_BEACON; 3013 3014 RAL_WRITE(sc, RT2661_TXRX_CSR9, tmp); 3015 } 3016 3017 /* 3018 * Retrieve the "Received Signal Strength Indicator" from the raw values 3019 * contained in Rx descriptors. The computation depends on which band the 3020 * frame was received. Correction values taken from the reference driver. 3021 */ 3022 static int 3023 rt2661_get_rssi(struct rt2661_softc *sc, uint8_t raw) 3024 { 3025 int lna, agc, rssi; 3026 3027 lna = (raw >> 5) & 0x3; 3028 agc = raw & 0x1f; 3029 3030 rssi = 2 * agc; 3031 3032 if (IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan)) { 3033 rssi += sc->rssi_2ghz_corr; 3034 3035 if (lna == 1) 3036 rssi -= 64; 3037 else if (lna == 2) 3038 rssi -= 74; 3039 else if (lna == 3) 3040 rssi -= 90; 3041 } else { 3042 rssi += sc->rssi_5ghz_corr; 3043 3044 if (lna == 1) 3045 rssi -= 64; 3046 else if (lna == 2) 3047 rssi -= 86; 3048 else if (lna == 3) 3049 rssi -= 100; 3050 } 3051 return rssi; 3052 } 3053