xref: /netbsd-src/sys/dev/ic/rt2661.c (revision c38e7cc395b1472a774ff828e46123de44c628e9)
1 /*	$NetBSD: rt2661.c,v 1.37 2018/05/01 16:18:13 maya Exp $	*/
2 /*	$OpenBSD: rt2661.c,v 1.17 2006/05/01 08:41:11 damien Exp $	*/
3 /*	$FreeBSD: rt2560.c,v 1.5 2006/06/02 19:59:31 csjp Exp $	*/
4 
5 /*-
6  * Copyright (c) 2006
7  *	Damien Bergamini <damien.bergamini@free.fr>
8  *
9  * Permission to use, copy, modify, and distribute this software for any
10  * purpose with or without fee is hereby granted, provided that the above
11  * copyright notice and this permission notice appear in all copies.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20  */
21 
22 /*-
23  * Ralink Technology RT2561, RT2561S and RT2661 chipset driver
24  * http://www.ralinktech.com/
25  */
26 
27 #include <sys/cdefs.h>
28 __KERNEL_RCSID(0, "$NetBSD: rt2661.c,v 1.37 2018/05/01 16:18:13 maya Exp $");
29 
30 
31 #include <sys/param.h>
32 #include <sys/sockio.h>
33 #include <sys/sysctl.h>
34 #include <sys/mbuf.h>
35 #include <sys/kernel.h>
36 #include <sys/socket.h>
37 #include <sys/systm.h>
38 #include <sys/malloc.h>
39 #include <sys/callout.h>
40 #include <sys/conf.h>
41 #include <sys/device.h>
42 
43 #include <sys/bus.h>
44 #include <machine/endian.h>
45 #include <sys/intr.h>
46 
47 #include <net/bpf.h>
48 #include <net/if.h>
49 #include <net/if_arp.h>
50 #include <net/if_dl.h>
51 #include <net/if_media.h>
52 #include <net/if_types.h>
53 #include <net/if_ether.h>
54 
55 #include <netinet/in.h>
56 #include <netinet/in_systm.h>
57 #include <netinet/in_var.h>
58 #include <netinet/ip.h>
59 
60 #include <net80211/ieee80211_var.h>
61 #include <net80211/ieee80211_amrr.h>
62 #include <net80211/ieee80211_radiotap.h>
63 
64 #include <dev/ic/rt2661reg.h>
65 #include <dev/ic/rt2661var.h>
66 
67 #include <dev/pci/pcireg.h>
68 #include <dev/pci/pcivar.h>
69 #include <dev/pci/pcidevs.h>
70 
71 #include <dev/firmload.h>
72 
73 #ifdef RAL_DEBUG
74 #define DPRINTF(x)	do { if (rt2661_debug > 0) printf x; } while (0)
75 #define DPRINTFN(n, x)	do { if (rt2661_debug >= (n)) printf x; } while (0)
76 int rt2661_debug = 0;
77 #else
78 #define DPRINTF(x)
79 #define DPRINTFN(n, x)
80 #endif
81 
82 static int	rt2661_alloc_tx_ring(struct rt2661_softc *,
83 		    struct rt2661_tx_ring *, int);
84 static void	rt2661_reset_tx_ring(struct rt2661_softc *,
85 		    struct rt2661_tx_ring *);
86 static void	rt2661_free_tx_ring(struct rt2661_softc *,
87 		    struct rt2661_tx_ring *);
88 static int	rt2661_alloc_rx_ring(struct rt2661_softc *,
89 		    struct rt2661_rx_ring *, int);
90 static void	rt2661_reset_rx_ring(struct rt2661_softc *,
91 		    struct rt2661_rx_ring *);
92 static void	rt2661_free_rx_ring(struct rt2661_softc *,
93 		    struct rt2661_rx_ring *);
94 static struct ieee80211_node *
95 		rt2661_node_alloc(struct ieee80211_node_table *);
96 static int	rt2661_media_change(struct ifnet *);
97 static void	rt2661_next_scan(void *);
98 static void	rt2661_iter_func(void *, struct ieee80211_node *);
99 static void	rt2661_updatestats(void *);
100 static void	rt2661_newassoc(struct ieee80211_node *, int);
101 static int	rt2661_newstate(struct ieee80211com *, enum ieee80211_state,
102 		    int);
103 static uint16_t	rt2661_eeprom_read(struct rt2661_softc *, uint8_t);
104 static void	rt2661_tx_intr(struct rt2661_softc *);
105 static void	rt2661_tx_dma_intr(struct rt2661_softc *,
106 		    struct rt2661_tx_ring *);
107 static void	rt2661_rx_intr(struct rt2661_softc *);
108 static void	rt2661_mcu_beacon_expire(struct rt2661_softc *);
109 static void	rt2661_mcu_wakeup(struct rt2661_softc *);
110 static void	rt2661_mcu_cmd_intr(struct rt2661_softc *);
111 int		rt2661_intr(void *);
112 static uint8_t	rt2661_rxrate(struct rt2661_rx_desc *);
113 static int	rt2661_ack_rate(struct ieee80211com *, int);
114 static uint16_t	rt2661_txtime(int, int, uint32_t);
115 static uint8_t	rt2661_plcp_signal(int);
116 static void	rt2661_setup_tx_desc(struct rt2661_softc *,
117 		    struct rt2661_tx_desc *, uint32_t, uint16_t, int, int,
118 		    const bus_dma_segment_t *, int, int);
119 static int	rt2661_tx_mgt(struct rt2661_softc *, struct mbuf *,
120 		    struct ieee80211_node *);
121 static struct mbuf *
122 		rt2661_get_rts(struct rt2661_softc *,
123 		    struct ieee80211_frame *, uint16_t);
124 static int	rt2661_tx_data(struct rt2661_softc *, struct mbuf *,
125 		    struct ieee80211_node *, int);
126 static void	rt2661_start(struct ifnet *);
127 static void	rt2661_watchdog(struct ifnet *);
128 static int	rt2661_reset(struct ifnet *);
129 static int	rt2661_ioctl(struct ifnet *, u_long, void *);
130 static void	rt2661_bbp_write(struct rt2661_softc *, uint8_t, uint8_t);
131 static uint8_t	rt2661_bbp_read(struct rt2661_softc *, uint8_t);
132 static void	rt2661_rf_write(struct rt2661_softc *, uint8_t, uint32_t);
133 static int	rt2661_tx_cmd(struct rt2661_softc *, uint8_t, uint16_t);
134 static void	rt2661_select_antenna(struct rt2661_softc *);
135 static void	rt2661_enable_mrr(struct rt2661_softc *);
136 static void	rt2661_set_txpreamble(struct rt2661_softc *);
137 static void	rt2661_set_basicrates(struct rt2661_softc *,
138 			const struct ieee80211_rateset *);
139 static void	rt2661_select_band(struct rt2661_softc *,
140 		    struct ieee80211_channel *);
141 static void	rt2661_set_chan(struct rt2661_softc *,
142 		    struct ieee80211_channel *);
143 static void	rt2661_set_bssid(struct rt2661_softc *, const uint8_t *);
144 static void	rt2661_set_macaddr(struct rt2661_softc *, const uint8_t *);
145 static void	rt2661_update_promisc(struct rt2661_softc *);
146 #if 0
147 static int	rt2661_wme_update(struct ieee80211com *);
148 #endif
149 
150 static void	rt2661_updateslot(struct ifnet *);
151 static void	rt2661_set_slottime(struct rt2661_softc *);
152 static const char *
153 		rt2661_get_rf(int);
154 static void	rt2661_read_eeprom(struct rt2661_softc *);
155 static int	rt2661_bbp_init(struct rt2661_softc *);
156 static int     	rt2661_init(struct ifnet *);
157 static void	rt2661_stop(struct ifnet *, int);
158 static int	rt2661_load_microcode(struct rt2661_softc *, const uint8_t *,
159 		    int);
160 static void	rt2661_rx_tune(struct rt2661_softc *);
161 #ifdef notyet
162 static void	rt2661_radar_start(struct rt2661_softc *);
163 static int	rt2661_radar_stop(struct rt2661_softc *);
164 #endif
165 static int	rt2661_prepare_beacon(struct rt2661_softc *);
166 static void	rt2661_enable_tsf_sync(struct rt2661_softc *);
167 static int	rt2661_get_rssi(struct rt2661_softc *, uint8_t);
168 static void	rt2661_softintr(void *);
169 
170 static const struct {
171 	uint32_t	reg;
172 	uint32_t	val;
173 } rt2661_def_mac[] = {
174 	RT2661_DEF_MAC
175 };
176 
177 static const struct {
178 	uint8_t	reg;
179 	uint8_t	val;
180 } rt2661_def_bbp[] = {
181 	RT2661_DEF_BBP
182 };
183 
184 static const struct rfprog {
185 	uint8_t		chan;
186 	uint32_t	r1, r2, r3, r4;
187 } rt2661_rf5225_1[] = {
188 	RT2661_RF5225_1
189 }, rt2661_rf5225_2[] = {
190 	RT2661_RF5225_2
191 };
192 
193 int
194 rt2661_attach(void *xsc, int id)
195 {
196 	struct rt2661_softc *sc = xsc;
197 	struct ieee80211com *ic = &sc->sc_ic;
198 	struct ifnet *ifp = &sc->sc_if;
199 	uint32_t val;
200 	int error, i, ntries;
201 
202 	sc->sc_id = id;
203 
204 	sc->amrr.amrr_min_success_threshold =  1;
205 	sc->amrr.amrr_max_success_threshold = 15;
206 	callout_init(&sc->scan_ch, 0);
207 	callout_init(&sc->amrr_ch, 0);
208 
209 	/* wait for NIC to initialize */
210 	for (ntries = 0; ntries < 1000; ntries++) {
211 		if ((val = RAL_READ(sc, RT2661_MAC_CSR0)) != 0)
212 			break;
213 		DELAY(1000);
214 	}
215 	if (ntries == 1000) {
216 		aprint_error_dev(sc->sc_dev, "timeout waiting for NIC to initialize\n");
217 		return EIO;
218 	}
219 
220 	/* retrieve RF rev. no and various other things from EEPROM */
221 	rt2661_read_eeprom(sc);
222 	aprint_normal_dev(sc->sc_dev, "802.11 address %s\n",
223 	    ether_sprintf(ic->ic_myaddr));
224 
225 	aprint_normal_dev(sc->sc_dev, "MAC/BBP RT%X, RF %s\n", val,
226 	    rt2661_get_rf(sc->rf_rev));
227 
228 	sc->sc_soft_ih = softint_establish(SOFTINT_NET, rt2661_softintr, sc);
229 	if (sc->sc_soft_ih == NULL) {
230 		aprint_error_dev(sc->sc_dev, "could not establish softint\n");
231 		goto fail0;
232 	}
233 
234 	/*
235 	 * Allocate Tx and Rx rings.
236 	 */
237 	error = rt2661_alloc_tx_ring(sc, &sc->txq[0], RT2661_TX_RING_COUNT);
238 	if (error != 0) {
239 		aprint_error_dev(sc->sc_dev, "could not allocate Tx ring 0\n");
240 		goto fail1;
241 	}
242 
243 	error = rt2661_alloc_tx_ring(sc, &sc->txq[1], RT2661_TX_RING_COUNT);
244 	if (error != 0) {
245 		aprint_error_dev(sc->sc_dev, "could not allocate Tx ring 1\n");
246 		goto fail2;
247 	}
248 
249 	error = rt2661_alloc_tx_ring(sc, &sc->txq[2], RT2661_TX_RING_COUNT);
250 	if (error != 0) {
251 		aprint_error_dev(sc->sc_dev, "could not allocate Tx ring 2\n");
252 		goto fail3;
253 	}
254 
255 	error = rt2661_alloc_tx_ring(sc, &sc->txq[3], RT2661_TX_RING_COUNT);
256 	if (error != 0) {
257 		aprint_error_dev(sc->sc_dev, "could not allocate Tx ring 3\n");
258 		goto fail4;
259 	}
260 
261 	error = rt2661_alloc_tx_ring(sc, &sc->mgtq, RT2661_MGT_RING_COUNT);
262 	if (error != 0) {
263 		aprint_error_dev(sc->sc_dev, "could not allocate Mgt ring\n");
264 		goto fail5;
265 	}
266 
267 	error = rt2661_alloc_rx_ring(sc, &sc->rxq, RT2661_RX_RING_COUNT);
268 	if (error != 0) {
269 		aprint_error_dev(sc->sc_dev, "could not allocate Rx ring\n");
270 		goto fail6;
271 	}
272 
273 	ifp->if_softc = sc;
274 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
275 	ifp->if_init = rt2661_init;
276 	ifp->if_stop = rt2661_stop;
277 	ifp->if_ioctl = rt2661_ioctl;
278 	ifp->if_start = rt2661_start;
279 	ifp->if_watchdog = rt2661_watchdog;
280 	IFQ_SET_READY(&ifp->if_snd);
281 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
282 
283 	ic->ic_ifp = ifp;
284 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
285 	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
286 	ic->ic_state = IEEE80211_S_INIT;
287 
288 	/* set device capabilities */
289 	ic->ic_caps =
290 	    IEEE80211_C_IBSS |		/* IBSS mode supported */
291 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
292 	    IEEE80211_C_HOSTAP |	/* HostAP mode supported */
293 	    IEEE80211_C_TXPMGT |	/* tx power management */
294 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
295 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
296 	    IEEE80211_C_WPA;		/* 802.11i */
297 
298 	if (sc->rf_rev == RT2661_RF_5225 || sc->rf_rev == RT2661_RF_5325) {
299 		/* set supported .11a rates */
300 		ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a;
301 
302 		/* set supported .11a channels */
303 		for (i = 36; i <= 64; i += 4) {
304 			ic->ic_channels[i].ic_freq =
305 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
306 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
307 		}
308 		for (i = 100; i <= 140; i += 4) {
309 			ic->ic_channels[i].ic_freq =
310 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
311 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
312 		}
313 		for (i = 149; i <= 165; i += 4) {
314 			ic->ic_channels[i].ic_freq =
315 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
316 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
317 		}
318 	}
319 
320 	/* set supported .11b and .11g rates */
321 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
322 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
323 
324 	/* set supported .11b and .11g channels (1 through 14) */
325 	for (i = 1; i <= 14; i++) {
326 		ic->ic_channels[i].ic_freq =
327 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
328 		ic->ic_channels[i].ic_flags =
329 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
330 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
331 	}
332 
333 	error = if_initialize(ifp);
334 	if (error != 0) {
335 		aprint_error_dev(sc->sc_dev, "if_initialize failed(%d)\n",
336 		    error);
337 		goto fail7;
338 	}
339 	ieee80211_ifattach(ic);
340 	/* Use common softint-based if_input */
341 	ifp->if_percpuq = if_percpuq_create(ifp);
342 	if_register(ifp);
343 
344 	ic->ic_node_alloc = rt2661_node_alloc;
345 	ic->ic_newassoc = rt2661_newassoc;
346 	ic->ic_updateslot = rt2661_updateslot;
347 	ic->ic_reset = rt2661_reset;
348 
349 	/* override state transition machine */
350 	sc->sc_newstate = ic->ic_newstate;
351 	ic->ic_newstate = rt2661_newstate;
352 	ieee80211_media_init(ic, rt2661_media_change, ieee80211_media_status);
353 
354 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
355 	    sizeof(struct ieee80211_frame) + sizeof(sc->sc_txtap),
356 	    &sc->sc_drvbpf);
357 
358 	sc->sc_rxtap_len = roundup(sizeof(sc->sc_rxtap), sizeof(u_int32_t));
359 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
360 	sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2661_RX_RADIOTAP_PRESENT);
361 
362 	sc->sc_txtap_len = roundup(sizeof(sc->sc_txtap), sizeof(u_int32_t));
363 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
364 	sc->sc_txtap.wt_ihdr.it_present = htole32(RT2661_TX_RADIOTAP_PRESENT);
365 
366 	ieee80211_announce(ic);
367 
368 	if (pmf_device_register(sc->sc_dev, NULL, NULL))
369 		pmf_class_network_register(sc->sc_dev, ifp);
370 	else
371 		aprint_error_dev(sc->sc_dev,
372 		    "couldn't establish power handler\n");
373 
374 	return 0;
375 
376 fail7:	rt2661_free_rx_ring(sc, &sc->rxq);
377 fail6:	rt2661_free_tx_ring(sc, &sc->mgtq);
378 fail5:	rt2661_free_tx_ring(sc, &sc->txq[3]);
379 fail4:	rt2661_free_tx_ring(sc, &sc->txq[2]);
380 fail3:	rt2661_free_tx_ring(sc, &sc->txq[1]);
381 fail2:	rt2661_free_tx_ring(sc, &sc->txq[0]);
382 fail1:	softint_disestablish(sc->sc_soft_ih);
383 	sc->sc_soft_ih = NULL;
384 fail0:	return ENXIO;
385 }
386 
387 int
388 rt2661_detach(void *xsc)
389 {
390 	struct rt2661_softc *sc = xsc;
391 	struct ifnet *ifp = &sc->sc_if;
392 
393 	callout_stop(&sc->scan_ch);
394 	callout_stop(&sc->amrr_ch);
395 
396 	pmf_device_deregister(sc->sc_dev);
397 
398 	ieee80211_ifdetach(&sc->sc_ic);
399 	if_detach(ifp);
400 
401 	rt2661_free_tx_ring(sc, &sc->txq[0]);
402 	rt2661_free_tx_ring(sc, &sc->txq[1]);
403 	rt2661_free_tx_ring(sc, &sc->txq[2]);
404 	rt2661_free_tx_ring(sc, &sc->txq[3]);
405 	rt2661_free_tx_ring(sc, &sc->mgtq);
406 	rt2661_free_rx_ring(sc, &sc->rxq);
407 
408 	if (sc->sc_soft_ih != NULL) {
409 		softint_disestablish(sc->sc_soft_ih);
410 		sc->sc_soft_ih = NULL;
411 	}
412 
413 	return 0;
414 }
415 
416 static int
417 rt2661_alloc_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring,
418     int count)
419 {
420 	int i, nsegs, error;
421 
422 	ring->count = count;
423 	ring->queued = 0;
424 	ring->cur = ring->next = ring->stat = 0;
425 
426 	error = bus_dmamap_create(sc->sc_dmat, count * RT2661_TX_DESC_SIZE, 1,
427 	    count * RT2661_TX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map);
428 	if (error != 0) {
429 		aprint_error_dev(sc->sc_dev, "could not create desc DMA map\n");
430 		goto fail;
431 	}
432 
433 	error = bus_dmamem_alloc(sc->sc_dmat, count * RT2661_TX_DESC_SIZE,
434 	    PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
435 	if (error != 0) {
436 		aprint_error_dev(sc->sc_dev, "could not allocate DMA memory\n");
437 		goto fail;
438 	}
439 
440 	error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
441 	    count * RT2661_TX_DESC_SIZE, (void **)&ring->desc,
442 	    BUS_DMA_NOWAIT);
443 	if (error != 0) {
444 		aprint_error_dev(sc->sc_dev, "could not map desc DMA memory\n");
445 		goto fail;
446 	}
447 
448 	error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
449 	    count * RT2661_TX_DESC_SIZE, NULL, BUS_DMA_NOWAIT);
450 	if (error != 0) {
451 		aprint_error_dev(sc->sc_dev, "could not load desc DMA map\n");
452 		goto fail;
453 	}
454 
455 	memset(ring->desc, 0, count * RT2661_TX_DESC_SIZE);
456 	ring->physaddr = ring->map->dm_segs->ds_addr;
457 
458 	ring->data = malloc(count * sizeof (struct rt2661_tx_data), M_DEVBUF,
459 	    M_NOWAIT);
460 	if (ring->data == NULL) {
461 		aprint_error_dev(sc->sc_dev, "could not allocate soft data\n");
462 		error = ENOMEM;
463 		goto fail;
464 	}
465 
466 	memset(ring->data, 0, count * sizeof (struct rt2661_tx_data));
467 	for (i = 0; i < count; i++) {
468 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
469 		    RT2661_MAX_SCATTER, MCLBYTES, 0, BUS_DMA_NOWAIT,
470 		    &ring->data[i].map);
471 		if (error != 0) {
472 			aprint_error_dev(sc->sc_dev, "could not create DMA map\n");
473 			goto fail;
474 		}
475 	}
476 
477 	return 0;
478 
479 fail:	rt2661_free_tx_ring(sc, ring);
480 	return error;
481 }
482 
483 static void
484 rt2661_reset_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring)
485 {
486 	struct rt2661_tx_desc *desc;
487 	struct rt2661_tx_data *data;
488 	int i;
489 
490 	for (i = 0; i < ring->count; i++) {
491 		desc = &ring->desc[i];
492 		data = &ring->data[i];
493 
494 		if (data->m != NULL) {
495 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
496 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
497 			bus_dmamap_unload(sc->sc_dmat, data->map);
498 			m_freem(data->m);
499 			data->m = NULL;
500 		}
501 
502 		if (data->ni != NULL) {
503 			ieee80211_free_node(data->ni);
504 			data->ni = NULL;
505 		}
506 
507 		desc->flags = 0;
508 	}
509 
510 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
511 	    BUS_DMASYNC_PREWRITE);
512 
513 	ring->queued = 0;
514 	ring->cur = ring->next = ring->stat = 0;
515 }
516 
517 
518 static void
519 rt2661_free_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring)
520 {
521 	struct rt2661_tx_data *data;
522 	int i;
523 
524 	if (ring->desc != NULL) {
525 		bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
526 		    ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
527 		bus_dmamap_unload(sc->sc_dmat, ring->map);
528 		bus_dmamem_unmap(sc->sc_dmat, (void *)ring->desc,
529 		    ring->count * RT2661_TX_DESC_SIZE);
530 		bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
531 	}
532 
533 	if (ring->data != NULL) {
534 		for (i = 0; i < ring->count; i++) {
535 			data = &ring->data[i];
536 
537 			if (data->m != NULL) {
538 				bus_dmamap_sync(sc->sc_dmat, data->map, 0,
539 				    data->map->dm_mapsize,
540 				    BUS_DMASYNC_POSTWRITE);
541 				bus_dmamap_unload(sc->sc_dmat, data->map);
542 				m_freem(data->m);
543 			}
544 
545 			if (data->ni != NULL)
546 				ieee80211_free_node(data->ni);
547 
548 			if (data->map != NULL)
549 				bus_dmamap_destroy(sc->sc_dmat, data->map);
550 		}
551 		free(ring->data, M_DEVBUF);
552 	}
553 }
554 
555 static int
556 rt2661_alloc_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring,
557     int count)
558 {
559 	struct rt2661_rx_desc *desc;
560 	struct rt2661_rx_data *data;
561 	int i, nsegs, error;
562 
563 	ring->count = count;
564 	ring->cur = ring->next = 0;
565 
566 	error = bus_dmamap_create(sc->sc_dmat, count * RT2661_RX_DESC_SIZE, 1,
567 	    count * RT2661_RX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map);
568 	if (error != 0) {
569 		aprint_error_dev(sc->sc_dev, "could not create desc DMA map\n");
570 		goto fail;
571 	}
572 
573 	error = bus_dmamem_alloc(sc->sc_dmat, count * RT2661_RX_DESC_SIZE,
574 	    PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
575 	if (error != 0) {
576 		aprint_error_dev(sc->sc_dev, "could not allocate DMA memory\n");
577 		goto fail;
578 	}
579 
580 	error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
581 	    count * RT2661_RX_DESC_SIZE, (void **)&ring->desc,
582 	    BUS_DMA_NOWAIT);
583 	if (error != 0) {
584 		aprint_error_dev(sc->sc_dev, "could not map desc DMA memory\n");
585 		goto fail;
586 	}
587 
588 	error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
589 	    count * RT2661_RX_DESC_SIZE, NULL, BUS_DMA_NOWAIT);
590 	if (error != 0) {
591 		aprint_error_dev(sc->sc_dev, "could not load desc DMA map\n");
592 		goto fail;
593 	}
594 
595 	memset(ring->desc, 0, count * RT2661_RX_DESC_SIZE);
596 	ring->physaddr = ring->map->dm_segs->ds_addr;
597 
598 	ring->data = malloc(count * sizeof (struct rt2661_rx_data), M_DEVBUF,
599 	    M_NOWAIT);
600 	if (ring->data == NULL) {
601 		aprint_error_dev(sc->sc_dev, "could not allocate soft data\n");
602 		error = ENOMEM;
603 		goto fail;
604 	}
605 
606 	/*
607 	 * Pre-allocate Rx buffers and populate Rx ring.
608 	 */
609 	memset(ring->data, 0, count * sizeof (struct rt2661_rx_data));
610 	for (i = 0; i < count; i++) {
611 		desc = &sc->rxq.desc[i];
612 		data = &sc->rxq.data[i];
613 
614 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
615 		    0, BUS_DMA_NOWAIT, &data->map);
616 		if (error != 0) {
617 			aprint_error_dev(sc->sc_dev, "could not create DMA map\n");
618 			goto fail;
619 		}
620 
621 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
622 		if (data->m == NULL) {
623 			aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf\n");
624 			error = ENOMEM;
625 			goto fail;
626 		}
627 
628 		MCLGET(data->m, M_DONTWAIT);
629 		if (!(data->m->m_flags & M_EXT)) {
630 			aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf cluster\n");
631 			error = ENOMEM;
632 			goto fail;
633 		}
634 
635 		error = bus_dmamap_load(sc->sc_dmat, data->map,
636 		    mtod(data->m, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
637 		if (error != 0) {
638 			aprint_error_dev(sc->sc_dev, "could not load rx buf DMA map");
639 			goto fail;
640 		}
641 
642 		desc->physaddr = htole32(data->map->dm_segs->ds_addr);
643 		desc->flags = htole32(RT2661_RX_BUSY);
644 	}
645 
646 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
647 	    BUS_DMASYNC_PREWRITE);
648 
649 	return 0;
650 
651 fail:	rt2661_free_rx_ring(sc, ring);
652 	return error;
653 }
654 
655 static void
656 rt2661_reset_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring)
657 {
658 	int i;
659 
660 	for (i = 0; i < ring->count; i++)
661 		ring->desc[i].flags = htole32(RT2661_RX_BUSY);
662 
663 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
664 	    BUS_DMASYNC_PREWRITE);
665 
666 	ring->cur = ring->next = 0;
667 }
668 
669 static void
670 rt2661_free_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring)
671 {
672 	struct rt2661_rx_data *data;
673 	int i;
674 
675 	if (ring->desc != NULL) {
676 		bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
677 		    ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
678 		bus_dmamap_unload(sc->sc_dmat, ring->map);
679 		bus_dmamem_unmap(sc->sc_dmat, (void *)ring->desc,
680 		    ring->count * RT2661_RX_DESC_SIZE);
681 		bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
682 	}
683 
684 	if (ring->data != NULL) {
685 		for (i = 0; i < ring->count; i++) {
686 			data = &ring->data[i];
687 
688 			if (data->m != NULL) {
689 				bus_dmamap_sync(sc->sc_dmat, data->map, 0,
690 				    data->map->dm_mapsize,
691 				    BUS_DMASYNC_POSTREAD);
692 				bus_dmamap_unload(sc->sc_dmat, data->map);
693 				m_freem(data->m);
694 			}
695 
696 			if (data->map != NULL)
697 				bus_dmamap_destroy(sc->sc_dmat, data->map);
698 		}
699 		free(ring->data, M_DEVBUF);
700 	}
701 }
702 
703 static struct ieee80211_node *
704 rt2661_node_alloc(struct ieee80211_node_table *nt)
705 {
706 	struct rt2661_node *rn;
707 
708 	rn = malloc(sizeof (struct rt2661_node), M_80211_NODE,
709 	    M_NOWAIT | M_ZERO);
710 
711 	return (rn != NULL) ? &rn->ni : NULL;
712 }
713 
714 static int
715 rt2661_media_change(struct ifnet *ifp)
716 {
717 	int error;
718 
719 	error = ieee80211_media_change(ifp);
720 	if (error != ENETRESET)
721 		return error;
722 
723 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
724 		rt2661_init(ifp);
725 
726 	return 0;
727 }
728 
729 /*
730  * This function is called periodically (every 200ms) during scanning to
731  * switch from one channel to another.
732  */
733 static void
734 rt2661_next_scan(void *arg)
735 {
736 	struct rt2661_softc *sc = arg;
737 	struct ieee80211com *ic = &sc->sc_ic;
738 	int s;
739 
740 	s = splnet();
741 	if (ic->ic_state == IEEE80211_S_SCAN)
742 		ieee80211_next_scan(ic);
743 	splx(s);
744 }
745 
746 /*
747  * This function is called for each neighbor node.
748  */
749 static void
750 rt2661_iter_func(void *arg, struct ieee80211_node *ni)
751 {
752 	struct rt2661_softc *sc = arg;
753 	struct rt2661_node *rn = (struct rt2661_node *)ni;
754 
755 	ieee80211_amrr_choose(&sc->amrr, ni, &rn->amn);
756 }
757 
758 /*
759  * This function is called periodically (every 500ms) in RUN state to update
760  * various settings like rate control statistics or Rx sensitivity.
761  */
762 static void
763 rt2661_updatestats(void *arg)
764 {
765 	struct rt2661_softc *sc = arg;
766 	struct ieee80211com *ic = &sc->sc_ic;
767 	int s;
768 
769 	s = splnet();
770 	if (ic->ic_opmode == IEEE80211_M_STA)
771 		rt2661_iter_func(sc, ic->ic_bss);
772 	else
773 		ieee80211_iterate_nodes(&ic->ic_sta, rt2661_iter_func, arg);
774 
775 	/* update rx sensitivity every 1 sec */
776 	if (++sc->ncalls & 1)
777 		rt2661_rx_tune(sc);
778 	splx(s);
779 
780 	callout_reset(&sc->amrr_ch, hz / 2, rt2661_updatestats, sc);
781 }
782 
783 static void
784 rt2661_newassoc(struct ieee80211_node *ni, int isnew)
785 {
786 	struct rt2661_softc *sc = ni->ni_ic->ic_ifp->if_softc;
787 	int i;
788 
789 	ieee80211_amrr_node_init(&sc->amrr, &((struct rt2661_node *)ni)->amn);
790 
791 	/* set rate to some reasonable initial value */
792 	for (i = ni->ni_rates.rs_nrates - 1;
793 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
794 	     i--);
795 	ni->ni_txrate = i;
796 }
797 
798 static int
799 rt2661_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
800 {
801 	struct rt2661_softc *sc = ic->ic_ifp->if_softc;
802 	enum ieee80211_state ostate;
803 	struct ieee80211_node *ni;
804 	uint32_t tmp;
805 
806 	ostate = ic->ic_state;
807 	callout_stop(&sc->scan_ch);
808 
809 	switch (nstate) {
810 	case IEEE80211_S_INIT:
811 		callout_stop(&sc->amrr_ch);
812 
813 		if (ostate == IEEE80211_S_RUN) {
814 			/* abort TSF synchronization */
815 			tmp = RAL_READ(sc, RT2661_TXRX_CSR9);
816 			RAL_WRITE(sc, RT2661_TXRX_CSR9, tmp & ~0x00ffffff);
817 		}
818 		break;
819 
820 	case IEEE80211_S_SCAN:
821 		rt2661_set_chan(sc, ic->ic_curchan);
822 		callout_reset(&sc->scan_ch, hz / 5, rt2661_next_scan, sc);
823 		break;
824 
825 	case IEEE80211_S_AUTH:
826 	case IEEE80211_S_ASSOC:
827 		rt2661_set_chan(sc, ic->ic_curchan);
828 		break;
829 
830 	case IEEE80211_S_RUN:
831 		rt2661_set_chan(sc, ic->ic_curchan);
832 
833 		ni = ic->ic_bss;
834 
835 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
836 			rt2661_set_slottime(sc);
837 			rt2661_enable_mrr(sc);
838 			rt2661_set_txpreamble(sc);
839 			rt2661_set_basicrates(sc, &ni->ni_rates);
840 			rt2661_set_bssid(sc, ni->ni_bssid);
841 		}
842 
843 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
844 		    ic->ic_opmode == IEEE80211_M_IBSS)
845 			rt2661_prepare_beacon(sc);
846 
847 		if (ic->ic_opmode == IEEE80211_M_STA) {
848 			/* fake a join to init the tx rate */
849 			rt2661_newassoc(ni, 1);
850 		}
851 
852 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
853 			sc->ncalls = 0;
854 			sc->avg_rssi = -95;	/* reset EMA */
855 			callout_reset(&sc->amrr_ch, hz / 2,
856 			    rt2661_updatestats, sc);
857 			rt2661_enable_tsf_sync(sc);
858 		}
859 		break;
860 	}
861 
862 	return sc->sc_newstate(ic, nstate, arg);
863 }
864 
865 /*
866  * Read 16 bits at address 'addr' from the serial EEPROM (either 93C46 or
867  * 93C66).
868  */
869 static uint16_t
870 rt2661_eeprom_read(struct rt2661_softc *sc, uint8_t addr)
871 {
872 	uint32_t tmp;
873 	uint16_t val;
874 	int n;
875 
876 	/* clock C once before the first command */
877 	RT2661_EEPROM_CTL(sc, 0);
878 
879 	RT2661_EEPROM_CTL(sc, RT2661_S);
880 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C);
881 	RT2661_EEPROM_CTL(sc, RT2661_S);
882 
883 	/* write start bit (1) */
884 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D);
885 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D | RT2661_C);
886 
887 	/* write READ opcode (10) */
888 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D);
889 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D | RT2661_C);
890 	RT2661_EEPROM_CTL(sc, RT2661_S);
891 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C);
892 
893 	/* write address (A5-A0 or A7-A0) */
894 	n = (RAL_READ(sc, RT2661_E2PROM_CSR) & RT2661_93C46) ? 5 : 7;
895 	for (; n >= 0; n--) {
896 		RT2661_EEPROM_CTL(sc, RT2661_S |
897 		    (((addr >> n) & 1) << RT2661_SHIFT_D));
898 		RT2661_EEPROM_CTL(sc, RT2661_S |
899 		    (((addr >> n) & 1) << RT2661_SHIFT_D) | RT2661_C);
900 	}
901 
902 	RT2661_EEPROM_CTL(sc, RT2661_S);
903 
904 	/* read data Q15-Q0 */
905 	val = 0;
906 	for (n = 15; n >= 0; n--) {
907 		RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C);
908 		tmp = RAL_READ(sc, RT2661_E2PROM_CSR);
909 		val |= ((tmp & RT2661_Q) >> RT2661_SHIFT_Q) << n;
910 		RT2661_EEPROM_CTL(sc, RT2661_S);
911 	}
912 
913 	RT2661_EEPROM_CTL(sc, 0);
914 
915 	/* clear Chip Select and clock C */
916 	RT2661_EEPROM_CTL(sc, RT2661_S);
917 	RT2661_EEPROM_CTL(sc, 0);
918 	RT2661_EEPROM_CTL(sc, RT2661_C);
919 
920 	return val;
921 }
922 
923 static void
924 rt2661_tx_intr(struct rt2661_softc *sc)
925 {
926 	struct ifnet *ifp = &sc->sc_if;
927 	struct rt2661_tx_ring *txq;
928 	struct rt2661_tx_data *data;
929 	struct rt2661_node *rn;
930 	uint32_t val;
931 	int qid, retrycnt, s;
932 
933 	s = splnet();
934 
935 	for (;;) {
936 		val = RAL_READ(sc, RT2661_STA_CSR4);
937 		if (!(val & RT2661_TX_STAT_VALID))
938 			break;
939 
940 		/* retrieve the queue in which this frame was sent */
941 		qid = RT2661_TX_QID(val);
942 		txq = (qid <= 3) ? &sc->txq[qid] : &sc->mgtq;
943 
944 		/* retrieve rate control algorithm context */
945 		data = &txq->data[txq->stat];
946 		rn = (struct rt2661_node *)data->ni;
947 
948 		/* if no frame has been sent, ignore */
949 		if (rn == NULL)
950 			continue;
951 
952 		switch (RT2661_TX_RESULT(val)) {
953 		case RT2661_TX_SUCCESS:
954 			retrycnt = RT2661_TX_RETRYCNT(val);
955 
956 			DPRINTFN(10, ("data frame sent successfully after "
957 			    "%d retries\n", retrycnt));
958 			rn->amn.amn_txcnt++;
959 			if (retrycnt > 0)
960 				rn->amn.amn_retrycnt++;
961 			ifp->if_opackets++;
962 			break;
963 
964 		case RT2661_TX_RETRY_FAIL:
965 			DPRINTFN(9, ("sending data frame failed (too much "
966 			    "retries)\n"));
967 			rn->amn.amn_txcnt++;
968 			rn->amn.amn_retrycnt++;
969 			ifp->if_oerrors++;
970 			break;
971 
972 		default:
973 			/* other failure */
974 			aprint_error_dev(sc->sc_dev, "sending data frame failed 0x%08x\n", val);
975 			ifp->if_oerrors++;
976 		}
977 
978 		ieee80211_free_node(data->ni);
979 		data->ni = NULL;
980 
981 		DPRINTFN(15, ("tx done q=%d idx=%u\n", qid, txq->stat));
982 
983 		txq->queued--;
984 		if (++txq->stat >= txq->count)	/* faster than % count */
985 			txq->stat = 0;
986 	}
987 
988 	sc->sc_tx_timer = 0;
989 	ifp->if_flags &= ~IFF_OACTIVE;
990 	rt2661_start(ifp); /* in softint */
991 
992 	splx(s);
993 }
994 
995 static void
996 rt2661_tx_dma_intr(struct rt2661_softc *sc, struct rt2661_tx_ring *txq)
997 {
998 	struct rt2661_tx_desc *desc;
999 	struct rt2661_tx_data *data;
1000 
1001 	for (;;) {
1002 		desc = &txq->desc[txq->next];
1003 		data = &txq->data[txq->next];
1004 
1005 		bus_dmamap_sync(sc->sc_dmat, txq->map,
1006 		    txq->next * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
1007 		    BUS_DMASYNC_POSTREAD);
1008 
1009 		if ((le32toh(desc->flags) & RT2661_TX_BUSY) ||
1010 		    !(le32toh(desc->flags) & RT2661_TX_VALID))
1011 			break;
1012 
1013 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1014 		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1015 		bus_dmamap_unload(sc->sc_dmat, data->map);
1016 		m_freem(data->m);
1017 		data->m = NULL;
1018 		/* node reference is released in rt2661_tx_intr() */
1019 
1020 		/* descriptor is no longer valid */
1021 		desc->flags &= ~htole32(RT2661_TX_VALID);
1022 
1023 		bus_dmamap_sync(sc->sc_dmat, txq->map,
1024 		    txq->next * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
1025 		    BUS_DMASYNC_PREWRITE);
1026 
1027 		DPRINTFN(15, ("tx dma done q=%p idx=%u\n", txq, txq->next));
1028 
1029 		if (++txq->next >= txq->count)	/* faster than % count */
1030 			txq->next = 0;
1031 	}
1032 }
1033 
1034 static void
1035 rt2661_rx_intr(struct rt2661_softc *sc)
1036 {
1037 	struct ieee80211com *ic = &sc->sc_ic;
1038 	struct ifnet *ifp = &sc->sc_if;
1039 	struct rt2661_rx_desc *desc;
1040 	struct rt2661_rx_data *data;
1041 	struct ieee80211_frame *wh;
1042 	struct ieee80211_node *ni;
1043 	struct mbuf *mnew, *m;
1044 	int error, rssi, s;
1045 
1046 	for (;;) {
1047 		desc = &sc->rxq.desc[sc->rxq.cur];
1048 		data = &sc->rxq.data[sc->rxq.cur];
1049 
1050 		bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1051 		    sc->rxq.cur * RT2661_RX_DESC_SIZE, RT2661_RX_DESC_SIZE,
1052 		    BUS_DMASYNC_POSTREAD);
1053 
1054 		if (le32toh(desc->flags) & RT2661_RX_BUSY)
1055 			break;
1056 
1057 		if ((le32toh(desc->flags) & RT2661_RX_PHY_ERROR) ||
1058 		    (le32toh(desc->flags) & RT2661_RX_CRC_ERROR)) {
1059 			/*
1060 			 * This should not happen since we did not request
1061 			 * to receive those frames when we filled TXRX_CSR0.
1062 			 */
1063 			DPRINTFN(5, ("PHY or CRC error flags 0x%08x\n",
1064 			    le32toh(desc->flags)));
1065 			ifp->if_ierrors++;
1066 			goto skip;
1067 		}
1068 
1069 		if ((le32toh(desc->flags) & RT2661_RX_CIPHER_MASK) != 0) {
1070 			ifp->if_ierrors++;
1071 			goto skip;
1072 		}
1073 
1074 		/*
1075 		 * Try to allocate a new mbuf for this ring element and load it
1076 		 * before processing the current mbuf. If the ring element
1077 		 * cannot be loaded, drop the received packet and reuse the old
1078 		 * mbuf. In the unlikely case that the old mbuf can't be
1079 		 * reloaded either, explicitly panic.
1080 		 */
1081 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1082 		if (mnew == NULL) {
1083 			ifp->if_ierrors++;
1084 			goto skip;
1085 		}
1086 
1087 		MCLGET(mnew, M_DONTWAIT);
1088 		if (!(mnew->m_flags & M_EXT)) {
1089 			m_freem(mnew);
1090 			ifp->if_ierrors++;
1091 			goto skip;
1092 		}
1093 
1094 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1095 		    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1096 		bus_dmamap_unload(sc->sc_dmat, data->map);
1097 
1098 		error = bus_dmamap_load(sc->sc_dmat, data->map,
1099 		    mtod(mnew, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
1100 		if (error != 0) {
1101 			m_freem(mnew);
1102 
1103 			/* try to reload the old mbuf */
1104 			error = bus_dmamap_load(sc->sc_dmat, data->map,
1105 			    mtod(data->m, void *), MCLBYTES, NULL,
1106 			    BUS_DMA_NOWAIT);
1107 			if (error != 0) {
1108 				/* very unlikely that it will fail... */
1109 				panic("%s: could not load old rx mbuf",
1110 				    device_xname(sc->sc_dev));
1111 			}
1112 			/* physical address may have changed */
1113 			desc->physaddr = htole32(data->map->dm_segs->ds_addr);
1114 			ifp->if_ierrors++;
1115 			goto skip;
1116 		}
1117 
1118 		/*
1119 	 	 * New mbuf successfully loaded, update Rx ring and continue
1120 		 * processing.
1121 		 */
1122 		m = data->m;
1123 		data->m = mnew;
1124 		desc->physaddr = htole32(data->map->dm_segs->ds_addr);
1125 
1126 		/* finalize mbuf */
1127 		m_set_rcvif(m, ifp);
1128 		m->m_pkthdr.len = m->m_len =
1129 		    (le32toh(desc->flags) >> 16) & 0xfff;
1130 
1131 		s = splnet();
1132 
1133 		if (sc->sc_drvbpf != NULL) {
1134 			struct rt2661_rx_radiotap_header *tap = &sc->sc_rxtap;
1135 			uint32_t tsf_lo, tsf_hi;
1136 
1137 			/* get timestamp (low and high 32 bits) */
1138 			tsf_hi = RAL_READ(sc, RT2661_TXRX_CSR13);
1139 			tsf_lo = RAL_READ(sc, RT2661_TXRX_CSR12);
1140 
1141 			tap->wr_tsf =
1142 			    htole64(((uint64_t)tsf_hi << 32) | tsf_lo);
1143 			tap->wr_flags = 0;
1144 			tap->wr_rate = rt2661_rxrate(desc);
1145 			tap->wr_chan_freq = htole16(sc->sc_curchan->ic_freq);
1146 			tap->wr_chan_flags = htole16(sc->sc_curchan->ic_flags);
1147 			tap->wr_antsignal = desc->rssi;
1148 
1149 			bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1150 		}
1151 
1152 		wh = mtod(m, struct ieee80211_frame *);
1153 		ni = ieee80211_find_rxnode(ic,
1154 		    (struct ieee80211_frame_min *)wh);
1155 
1156 		/* send the frame to the 802.11 layer */
1157 		ieee80211_input(ic, m, ni, desc->rssi, 0);
1158 
1159 		/*-
1160 		 * Keep track of the average RSSI using an Exponential Moving
1161 		 * Average (EMA) of 8 Wilder's days:
1162 		 *     avg = (1 / N) x rssi + ((N - 1) / N) x avg
1163 		 */
1164 		rssi = rt2661_get_rssi(sc, desc->rssi);
1165 		sc->avg_rssi = (rssi + 7 * sc->avg_rssi) / 8;
1166 
1167 		/* node is no longer needed */
1168 		ieee80211_free_node(ni);
1169 
1170 		splx(s);
1171 
1172 skip:		desc->flags |= htole32(RT2661_RX_BUSY);
1173 
1174 		bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1175 		    sc->rxq.cur * RT2661_RX_DESC_SIZE, RT2661_RX_DESC_SIZE,
1176 		    BUS_DMASYNC_PREWRITE);
1177 
1178 		DPRINTFN(16, ("rx intr idx=%u\n", sc->rxq.cur));
1179 
1180 		sc->rxq.cur = (sc->rxq.cur + 1) % RT2661_RX_RING_COUNT;
1181 	}
1182 
1183 	/*
1184 	 * In HostAP mode, ieee80211_input() will enqueue packets in if_snd
1185 	 * without calling if_start().
1186 	 */
1187 	s = splnet();
1188 	if (!IFQ_IS_EMPTY(&ifp->if_snd) && !(ifp->if_flags & IFF_OACTIVE))
1189 		rt2661_start(ifp);
1190 	splx(s);
1191 }
1192 
1193 /*
1194  * This function is called in HostAP or IBSS modes when it's time to send a
1195  * new beacon (every ni_intval milliseconds).
1196  */
1197 static void
1198 rt2661_mcu_beacon_expire(struct rt2661_softc *sc)
1199 {
1200 	struct ieee80211com *ic = &sc->sc_ic;
1201 
1202 	if (sc->sc_flags & RT2661_UPDATE_SLOT) {
1203 		sc->sc_flags &= ~RT2661_UPDATE_SLOT;
1204 		sc->sc_flags |= RT2661_SET_SLOTTIME;
1205 	} else if (sc->sc_flags & RT2661_SET_SLOTTIME) {
1206 		sc->sc_flags &= ~RT2661_SET_SLOTTIME;
1207 		rt2661_set_slottime(sc);
1208 	}
1209 
1210 	if (ic->ic_curmode == IEEE80211_MODE_11G) {
1211 		/* update ERP Information Element */
1212 		RAL_WRITE_1(sc, sc->erp_csr, ic->ic_bss->ni_erp);
1213 		RAL_RW_BARRIER_1(sc, sc->erp_csr);
1214 	}
1215 
1216 	DPRINTFN(15, ("beacon expired\n"));
1217 }
1218 
1219 static void
1220 rt2661_mcu_wakeup(struct rt2661_softc *sc)
1221 {
1222 	RAL_WRITE(sc, RT2661_MAC_CSR11, 5 << 16);
1223 
1224 	RAL_WRITE(sc, RT2661_SOFT_RESET_CSR, 0x7);
1225 	RAL_WRITE(sc, RT2661_IO_CNTL_CSR, 0x18);
1226 	RAL_WRITE(sc, RT2661_PCI_USEC_CSR, 0x20);
1227 
1228 	/* send wakeup command to MCU */
1229 	rt2661_tx_cmd(sc, RT2661_MCU_CMD_WAKEUP, 0);
1230 }
1231 
1232 static void
1233 rt2661_mcu_cmd_intr(struct rt2661_softc *sc)
1234 {
1235 	RAL_READ(sc, RT2661_M2H_CMD_DONE_CSR);
1236 	RAL_WRITE(sc, RT2661_M2H_CMD_DONE_CSR, 0xffffffff);
1237 }
1238 
1239 int
1240 rt2661_intr(void *arg)
1241 {
1242 	struct rt2661_softc *sc = arg;
1243 	struct ifnet *ifp = &sc->sc_if;
1244 	uint32_t r1, r2;
1245 
1246 	/* don't re-enable interrupts if we're shutting down */
1247 	if (!(ifp->if_flags & IFF_RUNNING)) {
1248 		/* disable MAC and MCU interrupts */
1249 		RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0xffffff7f);
1250 		RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0xffffffff);
1251 		return 0;
1252 	}
1253 
1254 	r1 = RAL_READ(sc, RT2661_INT_SOURCE_CSR);
1255 	r2 = RAL_READ(sc, RT2661_MCU_INT_SOURCE_CSR);
1256 
1257 	if ((r1 & RT2661_INT_CSR_ALL) == 0 && (r2 & RT2661_MCU_INT_ALL) == 0)
1258 		return 0;
1259 
1260 	/* disable interrupts */
1261 	RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0xffffff7f);
1262 	RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0xffffffff);
1263 
1264 	softint_schedule(sc->sc_soft_ih);
1265 	return 1;
1266 }
1267 
1268 static void
1269 rt2661_softintr(void *arg)
1270 {
1271 	struct rt2661_softc *sc = arg;
1272 	uint32_t r1, r2;
1273 
1274 	for (;;) {
1275 		r1 = RAL_READ(sc, RT2661_INT_SOURCE_CSR);
1276 		r2 = RAL_READ(sc, RT2661_MCU_INT_SOURCE_CSR);
1277 
1278 		if ((r1 & RT2661_INT_CSR_ALL) == 0 &&
1279 		    (r2 & RT2661_MCU_INT_ALL) == 0)
1280 			break;
1281 
1282 		RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, r1);
1283 		RAL_WRITE(sc, RT2661_MCU_INT_SOURCE_CSR, r2);
1284 
1285 		if (r1 & RT2661_MGT_DONE)
1286 			rt2661_tx_dma_intr(sc, &sc->mgtq);
1287 
1288 		if (r1 & RT2661_RX_DONE)
1289 			rt2661_rx_intr(sc);
1290 
1291 		if (r1 & RT2661_TX0_DMA_DONE)
1292 			rt2661_tx_dma_intr(sc, &sc->txq[0]);
1293 
1294 		if (r1 & RT2661_TX1_DMA_DONE)
1295 			rt2661_tx_dma_intr(sc, &sc->txq[1]);
1296 
1297 		if (r1 & RT2661_TX2_DMA_DONE)
1298 			rt2661_tx_dma_intr(sc, &sc->txq[2]);
1299 
1300 		if (r1 & RT2661_TX3_DMA_DONE)
1301 			rt2661_tx_dma_intr(sc, &sc->txq[3]);
1302 
1303 		if (r1 & RT2661_TX_DONE)
1304 			rt2661_tx_intr(sc);
1305 
1306 		if (r2 & RT2661_MCU_CMD_DONE)
1307 			rt2661_mcu_cmd_intr(sc);
1308 
1309 		if (r2 & RT2661_MCU_BEACON_EXPIRE)
1310 			rt2661_mcu_beacon_expire(sc);
1311 
1312 		if (r2 & RT2661_MCU_WAKEUP)
1313 			rt2661_mcu_wakeup(sc);
1314 	}
1315 
1316 	/* enable interrupts */
1317 	RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0x0000ff10);
1318 	RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0);
1319 }
1320 
1321 /* quickly determine if a given rate is CCK or OFDM */
1322 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1323 
1324 #define RAL_ACK_SIZE	14	/* 10 + 4(FCS) */
1325 #define RAL_CTS_SIZE	14	/* 10 + 4(FCS) */
1326 
1327 /*
1328  * This function is only used by the Rx radiotap code. It returns the rate at
1329  * which a given frame was received.
1330  */
1331 static uint8_t
1332 rt2661_rxrate(struct rt2661_rx_desc *desc)
1333 {
1334 	if (le32toh(desc->flags) & RT2661_RX_OFDM) {
1335 		/* reverse function of rt2661_plcp_signal */
1336 		switch (desc->rate & 0xf) {
1337 		case 0xb:	return 12;
1338 		case 0xf:	return 18;
1339 		case 0xa:	return 24;
1340 		case 0xe:	return 36;
1341 		case 0x9:	return 48;
1342 		case 0xd:	return 72;
1343 		case 0x8:	return 96;
1344 		case 0xc:	return 108;
1345 		}
1346 	} else {
1347 		if (desc->rate == 10)
1348 			return 2;
1349 		if (desc->rate == 20)
1350 			return 4;
1351 		if (desc->rate == 55)
1352 			return 11;
1353 		if (desc->rate == 110)
1354 			return 22;
1355 	}
1356 	return 2;	/* should not get there */
1357 }
1358 
1359 /*
1360  * Return the expected ack rate for a frame transmitted at rate `rate'.
1361  * XXX: this should depend on the destination node basic rate set.
1362  */
1363 static int
1364 rt2661_ack_rate(struct ieee80211com *ic, int rate)
1365 {
1366 	switch (rate) {
1367 	/* CCK rates */
1368 	case 2:
1369 		return 2;
1370 	case 4:
1371 	case 11:
1372 	case 22:
1373 		return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
1374 
1375 	/* OFDM rates */
1376 	case 12:
1377 	case 18:
1378 		return 12;
1379 	case 24:
1380 	case 36:
1381 		return 24;
1382 	case 48:
1383 	case 72:
1384 	case 96:
1385 	case 108:
1386 		return 48;
1387 	}
1388 
1389 	/* default to 1Mbps */
1390 	return 2;
1391 }
1392 
1393 /*
1394  * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1395  * The function automatically determines the operating mode depending on the
1396  * given rate. `flags' indicates whether short preamble is in use or not.
1397  */
1398 static uint16_t
1399 rt2661_txtime(int len, int rate, uint32_t flags)
1400 {
1401 	uint16_t txtime;
1402 
1403 	if (RAL_RATE_IS_OFDM(rate)) {
1404 		/* IEEE Std 802.11g-2003, pp. 44 */
1405 		txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1406 		txtime = 16 + 4 + 4 * txtime + 6;
1407 	} else {
1408 		/* IEEE Std 802.11b-1999, pp. 28 */
1409 		txtime = (16 * len + rate - 1) / rate;
1410 		if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1411 			txtime +=  72 + 24;
1412 		else
1413 			txtime += 144 + 48;
1414 	}
1415 	return txtime;
1416 }
1417 
1418 static uint8_t
1419 rt2661_plcp_signal(int rate)
1420 {
1421 	switch (rate) {
1422 	/* CCK rates (returned values are device-dependent) */
1423 	case 2:		return 0x0;
1424 	case 4:		return 0x1;
1425 	case 11:	return 0x2;
1426 	case 22:	return 0x3;
1427 
1428 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1429 	case 12:	return 0xb;
1430 	case 18:	return 0xf;
1431 	case 24:	return 0xa;
1432 	case 36:	return 0xe;
1433 	case 48:	return 0x9;
1434 	case 72:	return 0xd;
1435 	case 96:	return 0x8;
1436 	case 108:	return 0xc;
1437 
1438 	/* unsupported rates (should not get there) */
1439 	default:	return 0xff;
1440 	}
1441 }
1442 
1443 static void
1444 rt2661_setup_tx_desc(struct rt2661_softc *sc, struct rt2661_tx_desc *desc,
1445     uint32_t flags, uint16_t xflags, int len, int rate,
1446     const bus_dma_segment_t *segs, int nsegs, int ac)
1447 {
1448 	struct ieee80211com *ic = &sc->sc_ic;
1449 	uint16_t plcp_length;
1450 	int i, remainder;
1451 
1452 	desc->flags = htole32(flags);
1453 	desc->flags |= htole32(len << 16);
1454 
1455 	desc->xflags = htole16(xflags);
1456 	desc->xflags |= htole16(nsegs << 13);
1457 
1458 	desc->wme = htole16(
1459 	    RT2661_QID(ac) |
1460 	    RT2661_AIFSN(2) |
1461 	    RT2661_LOGCWMIN(4) |
1462 	    RT2661_LOGCWMAX(10));
1463 
1464 	/*
1465 	 * Remember in which queue this frame was sent. This field is driver
1466 	 * private data only. It will be made available by the NIC in STA_CSR4
1467 	 * on Tx interrupts.
1468 	 */
1469 	desc->qid = ac;
1470 
1471 	/* setup PLCP fields */
1472 	desc->plcp_signal  = rt2661_plcp_signal(rate);
1473 	desc->plcp_service = 4;
1474 
1475 	len += IEEE80211_CRC_LEN;
1476 	if (RAL_RATE_IS_OFDM(rate)) {
1477 		desc->flags |= htole32(RT2661_TX_OFDM);
1478 
1479 		plcp_length = len & 0xfff;
1480 		desc->plcp_length_hi = plcp_length >> 6;
1481 		desc->plcp_length_lo = plcp_length & 0x3f;
1482 	} else {
1483 		plcp_length = (16 * len + rate - 1) / rate;
1484 		if (rate == 22) {
1485 			remainder = (16 * len) % 22;
1486 			if (remainder != 0 && remainder < 7)
1487 				desc->plcp_service |= RT2661_PLCP_LENGEXT;
1488 		}
1489 		desc->plcp_length_hi = plcp_length >> 8;
1490 		desc->plcp_length_lo = plcp_length & 0xff;
1491 
1492 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1493 			desc->plcp_signal |= 0x08;
1494 	}
1495 
1496 	/* RT2x61 supports scatter with up to 5 segments */
1497 	for (i = 0; i < nsegs; i++) {
1498 		desc->addr[i] = htole32(segs[i].ds_addr);
1499 		desc->len [i] = htole16(segs[i].ds_len);
1500 	}
1501 
1502 	desc->flags |= htole32(RT2661_TX_BUSY | RT2661_TX_VALID);
1503 }
1504 
1505 static int
1506 rt2661_tx_mgt(struct rt2661_softc *sc, struct mbuf *m0,
1507     struct ieee80211_node *ni)
1508 {
1509 	struct ieee80211com *ic = &sc->sc_ic;
1510 	struct rt2661_tx_desc *desc;
1511 	struct rt2661_tx_data *data;
1512 	struct ieee80211_frame *wh;
1513 	uint16_t dur;
1514 	uint32_t flags = 0;
1515 	int rate, error;
1516 
1517 	desc = &sc->mgtq.desc[sc->mgtq.cur];
1518 	data = &sc->mgtq.data[sc->mgtq.cur];
1519 
1520 	/* send mgt frames at the lowest available rate */
1521 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1522 
1523 	wh = mtod(m0, struct ieee80211_frame *);
1524 
1525 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1526 		if (ieee80211_crypto_encap(ic, ni, m0) == NULL) {
1527 			m_freem(m0);
1528 			return ENOBUFS;
1529 		}
1530 
1531 		/* packet header may have moved, reset our local pointer */
1532 		wh = mtod(m0, struct ieee80211_frame *);
1533 	}
1534 
1535 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1536 	    BUS_DMA_NOWAIT);
1537 	if (error != 0) {
1538 		aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
1539 		    error);
1540 		m_freem(m0);
1541 		return error;
1542 	}
1543 
1544 	if (sc->sc_drvbpf != NULL) {
1545 		struct rt2661_tx_radiotap_header *tap = &sc->sc_txtap;
1546 
1547 		tap->wt_flags = 0;
1548 		tap->wt_rate = rate;
1549 		tap->wt_chan_freq = htole16(sc->sc_curchan->ic_freq);
1550 		tap->wt_chan_flags = htole16(sc->sc_curchan->ic_flags);
1551 
1552 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1553 	}
1554 
1555 	data->m = m0;
1556 	data->ni = ni;
1557 
1558 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1559 		flags |= RT2661_TX_NEED_ACK;
1560 
1561 		dur = rt2661_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) +
1562 		    sc->sifs;
1563 		*(uint16_t *)wh->i_dur = htole16(dur);
1564 
1565 		/* tell hardware to set timestamp in probe responses */
1566 		if ((wh->i_fc[0] &
1567 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1568 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1569 			flags |= RT2661_TX_TIMESTAMP;
1570 	}
1571 
1572 	rt2661_setup_tx_desc(sc, desc, flags, 0 /* XXX HWSEQ */,
1573 	    m0->m_pkthdr.len, rate, data->map->dm_segs, data->map->dm_nsegs,
1574 	    RT2661_QID_MGT);
1575 
1576 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1577 	    BUS_DMASYNC_PREWRITE);
1578 	bus_dmamap_sync(sc->sc_dmat, sc->mgtq.map,
1579 	    sc->mgtq.cur * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
1580 	    BUS_DMASYNC_PREWRITE);
1581 
1582 	DPRINTFN(10, ("sending mgt frame len=%u idx=%u rate=%u\n",
1583 	    m0->m_pkthdr.len, sc->mgtq.cur, rate));
1584 
1585 	/* kick mgt */
1586 	sc->mgtq.queued++;
1587 	sc->mgtq.cur = (sc->mgtq.cur + 1) % RT2661_MGT_RING_COUNT;
1588 	RAL_WRITE(sc, RT2661_TX_CNTL_CSR, RT2661_KICK_MGT);
1589 
1590 	return 0;
1591 }
1592 
1593 /*
1594  * Build a RTS control frame.
1595  */
1596 static struct mbuf *
1597 rt2661_get_rts(struct rt2661_softc *sc, struct ieee80211_frame *wh,
1598     uint16_t dur)
1599 {
1600 	struct ieee80211_frame_rts *rts;
1601 	struct mbuf *m;
1602 
1603 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1604 	if (m == NULL) {
1605 		sc->sc_ic.ic_stats.is_tx_nobuf++;
1606 		aprint_error_dev(sc->sc_dev, "could not allocate RTS frame\n");
1607 		return NULL;
1608 	}
1609 
1610 	rts = mtod(m, struct ieee80211_frame_rts *);
1611 
1612 	rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL |
1613 	    IEEE80211_FC0_SUBTYPE_RTS;
1614 	rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1615 	*(uint16_t *)rts->i_dur = htole16(dur);
1616 	IEEE80211_ADDR_COPY(rts->i_ra, wh->i_addr1);
1617 	IEEE80211_ADDR_COPY(rts->i_ta, wh->i_addr2);
1618 
1619 	m->m_pkthdr.len = m->m_len = sizeof (struct ieee80211_frame_rts);
1620 
1621 	return m;
1622 }
1623 
1624 static int
1625 rt2661_tx_data(struct rt2661_softc *sc, struct mbuf *m0,
1626     struct ieee80211_node *ni, int ac)
1627 {
1628 	struct ieee80211com *ic = &sc->sc_ic;
1629 	struct rt2661_tx_ring *txq = &sc->txq[ac];
1630 	struct rt2661_tx_desc *desc;
1631 	struct rt2661_tx_data *data;
1632 	struct ieee80211_frame *wh;
1633 	struct ieee80211_key *k;
1634 	struct mbuf *mnew;
1635 	uint16_t dur;
1636 	uint32_t flags = 0;
1637 	int rate, useprot, error, tid;
1638 
1639 	wh = mtod(m0, struct ieee80211_frame *);
1640 
1641 	if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
1642 		rate = ic->ic_sup_rates[ic->ic_curmode].
1643 		    rs_rates[ic->ic_fixed_rate];
1644 	} else
1645 		rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1646 	rate &= IEEE80211_RATE_VAL;
1647 	if (rate == 0)
1648 		rate = 2;	/* XXX should not happen */
1649 
1650 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1651 		k = ieee80211_crypto_encap(ic, ni, m0);
1652 		if (k == NULL) {
1653 			m_freem(m0);
1654 			return ENOBUFS;
1655 		}
1656 
1657 		/* packet header may have moved, reset our local pointer */
1658 		wh = mtod(m0, struct ieee80211_frame *);
1659 	}
1660 
1661 	/*
1662 	 * Packet Bursting: backoff after ppb=8 frames to give other STAs a
1663 	 * chance to contend for the wireless medium.
1664 	 */
1665 	tid = WME_AC_TO_TID(M_WME_GETAC(m0));
1666 	if (ic->ic_opmode == IEEE80211_M_STA && (ni->ni_txseqs[tid] & 7))
1667 		flags |= RT2661_TX_IFS_SIFS;
1668 
1669 	/*
1670 	 * IEEE Std 802.11-1999, pp 82: "A STA shall use an RTS/CTS exchange
1671 	 * for directed frames only when the length of the MPDU is greater
1672 	 * than the length threshold indicated by" ic_rtsthreshold.
1673 	 *
1674 	 * IEEE Std 802.11-2003g, pp 13: "ERP STAs shall use protection
1675 	 * mechanism (such as RTS/CTS or CTS-to-self) for ERP-OFDM MPDUs of
1676 	 * type Data or an MMPDU".
1677 	 */
1678 	useprot = !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1679 	    (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold ||
1680 	    ((ic->ic_flags & IEEE80211_F_USEPROT) && RAL_RATE_IS_OFDM(rate)));
1681 	if (useprot) {
1682 		struct mbuf *m;
1683 		int rtsrate, ackrate;
1684 
1685 		rtsrate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1686 		ackrate = rt2661_ack_rate(ic, rate);
1687 
1688 		dur = rt2661_txtime(m0->m_pkthdr.len + 4, rate, ic->ic_flags) +
1689 		      rt2661_txtime(RAL_CTS_SIZE, rtsrate, ic->ic_flags) +
1690 		      rt2661_txtime(RAL_ACK_SIZE, ackrate, ic->ic_flags) +
1691 		      3 * sc->sifs;
1692 
1693 		m = rt2661_get_rts(sc, wh, dur);
1694 		if (m == NULL) {
1695 			aprint_error_dev(sc->sc_dev, "could not allocate RTS "
1696 			    "frame\n");
1697 			m_freem(m0);
1698 			return ENOBUFS;
1699 		}
1700 
1701 		desc = &txq->desc[txq->cur];
1702 		data = &txq->data[txq->cur];
1703 
1704 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
1705 		    BUS_DMA_NOWAIT);
1706 		if (error != 0) {
1707 			aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n", error);
1708 			m_freem(m);
1709 			m_freem(m0);
1710 			return error;
1711 		}
1712 
1713 		/* avoid multiple free() of the same node for each fragment */
1714 		ieee80211_ref_node(ni);
1715 
1716 		data->m = m;
1717 		data->ni = ni;
1718 
1719 		rt2661_setup_tx_desc(sc, desc, RT2661_TX_NEED_ACK |
1720 		    RT2661_TX_MORE_FRAG, 0, m->m_pkthdr.len, rtsrate,
1721 		    data->map->dm_segs, data->map->dm_nsegs, ac);
1722 
1723 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1724 		    data->map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1725 		bus_dmamap_sync(sc->sc_dmat, txq->map,
1726 		    txq->cur * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
1727 		    BUS_DMASYNC_PREWRITE);
1728 
1729 		txq->queued++;
1730 		txq->cur = (txq->cur + 1) % RT2661_TX_RING_COUNT;
1731 
1732 		flags |= RT2661_TX_LONG_RETRY | RT2661_TX_IFS_SIFS;
1733 	}
1734 
1735 	data = &txq->data[txq->cur];
1736 	desc = &txq->desc[txq->cur];
1737 
1738 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1739 	    BUS_DMA_NOWAIT);
1740 	if (error != 0 && error != EFBIG) {
1741 		aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
1742 		    error);
1743 		m_freem(m0);
1744 		return error;
1745 	}
1746 	if (error != 0) {
1747 		/* too many fragments, linearize */
1748 
1749 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1750 		if (mnew == NULL) {
1751 			m_freem(m0);
1752 			return ENOMEM;
1753 		}
1754 
1755 		M_COPY_PKTHDR(mnew, m0);
1756 		if (m0->m_pkthdr.len > MHLEN) {
1757 			MCLGET(mnew, M_DONTWAIT);
1758 			if (!(mnew->m_flags & M_EXT)) {
1759 				m_freem(m0);
1760 				m_freem(mnew);
1761 				return ENOMEM;
1762 			}
1763 		}
1764 
1765 		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
1766 		m_freem(m0);
1767 		mnew->m_len = mnew->m_pkthdr.len;
1768 		m0 = mnew;
1769 
1770 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1771 		    BUS_DMA_NOWAIT);
1772 		if (error != 0) {
1773 			aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n", error);
1774 			m_freem(m0);
1775 			return error;
1776 		}
1777 
1778 		/* packet header have moved, reset our local pointer */
1779 		wh = mtod(m0, struct ieee80211_frame *);
1780 	}
1781 
1782 	if (sc->sc_drvbpf != NULL) {
1783 		struct rt2661_tx_radiotap_header *tap = &sc->sc_txtap;
1784 
1785 		tap->wt_flags = 0;
1786 		tap->wt_rate = rate;
1787 		tap->wt_chan_freq = htole16(sc->sc_curchan->ic_freq);
1788 		tap->wt_chan_flags = htole16(sc->sc_curchan->ic_flags);
1789 
1790 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1791 	}
1792 
1793 	data->m = m0;
1794 	data->ni = ni;
1795 
1796 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1797 		flags |= RT2661_TX_NEED_ACK;
1798 
1799 		dur = rt2661_txtime(RAL_ACK_SIZE, rt2661_ack_rate(ic, rate),
1800 		    ic->ic_flags) + sc->sifs;
1801 		*(uint16_t *)wh->i_dur = htole16(dur);
1802 	}
1803 
1804 	rt2661_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate,
1805 	    data->map->dm_segs, data->map->dm_nsegs, ac);
1806 
1807 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1808 	    BUS_DMASYNC_PREWRITE);
1809 	bus_dmamap_sync(sc->sc_dmat, txq->map, txq->cur * RT2661_TX_DESC_SIZE,
1810 	    RT2661_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
1811 
1812 	DPRINTFN(10, ("sending data frame len=%u idx=%u rate=%u\n",
1813 	    m0->m_pkthdr.len, txq->cur, rate));
1814 
1815 	/* kick Tx */
1816 	txq->queued++;
1817 	txq->cur = (txq->cur + 1) % RT2661_TX_RING_COUNT;
1818 	RAL_WRITE(sc, RT2661_TX_CNTL_CSR, 1);
1819 
1820 	return 0;
1821 }
1822 
1823 static void
1824 rt2661_start(struct ifnet *ifp)
1825 {
1826 	struct rt2661_softc *sc = ifp->if_softc;
1827 	struct ieee80211com *ic = &sc->sc_ic;
1828 	struct mbuf *m0;
1829 	struct ether_header *eh;
1830 	struct ieee80211_node *ni = NULL;
1831 
1832 	/*
1833 	 * net80211 may still try to send management frames even if the
1834 	 * IFF_RUNNING flag is not set...
1835 	 */
1836 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1837 		return;
1838 
1839 	for (;;) {
1840 		IF_POLL(&ic->ic_mgtq, m0);
1841 		if (m0 != NULL) {
1842 			if (sc->mgtq.queued >= RT2661_MGT_RING_COUNT) {
1843 				ifp->if_flags |= IFF_OACTIVE;
1844 				break;
1845 			}
1846 			IF_DEQUEUE(&ic->ic_mgtq, m0);
1847 			if (m0 == NULL)
1848 				break;
1849 
1850 			ni = M_GETCTX(m0, struct ieee80211_node *);
1851 			M_CLEARCTX(m0);
1852 			bpf_mtap3(ic->ic_rawbpf, m0);
1853 			if (rt2661_tx_mgt(sc, m0, ni) != 0)
1854 				break;
1855 
1856 		} else {
1857 			IF_POLL(&ifp->if_snd, m0);
1858 			if (m0 == NULL || ic->ic_state != IEEE80211_S_RUN)
1859 				break;
1860 
1861 			if (sc->txq[0].queued >= RT2661_TX_RING_COUNT - 1) {
1862 				/* there is no place left in this ring */
1863 				ifp->if_flags |= IFF_OACTIVE;
1864 				break;
1865 			}
1866 
1867 			IFQ_DEQUEUE(&ifp->if_snd, m0);
1868 
1869 			if (m0->m_len < sizeof (struct ether_header) &&
1870 			    !(m0 = m_pullup(m0, sizeof (struct ether_header))))
1871 				continue;
1872 
1873 			eh = mtod(m0, struct ether_header *);
1874 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1875 			if (ni == NULL) {
1876 				m_freem(m0);
1877 				ifp->if_oerrors++;
1878 				continue;
1879 			}
1880 
1881 			bpf_mtap3(ifp->if_bpf, m0);
1882 			m0 = ieee80211_encap(ic, m0, ni);
1883 			if (m0 == NULL) {
1884 				ieee80211_free_node(ni);
1885 				ifp->if_oerrors++;
1886 				continue;
1887 			}
1888 			bpf_mtap3(ic->ic_rawbpf, m0);
1889 			if (rt2661_tx_data(sc, m0, ni, 0) != 0) {
1890 				if (ni != NULL)
1891 					ieee80211_free_node(ni);
1892 				ifp->if_oerrors++;
1893 				break;
1894 			}
1895 		}
1896 
1897 		sc->sc_tx_timer = 5;
1898 		ifp->if_timer = 1;
1899 	}
1900 }
1901 
1902 static void
1903 rt2661_watchdog(struct ifnet *ifp)
1904 {
1905 	struct rt2661_softc *sc = ifp->if_softc;
1906 
1907 	ifp->if_timer = 0;
1908 
1909 	if (sc->sc_tx_timer > 0) {
1910 		if (--sc->sc_tx_timer == 0) {
1911 			aprint_error_dev(sc->sc_dev, "device timeout\n");
1912 			rt2661_init(ifp);
1913 			ifp->if_oerrors++;
1914 			return;
1915 		}
1916 		ifp->if_timer = 1;
1917 	}
1918 
1919 	ieee80211_watchdog(&sc->sc_ic);
1920 }
1921 
1922 /*
1923  * This function allows for fast channel switching in monitor mode (used by
1924  * kismet). In IBSS mode, we must explicitly reset the interface to
1925  * generate a new beacon frame.
1926  */
1927 static int
1928 rt2661_reset(struct ifnet *ifp)
1929 {
1930 	struct rt2661_softc *sc = ifp->if_softc;
1931 	struct ieee80211com *ic = &sc->sc_ic;
1932 
1933 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
1934 		return ENETRESET;
1935 
1936 	rt2661_set_chan(sc, ic->ic_curchan);
1937 
1938 	return 0;
1939 }
1940 
1941 static int
1942 rt2661_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1943 {
1944 	struct rt2661_softc *sc = ifp->if_softc;
1945 	struct ieee80211com *ic = &sc->sc_ic;
1946 	int s, error = 0;
1947 
1948 	s = splnet();
1949 
1950 	switch (cmd) {
1951 	case SIOCSIFFLAGS:
1952 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1953 			break;
1954 		if (ifp->if_flags & IFF_UP) {
1955 			if (ifp->if_flags & IFF_RUNNING)
1956 				rt2661_update_promisc(sc);
1957 			else
1958 				rt2661_init(ifp);
1959 		} else {
1960 			if (ifp->if_flags & IFF_RUNNING)
1961 				rt2661_stop(ifp, 1);
1962 		}
1963 		break;
1964 
1965 	case SIOCADDMULTI:
1966 	case SIOCDELMULTI:
1967 		/* XXX no h/w multicast filter? --dyoung */
1968 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET)
1969 			error = 0;
1970 		break;
1971 
1972 	case SIOCS80211CHANNEL:
1973 		/*
1974 		 * This allows for fast channel switching in monitor mode
1975 		 * (used by kismet). In IBSS mode, we must explicitly reset
1976 		 * the interface to generate a new beacon frame.
1977 		 */
1978 		error = ieee80211_ioctl(ic, cmd, data);
1979 		if (error == ENETRESET &&
1980 		    ic->ic_opmode == IEEE80211_M_MONITOR) {
1981 			if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1982 			     (IFF_UP | IFF_RUNNING))
1983 				rt2661_set_chan(sc, ic->ic_ibss_chan);
1984 			error = 0;
1985 		}
1986 		break;
1987 
1988 	default:
1989 		error = ieee80211_ioctl(ic, cmd, data);
1990 
1991 	}
1992 
1993 	if (error == ENETRESET) {
1994 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1995 		    (IFF_UP | IFF_RUNNING))
1996 			rt2661_init(ifp);
1997 		error = 0;
1998 	}
1999 
2000 	splx(s);
2001 
2002 	return error;
2003 }
2004 
2005 static void
2006 rt2661_bbp_write(struct rt2661_softc *sc, uint8_t reg, uint8_t val)
2007 {
2008 	uint32_t tmp;
2009 	int ntries;
2010 
2011 	for (ntries = 0; ntries < 100; ntries++) {
2012 		if (!(RAL_READ(sc, RT2661_PHY_CSR3) & RT2661_BBP_BUSY))
2013 			break;
2014 		DELAY(1);
2015 	}
2016 	if (ntries == 100) {
2017 		aprint_error_dev(sc->sc_dev, "could not write to BBP\n");
2018 		return;
2019 	}
2020 
2021 	tmp = RT2661_BBP_BUSY | (reg & 0x7f) << 8 | val;
2022 	RAL_WRITE(sc, RT2661_PHY_CSR3, tmp);
2023 
2024 	DPRINTFN(15, ("BBP R%u <- 0x%02x\n", reg, val));
2025 }
2026 
2027 static uint8_t
2028 rt2661_bbp_read(struct rt2661_softc *sc, uint8_t reg)
2029 {
2030 	uint32_t val;
2031 	int ntries;
2032 
2033 	for (ntries = 0; ntries < 100; ntries++) {
2034 		if (!(RAL_READ(sc, RT2661_PHY_CSR3) & RT2661_BBP_BUSY))
2035 			break;
2036 		DELAY(1);
2037 	}
2038 	if (ntries == 100) {
2039 		aprint_error_dev(sc->sc_dev, "could not read from BBP\n");
2040 		return 0;
2041 	}
2042 
2043 	val = RT2661_BBP_BUSY | RT2661_BBP_READ | reg << 8;
2044 	RAL_WRITE(sc, RT2661_PHY_CSR3, val);
2045 
2046 	for (ntries = 0; ntries < 100; ntries++) {
2047 		val = RAL_READ(sc, RT2661_PHY_CSR3);
2048 		if (!(val & RT2661_BBP_BUSY))
2049 			return val & 0xff;
2050 		DELAY(1);
2051 	}
2052 
2053 	aprint_error_dev(sc->sc_dev, "could not read from BBP\n");
2054 	return 0;
2055 }
2056 
2057 static void
2058 rt2661_rf_write(struct rt2661_softc *sc, uint8_t reg, uint32_t val)
2059 {
2060 	uint32_t tmp;
2061 	int ntries;
2062 
2063 	for (ntries = 0; ntries < 100; ntries++) {
2064 		if (!(RAL_READ(sc, RT2661_PHY_CSR4) & RT2661_RF_BUSY))
2065 			break;
2066 		DELAY(1);
2067 	}
2068 	if (ntries == 100) {
2069 		aprint_error_dev(sc->sc_dev, "could not write to RF\n");
2070 		return;
2071 	}
2072 	tmp = RT2661_RF_BUSY | RT2661_RF_21BIT | (val & 0x1fffff) << 2 |
2073 	    (reg & 3);
2074 	RAL_WRITE(sc, RT2661_PHY_CSR4, tmp);
2075 
2076 	/* remember last written value in sc */
2077 	sc->rf_regs[reg] = val;
2078 
2079 	DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0x1fffff));
2080 }
2081 
2082 static int
2083 rt2661_tx_cmd(struct rt2661_softc *sc, uint8_t cmd, uint16_t arg)
2084 {
2085 	if (RAL_READ(sc, RT2661_H2M_MAILBOX_CSR) & RT2661_H2M_BUSY)
2086 		return EIO;	/* there is already a command pending */
2087 
2088 	RAL_WRITE(sc, RT2661_H2M_MAILBOX_CSR,
2089 	    RT2661_H2M_BUSY | RT2661_TOKEN_NO_INTR << 16 | arg);
2090 
2091 	RAL_WRITE(sc, RT2661_HOST_CMD_CSR, RT2661_KICK_CMD | cmd);
2092 
2093 	return 0;
2094 }
2095 
2096 static void
2097 rt2661_select_antenna(struct rt2661_softc *sc)
2098 {
2099 	uint8_t bbp4, bbp77;
2100 	uint32_t tmp;
2101 
2102 	bbp4  = rt2661_bbp_read(sc,  4);
2103 	bbp77 = rt2661_bbp_read(sc, 77);
2104 
2105 	/* TBD */
2106 
2107 	/* make sure Rx is disabled before switching antenna */
2108 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2109 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX);
2110 
2111 	rt2661_bbp_write(sc,  4, bbp4);
2112 	rt2661_bbp_write(sc, 77, bbp77);
2113 
2114 	/* restore Rx filter */
2115 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2116 }
2117 
2118 /*
2119  * Enable multi-rate retries for frames sent at OFDM rates.
2120  * In 802.11b/g mode, allow fallback to CCK rates.
2121  */
2122 static void
2123 rt2661_enable_mrr(struct rt2661_softc *sc)
2124 {
2125 	struct ieee80211com *ic = &sc->sc_ic;
2126 	uint32_t tmp;
2127 
2128 	tmp = RAL_READ(sc, RT2661_TXRX_CSR4);
2129 
2130 	tmp &= ~RT2661_MRR_CCK_FALLBACK;
2131 	if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan))
2132 		tmp |= RT2661_MRR_CCK_FALLBACK;
2133 	tmp |= RT2661_MRR_ENABLED;
2134 
2135 	RAL_WRITE(sc, RT2661_TXRX_CSR4, tmp);
2136 }
2137 
2138 static void
2139 rt2661_set_txpreamble(struct rt2661_softc *sc)
2140 {
2141 	uint32_t tmp;
2142 
2143 	tmp = RAL_READ(sc, RT2661_TXRX_CSR4);
2144 
2145 	tmp &= ~RT2661_SHORT_PREAMBLE;
2146 	if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
2147 		tmp |= RT2661_SHORT_PREAMBLE;
2148 
2149 	RAL_WRITE(sc, RT2661_TXRX_CSR4, tmp);
2150 }
2151 
2152 static void
2153 rt2661_set_basicrates(struct rt2661_softc *sc,
2154     const struct ieee80211_rateset *rs)
2155 {
2156 #define RV(r)	((r) & IEEE80211_RATE_VAL)
2157 	uint32_t mask = 0;
2158 	uint8_t rate;
2159 	int i, j;
2160 
2161 	for (i = 0; i < rs->rs_nrates; i++) {
2162 		rate = rs->rs_rates[i];
2163 
2164 		if (!(rate & IEEE80211_RATE_BASIC))
2165 			continue;
2166 
2167 		/*
2168 		 * Find h/w rate index.  We know it exists because the rate
2169 		 * set has already been negotiated.
2170 		 */
2171 		for (j = 0; ieee80211_std_rateset_11g.rs_rates[j] != RV(rate); j++);
2172 
2173 		mask |= 1 << j;
2174 	}
2175 
2176 	RAL_WRITE(sc, RT2661_TXRX_CSR5, mask);
2177 
2178 	DPRINTF(("Setting basic rate mask to 0x%x\n", mask));
2179 #undef RV
2180 }
2181 
2182 /*
2183  * Reprogram MAC/BBP to switch to a new band.  Values taken from the reference
2184  * driver.
2185  */
2186 static void
2187 rt2661_select_band(struct rt2661_softc *sc, struct ieee80211_channel *c)
2188 {
2189 	uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
2190 	uint32_t tmp;
2191 
2192 	/* update all BBP registers that depend on the band */
2193 	bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
2194 	bbp35 = 0x50; bbp97 = 0x48; bbp98  = 0x48;
2195 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2196 		bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
2197 		bbp35 += 0x10; bbp97 += 0x10; bbp98  += 0x10;
2198 	}
2199 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
2200 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
2201 		bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
2202 	}
2203 
2204 	sc->bbp17 = bbp17;
2205 	rt2661_bbp_write(sc,  17, bbp17);
2206 	rt2661_bbp_write(sc,  96, bbp96);
2207 	rt2661_bbp_write(sc, 104, bbp104);
2208 
2209 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
2210 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
2211 		rt2661_bbp_write(sc, 75, 0x80);
2212 		rt2661_bbp_write(sc, 86, 0x80);
2213 		rt2661_bbp_write(sc, 88, 0x80);
2214 	}
2215 
2216 	rt2661_bbp_write(sc, 35, bbp35);
2217 	rt2661_bbp_write(sc, 97, bbp97);
2218 	rt2661_bbp_write(sc, 98, bbp98);
2219 
2220 	tmp = RAL_READ(sc, RT2661_PHY_CSR0);
2221 	tmp &= ~(RT2661_PA_PE_2GHZ | RT2661_PA_PE_5GHZ);
2222 	if (IEEE80211_IS_CHAN_2GHZ(c))
2223 		tmp |= RT2661_PA_PE_2GHZ;
2224 	else
2225 		tmp |= RT2661_PA_PE_5GHZ;
2226 	RAL_WRITE(sc, RT2661_PHY_CSR0, tmp);
2227 
2228 	/* 802.11a uses a 16 microseconds short interframe space */
2229 	sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10;
2230 }
2231 
2232 static void
2233 rt2661_set_chan(struct rt2661_softc *sc, struct ieee80211_channel *c)
2234 {
2235 	struct ieee80211com *ic = &sc->sc_ic;
2236 	const struct rfprog *rfprog;
2237 	uint8_t bbp3, bbp94 = RT2661_BBPR94_DEFAULT;
2238 	int8_t power;
2239 	u_int i, chan;
2240 
2241 	chan = ieee80211_chan2ieee(ic, c);
2242 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
2243 		return;
2244 
2245 	/* select the appropriate RF settings based on what EEPROM says */
2246 	rfprog = (sc->rfprog == 0) ? rt2661_rf5225_1 : rt2661_rf5225_2;
2247 
2248 	/* find the settings for this channel (we know it exists) */
2249 	for (i = 0; rfprog[i].chan != chan; i++);
2250 
2251 	power = sc->txpow[i];
2252 	if (power < 0) {
2253 		bbp94 += power;
2254 		power = 0;
2255 	} else if (power > 31) {
2256 		bbp94 += power - 31;
2257 		power = 31;
2258 	}
2259 
2260 	/*
2261 	 * If we've yet to select a channel, or we are switching from the
2262 	 * 2GHz band to the 5GHz band or vice-versa, BBP registers need to
2263 	 * be reprogrammed.
2264 	 */
2265 	if (sc->sc_curchan == NULL || c->ic_flags != sc->sc_curchan->ic_flags) {
2266 		rt2661_select_band(sc, c);
2267 		rt2661_select_antenna(sc);
2268 	}
2269 	sc->sc_curchan = c;
2270 
2271 	rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1);
2272 	rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2);
2273 	rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7);
2274 	rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10);
2275 
2276 	DELAY(200);
2277 
2278 	rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1);
2279 	rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2);
2280 	rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7 | 1);
2281 	rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10);
2282 
2283 	DELAY(200);
2284 
2285 	rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1);
2286 	rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2);
2287 	rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7);
2288 	rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10);
2289 
2290 	/* enable smart mode for MIMO-capable RFs */
2291 	bbp3 = rt2661_bbp_read(sc, 3);
2292 
2293 	bbp3 &= ~RT2661_SMART_MODE;
2294 	if (sc->rf_rev == RT2661_RF_5325 || sc->rf_rev == RT2661_RF_2529)
2295 		bbp3 |= RT2661_SMART_MODE;
2296 
2297 	rt2661_bbp_write(sc, 3, bbp3);
2298 
2299 	if (bbp94 != RT2661_BBPR94_DEFAULT)
2300 		rt2661_bbp_write(sc, 94, bbp94);
2301 
2302 	/* 5GHz radio needs a 1ms delay here */
2303 	if (IEEE80211_IS_CHAN_5GHZ(c))
2304 		DELAY(1000);
2305 }
2306 
2307 static void
2308 rt2661_set_bssid(struct rt2661_softc *sc, const uint8_t *bssid)
2309 {
2310 	uint32_t tmp;
2311 
2312 	tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
2313 	RAL_WRITE(sc, RT2661_MAC_CSR4, tmp);
2314 
2315 	tmp = bssid[4] | bssid[5] << 8 | RT2661_ONE_BSSID << 16;
2316 	RAL_WRITE(sc, RT2661_MAC_CSR5, tmp);
2317 }
2318 
2319 static void
2320 rt2661_set_macaddr(struct rt2661_softc *sc, const uint8_t *addr)
2321 {
2322 	uint32_t tmp;
2323 
2324 	tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
2325 	RAL_WRITE(sc, RT2661_MAC_CSR2, tmp);
2326 
2327 	tmp = addr[4] | addr[5] << 8 | 0xff << 16;
2328 	RAL_WRITE(sc, RT2661_MAC_CSR3, tmp);
2329 }
2330 
2331 static void
2332 rt2661_update_promisc(struct rt2661_softc *sc)
2333 {
2334 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
2335 	uint32_t tmp;
2336 
2337 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2338 
2339 	tmp &= ~RT2661_DROP_NOT_TO_ME;
2340 	if (!(ifp->if_flags & IFF_PROMISC))
2341 		tmp |= RT2661_DROP_NOT_TO_ME;
2342 
2343 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2344 
2345 	DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
2346 	    "entering" : "leaving"));
2347 }
2348 
2349 #if 0
2350 /*
2351  * Update QoS (802.11e) settings for each h/w Tx ring.
2352  */
2353 static int
2354 rt2661_wme_update(struct ieee80211com *ic)
2355 {
2356 	struct rt2661_softc *sc = ic->ic_ifp->if_softc;
2357 	const struct wmeParams *wmep;
2358 
2359 	wmep = ic->ic_wme.wme_chanParams.cap_wmeParams;
2360 
2361 	/* XXX: not sure about shifts. */
2362 	/* XXX: the reference driver plays with AC_VI settings too. */
2363 
2364 	/* update TxOp */
2365 	RAL_WRITE(sc, RT2661_AC_TXOP_CSR0,
2366 	    wmep[WME_AC_BE].wmep_txopLimit << 16 |
2367 	    wmep[WME_AC_BK].wmep_txopLimit);
2368 	RAL_WRITE(sc, RT2661_AC_TXOP_CSR1,
2369 	    wmep[WME_AC_VI].wmep_txopLimit << 16 |
2370 	    wmep[WME_AC_VO].wmep_txopLimit);
2371 
2372 	/* update CWmin */
2373 	RAL_WRITE(sc, RT2661_CWMIN_CSR,
2374 	    wmep[WME_AC_BE].wmep_logcwmin << 12 |
2375 	    wmep[WME_AC_BK].wmep_logcwmin <<  8 |
2376 	    wmep[WME_AC_VI].wmep_logcwmin <<  4 |
2377 	    wmep[WME_AC_VO].wmep_logcwmin);
2378 
2379 	/* update CWmax */
2380 	RAL_WRITE(sc, RT2661_CWMAX_CSR,
2381 	    wmep[WME_AC_BE].wmep_logcwmax << 12 |
2382 	    wmep[WME_AC_BK].wmep_logcwmax <<  8 |
2383 	    wmep[WME_AC_VI].wmep_logcwmax <<  4 |
2384 	    wmep[WME_AC_VO].wmep_logcwmax);
2385 
2386 	/* update Aifsn */
2387 	RAL_WRITE(sc, RT2661_AIFSN_CSR,
2388 	    wmep[WME_AC_BE].wmep_aifsn << 12 |
2389 	    wmep[WME_AC_BK].wmep_aifsn <<  8 |
2390 	    wmep[WME_AC_VI].wmep_aifsn <<  4 |
2391 	    wmep[WME_AC_VO].wmep_aifsn);
2392 
2393 	return 0;
2394 }
2395 #endif
2396 
2397 static void
2398 rt2661_updateslot(struct ifnet *ifp)
2399 {
2400 	struct rt2661_softc *sc = ifp->if_softc;
2401 	struct ieee80211com *ic = &sc->sc_ic;
2402 
2403 	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2404 		/*
2405 		 * In HostAP mode, we defer setting of new slot time until
2406 		 * updated ERP Information Element has propagated to all
2407 		 * associated STAs.
2408 		 */
2409 		sc->sc_flags |= RT2661_UPDATE_SLOT;
2410 	} else
2411 		rt2661_set_slottime(sc);
2412 }
2413 
2414 static void
2415 rt2661_set_slottime(struct rt2661_softc *sc)
2416 {
2417 	struct ieee80211com *ic = &sc->sc_ic;
2418 	uint8_t slottime;
2419 	uint32_t tmp;
2420 
2421 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
2422 
2423 	tmp = RAL_READ(sc, RT2661_MAC_CSR9);
2424 	tmp = (tmp & ~0xff) | slottime;
2425 	RAL_WRITE(sc, RT2661_MAC_CSR9, tmp);
2426 
2427 	DPRINTF(("setting slot time to %uus\n", slottime));
2428 }
2429 
2430 static const char *
2431 rt2661_get_rf(int rev)
2432 {
2433 	switch (rev) {
2434 	case RT2661_RF_5225:	return "RT5225";
2435 	case RT2661_RF_5325:	return "RT5325 (MIMO XR)";
2436 	case RT2661_RF_2527:	return "RT2527";
2437 	case RT2661_RF_2529:	return "RT2529 (MIMO XR)";
2438 	default:		return "unknown";
2439 	}
2440 }
2441 
2442 static void
2443 rt2661_read_eeprom(struct rt2661_softc *sc)
2444 {
2445 	struct ieee80211com *ic = &sc->sc_ic;
2446 	uint16_t val;
2447 	int i;
2448 
2449 	/* read MAC address */
2450 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC01);
2451 	ic->ic_myaddr[0] = val & 0xff;
2452 	ic->ic_myaddr[1] = val >> 8;
2453 
2454 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC23);
2455 	ic->ic_myaddr[2] = val & 0xff;
2456 	ic->ic_myaddr[3] = val >> 8;
2457 
2458 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC45);
2459 	ic->ic_myaddr[4] = val & 0xff;
2460 	ic->ic_myaddr[5] = val >> 8;
2461 
2462 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_ANTENNA);
2463 	/* XXX: test if different from 0xffff? */
2464 	sc->rf_rev   = (val >> 11) & 0x1f;
2465 	sc->hw_radio = (val >> 10) & 0x1;
2466 	sc->rx_ant   = (val >> 4)  & 0x3;
2467 	sc->tx_ant   = (val >> 2)  & 0x3;
2468 	sc->nb_ant   = val & 0x3;
2469 
2470 	DPRINTF(("RF revision=%d\n", sc->rf_rev));
2471 
2472 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_CONFIG2);
2473 	sc->ext_5ghz_lna = (val >> 6) & 0x1;
2474 	sc->ext_2ghz_lna = (val >> 4) & 0x1;
2475 
2476 	DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
2477 	    sc->ext_2ghz_lna, sc->ext_5ghz_lna));
2478 
2479 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_RSSI_2GHZ_OFFSET);
2480 	if ((val & 0xff) != 0xff)
2481 		sc->rssi_2ghz_corr = (int8_t)(val & 0xff);	/* signed */
2482 
2483 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_RSSI_5GHZ_OFFSET);
2484 	if ((val & 0xff) != 0xff)
2485 		sc->rssi_5ghz_corr = (int8_t)(val & 0xff);	/* signed */
2486 
2487 	/* adjust RSSI correction for external low-noise amplifier */
2488 	if (sc->ext_2ghz_lna)
2489 		sc->rssi_2ghz_corr -= 14;
2490 	if (sc->ext_5ghz_lna)
2491 		sc->rssi_5ghz_corr -= 14;
2492 
2493 	DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
2494 	    sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
2495 
2496 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_FREQ_OFFSET);
2497 	if ((val >> 8) != 0xff)
2498 		sc->rfprog = (val >> 8) & 0x3;
2499 	if ((val & 0xff) != 0xff)
2500 		sc->rffreq = val & 0xff;
2501 
2502 	DPRINTF(("RF prog=%d\nRF freq=%d\n", sc->rfprog, sc->rffreq));
2503 
2504 	/* read Tx power for all a/b/g channels */
2505 	for (i = 0; i < 19; i++) {
2506 		val = rt2661_eeprom_read(sc, RT2661_EEPROM_TXPOWER + i);
2507 		sc->txpow[i * 2] = (int8_t)(val >> 8);		/* signed */
2508 		DPRINTF(("Channel=%d Tx power=%d\n",
2509 		    rt2661_rf5225_1[i * 2].chan, sc->txpow[i * 2]));
2510 		sc->txpow[i * 2 + 1] = (int8_t)(val & 0xff);	/* signed */
2511 		DPRINTF(("Channel=%d Tx power=%d\n",
2512 		    rt2661_rf5225_1[i * 2 + 1].chan, sc->txpow[i * 2 + 1]));
2513 	}
2514 
2515 	/* read vendor-specific BBP values */
2516 	for (i = 0; i < 16; i++) {
2517 		val = rt2661_eeprom_read(sc, RT2661_EEPROM_BBP_BASE + i);
2518 		if (val == 0 || val == 0xffff)
2519 			continue;	/* skip invalid entries */
2520 		sc->bbp_prom[i].reg = val >> 8;
2521 		sc->bbp_prom[i].val = val & 0xff;
2522 		DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
2523 		    sc->bbp_prom[i].val));
2524 	}
2525 }
2526 
2527 static int
2528 rt2661_bbp_init(struct rt2661_softc *sc)
2529 {
2530 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
2531 	int i, ntries;
2532 	uint8_t val;
2533 
2534 	/* wait for BBP to be ready */
2535 	for (ntries = 0; ntries < 100; ntries++) {
2536 		val = rt2661_bbp_read(sc, 0);
2537 		if (val != 0 && val != 0xff)
2538 			break;
2539 		DELAY(100);
2540 	}
2541 	if (ntries == 100) {
2542 		aprint_error_dev(sc->sc_dev, "timeout waiting for BBP\n");
2543 		return EIO;
2544 	}
2545 
2546 	/* initialize BBP registers to default values */
2547 	for (i = 0; i < N(rt2661_def_bbp); i++) {
2548 		rt2661_bbp_write(sc, rt2661_def_bbp[i].reg,
2549 		    rt2661_def_bbp[i].val);
2550 	}
2551 
2552 	/* write vendor-specific BBP values (from EEPROM) */
2553 	for (i = 0; i < 16; i++) {
2554 		if (sc->bbp_prom[i].reg == 0)
2555 			continue;
2556 		rt2661_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2557 	}
2558 
2559 	return 0;
2560 #undef N
2561 }
2562 
2563 static int
2564 rt2661_init(struct ifnet *ifp)
2565 {
2566 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
2567 	struct rt2661_softc *sc = ifp->if_softc;
2568 	struct ieee80211com *ic = &sc->sc_ic;
2569 	const char *name = NULL;	/* make lint happy */
2570 	uint8_t *ucode;
2571 	size_t size;
2572 	uint32_t tmp, star[3];
2573 	int i, ntries;
2574 	firmware_handle_t fh;
2575 
2576 	/* for CardBus, power on the socket */
2577 	if (!(sc->sc_flags & RT2661_ENABLED)) {
2578 		if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
2579 			aprint_error_dev(sc->sc_dev, "could not enable device\n");
2580 			return EIO;
2581 		}
2582 		sc->sc_flags |= RT2661_ENABLED;
2583 	}
2584 
2585 	rt2661_stop(ifp, 0);
2586 
2587 	if (!(sc->sc_flags & RT2661_FWLOADED)) {
2588 		switch (sc->sc_id) {
2589 		case PCI_PRODUCT_RALINK_RT2561:
2590 			name = "ral-rt2561";
2591 			break;
2592 		case PCI_PRODUCT_RALINK_RT2561S:
2593 			name = "ral-rt2561s";
2594 			break;
2595 		case PCI_PRODUCT_RALINK_RT2661:
2596 			name = "ral-rt2661";
2597 			break;
2598 		}
2599 
2600 		if (firmware_open("ral", name, &fh) != 0) {
2601 			aprint_error_dev(sc->sc_dev, "could not open microcode %s\n", name);
2602 			rt2661_stop(ifp, 1);
2603 			return EIO;
2604 		}
2605 
2606 		size = firmware_get_size(fh);
2607 		if (!(ucode = firmware_malloc(size))) {
2608 			aprint_error_dev(sc->sc_dev, "could not alloc microcode memory\n");
2609 			firmware_close(fh);
2610 			rt2661_stop(ifp, 1);
2611 			return ENOMEM;
2612 		}
2613 
2614 		if (firmware_read(fh, 0, ucode, size) != 0) {
2615 			aprint_error_dev(sc->sc_dev, "could not read microcode %s\n", name);
2616 			firmware_free(ucode, size);
2617 			firmware_close(fh);
2618 			rt2661_stop(ifp, 1);
2619 			return EIO;
2620 		}
2621 
2622 		if (rt2661_load_microcode(sc, ucode, size) != 0) {
2623 			aprint_error_dev(sc->sc_dev, "could not load 8051 microcode\n");
2624 			firmware_free(ucode, size);
2625 			firmware_close(fh);
2626 			rt2661_stop(ifp, 1);
2627 			return EIO;
2628 		}
2629 
2630 		firmware_free(ucode, size);
2631 		firmware_close(fh);
2632 		sc->sc_flags |= RT2661_FWLOADED;
2633 	}
2634 
2635 	/* initialize Tx rings */
2636 	RAL_WRITE(sc, RT2661_AC1_BASE_CSR, sc->txq[1].physaddr);
2637 	RAL_WRITE(sc, RT2661_AC0_BASE_CSR, sc->txq[0].physaddr);
2638 	RAL_WRITE(sc, RT2661_AC2_BASE_CSR, sc->txq[2].physaddr);
2639 	RAL_WRITE(sc, RT2661_AC3_BASE_CSR, sc->txq[3].physaddr);
2640 
2641 	/* initialize Mgt ring */
2642 	RAL_WRITE(sc, RT2661_MGT_BASE_CSR, sc->mgtq.physaddr);
2643 
2644 	/* initialize Rx ring */
2645 	RAL_WRITE(sc, RT2661_RX_BASE_CSR, sc->rxq.physaddr);
2646 
2647 	/* initialize Tx rings sizes */
2648 	RAL_WRITE(sc, RT2661_TX_RING_CSR0,
2649 	    RT2661_TX_RING_COUNT << 24 |
2650 	    RT2661_TX_RING_COUNT << 16 |
2651 	    RT2661_TX_RING_COUNT <<  8 |
2652 	    RT2661_TX_RING_COUNT);
2653 
2654 	RAL_WRITE(sc, RT2661_TX_RING_CSR1,
2655 	    RT2661_TX_DESC_WSIZE << 16 |
2656 	    RT2661_TX_RING_COUNT <<  8 |	/* XXX: HCCA ring unused */
2657 	    RT2661_MGT_RING_COUNT);
2658 
2659 	/* initialize Rx rings */
2660 	RAL_WRITE(sc, RT2661_RX_RING_CSR,
2661 	    RT2661_RX_DESC_BACK  << 16 |
2662 	    RT2661_RX_DESC_WSIZE <<  8 |
2663 	    RT2661_RX_RING_COUNT);
2664 
2665 	/* XXX: some magic here */
2666 	RAL_WRITE(sc, RT2661_TX_DMA_DST_CSR, 0xaa);
2667 
2668 	/* load base addresses of all 5 Tx rings (4 data + 1 mgt) */
2669 	RAL_WRITE(sc, RT2661_LOAD_TX_RING_CSR, 0x1f);
2670 
2671 	/* load base address of Rx ring */
2672 	RAL_WRITE(sc, RT2661_RX_CNTL_CSR, 2);
2673 
2674 	/* initialize MAC registers to default values */
2675 	for (i = 0; i < N(rt2661_def_mac); i++)
2676 		RAL_WRITE(sc, rt2661_def_mac[i].reg, rt2661_def_mac[i].val);
2677 
2678 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2679 	rt2661_set_macaddr(sc, ic->ic_myaddr);
2680 
2681 	/* set host ready */
2682 	RAL_WRITE(sc, RT2661_MAC_CSR1, 3);
2683 	RAL_WRITE(sc, RT2661_MAC_CSR1, 0);
2684 
2685 	/* wait for BBP/RF to wakeup */
2686 	for (ntries = 0; ntries < 1000; ntries++) {
2687 		if (RAL_READ(sc, RT2661_MAC_CSR12) & 8)
2688 			break;
2689 		DELAY(1000);
2690 	}
2691 	if (ntries == 1000) {
2692 		printf("timeout waiting for BBP/RF to wakeup\n");
2693 		rt2661_stop(ifp, 1);
2694 		return EIO;
2695 	}
2696 
2697 	if (rt2661_bbp_init(sc) != 0) {
2698 		rt2661_stop(ifp, 1);
2699 		return EIO;
2700 	}
2701 
2702 	/* select default channel */
2703 	sc->sc_curchan = ic->ic_curchan;
2704 	rt2661_select_band(sc, sc->sc_curchan);
2705 	rt2661_select_antenna(sc);
2706 	rt2661_set_chan(sc, sc->sc_curchan);
2707 
2708 	/* update Rx filter */
2709 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0) & 0xffff;
2710 
2711 	tmp |= RT2661_DROP_PHY_ERROR | RT2661_DROP_CRC_ERROR;
2712 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2713 		tmp |= RT2661_DROP_CTL | RT2661_DROP_VER_ERROR |
2714 		       RT2661_DROP_ACKCTS;
2715 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2716 			tmp |= RT2661_DROP_TODS;
2717 		if (!(ifp->if_flags & IFF_PROMISC))
2718 			tmp |= RT2661_DROP_NOT_TO_ME;
2719 	}
2720 
2721 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2722 
2723 	/* clear STA registers */
2724 	RAL_READ_REGION_4(sc, RT2661_STA_CSR0, star, N(star));
2725 
2726 	/* initialize ASIC */
2727 	RAL_WRITE(sc, RT2661_MAC_CSR1, 4);
2728 
2729 	/* clear any pending interrupt */
2730 	RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, 0xffffffff);
2731 
2732 	/* enable interrupts */
2733 	RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0x0000ff10);
2734 	RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0);
2735 
2736 	/* kick Rx */
2737 	RAL_WRITE(sc, RT2661_RX_CNTL_CSR, 1);
2738 
2739 	ifp->if_flags &= ~IFF_OACTIVE;
2740 	ifp->if_flags |= IFF_RUNNING;
2741 
2742 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2743 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
2744 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2745 	} else
2746 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2747 
2748 	return 0;
2749 #undef N
2750 }
2751 
2752 static void
2753 rt2661_stop(struct ifnet *ifp, int disable)
2754 {
2755 	struct rt2661_softc *sc = ifp->if_softc;
2756 	struct ieee80211com *ic = &sc->sc_ic;
2757 	uint32_t tmp;
2758 
2759 	sc->sc_tx_timer = 0;
2760 	ifp->if_timer = 0;
2761 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2762 
2763 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);	/* free all nodes */
2764 
2765 	/* abort Tx (for all 5 Tx rings) */
2766 	RAL_WRITE(sc, RT2661_TX_CNTL_CSR, 0x1f << 16);
2767 
2768 	/* disable Rx (value remains after reset!) */
2769 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2770 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX);
2771 
2772 	/* reset ASIC */
2773 	RAL_WRITE(sc, RT2661_MAC_CSR1, 3);
2774 	RAL_WRITE(sc, RT2661_MAC_CSR1, 0);
2775 
2776 	/* disable interrupts */
2777 	RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0xffffff7f);
2778 	RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0xffffffff);
2779 
2780 	/* clear any pending interrupt */
2781 	RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, 0xffffffff);
2782 	RAL_WRITE(sc, RT2661_MCU_INT_SOURCE_CSR, 0xffffffff);
2783 
2784 	/* reset Tx and Rx rings */
2785 	rt2661_reset_tx_ring(sc, &sc->txq[0]);
2786 	rt2661_reset_tx_ring(sc, &sc->txq[1]);
2787 	rt2661_reset_tx_ring(sc, &sc->txq[2]);
2788 	rt2661_reset_tx_ring(sc, &sc->txq[3]);
2789 	rt2661_reset_tx_ring(sc, &sc->mgtq);
2790 	rt2661_reset_rx_ring(sc, &sc->rxq);
2791 
2792 	/* for CardBus, power down the socket */
2793 	if (disable && sc->sc_disable != NULL) {
2794 		if (sc->sc_flags & RT2661_ENABLED) {
2795 			(*sc->sc_disable)(sc);
2796 			sc->sc_flags &= ~(RT2661_ENABLED | RT2661_FWLOADED);
2797 		}
2798 	}
2799 }
2800 
2801 static int
2802 rt2661_load_microcode(struct rt2661_softc *sc, const uint8_t *ucode, int size)
2803 {
2804 	int ntries;
2805 
2806 	/* reset 8051 */
2807 	RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET);
2808 
2809 	/* cancel any pending Host to MCU command */
2810 	RAL_WRITE(sc, RT2661_H2M_MAILBOX_CSR, 0);
2811 	RAL_WRITE(sc, RT2661_M2H_CMD_DONE_CSR, 0xffffffff);
2812 	RAL_WRITE(sc, RT2661_HOST_CMD_CSR, 0);
2813 
2814 	/* write 8051's microcode */
2815 	RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET | RT2661_MCU_SEL);
2816 	RAL_WRITE_REGION_1(sc, RT2661_MCU_CODE_BASE, ucode, size);
2817 	RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET);
2818 
2819 	/* kick 8051's ass */
2820 	RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, 0);
2821 
2822 	/* wait for 8051 to initialize */
2823 	for (ntries = 0; ntries < 500; ntries++) {
2824 		if (RAL_READ(sc, RT2661_MCU_CNTL_CSR) & RT2661_MCU_READY)
2825 			break;
2826 		DELAY(100);
2827 	}
2828 	if (ntries == 500) {
2829 		printf("timeout waiting for MCU to initialize\n");
2830 		return EIO;
2831 	}
2832 	return 0;
2833 }
2834 
2835 /*
2836  * Dynamically tune Rx sensitivity (BBP register 17) based on average RSSI and
2837  * false CCA count.  This function is called periodically (every seconds) when
2838  * in the RUN state.  Values taken from the reference driver.
2839  */
2840 static void
2841 rt2661_rx_tune(struct rt2661_softc *sc)
2842 {
2843 	uint8_t bbp17;
2844 	uint16_t cca;
2845 	int lo, hi, dbm;
2846 
2847 	/*
2848 	 * Tuning range depends on operating band and on the presence of an
2849 	 * external low-noise amplifier.
2850 	 */
2851 	lo = 0x20;
2852 	if (IEEE80211_IS_CHAN_5GHZ(sc->sc_curchan))
2853 		lo += 0x08;
2854 	if ((IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan) && sc->ext_2ghz_lna) ||
2855 	    (IEEE80211_IS_CHAN_5GHZ(sc->sc_curchan) && sc->ext_5ghz_lna))
2856 		lo += 0x10;
2857 	hi = lo + 0x20;
2858 
2859 	dbm = sc->avg_rssi;
2860 	/* retrieve false CCA count since last call (clear on read) */
2861 	cca = RAL_READ(sc, RT2661_STA_CSR1) & 0xffff;
2862 
2863 	DPRINTFN(2, ("RSSI=%ddBm false CCA=%d\n", dbm, cca));
2864 
2865 	if (dbm < -74) {
2866 		/* very bad RSSI, tune using false CCA count */
2867 		bbp17 = sc->bbp17; /* current value */
2868 
2869 		hi -= 2 * (-74 - dbm);
2870 		if (hi < lo)
2871 			hi = lo;
2872 
2873 		if (bbp17 > hi)
2874 			bbp17 = hi;
2875 		else if (cca > 512)
2876 			bbp17 = min(bbp17 + 1, hi);
2877 		else if (cca < 100)
2878 			bbp17 = max(bbp17 - 1, lo);
2879 
2880 	} else if (dbm < -66) {
2881 		bbp17 = lo + 0x08;
2882 	} else if (dbm < -58) {
2883 		bbp17 = lo + 0x10;
2884 	} else if (dbm < -35) {
2885 		bbp17 = hi;
2886 	} else {	/* very good RSSI >= -35dBm */
2887 		bbp17 = 0x60;	/* very low sensitivity */
2888 	}
2889 
2890 	if (bbp17 != sc->bbp17) {
2891 		DPRINTF(("BBP17 %x->%x\n", sc->bbp17, bbp17));
2892 		rt2661_bbp_write(sc, 17, bbp17);
2893 		sc->bbp17 = bbp17;
2894 	}
2895 }
2896 
2897 #ifdef notyet
2898 /*
2899  * Enter/Leave radar detection mode.
2900  * This is for 802.11h additional regulatory domains.
2901  */
2902 static void
2903 rt2661_radar_start(struct rt2661_softc *sc)
2904 {
2905 	uint32_t tmp;
2906 
2907 	/* disable Rx */
2908 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2909 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX);
2910 
2911 	rt2661_bbp_write(sc, 82, 0x20);
2912 	rt2661_bbp_write(sc, 83, 0x00);
2913 	rt2661_bbp_write(sc, 84, 0x40);
2914 
2915 	/* save current BBP registers values */
2916 	sc->bbp18 = rt2661_bbp_read(sc, 18);
2917 	sc->bbp21 = rt2661_bbp_read(sc, 21);
2918 	sc->bbp22 = rt2661_bbp_read(sc, 22);
2919 	sc->bbp16 = rt2661_bbp_read(sc, 16);
2920 	sc->bbp17 = rt2661_bbp_read(sc, 17);
2921 	sc->bbp64 = rt2661_bbp_read(sc, 64);
2922 
2923 	rt2661_bbp_write(sc, 18, 0xff);
2924 	rt2661_bbp_write(sc, 21, 0x3f);
2925 	rt2661_bbp_write(sc, 22, 0x3f);
2926 	rt2661_bbp_write(sc, 16, 0xbd);
2927 	rt2661_bbp_write(sc, 17, sc->ext_5ghz_lna ? 0x44 : 0x34);
2928 	rt2661_bbp_write(sc, 64, 0x21);
2929 
2930 	/* restore Rx filter */
2931 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2932 }
2933 
2934 static int
2935 rt2661_radar_stop(struct rt2661_softc *sc)
2936 {
2937 	uint8_t bbp66;
2938 
2939 	/* read radar detection result */
2940 	bbp66 = rt2661_bbp_read(sc, 66);
2941 
2942 	/* restore BBP registers values */
2943 	rt2661_bbp_write(sc, 16, sc->bbp16);
2944 	rt2661_bbp_write(sc, 17, sc->bbp17);
2945 	rt2661_bbp_write(sc, 18, sc->bbp18);
2946 	rt2661_bbp_write(sc, 21, sc->bbp21);
2947 	rt2661_bbp_write(sc, 22, sc->bbp22);
2948 	rt2661_bbp_write(sc, 64, sc->bbp64);
2949 
2950 	return bbp66 == 1;
2951 }
2952 #endif
2953 
2954 static int
2955 rt2661_prepare_beacon(struct rt2661_softc *sc)
2956 {
2957 	struct ieee80211com *ic = &sc->sc_ic;
2958 	struct ieee80211_node *ni = ic->ic_bss;
2959 	struct rt2661_tx_desc desc;
2960 	struct mbuf *m0;
2961 	struct ieee80211_beacon_offsets bo;
2962 	int rate;
2963 
2964 	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2965 	if (m0 == NULL) {
2966 		aprint_error_dev(sc->sc_dev, "could not allocate beacon frame\n");
2967 		return ENOBUFS;
2968 	}
2969 
2970 	/* send beacons at the lowest available rate */
2971 	rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
2972 
2973 	rt2661_setup_tx_desc(sc, &desc, RT2661_TX_TIMESTAMP, RT2661_TX_HWSEQ,
2974 	    m0->m_pkthdr.len, rate, NULL, 0, RT2661_QID_MGT);
2975 
2976 	/* copy the first 24 bytes of Tx descriptor into NIC memory */
2977 	RAL_WRITE_REGION_1(sc, RT2661_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
2978 
2979 	/* copy beacon header and payload into NIC memory */
2980 	RAL_WRITE_REGION_1(sc, RT2661_HW_BEACON_BASE0 + 24,
2981 	    mtod(m0, uint8_t *), m0->m_pkthdr.len);
2982 
2983 	m_freem(m0);
2984 
2985 	/*
2986 	 * Store offset of ERP Information Element so that we can update it
2987 	 * dynamically when the slot time changes.
2988 	 * XXX: this is ugly since it depends on how net80211 builds beacon
2989 	 * frames but ieee80211_beacon_alloc() doesn't store offsets for us.
2990 	 */
2991 	if (ic->ic_curmode == IEEE80211_MODE_11G) {
2992 		sc->erp_csr =
2993 		    RT2661_HW_BEACON_BASE0 + 24 +
2994 		    sizeof (struct ieee80211_frame) +
2995 		    8 + 2 + 2 + 2 + ni->ni_esslen +
2996 		    2 + min(ni->ni_rates.rs_nrates, IEEE80211_RATE_SIZE) +
2997 		    2 + 1 +
2998 		    ((ic->ic_opmode == IEEE80211_M_IBSS) ? 4 : 6) +
2999 		    2;
3000 	}
3001 
3002 	return 0;
3003 }
3004 
3005 /*
3006  * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
3007  * and HostAP operating modes.
3008  */
3009 static void
3010 rt2661_enable_tsf_sync(struct rt2661_softc *sc)
3011 {
3012 	struct ieee80211com *ic = &sc->sc_ic;
3013 	uint32_t tmp;
3014 
3015 	if (ic->ic_opmode != IEEE80211_M_STA) {
3016 		/*
3017 		 * Change default 16ms TBTT adjustment to 8ms.
3018 		 * Must be done before enabling beacon generation.
3019 		 */
3020 		RAL_WRITE(sc, RT2661_TXRX_CSR10, 1 << 12 | 8);
3021 	}
3022 
3023 	tmp = RAL_READ(sc, RT2661_TXRX_CSR9) & 0xff000000;
3024 
3025 	/* set beacon interval (in 1/16ms unit) */
3026 	tmp |= ic->ic_bss->ni_intval * 16;
3027 
3028 	tmp |= RT2661_TSF_TICKING | RT2661_ENABLE_TBTT;
3029 	if (ic->ic_opmode == IEEE80211_M_STA)
3030 		tmp |= RT2661_TSF_MODE(1);
3031 	else
3032 		tmp |= RT2661_TSF_MODE(2) | RT2661_GENERATE_BEACON;
3033 
3034 	RAL_WRITE(sc, RT2661_TXRX_CSR9, tmp);
3035 }
3036 
3037 /*
3038  * Retrieve the "Received Signal Strength Indicator" from the raw values
3039  * contained in Rx descriptors.  The computation depends on which band the
3040  * frame was received.  Correction values taken from the reference driver.
3041  */
3042 static int
3043 rt2661_get_rssi(struct rt2661_softc *sc, uint8_t raw)
3044 {
3045 	int lna, agc, rssi;
3046 
3047 	lna = (raw >> 5) & 0x3;
3048 	agc = raw & 0x1f;
3049 
3050 	rssi = 2 * agc;
3051 
3052 	if (IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan)) {
3053 		rssi += sc->rssi_2ghz_corr;
3054 
3055 		if (lna == 1)
3056 			rssi -= 64;
3057 		else if (lna == 2)
3058 			rssi -= 74;
3059 		else if (lna == 3)
3060 			rssi -= 90;
3061 	} else {
3062 		rssi += sc->rssi_5ghz_corr;
3063 
3064 		if (lna == 1)
3065 			rssi -= 64;
3066 		else if (lna == 2)
3067 			rssi -= 86;
3068 		else if (lna == 3)
3069 			rssi -= 100;
3070 	}
3071 	return rssi;
3072 }
3073