xref: /netbsd-src/sys/dev/ic/rt2661.c (revision b1c86f5f087524e68db12794ee9c3e3da1ab17a0)
1 /*	$NetBSD: rt2661.c,v 1.28 2010/04/05 07:19:36 joerg Exp $	*/
2 /*	$OpenBSD: rt2661.c,v 1.17 2006/05/01 08:41:11 damien Exp $	*/
3 /*	$FreeBSD: rt2560.c,v 1.5 2006/06/02 19:59:31 csjp Exp $	*/
4 
5 /*-
6  * Copyright (c) 2006
7  *	Damien Bergamini <damien.bergamini@free.fr>
8  *
9  * Permission to use, copy, modify, and distribute this software for any
10  * purpose with or without fee is hereby granted, provided that the above
11  * copyright notice and this permission notice appear in all copies.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20  */
21 
22 /*-
23  * Ralink Technology RT2561, RT2561S and RT2661 chipset driver
24  * http://www.ralinktech.com/
25  */
26 
27 #include <sys/cdefs.h>
28 __KERNEL_RCSID(0, "$NetBSD: rt2661.c,v 1.28 2010/04/05 07:19:36 joerg Exp $");
29 
30 
31 #include <sys/param.h>
32 #include <sys/sockio.h>
33 #include <sys/sysctl.h>
34 #include <sys/mbuf.h>
35 #include <sys/kernel.h>
36 #include <sys/socket.h>
37 #include <sys/systm.h>
38 #include <sys/malloc.h>
39 #include <sys/callout.h>
40 #include <sys/conf.h>
41 #include <sys/device.h>
42 
43 #include <sys/bus.h>
44 #include <machine/endian.h>
45 #include <sys/intr.h>
46 
47 #include <net/bpf.h>
48 #include <net/if.h>
49 #include <net/if_arp.h>
50 #include <net/if_dl.h>
51 #include <net/if_media.h>
52 #include <net/if_types.h>
53 #include <net/if_ether.h>
54 
55 #include <netinet/in.h>
56 #include <netinet/in_systm.h>
57 #include <netinet/in_var.h>
58 #include <netinet/ip.h>
59 
60 #include <net80211/ieee80211_var.h>
61 #include <net80211/ieee80211_amrr.h>
62 #include <net80211/ieee80211_radiotap.h>
63 
64 #include <dev/ic/rt2661reg.h>
65 #include <dev/ic/rt2661var.h>
66 
67 #include <dev/pci/pcireg.h>
68 #include <dev/pci/pcivar.h>
69 #include <dev/pci/pcidevs.h>
70 
71 #include <dev/firmload.h>
72 
73 #ifdef RAL_DEBUG
74 #define DPRINTF(x)	do { if (rt2661_debug > 0) printf x; } while (0)
75 #define DPRINTFN(n, x)	do { if (rt2661_debug >= (n)) printf x; } while (0)
76 int rt2661_debug = 0;
77 #else
78 #define DPRINTF(x)
79 #define DPRINTFN(n, x)
80 #endif
81 
82 static int	rt2661_alloc_tx_ring(struct rt2661_softc *,
83 		    struct rt2661_tx_ring *, int);
84 static void	rt2661_reset_tx_ring(struct rt2661_softc *,
85 		    struct rt2661_tx_ring *);
86 static void	rt2661_free_tx_ring(struct rt2661_softc *,
87 		    struct rt2661_tx_ring *);
88 static int	rt2661_alloc_rx_ring(struct rt2661_softc *,
89 		    struct rt2661_rx_ring *, int);
90 static void	rt2661_reset_rx_ring(struct rt2661_softc *,
91 		    struct rt2661_rx_ring *);
92 static void	rt2661_free_rx_ring(struct rt2661_softc *,
93 		    struct rt2661_rx_ring *);
94 static struct ieee80211_node *
95 		rt2661_node_alloc(struct ieee80211_node_table *);
96 static int	rt2661_media_change(struct ifnet *);
97 static void	rt2661_next_scan(void *);
98 static void	rt2661_iter_func(void *, struct ieee80211_node *);
99 static void	rt2661_updatestats(void *);
100 static void	rt2661_newassoc(struct ieee80211_node *, int);
101 static int	rt2661_newstate(struct ieee80211com *, enum ieee80211_state,
102 		    int);
103 static uint16_t	rt2661_eeprom_read(struct rt2661_softc *, uint8_t);
104 static void	rt2661_tx_intr(struct rt2661_softc *);
105 static void	rt2661_tx_dma_intr(struct rt2661_softc *,
106 		    struct rt2661_tx_ring *);
107 static void	rt2661_rx_intr(struct rt2661_softc *);
108 static void	rt2661_mcu_beacon_expire(struct rt2661_softc *);
109 static void	rt2661_mcu_wakeup(struct rt2661_softc *);
110 static void	rt2661_mcu_cmd_intr(struct rt2661_softc *);
111 int		rt2661_intr(void *);
112 static uint8_t	rt2661_rxrate(struct rt2661_rx_desc *);
113 static int	rt2661_ack_rate(struct ieee80211com *, int);
114 static uint16_t	rt2661_txtime(int, int, uint32_t);
115 static uint8_t	rt2661_plcp_signal(int);
116 static void	rt2661_setup_tx_desc(struct rt2661_softc *,
117 		    struct rt2661_tx_desc *, uint32_t, uint16_t, int, int,
118 		    const bus_dma_segment_t *, int, int);
119 static int	rt2661_tx_mgt(struct rt2661_softc *, struct mbuf *,
120 		    struct ieee80211_node *);
121 static struct mbuf *
122 		rt2661_get_rts(struct rt2661_softc *,
123 		    struct ieee80211_frame *, uint16_t);
124 static int	rt2661_tx_data(struct rt2661_softc *, struct mbuf *,
125 		    struct ieee80211_node *, int);
126 static void	rt2661_start(struct ifnet *);
127 static void	rt2661_watchdog(struct ifnet *);
128 static int	rt2661_reset(struct ifnet *);
129 static int	rt2661_ioctl(struct ifnet *, u_long, void *);
130 static void	rt2661_bbp_write(struct rt2661_softc *, uint8_t, uint8_t);
131 static uint8_t	rt2661_bbp_read(struct rt2661_softc *, uint8_t);
132 static void	rt2661_rf_write(struct rt2661_softc *, uint8_t, uint32_t);
133 static int	rt2661_tx_cmd(struct rt2661_softc *, uint8_t, uint16_t);
134 static void	rt2661_select_antenna(struct rt2661_softc *);
135 static void	rt2661_enable_mrr(struct rt2661_softc *);
136 static void	rt2661_set_txpreamble(struct rt2661_softc *);
137 static void	rt2661_set_basicrates(struct rt2661_softc *,
138 			const struct ieee80211_rateset *);
139 static void	rt2661_select_band(struct rt2661_softc *,
140 		    struct ieee80211_channel *);
141 static void	rt2661_set_chan(struct rt2661_softc *,
142 		    struct ieee80211_channel *);
143 static void	rt2661_set_bssid(struct rt2661_softc *, const uint8_t *);
144 static void	rt2661_set_macaddr(struct rt2661_softc *, const uint8_t *);
145 static void	rt2661_update_promisc(struct rt2661_softc *);
146 #if 0
147 static int	rt2661_wme_update(struct ieee80211com *);
148 #endif
149 
150 static void	rt2661_updateslot(struct ifnet *);
151 static void	rt2661_set_slottime(struct rt2661_softc *);
152 static const char *
153 		rt2661_get_rf(int);
154 static void	rt2661_read_eeprom(struct rt2661_softc *);
155 static int	rt2661_bbp_init(struct rt2661_softc *);
156 static int     	rt2661_init(struct ifnet *);
157 static void	rt2661_stop(struct ifnet *, int);
158 static int	rt2661_load_microcode(struct rt2661_softc *, const uint8_t *,
159 		    int);
160 static void	rt2661_rx_tune(struct rt2661_softc *);
161 #ifdef notyet
162 static void	rt2661_radar_start(struct rt2661_softc *);
163 static int	rt2661_radar_stop(struct rt2661_softc *);
164 #endif
165 static int	rt2661_prepare_beacon(struct rt2661_softc *);
166 static void	rt2661_enable_tsf_sync(struct rt2661_softc *);
167 static int	rt2661_get_rssi(struct rt2661_softc *, uint8_t);
168 
169 /*
170  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
171  */
172 static const struct ieee80211_rateset rt2661_rateset_11a =
173 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
174 
175 static const struct ieee80211_rateset rt2661_rateset_11b =
176 	{ 4, { 2, 4, 11, 22 } };
177 
178 static const struct ieee80211_rateset rt2661_rateset_11g =
179 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
180 
181 static const struct {
182 	uint32_t	reg;
183 	uint32_t	val;
184 } rt2661_def_mac[] = {
185 	RT2661_DEF_MAC
186 };
187 
188 static const struct {
189 	uint8_t	reg;
190 	uint8_t	val;
191 } rt2661_def_bbp[] = {
192 	RT2661_DEF_BBP
193 };
194 
195 static const struct rfprog {
196 	uint8_t		chan;
197 	uint32_t	r1, r2, r3, r4;
198 } rt2661_rf5225_1[] = {
199 	RT2661_RF5225_1
200 }, rt2661_rf5225_2[] = {
201 	RT2661_RF5225_2
202 };
203 
204 int
205 rt2661_attach(void *xsc, int id)
206 {
207 	struct rt2661_softc *sc = xsc;
208 	struct ieee80211com *ic = &sc->sc_ic;
209 	struct ifnet *ifp = &sc->sc_if;
210 	uint32_t val;
211 	int error, i, ntries;
212 
213 	sc->sc_id = id;
214 
215 	sc->amrr.amrr_min_success_threshold =  1;
216 	sc->amrr.amrr_max_success_threshold = 15;
217 	callout_init(&sc->scan_ch, 0);
218 	callout_init(&sc->amrr_ch, 0);
219 
220 	/* wait for NIC to initialize */
221 	for (ntries = 0; ntries < 1000; ntries++) {
222 		if ((val = RAL_READ(sc, RT2661_MAC_CSR0)) != 0)
223 			break;
224 		DELAY(1000);
225 	}
226 	if (ntries == 1000) {
227 		aprint_error_dev(&sc->sc_dev, "timeout waiting for NIC to initialize\n");
228 		return EIO;
229 	}
230 
231 	/* retrieve RF rev. no and various other things from EEPROM */
232 	rt2661_read_eeprom(sc);
233 	aprint_normal_dev(&sc->sc_dev, "802.11 address %s\n",
234 	    ether_sprintf(ic->ic_myaddr));
235 
236 	aprint_normal_dev(&sc->sc_dev, "MAC/BBP RT%X, RF %s\n", val,
237 	    rt2661_get_rf(sc->rf_rev));
238 
239 	/*
240 	 * Allocate Tx and Rx rings.
241 	 */
242 	error = rt2661_alloc_tx_ring(sc, &sc->txq[0], RT2661_TX_RING_COUNT);
243 	if (error != 0) {
244 		aprint_error_dev(&sc->sc_dev, "could not allocate Tx ring 0\n");
245 		goto fail1;
246 	}
247 
248 	error = rt2661_alloc_tx_ring(sc, &sc->txq[1], RT2661_TX_RING_COUNT);
249 	if (error != 0) {
250 		aprint_error_dev(&sc->sc_dev, "could not allocate Tx ring 1\n");
251 		goto fail2;
252 	}
253 
254 	error = rt2661_alloc_tx_ring(sc, &sc->txq[2], RT2661_TX_RING_COUNT);
255 	if (error != 0) {
256 		aprint_error_dev(&sc->sc_dev, "could not allocate Tx ring 2\n");
257 		goto fail3;
258 	}
259 
260 	error = rt2661_alloc_tx_ring(sc, &sc->txq[3], RT2661_TX_RING_COUNT);
261 	if (error != 0) {
262 		aprint_error_dev(&sc->sc_dev, "could not allocate Tx ring 3\n");
263 		goto fail4;
264 	}
265 
266 	error = rt2661_alloc_tx_ring(sc, &sc->mgtq, RT2661_MGT_RING_COUNT);
267 	if (error != 0) {
268 		aprint_error_dev(&sc->sc_dev, "could not allocate Mgt ring\n");
269 		goto fail5;
270 	}
271 
272 	error = rt2661_alloc_rx_ring(sc, &sc->rxq, RT2661_RX_RING_COUNT);
273 	if (error != 0) {
274 		aprint_error_dev(&sc->sc_dev, "could not allocate Rx ring\n");
275 		goto fail6;
276 	}
277 
278 	ifp->if_softc = sc;
279 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
280 	ifp->if_init = rt2661_init;
281 	ifp->if_stop = rt2661_stop;
282 	ifp->if_ioctl = rt2661_ioctl;
283 	ifp->if_start = rt2661_start;
284 	ifp->if_watchdog = rt2661_watchdog;
285 	IFQ_SET_READY(&ifp->if_snd);
286 	memcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
287 
288 	ic->ic_ifp = ifp;
289 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
290 	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
291 	ic->ic_state = IEEE80211_S_INIT;
292 
293 	/* set device capabilities */
294 	ic->ic_caps =
295 	    IEEE80211_C_IBSS |		/* IBSS mode supported */
296 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
297 	    IEEE80211_C_HOSTAP |	/* HostAP mode supported */
298 	    IEEE80211_C_TXPMGT |	/* tx power management */
299 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
300 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
301 	    IEEE80211_C_WPA;		/* 802.11i */
302 
303 	if (sc->rf_rev == RT2661_RF_5225 || sc->rf_rev == RT2661_RF_5325) {
304 		/* set supported .11a rates */
305 		ic->ic_sup_rates[IEEE80211_MODE_11A] = rt2661_rateset_11a;
306 
307 		/* set supported .11a channels */
308 		for (i = 36; i <= 64; i += 4) {
309 			ic->ic_channels[i].ic_freq =
310 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
311 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
312 		}
313 		for (i = 100; i <= 140; i += 4) {
314 			ic->ic_channels[i].ic_freq =
315 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
316 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
317 		}
318 		for (i = 149; i <= 165; i += 4) {
319 			ic->ic_channels[i].ic_freq =
320 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
321 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
322 		}
323 	}
324 
325 	/* set supported .11b and .11g rates */
326 	ic->ic_sup_rates[IEEE80211_MODE_11B] = rt2661_rateset_11b;
327 	ic->ic_sup_rates[IEEE80211_MODE_11G] = rt2661_rateset_11g;
328 
329 	/* set supported .11b and .11g channels (1 through 14) */
330 	for (i = 1; i <= 14; i++) {
331 		ic->ic_channels[i].ic_freq =
332 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
333 		ic->ic_channels[i].ic_flags =
334 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
335 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
336 	}
337 
338 	if_attach(ifp);
339 	ieee80211_ifattach(ic);
340 	ic->ic_node_alloc = rt2661_node_alloc;
341 	ic->ic_newassoc = rt2661_newassoc;
342 	ic->ic_updateslot = rt2661_updateslot;
343 	ic->ic_reset = rt2661_reset;
344 
345 	/* override state transition machine */
346 	sc->sc_newstate = ic->ic_newstate;
347 	ic->ic_newstate = rt2661_newstate;
348 	ieee80211_media_init(ic, rt2661_media_change, ieee80211_media_status);
349 
350 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
351 	    sizeof(struct ieee80211_frame) + sizeof(sc->sc_txtap),
352 	    &sc->sc_drvbpf);
353 
354 	sc->sc_rxtap_len = roundup(sizeof(sc->sc_rxtap), sizeof(u_int32_t));
355 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
356 	sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2661_RX_RADIOTAP_PRESENT);
357 
358 	sc->sc_txtap_len = roundup(sizeof(sc->sc_txtap), sizeof(u_int32_t));
359 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
360 	sc->sc_txtap.wt_ihdr.it_present = htole32(RT2661_TX_RADIOTAP_PRESENT);
361 
362 	ieee80211_announce(ic);
363 
364 	if (pmf_device_register(&sc->sc_dev, NULL, NULL))
365 		pmf_class_network_register(&sc->sc_dev, ifp);
366 	else
367 		aprint_error_dev(&sc->sc_dev,
368 		    "couldn't establish power handler\n");
369 
370 	return 0;
371 
372 fail6:	rt2661_free_tx_ring(sc, &sc->mgtq);
373 fail5:	rt2661_free_tx_ring(sc, &sc->txq[3]);
374 fail4:	rt2661_free_tx_ring(sc, &sc->txq[2]);
375 fail3:	rt2661_free_tx_ring(sc, &sc->txq[1]);
376 fail2:	rt2661_free_tx_ring(sc, &sc->txq[0]);
377 fail1:	return ENXIO;
378 }
379 
380 int
381 rt2661_detach(void *xsc)
382 {
383 	struct rt2661_softc *sc = xsc;
384 	struct ifnet *ifp = &sc->sc_if;
385 
386 	callout_stop(&sc->scan_ch);
387 	callout_stop(&sc->amrr_ch);
388 
389 	pmf_device_deregister(&sc->sc_dev);
390 
391 	ieee80211_ifdetach(&sc->sc_ic);
392 	if_detach(ifp);
393 
394 	rt2661_free_tx_ring(sc, &sc->txq[0]);
395 	rt2661_free_tx_ring(sc, &sc->txq[1]);
396 	rt2661_free_tx_ring(sc, &sc->txq[2]);
397 	rt2661_free_tx_ring(sc, &sc->txq[3]);
398 	rt2661_free_tx_ring(sc, &sc->mgtq);
399 	rt2661_free_rx_ring(sc, &sc->rxq);
400 
401 	return 0;
402 }
403 
404 static int
405 rt2661_alloc_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring,
406     int count)
407 {
408 	int i, nsegs, error;
409 
410 	ring->count = count;
411 	ring->queued = 0;
412 	ring->cur = ring->next = ring->stat = 0;
413 
414 	error = bus_dmamap_create(sc->sc_dmat, count * RT2661_TX_DESC_SIZE, 1,
415 	    count * RT2661_TX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map);
416 	if (error != 0) {
417 		aprint_error_dev(&sc->sc_dev, "could not create desc DMA map\n");
418 		goto fail;
419 	}
420 
421 	error = bus_dmamem_alloc(sc->sc_dmat, count * RT2661_TX_DESC_SIZE,
422 	    PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
423 	if (error != 0) {
424 		aprint_error_dev(&sc->sc_dev, "could not allocate DMA memory\n");
425 		goto fail;
426 	}
427 
428 	error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
429 	    count * RT2661_TX_DESC_SIZE, (void **)&ring->desc,
430 	    BUS_DMA_NOWAIT);
431 	if (error != 0) {
432 		aprint_error_dev(&sc->sc_dev, "could not map desc DMA memory\n");
433 		goto fail;
434 	}
435 
436 	error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
437 	    count * RT2661_TX_DESC_SIZE, NULL, BUS_DMA_NOWAIT);
438 	if (error != 0) {
439 		aprint_error_dev(&sc->sc_dev, "could not load desc DMA map\n");
440 		goto fail;
441 	}
442 
443 	memset(ring->desc, 0, count * RT2661_TX_DESC_SIZE);
444 	ring->physaddr = ring->map->dm_segs->ds_addr;
445 
446 	ring->data = malloc(count * sizeof (struct rt2661_tx_data), M_DEVBUF,
447 	    M_NOWAIT);
448 	if (ring->data == NULL) {
449 		aprint_error_dev(&sc->sc_dev, "could not allocate soft data\n");
450 		error = ENOMEM;
451 		goto fail;
452 	}
453 
454 	memset(ring->data, 0, count * sizeof (struct rt2661_tx_data));
455 	for (i = 0; i < count; i++) {
456 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
457 		    RT2661_MAX_SCATTER, MCLBYTES, 0, BUS_DMA_NOWAIT,
458 		    &ring->data[i].map);
459 		if (error != 0) {
460 			aprint_error_dev(&sc->sc_dev, "could not create DMA map\n");
461 			goto fail;
462 		}
463 	}
464 
465 	return 0;
466 
467 fail:	rt2661_free_tx_ring(sc, ring);
468 	return error;
469 }
470 
471 static void
472 rt2661_reset_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring)
473 {
474 	struct rt2661_tx_desc *desc;
475 	struct rt2661_tx_data *data;
476 	int i;
477 
478 	for (i = 0; i < ring->count; i++) {
479 		desc = &ring->desc[i];
480 		data = &ring->data[i];
481 
482 		if (data->m != NULL) {
483 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
484 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
485 			bus_dmamap_unload(sc->sc_dmat, data->map);
486 			m_freem(data->m);
487 			data->m = NULL;
488 		}
489 
490 		if (data->ni != NULL) {
491 			ieee80211_free_node(data->ni);
492 			data->ni = NULL;
493 		}
494 
495 		desc->flags = 0;
496 	}
497 
498 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
499 	    BUS_DMASYNC_PREWRITE);
500 
501 	ring->queued = 0;
502 	ring->cur = ring->next = ring->stat = 0;
503 }
504 
505 
506 static void
507 rt2661_free_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring)
508 {
509 	struct rt2661_tx_data *data;
510 	int i;
511 
512 	if (ring->desc != NULL) {
513 		bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
514 		    ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
515 		bus_dmamap_unload(sc->sc_dmat, ring->map);
516 		bus_dmamem_unmap(sc->sc_dmat, (void *)ring->desc,
517 		    ring->count * RT2661_TX_DESC_SIZE);
518 		bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
519 	}
520 
521 	if (ring->data != NULL) {
522 		for (i = 0; i < ring->count; i++) {
523 			data = &ring->data[i];
524 
525 			if (data->m != NULL) {
526 				bus_dmamap_sync(sc->sc_dmat, data->map, 0,
527 				    data->map->dm_mapsize,
528 				    BUS_DMASYNC_POSTWRITE);
529 				bus_dmamap_unload(sc->sc_dmat, data->map);
530 				m_freem(data->m);
531 			}
532 
533 			if (data->ni != NULL)
534 				ieee80211_free_node(data->ni);
535 
536 			if (data->map != NULL)
537 				bus_dmamap_destroy(sc->sc_dmat, data->map);
538 		}
539 		free(ring->data, M_DEVBUF);
540 	}
541 }
542 
543 static int
544 rt2661_alloc_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring,
545     int count)
546 {
547 	struct rt2661_rx_desc *desc;
548 	struct rt2661_rx_data *data;
549 	int i, nsegs, error;
550 
551 	ring->count = count;
552 	ring->cur = ring->next = 0;
553 
554 	error = bus_dmamap_create(sc->sc_dmat, count * RT2661_RX_DESC_SIZE, 1,
555 	    count * RT2661_RX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map);
556 	if (error != 0) {
557 		aprint_error_dev(&sc->sc_dev, "could not create desc DMA map\n");
558 		goto fail;
559 	}
560 
561 	error = bus_dmamem_alloc(sc->sc_dmat, count * RT2661_RX_DESC_SIZE,
562 	    PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
563 	if (error != 0) {
564 		aprint_error_dev(&sc->sc_dev, "could not allocate DMA memory\n");
565 		goto fail;
566 	}
567 
568 	error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
569 	    count * RT2661_RX_DESC_SIZE, (void **)&ring->desc,
570 	    BUS_DMA_NOWAIT);
571 	if (error != 0) {
572 		aprint_error_dev(&sc->sc_dev, "could not map desc DMA memory\n");
573 		goto fail;
574 	}
575 
576 	error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
577 	    count * RT2661_RX_DESC_SIZE, NULL, BUS_DMA_NOWAIT);
578 	if (error != 0) {
579 		aprint_error_dev(&sc->sc_dev, "could not load desc DMA map\n");
580 		goto fail;
581 	}
582 
583 	memset(ring->desc, 0, count * RT2661_RX_DESC_SIZE);
584 	ring->physaddr = ring->map->dm_segs->ds_addr;
585 
586 	ring->data = malloc(count * sizeof (struct rt2661_rx_data), M_DEVBUF,
587 	    M_NOWAIT);
588 	if (ring->data == NULL) {
589 		aprint_error_dev(&sc->sc_dev, "could not allocate soft data\n");
590 		error = ENOMEM;
591 		goto fail;
592 	}
593 
594 	/*
595 	 * Pre-allocate Rx buffers and populate Rx ring.
596 	 */
597 	memset(ring->data, 0, count * sizeof (struct rt2661_rx_data));
598 	for (i = 0; i < count; i++) {
599 		desc = &sc->rxq.desc[i];
600 		data = &sc->rxq.data[i];
601 
602 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
603 		    0, BUS_DMA_NOWAIT, &data->map);
604 		if (error != 0) {
605 			aprint_error_dev(&sc->sc_dev, "could not create DMA map\n");
606 			goto fail;
607 		}
608 
609 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
610 		if (data->m == NULL) {
611 			aprint_error_dev(&sc->sc_dev, "could not allocate rx mbuf\n");
612 			error = ENOMEM;
613 			goto fail;
614 		}
615 
616 		MCLGET(data->m, M_DONTWAIT);
617 		if (!(data->m->m_flags & M_EXT)) {
618 			aprint_error_dev(&sc->sc_dev, "could not allocate rx mbuf cluster\n");
619 			error = ENOMEM;
620 			goto fail;
621 		}
622 
623 		error = bus_dmamap_load(sc->sc_dmat, data->map,
624 		    mtod(data->m, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
625 		if (error != 0) {
626 			aprint_error_dev(&sc->sc_dev, "could not load rx buf DMA map");
627 			goto fail;
628 		}
629 
630 		desc->physaddr = htole32(data->map->dm_segs->ds_addr);
631 		desc->flags = htole32(RT2661_RX_BUSY);
632 	}
633 
634 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
635 	    BUS_DMASYNC_PREWRITE);
636 
637 	return 0;
638 
639 fail:	rt2661_free_rx_ring(sc, ring);
640 	return error;
641 }
642 
643 static void
644 rt2661_reset_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring)
645 {
646 	int i;
647 
648 	for (i = 0; i < ring->count; i++)
649 		ring->desc[i].flags = htole32(RT2661_RX_BUSY);
650 
651 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
652 	    BUS_DMASYNC_PREWRITE);
653 
654 	ring->cur = ring->next = 0;
655 }
656 
657 static void
658 rt2661_free_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring)
659 {
660 	struct rt2661_rx_data *data;
661 	int i;
662 
663 	if (ring->desc != NULL) {
664 		bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
665 		    ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
666 		bus_dmamap_unload(sc->sc_dmat, ring->map);
667 		bus_dmamem_unmap(sc->sc_dmat, (void *)ring->desc,
668 		    ring->count * RT2661_RX_DESC_SIZE);
669 		bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
670 	}
671 
672 	if (ring->data != NULL) {
673 		for (i = 0; i < ring->count; i++) {
674 			data = &ring->data[i];
675 
676 			if (data->m != NULL) {
677 				bus_dmamap_sync(sc->sc_dmat, data->map, 0,
678 				    data->map->dm_mapsize,
679 				    BUS_DMASYNC_POSTREAD);
680 				bus_dmamap_unload(sc->sc_dmat, data->map);
681 				m_freem(data->m);
682 			}
683 
684 			if (data->map != NULL)
685 				bus_dmamap_destroy(sc->sc_dmat, data->map);
686 		}
687 		free(ring->data, M_DEVBUF);
688 	}
689 }
690 
691 static struct ieee80211_node *
692 rt2661_node_alloc(struct ieee80211_node_table *nt)
693 {
694 	struct rt2661_node *rn;
695 
696 	rn = malloc(sizeof (struct rt2661_node), M_80211_NODE,
697 	    M_NOWAIT | M_ZERO);
698 
699 	return (rn != NULL) ? &rn->ni : NULL;
700 }
701 
702 static int
703 rt2661_media_change(struct ifnet *ifp)
704 {
705 	int error;
706 
707 	error = ieee80211_media_change(ifp);
708 	if (error != ENETRESET)
709 		return error;
710 
711 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
712 		rt2661_init(ifp);
713 
714 	return 0;
715 }
716 
717 /*
718  * This function is called periodically (every 200ms) during scanning to
719  * switch from one channel to another.
720  */
721 static void
722 rt2661_next_scan(void *arg)
723 {
724 	struct rt2661_softc *sc = arg;
725 	struct ieee80211com *ic = &sc->sc_ic;
726 	int s;
727 
728 	s = splnet();
729 	if (ic->ic_state == IEEE80211_S_SCAN)
730 		ieee80211_next_scan(ic);
731 	splx(s);
732 }
733 
734 /*
735  * This function is called for each neighbor node.
736  */
737 static void
738 rt2661_iter_func(void *arg, struct ieee80211_node *ni)
739 {
740 	struct rt2661_softc *sc = arg;
741 	struct rt2661_node *rn = (struct rt2661_node *)ni;
742 
743 	ieee80211_amrr_choose(&sc->amrr, ni, &rn->amn);
744 }
745 
746 /*
747  * This function is called periodically (every 500ms) in RUN state to update
748  * various settings like rate control statistics or Rx sensitivity.
749  */
750 static void
751 rt2661_updatestats(void *arg)
752 {
753 	struct rt2661_softc *sc = arg;
754 	struct ieee80211com *ic = &sc->sc_ic;
755 	int s;
756 
757 	s = splnet();
758 	if (ic->ic_opmode == IEEE80211_M_STA)
759 		rt2661_iter_func(sc, ic->ic_bss);
760 	else
761 		ieee80211_iterate_nodes(&ic->ic_sta, rt2661_iter_func, arg);
762 
763 	/* update rx sensitivity every 1 sec */
764 	if (++sc->ncalls & 1)
765 		rt2661_rx_tune(sc);
766 	splx(s);
767 
768 	callout_reset(&sc->amrr_ch, hz / 2, rt2661_updatestats, sc);
769 }
770 
771 static void
772 rt2661_newassoc(struct ieee80211_node *ni, int isnew)
773 {
774 	struct rt2661_softc *sc = ni->ni_ic->ic_ifp->if_softc;
775 	int i;
776 
777 	ieee80211_amrr_node_init(&sc->amrr, &((struct rt2661_node *)ni)->amn);
778 
779 	/* set rate to some reasonable initial value */
780 	for (i = ni->ni_rates.rs_nrates - 1;
781 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
782 	     i--);
783 	ni->ni_txrate = i;
784 }
785 
786 static int
787 rt2661_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
788 {
789 	struct rt2661_softc *sc = ic->ic_ifp->if_softc;
790 	enum ieee80211_state ostate;
791 	struct ieee80211_node *ni;
792 	uint32_t tmp;
793 
794 	ostate = ic->ic_state;
795 	callout_stop(&sc->scan_ch);
796 
797 	switch (nstate) {
798 	case IEEE80211_S_INIT:
799 		callout_stop(&sc->amrr_ch);
800 
801 		if (ostate == IEEE80211_S_RUN) {
802 			/* abort TSF synchronization */
803 			tmp = RAL_READ(sc, RT2661_TXRX_CSR9);
804 			RAL_WRITE(sc, RT2661_TXRX_CSR9, tmp & ~0x00ffffff);
805 		}
806 		break;
807 
808 	case IEEE80211_S_SCAN:
809 		rt2661_set_chan(sc, ic->ic_curchan);
810 		callout_reset(&sc->scan_ch, hz / 5, rt2661_next_scan, sc);
811 		break;
812 
813 	case IEEE80211_S_AUTH:
814 	case IEEE80211_S_ASSOC:
815 		rt2661_set_chan(sc, ic->ic_curchan);
816 		break;
817 
818 	case IEEE80211_S_RUN:
819 		rt2661_set_chan(sc, ic->ic_curchan);
820 
821 		ni = ic->ic_bss;
822 
823 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
824 			rt2661_set_slottime(sc);
825 			rt2661_enable_mrr(sc);
826 			rt2661_set_txpreamble(sc);
827 			rt2661_set_basicrates(sc, &ni->ni_rates);
828 			rt2661_set_bssid(sc, ni->ni_bssid);
829 		}
830 
831 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
832 		    ic->ic_opmode == IEEE80211_M_IBSS)
833 			rt2661_prepare_beacon(sc);
834 
835 		if (ic->ic_opmode == IEEE80211_M_STA) {
836 			/* fake a join to init the tx rate */
837 			rt2661_newassoc(ni, 1);
838 		}
839 
840 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
841 			sc->ncalls = 0;
842 			sc->avg_rssi = -95;	/* reset EMA */
843 			callout_reset(&sc->amrr_ch, hz / 2,
844 			    rt2661_updatestats, sc);
845 			rt2661_enable_tsf_sync(sc);
846 		}
847 		break;
848 	}
849 
850 	return sc->sc_newstate(ic, nstate, arg);
851 }
852 
853 /*
854  * Read 16 bits at address 'addr' from the serial EEPROM (either 93C46 or
855  * 93C66).
856  */
857 static uint16_t
858 rt2661_eeprom_read(struct rt2661_softc *sc, uint8_t addr)
859 {
860 	uint32_t tmp;
861 	uint16_t val;
862 	int n;
863 
864 	/* clock C once before the first command */
865 	RT2661_EEPROM_CTL(sc, 0);
866 
867 	RT2661_EEPROM_CTL(sc, RT2661_S);
868 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C);
869 	RT2661_EEPROM_CTL(sc, RT2661_S);
870 
871 	/* write start bit (1) */
872 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D);
873 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D | RT2661_C);
874 
875 	/* write READ opcode (10) */
876 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D);
877 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D | RT2661_C);
878 	RT2661_EEPROM_CTL(sc, RT2661_S);
879 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C);
880 
881 	/* write address (A5-A0 or A7-A0) */
882 	n = (RAL_READ(sc, RT2661_E2PROM_CSR) & RT2661_93C46) ? 5 : 7;
883 	for (; n >= 0; n--) {
884 		RT2661_EEPROM_CTL(sc, RT2661_S |
885 		    (((addr >> n) & 1) << RT2661_SHIFT_D));
886 		RT2661_EEPROM_CTL(sc, RT2661_S |
887 		    (((addr >> n) & 1) << RT2661_SHIFT_D) | RT2661_C);
888 	}
889 
890 	RT2661_EEPROM_CTL(sc, RT2661_S);
891 
892 	/* read data Q15-Q0 */
893 	val = 0;
894 	for (n = 15; n >= 0; n--) {
895 		RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C);
896 		tmp = RAL_READ(sc, RT2661_E2PROM_CSR);
897 		val |= ((tmp & RT2661_Q) >> RT2661_SHIFT_Q) << n;
898 		RT2661_EEPROM_CTL(sc, RT2661_S);
899 	}
900 
901 	RT2661_EEPROM_CTL(sc, 0);
902 
903 	/* clear Chip Select and clock C */
904 	RT2661_EEPROM_CTL(sc, RT2661_S);
905 	RT2661_EEPROM_CTL(sc, 0);
906 	RT2661_EEPROM_CTL(sc, RT2661_C);
907 
908 	return val;
909 }
910 
911 static void
912 rt2661_tx_intr(struct rt2661_softc *sc)
913 {
914 	struct ifnet *ifp = &sc->sc_if;
915 	struct rt2661_tx_ring *txq;
916 	struct rt2661_tx_data *data;
917 	struct rt2661_node *rn;
918 	uint32_t val;
919 	int qid, retrycnt;
920 
921 	for (;;) {
922 		val = RAL_READ(sc, RT2661_STA_CSR4);
923 		if (!(val & RT2661_TX_STAT_VALID))
924 			break;
925 
926 		/* retrieve the queue in which this frame was sent */
927 		qid = RT2661_TX_QID(val);
928 		txq = (qid <= 3) ? &sc->txq[qid] : &sc->mgtq;
929 
930 		/* retrieve rate control algorithm context */
931 		data = &txq->data[txq->stat];
932 		rn = (struct rt2661_node *)data->ni;
933 
934 		/* if no frame has been sent, ignore */
935 		if (rn == NULL)
936 			continue;
937 
938 		switch (RT2661_TX_RESULT(val)) {
939 		case RT2661_TX_SUCCESS:
940 			retrycnt = RT2661_TX_RETRYCNT(val);
941 
942 			DPRINTFN(10, ("data frame sent successfully after "
943 			    "%d retries\n", retrycnt));
944 			rn->amn.amn_txcnt++;
945 			if (retrycnt > 0)
946 				rn->amn.amn_retrycnt++;
947 			ifp->if_opackets++;
948 			break;
949 
950 		case RT2661_TX_RETRY_FAIL:
951 			DPRINTFN(9, ("sending data frame failed (too much "
952 			    "retries)\n"));
953 			rn->amn.amn_txcnt++;
954 			rn->amn.amn_retrycnt++;
955 			ifp->if_oerrors++;
956 			break;
957 
958 		default:
959 			/* other failure */
960 			aprint_error_dev(&sc->sc_dev, "sending data frame failed 0x%08x\n", val);
961 			ifp->if_oerrors++;
962 		}
963 
964 		ieee80211_free_node(data->ni);
965 		data->ni = NULL;
966 
967 		DPRINTFN(15, ("tx done q=%d idx=%u\n", qid, txq->stat));
968 
969 		txq->queued--;
970 		if (++txq->stat >= txq->count)	/* faster than % count */
971 			txq->stat = 0;
972 	}
973 
974 	sc->sc_tx_timer = 0;
975 	ifp->if_flags &= ~IFF_OACTIVE;
976 	rt2661_start(ifp);
977 }
978 
979 static void
980 rt2661_tx_dma_intr(struct rt2661_softc *sc, struct rt2661_tx_ring *txq)
981 {
982 	struct rt2661_tx_desc *desc;
983 	struct rt2661_tx_data *data;
984 
985 	for (;;) {
986 		desc = &txq->desc[txq->next];
987 		data = &txq->data[txq->next];
988 
989 		bus_dmamap_sync(sc->sc_dmat, txq->map,
990 		    txq->next * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
991 		    BUS_DMASYNC_POSTREAD);
992 
993 		if ((le32toh(desc->flags) & RT2661_TX_BUSY) ||
994 		    !(le32toh(desc->flags) & RT2661_TX_VALID))
995 			break;
996 
997 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
998 		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
999 		bus_dmamap_unload(sc->sc_dmat, data->map);
1000 		m_freem(data->m);
1001 		data->m = NULL;
1002 		/* node reference is released in rt2661_tx_intr() */
1003 
1004 		/* descriptor is no longer valid */
1005 		desc->flags &= ~htole32(RT2661_TX_VALID);
1006 
1007 		bus_dmamap_sync(sc->sc_dmat, txq->map,
1008 		    txq->next * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
1009 		    BUS_DMASYNC_PREWRITE);
1010 
1011 		DPRINTFN(15, ("tx dma done q=%p idx=%u\n", txq, txq->next));
1012 
1013 		if (++txq->next >= txq->count)	/* faster than % count */
1014 			txq->next = 0;
1015 	}
1016 }
1017 
1018 static void
1019 rt2661_rx_intr(struct rt2661_softc *sc)
1020 {
1021 	struct ieee80211com *ic = &sc->sc_ic;
1022 	struct ifnet *ifp = &sc->sc_if;
1023 	struct rt2661_rx_desc *desc;
1024 	struct rt2661_rx_data *data;
1025 	struct ieee80211_frame *wh;
1026 	struct ieee80211_node *ni;
1027 	struct mbuf *mnew, *m;
1028 	int error, rssi;
1029 
1030 	for (;;) {
1031 		desc = &sc->rxq.desc[sc->rxq.cur];
1032 		data = &sc->rxq.data[sc->rxq.cur];
1033 
1034 		bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1035 		    sc->rxq.cur * RT2661_RX_DESC_SIZE, RT2661_RX_DESC_SIZE,
1036 		    BUS_DMASYNC_POSTREAD);
1037 
1038 		if (le32toh(desc->flags) & RT2661_RX_BUSY)
1039 			break;
1040 
1041 		if ((le32toh(desc->flags) & RT2661_RX_PHY_ERROR) ||
1042 		    (le32toh(desc->flags) & RT2661_RX_CRC_ERROR)) {
1043 			/*
1044 			 * This should not happen since we did not request
1045 			 * to receive those frames when we filled TXRX_CSR0.
1046 			 */
1047 			DPRINTFN(5, ("PHY or CRC error flags 0x%08x\n",
1048 			    le32toh(desc->flags)));
1049 			ifp->if_ierrors++;
1050 			goto skip;
1051 		}
1052 
1053 		if ((le32toh(desc->flags) & RT2661_RX_CIPHER_MASK) != 0) {
1054 			ifp->if_ierrors++;
1055 			goto skip;
1056 		}
1057 
1058 		/*
1059 		 * Try to allocate a new mbuf for this ring element and load it
1060 		 * before processing the current mbuf. If the ring element
1061 		 * cannot be loaded, drop the received packet and reuse the old
1062 		 * mbuf. In the unlikely case that the old mbuf can't be
1063 		 * reloaded either, explicitly panic.
1064 		 */
1065 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1066 		if (mnew == NULL) {
1067 			ifp->if_ierrors++;
1068 			goto skip;
1069 		}
1070 
1071 		MCLGET(mnew, M_DONTWAIT);
1072 		if (!(mnew->m_flags & M_EXT)) {
1073 			m_freem(mnew);
1074 			ifp->if_ierrors++;
1075 			goto skip;
1076 		}
1077 
1078 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1079 		    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1080 		bus_dmamap_unload(sc->sc_dmat, data->map);
1081 
1082 		error = bus_dmamap_load(sc->sc_dmat, data->map,
1083 		    mtod(mnew, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
1084 		if (error != 0) {
1085 			m_freem(mnew);
1086 
1087 			/* try to reload the old mbuf */
1088 			error = bus_dmamap_load(sc->sc_dmat, data->map,
1089 			    mtod(data->m, void *), MCLBYTES, NULL,
1090 			    BUS_DMA_NOWAIT);
1091 			if (error != 0) {
1092 				/* very unlikely that it will fail... */
1093 				panic("%s: could not load old rx mbuf",
1094 				    device_xname(&sc->sc_dev));
1095 			}
1096 			/* physical address may have changed */
1097 			desc->physaddr = htole32(data->map->dm_segs->ds_addr);
1098 			ifp->if_ierrors++;
1099 			goto skip;
1100 		}
1101 
1102 		/*
1103 	 	 * New mbuf successfully loaded, update Rx ring and continue
1104 		 * processing.
1105 		 */
1106 		m = data->m;
1107 		data->m = mnew;
1108 		desc->physaddr = htole32(data->map->dm_segs->ds_addr);
1109 
1110 		/* finalize mbuf */
1111 		m->m_pkthdr.rcvif = ifp;
1112 		m->m_pkthdr.len = m->m_len =
1113 		    (le32toh(desc->flags) >> 16) & 0xfff;
1114 
1115 		if (sc->sc_drvbpf != NULL) {
1116 			struct rt2661_rx_radiotap_header *tap = &sc->sc_rxtap;
1117 			uint32_t tsf_lo, tsf_hi;
1118 
1119 			/* get timestamp (low and high 32 bits) */
1120 			tsf_hi = RAL_READ(sc, RT2661_TXRX_CSR13);
1121 			tsf_lo = RAL_READ(sc, RT2661_TXRX_CSR12);
1122 
1123 			tap->wr_tsf =
1124 			    htole64(((uint64_t)tsf_hi << 32) | tsf_lo);
1125 			tap->wr_flags = 0;
1126 			tap->wr_rate = rt2661_rxrate(desc);
1127 			tap->wr_chan_freq = htole16(sc->sc_curchan->ic_freq);
1128 			tap->wr_chan_flags = htole16(sc->sc_curchan->ic_flags);
1129 			tap->wr_antsignal = desc->rssi;
1130 
1131 			bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1132 		}
1133 
1134 		wh = mtod(m, struct ieee80211_frame *);
1135 		ni = ieee80211_find_rxnode(ic,
1136 		    (struct ieee80211_frame_min *)wh);
1137 
1138 		/* send the frame to the 802.11 layer */
1139 		ieee80211_input(ic, m, ni, desc->rssi, 0);
1140 
1141 		/*-
1142 		 * Keep track of the average RSSI using an Exponential Moving
1143 		 * Average (EMA) of 8 Wilder's days:
1144 		 *     avg = (1 / N) x rssi + ((N - 1) / N) x avg
1145 		 */
1146 		rssi = rt2661_get_rssi(sc, desc->rssi);
1147 		sc->avg_rssi = (rssi + 7 * sc->avg_rssi) / 8;
1148 
1149 		/* node is no longer needed */
1150 		ieee80211_free_node(ni);
1151 
1152 skip:		desc->flags |= htole32(RT2661_RX_BUSY);
1153 
1154 		bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1155 		    sc->rxq.cur * RT2661_RX_DESC_SIZE, RT2661_RX_DESC_SIZE,
1156 		    BUS_DMASYNC_PREWRITE);
1157 
1158 		DPRINTFN(16, ("rx intr idx=%u\n", sc->rxq.cur));
1159 
1160 		sc->rxq.cur = (sc->rxq.cur + 1) % RT2661_RX_RING_COUNT;
1161 	}
1162 
1163 	/*
1164 	 * In HostAP mode, ieee80211_input() will enqueue packets in if_snd
1165 	 * without calling if_start().
1166 	 */
1167 	if (!IFQ_IS_EMPTY(&ifp->if_snd) && !(ifp->if_flags & IFF_OACTIVE))
1168 		rt2661_start(ifp);
1169 }
1170 
1171 /*
1172  * This function is called in HostAP or IBSS modes when it's time to send a
1173  * new beacon (every ni_intval milliseconds).
1174  */
1175 static void
1176 rt2661_mcu_beacon_expire(struct rt2661_softc *sc)
1177 {
1178 	struct ieee80211com *ic = &sc->sc_ic;
1179 
1180 	if (sc->sc_flags & RT2661_UPDATE_SLOT) {
1181 		sc->sc_flags &= ~RT2661_UPDATE_SLOT;
1182 		sc->sc_flags |= RT2661_SET_SLOTTIME;
1183 	} else if (sc->sc_flags & RT2661_SET_SLOTTIME) {
1184 		sc->sc_flags &= ~RT2661_SET_SLOTTIME;
1185 		rt2661_set_slottime(sc);
1186 	}
1187 
1188 	if (ic->ic_curmode == IEEE80211_MODE_11G) {
1189 		/* update ERP Information Element */
1190 		RAL_WRITE_1(sc, sc->erp_csr, ic->ic_bss->ni_erp);
1191 		RAL_RW_BARRIER_1(sc, sc->erp_csr);
1192 	}
1193 
1194 	DPRINTFN(15, ("beacon expired\n"));
1195 }
1196 
1197 static void
1198 rt2661_mcu_wakeup(struct rt2661_softc *sc)
1199 {
1200 	RAL_WRITE(sc, RT2661_MAC_CSR11, 5 << 16);
1201 
1202 	RAL_WRITE(sc, RT2661_SOFT_RESET_CSR, 0x7);
1203 	RAL_WRITE(sc, RT2661_IO_CNTL_CSR, 0x18);
1204 	RAL_WRITE(sc, RT2661_PCI_USEC_CSR, 0x20);
1205 
1206 	/* send wakeup command to MCU */
1207 	rt2661_tx_cmd(sc, RT2661_MCU_CMD_WAKEUP, 0);
1208 }
1209 
1210 static void
1211 rt2661_mcu_cmd_intr(struct rt2661_softc *sc)
1212 {
1213 	RAL_READ(sc, RT2661_M2H_CMD_DONE_CSR);
1214 	RAL_WRITE(sc, RT2661_M2H_CMD_DONE_CSR, 0xffffffff);
1215 }
1216 
1217 int
1218 rt2661_intr(void *arg)
1219 {
1220 	struct rt2661_softc *sc = arg;
1221 	struct ifnet *ifp = &sc->sc_if;
1222 	uint32_t r1, r2;
1223 	int rv = 0;
1224 
1225 	/* don't re-enable interrupts if we're shutting down */
1226 	if (!(ifp->if_flags & IFF_RUNNING)) {
1227 		/* disable MAC and MCU interrupts */
1228 		RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0xffffff7f);
1229 		RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0xffffffff);
1230 		return 0;
1231 	}
1232 
1233 	for (;;) {
1234 		r1 = RAL_READ(sc, RT2661_INT_SOURCE_CSR);
1235 		r2 = RAL_READ(sc, RT2661_MCU_INT_SOURCE_CSR);
1236 
1237 		if ((r1 & RT2661_INT_CSR_ALL) == 0 &&
1238 		    (r2 & RT2661_MCU_INT_ALL) == 0)
1239 			break;
1240 
1241 		RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, r1);
1242 		RAL_WRITE(sc, RT2661_MCU_INT_SOURCE_CSR, r2);
1243 
1244 		rv = 1;
1245 
1246 		if (r1 & RT2661_MGT_DONE)
1247 			rt2661_tx_dma_intr(sc, &sc->mgtq);
1248 
1249 		if (r1 & RT2661_RX_DONE)
1250 			rt2661_rx_intr(sc);
1251 
1252 		if (r1 & RT2661_TX0_DMA_DONE)
1253 			rt2661_tx_dma_intr(sc, &sc->txq[0]);
1254 
1255 		if (r1 & RT2661_TX1_DMA_DONE)
1256 			rt2661_tx_dma_intr(sc, &sc->txq[1]);
1257 
1258 		if (r1 & RT2661_TX2_DMA_DONE)
1259 			rt2661_tx_dma_intr(sc, &sc->txq[2]);
1260 
1261 		if (r1 & RT2661_TX3_DMA_DONE)
1262 			rt2661_tx_dma_intr(sc, &sc->txq[3]);
1263 
1264 		if (r1 & RT2661_TX_DONE)
1265 			rt2661_tx_intr(sc);
1266 
1267 		if (r2 & RT2661_MCU_CMD_DONE)
1268 			rt2661_mcu_cmd_intr(sc);
1269 
1270 		if (r2 & RT2661_MCU_BEACON_EXPIRE)
1271 			rt2661_mcu_beacon_expire(sc);
1272 
1273 		if (r2 & RT2661_MCU_WAKEUP)
1274 			rt2661_mcu_wakeup(sc);
1275 	}
1276 
1277 	return rv;
1278 }
1279 
1280 /* quickly determine if a given rate is CCK or OFDM */
1281 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1282 
1283 #define RAL_ACK_SIZE	14	/* 10 + 4(FCS) */
1284 #define RAL_CTS_SIZE	14	/* 10 + 4(FCS) */
1285 
1286 /*
1287  * This function is only used by the Rx radiotap code. It returns the rate at
1288  * which a given frame was received.
1289  */
1290 static uint8_t
1291 rt2661_rxrate(struct rt2661_rx_desc *desc)
1292 {
1293 	if (le32toh(desc->flags) & RT2661_RX_OFDM) {
1294 		/* reverse function of rt2661_plcp_signal */
1295 		switch (desc->rate & 0xf) {
1296 		case 0xb:	return 12;
1297 		case 0xf:	return 18;
1298 		case 0xa:	return 24;
1299 		case 0xe:	return 36;
1300 		case 0x9:	return 48;
1301 		case 0xd:	return 72;
1302 		case 0x8:	return 96;
1303 		case 0xc:	return 108;
1304 		}
1305 	} else {
1306 		if (desc->rate == 10)
1307 			return 2;
1308 		if (desc->rate == 20)
1309 			return 4;
1310 		if (desc->rate == 55)
1311 			return 11;
1312 		if (desc->rate == 110)
1313 			return 22;
1314 	}
1315 	return 2;	/* should not get there */
1316 }
1317 
1318 /*
1319  * Return the expected ack rate for a frame transmitted at rate `rate'.
1320  * XXX: this should depend on the destination node basic rate set.
1321  */
1322 static int
1323 rt2661_ack_rate(struct ieee80211com *ic, int rate)
1324 {
1325 	switch (rate) {
1326 	/* CCK rates */
1327 	case 2:
1328 		return 2;
1329 	case 4:
1330 	case 11:
1331 	case 22:
1332 		return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
1333 
1334 	/* OFDM rates */
1335 	case 12:
1336 	case 18:
1337 		return 12;
1338 	case 24:
1339 	case 36:
1340 		return 24;
1341 	case 48:
1342 	case 72:
1343 	case 96:
1344 	case 108:
1345 		return 48;
1346 	}
1347 
1348 	/* default to 1Mbps */
1349 	return 2;
1350 }
1351 
1352 /*
1353  * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1354  * The function automatically determines the operating mode depending on the
1355  * given rate. `flags' indicates whether short preamble is in use or not.
1356  */
1357 static uint16_t
1358 rt2661_txtime(int len, int rate, uint32_t flags)
1359 {
1360 	uint16_t txtime;
1361 
1362 	if (RAL_RATE_IS_OFDM(rate)) {
1363 		/* IEEE Std 802.11g-2003, pp. 44 */
1364 		txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1365 		txtime = 16 + 4 + 4 * txtime + 6;
1366 	} else {
1367 		/* IEEE Std 802.11b-1999, pp. 28 */
1368 		txtime = (16 * len + rate - 1) / rate;
1369 		if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1370 			txtime +=  72 + 24;
1371 		else
1372 			txtime += 144 + 48;
1373 	}
1374 	return txtime;
1375 }
1376 
1377 static uint8_t
1378 rt2661_plcp_signal(int rate)
1379 {
1380 	switch (rate) {
1381 	/* CCK rates (returned values are device-dependent) */
1382 	case 2:		return 0x0;
1383 	case 4:		return 0x1;
1384 	case 11:	return 0x2;
1385 	case 22:	return 0x3;
1386 
1387 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1388 	case 12:	return 0xb;
1389 	case 18:	return 0xf;
1390 	case 24:	return 0xa;
1391 	case 36:	return 0xe;
1392 	case 48:	return 0x9;
1393 	case 72:	return 0xd;
1394 	case 96:	return 0x8;
1395 	case 108:	return 0xc;
1396 
1397 	/* unsupported rates (should not get there) */
1398 	default:	return 0xff;
1399 	}
1400 }
1401 
1402 static void
1403 rt2661_setup_tx_desc(struct rt2661_softc *sc, struct rt2661_tx_desc *desc,
1404     uint32_t flags, uint16_t xflags, int len, int rate,
1405     const bus_dma_segment_t *segs, int nsegs, int ac)
1406 {
1407 	struct ieee80211com *ic = &sc->sc_ic;
1408 	uint16_t plcp_length;
1409 	int i, remainder;
1410 
1411 	desc->flags = htole32(flags);
1412 	desc->flags |= htole32(len << 16);
1413 
1414 	desc->xflags = htole16(xflags);
1415 	desc->xflags |= htole16(nsegs << 13);
1416 
1417 	desc->wme = htole16(
1418 	    RT2661_QID(ac) |
1419 	    RT2661_AIFSN(2) |
1420 	    RT2661_LOGCWMIN(4) |
1421 	    RT2661_LOGCWMAX(10));
1422 
1423 	/*
1424 	 * Remember in which queue this frame was sent. This field is driver
1425 	 * private data only. It will be made available by the NIC in STA_CSR4
1426 	 * on Tx interrupts.
1427 	 */
1428 	desc->qid = ac;
1429 
1430 	/* setup PLCP fields */
1431 	desc->plcp_signal  = rt2661_plcp_signal(rate);
1432 	desc->plcp_service = 4;
1433 
1434 	len += IEEE80211_CRC_LEN;
1435 	if (RAL_RATE_IS_OFDM(rate)) {
1436 		desc->flags |= htole32(RT2661_TX_OFDM);
1437 
1438 		plcp_length = len & 0xfff;
1439 		desc->plcp_length_hi = plcp_length >> 6;
1440 		desc->plcp_length_lo = plcp_length & 0x3f;
1441 	} else {
1442 		plcp_length = (16 * len + rate - 1) / rate;
1443 		if (rate == 22) {
1444 			remainder = (16 * len) % 22;
1445 			if (remainder != 0 && remainder < 7)
1446 				desc->plcp_service |= RT2661_PLCP_LENGEXT;
1447 		}
1448 		desc->plcp_length_hi = plcp_length >> 8;
1449 		desc->plcp_length_lo = plcp_length & 0xff;
1450 
1451 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1452 			desc->plcp_signal |= 0x08;
1453 	}
1454 
1455 	/* RT2x61 supports scatter with up to 5 segments */
1456 	for (i = 0; i < nsegs; i++) {
1457 		desc->addr[i] = htole32(segs[i].ds_addr);
1458 		desc->len [i] = htole16(segs[i].ds_len);
1459 	}
1460 
1461 	desc->flags |= htole32(RT2661_TX_BUSY | RT2661_TX_VALID);
1462 }
1463 
1464 static int
1465 rt2661_tx_mgt(struct rt2661_softc *sc, struct mbuf *m0,
1466     struct ieee80211_node *ni)
1467 {
1468 	struct ieee80211com *ic = &sc->sc_ic;
1469 	struct rt2661_tx_desc *desc;
1470 	struct rt2661_tx_data *data;
1471 	struct ieee80211_frame *wh;
1472 	uint16_t dur;
1473 	uint32_t flags = 0;
1474 	int rate, error;
1475 
1476 	desc = &sc->mgtq.desc[sc->mgtq.cur];
1477 	data = &sc->mgtq.data[sc->mgtq.cur];
1478 
1479 	/* send mgt frames at the lowest available rate */
1480 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1481 
1482 	wh = mtod(m0, struct ieee80211_frame *);
1483 
1484 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1485 		if (ieee80211_crypto_encap(ic, ni, m0) == NULL) {
1486 			m_freem(m0);
1487 			return ENOBUFS;
1488 		}
1489 
1490 		/* packet header may have moved, reset our local pointer */
1491 		wh = mtod(m0, struct ieee80211_frame *);
1492 	}
1493 
1494 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1495 	    BUS_DMA_NOWAIT);
1496 	if (error != 0) {
1497 		aprint_error_dev(&sc->sc_dev, "could not map mbuf (error %d)\n",
1498 		    error);
1499 		m_freem(m0);
1500 		return error;
1501 	}
1502 
1503 	if (sc->sc_drvbpf != NULL) {
1504 		struct rt2661_tx_radiotap_header *tap = &sc->sc_txtap;
1505 
1506 		tap->wt_flags = 0;
1507 		tap->wt_rate = rate;
1508 		tap->wt_chan_freq = htole16(sc->sc_curchan->ic_freq);
1509 		tap->wt_chan_flags = htole16(sc->sc_curchan->ic_flags);
1510 
1511 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1512 	}
1513 
1514 	data->m = m0;
1515 	data->ni = ni;
1516 
1517 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1518 		flags |= RT2661_TX_NEED_ACK;
1519 
1520 		dur = rt2661_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) +
1521 		    sc->sifs;
1522 		*(uint16_t *)wh->i_dur = htole16(dur);
1523 
1524 		/* tell hardware to set timestamp in probe responses */
1525 		if ((wh->i_fc[0] &
1526 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1527 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1528 			flags |= RT2661_TX_TIMESTAMP;
1529 	}
1530 
1531 	rt2661_setup_tx_desc(sc, desc, flags, 0 /* XXX HWSEQ */,
1532 	    m0->m_pkthdr.len, rate, data->map->dm_segs, data->map->dm_nsegs,
1533 	    RT2661_QID_MGT);
1534 
1535 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1536 	    BUS_DMASYNC_PREWRITE);
1537 	bus_dmamap_sync(sc->sc_dmat, sc->mgtq.map,
1538 	    sc->mgtq.cur * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
1539 	    BUS_DMASYNC_PREWRITE);
1540 
1541 	DPRINTFN(10, ("sending mgt frame len=%u idx=%u rate=%u\n",
1542 	    m0->m_pkthdr.len, sc->mgtq.cur, rate));
1543 
1544 	/* kick mgt */
1545 	sc->mgtq.queued++;
1546 	sc->mgtq.cur = (sc->mgtq.cur + 1) % RT2661_MGT_RING_COUNT;
1547 	RAL_WRITE(sc, RT2661_TX_CNTL_CSR, RT2661_KICK_MGT);
1548 
1549 	return 0;
1550 }
1551 
1552 /*
1553  * Build a RTS control frame.
1554  */
1555 static struct mbuf *
1556 rt2661_get_rts(struct rt2661_softc *sc, struct ieee80211_frame *wh,
1557     uint16_t dur)
1558 {
1559 	struct ieee80211_frame_rts *rts;
1560 	struct mbuf *m;
1561 
1562 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1563 	if (m == NULL) {
1564 		sc->sc_ic.ic_stats.is_tx_nobuf++;
1565 		aprint_error_dev(&sc->sc_dev, "could not allocate RTS frame\n");
1566 		return NULL;
1567 	}
1568 
1569 	rts = mtod(m, struct ieee80211_frame_rts *);
1570 
1571 	rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL |
1572 	    IEEE80211_FC0_SUBTYPE_RTS;
1573 	rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1574 	*(uint16_t *)rts->i_dur = htole16(dur);
1575 	IEEE80211_ADDR_COPY(rts->i_ra, wh->i_addr1);
1576 	IEEE80211_ADDR_COPY(rts->i_ta, wh->i_addr2);
1577 
1578 	m->m_pkthdr.len = m->m_len = sizeof (struct ieee80211_frame_rts);
1579 
1580 	return m;
1581 }
1582 
1583 static int
1584 rt2661_tx_data(struct rt2661_softc *sc, struct mbuf *m0,
1585     struct ieee80211_node *ni, int ac)
1586 {
1587 	struct ieee80211com *ic = &sc->sc_ic;
1588 	struct rt2661_tx_ring *txq = &sc->txq[ac];
1589 	struct rt2661_tx_desc *desc;
1590 	struct rt2661_tx_data *data;
1591 	struct ieee80211_frame *wh;
1592 	struct ieee80211_key *k;
1593 	struct mbuf *mnew;
1594 	uint16_t dur;
1595 	uint32_t flags = 0;
1596 	int rate, useprot, error, tid;
1597 
1598 	wh = mtod(m0, struct ieee80211_frame *);
1599 
1600 	if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
1601 		rate = ic->ic_sup_rates[ic->ic_curmode].
1602 		    rs_rates[ic->ic_fixed_rate];
1603 	} else
1604 		rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1605 	rate &= IEEE80211_RATE_VAL;
1606 	if (rate == 0)
1607 		rate = 2;	/* XXX should not happen */
1608 
1609 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1610 		k = ieee80211_crypto_encap(ic, ni, m0);
1611 		if (k == NULL) {
1612 			m_freem(m0);
1613 			return ENOBUFS;
1614 		}
1615 
1616 		/* packet header may have moved, reset our local pointer */
1617 		wh = mtod(m0, struct ieee80211_frame *);
1618 	}
1619 
1620 	/*
1621 	 * Packet Bursting: backoff after ppb=8 frames to give other STAs a
1622 	 * chance to contend for the wireless medium.
1623 	 */
1624 	tid = WME_AC_TO_TID(M_WME_GETAC(m0));
1625 	if (ic->ic_opmode == IEEE80211_M_STA && (ni->ni_txseqs[tid] & 7))
1626 		flags |= RT2661_TX_IFS_SIFS;
1627 
1628 	/*
1629 	 * IEEE Std 802.11-1999, pp 82: "A STA shall use an RTS/CTS exchange
1630 	 * for directed frames only when the length of the MPDU is greater
1631 	 * than the length threshold indicated by" ic_rtsthreshold.
1632 	 *
1633 	 * IEEE Std 802.11-2003g, pp 13: "ERP STAs shall use protection
1634 	 * mechanism (such as RTS/CTS or CTS-to-self) for ERP-OFDM MPDUs of
1635 	 * type Data or an MMPDU".
1636 	 */
1637 	useprot = !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1638 	    (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold ||
1639 	    ((ic->ic_flags & IEEE80211_F_USEPROT) && RAL_RATE_IS_OFDM(rate)));
1640 	if (useprot) {
1641 		struct mbuf *m;
1642 		int rtsrate, ackrate;
1643 
1644 		rtsrate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1645 		ackrate = rt2661_ack_rate(ic, rate);
1646 
1647 		dur = rt2661_txtime(m0->m_pkthdr.len + 4, rate, ic->ic_flags) +
1648 		      rt2661_txtime(RAL_CTS_SIZE, rtsrate, ic->ic_flags) +
1649 		      rt2661_txtime(RAL_ACK_SIZE, ackrate, ic->ic_flags) +
1650 		      3 * sc->sifs;
1651 
1652 		m = rt2661_get_rts(sc, wh, dur);
1653 		if (m == NULL) {
1654 			aprint_error_dev(&sc->sc_dev, "could not allocate RTS "
1655 			    "frame\n");
1656 			m_freem(m0);
1657 			return ENOBUFS;
1658 		}
1659 
1660 		desc = &txq->desc[txq->cur];
1661 		data = &txq->data[txq->cur];
1662 
1663 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
1664 		    BUS_DMA_NOWAIT);
1665 		if (error != 0) {
1666 			aprint_error_dev(&sc->sc_dev, "could not map mbuf (error %d)\n", error);
1667 			m_freem(m);
1668 			m_freem(m0);
1669 			return error;
1670 		}
1671 
1672 		/* avoid multiple free() of the same node for each fragment */
1673 		ieee80211_ref_node(ni);
1674 
1675 		data->m = m;
1676 		data->ni = ni;
1677 
1678 		rt2661_setup_tx_desc(sc, desc, RT2661_TX_NEED_ACK |
1679 		    RT2661_TX_MORE_FRAG, 0, m->m_pkthdr.len, rtsrate,
1680 		    data->map->dm_segs, data->map->dm_nsegs, ac);
1681 
1682 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1683 		    data->map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1684 		bus_dmamap_sync(sc->sc_dmat, txq->map,
1685 		    txq->cur * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
1686 		    BUS_DMASYNC_PREWRITE);
1687 
1688 		txq->queued++;
1689 		txq->cur = (txq->cur + 1) % RT2661_TX_RING_COUNT;
1690 
1691 		flags |= RT2661_TX_LONG_RETRY | RT2661_TX_IFS_SIFS;
1692 	}
1693 
1694 	data = &txq->data[txq->cur];
1695 	desc = &txq->desc[txq->cur];
1696 
1697 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1698 	    BUS_DMA_NOWAIT);
1699 	if (error != 0 && error != EFBIG) {
1700 		aprint_error_dev(&sc->sc_dev, "could not map mbuf (error %d)\n",
1701 		    error);
1702 		m_freem(m0);
1703 		return error;
1704 	}
1705 	if (error != 0) {
1706 		/* too many fragments, linearize */
1707 
1708 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1709 		if (mnew == NULL) {
1710 			m_freem(m0);
1711 			return ENOMEM;
1712 		}
1713 
1714 		M_COPY_PKTHDR(mnew, m0);
1715 		if (m0->m_pkthdr.len > MHLEN) {
1716 			MCLGET(mnew, M_DONTWAIT);
1717 			if (!(mnew->m_flags & M_EXT)) {
1718 				m_freem(m0);
1719 				m_freem(mnew);
1720 				return ENOMEM;
1721 			}
1722 		}
1723 
1724 		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
1725 		m_freem(m0);
1726 		mnew->m_len = mnew->m_pkthdr.len;
1727 		m0 = mnew;
1728 
1729 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1730 		    BUS_DMA_NOWAIT);
1731 		if (error != 0) {
1732 			aprint_error_dev(&sc->sc_dev, "could not map mbuf (error %d)\n", error);
1733 			m_freem(m0);
1734 			return error;
1735 		}
1736 
1737 		/* packet header have moved, reset our local pointer */
1738 		wh = mtod(m0, struct ieee80211_frame *);
1739 	}
1740 
1741 	if (sc->sc_drvbpf != NULL) {
1742 		struct rt2661_tx_radiotap_header *tap = &sc->sc_txtap;
1743 
1744 		tap->wt_flags = 0;
1745 		tap->wt_rate = rate;
1746 		tap->wt_chan_freq = htole16(sc->sc_curchan->ic_freq);
1747 		tap->wt_chan_flags = htole16(sc->sc_curchan->ic_flags);
1748 
1749 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1750 	}
1751 
1752 	data->m = m0;
1753 	data->ni = ni;
1754 
1755 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1756 		flags |= RT2661_TX_NEED_ACK;
1757 
1758 		dur = rt2661_txtime(RAL_ACK_SIZE, rt2661_ack_rate(ic, rate),
1759 		    ic->ic_flags) + sc->sifs;
1760 		*(uint16_t *)wh->i_dur = htole16(dur);
1761 	}
1762 
1763 	rt2661_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate,
1764 	    data->map->dm_segs, data->map->dm_nsegs, ac);
1765 
1766 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1767 	    BUS_DMASYNC_PREWRITE);
1768 	bus_dmamap_sync(sc->sc_dmat, txq->map, txq->cur * RT2661_TX_DESC_SIZE,
1769 	    RT2661_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
1770 
1771 	DPRINTFN(10, ("sending data frame len=%u idx=%u rate=%u\n",
1772 	    m0->m_pkthdr.len, txq->cur, rate));
1773 
1774 	/* kick Tx */
1775 	txq->queued++;
1776 	txq->cur = (txq->cur + 1) % RT2661_TX_RING_COUNT;
1777 	RAL_WRITE(sc, RT2661_TX_CNTL_CSR, 1);
1778 
1779 	return 0;
1780 }
1781 
1782 static void
1783 rt2661_start(struct ifnet *ifp)
1784 {
1785 	struct rt2661_softc *sc = ifp->if_softc;
1786 	struct ieee80211com *ic = &sc->sc_ic;
1787 	struct mbuf *m0;
1788 	struct ether_header *eh;
1789 	struct ieee80211_node *ni = NULL;
1790 
1791 	/*
1792 	 * net80211 may still try to send management frames even if the
1793 	 * IFF_RUNNING flag is not set...
1794 	 */
1795 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1796 		return;
1797 
1798 	for (;;) {
1799 		IF_POLL(&ic->ic_mgtq, m0);
1800 		if (m0 != NULL) {
1801 			if (sc->mgtq.queued >= RT2661_MGT_RING_COUNT) {
1802 				ifp->if_flags |= IFF_OACTIVE;
1803 				break;
1804 			}
1805 			IF_DEQUEUE(&ic->ic_mgtq, m0);
1806 			if (m0 == NULL)
1807 				break;
1808 
1809 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1810 			m0->m_pkthdr.rcvif = NULL;
1811 			bpf_mtap3(ic->ic_rawbpf, m0);
1812 			if (rt2661_tx_mgt(sc, m0, ni) != 0)
1813 				break;
1814 
1815 		} else {
1816 			IF_POLL(&ifp->if_snd, m0);
1817 			if (m0 == NULL || ic->ic_state != IEEE80211_S_RUN)
1818 				break;
1819 
1820 			if (sc->txq[0].queued >= RT2661_TX_RING_COUNT - 1) {
1821 				/* there is no place left in this ring */
1822 				ifp->if_flags |= IFF_OACTIVE;
1823 				break;
1824 			}
1825 
1826 			IFQ_DEQUEUE(&ifp->if_snd, m0);
1827 
1828 			if (m0->m_len < sizeof (struct ether_header) &&
1829 			    !(m0 = m_pullup(m0, sizeof (struct ether_header))))
1830 				continue;
1831 
1832 			eh = mtod(m0, struct ether_header *);
1833 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1834 			if (ni == NULL) {
1835 				m_freem(m0);
1836 				ifp->if_oerrors++;
1837 				continue;
1838 			}
1839 
1840 			bpf_mtap3(ifp->if_bpf, m0);
1841 			m0 = ieee80211_encap(ic, m0, ni);
1842 			if (m0 == NULL) {
1843 				ieee80211_free_node(ni);
1844 				ifp->if_oerrors++;
1845 				continue;
1846 			}
1847 			bpf_mtap3(ic->ic_rawbpf, m0);
1848 			if (rt2661_tx_data(sc, m0, ni, 0) != 0) {
1849 				if (ni != NULL)
1850 					ieee80211_free_node(ni);
1851 				ifp->if_oerrors++;
1852 				break;
1853 			}
1854 		}
1855 
1856 		sc->sc_tx_timer = 5;
1857 		ifp->if_timer = 1;
1858 	}
1859 }
1860 
1861 static void
1862 rt2661_watchdog(struct ifnet *ifp)
1863 {
1864 	struct rt2661_softc *sc = ifp->if_softc;
1865 
1866 	ifp->if_timer = 0;
1867 
1868 	if (sc->sc_tx_timer > 0) {
1869 		if (--sc->sc_tx_timer == 0) {
1870 			aprint_error_dev(&sc->sc_dev, "device timeout\n");
1871 			rt2661_init(ifp);
1872 			ifp->if_oerrors++;
1873 			return;
1874 		}
1875 		ifp->if_timer = 1;
1876 	}
1877 
1878 	ieee80211_watchdog(&sc->sc_ic);
1879 }
1880 
1881 /*
1882  * This function allows for fast channel switching in monitor mode (used by
1883  * kismet). In IBSS mode, we must explicitly reset the interface to
1884  * generate a new beacon frame.
1885  */
1886 static int
1887 rt2661_reset(struct ifnet *ifp)
1888 {
1889 	struct rt2661_softc *sc = ifp->if_softc;
1890 	struct ieee80211com *ic = &sc->sc_ic;
1891 
1892 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
1893 		return ENETRESET;
1894 
1895 	rt2661_set_chan(sc, ic->ic_curchan);
1896 
1897 	return 0;
1898 }
1899 
1900 static int
1901 rt2661_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1902 {
1903 	struct rt2661_softc *sc = ifp->if_softc;
1904 	struct ieee80211com *ic = &sc->sc_ic;
1905 	int s, error = 0;
1906 
1907 	s = splnet();
1908 
1909 	switch (cmd) {
1910 	case SIOCSIFFLAGS:
1911 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1912 			break;
1913 		if (ifp->if_flags & IFF_UP) {
1914 			if (ifp->if_flags & IFF_RUNNING)
1915 				rt2661_update_promisc(sc);
1916 			else
1917 				rt2661_init(ifp);
1918 		} else {
1919 			if (ifp->if_flags & IFF_RUNNING)
1920 				rt2661_stop(ifp, 1);
1921 		}
1922 		break;
1923 
1924 	case SIOCADDMULTI:
1925 	case SIOCDELMULTI:
1926 		/* XXX no h/w multicast filter? --dyoung */
1927 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET)
1928 			error = 0;
1929 		break;
1930 
1931 	case SIOCS80211CHANNEL:
1932 		/*
1933 		 * This allows for fast channel switching in monitor mode
1934 		 * (used by kismet). In IBSS mode, we must explicitly reset
1935 		 * the interface to generate a new beacon frame.
1936 		 */
1937 		error = ieee80211_ioctl(ic, cmd, data);
1938 		if (error == ENETRESET &&
1939 		    ic->ic_opmode == IEEE80211_M_MONITOR) {
1940 			if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1941 			     (IFF_UP | IFF_RUNNING))
1942 				rt2661_set_chan(sc, ic->ic_ibss_chan);
1943 			error = 0;
1944 		}
1945 		break;
1946 
1947 	default:
1948 		error = ieee80211_ioctl(ic, cmd, data);
1949 
1950 	}
1951 
1952 	if (error == ENETRESET) {
1953 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1954 		    (IFF_UP | IFF_RUNNING))
1955 			rt2661_init(ifp);
1956 		error = 0;
1957 	}
1958 
1959 	splx(s);
1960 
1961 	return error;
1962 }
1963 
1964 static void
1965 rt2661_bbp_write(struct rt2661_softc *sc, uint8_t reg, uint8_t val)
1966 {
1967 	uint32_t tmp;
1968 	int ntries;
1969 
1970 	for (ntries = 0; ntries < 100; ntries++) {
1971 		if (!(RAL_READ(sc, RT2661_PHY_CSR3) & RT2661_BBP_BUSY))
1972 			break;
1973 		DELAY(1);
1974 	}
1975 	if (ntries == 100) {
1976 		aprint_error_dev(&sc->sc_dev, "could not write to BBP\n");
1977 		return;
1978 	}
1979 
1980 	tmp = RT2661_BBP_BUSY | (reg & 0x7f) << 8 | val;
1981 	RAL_WRITE(sc, RT2661_PHY_CSR3, tmp);
1982 
1983 	DPRINTFN(15, ("BBP R%u <- 0x%02x\n", reg, val));
1984 }
1985 
1986 static uint8_t
1987 rt2661_bbp_read(struct rt2661_softc *sc, uint8_t reg)
1988 {
1989 	uint32_t val;
1990 	int ntries;
1991 
1992 	for (ntries = 0; ntries < 100; ntries++) {
1993 		if (!(RAL_READ(sc, RT2661_PHY_CSR3) & RT2661_BBP_BUSY))
1994 			break;
1995 		DELAY(1);
1996 	}
1997 	if (ntries == 100) {
1998 		aprint_error_dev(&sc->sc_dev, "could not read from BBP\n");
1999 		return 0;
2000 	}
2001 
2002 	val = RT2661_BBP_BUSY | RT2661_BBP_READ | reg << 8;
2003 	RAL_WRITE(sc, RT2661_PHY_CSR3, val);
2004 
2005 	for (ntries = 0; ntries < 100; ntries++) {
2006 		val = RAL_READ(sc, RT2661_PHY_CSR3);
2007 		if (!(val & RT2661_BBP_BUSY))
2008 			return val & 0xff;
2009 		DELAY(1);
2010 	}
2011 
2012 	aprint_error_dev(&sc->sc_dev, "could not read from BBP\n");
2013 	return 0;
2014 }
2015 
2016 static void
2017 rt2661_rf_write(struct rt2661_softc *sc, uint8_t reg, uint32_t val)
2018 {
2019 	uint32_t tmp;
2020 	int ntries;
2021 
2022 	for (ntries = 0; ntries < 100; ntries++) {
2023 		if (!(RAL_READ(sc, RT2661_PHY_CSR4) & RT2661_RF_BUSY))
2024 			break;
2025 		DELAY(1);
2026 	}
2027 	if (ntries == 100) {
2028 		aprint_error_dev(&sc->sc_dev, "could not write to RF\n");
2029 		return;
2030 	}
2031 	tmp = RT2661_RF_BUSY | RT2661_RF_21BIT | (val & 0x1fffff) << 2 |
2032 	    (reg & 3);
2033 	RAL_WRITE(sc, RT2661_PHY_CSR4, tmp);
2034 
2035 	/* remember last written value in sc */
2036 	sc->rf_regs[reg] = val;
2037 
2038 	DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0x1fffff));
2039 }
2040 
2041 static int
2042 rt2661_tx_cmd(struct rt2661_softc *sc, uint8_t cmd, uint16_t arg)
2043 {
2044 	if (RAL_READ(sc, RT2661_H2M_MAILBOX_CSR) & RT2661_H2M_BUSY)
2045 		return EIO;	/* there is already a command pending */
2046 
2047 	RAL_WRITE(sc, RT2661_H2M_MAILBOX_CSR,
2048 	    RT2661_H2M_BUSY | RT2661_TOKEN_NO_INTR << 16 | arg);
2049 
2050 	RAL_WRITE(sc, RT2661_HOST_CMD_CSR, RT2661_KICK_CMD | cmd);
2051 
2052 	return 0;
2053 }
2054 
2055 static void
2056 rt2661_select_antenna(struct rt2661_softc *sc)
2057 {
2058 	uint8_t bbp4, bbp77;
2059 	uint32_t tmp;
2060 
2061 	bbp4  = rt2661_bbp_read(sc,  4);
2062 	bbp77 = rt2661_bbp_read(sc, 77);
2063 
2064 	/* TBD */
2065 
2066 	/* make sure Rx is disabled before switching antenna */
2067 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2068 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX);
2069 
2070 	rt2661_bbp_write(sc,  4, bbp4);
2071 	rt2661_bbp_write(sc, 77, bbp77);
2072 
2073 	/* restore Rx filter */
2074 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2075 }
2076 
2077 /*
2078  * Enable multi-rate retries for frames sent at OFDM rates.
2079  * In 802.11b/g mode, allow fallback to CCK rates.
2080  */
2081 static void
2082 rt2661_enable_mrr(struct rt2661_softc *sc)
2083 {
2084 	struct ieee80211com *ic = &sc->sc_ic;
2085 	uint32_t tmp;
2086 
2087 	tmp = RAL_READ(sc, RT2661_TXRX_CSR4);
2088 
2089 	tmp &= ~RT2661_MRR_CCK_FALLBACK;
2090 	if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan))
2091 		tmp |= RT2661_MRR_CCK_FALLBACK;
2092 	tmp |= RT2661_MRR_ENABLED;
2093 
2094 	RAL_WRITE(sc, RT2661_TXRX_CSR4, tmp);
2095 }
2096 
2097 static void
2098 rt2661_set_txpreamble(struct rt2661_softc *sc)
2099 {
2100 	uint32_t tmp;
2101 
2102 	tmp = RAL_READ(sc, RT2661_TXRX_CSR4);
2103 
2104 	tmp &= ~RT2661_SHORT_PREAMBLE;
2105 	if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
2106 		tmp |= RT2661_SHORT_PREAMBLE;
2107 
2108 	RAL_WRITE(sc, RT2661_TXRX_CSR4, tmp);
2109 }
2110 
2111 static void
2112 rt2661_set_basicrates(struct rt2661_softc *sc,
2113     const struct ieee80211_rateset *rs)
2114 {
2115 #define RV(r)	((r) & IEEE80211_RATE_VAL)
2116 	uint32_t mask = 0;
2117 	uint8_t rate;
2118 	int i, j;
2119 
2120 	for (i = 0; i < rs->rs_nrates; i++) {
2121 		rate = rs->rs_rates[i];
2122 
2123 		if (!(rate & IEEE80211_RATE_BASIC))
2124 			continue;
2125 
2126 		/*
2127 		 * Find h/w rate index.  We know it exists because the rate
2128 		 * set has already been negotiated.
2129 		 */
2130 		for (j = 0; rt2661_rateset_11g.rs_rates[j] != RV(rate); j++);
2131 
2132 		mask |= 1 << j;
2133 	}
2134 
2135 	RAL_WRITE(sc, RT2661_TXRX_CSR5, mask);
2136 
2137 	DPRINTF(("Setting basic rate mask to 0x%x\n", mask));
2138 #undef RV
2139 }
2140 
2141 /*
2142  * Reprogram MAC/BBP to switch to a new band.  Values taken from the reference
2143  * driver.
2144  */
2145 static void
2146 rt2661_select_band(struct rt2661_softc *sc, struct ieee80211_channel *c)
2147 {
2148 	uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
2149 	uint32_t tmp;
2150 
2151 	/* update all BBP registers that depend on the band */
2152 	bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
2153 	bbp35 = 0x50; bbp97 = 0x48; bbp98  = 0x48;
2154 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2155 		bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
2156 		bbp35 += 0x10; bbp97 += 0x10; bbp98  += 0x10;
2157 	}
2158 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
2159 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
2160 		bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
2161 	}
2162 
2163 	sc->bbp17 = bbp17;
2164 	rt2661_bbp_write(sc,  17, bbp17);
2165 	rt2661_bbp_write(sc,  96, bbp96);
2166 	rt2661_bbp_write(sc, 104, bbp104);
2167 
2168 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
2169 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
2170 		rt2661_bbp_write(sc, 75, 0x80);
2171 		rt2661_bbp_write(sc, 86, 0x80);
2172 		rt2661_bbp_write(sc, 88, 0x80);
2173 	}
2174 
2175 	rt2661_bbp_write(sc, 35, bbp35);
2176 	rt2661_bbp_write(sc, 97, bbp97);
2177 	rt2661_bbp_write(sc, 98, bbp98);
2178 
2179 	tmp = RAL_READ(sc, RT2661_PHY_CSR0);
2180 	tmp &= ~(RT2661_PA_PE_2GHZ | RT2661_PA_PE_5GHZ);
2181 	if (IEEE80211_IS_CHAN_2GHZ(c))
2182 		tmp |= RT2661_PA_PE_2GHZ;
2183 	else
2184 		tmp |= RT2661_PA_PE_5GHZ;
2185 	RAL_WRITE(sc, RT2661_PHY_CSR0, tmp);
2186 
2187 	/* 802.11a uses a 16 microseconds short interframe space */
2188 	sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10;
2189 }
2190 
2191 static void
2192 rt2661_set_chan(struct rt2661_softc *sc, struct ieee80211_channel *c)
2193 {
2194 	struct ieee80211com *ic = &sc->sc_ic;
2195 	const struct rfprog *rfprog;
2196 	uint8_t bbp3, bbp94 = RT2661_BBPR94_DEFAULT;
2197 	int8_t power;
2198 	u_int i, chan;
2199 
2200 	chan = ieee80211_chan2ieee(ic, c);
2201 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
2202 		return;
2203 
2204 	/* select the appropriate RF settings based on what EEPROM says */
2205 	rfprog = (sc->rfprog == 0) ? rt2661_rf5225_1 : rt2661_rf5225_2;
2206 
2207 	/* find the settings for this channel (we know it exists) */
2208 	for (i = 0; rfprog[i].chan != chan; i++);
2209 
2210 	power = sc->txpow[i];
2211 	if (power < 0) {
2212 		bbp94 += power;
2213 		power = 0;
2214 	} else if (power > 31) {
2215 		bbp94 += power - 31;
2216 		power = 31;
2217 	}
2218 
2219 	/*
2220 	 * If we've yet to select a channel, or we are switching from the
2221 	 * 2GHz band to the 5GHz band or vice-versa, BBP registers need to
2222 	 * be reprogrammed.
2223 	 */
2224 	if (sc->sc_curchan == NULL || c->ic_flags != sc->sc_curchan->ic_flags) {
2225 		rt2661_select_band(sc, c);
2226 		rt2661_select_antenna(sc);
2227 	}
2228 	sc->sc_curchan = c;
2229 
2230 	rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1);
2231 	rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2);
2232 	rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7);
2233 	rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10);
2234 
2235 	DELAY(200);
2236 
2237 	rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1);
2238 	rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2);
2239 	rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7 | 1);
2240 	rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10);
2241 
2242 	DELAY(200);
2243 
2244 	rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1);
2245 	rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2);
2246 	rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7);
2247 	rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10);
2248 
2249 	/* enable smart mode for MIMO-capable RFs */
2250 	bbp3 = rt2661_bbp_read(sc, 3);
2251 
2252 	bbp3 &= ~RT2661_SMART_MODE;
2253 	if (sc->rf_rev == RT2661_RF_5325 || sc->rf_rev == RT2661_RF_2529)
2254 		bbp3 |= RT2661_SMART_MODE;
2255 
2256 	rt2661_bbp_write(sc, 3, bbp3);
2257 
2258 	if (bbp94 != RT2661_BBPR94_DEFAULT)
2259 		rt2661_bbp_write(sc, 94, bbp94);
2260 
2261 	/* 5GHz radio needs a 1ms delay here */
2262 	if (IEEE80211_IS_CHAN_5GHZ(c))
2263 		DELAY(1000);
2264 }
2265 
2266 static void
2267 rt2661_set_bssid(struct rt2661_softc *sc, const uint8_t *bssid)
2268 {
2269 	uint32_t tmp;
2270 
2271 	tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
2272 	RAL_WRITE(sc, RT2661_MAC_CSR4, tmp);
2273 
2274 	tmp = bssid[4] | bssid[5] << 8 | RT2661_ONE_BSSID << 16;
2275 	RAL_WRITE(sc, RT2661_MAC_CSR5, tmp);
2276 }
2277 
2278 static void
2279 rt2661_set_macaddr(struct rt2661_softc *sc, const uint8_t *addr)
2280 {
2281 	uint32_t tmp;
2282 
2283 	tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
2284 	RAL_WRITE(sc, RT2661_MAC_CSR2, tmp);
2285 
2286 	tmp = addr[4] | addr[5] << 8 | 0xff << 16;
2287 	RAL_WRITE(sc, RT2661_MAC_CSR3, tmp);
2288 }
2289 
2290 static void
2291 rt2661_update_promisc(struct rt2661_softc *sc)
2292 {
2293 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
2294 	uint32_t tmp;
2295 
2296 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2297 
2298 	tmp &= ~RT2661_DROP_NOT_TO_ME;
2299 	if (!(ifp->if_flags & IFF_PROMISC))
2300 		tmp |= RT2661_DROP_NOT_TO_ME;
2301 
2302 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2303 
2304 	DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
2305 	    "entering" : "leaving"));
2306 }
2307 
2308 #if 0
2309 /*
2310  * Update QoS (802.11e) settings for each h/w Tx ring.
2311  */
2312 static int
2313 rt2661_wme_update(struct ieee80211com *ic)
2314 {
2315 	struct rt2661_softc *sc = ic->ic_ifp->if_softc;
2316 	const struct wmeParams *wmep;
2317 
2318 	wmep = ic->ic_wme.wme_chanParams.cap_wmeParams;
2319 
2320 	/* XXX: not sure about shifts. */
2321 	/* XXX: the reference driver plays with AC_VI settings too. */
2322 
2323 	/* update TxOp */
2324 	RAL_WRITE(sc, RT2661_AC_TXOP_CSR0,
2325 	    wmep[WME_AC_BE].wmep_txopLimit << 16 |
2326 	    wmep[WME_AC_BK].wmep_txopLimit);
2327 	RAL_WRITE(sc, RT2661_AC_TXOP_CSR1,
2328 	    wmep[WME_AC_VI].wmep_txopLimit << 16 |
2329 	    wmep[WME_AC_VO].wmep_txopLimit);
2330 
2331 	/* update CWmin */
2332 	RAL_WRITE(sc, RT2661_CWMIN_CSR,
2333 	    wmep[WME_AC_BE].wmep_logcwmin << 12 |
2334 	    wmep[WME_AC_BK].wmep_logcwmin <<  8 |
2335 	    wmep[WME_AC_VI].wmep_logcwmin <<  4 |
2336 	    wmep[WME_AC_VO].wmep_logcwmin);
2337 
2338 	/* update CWmax */
2339 	RAL_WRITE(sc, RT2661_CWMAX_CSR,
2340 	    wmep[WME_AC_BE].wmep_logcwmax << 12 |
2341 	    wmep[WME_AC_BK].wmep_logcwmax <<  8 |
2342 	    wmep[WME_AC_VI].wmep_logcwmax <<  4 |
2343 	    wmep[WME_AC_VO].wmep_logcwmax);
2344 
2345 	/* update Aifsn */
2346 	RAL_WRITE(sc, RT2661_AIFSN_CSR,
2347 	    wmep[WME_AC_BE].wmep_aifsn << 12 |
2348 	    wmep[WME_AC_BK].wmep_aifsn <<  8 |
2349 	    wmep[WME_AC_VI].wmep_aifsn <<  4 |
2350 	    wmep[WME_AC_VO].wmep_aifsn);
2351 
2352 	return 0;
2353 }
2354 #endif
2355 
2356 static void
2357 rt2661_updateslot(struct ifnet *ifp)
2358 {
2359 	struct rt2661_softc *sc = ifp->if_softc;
2360 	struct ieee80211com *ic = &sc->sc_ic;
2361 
2362 	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2363 		/*
2364 		 * In HostAP mode, we defer setting of new slot time until
2365 		 * updated ERP Information Element has propagated to all
2366 		 * associated STAs.
2367 		 */
2368 		sc->sc_flags |= RT2661_UPDATE_SLOT;
2369 	} else
2370 		rt2661_set_slottime(sc);
2371 }
2372 
2373 static void
2374 rt2661_set_slottime(struct rt2661_softc *sc)
2375 {
2376 	struct ieee80211com *ic = &sc->sc_ic;
2377 	uint8_t slottime;
2378 	uint32_t tmp;
2379 
2380 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
2381 
2382 	tmp = RAL_READ(sc, RT2661_MAC_CSR9);
2383 	tmp = (tmp & ~0xff) | slottime;
2384 	RAL_WRITE(sc, RT2661_MAC_CSR9, tmp);
2385 
2386 	DPRINTF(("setting slot time to %uus\n", slottime));
2387 }
2388 
2389 static const char *
2390 rt2661_get_rf(int rev)
2391 {
2392 	switch (rev) {
2393 	case RT2661_RF_5225:	return "RT5225";
2394 	case RT2661_RF_5325:	return "RT5325 (MIMO XR)";
2395 	case RT2661_RF_2527:	return "RT2527";
2396 	case RT2661_RF_2529:	return "RT2529 (MIMO XR)";
2397 	default:		return "unknown";
2398 	}
2399 }
2400 
2401 static void
2402 rt2661_read_eeprom(struct rt2661_softc *sc)
2403 {
2404 	struct ieee80211com *ic = &sc->sc_ic;
2405 	uint16_t val;
2406 	int i;
2407 
2408 	/* read MAC address */
2409 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC01);
2410 	ic->ic_myaddr[0] = val & 0xff;
2411 	ic->ic_myaddr[1] = val >> 8;
2412 
2413 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC23);
2414 	ic->ic_myaddr[2] = val & 0xff;
2415 	ic->ic_myaddr[3] = val >> 8;
2416 
2417 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC45);
2418 	ic->ic_myaddr[4] = val & 0xff;
2419 	ic->ic_myaddr[5] = val >> 8;
2420 
2421 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_ANTENNA);
2422 	/* XXX: test if different from 0xffff? */
2423 	sc->rf_rev   = (val >> 11) & 0x1f;
2424 	sc->hw_radio = (val >> 10) & 0x1;
2425 	sc->rx_ant   = (val >> 4)  & 0x3;
2426 	sc->tx_ant   = (val >> 2)  & 0x3;
2427 	sc->nb_ant   = val & 0x3;
2428 
2429 	DPRINTF(("RF revision=%d\n", sc->rf_rev));
2430 
2431 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_CONFIG2);
2432 	sc->ext_5ghz_lna = (val >> 6) & 0x1;
2433 	sc->ext_2ghz_lna = (val >> 4) & 0x1;
2434 
2435 	DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
2436 	    sc->ext_2ghz_lna, sc->ext_5ghz_lna));
2437 
2438 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_RSSI_2GHZ_OFFSET);
2439 	if ((val & 0xff) != 0xff)
2440 		sc->rssi_2ghz_corr = (int8_t)(val & 0xff);	/* signed */
2441 
2442 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_RSSI_5GHZ_OFFSET);
2443 	if ((val & 0xff) != 0xff)
2444 		sc->rssi_5ghz_corr = (int8_t)(val & 0xff);	/* signed */
2445 
2446 	/* adjust RSSI correction for external low-noise amplifier */
2447 	if (sc->ext_2ghz_lna)
2448 		sc->rssi_2ghz_corr -= 14;
2449 	if (sc->ext_5ghz_lna)
2450 		sc->rssi_5ghz_corr -= 14;
2451 
2452 	DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
2453 	    sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
2454 
2455 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_FREQ_OFFSET);
2456 	if ((val >> 8) != 0xff)
2457 		sc->rfprog = (val >> 8) & 0x3;
2458 	if ((val & 0xff) != 0xff)
2459 		sc->rffreq = val & 0xff;
2460 
2461 	DPRINTF(("RF prog=%d\nRF freq=%d\n", sc->rfprog, sc->rffreq));
2462 
2463 	/* read Tx power for all a/b/g channels */
2464 	for (i = 0; i < 19; i++) {
2465 		val = rt2661_eeprom_read(sc, RT2661_EEPROM_TXPOWER + i);
2466 		sc->txpow[i * 2] = (int8_t)(val >> 8);		/* signed */
2467 		DPRINTF(("Channel=%d Tx power=%d\n",
2468 		    rt2661_rf5225_1[i * 2].chan, sc->txpow[i * 2]));
2469 		sc->txpow[i * 2 + 1] = (int8_t)(val & 0xff);	/* signed */
2470 		DPRINTF(("Channel=%d Tx power=%d\n",
2471 		    rt2661_rf5225_1[i * 2 + 1].chan, sc->txpow[i * 2 + 1]));
2472 	}
2473 
2474 	/* read vendor-specific BBP values */
2475 	for (i = 0; i < 16; i++) {
2476 		val = rt2661_eeprom_read(sc, RT2661_EEPROM_BBP_BASE + i);
2477 		if (val == 0 || val == 0xffff)
2478 			continue;	/* skip invalid entries */
2479 		sc->bbp_prom[i].reg = val >> 8;
2480 		sc->bbp_prom[i].val = val & 0xff;
2481 		DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
2482 		    sc->bbp_prom[i].val));
2483 	}
2484 }
2485 
2486 static int
2487 rt2661_bbp_init(struct rt2661_softc *sc)
2488 {
2489 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
2490 	int i, ntries;
2491 	uint8_t val;
2492 
2493 	/* wait for BBP to be ready */
2494 	for (ntries = 0; ntries < 100; ntries++) {
2495 		val = rt2661_bbp_read(sc, 0);
2496 		if (val != 0 && val != 0xff)
2497 			break;
2498 		DELAY(100);
2499 	}
2500 	if (ntries == 100) {
2501 		aprint_error_dev(&sc->sc_dev, "timeout waiting for BBP\n");
2502 		return EIO;
2503 	}
2504 
2505 	/* initialize BBP registers to default values */
2506 	for (i = 0; i < N(rt2661_def_bbp); i++) {
2507 		rt2661_bbp_write(sc, rt2661_def_bbp[i].reg,
2508 		    rt2661_def_bbp[i].val);
2509 	}
2510 
2511 	/* write vendor-specific BBP values (from EEPROM) */
2512 	for (i = 0; i < 16; i++) {
2513 		if (sc->bbp_prom[i].reg == 0)
2514 			continue;
2515 		rt2661_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2516 	}
2517 
2518 	return 0;
2519 #undef N
2520 }
2521 
2522 static int
2523 rt2661_init(struct ifnet *ifp)
2524 {
2525 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
2526 	struct rt2661_softc *sc = ifp->if_softc;
2527 	struct ieee80211com *ic = &sc->sc_ic;
2528 	const char *name = NULL;	/* make lint happy */
2529 	uint8_t *ucode;
2530 	size_t size;
2531 	uint32_t tmp, star[3];
2532 	int i, ntries;
2533 	firmware_handle_t fh;
2534 
2535 	/* for CardBus, power on the socket */
2536 	if (!(sc->sc_flags & RT2661_ENABLED)) {
2537 		if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
2538 			aprint_error_dev(&sc->sc_dev, "could not enable device\n");
2539 			return EIO;
2540 		}
2541 		sc->sc_flags |= RT2661_ENABLED;
2542 	}
2543 
2544 	rt2661_stop(ifp, 0);
2545 
2546 	if (!(sc->sc_flags & RT2661_FWLOADED)) {
2547 		switch (sc->sc_id) {
2548 		case PCI_PRODUCT_RALINK_RT2561:
2549 			name = "ral-rt2561";
2550 			break;
2551 		case PCI_PRODUCT_RALINK_RT2561S:
2552 			name = "ral-rt2561s";
2553 			break;
2554 		case PCI_PRODUCT_RALINK_RT2661:
2555 			name = "ral-rt2661";
2556 			break;
2557 		}
2558 
2559 		if (firmware_open("ral", name, &fh) != 0) {
2560 			aprint_error_dev(&sc->sc_dev, "could not open microcode %s\n", name);
2561 			rt2661_stop(ifp, 1);
2562 			return EIO;
2563 		}
2564 
2565 		size = firmware_get_size(fh);
2566 		if (!(ucode = firmware_malloc(size))) {
2567 			aprint_error_dev(&sc->sc_dev, "could not alloc microcode memory\n");
2568 			firmware_close(fh);
2569 			rt2661_stop(ifp, 1);
2570 			return ENOMEM;
2571 		}
2572 
2573 		if (firmware_read(fh, 0, ucode, size) != 0) {
2574 			aprint_error_dev(&sc->sc_dev, "could not read microcode %s\n", name);
2575 			firmware_free(ucode, 0);
2576 			firmware_close(fh);
2577 			rt2661_stop(ifp, 1);
2578 			return EIO;
2579 		}
2580 
2581 		if (rt2661_load_microcode(sc, ucode, size) != 0) {
2582 			aprint_error_dev(&sc->sc_dev, "could not load 8051 microcode\n");
2583 			firmware_free(ucode, 0);
2584 			firmware_close(fh);
2585 			rt2661_stop(ifp, 1);
2586 			return EIO;
2587 		}
2588 
2589 		firmware_free(ucode, 0);
2590 		firmware_close(fh);
2591 		sc->sc_flags |= RT2661_FWLOADED;
2592 	}
2593 
2594 	/* initialize Tx rings */
2595 	RAL_WRITE(sc, RT2661_AC1_BASE_CSR, sc->txq[1].physaddr);
2596 	RAL_WRITE(sc, RT2661_AC0_BASE_CSR, sc->txq[0].physaddr);
2597 	RAL_WRITE(sc, RT2661_AC2_BASE_CSR, sc->txq[2].physaddr);
2598 	RAL_WRITE(sc, RT2661_AC3_BASE_CSR, sc->txq[3].physaddr);
2599 
2600 	/* initialize Mgt ring */
2601 	RAL_WRITE(sc, RT2661_MGT_BASE_CSR, sc->mgtq.physaddr);
2602 
2603 	/* initialize Rx ring */
2604 	RAL_WRITE(sc, RT2661_RX_BASE_CSR, sc->rxq.physaddr);
2605 
2606 	/* initialize Tx rings sizes */
2607 	RAL_WRITE(sc, RT2661_TX_RING_CSR0,
2608 	    RT2661_TX_RING_COUNT << 24 |
2609 	    RT2661_TX_RING_COUNT << 16 |
2610 	    RT2661_TX_RING_COUNT <<  8 |
2611 	    RT2661_TX_RING_COUNT);
2612 
2613 	RAL_WRITE(sc, RT2661_TX_RING_CSR1,
2614 	    RT2661_TX_DESC_WSIZE << 16 |
2615 	    RT2661_TX_RING_COUNT <<  8 |	/* XXX: HCCA ring unused */
2616 	    RT2661_MGT_RING_COUNT);
2617 
2618 	/* initialize Rx rings */
2619 	RAL_WRITE(sc, RT2661_RX_RING_CSR,
2620 	    RT2661_RX_DESC_BACK  << 16 |
2621 	    RT2661_RX_DESC_WSIZE <<  8 |
2622 	    RT2661_RX_RING_COUNT);
2623 
2624 	/* XXX: some magic here */
2625 	RAL_WRITE(sc, RT2661_TX_DMA_DST_CSR, 0xaa);
2626 
2627 	/* load base addresses of all 5 Tx rings (4 data + 1 mgt) */
2628 	RAL_WRITE(sc, RT2661_LOAD_TX_RING_CSR, 0x1f);
2629 
2630 	/* load base address of Rx ring */
2631 	RAL_WRITE(sc, RT2661_RX_CNTL_CSR, 2);
2632 
2633 	/* initialize MAC registers to default values */
2634 	for (i = 0; i < N(rt2661_def_mac); i++)
2635 		RAL_WRITE(sc, rt2661_def_mac[i].reg, rt2661_def_mac[i].val);
2636 
2637 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2638 	rt2661_set_macaddr(sc, ic->ic_myaddr);
2639 
2640 	/* set host ready */
2641 	RAL_WRITE(sc, RT2661_MAC_CSR1, 3);
2642 	RAL_WRITE(sc, RT2661_MAC_CSR1, 0);
2643 
2644 	/* wait for BBP/RF to wakeup */
2645 	for (ntries = 0; ntries < 1000; ntries++) {
2646 		if (RAL_READ(sc, RT2661_MAC_CSR12) & 8)
2647 			break;
2648 		DELAY(1000);
2649 	}
2650 	if (ntries == 1000) {
2651 		printf("timeout waiting for BBP/RF to wakeup\n");
2652 		rt2661_stop(ifp, 1);
2653 		return EIO;
2654 	}
2655 
2656 	if (rt2661_bbp_init(sc) != 0) {
2657 		rt2661_stop(ifp, 1);
2658 		return EIO;
2659 	}
2660 
2661 	/* select default channel */
2662 	sc->sc_curchan = ic->ic_curchan;
2663 	rt2661_select_band(sc, sc->sc_curchan);
2664 	rt2661_select_antenna(sc);
2665 	rt2661_set_chan(sc, sc->sc_curchan);
2666 
2667 	/* update Rx filter */
2668 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0) & 0xffff;
2669 
2670 	tmp |= RT2661_DROP_PHY_ERROR | RT2661_DROP_CRC_ERROR;
2671 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2672 		tmp |= RT2661_DROP_CTL | RT2661_DROP_VER_ERROR |
2673 		       RT2661_DROP_ACKCTS;
2674 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2675 			tmp |= RT2661_DROP_TODS;
2676 		if (!(ifp->if_flags & IFF_PROMISC))
2677 			tmp |= RT2661_DROP_NOT_TO_ME;
2678 	}
2679 
2680 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2681 
2682 	/* clear STA registers */
2683 	RAL_READ_REGION_4(sc, RT2661_STA_CSR0, star, N(star));
2684 
2685 	/* initialize ASIC */
2686 	RAL_WRITE(sc, RT2661_MAC_CSR1, 4);
2687 
2688 	/* clear any pending interrupt */
2689 	RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, 0xffffffff);
2690 
2691 	/* enable interrupts */
2692 	RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0x0000ff10);
2693 	RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0);
2694 
2695 	/* kick Rx */
2696 	RAL_WRITE(sc, RT2661_RX_CNTL_CSR, 1);
2697 
2698 	ifp->if_flags &= ~IFF_OACTIVE;
2699 	ifp->if_flags |= IFF_RUNNING;
2700 
2701 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2702 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
2703 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2704 	} else
2705 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2706 
2707 	return 0;
2708 #undef N
2709 }
2710 
2711 static void
2712 rt2661_stop(struct ifnet *ifp, int disable)
2713 {
2714 	struct rt2661_softc *sc = ifp->if_softc;
2715 	struct ieee80211com *ic = &sc->sc_ic;
2716 	uint32_t tmp;
2717 
2718 	sc->sc_tx_timer = 0;
2719 	ifp->if_timer = 0;
2720 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2721 
2722 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);	/* free all nodes */
2723 
2724 	/* abort Tx (for all 5 Tx rings) */
2725 	RAL_WRITE(sc, RT2661_TX_CNTL_CSR, 0x1f << 16);
2726 
2727 	/* disable Rx (value remains after reset!) */
2728 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2729 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX);
2730 
2731 	/* reset ASIC */
2732 	RAL_WRITE(sc, RT2661_MAC_CSR1, 3);
2733 	RAL_WRITE(sc, RT2661_MAC_CSR1, 0);
2734 
2735 	/* disable interrupts */
2736 	RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0xffffff7f);
2737 	RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0xffffffff);
2738 
2739 	/* clear any pending interrupt */
2740 	RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, 0xffffffff);
2741 	RAL_WRITE(sc, RT2661_MCU_INT_SOURCE_CSR, 0xffffffff);
2742 
2743 	/* reset Tx and Rx rings */
2744 	rt2661_reset_tx_ring(sc, &sc->txq[0]);
2745 	rt2661_reset_tx_ring(sc, &sc->txq[1]);
2746 	rt2661_reset_tx_ring(sc, &sc->txq[2]);
2747 	rt2661_reset_tx_ring(sc, &sc->txq[3]);
2748 	rt2661_reset_tx_ring(sc, &sc->mgtq);
2749 	rt2661_reset_rx_ring(sc, &sc->rxq);
2750 
2751 	/* for CardBus, power down the socket */
2752 	if (disable && sc->sc_disable != NULL) {
2753 		if (sc->sc_flags & RT2661_ENABLED) {
2754 			(*sc->sc_disable)(sc);
2755 			sc->sc_flags &= ~(RT2661_ENABLED | RT2661_FWLOADED);
2756 		}
2757 	}
2758 }
2759 
2760 static int
2761 rt2661_load_microcode(struct rt2661_softc *sc, const uint8_t *ucode, int size)
2762 {
2763 	int ntries;
2764 
2765 	/* reset 8051 */
2766 	RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET);
2767 
2768 	/* cancel any pending Host to MCU command */
2769 	RAL_WRITE(sc, RT2661_H2M_MAILBOX_CSR, 0);
2770 	RAL_WRITE(sc, RT2661_M2H_CMD_DONE_CSR, 0xffffffff);
2771 	RAL_WRITE(sc, RT2661_HOST_CMD_CSR, 0);
2772 
2773 	/* write 8051's microcode */
2774 	RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET | RT2661_MCU_SEL);
2775 	RAL_WRITE_REGION_1(sc, RT2661_MCU_CODE_BASE, ucode, size);
2776 	RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET);
2777 
2778 	/* kick 8051's ass */
2779 	RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, 0);
2780 
2781 	/* wait for 8051 to initialize */
2782 	for (ntries = 0; ntries < 500; ntries++) {
2783 		if (RAL_READ(sc, RT2661_MCU_CNTL_CSR) & RT2661_MCU_READY)
2784 			break;
2785 		DELAY(100);
2786 	}
2787 	if (ntries == 500) {
2788 		printf("timeout waiting for MCU to initialize\n");
2789 		return EIO;
2790 	}
2791 	return 0;
2792 }
2793 
2794 /*
2795  * Dynamically tune Rx sensitivity (BBP register 17) based on average RSSI and
2796  * false CCA count.  This function is called periodically (every seconds) when
2797  * in the RUN state.  Values taken from the reference driver.
2798  */
2799 static void
2800 rt2661_rx_tune(struct rt2661_softc *sc)
2801 {
2802 	uint8_t bbp17;
2803 	uint16_t cca;
2804 	int lo, hi, dbm;
2805 
2806 	/*
2807 	 * Tuning range depends on operating band and on the presence of an
2808 	 * external low-noise amplifier.
2809 	 */
2810 	lo = 0x20;
2811 	if (IEEE80211_IS_CHAN_5GHZ(sc->sc_curchan))
2812 		lo += 0x08;
2813 	if ((IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan) && sc->ext_2ghz_lna) ||
2814 	    (IEEE80211_IS_CHAN_5GHZ(sc->sc_curchan) && sc->ext_5ghz_lna))
2815 		lo += 0x10;
2816 	hi = lo + 0x20;
2817 
2818 	dbm = sc->avg_rssi;
2819 	/* retrieve false CCA count since last call (clear on read) */
2820 	cca = RAL_READ(sc, RT2661_STA_CSR1) & 0xffff;
2821 
2822 	DPRINTFN(2, ("RSSI=%ddBm false CCA=%d\n", dbm, cca));
2823 
2824 	if (dbm < -74) {
2825 		/* very bad RSSI, tune using false CCA count */
2826 		bbp17 = sc->bbp17; /* current value */
2827 
2828 		hi -= 2 * (-74 - dbm);
2829 		if (hi < lo)
2830 			hi = lo;
2831 
2832 		if (bbp17 > hi)
2833 			bbp17 = hi;
2834 		else if (cca > 512)
2835 			bbp17 = min(bbp17 + 1, hi);
2836 		else if (cca < 100)
2837 			bbp17 = max(bbp17 - 1, lo);
2838 
2839 	} else if (dbm < -66) {
2840 		bbp17 = lo + 0x08;
2841 	} else if (dbm < -58) {
2842 		bbp17 = lo + 0x10;
2843 	} else if (dbm < -35) {
2844 		bbp17 = hi;
2845 	} else {	/* very good RSSI >= -35dBm */
2846 		bbp17 = 0x60;	/* very low sensitivity */
2847 	}
2848 
2849 	if (bbp17 != sc->bbp17) {
2850 		DPRINTF(("BBP17 %x->%x\n", sc->bbp17, bbp17));
2851 		rt2661_bbp_write(sc, 17, bbp17);
2852 		sc->bbp17 = bbp17;
2853 	}
2854 }
2855 
2856 #ifdef notyet
2857 /*
2858  * Enter/Leave radar detection mode.
2859  * This is for 802.11h additional regulatory domains.
2860  */
2861 static void
2862 rt2661_radar_start(struct rt2661_softc *sc)
2863 {
2864 	uint32_t tmp;
2865 
2866 	/* disable Rx */
2867 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2868 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX);
2869 
2870 	rt2661_bbp_write(sc, 82, 0x20);
2871 	rt2661_bbp_write(sc, 83, 0x00);
2872 	rt2661_bbp_write(sc, 84, 0x40);
2873 
2874 	/* save current BBP registers values */
2875 	sc->bbp18 = rt2661_bbp_read(sc, 18);
2876 	sc->bbp21 = rt2661_bbp_read(sc, 21);
2877 	sc->bbp22 = rt2661_bbp_read(sc, 22);
2878 	sc->bbp16 = rt2661_bbp_read(sc, 16);
2879 	sc->bbp17 = rt2661_bbp_read(sc, 17);
2880 	sc->bbp64 = rt2661_bbp_read(sc, 64);
2881 
2882 	rt2661_bbp_write(sc, 18, 0xff);
2883 	rt2661_bbp_write(sc, 21, 0x3f);
2884 	rt2661_bbp_write(sc, 22, 0x3f);
2885 	rt2661_bbp_write(sc, 16, 0xbd);
2886 	rt2661_bbp_write(sc, 17, sc->ext_5ghz_lna ? 0x44 : 0x34);
2887 	rt2661_bbp_write(sc, 64, 0x21);
2888 
2889 	/* restore Rx filter */
2890 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2891 }
2892 
2893 static int
2894 rt2661_radar_stop(struct rt2661_softc *sc)
2895 {
2896 	uint8_t bbp66;
2897 
2898 	/* read radar detection result */
2899 	bbp66 = rt2661_bbp_read(sc, 66);
2900 
2901 	/* restore BBP registers values */
2902 	rt2661_bbp_write(sc, 16, sc->bbp16);
2903 	rt2661_bbp_write(sc, 17, sc->bbp17);
2904 	rt2661_bbp_write(sc, 18, sc->bbp18);
2905 	rt2661_bbp_write(sc, 21, sc->bbp21);
2906 	rt2661_bbp_write(sc, 22, sc->bbp22);
2907 	rt2661_bbp_write(sc, 64, sc->bbp64);
2908 
2909 	return bbp66 == 1;
2910 }
2911 #endif
2912 
2913 static int
2914 rt2661_prepare_beacon(struct rt2661_softc *sc)
2915 {
2916 	struct ieee80211com *ic = &sc->sc_ic;
2917 	struct ieee80211_node *ni = ic->ic_bss;
2918 	struct rt2661_tx_desc desc;
2919 	struct mbuf *m0;
2920 	struct ieee80211_beacon_offsets bo;
2921 	int rate;
2922 
2923 	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2924 	if (m0 == NULL) {
2925 		aprint_error_dev(&sc->sc_dev, "could not allocate beacon frame\n");
2926 		return ENOBUFS;
2927 	}
2928 
2929 	/* send beacons at the lowest available rate */
2930 	rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
2931 
2932 	rt2661_setup_tx_desc(sc, &desc, RT2661_TX_TIMESTAMP, RT2661_TX_HWSEQ,
2933 	    m0->m_pkthdr.len, rate, NULL, 0, RT2661_QID_MGT);
2934 
2935 	/* copy the first 24 bytes of Tx descriptor into NIC memory */
2936 	RAL_WRITE_REGION_1(sc, RT2661_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
2937 
2938 	/* copy beacon header and payload into NIC memory */
2939 	RAL_WRITE_REGION_1(sc, RT2661_HW_BEACON_BASE0 + 24,
2940 	    mtod(m0, uint8_t *), m0->m_pkthdr.len);
2941 
2942 	m_freem(m0);
2943 
2944 	/*
2945 	 * Store offset of ERP Information Element so that we can update it
2946 	 * dynamically when the slot time changes.
2947 	 * XXX: this is ugly since it depends on how net80211 builds beacon
2948 	 * frames but ieee80211_beacon_alloc() doesn't store offsets for us.
2949 	 */
2950 	if (ic->ic_curmode == IEEE80211_MODE_11G) {
2951 		sc->erp_csr =
2952 		    RT2661_HW_BEACON_BASE0 + 24 +
2953 		    sizeof (struct ieee80211_frame) +
2954 		    8 + 2 + 2 + 2 + ni->ni_esslen +
2955 		    2 + min(ni->ni_rates.rs_nrates, IEEE80211_RATE_SIZE) +
2956 		    2 + 1 +
2957 		    ((ic->ic_opmode == IEEE80211_M_IBSS) ? 4 : 6) +
2958 		    2;
2959 	}
2960 
2961 	return 0;
2962 }
2963 
2964 /*
2965  * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
2966  * and HostAP operating modes.
2967  */
2968 static void
2969 rt2661_enable_tsf_sync(struct rt2661_softc *sc)
2970 {
2971 	struct ieee80211com *ic = &sc->sc_ic;
2972 	uint32_t tmp;
2973 
2974 	if (ic->ic_opmode != IEEE80211_M_STA) {
2975 		/*
2976 		 * Change default 16ms TBTT adjustment to 8ms.
2977 		 * Must be done before enabling beacon generation.
2978 		 */
2979 		RAL_WRITE(sc, RT2661_TXRX_CSR10, 1 << 12 | 8);
2980 	}
2981 
2982 	tmp = RAL_READ(sc, RT2661_TXRX_CSR9) & 0xff000000;
2983 
2984 	/* set beacon interval (in 1/16ms unit) */
2985 	tmp |= ic->ic_bss->ni_intval * 16;
2986 
2987 	tmp |= RT2661_TSF_TICKING | RT2661_ENABLE_TBTT;
2988 	if (ic->ic_opmode == IEEE80211_M_STA)
2989 		tmp |= RT2661_TSF_MODE(1);
2990 	else
2991 		tmp |= RT2661_TSF_MODE(2) | RT2661_GENERATE_BEACON;
2992 
2993 	RAL_WRITE(sc, RT2661_TXRX_CSR9, tmp);
2994 }
2995 
2996 /*
2997  * Retrieve the "Received Signal Strength Indicator" from the raw values
2998  * contained in Rx descriptors.  The computation depends on which band the
2999  * frame was received.  Correction values taken from the reference driver.
3000  */
3001 static int
3002 rt2661_get_rssi(struct rt2661_softc *sc, uint8_t raw)
3003 {
3004 	int lna, agc, rssi;
3005 
3006 	lna = (raw >> 5) & 0x3;
3007 	agc = raw & 0x1f;
3008 
3009 	rssi = 2 * agc;
3010 
3011 	if (IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan)) {
3012 		rssi += sc->rssi_2ghz_corr;
3013 
3014 		if (lna == 1)
3015 			rssi -= 64;
3016 		else if (lna == 2)
3017 			rssi -= 74;
3018 		else if (lna == 3)
3019 			rssi -= 90;
3020 	} else {
3021 		rssi += sc->rssi_5ghz_corr;
3022 
3023 		if (lna == 1)
3024 			rssi -= 64;
3025 		else if (lna == 2)
3026 			rssi -= 86;
3027 		else if (lna == 3)
3028 			rssi -= 100;
3029 	}
3030 	return rssi;
3031 }
3032