1 /* $NetBSD: rt2661.c,v 1.20 2007/10/21 17:03:37 degroote Exp $ */ 2 /* $OpenBSD: rt2661.c,v 1.17 2006/05/01 08:41:11 damien Exp $ */ 3 /* $FreeBSD: rt2560.c,v 1.5 2006/06/02 19:59:31 csjp Exp $ */ 4 5 /*- 6 * Copyright (c) 2006 7 * Damien Bergamini <damien.bergamini@free.fr> 8 * 9 * Permission to use, copy, modify, and distribute this software for any 10 * purpose with or without fee is hereby granted, provided that the above 11 * copyright notice and this permission notice appear in all copies. 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 20 */ 21 22 /*- 23 * Ralink Technology RT2561, RT2561S and RT2661 chipset driver 24 * http://www.ralinktech.com/ 25 */ 26 27 #include <sys/cdefs.h> 28 __KERNEL_RCSID(0, "$NetBSD: rt2661.c,v 1.20 2007/10/21 17:03:37 degroote Exp $"); 29 30 #include "bpfilter.h" 31 32 #include <sys/param.h> 33 #include <sys/sockio.h> 34 #include <sys/sysctl.h> 35 #include <sys/mbuf.h> 36 #include <sys/kernel.h> 37 #include <sys/socket.h> 38 #include <sys/systm.h> 39 #include <sys/malloc.h> 40 #include <sys/callout.h> 41 #include <sys/conf.h> 42 #include <sys/device.h> 43 44 #include <sys/bus.h> 45 #include <machine/endian.h> 46 #include <sys/intr.h> 47 48 #if NBPFILTER > 0 49 #include <net/bpf.h> 50 #endif 51 #include <net/if.h> 52 #include <net/if_arp.h> 53 #include <net/if_dl.h> 54 #include <net/if_media.h> 55 #include <net/if_types.h> 56 #include <net/if_ether.h> 57 58 #include <netinet/in.h> 59 #include <netinet/in_systm.h> 60 #include <netinet/in_var.h> 61 #include <netinet/ip.h> 62 63 #include <net80211/ieee80211_var.h> 64 #include <net80211/ieee80211_rssadapt.h> 65 #include <net80211/ieee80211_radiotap.h> 66 67 #include <dev/ic/rt2661reg.h> 68 #include <dev/ic/rt2661var.h> 69 70 #include <dev/pci/pcireg.h> 71 #include <dev/pci/pcivar.h> 72 #include <dev/pci/pcidevs.h> 73 74 #include <dev/firmload.h> 75 76 #ifdef RAL_DEBUG 77 #define DPRINTF(x) do { if (rt2661_debug > 0) printf x; } while (0) 78 #define DPRINTFN(n, x) do { if (rt2661_debug >= (n)) printf x; } while (0) 79 int rt2661_debug = 0; 80 #else 81 #define DPRINTF(x) 82 #define DPRINTFN(n, x) 83 #endif 84 85 static int rt2661_alloc_tx_ring(struct rt2661_softc *, 86 struct rt2661_tx_ring *, int); 87 static void rt2661_reset_tx_ring(struct rt2661_softc *, 88 struct rt2661_tx_ring *); 89 static void rt2661_free_tx_ring(struct rt2661_softc *, 90 struct rt2661_tx_ring *); 91 static int rt2661_alloc_rx_ring(struct rt2661_softc *, 92 struct rt2661_rx_ring *, int); 93 static void rt2661_reset_rx_ring(struct rt2661_softc *, 94 struct rt2661_rx_ring *); 95 static void rt2661_free_rx_ring(struct rt2661_softc *, 96 struct rt2661_rx_ring *); 97 static struct ieee80211_node * 98 rt2661_node_alloc(struct ieee80211_node_table *); 99 static int rt2661_media_change(struct ifnet *); 100 static void rt2661_next_scan(void *); 101 static void rt2661_iter_func(void *, struct ieee80211_node *); 102 static void rt2661_rssadapt_updatestats(void *); 103 static int rt2661_newstate(struct ieee80211com *, enum ieee80211_state, 104 int); 105 static uint16_t rt2661_eeprom_read(struct rt2661_softc *, uint8_t); 106 static void rt2661_tx_intr(struct rt2661_softc *); 107 static void rt2661_tx_dma_intr(struct rt2661_softc *, 108 struct rt2661_tx_ring *); 109 static void rt2661_rx_intr(struct rt2661_softc *); 110 static void rt2661_mcu_beacon_expire(struct rt2661_softc *); 111 static void rt2661_mcu_wakeup(struct rt2661_softc *); 112 static void rt2661_mcu_cmd_intr(struct rt2661_softc *); 113 int rt2661_intr(void *); 114 #if NBPFILTER > 0 115 static uint8_t rt2661_rxrate(struct rt2661_rx_desc *); 116 #endif 117 static int rt2661_ack_rate(struct ieee80211com *, int); 118 static uint16_t rt2661_txtime(int, int, uint32_t); 119 static uint8_t rt2661_plcp_signal(int); 120 static void rt2661_setup_tx_desc(struct rt2661_softc *, 121 struct rt2661_tx_desc *, uint32_t, uint16_t, int, int, 122 const bus_dma_segment_t *, int, int); 123 static int rt2661_tx_mgt(struct rt2661_softc *, struct mbuf *, 124 struct ieee80211_node *); 125 static struct mbuf * 126 rt2661_get_rts(struct rt2661_softc *, 127 struct ieee80211_frame *, uint16_t); 128 static int rt2661_tx_data(struct rt2661_softc *, struct mbuf *, 129 struct ieee80211_node *, int); 130 static void rt2661_start(struct ifnet *); 131 static void rt2661_watchdog(struct ifnet *); 132 static int rt2661_reset(struct ifnet *); 133 static int rt2661_ioctl(struct ifnet *, u_long, void *); 134 static void rt2661_bbp_write(struct rt2661_softc *, uint8_t, uint8_t); 135 static uint8_t rt2661_bbp_read(struct rt2661_softc *, uint8_t); 136 static void rt2661_rf_write(struct rt2661_softc *, uint8_t, uint32_t); 137 static int rt2661_tx_cmd(struct rt2661_softc *, uint8_t, uint16_t); 138 static void rt2661_select_antenna(struct rt2661_softc *); 139 static void rt2661_enable_mrr(struct rt2661_softc *); 140 static void rt2661_set_txpreamble(struct rt2661_softc *); 141 static void rt2661_set_basicrates(struct rt2661_softc *, 142 const struct ieee80211_rateset *); 143 static void rt2661_select_band(struct rt2661_softc *, 144 struct ieee80211_channel *); 145 static void rt2661_set_chan(struct rt2661_softc *, 146 struct ieee80211_channel *); 147 static void rt2661_set_bssid(struct rt2661_softc *, const uint8_t *); 148 static void rt2661_set_macaddr(struct rt2661_softc *, const uint8_t *); 149 static void rt2661_update_promisc(struct rt2661_softc *); 150 #if 0 151 static int rt2661_wme_update(struct ieee80211com *); 152 #endif 153 154 static void rt2661_update_slot(struct ifnet *); 155 static const char * 156 rt2661_get_rf(int); 157 static void rt2661_read_eeprom(struct rt2661_softc *); 158 static int rt2661_bbp_init(struct rt2661_softc *); 159 static int rt2661_init(struct ifnet *); 160 static void rt2661_stop(struct ifnet *, int); 161 static int rt2661_load_microcode(struct rt2661_softc *, const uint8_t *, 162 int); 163 #ifdef notyet 164 static void rt2661_rx_tune(struct rt2661_softc *); 165 static void rt2661_radar_start(struct rt2661_softc *); 166 static int rt2661_radar_stop(struct rt2661_softc *); 167 #endif 168 static int rt2661_prepare_beacon(struct rt2661_softc *); 169 static void rt2661_enable_tsf_sync(struct rt2661_softc *); 170 static int rt2661_get_rssi(struct rt2661_softc *, uint8_t); 171 172 /* 173 * Supported rates for 802.11a/b/g modes (in 500Kbps unit). 174 */ 175 static const struct ieee80211_rateset rt2661_rateset_11a = 176 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } }; 177 178 static const struct ieee80211_rateset rt2661_rateset_11b = 179 { 4, { 2, 4, 11, 22 } }; 180 181 static const struct ieee80211_rateset rt2661_rateset_11g = 182 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } }; 183 184 /* 185 * Default values for MAC registers; values taken from the reference driver. 186 */ 187 static const struct { 188 uint32_t reg; 189 uint32_t val; 190 } rt2661_def_mac[] = { 191 { RT2661_TXRX_CSR0, 0x0000b032 }, 192 { RT2661_TXRX_CSR1, 0x9eb39eb3 }, 193 { RT2661_TXRX_CSR2, 0x8a8b8c8d }, 194 { RT2661_TXRX_CSR3, 0x00858687 }, 195 { RT2661_TXRX_CSR7, 0x2e31353b }, 196 { RT2661_TXRX_CSR8, 0x2a2a2a2c }, 197 { RT2661_TXRX_CSR15, 0x0000000f }, 198 { RT2661_MAC_CSR6, 0x00000fff }, 199 { RT2661_MAC_CSR8, 0x016c030a }, 200 { RT2661_MAC_CSR10, 0x00000718 }, 201 { RT2661_MAC_CSR12, 0x00000004 }, 202 { RT2661_MAC_CSR13, 0x0000e000 }, 203 { RT2661_SEC_CSR0, 0x00000000 }, 204 { RT2661_SEC_CSR1, 0x00000000 }, 205 { RT2661_SEC_CSR5, 0x00000000 }, 206 { RT2661_PHY_CSR1, 0x000023b0 }, 207 { RT2661_PHY_CSR5, 0x060a100c }, 208 { RT2661_PHY_CSR6, 0x00080606 }, 209 { RT2661_PHY_CSR7, 0x00000a08 }, 210 { RT2661_PCI_CFG_CSR, 0x3cca4808 }, 211 { RT2661_AIFSN_CSR, 0x00002273 }, 212 { RT2661_CWMIN_CSR, 0x00002344 }, 213 { RT2661_CWMAX_CSR, 0x000034aa }, 214 { RT2661_TEST_MODE_CSR, 0x00000200 }, 215 { RT2661_M2H_CMD_DONE_CSR, 0xffffffff } 216 }; 217 218 /* 219 * Default values for BBP registers; values taken from the reference driver. 220 */ 221 static const struct { 222 uint8_t reg; 223 uint8_t val; 224 } rt2661_def_bbp[] = { 225 { 3, 0x00 }, 226 { 15, 0x30 }, 227 { 17, 0x20 }, 228 { 21, 0xc8 }, 229 { 22, 0x38 }, 230 { 23, 0x06 }, 231 { 24, 0xfe }, 232 { 25, 0x0a }, 233 { 26, 0x0d }, 234 { 34, 0x12 }, 235 { 37, 0x07 }, 236 { 39, 0xf8 }, 237 { 41, 0x60 }, 238 { 53, 0x10 }, 239 { 54, 0x18 }, 240 { 60, 0x10 }, 241 { 61, 0x04 }, 242 { 62, 0x04 }, 243 { 75, 0xfe }, 244 { 86, 0xfe }, 245 { 88, 0xfe }, 246 { 90, 0x0f }, 247 { 99, 0x00 }, 248 { 102, 0x16 }, 249 { 107, 0x04 } 250 }; 251 252 /* 253 * Default settings for RF registers; values taken from the reference driver. 254 */ 255 static const struct rfprog { 256 uint8_t chan; 257 uint32_t r1; 258 uint32_t r2; 259 uint32_t r3; 260 uint32_t r4; 261 } rt2661_rf5225_1[] = { 262 { 1, 0x00b33, 0x011e1, 0x1a014, 0x30282 }, 263 { 2, 0x00b33, 0x011e1, 0x1a014, 0x30287 }, 264 { 3, 0x00b33, 0x011e2, 0x1a014, 0x30282 }, 265 { 4, 0x00b33, 0x011e2, 0x1a014, 0x30287 }, 266 { 5, 0x00b33, 0x011e3, 0x1a014, 0x30282 }, 267 { 6, 0x00b33, 0x011e3, 0x1a014, 0x30287 }, 268 { 7, 0x00b33, 0x011e4, 0x1a014, 0x30282 }, 269 { 8, 0x00b33, 0x011e4, 0x1a014, 0x30287 }, 270 { 9, 0x00b33, 0x011e5, 0x1a014, 0x30282 }, 271 { 10, 0x00b33, 0x011e5, 0x1a014, 0x30287 }, 272 { 11, 0x00b33, 0x011e6, 0x1a014, 0x30282 }, 273 { 12, 0x00b33, 0x011e6, 0x1a014, 0x30287 }, 274 { 13, 0x00b33, 0x011e7, 0x1a014, 0x30282 }, 275 { 14, 0x00b33, 0x011e8, 0x1a014, 0x30284 }, 276 277 { 36, 0x00b33, 0x01266, 0x26014, 0x30288 }, 278 { 40, 0x00b33, 0x01268, 0x26014, 0x30280 }, 279 { 44, 0x00b33, 0x01269, 0x26014, 0x30282 }, 280 { 48, 0x00b33, 0x0126a, 0x26014, 0x30284 }, 281 { 52, 0x00b33, 0x0126b, 0x26014, 0x30286 }, 282 { 56, 0x00b33, 0x0126c, 0x26014, 0x30288 }, 283 { 60, 0x00b33, 0x0126e, 0x26014, 0x30280 }, 284 { 64, 0x00b33, 0x0126f, 0x26014, 0x30282 }, 285 286 { 100, 0x00b33, 0x0128a, 0x2e014, 0x30280 }, 287 { 104, 0x00b33, 0x0128b, 0x2e014, 0x30282 }, 288 { 108, 0x00b33, 0x0128c, 0x2e014, 0x30284 }, 289 { 112, 0x00b33, 0x0128d, 0x2e014, 0x30286 }, 290 { 116, 0x00b33, 0x0128e, 0x2e014, 0x30288 }, 291 { 120, 0x00b33, 0x012a0, 0x2e014, 0x30280 }, 292 { 124, 0x00b33, 0x012a1, 0x2e014, 0x30282 }, 293 { 128, 0x00b33, 0x012a2, 0x2e014, 0x30284 }, 294 { 132, 0x00b33, 0x012a3, 0x2e014, 0x30286 }, 295 { 136, 0x00b33, 0x012a4, 0x2e014, 0x30288 }, 296 { 140, 0x00b33, 0x012a6, 0x2e014, 0x30280 }, 297 298 { 149, 0x00b33, 0x012a8, 0x2e014, 0x30287 }, 299 { 153, 0x00b33, 0x012a9, 0x2e014, 0x30289 }, 300 { 157, 0x00b33, 0x012ab, 0x2e014, 0x30281 }, 301 { 161, 0x00b33, 0x012ac, 0x2e014, 0x30283 }, 302 { 165, 0x00b33, 0x012ad, 0x2e014, 0x30285 } 303 304 }, rt2661_rf5225_2[] = { 305 { 1, 0x00b33, 0x011e1, 0x1a014, 0x30282 }, 306 { 2, 0x00b33, 0x011e1, 0x1a014, 0x30287 }, 307 { 3, 0x00b33, 0x011e2, 0x1a014, 0x30282 }, 308 { 4, 0x00b33, 0x011e2, 0x1a014, 0x30287 }, 309 { 5, 0x00b33, 0x011e3, 0x1a014, 0x30282 }, 310 { 6, 0x00b33, 0x011e3, 0x1a014, 0x30287 }, 311 { 7, 0x00b33, 0x011e4, 0x1a014, 0x30282 }, 312 { 8, 0x00b33, 0x011e4, 0x1a014, 0x30287 }, 313 { 9, 0x00b33, 0x011e5, 0x1a014, 0x30282 }, 314 { 10, 0x00b33, 0x011e5, 0x1a014, 0x30287 }, 315 { 11, 0x00b33, 0x011e6, 0x1a014, 0x30282 }, 316 { 12, 0x00b33, 0x011e6, 0x1a014, 0x30287 }, 317 { 13, 0x00b33, 0x011e7, 0x1a014, 0x30282 }, 318 { 14, 0x00b33, 0x011e8, 0x1a014, 0x30284 }, 319 320 { 36, 0x00b35, 0x11206, 0x26014, 0x30280 }, 321 { 40, 0x00b34, 0x111a0, 0x26014, 0x30280 }, 322 { 44, 0x00b34, 0x111a1, 0x26014, 0x30286 }, 323 { 48, 0x00b34, 0x111a3, 0x26014, 0x30282 }, 324 { 52, 0x00b34, 0x111a4, 0x26014, 0x30288 }, 325 { 56, 0x00b34, 0x111a6, 0x26014, 0x30284 }, 326 { 60, 0x00b34, 0x111a8, 0x26014, 0x30280 }, 327 { 64, 0x00b34, 0x111a9, 0x26014, 0x30286 }, 328 329 { 100, 0x00b35, 0x11226, 0x2e014, 0x30280 }, 330 { 104, 0x00b35, 0x11228, 0x2e014, 0x30280 }, 331 { 108, 0x00b35, 0x1122a, 0x2e014, 0x30280 }, 332 { 112, 0x00b35, 0x1122c, 0x2e014, 0x30280 }, 333 { 116, 0x00b35, 0x1122e, 0x2e014, 0x30280 }, 334 { 120, 0x00b34, 0x111c0, 0x2e014, 0x30280 }, 335 { 124, 0x00b34, 0x111c1, 0x2e014, 0x30286 }, 336 { 128, 0x00b34, 0x111c3, 0x2e014, 0x30282 }, 337 { 132, 0x00b34, 0x111c4, 0x2e014, 0x30288 }, 338 { 136, 0x00b34, 0x111c6, 0x2e014, 0x30284 }, 339 { 140, 0x00b34, 0x111c8, 0x2e014, 0x30280 }, 340 341 { 149, 0x00b34, 0x111cb, 0x2e014, 0x30286 }, 342 { 153, 0x00b34, 0x111cd, 0x2e014, 0x30282 }, 343 { 157, 0x00b35, 0x11242, 0x2e014, 0x30285 }, 344 { 161, 0x00b35, 0x11244, 0x2e014, 0x30285 }, 345 { 165, 0x00b35, 0x11246, 0x2e014, 0x30285 } 346 }; 347 348 int 349 rt2661_attach(void *xsc, int id) 350 { 351 struct rt2661_softc *sc = xsc; 352 struct ieee80211com *ic = &sc->sc_ic; 353 struct ifnet *ifp = &sc->sc_if; 354 uint32_t val; 355 int error, i, ntries; 356 357 sc->sc_id = id; 358 359 callout_init(&sc->scan_ch, 0); 360 callout_init(&sc->rssadapt_ch, 0); 361 362 /* wait for NIC to initialize */ 363 for (ntries = 0; ntries < 1000; ntries++) { 364 if ((val = RAL_READ(sc, RT2661_MAC_CSR0)) != 0) 365 break; 366 DELAY(1000); 367 } 368 if (ntries == 1000) { 369 aprint_error("%s: timeout waiting for NIC to initialize\n", 370 sc->sc_dev.dv_xname); 371 return EIO; 372 } 373 374 /* retrieve RF rev. no and various other things from EEPROM */ 375 rt2661_read_eeprom(sc); 376 aprint_normal("%s: 802.11 address %s\n", sc->sc_dev.dv_xname, 377 ether_sprintf(ic->ic_myaddr)); 378 379 aprint_normal("%s: MAC/BBP RT%X, RF %s\n", sc->sc_dev.dv_xname, val, 380 rt2661_get_rf(sc->rf_rev)); 381 382 /* 383 * Allocate Tx and Rx rings. 384 */ 385 error = rt2661_alloc_tx_ring(sc, &sc->txq[0], RT2661_TX_RING_COUNT); 386 if (error != 0) { 387 aprint_error("%s: could not allocate Tx ring 0\n", 388 sc->sc_dev.dv_xname); 389 goto fail1; 390 } 391 392 error = rt2661_alloc_tx_ring(sc, &sc->txq[1], RT2661_TX_RING_COUNT); 393 if (error != 0) { 394 aprint_error("%s: could not allocate Tx ring 1\n", 395 sc->sc_dev.dv_xname); 396 goto fail2; 397 } 398 399 error = rt2661_alloc_tx_ring(sc, &sc->txq[2], RT2661_TX_RING_COUNT); 400 if (error != 0) { 401 aprint_error("%s: could not allocate Tx ring 2\n", 402 sc->sc_dev.dv_xname); 403 goto fail3; 404 } 405 406 error = rt2661_alloc_tx_ring(sc, &sc->txq[3], RT2661_TX_RING_COUNT); 407 if (error != 0) { 408 aprint_error("%s: could not allocate Tx ring 3\n", 409 sc->sc_dev.dv_xname); 410 goto fail4; 411 } 412 413 error = rt2661_alloc_tx_ring(sc, &sc->mgtq, RT2661_MGT_RING_COUNT); 414 if (error != 0) { 415 aprint_error("%s: could not allocate Mgt ring\n", 416 sc->sc_dev.dv_xname); 417 goto fail5; 418 } 419 420 error = rt2661_alloc_rx_ring(sc, &sc->rxq, RT2661_RX_RING_COUNT); 421 if (error != 0) { 422 aprint_error("%s: could not allocate Rx ring\n", 423 sc->sc_dev.dv_xname); 424 goto fail6; 425 } 426 427 ifp->if_softc = sc; 428 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 429 ifp->if_init = rt2661_init; 430 ifp->if_ioctl = rt2661_ioctl; 431 ifp->if_start = rt2661_start; 432 ifp->if_watchdog = rt2661_watchdog; 433 IFQ_SET_READY(&ifp->if_snd); 434 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ); 435 436 ic->ic_ifp = ifp; 437 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 438 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 439 ic->ic_state = IEEE80211_S_INIT; 440 441 /* set device capabilities */ 442 ic->ic_caps = 443 IEEE80211_C_IBSS | /* IBSS mode supported */ 444 IEEE80211_C_MONITOR | /* monitor mode supported */ 445 IEEE80211_C_HOSTAP | /* HostAp mode supported */ 446 IEEE80211_C_TXPMGT | /* tx power management */ 447 IEEE80211_C_SHPREAMBLE | /* short preamble supported */ 448 IEEE80211_C_SHSLOT | /* short slot time supported */ 449 IEEE80211_C_WPA; /* 802.11i */ 450 451 if (sc->rf_rev == RT2661_RF_5225 || sc->rf_rev == RT2661_RF_5325) { 452 /* set supported .11a rates */ 453 ic->ic_sup_rates[IEEE80211_MODE_11A] = rt2661_rateset_11a; 454 455 /* set supported .11a channels */ 456 for (i = 36; i <= 64; i += 4) { 457 ic->ic_channels[i].ic_freq = 458 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 459 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 460 } 461 for (i = 100; i <= 140; i += 4) { 462 ic->ic_channels[i].ic_freq = 463 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 464 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 465 } 466 for (i = 149; i <= 165; i += 4) { 467 ic->ic_channels[i].ic_freq = 468 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 469 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 470 } 471 } 472 473 /* set supported .11b and .11g rates */ 474 ic->ic_sup_rates[IEEE80211_MODE_11B] = rt2661_rateset_11b; 475 ic->ic_sup_rates[IEEE80211_MODE_11G] = rt2661_rateset_11g; 476 477 /* set supported .11b and .11g channels (1 through 14) */ 478 for (i = 1; i <= 14; i++) { 479 ic->ic_channels[i].ic_freq = 480 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ); 481 ic->ic_channels[i].ic_flags = 482 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | 483 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 484 } 485 486 if_attach(ifp); 487 ieee80211_ifattach(ic); 488 ic->ic_node_alloc = rt2661_node_alloc; 489 ic->ic_updateslot = rt2661_update_slot; 490 ic->ic_reset = rt2661_reset; 491 492 /* override state transition machine */ 493 sc->sc_newstate = ic->ic_newstate; 494 ic->ic_newstate = rt2661_newstate; 495 ieee80211_media_init(ic, rt2661_media_change, ieee80211_media_status); 496 497 #if NBPFILTER > 0 498 bpfattach2(ifp, DLT_IEEE802_11_RADIO, 499 sizeof (struct ieee80211_frame) + 64, &sc->sc_drvbpf); 500 501 sc->sc_rxtap_len = sizeof sc->sc_rxtapu; 502 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); 503 sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2661_RX_RADIOTAP_PRESENT); 504 505 sc->sc_txtap_len = sizeof sc->sc_txtapu; 506 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); 507 sc->sc_txtap.wt_ihdr.it_present = htole32(RT2661_TX_RADIOTAP_PRESENT); 508 #endif 509 510 ieee80211_announce(ic); 511 512 return 0; 513 514 fail6: rt2661_free_tx_ring(sc, &sc->mgtq); 515 fail5: rt2661_free_tx_ring(sc, &sc->txq[3]); 516 fail4: rt2661_free_tx_ring(sc, &sc->txq[2]); 517 fail3: rt2661_free_tx_ring(sc, &sc->txq[1]); 518 fail2: rt2661_free_tx_ring(sc, &sc->txq[0]); 519 fail1: return ENXIO; 520 } 521 522 int 523 rt2661_detach(void *xsc) 524 { 525 struct rt2661_softc *sc = xsc; 526 struct ifnet *ifp = &sc->sc_if; 527 528 callout_stop(&sc->scan_ch); 529 callout_stop(&sc->rssadapt_ch); 530 531 ieee80211_ifdetach(&sc->sc_ic); 532 if_detach(ifp); 533 534 rt2661_free_tx_ring(sc, &sc->txq[0]); 535 rt2661_free_tx_ring(sc, &sc->txq[1]); 536 rt2661_free_tx_ring(sc, &sc->txq[2]); 537 rt2661_free_tx_ring(sc, &sc->txq[3]); 538 rt2661_free_tx_ring(sc, &sc->mgtq); 539 rt2661_free_rx_ring(sc, &sc->rxq); 540 541 return 0; 542 } 543 544 static int 545 rt2661_alloc_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring, 546 int count) 547 { 548 int i, nsegs, error; 549 550 ring->count = count; 551 ring->queued = 0; 552 ring->cur = ring->next = ring->stat = 0; 553 554 error = bus_dmamap_create(sc->sc_dmat, count * RT2661_TX_DESC_SIZE, 1, 555 count * RT2661_TX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map); 556 if (error != 0) { 557 aprint_error("%s: could not create desc DMA map\n", 558 sc->sc_dev.dv_xname); 559 goto fail; 560 } 561 562 error = bus_dmamem_alloc(sc->sc_dmat, count * RT2661_TX_DESC_SIZE, 563 PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT); 564 if (error != 0) { 565 aprint_error("%s: could not allocate DMA memory\n", 566 sc->sc_dev.dv_xname); 567 goto fail; 568 } 569 570 error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs, 571 count * RT2661_TX_DESC_SIZE, (void **)&ring->desc, 572 BUS_DMA_NOWAIT); 573 if (error != 0) { 574 aprint_error("%s: could not map desc DMA memory\n", 575 sc->sc_dev.dv_xname); 576 goto fail; 577 } 578 579 error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc, 580 count * RT2661_TX_DESC_SIZE, NULL, BUS_DMA_NOWAIT); 581 if (error != 0) { 582 aprint_error("%s: could not load desc DMA map\n", 583 sc->sc_dev.dv_xname); 584 goto fail; 585 } 586 587 memset(ring->desc, 0, count * RT2661_TX_DESC_SIZE); 588 ring->physaddr = ring->map->dm_segs->ds_addr; 589 590 ring->data = malloc(count * sizeof (struct rt2661_tx_data), M_DEVBUF, 591 M_NOWAIT); 592 if (ring->data == NULL) { 593 aprint_error("%s: could not allocate soft data\n", 594 sc->sc_dev.dv_xname); 595 error = ENOMEM; 596 goto fail; 597 } 598 599 memset(ring->data, 0, count * sizeof (struct rt2661_tx_data)); 600 for (i = 0; i < count; i++) { 601 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 602 RT2661_MAX_SCATTER, MCLBYTES, 0, BUS_DMA_NOWAIT, 603 &ring->data[i].map); 604 if (error != 0) { 605 aprint_error("%s: could not create DMA map\n", 606 sc->sc_dev.dv_xname); 607 goto fail; 608 } 609 } 610 611 return 0; 612 613 fail: rt2661_free_tx_ring(sc, ring); 614 return error; 615 } 616 617 static void 618 rt2661_reset_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring) 619 { 620 struct rt2661_tx_desc *desc; 621 struct rt2661_tx_data *data; 622 int i; 623 624 for (i = 0; i < ring->count; i++) { 625 desc = &ring->desc[i]; 626 data = &ring->data[i]; 627 628 if (data->m != NULL) { 629 bus_dmamap_sync(sc->sc_dmat, data->map, 0, 630 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); 631 bus_dmamap_unload(sc->sc_dmat, data->map); 632 m_freem(data->m); 633 data->m = NULL; 634 } 635 636 if (data->ni != NULL) { 637 ieee80211_free_node(data->ni); 638 data->ni = NULL; 639 } 640 641 desc->flags = 0; 642 } 643 644 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize, 645 BUS_DMASYNC_PREWRITE); 646 647 ring->queued = 0; 648 ring->cur = ring->next = ring->stat = 0; 649 } 650 651 652 static void 653 rt2661_free_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring) 654 { 655 struct rt2661_tx_data *data; 656 int i; 657 658 if (ring->desc != NULL) { 659 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, 660 ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); 661 bus_dmamap_unload(sc->sc_dmat, ring->map); 662 bus_dmamem_unmap(sc->sc_dmat, (void *)ring->desc, 663 ring->count * RT2661_TX_DESC_SIZE); 664 bus_dmamem_free(sc->sc_dmat, &ring->seg, 1); 665 } 666 667 if (ring->data != NULL) { 668 for (i = 0; i < ring->count; i++) { 669 data = &ring->data[i]; 670 671 if (data->m != NULL) { 672 bus_dmamap_sync(sc->sc_dmat, data->map, 0, 673 data->map->dm_mapsize, 674 BUS_DMASYNC_POSTWRITE); 675 bus_dmamap_unload(sc->sc_dmat, data->map); 676 m_freem(data->m); 677 } 678 679 if (data->ni != NULL) 680 ieee80211_free_node(data->ni); 681 682 if (data->map != NULL) 683 bus_dmamap_destroy(sc->sc_dmat, data->map); 684 } 685 free(ring->data, M_DEVBUF); 686 } 687 } 688 689 static int 690 rt2661_alloc_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring, 691 int count) 692 { 693 struct rt2661_rx_desc *desc; 694 struct rt2661_rx_data *data; 695 int i, nsegs, error; 696 697 ring->count = count; 698 ring->cur = ring->next = 0; 699 700 error = bus_dmamap_create(sc->sc_dmat, count * RT2661_RX_DESC_SIZE, 1, 701 count * RT2661_RX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map); 702 if (error != 0) { 703 aprint_error("%s: could not create desc DMA map\n", 704 sc->sc_dev.dv_xname); 705 goto fail; 706 } 707 708 error = bus_dmamem_alloc(sc->sc_dmat, count * RT2661_RX_DESC_SIZE, 709 PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT); 710 if (error != 0) { 711 aprint_error("%s: could not allocate DMA memory\n", 712 sc->sc_dev.dv_xname); 713 goto fail; 714 } 715 716 error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs, 717 count * RT2661_RX_DESC_SIZE, (void **)&ring->desc, 718 BUS_DMA_NOWAIT); 719 if (error != 0) { 720 aprint_error("%s: could not map desc DMA memory\n", 721 sc->sc_dev.dv_xname); 722 goto fail; 723 } 724 725 error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc, 726 count * RT2661_RX_DESC_SIZE, NULL, BUS_DMA_NOWAIT); 727 if (error != 0) { 728 aprint_error("%s: could not load desc DMA map\n", 729 sc->sc_dev.dv_xname); 730 goto fail; 731 } 732 733 memset(ring->desc, 0, count * RT2661_RX_DESC_SIZE); 734 ring->physaddr = ring->map->dm_segs->ds_addr; 735 736 ring->data = malloc(count * sizeof (struct rt2661_rx_data), M_DEVBUF, 737 M_NOWAIT); 738 if (ring->data == NULL) { 739 aprint_error("%s: could not allocate soft data\n", 740 sc->sc_dev.dv_xname); 741 error = ENOMEM; 742 goto fail; 743 } 744 745 /* 746 * Pre-allocate Rx buffers and populate Rx ring. 747 */ 748 memset(ring->data, 0, count * sizeof (struct rt2661_rx_data)); 749 for (i = 0; i < count; i++) { 750 desc = &sc->rxq.desc[i]; 751 data = &sc->rxq.data[i]; 752 753 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 754 0, BUS_DMA_NOWAIT, &data->map); 755 if (error != 0) { 756 printf("%s: could not create DMA map\n", 757 sc->sc_dev.dv_xname); 758 goto fail; 759 } 760 761 MGETHDR(data->m, M_DONTWAIT, MT_DATA); 762 if (data->m == NULL) { 763 printf("%s: could not allocate rx mbuf\n", 764 sc->sc_dev.dv_xname); 765 error = ENOMEM; 766 goto fail; 767 } 768 769 MCLGET(data->m, M_DONTWAIT); 770 if (!(data->m->m_flags & M_EXT)) { 771 printf("%s: could not allocate rx mbuf cluster\n", 772 sc->sc_dev.dv_xname); 773 error = ENOMEM; 774 goto fail; 775 } 776 777 error = bus_dmamap_load(sc->sc_dmat, data->map, 778 mtod(data->m, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT); 779 if (error != 0) { 780 printf("%s: could not load rx buf DMA map", 781 sc->sc_dev.dv_xname); 782 goto fail; 783 } 784 785 desc->flags = htole32(RT2661_RX_BUSY); 786 desc->physaddr = htole32(data->map->dm_segs->ds_addr); 787 } 788 789 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize, 790 BUS_DMASYNC_PREWRITE); 791 792 return 0; 793 794 fail: rt2661_free_rx_ring(sc, ring); 795 return error; 796 } 797 798 static void 799 rt2661_reset_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring) 800 { 801 int i; 802 803 for (i = 0; i < ring->count; i++) 804 ring->desc[i].flags = htole32(RT2661_RX_BUSY); 805 806 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize, 807 BUS_DMASYNC_PREWRITE); 808 809 ring->cur = ring->next = 0; 810 } 811 812 static void 813 rt2661_free_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring) 814 { 815 struct rt2661_rx_data *data; 816 int i; 817 818 if (ring->desc != NULL) { 819 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, 820 ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); 821 bus_dmamap_unload(sc->sc_dmat, ring->map); 822 bus_dmamem_unmap(sc->sc_dmat, (void *)ring->desc, 823 ring->count * RT2661_RX_DESC_SIZE); 824 bus_dmamem_free(sc->sc_dmat, &ring->seg, 1); 825 } 826 827 if (ring->data != NULL) { 828 for (i = 0; i < ring->count; i++) { 829 data = &ring->data[i]; 830 831 if (data->m != NULL) { 832 bus_dmamap_sync(sc->sc_dmat, data->map, 0, 833 data->map->dm_mapsize, 834 BUS_DMASYNC_POSTREAD); 835 bus_dmamap_unload(sc->sc_dmat, data->map); 836 m_freem(data->m); 837 } 838 839 if (data->map != NULL) 840 bus_dmamap_destroy(sc->sc_dmat, data->map); 841 } 842 free(ring->data, M_DEVBUF); 843 } 844 } 845 846 static struct ieee80211_node * 847 rt2661_node_alloc(struct ieee80211_node_table *nt) 848 { 849 struct rt2661_node *rn; 850 851 rn = malloc(sizeof (struct rt2661_node), M_80211_NODE, 852 M_NOWAIT | M_ZERO); 853 854 return (rn != NULL) ? &rn->ni : NULL; 855 } 856 857 static int 858 rt2661_media_change(struct ifnet *ifp) 859 { 860 int error; 861 862 error = ieee80211_media_change(ifp); 863 if (error != ENETRESET) 864 return error; 865 866 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) 867 rt2661_init(ifp); 868 869 return 0; 870 } 871 872 /* 873 * This function is called periodically (every 200ms) during scanning to 874 * switch from one channel to another. 875 */ 876 static void 877 rt2661_next_scan(void *arg) 878 { 879 struct rt2661_softc *sc = arg; 880 struct ieee80211com *ic = &sc->sc_ic; 881 882 if (ic->ic_state == IEEE80211_S_SCAN) 883 ieee80211_next_scan(ic); 884 } 885 886 /* 887 * This function is called for each neighbor node. 888 */ 889 static void 890 rt2661_iter_func(void *arg, struct ieee80211_node *ni) 891 { 892 struct rt2661_node *rn = (struct rt2661_node *)ni; 893 894 ieee80211_rssadapt_updatestats(&rn->rssadapt); 895 } 896 897 /* 898 * This function is called periodically (every 100ms) in RUN state to update 899 * the rate adaptation statistics. 900 */ 901 static void 902 rt2661_rssadapt_updatestats(void *arg) 903 { 904 struct rt2661_softc *sc = arg; 905 struct ieee80211com *ic = &sc->sc_ic; 906 907 ieee80211_iterate_nodes(&ic->ic_sta, rt2661_iter_func, arg); 908 909 callout_reset(&sc->rssadapt_ch, hz / 10, rt2661_rssadapt_updatestats, 910 sc); 911 } 912 913 static int 914 rt2661_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 915 { 916 struct rt2661_softc *sc = ic->ic_ifp->if_softc; 917 enum ieee80211_state ostate; 918 struct ieee80211_node *ni; 919 uint32_t tmp; 920 int error = 0; 921 922 ostate = ic->ic_state; 923 callout_stop(&sc->scan_ch); 924 925 switch (nstate) { 926 case IEEE80211_S_INIT: 927 callout_stop(&sc->rssadapt_ch); 928 929 if (ostate == IEEE80211_S_RUN) { 930 /* abort TSF synchronization */ 931 tmp = RAL_READ(sc, RT2661_TXRX_CSR9); 932 RAL_WRITE(sc, RT2661_TXRX_CSR9, tmp & ~0x00ffffff); 933 } 934 break; 935 936 case IEEE80211_S_SCAN: 937 rt2661_set_chan(sc, ic->ic_curchan); 938 callout_reset(&sc->scan_ch, hz / 5, rt2661_next_scan, sc); 939 break; 940 941 case IEEE80211_S_AUTH: 942 case IEEE80211_S_ASSOC: 943 rt2661_set_chan(sc, ic->ic_curchan); 944 break; 945 946 case IEEE80211_S_RUN: 947 rt2661_set_chan(sc, ic->ic_curchan); 948 949 ni = ic->ic_bss; 950 951 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 952 rt2661_enable_mrr(sc); 953 rt2661_set_txpreamble(sc); 954 rt2661_set_basicrates(sc, &ni->ni_rates); 955 rt2661_set_bssid(sc, ni->ni_bssid); 956 } 957 958 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 959 ic->ic_opmode == IEEE80211_M_IBSS) { 960 if ((error = rt2661_prepare_beacon(sc)) != 0) 961 break; 962 } 963 964 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 965 callout_reset(&sc->rssadapt_ch, hz / 10, 966 rt2661_rssadapt_updatestats, sc); 967 rt2661_enable_tsf_sync(sc); 968 } 969 break; 970 } 971 972 return (error != 0) ? error : sc->sc_newstate(ic, nstate, arg); 973 } 974 975 /* 976 * Read 16 bits at address 'addr' from the serial EEPROM (either 93C46 or 977 * 93C66). 978 */ 979 static uint16_t 980 rt2661_eeprom_read(struct rt2661_softc *sc, uint8_t addr) 981 { 982 uint32_t tmp; 983 uint16_t val; 984 int n; 985 986 /* clock C once before the first command */ 987 RT2661_EEPROM_CTL(sc, 0); 988 989 RT2661_EEPROM_CTL(sc, RT2661_S); 990 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C); 991 RT2661_EEPROM_CTL(sc, RT2661_S); 992 993 /* write start bit (1) */ 994 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D); 995 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D | RT2661_C); 996 997 /* write READ opcode (10) */ 998 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D); 999 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D | RT2661_C); 1000 RT2661_EEPROM_CTL(sc, RT2661_S); 1001 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C); 1002 1003 /* write address (A5-A0 or A7-A0) */ 1004 n = (RAL_READ(sc, RT2661_E2PROM_CSR) & RT2661_93C46) ? 5 : 7; 1005 for (; n >= 0; n--) { 1006 RT2661_EEPROM_CTL(sc, RT2661_S | 1007 (((addr >> n) & 1) << RT2661_SHIFT_D)); 1008 RT2661_EEPROM_CTL(sc, RT2661_S | 1009 (((addr >> n) & 1) << RT2661_SHIFT_D) | RT2661_C); 1010 } 1011 1012 RT2661_EEPROM_CTL(sc, RT2661_S); 1013 1014 /* read data Q15-Q0 */ 1015 val = 0; 1016 for (n = 15; n >= 0; n--) { 1017 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C); 1018 tmp = RAL_READ(sc, RT2661_E2PROM_CSR); 1019 val |= ((tmp & RT2661_Q) >> RT2661_SHIFT_Q) << n; 1020 RT2661_EEPROM_CTL(sc, RT2661_S); 1021 } 1022 1023 RT2661_EEPROM_CTL(sc, 0); 1024 1025 /* clear Chip Select and clock C */ 1026 RT2661_EEPROM_CTL(sc, RT2661_S); 1027 RT2661_EEPROM_CTL(sc, 0); 1028 RT2661_EEPROM_CTL(sc, RT2661_C); 1029 1030 return val; 1031 } 1032 1033 static void 1034 rt2661_tx_intr(struct rt2661_softc *sc) 1035 { 1036 struct ieee80211com *ic = &sc->sc_ic; 1037 struct ifnet *ifp = &sc->sc_if; 1038 struct rt2661_tx_ring *txq; 1039 struct rt2661_tx_data *data; 1040 struct rt2661_node *rn; 1041 uint32_t val; 1042 int qid, retrycnt; 1043 1044 for (;;) { 1045 val = RAL_READ(sc, RT2661_STA_CSR4); 1046 if (!(val & RT2661_TX_STAT_VALID)) 1047 break; 1048 1049 /* retrieve the queue in which this frame was sent */ 1050 qid = RT2661_TX_QID(val); 1051 txq = (qid <= 3) ? &sc->txq[qid] : &sc->mgtq; 1052 1053 /* retrieve rate control algorithm context */ 1054 data = &txq->data[txq->stat]; 1055 rn = (struct rt2661_node *)data->ni; 1056 1057 /* if no frame has been sent, ignore */ 1058 if (rn == NULL) 1059 continue; 1060 1061 switch (RT2661_TX_RESULT(val)) { 1062 case RT2661_TX_SUCCESS: 1063 retrycnt = RT2661_TX_RETRYCNT(val); 1064 1065 DPRINTFN(10, ("data frame sent successfully after " 1066 "%d retries\n", retrycnt)); 1067 if (retrycnt == 0 && data->id.id_node != NULL) { 1068 ieee80211_rssadapt_raise_rate(ic, 1069 &rn->rssadapt, &data->id); 1070 } 1071 ifp->if_opackets++; 1072 break; 1073 1074 case RT2661_TX_RETRY_FAIL: 1075 DPRINTFN(9, ("sending data frame failed (too much " 1076 "retries)\n")); 1077 if (data->id.id_node != NULL) { 1078 ieee80211_rssadapt_lower_rate(ic, data->ni, 1079 &rn->rssadapt, &data->id); 1080 } 1081 ifp->if_oerrors++; 1082 break; 1083 1084 default: 1085 /* other failure */ 1086 printf("%s: sending data frame failed 0x%08x\n", 1087 sc->sc_dev.dv_xname, val); 1088 ifp->if_oerrors++; 1089 } 1090 1091 ieee80211_free_node(data->ni); 1092 data->ni = NULL; 1093 1094 DPRINTFN(15, ("tx done q=%d idx=%u\n", qid, txq->stat)); 1095 1096 txq->queued--; 1097 if (++txq->stat >= txq->count) /* faster than % count */ 1098 txq->stat = 0; 1099 } 1100 1101 sc->sc_tx_timer = 0; 1102 ifp->if_flags &= ~IFF_OACTIVE; 1103 rt2661_start(ifp); 1104 } 1105 1106 static void 1107 rt2661_tx_dma_intr(struct rt2661_softc *sc, struct rt2661_tx_ring *txq) 1108 { 1109 struct rt2661_tx_desc *desc; 1110 struct rt2661_tx_data *data; 1111 1112 for (;;) { 1113 desc = &txq->desc[txq->next]; 1114 data = &txq->data[txq->next]; 1115 1116 bus_dmamap_sync(sc->sc_dmat, txq->map, 1117 txq->next * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE, 1118 BUS_DMASYNC_POSTREAD); 1119 1120 if ((le32toh(desc->flags) & RT2661_TX_BUSY) || 1121 !(le32toh(desc->flags) & RT2661_TX_VALID)) 1122 break; 1123 1124 bus_dmamap_sync(sc->sc_dmat, data->map, 0, 1125 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); 1126 bus_dmamap_unload(sc->sc_dmat, data->map); 1127 m_freem(data->m); 1128 data->m = NULL; 1129 /* node reference is released in rt2661_tx_intr() */ 1130 1131 /* descriptor is no longer valid */ 1132 desc->flags &= ~htole32(RT2661_TX_VALID); 1133 1134 bus_dmamap_sync(sc->sc_dmat, txq->map, 1135 txq->next * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE, 1136 BUS_DMASYNC_PREWRITE); 1137 1138 DPRINTFN(15, ("tx dma done q=%p idx=%u\n", txq, txq->next)); 1139 1140 if (++txq->next >= txq->count) /* faster than % count */ 1141 txq->next = 0; 1142 } 1143 } 1144 1145 static void 1146 rt2661_rx_intr(struct rt2661_softc *sc) 1147 { 1148 struct ieee80211com *ic = &sc->sc_ic; 1149 struct ifnet *ifp = &sc->sc_if; 1150 struct rt2661_rx_desc *desc; 1151 struct rt2661_rx_data *data; 1152 struct rt2661_node *rn; 1153 struct ieee80211_frame *wh; 1154 struct ieee80211_node *ni; 1155 struct mbuf *mnew, *m; 1156 int error; 1157 1158 for (;;) { 1159 desc = &sc->rxq.desc[sc->rxq.cur]; 1160 data = &sc->rxq.data[sc->rxq.cur]; 1161 1162 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map, 1163 sc->rxq.cur * RT2661_RX_DESC_SIZE, RT2661_RX_DESC_SIZE, 1164 BUS_DMASYNC_POSTREAD); 1165 1166 if (le32toh(desc->flags) & RT2661_RX_BUSY) 1167 break; 1168 1169 if ((le32toh(desc->flags) & RT2661_RX_PHY_ERROR) || 1170 (le32toh(desc->flags) & RT2661_RX_CRC_ERROR)) { 1171 /* 1172 * This should not happen since we did not request 1173 * to receive those frames when we filled TXRX_CSR0. 1174 */ 1175 DPRINTFN(5, ("PHY or CRC error flags 0x%08x\n", 1176 le32toh(desc->flags))); 1177 ifp->if_ierrors++; 1178 goto skip; 1179 } 1180 1181 if ((le32toh(desc->flags) & RT2661_RX_CIPHER_MASK) != 0) { 1182 ifp->if_ierrors++; 1183 goto skip; 1184 } 1185 1186 /* 1187 * Try to allocate a new mbuf for this ring element and load it 1188 * before processing the current mbuf. If the ring element 1189 * cannot be loaded, drop the received packet and reuse the old 1190 * mbuf. In the unlikely case that the old mbuf can't be 1191 * reloaded either, explicitly panic. 1192 */ 1193 MGETHDR(mnew, M_DONTWAIT, MT_DATA); 1194 if (mnew == NULL) { 1195 ifp->if_ierrors++; 1196 goto skip; 1197 } 1198 1199 MCLGET(mnew, M_DONTWAIT); 1200 if (!(mnew->m_flags & M_EXT)) { 1201 m_freem(mnew); 1202 ifp->if_ierrors++; 1203 goto skip; 1204 } 1205 1206 bus_dmamap_sync(sc->sc_dmat, data->map, 0, 1207 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD); 1208 bus_dmamap_unload(sc->sc_dmat, data->map); 1209 1210 error = bus_dmamap_load(sc->sc_dmat, data->map, 1211 mtod(mnew, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT); 1212 if (error != 0) { 1213 m_freem(mnew); 1214 1215 /* try to reload the old mbuf */ 1216 error = bus_dmamap_load(sc->sc_dmat, data->map, 1217 mtod(data->m, void *), MCLBYTES, NULL, 1218 BUS_DMA_NOWAIT); 1219 if (error != 0) { 1220 /* very unlikely that it will fail... */ 1221 panic("%s: could not load old rx mbuf", 1222 sc->sc_dev.dv_xname); 1223 } 1224 ifp->if_ierrors++; 1225 goto skip; 1226 } 1227 1228 /* 1229 * New mbuf successfully loaded, update Rx ring and continue 1230 * processing. 1231 */ 1232 m = data->m; 1233 data->m = mnew; 1234 desc->physaddr = htole32(data->map->dm_segs->ds_addr); 1235 1236 /* finalize mbuf */ 1237 m->m_pkthdr.rcvif = ifp; 1238 m->m_pkthdr.len = m->m_len = 1239 (le32toh(desc->flags) >> 16) & 0xfff; 1240 1241 #if NBPFILTER > 0 1242 if (sc->sc_drvbpf != NULL) { 1243 struct rt2661_rx_radiotap_header *tap = &sc->sc_rxtap; 1244 uint32_t tsf_lo, tsf_hi; 1245 1246 /* get timestamp (low and high 32 bits) */ 1247 tsf_hi = RAL_READ(sc, RT2661_TXRX_CSR13); 1248 tsf_lo = RAL_READ(sc, RT2661_TXRX_CSR12); 1249 1250 tap->wr_tsf = 1251 htole64(((uint64_t)tsf_hi << 32) | tsf_lo); 1252 tap->wr_flags = 0; 1253 tap->wr_rate = rt2661_rxrate(desc); 1254 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq); 1255 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags); 1256 tap->wr_antsignal = desc->rssi; 1257 1258 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m); 1259 } 1260 #endif 1261 1262 wh = mtod(m, struct ieee80211_frame *); 1263 ni = ieee80211_find_rxnode(ic, 1264 (struct ieee80211_frame_min *)wh); 1265 1266 /* send the frame to the 802.11 layer */ 1267 ieee80211_input(ic, m, ni, desc->rssi, 0); 1268 1269 1270 /* give rssi to the rate adatation algorithm */ 1271 rn = (struct rt2661_node *)ni; 1272 ieee80211_rssadapt_input(ic, ni, &rn->rssadapt, 1273 rt2661_get_rssi(sc, desc->rssi)); 1274 1275 /* node is no longer needed */ 1276 ieee80211_free_node(ni); 1277 1278 skip: desc->flags |= htole32(RT2661_RX_BUSY); 1279 1280 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map, 1281 sc->rxq.cur * RT2661_RX_DESC_SIZE, RT2661_RX_DESC_SIZE, 1282 BUS_DMASYNC_PREWRITE); 1283 1284 DPRINTFN(15, ("rx intr idx=%u\n", sc->rxq.cur)); 1285 1286 sc->rxq.cur = (sc->rxq.cur + 1) % RT2661_RX_RING_COUNT; 1287 } 1288 1289 /* 1290 * In HostAP mode, ieee80211_input() will enqueue packets in if_snd 1291 * without calling if_start(). 1292 */ 1293 if (!IFQ_IS_EMPTY(&ifp->if_snd) && !(ifp->if_flags & IFF_OACTIVE)) 1294 rt2661_start(ifp); 1295 } 1296 1297 /* ARGSUSED */ 1298 static void 1299 rt2661_mcu_beacon_expire(struct rt2661_softc *sc) 1300 { 1301 /* do nothing */ 1302 } 1303 1304 static void 1305 rt2661_mcu_wakeup(struct rt2661_softc *sc) 1306 { 1307 RAL_WRITE(sc, RT2661_MAC_CSR11, 5 << 16); 1308 1309 RAL_WRITE(sc, RT2661_SOFT_RESET_CSR, 0x7); 1310 RAL_WRITE(sc, RT2661_IO_CNTL_CSR, 0x18); 1311 RAL_WRITE(sc, RT2661_PCI_USEC_CSR, 0x20); 1312 1313 /* send wakeup command to MCU */ 1314 rt2661_tx_cmd(sc, RT2661_MCU_CMD_WAKEUP, 0); 1315 } 1316 1317 static void 1318 rt2661_mcu_cmd_intr(struct rt2661_softc *sc) 1319 { 1320 RAL_READ(sc, RT2661_M2H_CMD_DONE_CSR); 1321 RAL_WRITE(sc, RT2661_M2H_CMD_DONE_CSR, 0xffffffff); 1322 } 1323 1324 int 1325 rt2661_intr(void *arg) 1326 { 1327 struct rt2661_softc *sc = arg; 1328 struct ifnet *ifp = &sc->sc_if; 1329 uint32_t r1, r2; 1330 1331 /* disable MAC and MCU interrupts */ 1332 RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0xffffff7f); 1333 RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0xffffffff); 1334 1335 /* don't re-enable interrupts if we're shutting down */ 1336 if (!(ifp->if_flags & IFF_RUNNING)) 1337 return 0; 1338 1339 r1 = RAL_READ(sc, RT2661_INT_SOURCE_CSR); 1340 RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, r1); 1341 1342 r2 = RAL_READ(sc, RT2661_MCU_INT_SOURCE_CSR); 1343 RAL_WRITE(sc, RT2661_MCU_INT_SOURCE_CSR, r2); 1344 1345 if (r1 & RT2661_MGT_DONE) 1346 rt2661_tx_dma_intr(sc, &sc->mgtq); 1347 1348 if (r1 & RT2661_RX_DONE) 1349 rt2661_rx_intr(sc); 1350 1351 if (r1 & RT2661_TX0_DMA_DONE) 1352 rt2661_tx_dma_intr(sc, &sc->txq[0]); 1353 1354 if (r1 & RT2661_TX1_DMA_DONE) 1355 rt2661_tx_dma_intr(sc, &sc->txq[1]); 1356 1357 if (r1 & RT2661_TX2_DMA_DONE) 1358 rt2661_tx_dma_intr(sc, &sc->txq[2]); 1359 1360 if (r1 & RT2661_TX3_DMA_DONE) 1361 rt2661_tx_dma_intr(sc, &sc->txq[3]); 1362 1363 if (r1 & RT2661_TX_DONE) 1364 rt2661_tx_intr(sc); 1365 1366 if (r2 & RT2661_MCU_CMD_DONE) 1367 rt2661_mcu_cmd_intr(sc); 1368 1369 if (r2 & RT2661_MCU_BEACON_EXPIRE) 1370 rt2661_mcu_beacon_expire(sc); 1371 1372 if (r2 & RT2661_MCU_WAKEUP) 1373 rt2661_mcu_wakeup(sc); 1374 1375 /* re-enable MAC and MCU interrupts */ 1376 RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0x0000ff10); 1377 RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0); 1378 1379 return 1; 1380 } 1381 1382 /* quickly determine if a given rate is CCK or OFDM */ 1383 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22) 1384 1385 #define RAL_ACK_SIZE 14 /* 10 + 4(FCS) */ 1386 #define RAL_CTS_SIZE 14 /* 10 + 4(FCS) */ 1387 1388 #define RAL_SIFS 10 /* us */ 1389 1390 /* 1391 * This function is only used by the Rx radiotap code. It returns the rate at 1392 * which a given frame was received. 1393 */ 1394 #if NBPFILTER > 0 1395 static uint8_t 1396 rt2661_rxrate(struct rt2661_rx_desc *desc) 1397 { 1398 if (le32toh(desc->flags) & RT2661_RX_OFDM) { 1399 /* reverse function of rt2661_plcp_signal */ 1400 switch (desc->rate & 0xf) { 1401 case 0xb: return 12; 1402 case 0xf: return 18; 1403 case 0xa: return 24; 1404 case 0xe: return 36; 1405 case 0x9: return 48; 1406 case 0xd: return 72; 1407 case 0x8: return 96; 1408 case 0xc: return 108; 1409 } 1410 } else { 1411 if (desc->rate == 10) 1412 return 2; 1413 if (desc->rate == 20) 1414 return 4; 1415 if (desc->rate == 55) 1416 return 11; 1417 if (desc->rate == 110) 1418 return 22; 1419 } 1420 return 2; /* should not get there */ 1421 } 1422 #endif 1423 1424 /* 1425 * Return the expected ack rate for a frame transmitted at rate `rate'. 1426 * XXX: this should depend on the destination node basic rate set. 1427 */ 1428 static int 1429 rt2661_ack_rate(struct ieee80211com *ic, int rate) 1430 { 1431 switch (rate) { 1432 /* CCK rates */ 1433 case 2: 1434 return 2; 1435 case 4: 1436 case 11: 1437 case 22: 1438 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate; 1439 1440 /* OFDM rates */ 1441 case 12: 1442 case 18: 1443 return 12; 1444 case 24: 1445 case 36: 1446 return 24; 1447 case 48: 1448 case 72: 1449 case 96: 1450 case 108: 1451 return 48; 1452 } 1453 1454 /* default to 1Mbps */ 1455 return 2; 1456 } 1457 1458 /* 1459 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'. 1460 * The function automatically determines the operating mode depending on the 1461 * given rate. `flags' indicates whether short preamble is in use or not. 1462 */ 1463 static uint16_t 1464 rt2661_txtime(int len, int rate, uint32_t flags) 1465 { 1466 uint16_t txtime; 1467 1468 if (RAL_RATE_IS_OFDM(rate)) { 1469 /* IEEE Std 802.11a-1999, pp. 37 */ 1470 txtime = (8 + 4 * len + 3 + rate - 1) / rate; 1471 txtime = 16 + 4 + 4 * txtime + 6; 1472 } else { 1473 /* IEEE Std 802.11b-1999, pp. 28 */ 1474 txtime = (16 * len + rate - 1) / rate; 1475 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE)) 1476 txtime += 72 + 24; 1477 else 1478 txtime += 144 + 48; 1479 } 1480 return txtime; 1481 } 1482 1483 static uint8_t 1484 rt2661_plcp_signal(int rate) 1485 { 1486 switch (rate) { 1487 /* CCK rates (returned values are device-dependent) */ 1488 case 2: return 0x0; 1489 case 4: return 0x1; 1490 case 11: return 0x2; 1491 case 22: return 0x3; 1492 1493 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 1494 case 12: return 0xb; 1495 case 18: return 0xf; 1496 case 24: return 0xa; 1497 case 36: return 0xe; 1498 case 48: return 0x9; 1499 case 72: return 0xd; 1500 case 96: return 0x8; 1501 case 108: return 0xc; 1502 1503 /* unsupported rates (should not get there) */ 1504 default: return 0xff; 1505 } 1506 } 1507 1508 static void 1509 rt2661_setup_tx_desc(struct rt2661_softc *sc, struct rt2661_tx_desc *desc, 1510 uint32_t flags, uint16_t xflags, int len, int rate, 1511 const bus_dma_segment_t *segs, int nsegs, int ac) 1512 { 1513 struct ieee80211com *ic = &sc->sc_ic; 1514 uint16_t plcp_length; 1515 int i, remainder; 1516 1517 desc->flags = htole32(flags); 1518 desc->flags |= htole32(len << 16); 1519 desc->flags |= htole32(RT2661_TX_BUSY | RT2661_TX_VALID); 1520 1521 desc->xflags = htole16(xflags); 1522 desc->xflags |= htole16(nsegs << 13); 1523 1524 desc->wme = htole16( 1525 RT2661_QID(ac) | 1526 RT2661_AIFSN(2) | 1527 RT2661_LOGCWMIN(4) | 1528 RT2661_LOGCWMAX(10)); 1529 1530 /* 1531 * Remember in which queue this frame was sent. This field is driver 1532 * private data only. It will be made available by the NIC in STA_CSR4 1533 * on Tx interrupts. 1534 */ 1535 desc->qid = ac; 1536 1537 /* setup PLCP fields */ 1538 desc->plcp_signal = rt2661_plcp_signal(rate); 1539 desc->plcp_service = 4; 1540 1541 len += IEEE80211_CRC_LEN; 1542 if (RAL_RATE_IS_OFDM(rate)) { 1543 desc->flags |= htole32(RT2661_TX_OFDM); 1544 1545 plcp_length = len & 0xfff; 1546 desc->plcp_length_hi = plcp_length >> 6; 1547 desc->plcp_length_lo = plcp_length & 0x3f; 1548 } else { 1549 plcp_length = (16 * len + rate - 1) / rate; 1550 if (rate == 22) { 1551 remainder = (16 * len) % 22; 1552 if (remainder != 0 && remainder < 7) 1553 desc->plcp_service |= RT2661_PLCP_LENGEXT; 1554 } 1555 desc->plcp_length_hi = plcp_length >> 8; 1556 desc->plcp_length_lo = plcp_length & 0xff; 1557 1558 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 1559 desc->plcp_signal |= 0x08; 1560 } 1561 1562 /* RT2x61 supports scatter with up to 5 segments */ 1563 for (i = 0; i < nsegs; i++) { 1564 desc->addr[i] = htole32(segs[i].ds_addr); 1565 desc->len [i] = htole16(segs[i].ds_len); 1566 } 1567 } 1568 1569 static int 1570 rt2661_tx_mgt(struct rt2661_softc *sc, struct mbuf *m0, 1571 struct ieee80211_node *ni) 1572 { 1573 struct ieee80211com *ic = &sc->sc_ic; 1574 struct rt2661_tx_desc *desc; 1575 struct rt2661_tx_data *data; 1576 struct ieee80211_frame *wh; 1577 struct ieee80211_key *k; 1578 uint16_t dur; 1579 uint32_t flags = 0; 1580 int rate, error; 1581 1582 desc = &sc->mgtq.desc[sc->mgtq.cur]; 1583 data = &sc->mgtq.data[sc->mgtq.cur]; 1584 1585 /* send mgt frames at the lowest available rate */ 1586 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2; 1587 1588 wh = mtod(m0, struct ieee80211_frame *); 1589 1590 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1591 k = ieee80211_crypto_encap(ic, ni, m0); 1592 if (k == NULL) { 1593 m_freem(m0); 1594 return ENOBUFS; 1595 } 1596 } 1597 1598 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0, 1599 BUS_DMA_NOWAIT); 1600 if (error != 0) { 1601 printf("%s: could not map mbuf (error %d)\n", 1602 sc->sc_dev.dv_xname, error); 1603 m_freem(m0); 1604 return error; 1605 } 1606 1607 #if NBPFILTER > 0 1608 if (sc->sc_drvbpf != NULL) { 1609 struct rt2661_tx_radiotap_header *tap = &sc->sc_txtap; 1610 1611 tap->wt_flags = 0; 1612 tap->wt_rate = rate; 1613 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq); 1614 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags); 1615 1616 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0); 1617 } 1618 #endif 1619 1620 data->m = m0; 1621 data->ni = ni; 1622 1623 wh = mtod(m0, struct ieee80211_frame *); 1624 1625 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1626 flags |= RT2661_TX_NEED_ACK; 1627 1628 dur = rt2661_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) + 1629 RAL_SIFS; 1630 *(uint16_t *)wh->i_dur = htole16(dur); 1631 1632 /* tell hardware to add timestamp in probe responses */ 1633 if ((wh->i_fc[0] & 1634 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 1635 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP)) 1636 flags |= RT2661_TX_TIMESTAMP; 1637 } 1638 1639 rt2661_setup_tx_desc(sc, desc, flags, 0 /* XXX HWSEQ */, 1640 m0->m_pkthdr.len, rate, data->map->dm_segs, data->map->dm_nsegs, 1641 RT2661_QID_MGT); 1642 1643 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, 1644 BUS_DMASYNC_PREWRITE); 1645 bus_dmamap_sync(sc->sc_dmat, sc->mgtq.map, 1646 sc->mgtq.cur * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE, 1647 BUS_DMASYNC_PREWRITE); 1648 1649 DPRINTFN(10, ("sending mgt frame len=%u idx=%u rate=%u\n", 1650 m0->m_pkthdr.len, sc->mgtq.cur, rate)); 1651 1652 /* kick mgt */ 1653 sc->mgtq.queued++; 1654 sc->mgtq.cur = (sc->mgtq.cur + 1) % RT2661_MGT_RING_COUNT; 1655 RAL_WRITE(sc, RT2661_TX_CNTL_CSR, RT2661_KICK_MGT); 1656 1657 return 0; 1658 } 1659 1660 /* 1661 * Build a RTS control frame. 1662 */ 1663 static struct mbuf * 1664 rt2661_get_rts(struct rt2661_softc *sc, struct ieee80211_frame *wh, 1665 uint16_t dur) 1666 { 1667 struct ieee80211_frame_rts *rts; 1668 struct mbuf *m; 1669 1670 MGETHDR(m, M_DONTWAIT, MT_DATA); 1671 if (m == NULL) { 1672 sc->sc_ic.ic_stats.is_tx_nobuf++; 1673 printf("%s: could not allocate RTS frame\n", 1674 sc->sc_dev.dv_xname); 1675 return NULL; 1676 } 1677 1678 rts = mtod(m, struct ieee80211_frame_rts *); 1679 1680 rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL | 1681 IEEE80211_FC0_SUBTYPE_RTS; 1682 rts->i_fc[1] = IEEE80211_FC1_DIR_NODS; 1683 *(uint16_t *)rts->i_dur = htole16(dur); 1684 IEEE80211_ADDR_COPY(rts->i_ra, wh->i_addr1); 1685 IEEE80211_ADDR_COPY(rts->i_ta, wh->i_addr2); 1686 1687 m->m_pkthdr.len = m->m_len = sizeof (struct ieee80211_frame_rts); 1688 1689 return m; 1690 } 1691 1692 static int 1693 rt2661_tx_data(struct rt2661_softc *sc, struct mbuf *m0, 1694 struct ieee80211_node *ni, int ac) 1695 { 1696 struct ieee80211com *ic = &sc->sc_ic; 1697 struct rt2661_tx_ring *txq = &sc->txq[ac]; 1698 struct rt2661_tx_desc *desc; 1699 struct rt2661_tx_data *data; 1700 struct rt2661_node *rn; 1701 struct ieee80211_rateset *rs; 1702 struct ieee80211_frame *wh; 1703 struct ieee80211_key *k; 1704 struct mbuf *mnew; 1705 uint16_t dur; 1706 uint32_t flags = 0; 1707 int rate, error; 1708 1709 wh = mtod(m0, struct ieee80211_frame *); 1710 1711 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) { 1712 rs = &ic->ic_sup_rates[ic->ic_curmode]; 1713 rate = rs->rs_rates[ic->ic_fixed_rate]; 1714 } else { 1715 rs = &ni->ni_rates; 1716 rn = (struct rt2661_node *)ni; 1717 ni->ni_txrate = ieee80211_rssadapt_choose(&rn->rssadapt, rs, 1718 wh, m0->m_pkthdr.len, -1, NULL, 0); 1719 rate = rs->rs_rates[ni->ni_txrate]; 1720 } 1721 rate &= IEEE80211_RATE_VAL; 1722 1723 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1724 k = ieee80211_crypto_encap(ic, ni, m0); 1725 if (k == NULL) { 1726 m_freem(m0); 1727 return ENOBUFS; 1728 } 1729 1730 /* packet header may have moved, reset our local pointer */ 1731 wh = mtod(m0, struct ieee80211_frame *); 1732 } 1733 1734 /* 1735 * IEEE Std 802.11-1999, pp 82: "A STA shall use an RTS/CTS exchange 1736 * for directed frames only when the length of the MPDU is greater 1737 * than the length threshold indicated by [...]" ic_rtsthreshold. 1738 */ 1739 if (!IEEE80211_IS_MULTICAST(wh->i_addr1) && 1740 m0->m_pkthdr.len > ic->ic_rtsthreshold) { 1741 struct mbuf *m; 1742 int rtsrate, ackrate; 1743 1744 rtsrate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2; 1745 ackrate = rt2661_ack_rate(ic, rate); 1746 1747 dur = rt2661_txtime(m0->m_pkthdr.len + 4, rate, ic->ic_flags) + 1748 rt2661_txtime(RAL_CTS_SIZE, rtsrate, ic->ic_flags) + 1749 rt2661_txtime(RAL_ACK_SIZE, ackrate, ic->ic_flags) + 1750 3 * RAL_SIFS; 1751 1752 m = rt2661_get_rts(sc, wh, dur); 1753 1754 desc = &txq->desc[txq->cur]; 1755 data = &txq->data[txq->cur]; 1756 1757 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m, 1758 BUS_DMA_NOWAIT); 1759 if (error != 0) { 1760 printf("%s: could not map mbuf (error %d)\n", 1761 sc->sc_dev.dv_xname, error); 1762 m_freem(m); 1763 m_freem(m0); 1764 return error; 1765 } 1766 1767 /* avoid multiple free() of the same node for each fragment */ 1768 ieee80211_ref_node(ni); 1769 1770 data->m = m; 1771 data->ni = ni; 1772 1773 /* RTS frames are not taken into account for rssadapt */ 1774 data->id.id_node = NULL; 1775 1776 rt2661_setup_tx_desc(sc, desc, RT2661_TX_NEED_ACK | 1777 RT2661_TX_MORE_FRAG, 0, m->m_pkthdr.len, rtsrate, 1778 data->map->dm_segs, data->map->dm_nsegs, ac); 1779 1780 bus_dmamap_sync(sc->sc_dmat, data->map, 0, 1781 data->map->dm_mapsize, BUS_DMASYNC_PREWRITE); 1782 bus_dmamap_sync(sc->sc_dmat, txq->map, 1783 txq->cur * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE, 1784 BUS_DMASYNC_PREWRITE); 1785 1786 txq->queued++; 1787 txq->cur = (txq->cur + 1) % RT2661_TX_RING_COUNT; 1788 1789 /* 1790 * IEEE Std 802.11-1999: when an RTS/CTS exchange is used, the 1791 * asynchronous data frame shall be transmitted after the CTS 1792 * frame and a SIFS period. 1793 */ 1794 flags |= RT2661_TX_LONG_RETRY | RT2661_TX_IFS; 1795 } 1796 1797 data = &txq->data[txq->cur]; 1798 desc = &txq->desc[txq->cur]; 1799 1800 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0, 1801 BUS_DMA_NOWAIT); 1802 if (error != 0 && error != EFBIG) { 1803 printf("%s: could not map mbuf (error %d)\n", 1804 sc->sc_dev.dv_xname, error); 1805 m_freem(m0); 1806 return error; 1807 } 1808 if (error != 0) { 1809 /* too many fragments, linearize */ 1810 1811 MGETHDR(mnew, M_DONTWAIT, MT_DATA); 1812 if (mnew == NULL) { 1813 m_freem(m0); 1814 return ENOMEM; 1815 } 1816 1817 M_COPY_PKTHDR(mnew, m0); 1818 if (m0->m_pkthdr.len > MHLEN) { 1819 MCLGET(mnew, M_DONTWAIT); 1820 if (!(mnew->m_flags & M_EXT)) { 1821 m_freem(m0); 1822 m_freem(mnew); 1823 return ENOMEM; 1824 } 1825 } 1826 1827 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *)); 1828 m_freem(m0); 1829 mnew->m_len = mnew->m_pkthdr.len; 1830 m0 = mnew; 1831 1832 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0, 1833 BUS_DMA_NOWAIT); 1834 if (error != 0) { 1835 printf("%s: could not map mbuf (error %d)\n", 1836 sc->sc_dev.dv_xname, error); 1837 m_freem(m0); 1838 return error; 1839 } 1840 1841 /* packet header have moved, reset our local pointer */ 1842 wh = mtod(m0, struct ieee80211_frame *); 1843 } 1844 1845 #if NBPFILTER > 0 1846 if (sc->sc_drvbpf != NULL) { 1847 struct rt2661_tx_radiotap_header *tap = &sc->sc_txtap; 1848 1849 tap->wt_flags = 0; 1850 tap->wt_rate = rate; 1851 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq); 1852 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags); 1853 1854 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0); 1855 } 1856 #endif 1857 1858 data->m = m0; 1859 data->ni = ni; 1860 1861 /* remember link conditions for rate adaptation algorithm */ 1862 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) { 1863 data->id.id_len = m0->m_pkthdr.len; 1864 data->id.id_rateidx = ni->ni_txrate; 1865 data->id.id_node = ni; 1866 data->id.id_rssi = ni->ni_rssi; 1867 } else 1868 data->id.id_node = NULL; 1869 1870 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1871 flags |= RT2661_TX_NEED_ACK; 1872 1873 dur = rt2661_txtime(RAL_ACK_SIZE, rt2661_ack_rate(ic, rate), 1874 ic->ic_flags) + RAL_SIFS; 1875 *(uint16_t *)wh->i_dur = htole16(dur); 1876 } 1877 1878 rt2661_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate, 1879 data->map->dm_segs, data->map->dm_nsegs, ac); 1880 1881 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, 1882 BUS_DMASYNC_PREWRITE); 1883 bus_dmamap_sync(sc->sc_dmat, txq->map, txq->cur * RT2661_TX_DESC_SIZE, 1884 RT2661_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE); 1885 1886 DPRINTFN(10, ("sending data frame len=%u idx=%u rate=%u\n", 1887 m0->m_pkthdr.len, txq->cur, rate)); 1888 1889 /* kick Tx */ 1890 txq->queued++; 1891 txq->cur = (txq->cur + 1) % RT2661_TX_RING_COUNT; 1892 RAL_WRITE(sc, RT2661_TX_CNTL_CSR, 1); 1893 1894 return 0; 1895 } 1896 1897 static void 1898 rt2661_start(struct ifnet *ifp) 1899 { 1900 struct rt2661_softc *sc = ifp->if_softc; 1901 struct ieee80211com *ic = &sc->sc_ic; 1902 struct mbuf *m0; 1903 struct ether_header *eh; 1904 struct ieee80211_node *ni = NULL; 1905 int ac; 1906 1907 /* 1908 * net80211 may still try to send management frames even if the 1909 * IFF_RUNNING flag is not set... 1910 */ 1911 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) 1912 return; 1913 1914 for (;;) { 1915 IF_POLL(&ic->ic_mgtq, m0); 1916 if (m0 != NULL) { 1917 if (sc->mgtq.queued >= RT2661_MGT_RING_COUNT) { 1918 ifp->if_flags |= IFF_OACTIVE; 1919 break; 1920 } 1921 IF_DEQUEUE(&ic->ic_mgtq, m0); 1922 if (m0 == NULL) 1923 break; 1924 1925 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif; 1926 m0->m_pkthdr.rcvif = NULL; 1927 #if NBPFILTER > 0 1928 if (ic->ic_rawbpf != NULL) 1929 bpf_mtap(ic->ic_rawbpf, m0); 1930 #endif 1931 if (rt2661_tx_mgt(sc, m0, ni) != 0) 1932 break; 1933 1934 } else { 1935 if (ic->ic_state != IEEE80211_S_RUN) 1936 break; 1937 IFQ_DEQUEUE(&ifp->if_snd, m0); 1938 if (m0 == NULL) 1939 break; 1940 1941 if (m0->m_len < sizeof (struct ether_header) && 1942 !(m0 = m_pullup(m0, sizeof (struct ether_header)))) 1943 continue; 1944 1945 eh = mtod(m0, struct ether_header *); 1946 ni = ieee80211_find_txnode(ic, eh->ether_dhost); 1947 if (ni == NULL) { 1948 m_freem(m0); 1949 ifp->if_oerrors++; 1950 continue; 1951 } 1952 1953 1954 /* classify mbuf so we can find which tx ring to use */ 1955 if (ieee80211_classify(ic, m0, ni) != 0) { 1956 m_freem(m0); 1957 ieee80211_free_node(ni); 1958 ifp->if_oerrors++; 1959 continue; 1960 } 1961 1962 /* no QoS encapsulation for EAPOL frames */ 1963 ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ? 1964 M_WME_GETAC(m0) : WME_AC_BE; 1965 1966 if (sc->txq[0].queued >= RT2661_TX_RING_COUNT - 1) { 1967 /* there is no place left in this ring */ 1968 ifp->if_flags |= IFF_OACTIVE; 1969 break; 1970 } 1971 #if NBPFILTER > 0 1972 if (ifp->if_bpf != NULL) 1973 bpf_mtap(ifp->if_bpf, m0); 1974 #endif 1975 m0 = ieee80211_encap(ic, m0, ni); 1976 if (m0 == NULL) { 1977 ieee80211_free_node(ni); 1978 ifp->if_oerrors++; 1979 continue; 1980 } 1981 #if NBPFILTER > 0 1982 if (ic->ic_rawbpf != NULL) 1983 bpf_mtap(ic->ic_rawbpf, m0); 1984 #endif 1985 if (rt2661_tx_data(sc, m0, ni, 0) != 0) { 1986 if (ni != NULL) 1987 ieee80211_free_node(ni); 1988 ifp->if_oerrors++; 1989 break; 1990 } 1991 } 1992 1993 sc->sc_tx_timer = 5; 1994 ifp->if_timer = 1; 1995 } 1996 } 1997 1998 static void 1999 rt2661_watchdog(struct ifnet *ifp) 2000 { 2001 struct rt2661_softc *sc = ifp->if_softc; 2002 2003 ifp->if_timer = 0; 2004 2005 if (sc->sc_tx_timer > 0) { 2006 if (--sc->sc_tx_timer == 0) { 2007 printf("%s: device timeout\n", sc->sc_dev.dv_xname); 2008 rt2661_init(ifp); 2009 ifp->if_oerrors++; 2010 return; 2011 } 2012 ifp->if_timer = 1; 2013 } 2014 2015 ieee80211_watchdog(&sc->sc_ic); 2016 } 2017 2018 /* 2019 * This function allows for fast channel switching in monitor mode (used by 2020 * kismet). In IBSS mode, we must explicitly reset the interface to 2021 * generate a new beacon frame. 2022 */ 2023 static int 2024 rt2661_reset(struct ifnet *ifp) 2025 { 2026 struct rt2661_softc *sc = ifp->if_softc; 2027 struct ieee80211com *ic = &sc->sc_ic; 2028 2029 if (ic->ic_opmode != IEEE80211_M_MONITOR) 2030 return ENETRESET; 2031 2032 rt2661_set_chan(sc, ic->ic_curchan); 2033 2034 return 0; 2035 } 2036 2037 static int 2038 rt2661_ioctl(struct ifnet *ifp, u_long cmd, void *data) 2039 { 2040 struct rt2661_softc *sc = ifp->if_softc; 2041 struct ieee80211com *ic = &sc->sc_ic; 2042 int s, error = 0; 2043 2044 s = splnet(); 2045 2046 switch (cmd) { 2047 case SIOCSIFFLAGS: 2048 if (ifp->if_flags & IFF_UP) { 2049 if (ifp->if_flags & IFF_RUNNING) 2050 rt2661_update_promisc(sc); 2051 else 2052 rt2661_init(ifp); 2053 } else { 2054 if (ifp->if_flags & IFF_RUNNING) 2055 rt2661_stop(ifp, 1); 2056 } 2057 break; 2058 2059 case SIOCADDMULTI: 2060 case SIOCDELMULTI: 2061 /* XXX no h/w multicast filter? --dyoung */ 2062 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) 2063 error = 0; 2064 break; 2065 2066 case SIOCS80211CHANNEL: 2067 /* 2068 * This allows for fast channel switching in monitor mode 2069 * (used by kismet). In IBSS mode, we must explicitly reset 2070 * the interface to generate a new beacon frame. 2071 */ 2072 error = ieee80211_ioctl(ic, cmd, data); 2073 if (error == ENETRESET && 2074 ic->ic_opmode == IEEE80211_M_MONITOR) { 2075 rt2661_set_chan(sc, ic->ic_ibss_chan); 2076 error = 0; 2077 } 2078 break; 2079 2080 default: 2081 error = ieee80211_ioctl(ic, cmd, data); 2082 2083 } 2084 2085 if (error == ENETRESET) { 2086 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == 2087 (IFF_UP | IFF_RUNNING)) 2088 rt2661_init(ifp); 2089 error = 0; 2090 } 2091 2092 splx(s); 2093 2094 return error; 2095 } 2096 2097 static void 2098 rt2661_bbp_write(struct rt2661_softc *sc, uint8_t reg, uint8_t val) 2099 { 2100 uint32_t tmp; 2101 int ntries; 2102 2103 for (ntries = 0; ntries < 100; ntries++) { 2104 if (!(RAL_READ(sc, RT2661_PHY_CSR3) & RT2661_BBP_BUSY)) 2105 break; 2106 DELAY(1); 2107 } 2108 if (ntries == 100) { 2109 printf("%s: could not write to BBP\n", sc->sc_dev.dv_xname); 2110 return; 2111 } 2112 2113 tmp = RT2661_BBP_BUSY | (reg & 0x7f) << 8 | val; 2114 RAL_WRITE(sc, RT2661_PHY_CSR3, tmp); 2115 2116 DPRINTFN(15, ("BBP R%u <- 0x%02x\n", reg, val)); 2117 } 2118 2119 static uint8_t 2120 rt2661_bbp_read(struct rt2661_softc *sc, uint8_t reg) 2121 { 2122 uint32_t val; 2123 int ntries; 2124 2125 for (ntries = 0; ntries < 100; ntries++) { 2126 if (!(RAL_READ(sc, RT2661_PHY_CSR3) & RT2661_BBP_BUSY)) 2127 break; 2128 DELAY(1); 2129 } 2130 if (ntries == 100) { 2131 printf("%s: could not read from BBP\n", sc->sc_dev.dv_xname); 2132 return 0; 2133 } 2134 2135 val = RT2661_BBP_BUSY | RT2661_BBP_READ | reg << 8; 2136 RAL_WRITE(sc, RT2661_PHY_CSR3, val); 2137 2138 for (ntries = 0; ntries < 100; ntries++) { 2139 val = RAL_READ(sc, RT2661_PHY_CSR3); 2140 if (!(val & RT2661_BBP_BUSY)) 2141 return val & 0xff; 2142 DELAY(1); 2143 } 2144 2145 printf("%s: could not read from BBP\n", sc->sc_dev.dv_xname); 2146 return 0; 2147 } 2148 2149 static void 2150 rt2661_rf_write(struct rt2661_softc *sc, uint8_t reg, uint32_t val) 2151 { 2152 uint32_t tmp; 2153 int ntries; 2154 2155 for (ntries = 0; ntries < 100; ntries++) { 2156 if (!(RAL_READ(sc, RT2661_PHY_CSR4) & RT2661_RF_BUSY)) 2157 break; 2158 DELAY(1); 2159 } 2160 if (ntries == 100) { 2161 printf("%s: could not write to RF\n", sc->sc_dev.dv_xname); 2162 return; 2163 } 2164 2165 tmp = RT2661_RF_BUSY | RT2661_RF_21BIT | (val & 0x1fffff) << 2 | 2166 (reg & 3); 2167 RAL_WRITE(sc, RT2661_PHY_CSR4, tmp); 2168 2169 /* remember last written value in sc */ 2170 sc->rf_regs[reg] = val; 2171 2172 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0x1fffff)); 2173 } 2174 2175 static int 2176 rt2661_tx_cmd(struct rt2661_softc *sc, uint8_t cmd, uint16_t arg) 2177 { 2178 if (RAL_READ(sc, RT2661_H2M_MAILBOX_CSR) & RT2661_H2M_BUSY) 2179 return EIO; /* there is already a command pending */ 2180 2181 RAL_WRITE(sc, RT2661_H2M_MAILBOX_CSR, 2182 RT2661_H2M_BUSY | RT2661_TOKEN_NO_INTR << 16 | arg); 2183 2184 RAL_WRITE(sc, RT2661_HOST_CMD_CSR, RT2661_KICK_CMD | cmd); 2185 2186 return 0; 2187 } 2188 2189 static void 2190 rt2661_select_antenna(struct rt2661_softc *sc) 2191 { 2192 uint8_t bbp4, bbp77; 2193 uint32_t tmp; 2194 2195 bbp4 = rt2661_bbp_read(sc, 4); 2196 bbp77 = rt2661_bbp_read(sc, 77); 2197 2198 /* TBD */ 2199 2200 /* make sure Rx is disabled before switching antenna */ 2201 tmp = RAL_READ(sc, RT2661_TXRX_CSR0); 2202 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX); 2203 2204 rt2661_bbp_write(sc, 4, bbp4); 2205 rt2661_bbp_write(sc, 77, bbp77); 2206 2207 /* restore Rx filter */ 2208 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp); 2209 } 2210 2211 /* 2212 * Enable multi-rate retries for frames sent at OFDM rates. 2213 * In 802.11b/g mode, allow fallback to CCK rates. 2214 */ 2215 static void 2216 rt2661_enable_mrr(struct rt2661_softc *sc) 2217 { 2218 struct ieee80211com *ic = &sc->sc_ic; 2219 uint32_t tmp; 2220 2221 tmp = RAL_READ(sc, RT2661_TXRX_CSR4); 2222 2223 tmp &= ~RT2661_MRR_CCK_FALLBACK; 2224 if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) 2225 tmp |= RT2661_MRR_CCK_FALLBACK; 2226 tmp |= RT2661_MRR_ENABLED; 2227 2228 RAL_WRITE(sc, RT2661_TXRX_CSR4, tmp); 2229 } 2230 2231 static void 2232 rt2661_set_txpreamble(struct rt2661_softc *sc) 2233 { 2234 uint32_t tmp; 2235 2236 tmp = RAL_READ(sc, RT2661_TXRX_CSR4); 2237 2238 tmp &= ~RT2661_SHORT_PREAMBLE; 2239 if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE) 2240 tmp |= RT2661_SHORT_PREAMBLE; 2241 2242 RAL_WRITE(sc, RT2661_TXRX_CSR4, tmp); 2243 } 2244 2245 static void 2246 rt2661_set_basicrates(struct rt2661_softc *sc, 2247 const struct ieee80211_rateset *rs) 2248 { 2249 #define RV(r) ((r) & IEEE80211_RATE_VAL) 2250 uint32_t mask = 0; 2251 uint8_t rate; 2252 int i, j; 2253 2254 for (i = 0; i < rs->rs_nrates; i++) { 2255 rate = rs->rs_rates[i]; 2256 2257 if (!(rate & IEEE80211_RATE_BASIC)) 2258 continue; 2259 2260 /* 2261 * Find h/w rate index. We know it exists because the rate 2262 * set has already been negotiated. 2263 */ 2264 for (j = 0; rt2661_rateset_11g.rs_rates[j] != RV(rate); j++); 2265 2266 mask |= 1 << j; 2267 } 2268 2269 RAL_WRITE(sc, RT2661_TXRX_CSR5, mask); 2270 2271 DPRINTF(("Setting basic rate mask to 0x%x\n", mask)); 2272 #undef RV 2273 } 2274 2275 /* 2276 * Reprogram MAC/BBP to switch to a new band. Values taken from the reference 2277 * driver. 2278 */ 2279 static void 2280 rt2661_select_band(struct rt2661_softc *sc, struct ieee80211_channel *c) 2281 { 2282 uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104; 2283 uint32_t tmp; 2284 2285 /* update all BBP registers that depend on the band */ 2286 bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c; 2287 bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48; 2288 if (IEEE80211_IS_CHAN_5GHZ(c)) { 2289 bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c; 2290 bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10; 2291 } 2292 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || 2293 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { 2294 bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10; 2295 } 2296 2297 rt2661_bbp_write(sc, 17, bbp17); 2298 rt2661_bbp_write(sc, 96, bbp96); 2299 rt2661_bbp_write(sc, 104, bbp104); 2300 2301 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || 2302 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { 2303 rt2661_bbp_write(sc, 75, 0x80); 2304 rt2661_bbp_write(sc, 86, 0x80); 2305 rt2661_bbp_write(sc, 88, 0x80); 2306 } 2307 2308 rt2661_bbp_write(sc, 35, bbp35); 2309 rt2661_bbp_write(sc, 97, bbp97); 2310 rt2661_bbp_write(sc, 98, bbp98); 2311 2312 tmp = RAL_READ(sc, RT2661_PHY_CSR0); 2313 tmp &= ~(RT2661_PA_PE_2GHZ | RT2661_PA_PE_5GHZ); 2314 if (IEEE80211_IS_CHAN_2GHZ(c)) 2315 tmp |= RT2661_PA_PE_2GHZ; 2316 else 2317 tmp |= RT2661_PA_PE_5GHZ; 2318 RAL_WRITE(sc, RT2661_PHY_CSR0, tmp); 2319 } 2320 2321 static void 2322 rt2661_set_chan(struct rt2661_softc *sc, struct ieee80211_channel *c) 2323 { 2324 struct ieee80211com *ic = &sc->sc_ic; 2325 const struct rfprog *rfprog; 2326 uint8_t bbp3, bbp94 = RT2661_BBPR94_DEFAULT; 2327 int8_t power; 2328 u_int i, chan; 2329 2330 chan = ieee80211_chan2ieee(ic, c); 2331 if (chan == 0 || chan == IEEE80211_CHAN_ANY) 2332 return; 2333 2334 /* select the appropriate RF settings based on what EEPROM says */ 2335 rfprog = (sc->rfprog == 0) ? rt2661_rf5225_1 : rt2661_rf5225_2; 2336 2337 /* find the settings for this channel (we know it exists) */ 2338 for (i = 0; rfprog[i].chan != chan; i++); 2339 2340 power = sc->txpow[i]; 2341 if (power < 0) { 2342 bbp94 += power; 2343 power = 0; 2344 } else if (power > 31) { 2345 bbp94 += power - 31; 2346 power = 31; 2347 } 2348 2349 /* 2350 * If we've yet to select a channel, or we are switching from the 2351 * 2GHz band to the 5GHz band or vice-versa, BBP registers need to 2352 * be reprogrammed. 2353 */ 2354 if (sc->sc_curchan == NULL || c->ic_flags != sc->sc_curchan->ic_flags) { 2355 rt2661_select_band(sc, c); 2356 rt2661_select_antenna(sc); 2357 } 2358 sc->sc_curchan = c; 2359 2360 rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1); 2361 rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2); 2362 rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7); 2363 rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10); 2364 2365 DELAY(200); 2366 2367 rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1); 2368 rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2); 2369 rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7 | 1); 2370 rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10); 2371 2372 DELAY(200); 2373 2374 rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1); 2375 rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2); 2376 rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7); 2377 rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10); 2378 2379 /* enable smart mode for MIMO-capable RFs */ 2380 bbp3 = rt2661_bbp_read(sc, 3); 2381 2382 bbp3 &= ~RT2661_SMART_MODE; 2383 if (sc->rf_rev == RT2661_RF_5325 || sc->rf_rev == RT2661_RF_2529) 2384 bbp3 |= RT2661_SMART_MODE; 2385 2386 rt2661_bbp_write(sc, 3, bbp3); 2387 2388 if (bbp94 != RT2661_BBPR94_DEFAULT) 2389 rt2661_bbp_write(sc, 94, bbp94); 2390 2391 /* 5GHz radio needs a 1ms delay here */ 2392 if (IEEE80211_IS_CHAN_5GHZ(c)) 2393 DELAY(1000); 2394 } 2395 2396 static void 2397 rt2661_set_bssid(struct rt2661_softc *sc, const uint8_t *bssid) 2398 { 2399 uint32_t tmp; 2400 2401 tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24; 2402 RAL_WRITE(sc, RT2661_MAC_CSR4, tmp); 2403 2404 tmp = bssid[4] | bssid[5] << 8 | RT2661_ONE_BSSID << 16; 2405 RAL_WRITE(sc, RT2661_MAC_CSR5, tmp); 2406 } 2407 2408 static void 2409 rt2661_set_macaddr(struct rt2661_softc *sc, const uint8_t *addr) 2410 { 2411 uint32_t tmp; 2412 2413 tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24; 2414 RAL_WRITE(sc, RT2661_MAC_CSR2, tmp); 2415 2416 tmp = addr[4] | addr[5] << 8; 2417 RAL_WRITE(sc, RT2661_MAC_CSR3, tmp); 2418 } 2419 2420 static void 2421 rt2661_update_promisc(struct rt2661_softc *sc) 2422 { 2423 struct ifnet *ifp = sc->sc_ic.ic_ifp; 2424 uint32_t tmp; 2425 2426 tmp = RAL_READ(sc, RT2661_TXRX_CSR0); 2427 2428 tmp &= ~RT2661_DROP_NOT_TO_ME; 2429 if (!(ifp->if_flags & IFF_PROMISC)) 2430 tmp |= RT2661_DROP_NOT_TO_ME; 2431 2432 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp); 2433 2434 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ? 2435 "entering" : "leaving")); 2436 } 2437 2438 #if 0 2439 /* 2440 * Update QoS (802.11e) settings for each h/w Tx ring. 2441 */ 2442 static int 2443 rt2661_wme_update(struct ieee80211com *ic) 2444 { 2445 struct rt2661_softc *sc = ic->ic_ifp->if_softc; 2446 const struct wmeParams *wmep; 2447 2448 wmep = ic->ic_wme.wme_chanParams.cap_wmeParams; 2449 2450 /* XXX: not sure about shifts. */ 2451 /* XXX: the reference driver plays with AC_VI settings too. */ 2452 2453 /* update TxOp */ 2454 RAL_WRITE(sc, RT2661_AC_TXOP_CSR0, 2455 wmep[WME_AC_BE].wmep_txopLimit << 16 | 2456 wmep[WME_AC_BK].wmep_txopLimit); 2457 RAL_WRITE(sc, RT2661_AC_TXOP_CSR1, 2458 wmep[WME_AC_VI].wmep_txopLimit << 16 | 2459 wmep[WME_AC_VO].wmep_txopLimit); 2460 2461 /* update CWmin */ 2462 RAL_WRITE(sc, RT2661_CWMIN_CSR, 2463 wmep[WME_AC_BE].wmep_logcwmin << 12 | 2464 wmep[WME_AC_BK].wmep_logcwmin << 8 | 2465 wmep[WME_AC_VI].wmep_logcwmin << 4 | 2466 wmep[WME_AC_VO].wmep_logcwmin); 2467 2468 /* update CWmax */ 2469 RAL_WRITE(sc, RT2661_CWMAX_CSR, 2470 wmep[WME_AC_BE].wmep_logcwmax << 12 | 2471 wmep[WME_AC_BK].wmep_logcwmax << 8 | 2472 wmep[WME_AC_VI].wmep_logcwmax << 4 | 2473 wmep[WME_AC_VO].wmep_logcwmax); 2474 2475 /* update Aifsn */ 2476 RAL_WRITE(sc, RT2661_AIFSN_CSR, 2477 wmep[WME_AC_BE].wmep_aifsn << 12 | 2478 wmep[WME_AC_BK].wmep_aifsn << 8 | 2479 wmep[WME_AC_VI].wmep_aifsn << 4 | 2480 wmep[WME_AC_VO].wmep_aifsn); 2481 2482 return 0; 2483 } 2484 #endif 2485 2486 static void 2487 rt2661_update_slot(struct ifnet *ifp) 2488 { 2489 struct rt2661_softc *sc = ifp->if_softc; 2490 struct ieee80211com *ic = &sc->sc_ic; 2491 uint8_t slottime; 2492 uint32_t tmp; 2493 2494 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20; 2495 2496 tmp = RAL_READ(sc, RT2661_MAC_CSR9); 2497 tmp = (tmp & ~0xff) | slottime; 2498 RAL_WRITE(sc, RT2661_MAC_CSR9, tmp); 2499 } 2500 2501 static const char * 2502 rt2661_get_rf(int rev) 2503 { 2504 switch (rev) { 2505 case RT2661_RF_5225: return "RT5225"; 2506 case RT2661_RF_5325: return "RT5325 (MIMO XR)"; 2507 case RT2661_RF_2527: return "RT2527"; 2508 case RT2661_RF_2529: return "RT2529 (MIMO XR)"; 2509 default: return "unknown"; 2510 } 2511 } 2512 2513 static void 2514 rt2661_read_eeprom(struct rt2661_softc *sc) 2515 { 2516 struct ieee80211com *ic = &sc->sc_ic; 2517 uint16_t val; 2518 int i; 2519 2520 /* read MAC address */ 2521 val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC01); 2522 ic->ic_myaddr[0] = val & 0xff; 2523 ic->ic_myaddr[1] = val >> 8; 2524 2525 val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC23); 2526 ic->ic_myaddr[2] = val & 0xff; 2527 ic->ic_myaddr[3] = val >> 8; 2528 2529 val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC45); 2530 ic->ic_myaddr[4] = val & 0xff; 2531 ic->ic_myaddr[5] = val >> 8; 2532 2533 val = rt2661_eeprom_read(sc, RT2661_EEPROM_ANTENNA); 2534 /* XXX: test if different from 0xffff? */ 2535 sc->rf_rev = (val >> 11) & 0x1f; 2536 sc->hw_radio = (val >> 10) & 0x1; 2537 sc->rx_ant = (val >> 4) & 0x3; 2538 sc->tx_ant = (val >> 2) & 0x3; 2539 sc->nb_ant = val & 0x3; 2540 2541 DPRINTF(("RF revision=%d\n", sc->rf_rev)); 2542 2543 val = rt2661_eeprom_read(sc, RT2661_EEPROM_CONFIG2); 2544 sc->ext_5ghz_lna = (val >> 6) & 0x1; 2545 sc->ext_2ghz_lna = (val >> 4) & 0x1; 2546 2547 DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n", 2548 sc->ext_2ghz_lna, sc->ext_5ghz_lna)); 2549 2550 val = rt2661_eeprom_read(sc, RT2661_EEPROM_RSSI_2GHZ_OFFSET); 2551 if ((val & 0xff) != 0xff) 2552 sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */ 2553 2554 val = rt2661_eeprom_read(sc, RT2661_EEPROM_RSSI_5GHZ_OFFSET); 2555 if ((val & 0xff) != 0xff) 2556 sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */ 2557 2558 /* adjust RSSI correction for external low-noise amplifier */ 2559 if (sc->ext_2ghz_lna) 2560 sc->rssi_2ghz_corr -= 14; 2561 if (sc->ext_5ghz_lna) 2562 sc->rssi_5ghz_corr -= 14; 2563 2564 DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n", 2565 sc->rssi_2ghz_corr, sc->rssi_5ghz_corr)); 2566 2567 val = rt2661_eeprom_read(sc, RT2661_EEPROM_FREQ_OFFSET); 2568 if ((val >> 8) != 0xff) 2569 sc->rfprog = (val >> 8) & 0x3; 2570 if ((val & 0xff) != 0xff) 2571 sc->rffreq = val & 0xff; 2572 2573 DPRINTF(("RF prog=%d\nRF freq=%d\n", sc->rfprog, sc->rffreq)); 2574 2575 /* read Tx power for all a/b/g channels */ 2576 for (i = 0; i < 19; i++) { 2577 val = rt2661_eeprom_read(sc, RT2661_EEPROM_TXPOWER + i); 2578 sc->txpow[i * 2] = (int8_t)(val >> 8); /* signed */ 2579 DPRINTF(("Channel=%d Tx power=%d\n", 2580 rt2661_rf5225_1[i * 2].chan, sc->txpow[i * 2])); 2581 sc->txpow[i * 2 + 1] = (int8_t)(val & 0xff); /* signed */ 2582 DPRINTF(("Channel=%d Tx power=%d\n", 2583 rt2661_rf5225_1[i * 2 + 1].chan, sc->txpow[i * 2 + 1])); 2584 } 2585 2586 /* read vendor-specific BBP values */ 2587 for (i = 0; i < 16; i++) { 2588 val = rt2661_eeprom_read(sc, RT2661_EEPROM_BBP_BASE + i); 2589 if (val == 0 || val == 0xffff) 2590 continue; /* skip invalid entries */ 2591 sc->bbp_prom[i].reg = val >> 8; 2592 sc->bbp_prom[i].val = val & 0xff; 2593 DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg, 2594 sc->bbp_prom[i].val)); 2595 } 2596 } 2597 2598 static int 2599 rt2661_bbp_init(struct rt2661_softc *sc) 2600 { 2601 #define N(a) (sizeof (a) / sizeof ((a)[0])) 2602 int i, ntries; 2603 uint8_t val; 2604 2605 /* wait for BBP to be ready */ 2606 for (ntries = 0; ntries < 100; ntries++) { 2607 val = rt2661_bbp_read(sc, 0); 2608 if (val != 0 && val != 0xff) 2609 break; 2610 DELAY(100); 2611 } 2612 if (ntries == 100) { 2613 printf("%s: timeout waiting for BBP\n", sc->sc_dev.dv_xname); 2614 return EIO; 2615 } 2616 2617 /* initialize BBP registers to default values */ 2618 for (i = 0; i < N(rt2661_def_bbp); i++) { 2619 rt2661_bbp_write(sc, rt2661_def_bbp[i].reg, 2620 rt2661_def_bbp[i].val); 2621 } 2622 2623 /* write vendor-specific BBP values (from EEPROM) */ 2624 for (i = 0; i < 16; i++) { 2625 if (sc->bbp_prom[i].reg == 0) 2626 continue; 2627 rt2661_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val); 2628 } 2629 2630 return 0; 2631 #undef N 2632 } 2633 2634 static int 2635 rt2661_init(struct ifnet *ifp) 2636 { 2637 #define N(a) (sizeof (a) / sizeof ((a)[0])) 2638 struct rt2661_softc *sc = ifp->if_softc; 2639 struct ieee80211com *ic = &sc->sc_ic; 2640 const char *name = NULL; /* make lint happy */ 2641 uint8_t *ucode; 2642 size_t size; 2643 uint32_t tmp, star[3]; 2644 int i, ntries; 2645 firmware_handle_t fh; 2646 2647 /* for CardBus, power on the socket */ 2648 if (!(sc->sc_flags & RT2661_ENABLED)) { 2649 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) { 2650 printf("%s: could not enable device\n", 2651 sc->sc_dev.dv_xname); 2652 return EIO; 2653 } 2654 sc->sc_flags |= RT2661_ENABLED; 2655 } 2656 2657 rt2661_stop(ifp, 0); 2658 2659 if (!(sc->sc_flags & RT2661_FWLOADED)) { 2660 switch (sc->sc_id) { 2661 case PCI_PRODUCT_RALINK_RT2561: 2662 name = "ral-rt2561"; 2663 break; 2664 case PCI_PRODUCT_RALINK_RT2561S: 2665 name = "ral-rt2561s"; 2666 break; 2667 case PCI_PRODUCT_RALINK_RT2661: 2668 name = "ral-rt2661"; 2669 break; 2670 } 2671 2672 if (firmware_open("ral", name, &fh) != 0) { 2673 printf("%s: could not open microcode %s\n", 2674 sc->sc_dev.dv_xname, name); 2675 rt2661_stop(ifp, 1); 2676 return EIO; 2677 } 2678 2679 size = firmware_get_size(fh); 2680 if (!(ucode = firmware_malloc(size))) { 2681 printf("%s: could not alloc microcode memory\n", 2682 sc->sc_dev.dv_xname); 2683 firmware_close(fh); 2684 rt2661_stop(ifp, 1); 2685 return ENOMEM; 2686 } 2687 2688 if (firmware_read(fh, 0, ucode, size) != 0) { 2689 printf("%s: could not read microcode %s\n", 2690 sc->sc_dev.dv_xname, name); 2691 firmware_free(ucode, 0); 2692 firmware_close(fh); 2693 rt2661_stop(ifp, 1); 2694 return EIO; 2695 } 2696 2697 if (rt2661_load_microcode(sc, ucode, size) != 0) { 2698 printf("%s: could not load 8051 microcode\n", 2699 sc->sc_dev.dv_xname); 2700 firmware_free(ucode, 0); 2701 firmware_close(fh); 2702 rt2661_stop(ifp, 1); 2703 return EIO; 2704 } 2705 2706 firmware_free(ucode, 0); 2707 firmware_close(fh); 2708 sc->sc_flags |= RT2661_FWLOADED; 2709 } 2710 2711 /* initialize Tx rings */ 2712 RAL_WRITE(sc, RT2661_AC1_BASE_CSR, sc->txq[1].physaddr); 2713 RAL_WRITE(sc, RT2661_AC0_BASE_CSR, sc->txq[0].physaddr); 2714 RAL_WRITE(sc, RT2661_AC2_BASE_CSR, sc->txq[2].physaddr); 2715 RAL_WRITE(sc, RT2661_AC3_BASE_CSR, sc->txq[3].physaddr); 2716 2717 /* initialize Mgt ring */ 2718 RAL_WRITE(sc, RT2661_MGT_BASE_CSR, sc->mgtq.physaddr); 2719 2720 /* initialize Rx ring */ 2721 RAL_WRITE(sc, RT2661_RX_BASE_CSR, sc->rxq.physaddr); 2722 2723 /* initialize Tx rings sizes */ 2724 RAL_WRITE(sc, RT2661_TX_RING_CSR0, 2725 RT2661_TX_RING_COUNT << 24 | 2726 RT2661_TX_RING_COUNT << 16 | 2727 RT2661_TX_RING_COUNT << 8 | 2728 RT2661_TX_RING_COUNT); 2729 2730 RAL_WRITE(sc, RT2661_TX_RING_CSR1, 2731 RT2661_TX_DESC_WSIZE << 16 | 2732 RT2661_TX_RING_COUNT << 8 | /* XXX: HCCA ring unused */ 2733 RT2661_MGT_RING_COUNT); 2734 2735 /* initialize Rx rings */ 2736 RAL_WRITE(sc, RT2661_RX_RING_CSR, 2737 RT2661_RX_DESC_BACK << 16 | 2738 RT2661_RX_DESC_WSIZE << 8 | 2739 RT2661_RX_RING_COUNT); 2740 2741 /* XXX: some magic here */ 2742 RAL_WRITE(sc, RT2661_TX_DMA_DST_CSR, 0xaa); 2743 2744 /* load base addresses of all 5 Tx rings (4 data + 1 mgt) */ 2745 RAL_WRITE(sc, RT2661_LOAD_TX_RING_CSR, 0x1f); 2746 2747 /* load base address of Rx ring */ 2748 RAL_WRITE(sc, RT2661_RX_CNTL_CSR, 2); 2749 2750 /* initialize MAC registers to default values */ 2751 for (i = 0; i < N(rt2661_def_mac); i++) 2752 RAL_WRITE(sc, rt2661_def_mac[i].reg, rt2661_def_mac[i].val); 2753 2754 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl)); 2755 rt2661_set_macaddr(sc, ic->ic_myaddr); 2756 2757 /* set host ready */ 2758 RAL_WRITE(sc, RT2661_MAC_CSR1, 3); 2759 RAL_WRITE(sc, RT2661_MAC_CSR1, 0); 2760 2761 /* wait for BBP/RF to wakeup */ 2762 for (ntries = 0; ntries < 1000; ntries++) { 2763 if (RAL_READ(sc, RT2661_MAC_CSR12) & 8) 2764 break; 2765 DELAY(1000); 2766 } 2767 if (ntries == 1000) { 2768 printf("timeout waiting for BBP/RF to wakeup\n"); 2769 rt2661_stop(ifp, 1); 2770 return EIO; 2771 } 2772 2773 if (rt2661_bbp_init(sc) != 0) { 2774 rt2661_stop(ifp, 1); 2775 return EIO; 2776 } 2777 2778 /* select default channel */ 2779 sc->sc_curchan = ic->ic_curchan; 2780 rt2661_select_band(sc, sc->sc_curchan); 2781 rt2661_select_antenna(sc); 2782 rt2661_set_chan(sc, sc->sc_curchan); 2783 2784 /* update Rx filter */ 2785 tmp = RAL_READ(sc, RT2661_TXRX_CSR0) & 0xffff; 2786 2787 tmp |= RT2661_DROP_PHY_ERROR | RT2661_DROP_CRC_ERROR; 2788 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 2789 tmp |= RT2661_DROP_CTL | RT2661_DROP_VER_ERROR | 2790 RT2661_DROP_ACKCTS; 2791 if (ic->ic_opmode != IEEE80211_M_HOSTAP) 2792 tmp |= RT2661_DROP_TODS; 2793 if (!(ifp->if_flags & IFF_PROMISC)) 2794 tmp |= RT2661_DROP_NOT_TO_ME; 2795 } 2796 2797 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp); 2798 2799 /* clear STA registers */ 2800 RAL_READ_REGION_4(sc, RT2661_STA_CSR0, star, N(star)); 2801 2802 /* initialize ASIC */ 2803 RAL_WRITE(sc, RT2661_MAC_CSR1, 4); 2804 2805 /* clear any pending interrupt */ 2806 RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, 0xffffffff); 2807 2808 /* enable interrupts */ 2809 RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0x0000ff10); 2810 RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0); 2811 2812 /* kick Rx */ 2813 RAL_WRITE(sc, RT2661_RX_CNTL_CSR, 1); 2814 2815 ifp->if_flags &= ~IFF_OACTIVE; 2816 ifp->if_flags |= IFF_RUNNING; 2817 2818 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 2819 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL) 2820 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 2821 } else 2822 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 2823 2824 return 0; 2825 #undef N 2826 } 2827 2828 static void 2829 rt2661_stop(struct ifnet *ifp, int disable) 2830 { 2831 struct rt2661_softc *sc = ifp->if_softc; 2832 struct ieee80211com *ic = &sc->sc_ic; 2833 uint32_t tmp; 2834 2835 sc->sc_tx_timer = 0; 2836 ifp->if_timer = 0; 2837 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 2838 2839 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */ 2840 2841 /* abort Tx (for all 5 Tx rings) */ 2842 RAL_WRITE(sc, RT2661_TX_CNTL_CSR, 0x1f << 16); 2843 2844 /* disable Rx (value remains after reset!) */ 2845 tmp = RAL_READ(sc, RT2661_TXRX_CSR0); 2846 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX); 2847 2848 /* reset ASIC */ 2849 RAL_WRITE(sc, RT2661_MAC_CSR1, 3); 2850 RAL_WRITE(sc, RT2661_MAC_CSR1, 0); 2851 2852 /* disable interrupts */ 2853 RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0xffffff7f); 2854 RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0xffffffff); 2855 2856 /* clear any pending interrupt */ 2857 RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, 0xffffffff); 2858 RAL_WRITE(sc, RT2661_MCU_INT_SOURCE_CSR, 0xffffffff); 2859 2860 /* reset Tx and Rx rings */ 2861 rt2661_reset_tx_ring(sc, &sc->txq[0]); 2862 rt2661_reset_tx_ring(sc, &sc->txq[1]); 2863 rt2661_reset_tx_ring(sc, &sc->txq[2]); 2864 rt2661_reset_tx_ring(sc, &sc->txq[3]); 2865 rt2661_reset_tx_ring(sc, &sc->mgtq); 2866 rt2661_reset_rx_ring(sc, &sc->rxq); 2867 2868 /* for CardBus, power down the socket */ 2869 if (disable && sc->sc_disable != NULL) { 2870 if (sc->sc_flags & RT2661_ENABLED) { 2871 (*sc->sc_disable)(sc); 2872 sc->sc_flags &= ~(RT2661_ENABLED | RT2661_FWLOADED); 2873 } 2874 } 2875 } 2876 2877 static int 2878 rt2661_load_microcode(struct rt2661_softc *sc, const uint8_t *ucode, int size) 2879 { 2880 int ntries; 2881 2882 /* reset 8051 */ 2883 RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET); 2884 2885 /* cancel any pending Host to MCU command */ 2886 RAL_WRITE(sc, RT2661_H2M_MAILBOX_CSR, 0); 2887 RAL_WRITE(sc, RT2661_M2H_CMD_DONE_CSR, 0xffffffff); 2888 RAL_WRITE(sc, RT2661_HOST_CMD_CSR, 0); 2889 2890 /* write 8051's microcode */ 2891 RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET | RT2661_MCU_SEL); 2892 RAL_WRITE_REGION_1(sc, RT2661_MCU_CODE_BASE, ucode, size); 2893 RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET); 2894 2895 /* kick 8051's ass */ 2896 RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, 0); 2897 2898 /* wait for 8051 to initialize */ 2899 for (ntries = 0; ntries < 500; ntries++) { 2900 if (RAL_READ(sc, RT2661_MCU_CNTL_CSR) & RT2661_MCU_READY) 2901 break; 2902 DELAY(100); 2903 } 2904 if (ntries == 500) { 2905 printf("timeout waiting for MCU to initialize\n"); 2906 return EIO; 2907 } 2908 return 0; 2909 } 2910 2911 #ifdef notyet 2912 /* 2913 * Dynamically tune Rx sensitivity (BBP register 17) based on average RSSI and 2914 * false CCA count. This function is called periodically (every seconds) when 2915 * in the RUN state. Values taken from the reference driver. 2916 */ 2917 static void 2918 rt2661_rx_tune(struct rt2661_softc *sc) 2919 { 2920 uint8_t bbp17; 2921 uint16_t cca; 2922 int lo, hi, dbm; 2923 2924 /* 2925 * Tuning range depends on operating band and on the presence of an 2926 * external low-noise amplifier. 2927 */ 2928 lo = 0x20; 2929 if (IEEE80211_IS_CHAN_5GHZ(sc->sc_curchan)) 2930 lo += 0x08; 2931 if ((IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan) && sc->ext_2ghz_lna) || 2932 (IEEE80211_IS_CHAN_5GHZ(sc->sc_curchan) && sc->ext_5ghz_lna)) 2933 lo += 0x10; 2934 hi = lo + 0x20; 2935 2936 /* retrieve false CCA count since last call (clear on read) */ 2937 cca = RAL_READ(sc, RT2661_STA_CSR1) & 0xffff; 2938 2939 if (dbm >= -35) { 2940 bbp17 = 0x60; 2941 } else if (dbm >= -58) { 2942 bbp17 = hi; 2943 } else if (dbm >= -66) { 2944 bbp17 = lo + 0x10; 2945 } else if (dbm >= -74) { 2946 bbp17 = lo + 0x08; 2947 } else { 2948 /* RSSI < -74dBm, tune using false CCA count */ 2949 2950 bbp17 = sc->bbp17; /* current value */ 2951 2952 hi -= 2 * (-74 - dbm); 2953 if (hi < lo) 2954 hi = lo; 2955 2956 if (bbp17 > hi) { 2957 bbp17 = hi; 2958 2959 } else if (cca > 512) { 2960 if (++bbp17 > hi) 2961 bbp17 = hi; 2962 } else if (cca < 100) { 2963 if (--bbp17 < lo) 2964 bbp17 = lo; 2965 } 2966 } 2967 2968 if (bbp17 != sc->bbp17) { 2969 rt2661_bbp_write(sc, 17, bbp17); 2970 sc->bbp17 = bbp17; 2971 } 2972 } 2973 2974 /* 2975 * Enter/Leave radar detection mode. 2976 * This is for 802.11h additional regulatory domains. 2977 */ 2978 static void 2979 rt2661_radar_start(struct rt2661_softc *sc) 2980 { 2981 uint32_t tmp; 2982 2983 /* disable Rx */ 2984 tmp = RAL_READ(sc, RT2661_TXRX_CSR0); 2985 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX); 2986 2987 rt2661_bbp_write(sc, 82, 0x20); 2988 rt2661_bbp_write(sc, 83, 0x00); 2989 rt2661_bbp_write(sc, 84, 0x40); 2990 2991 /* save current BBP registers values */ 2992 sc->bbp18 = rt2661_bbp_read(sc, 18); 2993 sc->bbp21 = rt2661_bbp_read(sc, 21); 2994 sc->bbp22 = rt2661_bbp_read(sc, 22); 2995 sc->bbp16 = rt2661_bbp_read(sc, 16); 2996 sc->bbp17 = rt2661_bbp_read(sc, 17); 2997 sc->bbp64 = rt2661_bbp_read(sc, 64); 2998 2999 rt2661_bbp_write(sc, 18, 0xff); 3000 rt2661_bbp_write(sc, 21, 0x3f); 3001 rt2661_bbp_write(sc, 22, 0x3f); 3002 rt2661_bbp_write(sc, 16, 0xbd); 3003 rt2661_bbp_write(sc, 17, sc->ext_5ghz_lna ? 0x44 : 0x34); 3004 rt2661_bbp_write(sc, 64, 0x21); 3005 3006 /* restore Rx filter */ 3007 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp); 3008 } 3009 3010 static int 3011 rt2661_radar_stop(struct rt2661_softc *sc) 3012 { 3013 uint8_t bbp66; 3014 3015 /* read radar detection result */ 3016 bbp66 = rt2661_bbp_read(sc, 66); 3017 3018 /* restore BBP registers values */ 3019 rt2661_bbp_write(sc, 16, sc->bbp16); 3020 rt2661_bbp_write(sc, 17, sc->bbp17); 3021 rt2661_bbp_write(sc, 18, sc->bbp18); 3022 rt2661_bbp_write(sc, 21, sc->bbp21); 3023 rt2661_bbp_write(sc, 22, sc->bbp22); 3024 rt2661_bbp_write(sc, 64, sc->bbp64); 3025 3026 return bbp66 == 1; 3027 } 3028 #endif 3029 3030 static int 3031 rt2661_prepare_beacon(struct rt2661_softc *sc) 3032 { 3033 struct ieee80211com *ic = &sc->sc_ic; 3034 struct rt2661_tx_desc desc; 3035 struct mbuf *m0; 3036 struct ieee80211_beacon_offsets bo; 3037 int rate; 3038 3039 m0 = ieee80211_beacon_alloc(ic, ic->ic_bss, &bo); 3040 3041 if (m0 == NULL) { 3042 printf("%s: could not allocate beacon frame\n", 3043 sc->sc_dev.dv_xname); 3044 return ENOBUFS; 3045 } 3046 3047 /* send beacons at the lowest available rate */ 3048 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan) ? 12 : 2; 3049 3050 rt2661_setup_tx_desc(sc, &desc, RT2661_TX_TIMESTAMP, RT2661_TX_HWSEQ, 3051 m0->m_pkthdr.len, rate, NULL, 0, RT2661_QID_MGT); 3052 3053 /* copy the first 24 bytes of Tx descriptor into NIC memory */ 3054 RAL_WRITE_REGION_1(sc, RT2661_HW_BEACON_BASE0, (uint8_t *)&desc, 24); 3055 3056 /* copy beacon header and payload into NIC memory */ 3057 RAL_WRITE_REGION_1(sc, RT2661_HW_BEACON_BASE0 + 24, 3058 mtod(m0, uint8_t *), m0->m_pkthdr.len); 3059 3060 m_freem(m0); 3061 3062 return 0; 3063 } 3064 3065 /* 3066 * Enable TSF synchronization and tell h/w to start sending beacons for IBSS 3067 * and HostAP operating modes. 3068 */ 3069 static void 3070 rt2661_enable_tsf_sync(struct rt2661_softc *sc) 3071 { 3072 struct ieee80211com *ic = &sc->sc_ic; 3073 uint32_t tmp; 3074 3075 if (ic->ic_opmode != IEEE80211_M_STA) { 3076 /* 3077 * Change default 16ms TBTT adjustment to 8ms. 3078 * Must be done before enabling beacon generation. 3079 */ 3080 RAL_WRITE(sc, RT2661_TXRX_CSR10, 1 << 12 | 8); 3081 } 3082 3083 tmp = RAL_READ(sc, RT2661_TXRX_CSR9) & 0xff000000; 3084 3085 /* set beacon interval (in 1/16ms unit) */ 3086 tmp |= ic->ic_bss->ni_intval * 16; 3087 3088 tmp |= RT2661_TSF_TICKING | RT2661_ENABLE_TBTT; 3089 if (ic->ic_opmode == IEEE80211_M_STA) 3090 tmp |= RT2661_TSF_MODE(1); 3091 else 3092 tmp |= RT2661_TSF_MODE(2) | RT2661_GENERATE_BEACON; 3093 3094 RAL_WRITE(sc, RT2661_TXRX_CSR9, tmp); 3095 } 3096 3097 /* 3098 * Retrieve the "Received Signal Strength Indicator" from the raw values 3099 * contained in Rx descriptors. The computation depends on which band the 3100 * frame was received. Correction values taken from the reference driver. 3101 */ 3102 static int 3103 rt2661_get_rssi(struct rt2661_softc *sc, uint8_t raw) 3104 { 3105 int lna, agc, rssi; 3106 3107 lna = (raw >> 5) & 0x3; 3108 agc = raw & 0x1f; 3109 3110 rssi = 2 * agc; 3111 3112 if (IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan)) { 3113 rssi += sc->rssi_2ghz_corr; 3114 3115 if (lna == 1) 3116 rssi -= 64; 3117 else if (lna == 2) 3118 rssi -= 74; 3119 else if (lna == 3) 3120 rssi -= 90; 3121 } else { 3122 rssi += sc->rssi_5ghz_corr; 3123 3124 if (lna == 1) 3125 rssi -= 64; 3126 else if (lna == 2) 3127 rssi -= 86; 3128 else if (lna == 3) 3129 rssi -= 100; 3130 } 3131 return rssi; 3132 } 3133