1 /* $NetBSD: rt2661.c,v 1.25 2008/11/07 00:20:03 dyoung Exp $ */ 2 /* $OpenBSD: rt2661.c,v 1.17 2006/05/01 08:41:11 damien Exp $ */ 3 /* $FreeBSD: rt2560.c,v 1.5 2006/06/02 19:59:31 csjp Exp $ */ 4 5 /*- 6 * Copyright (c) 2006 7 * Damien Bergamini <damien.bergamini@free.fr> 8 * 9 * Permission to use, copy, modify, and distribute this software for any 10 * purpose with or without fee is hereby granted, provided that the above 11 * copyright notice and this permission notice appear in all copies. 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 20 */ 21 22 /*- 23 * Ralink Technology RT2561, RT2561S and RT2661 chipset driver 24 * http://www.ralinktech.com/ 25 */ 26 27 #include <sys/cdefs.h> 28 __KERNEL_RCSID(0, "$NetBSD: rt2661.c,v 1.25 2008/11/07 00:20:03 dyoung Exp $"); 29 30 #include "bpfilter.h" 31 32 #include <sys/param.h> 33 #include <sys/sockio.h> 34 #include <sys/sysctl.h> 35 #include <sys/mbuf.h> 36 #include <sys/kernel.h> 37 #include <sys/socket.h> 38 #include <sys/systm.h> 39 #include <sys/malloc.h> 40 #include <sys/callout.h> 41 #include <sys/conf.h> 42 #include <sys/device.h> 43 44 #include <sys/bus.h> 45 #include <machine/endian.h> 46 #include <sys/intr.h> 47 48 #if NBPFILTER > 0 49 #include <net/bpf.h> 50 #endif 51 #include <net/if.h> 52 #include <net/if_arp.h> 53 #include <net/if_dl.h> 54 #include <net/if_media.h> 55 #include <net/if_types.h> 56 #include <net/if_ether.h> 57 58 #include <netinet/in.h> 59 #include <netinet/in_systm.h> 60 #include <netinet/in_var.h> 61 #include <netinet/ip.h> 62 63 #include <net80211/ieee80211_var.h> 64 #include <net80211/ieee80211_amrr.h> 65 #include <net80211/ieee80211_radiotap.h> 66 67 #include <dev/ic/rt2661reg.h> 68 #include <dev/ic/rt2661var.h> 69 70 #include <dev/pci/pcireg.h> 71 #include <dev/pci/pcivar.h> 72 #include <dev/pci/pcidevs.h> 73 74 #include <dev/firmload.h> 75 76 #ifdef RAL_DEBUG 77 #define DPRINTF(x) do { if (rt2661_debug > 0) printf x; } while (0) 78 #define DPRINTFN(n, x) do { if (rt2661_debug >= (n)) printf x; } while (0) 79 int rt2661_debug = 0; 80 #else 81 #define DPRINTF(x) 82 #define DPRINTFN(n, x) 83 #endif 84 85 static int rt2661_alloc_tx_ring(struct rt2661_softc *, 86 struct rt2661_tx_ring *, int); 87 static void rt2661_reset_tx_ring(struct rt2661_softc *, 88 struct rt2661_tx_ring *); 89 static void rt2661_free_tx_ring(struct rt2661_softc *, 90 struct rt2661_tx_ring *); 91 static int rt2661_alloc_rx_ring(struct rt2661_softc *, 92 struct rt2661_rx_ring *, int); 93 static void rt2661_reset_rx_ring(struct rt2661_softc *, 94 struct rt2661_rx_ring *); 95 static void rt2661_free_rx_ring(struct rt2661_softc *, 96 struct rt2661_rx_ring *); 97 static struct ieee80211_node * 98 rt2661_node_alloc(struct ieee80211_node_table *); 99 static int rt2661_media_change(struct ifnet *); 100 static void rt2661_next_scan(void *); 101 static void rt2661_iter_func(void *, struct ieee80211_node *); 102 static void rt2661_updatestats(void *); 103 static void rt2661_newassoc(struct ieee80211_node *, int); 104 static int rt2661_newstate(struct ieee80211com *, enum ieee80211_state, 105 int); 106 static uint16_t rt2661_eeprom_read(struct rt2661_softc *, uint8_t); 107 static void rt2661_tx_intr(struct rt2661_softc *); 108 static void rt2661_tx_dma_intr(struct rt2661_softc *, 109 struct rt2661_tx_ring *); 110 static void rt2661_rx_intr(struct rt2661_softc *); 111 static void rt2661_mcu_beacon_expire(struct rt2661_softc *); 112 static void rt2661_mcu_wakeup(struct rt2661_softc *); 113 static void rt2661_mcu_cmd_intr(struct rt2661_softc *); 114 int rt2661_intr(void *); 115 #if NBPFILTER > 0 116 static uint8_t rt2661_rxrate(struct rt2661_rx_desc *); 117 #endif 118 static int rt2661_ack_rate(struct ieee80211com *, int); 119 static uint16_t rt2661_txtime(int, int, uint32_t); 120 static uint8_t rt2661_plcp_signal(int); 121 static void rt2661_setup_tx_desc(struct rt2661_softc *, 122 struct rt2661_tx_desc *, uint32_t, uint16_t, int, int, 123 const bus_dma_segment_t *, int, int); 124 static int rt2661_tx_mgt(struct rt2661_softc *, struct mbuf *, 125 struct ieee80211_node *); 126 static struct mbuf * 127 rt2661_get_rts(struct rt2661_softc *, 128 struct ieee80211_frame *, uint16_t); 129 static int rt2661_tx_data(struct rt2661_softc *, struct mbuf *, 130 struct ieee80211_node *, int); 131 static void rt2661_start(struct ifnet *); 132 static void rt2661_watchdog(struct ifnet *); 133 static int rt2661_reset(struct ifnet *); 134 static int rt2661_ioctl(struct ifnet *, u_long, void *); 135 static void rt2661_bbp_write(struct rt2661_softc *, uint8_t, uint8_t); 136 static uint8_t rt2661_bbp_read(struct rt2661_softc *, uint8_t); 137 static void rt2661_rf_write(struct rt2661_softc *, uint8_t, uint32_t); 138 static int rt2661_tx_cmd(struct rt2661_softc *, uint8_t, uint16_t); 139 static void rt2661_select_antenna(struct rt2661_softc *); 140 static void rt2661_enable_mrr(struct rt2661_softc *); 141 static void rt2661_set_txpreamble(struct rt2661_softc *); 142 static void rt2661_set_basicrates(struct rt2661_softc *, 143 const struct ieee80211_rateset *); 144 static void rt2661_select_band(struct rt2661_softc *, 145 struct ieee80211_channel *); 146 static void rt2661_set_chan(struct rt2661_softc *, 147 struct ieee80211_channel *); 148 static void rt2661_set_bssid(struct rt2661_softc *, const uint8_t *); 149 static void rt2661_set_macaddr(struct rt2661_softc *, const uint8_t *); 150 static void rt2661_update_promisc(struct rt2661_softc *); 151 #if 0 152 static int rt2661_wme_update(struct ieee80211com *); 153 #endif 154 155 static void rt2661_updateslot(struct ifnet *); 156 static void rt2661_set_slottime(struct rt2661_softc *); 157 static const char * 158 rt2661_get_rf(int); 159 static void rt2661_read_eeprom(struct rt2661_softc *); 160 static int rt2661_bbp_init(struct rt2661_softc *); 161 static int rt2661_init(struct ifnet *); 162 static void rt2661_stop(struct ifnet *, int); 163 static int rt2661_load_microcode(struct rt2661_softc *, const uint8_t *, 164 int); 165 static void rt2661_rx_tune(struct rt2661_softc *); 166 #ifdef notyet 167 static void rt2661_radar_start(struct rt2661_softc *); 168 static int rt2661_radar_stop(struct rt2661_softc *); 169 #endif 170 static int rt2661_prepare_beacon(struct rt2661_softc *); 171 static void rt2661_enable_tsf_sync(struct rt2661_softc *); 172 static int rt2661_get_rssi(struct rt2661_softc *, uint8_t); 173 174 /* 175 * Supported rates for 802.11a/b/g modes (in 500Kbps unit). 176 */ 177 static const struct ieee80211_rateset rt2661_rateset_11a = 178 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } }; 179 180 static const struct ieee80211_rateset rt2661_rateset_11b = 181 { 4, { 2, 4, 11, 22 } }; 182 183 static const struct ieee80211_rateset rt2661_rateset_11g = 184 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } }; 185 186 static const struct { 187 uint32_t reg; 188 uint32_t val; 189 } rt2661_def_mac[] = { 190 RT2661_DEF_MAC 191 }; 192 193 static const struct { 194 uint8_t reg; 195 uint8_t val; 196 } rt2661_def_bbp[] = { 197 RT2661_DEF_BBP 198 }; 199 200 static const struct rfprog { 201 uint8_t chan; 202 uint32_t r1, r2, r3, r4; 203 } rt2661_rf5225_1[] = { 204 RT2661_RF5225_1 205 }, rt2661_rf5225_2[] = { 206 RT2661_RF5225_2 207 }; 208 209 int 210 rt2661_attach(void *xsc, int id) 211 { 212 struct rt2661_softc *sc = xsc; 213 struct ieee80211com *ic = &sc->sc_ic; 214 struct ifnet *ifp = &sc->sc_if; 215 uint32_t val; 216 int error, i, ntries; 217 218 sc->sc_id = id; 219 220 sc->amrr.amrr_min_success_threshold = 1; 221 sc->amrr.amrr_max_success_threshold = 15; 222 callout_init(&sc->scan_ch, 0); 223 callout_init(&sc->amrr_ch, 0); 224 225 /* wait for NIC to initialize */ 226 for (ntries = 0; ntries < 1000; ntries++) { 227 if ((val = RAL_READ(sc, RT2661_MAC_CSR0)) != 0) 228 break; 229 DELAY(1000); 230 } 231 if (ntries == 1000) { 232 aprint_error_dev(&sc->sc_dev, "timeout waiting for NIC to initialize\n"); 233 return EIO; 234 } 235 236 /* retrieve RF rev. no and various other things from EEPROM */ 237 rt2661_read_eeprom(sc); 238 aprint_normal_dev(&sc->sc_dev, "802.11 address %s\n", 239 ether_sprintf(ic->ic_myaddr)); 240 241 aprint_normal_dev(&sc->sc_dev, "MAC/BBP RT%X, RF %s\n", val, 242 rt2661_get_rf(sc->rf_rev)); 243 244 /* 245 * Allocate Tx and Rx rings. 246 */ 247 error = rt2661_alloc_tx_ring(sc, &sc->txq[0], RT2661_TX_RING_COUNT); 248 if (error != 0) { 249 aprint_error_dev(&sc->sc_dev, "could not allocate Tx ring 0\n"); 250 goto fail1; 251 } 252 253 error = rt2661_alloc_tx_ring(sc, &sc->txq[1], RT2661_TX_RING_COUNT); 254 if (error != 0) { 255 aprint_error_dev(&sc->sc_dev, "could not allocate Tx ring 1\n"); 256 goto fail2; 257 } 258 259 error = rt2661_alloc_tx_ring(sc, &sc->txq[2], RT2661_TX_RING_COUNT); 260 if (error != 0) { 261 aprint_error_dev(&sc->sc_dev, "could not allocate Tx ring 2\n"); 262 goto fail3; 263 } 264 265 error = rt2661_alloc_tx_ring(sc, &sc->txq[3], RT2661_TX_RING_COUNT); 266 if (error != 0) { 267 aprint_error_dev(&sc->sc_dev, "could not allocate Tx ring 3\n"); 268 goto fail4; 269 } 270 271 error = rt2661_alloc_tx_ring(sc, &sc->mgtq, RT2661_MGT_RING_COUNT); 272 if (error != 0) { 273 aprint_error_dev(&sc->sc_dev, "could not allocate Mgt ring\n"); 274 goto fail5; 275 } 276 277 error = rt2661_alloc_rx_ring(sc, &sc->rxq, RT2661_RX_RING_COUNT); 278 if (error != 0) { 279 aprint_error_dev(&sc->sc_dev, "could not allocate Rx ring\n"); 280 goto fail6; 281 } 282 283 ifp->if_softc = sc; 284 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 285 ifp->if_init = rt2661_init; 286 ifp->if_stop = rt2661_stop; 287 ifp->if_ioctl = rt2661_ioctl; 288 ifp->if_start = rt2661_start; 289 ifp->if_watchdog = rt2661_watchdog; 290 IFQ_SET_READY(&ifp->if_snd); 291 memcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ); 292 293 ic->ic_ifp = ifp; 294 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 295 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 296 ic->ic_state = IEEE80211_S_INIT; 297 298 /* set device capabilities */ 299 ic->ic_caps = 300 IEEE80211_C_IBSS | /* IBSS mode supported */ 301 IEEE80211_C_MONITOR | /* monitor mode supported */ 302 IEEE80211_C_HOSTAP | /* HostAP mode supported */ 303 IEEE80211_C_TXPMGT | /* tx power management */ 304 IEEE80211_C_SHPREAMBLE | /* short preamble supported */ 305 IEEE80211_C_SHSLOT | /* short slot time supported */ 306 IEEE80211_C_WPA; /* 802.11i */ 307 308 if (sc->rf_rev == RT2661_RF_5225 || sc->rf_rev == RT2661_RF_5325) { 309 /* set supported .11a rates */ 310 ic->ic_sup_rates[IEEE80211_MODE_11A] = rt2661_rateset_11a; 311 312 /* set supported .11a channels */ 313 for (i = 36; i <= 64; i += 4) { 314 ic->ic_channels[i].ic_freq = 315 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 316 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 317 } 318 for (i = 100; i <= 140; i += 4) { 319 ic->ic_channels[i].ic_freq = 320 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 321 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 322 } 323 for (i = 149; i <= 165; i += 4) { 324 ic->ic_channels[i].ic_freq = 325 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 326 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 327 } 328 } 329 330 /* set supported .11b and .11g rates */ 331 ic->ic_sup_rates[IEEE80211_MODE_11B] = rt2661_rateset_11b; 332 ic->ic_sup_rates[IEEE80211_MODE_11G] = rt2661_rateset_11g; 333 334 /* set supported .11b and .11g channels (1 through 14) */ 335 for (i = 1; i <= 14; i++) { 336 ic->ic_channels[i].ic_freq = 337 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ); 338 ic->ic_channels[i].ic_flags = 339 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | 340 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 341 } 342 343 if_attach(ifp); 344 ieee80211_ifattach(ic); 345 ic->ic_node_alloc = rt2661_node_alloc; 346 ic->ic_newassoc = rt2661_newassoc; 347 ic->ic_updateslot = rt2661_updateslot; 348 ic->ic_reset = rt2661_reset; 349 350 /* override state transition machine */ 351 sc->sc_newstate = ic->ic_newstate; 352 ic->ic_newstate = rt2661_newstate; 353 ieee80211_media_init(ic, rt2661_media_change, ieee80211_media_status); 354 355 #if NBPFILTER > 0 356 bpfattach2(ifp, DLT_IEEE802_11_RADIO, 357 sizeof (struct ieee80211_frame) + sizeof(sc->sc_txtap), 358 &sc->sc_drvbpf); 359 360 sc->sc_rxtap_len = roundup(sizeof(sc->sc_rxtap), sizeof(u_int32_t)); 361 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); 362 sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2661_RX_RADIOTAP_PRESENT); 363 364 sc->sc_txtap_len = roundup(sizeof(sc->sc_txtap), sizeof(u_int32_t)); 365 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); 366 sc->sc_txtap.wt_ihdr.it_present = htole32(RT2661_TX_RADIOTAP_PRESENT); 367 #endif 368 369 ieee80211_announce(ic); 370 371 if (!pmf_device_register(&sc->sc_dev, NULL, NULL)) 372 aprint_error_dev(&sc->sc_dev, "couldn't establish power handler\n"); 373 else 374 pmf_class_network_register(&sc->sc_dev, ifp); 375 376 return 0; 377 378 fail6: rt2661_free_tx_ring(sc, &sc->mgtq); 379 fail5: rt2661_free_tx_ring(sc, &sc->txq[3]); 380 fail4: rt2661_free_tx_ring(sc, &sc->txq[2]); 381 fail3: rt2661_free_tx_ring(sc, &sc->txq[1]); 382 fail2: rt2661_free_tx_ring(sc, &sc->txq[0]); 383 fail1: return ENXIO; 384 } 385 386 int 387 rt2661_detach(void *xsc) 388 { 389 struct rt2661_softc *sc = xsc; 390 struct ifnet *ifp = &sc->sc_if; 391 392 callout_stop(&sc->scan_ch); 393 callout_stop(&sc->amrr_ch); 394 395 pmf_device_deregister(&sc->sc_dev); 396 397 ieee80211_ifdetach(&sc->sc_ic); 398 if_detach(ifp); 399 400 rt2661_free_tx_ring(sc, &sc->txq[0]); 401 rt2661_free_tx_ring(sc, &sc->txq[1]); 402 rt2661_free_tx_ring(sc, &sc->txq[2]); 403 rt2661_free_tx_ring(sc, &sc->txq[3]); 404 rt2661_free_tx_ring(sc, &sc->mgtq); 405 rt2661_free_rx_ring(sc, &sc->rxq); 406 407 return 0; 408 } 409 410 static int 411 rt2661_alloc_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring, 412 int count) 413 { 414 int i, nsegs, error; 415 416 ring->count = count; 417 ring->queued = 0; 418 ring->cur = ring->next = ring->stat = 0; 419 420 error = bus_dmamap_create(sc->sc_dmat, count * RT2661_TX_DESC_SIZE, 1, 421 count * RT2661_TX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map); 422 if (error != 0) { 423 aprint_error_dev(&sc->sc_dev, "could not create desc DMA map\n"); 424 goto fail; 425 } 426 427 error = bus_dmamem_alloc(sc->sc_dmat, count * RT2661_TX_DESC_SIZE, 428 PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT); 429 if (error != 0) { 430 aprint_error_dev(&sc->sc_dev, "could not allocate DMA memory\n"); 431 goto fail; 432 } 433 434 error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs, 435 count * RT2661_TX_DESC_SIZE, (void **)&ring->desc, 436 BUS_DMA_NOWAIT); 437 if (error != 0) { 438 aprint_error_dev(&sc->sc_dev, "could not map desc DMA memory\n"); 439 goto fail; 440 } 441 442 error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc, 443 count * RT2661_TX_DESC_SIZE, NULL, BUS_DMA_NOWAIT); 444 if (error != 0) { 445 aprint_error_dev(&sc->sc_dev, "could not load desc DMA map\n"); 446 goto fail; 447 } 448 449 memset(ring->desc, 0, count * RT2661_TX_DESC_SIZE); 450 ring->physaddr = ring->map->dm_segs->ds_addr; 451 452 ring->data = malloc(count * sizeof (struct rt2661_tx_data), M_DEVBUF, 453 M_NOWAIT); 454 if (ring->data == NULL) { 455 aprint_error_dev(&sc->sc_dev, "could not allocate soft data\n"); 456 error = ENOMEM; 457 goto fail; 458 } 459 460 memset(ring->data, 0, count * sizeof (struct rt2661_tx_data)); 461 for (i = 0; i < count; i++) { 462 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 463 RT2661_MAX_SCATTER, MCLBYTES, 0, BUS_DMA_NOWAIT, 464 &ring->data[i].map); 465 if (error != 0) { 466 aprint_error_dev(&sc->sc_dev, "could not create DMA map\n"); 467 goto fail; 468 } 469 } 470 471 return 0; 472 473 fail: rt2661_free_tx_ring(sc, ring); 474 return error; 475 } 476 477 static void 478 rt2661_reset_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring) 479 { 480 struct rt2661_tx_desc *desc; 481 struct rt2661_tx_data *data; 482 int i; 483 484 for (i = 0; i < ring->count; i++) { 485 desc = &ring->desc[i]; 486 data = &ring->data[i]; 487 488 if (data->m != NULL) { 489 bus_dmamap_sync(sc->sc_dmat, data->map, 0, 490 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); 491 bus_dmamap_unload(sc->sc_dmat, data->map); 492 m_freem(data->m); 493 data->m = NULL; 494 } 495 496 if (data->ni != NULL) { 497 ieee80211_free_node(data->ni); 498 data->ni = NULL; 499 } 500 501 desc->flags = 0; 502 } 503 504 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize, 505 BUS_DMASYNC_PREWRITE); 506 507 ring->queued = 0; 508 ring->cur = ring->next = ring->stat = 0; 509 } 510 511 512 static void 513 rt2661_free_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring) 514 { 515 struct rt2661_tx_data *data; 516 int i; 517 518 if (ring->desc != NULL) { 519 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, 520 ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); 521 bus_dmamap_unload(sc->sc_dmat, ring->map); 522 bus_dmamem_unmap(sc->sc_dmat, (void *)ring->desc, 523 ring->count * RT2661_TX_DESC_SIZE); 524 bus_dmamem_free(sc->sc_dmat, &ring->seg, 1); 525 } 526 527 if (ring->data != NULL) { 528 for (i = 0; i < ring->count; i++) { 529 data = &ring->data[i]; 530 531 if (data->m != NULL) { 532 bus_dmamap_sync(sc->sc_dmat, data->map, 0, 533 data->map->dm_mapsize, 534 BUS_DMASYNC_POSTWRITE); 535 bus_dmamap_unload(sc->sc_dmat, data->map); 536 m_freem(data->m); 537 } 538 539 if (data->ni != NULL) 540 ieee80211_free_node(data->ni); 541 542 if (data->map != NULL) 543 bus_dmamap_destroy(sc->sc_dmat, data->map); 544 } 545 free(ring->data, M_DEVBUF); 546 } 547 } 548 549 static int 550 rt2661_alloc_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring, 551 int count) 552 { 553 struct rt2661_rx_desc *desc; 554 struct rt2661_rx_data *data; 555 int i, nsegs, error; 556 557 ring->count = count; 558 ring->cur = ring->next = 0; 559 560 error = bus_dmamap_create(sc->sc_dmat, count * RT2661_RX_DESC_SIZE, 1, 561 count * RT2661_RX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map); 562 if (error != 0) { 563 aprint_error_dev(&sc->sc_dev, "could not create desc DMA map\n"); 564 goto fail; 565 } 566 567 error = bus_dmamem_alloc(sc->sc_dmat, count * RT2661_RX_DESC_SIZE, 568 PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT); 569 if (error != 0) { 570 aprint_error_dev(&sc->sc_dev, "could not allocate DMA memory\n"); 571 goto fail; 572 } 573 574 error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs, 575 count * RT2661_RX_DESC_SIZE, (void **)&ring->desc, 576 BUS_DMA_NOWAIT); 577 if (error != 0) { 578 aprint_error_dev(&sc->sc_dev, "could not map desc DMA memory\n"); 579 goto fail; 580 } 581 582 error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc, 583 count * RT2661_RX_DESC_SIZE, NULL, BUS_DMA_NOWAIT); 584 if (error != 0) { 585 aprint_error_dev(&sc->sc_dev, "could not load desc DMA map\n"); 586 goto fail; 587 } 588 589 memset(ring->desc, 0, count * RT2661_RX_DESC_SIZE); 590 ring->physaddr = ring->map->dm_segs->ds_addr; 591 592 ring->data = malloc(count * sizeof (struct rt2661_rx_data), M_DEVBUF, 593 M_NOWAIT); 594 if (ring->data == NULL) { 595 aprint_error_dev(&sc->sc_dev, "could not allocate soft data\n"); 596 error = ENOMEM; 597 goto fail; 598 } 599 600 /* 601 * Pre-allocate Rx buffers and populate Rx ring. 602 */ 603 memset(ring->data, 0, count * sizeof (struct rt2661_rx_data)); 604 for (i = 0; i < count; i++) { 605 desc = &sc->rxq.desc[i]; 606 data = &sc->rxq.data[i]; 607 608 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 609 0, BUS_DMA_NOWAIT, &data->map); 610 if (error != 0) { 611 aprint_error_dev(&sc->sc_dev, "could not create DMA map\n"); 612 goto fail; 613 } 614 615 MGETHDR(data->m, M_DONTWAIT, MT_DATA); 616 if (data->m == NULL) { 617 aprint_error_dev(&sc->sc_dev, "could not allocate rx mbuf\n"); 618 error = ENOMEM; 619 goto fail; 620 } 621 622 MCLGET(data->m, M_DONTWAIT); 623 if (!(data->m->m_flags & M_EXT)) { 624 aprint_error_dev(&sc->sc_dev, "could not allocate rx mbuf cluster\n"); 625 error = ENOMEM; 626 goto fail; 627 } 628 629 error = bus_dmamap_load(sc->sc_dmat, data->map, 630 mtod(data->m, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT); 631 if (error != 0) { 632 aprint_error_dev(&sc->sc_dev, "could not load rx buf DMA map"); 633 goto fail; 634 } 635 636 desc->physaddr = htole32(data->map->dm_segs->ds_addr); 637 desc->flags = htole32(RT2661_RX_BUSY); 638 } 639 640 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize, 641 BUS_DMASYNC_PREWRITE); 642 643 return 0; 644 645 fail: rt2661_free_rx_ring(sc, ring); 646 return error; 647 } 648 649 static void 650 rt2661_reset_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring) 651 { 652 int i; 653 654 for (i = 0; i < ring->count; i++) 655 ring->desc[i].flags = htole32(RT2661_RX_BUSY); 656 657 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize, 658 BUS_DMASYNC_PREWRITE); 659 660 ring->cur = ring->next = 0; 661 } 662 663 static void 664 rt2661_free_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring) 665 { 666 struct rt2661_rx_data *data; 667 int i; 668 669 if (ring->desc != NULL) { 670 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, 671 ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); 672 bus_dmamap_unload(sc->sc_dmat, ring->map); 673 bus_dmamem_unmap(sc->sc_dmat, (void *)ring->desc, 674 ring->count * RT2661_RX_DESC_SIZE); 675 bus_dmamem_free(sc->sc_dmat, &ring->seg, 1); 676 } 677 678 if (ring->data != NULL) { 679 for (i = 0; i < ring->count; i++) { 680 data = &ring->data[i]; 681 682 if (data->m != NULL) { 683 bus_dmamap_sync(sc->sc_dmat, data->map, 0, 684 data->map->dm_mapsize, 685 BUS_DMASYNC_POSTREAD); 686 bus_dmamap_unload(sc->sc_dmat, data->map); 687 m_freem(data->m); 688 } 689 690 if (data->map != NULL) 691 bus_dmamap_destroy(sc->sc_dmat, data->map); 692 } 693 free(ring->data, M_DEVBUF); 694 } 695 } 696 697 static struct ieee80211_node * 698 rt2661_node_alloc(struct ieee80211_node_table *nt) 699 { 700 struct rt2661_node *rn; 701 702 rn = malloc(sizeof (struct rt2661_node), M_80211_NODE, 703 M_NOWAIT | M_ZERO); 704 705 return (rn != NULL) ? &rn->ni : NULL; 706 } 707 708 static int 709 rt2661_media_change(struct ifnet *ifp) 710 { 711 int error; 712 713 error = ieee80211_media_change(ifp); 714 if (error != ENETRESET) 715 return error; 716 717 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) 718 rt2661_init(ifp); 719 720 return 0; 721 } 722 723 /* 724 * This function is called periodically (every 200ms) during scanning to 725 * switch from one channel to another. 726 */ 727 static void 728 rt2661_next_scan(void *arg) 729 { 730 struct rt2661_softc *sc = arg; 731 struct ieee80211com *ic = &sc->sc_ic; 732 int s; 733 734 s = splnet(); 735 if (ic->ic_state == IEEE80211_S_SCAN) 736 ieee80211_next_scan(ic); 737 splx(s); 738 } 739 740 /* 741 * This function is called for each neighbor node. 742 */ 743 static void 744 rt2661_iter_func(void *arg, struct ieee80211_node *ni) 745 { 746 struct rt2661_softc *sc = arg; 747 struct rt2661_node *rn = (struct rt2661_node *)ni; 748 749 ieee80211_amrr_choose(&sc->amrr, ni, &rn->amn); 750 } 751 752 /* 753 * This function is called periodically (every 500ms) in RUN state to update 754 * various settings like rate control statistics or Rx sensitivity. 755 */ 756 static void 757 rt2661_updatestats(void *arg) 758 { 759 struct rt2661_softc *sc = arg; 760 struct ieee80211com *ic = &sc->sc_ic; 761 int s; 762 763 s = splnet(); 764 if (ic->ic_opmode == IEEE80211_M_STA) 765 rt2661_iter_func(sc, ic->ic_bss); 766 else 767 ieee80211_iterate_nodes(&ic->ic_sta, rt2661_iter_func, arg); 768 769 /* update rx sensitivity every 1 sec */ 770 if (++sc->ncalls & 1) 771 rt2661_rx_tune(sc); 772 splx(s); 773 774 callout_reset(&sc->amrr_ch, hz / 2, rt2661_updatestats, sc); 775 } 776 777 static void 778 rt2661_newassoc(struct ieee80211_node *ni, int isnew) 779 { 780 struct rt2661_softc *sc = ni->ni_ic->ic_ifp->if_softc; 781 int i; 782 783 ieee80211_amrr_node_init(&sc->amrr, &((struct rt2661_node *)ni)->amn); 784 785 /* set rate to some reasonable initial value */ 786 for (i = ni->ni_rates.rs_nrates - 1; 787 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72; 788 i--); 789 ni->ni_txrate = i; 790 } 791 792 static int 793 rt2661_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 794 { 795 struct rt2661_softc *sc = ic->ic_ifp->if_softc; 796 enum ieee80211_state ostate; 797 struct ieee80211_node *ni; 798 uint32_t tmp; 799 800 ostate = ic->ic_state; 801 callout_stop(&sc->scan_ch); 802 803 switch (nstate) { 804 case IEEE80211_S_INIT: 805 callout_stop(&sc->amrr_ch); 806 807 if (ostate == IEEE80211_S_RUN) { 808 /* abort TSF synchronization */ 809 tmp = RAL_READ(sc, RT2661_TXRX_CSR9); 810 RAL_WRITE(sc, RT2661_TXRX_CSR9, tmp & ~0x00ffffff); 811 } 812 break; 813 814 case IEEE80211_S_SCAN: 815 rt2661_set_chan(sc, ic->ic_curchan); 816 callout_reset(&sc->scan_ch, hz / 5, rt2661_next_scan, sc); 817 break; 818 819 case IEEE80211_S_AUTH: 820 case IEEE80211_S_ASSOC: 821 rt2661_set_chan(sc, ic->ic_curchan); 822 break; 823 824 case IEEE80211_S_RUN: 825 rt2661_set_chan(sc, ic->ic_curchan); 826 827 ni = ic->ic_bss; 828 829 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 830 rt2661_set_slottime(sc); 831 rt2661_enable_mrr(sc); 832 rt2661_set_txpreamble(sc); 833 rt2661_set_basicrates(sc, &ni->ni_rates); 834 rt2661_set_bssid(sc, ni->ni_bssid); 835 } 836 837 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 838 ic->ic_opmode == IEEE80211_M_IBSS) 839 rt2661_prepare_beacon(sc); 840 841 if (ic->ic_opmode == IEEE80211_M_STA) { 842 /* fake a join to init the tx rate */ 843 rt2661_newassoc(ni, 1); 844 } 845 846 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 847 sc->ncalls = 0; 848 sc->avg_rssi = -95; /* reset EMA */ 849 callout_reset(&sc->amrr_ch, hz / 2, 850 rt2661_updatestats, sc); 851 rt2661_enable_tsf_sync(sc); 852 } 853 break; 854 } 855 856 return sc->sc_newstate(ic, nstate, arg); 857 } 858 859 /* 860 * Read 16 bits at address 'addr' from the serial EEPROM (either 93C46 or 861 * 93C66). 862 */ 863 static uint16_t 864 rt2661_eeprom_read(struct rt2661_softc *sc, uint8_t addr) 865 { 866 uint32_t tmp; 867 uint16_t val; 868 int n; 869 870 /* clock C once before the first command */ 871 RT2661_EEPROM_CTL(sc, 0); 872 873 RT2661_EEPROM_CTL(sc, RT2661_S); 874 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C); 875 RT2661_EEPROM_CTL(sc, RT2661_S); 876 877 /* write start bit (1) */ 878 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D); 879 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D | RT2661_C); 880 881 /* write READ opcode (10) */ 882 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D); 883 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D | RT2661_C); 884 RT2661_EEPROM_CTL(sc, RT2661_S); 885 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C); 886 887 /* write address (A5-A0 or A7-A0) */ 888 n = (RAL_READ(sc, RT2661_E2PROM_CSR) & RT2661_93C46) ? 5 : 7; 889 for (; n >= 0; n--) { 890 RT2661_EEPROM_CTL(sc, RT2661_S | 891 (((addr >> n) & 1) << RT2661_SHIFT_D)); 892 RT2661_EEPROM_CTL(sc, RT2661_S | 893 (((addr >> n) & 1) << RT2661_SHIFT_D) | RT2661_C); 894 } 895 896 RT2661_EEPROM_CTL(sc, RT2661_S); 897 898 /* read data Q15-Q0 */ 899 val = 0; 900 for (n = 15; n >= 0; n--) { 901 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C); 902 tmp = RAL_READ(sc, RT2661_E2PROM_CSR); 903 val |= ((tmp & RT2661_Q) >> RT2661_SHIFT_Q) << n; 904 RT2661_EEPROM_CTL(sc, RT2661_S); 905 } 906 907 RT2661_EEPROM_CTL(sc, 0); 908 909 /* clear Chip Select and clock C */ 910 RT2661_EEPROM_CTL(sc, RT2661_S); 911 RT2661_EEPROM_CTL(sc, 0); 912 RT2661_EEPROM_CTL(sc, RT2661_C); 913 914 return val; 915 } 916 917 static void 918 rt2661_tx_intr(struct rt2661_softc *sc) 919 { 920 struct ifnet *ifp = &sc->sc_if; 921 struct rt2661_tx_ring *txq; 922 struct rt2661_tx_data *data; 923 struct rt2661_node *rn; 924 uint32_t val; 925 int qid, retrycnt; 926 927 for (;;) { 928 val = RAL_READ(sc, RT2661_STA_CSR4); 929 if (!(val & RT2661_TX_STAT_VALID)) 930 break; 931 932 /* retrieve the queue in which this frame was sent */ 933 qid = RT2661_TX_QID(val); 934 txq = (qid <= 3) ? &sc->txq[qid] : &sc->mgtq; 935 936 /* retrieve rate control algorithm context */ 937 data = &txq->data[txq->stat]; 938 rn = (struct rt2661_node *)data->ni; 939 940 /* if no frame has been sent, ignore */ 941 if (rn == NULL) 942 continue; 943 944 switch (RT2661_TX_RESULT(val)) { 945 case RT2661_TX_SUCCESS: 946 retrycnt = RT2661_TX_RETRYCNT(val); 947 948 DPRINTFN(10, ("data frame sent successfully after " 949 "%d retries\n", retrycnt)); 950 rn->amn.amn_txcnt++; 951 if (retrycnt > 0) 952 rn->amn.amn_retrycnt++; 953 ifp->if_opackets++; 954 break; 955 956 case RT2661_TX_RETRY_FAIL: 957 DPRINTFN(9, ("sending data frame failed (too much " 958 "retries)\n")); 959 rn->amn.amn_txcnt++; 960 rn->amn.amn_retrycnt++; 961 ifp->if_oerrors++; 962 break; 963 964 default: 965 /* other failure */ 966 aprint_error_dev(&sc->sc_dev, "sending data frame failed 0x%08x\n", val); 967 ifp->if_oerrors++; 968 } 969 970 ieee80211_free_node(data->ni); 971 data->ni = NULL; 972 973 DPRINTFN(15, ("tx done q=%d idx=%u\n", qid, txq->stat)); 974 975 txq->queued--; 976 if (++txq->stat >= txq->count) /* faster than % count */ 977 txq->stat = 0; 978 } 979 980 sc->sc_tx_timer = 0; 981 ifp->if_flags &= ~IFF_OACTIVE; 982 rt2661_start(ifp); 983 } 984 985 static void 986 rt2661_tx_dma_intr(struct rt2661_softc *sc, struct rt2661_tx_ring *txq) 987 { 988 struct rt2661_tx_desc *desc; 989 struct rt2661_tx_data *data; 990 991 for (;;) { 992 desc = &txq->desc[txq->next]; 993 data = &txq->data[txq->next]; 994 995 bus_dmamap_sync(sc->sc_dmat, txq->map, 996 txq->next * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE, 997 BUS_DMASYNC_POSTREAD); 998 999 if ((le32toh(desc->flags) & RT2661_TX_BUSY) || 1000 !(le32toh(desc->flags) & RT2661_TX_VALID)) 1001 break; 1002 1003 bus_dmamap_sync(sc->sc_dmat, data->map, 0, 1004 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); 1005 bus_dmamap_unload(sc->sc_dmat, data->map); 1006 m_freem(data->m); 1007 data->m = NULL; 1008 /* node reference is released in rt2661_tx_intr() */ 1009 1010 /* descriptor is no longer valid */ 1011 desc->flags &= ~htole32(RT2661_TX_VALID); 1012 1013 bus_dmamap_sync(sc->sc_dmat, txq->map, 1014 txq->next * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE, 1015 BUS_DMASYNC_PREWRITE); 1016 1017 DPRINTFN(15, ("tx dma done q=%p idx=%u\n", txq, txq->next)); 1018 1019 if (++txq->next >= txq->count) /* faster than % count */ 1020 txq->next = 0; 1021 } 1022 } 1023 1024 static void 1025 rt2661_rx_intr(struct rt2661_softc *sc) 1026 { 1027 struct ieee80211com *ic = &sc->sc_ic; 1028 struct ifnet *ifp = &sc->sc_if; 1029 struct rt2661_rx_desc *desc; 1030 struct rt2661_rx_data *data; 1031 struct ieee80211_frame *wh; 1032 struct ieee80211_node *ni; 1033 struct mbuf *mnew, *m; 1034 int error, rssi; 1035 1036 for (;;) { 1037 desc = &sc->rxq.desc[sc->rxq.cur]; 1038 data = &sc->rxq.data[sc->rxq.cur]; 1039 1040 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map, 1041 sc->rxq.cur * RT2661_RX_DESC_SIZE, RT2661_RX_DESC_SIZE, 1042 BUS_DMASYNC_POSTREAD); 1043 1044 if (le32toh(desc->flags) & RT2661_RX_BUSY) 1045 break; 1046 1047 if ((le32toh(desc->flags) & RT2661_RX_PHY_ERROR) || 1048 (le32toh(desc->flags) & RT2661_RX_CRC_ERROR)) { 1049 /* 1050 * This should not happen since we did not request 1051 * to receive those frames when we filled TXRX_CSR0. 1052 */ 1053 DPRINTFN(5, ("PHY or CRC error flags 0x%08x\n", 1054 le32toh(desc->flags))); 1055 ifp->if_ierrors++; 1056 goto skip; 1057 } 1058 1059 if ((le32toh(desc->flags) & RT2661_RX_CIPHER_MASK) != 0) { 1060 ifp->if_ierrors++; 1061 goto skip; 1062 } 1063 1064 /* 1065 * Try to allocate a new mbuf for this ring element and load it 1066 * before processing the current mbuf. If the ring element 1067 * cannot be loaded, drop the received packet and reuse the old 1068 * mbuf. In the unlikely case that the old mbuf can't be 1069 * reloaded either, explicitly panic. 1070 */ 1071 MGETHDR(mnew, M_DONTWAIT, MT_DATA); 1072 if (mnew == NULL) { 1073 ifp->if_ierrors++; 1074 goto skip; 1075 } 1076 1077 MCLGET(mnew, M_DONTWAIT); 1078 if (!(mnew->m_flags & M_EXT)) { 1079 m_freem(mnew); 1080 ifp->if_ierrors++; 1081 goto skip; 1082 } 1083 1084 bus_dmamap_sync(sc->sc_dmat, data->map, 0, 1085 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD); 1086 bus_dmamap_unload(sc->sc_dmat, data->map); 1087 1088 error = bus_dmamap_load(sc->sc_dmat, data->map, 1089 mtod(mnew, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT); 1090 if (error != 0) { 1091 m_freem(mnew); 1092 1093 /* try to reload the old mbuf */ 1094 error = bus_dmamap_load(sc->sc_dmat, data->map, 1095 mtod(data->m, void *), MCLBYTES, NULL, 1096 BUS_DMA_NOWAIT); 1097 if (error != 0) { 1098 /* very unlikely that it will fail... */ 1099 panic("%s: could not load old rx mbuf", 1100 device_xname(&sc->sc_dev)); 1101 } 1102 /* physical address may have changed */ 1103 desc->physaddr = htole32(data->map->dm_segs->ds_addr); 1104 ifp->if_ierrors++; 1105 goto skip; 1106 } 1107 1108 /* 1109 * New mbuf successfully loaded, update Rx ring and continue 1110 * processing. 1111 */ 1112 m = data->m; 1113 data->m = mnew; 1114 desc->physaddr = htole32(data->map->dm_segs->ds_addr); 1115 1116 /* finalize mbuf */ 1117 m->m_pkthdr.rcvif = ifp; 1118 m->m_pkthdr.len = m->m_len = 1119 (le32toh(desc->flags) >> 16) & 0xfff; 1120 1121 #if NBPFILTER > 0 1122 if (sc->sc_drvbpf != NULL) { 1123 struct rt2661_rx_radiotap_header *tap = &sc->sc_rxtap; 1124 uint32_t tsf_lo, tsf_hi; 1125 1126 /* get timestamp (low and high 32 bits) */ 1127 tsf_hi = RAL_READ(sc, RT2661_TXRX_CSR13); 1128 tsf_lo = RAL_READ(sc, RT2661_TXRX_CSR12); 1129 1130 tap->wr_tsf = 1131 htole64(((uint64_t)tsf_hi << 32) | tsf_lo); 1132 tap->wr_flags = 0; 1133 tap->wr_rate = rt2661_rxrate(desc); 1134 tap->wr_chan_freq = htole16(sc->sc_curchan->ic_freq); 1135 tap->wr_chan_flags = htole16(sc->sc_curchan->ic_flags); 1136 tap->wr_antsignal = desc->rssi; 1137 1138 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m); 1139 } 1140 #endif 1141 1142 wh = mtod(m, struct ieee80211_frame *); 1143 ni = ieee80211_find_rxnode(ic, 1144 (struct ieee80211_frame_min *)wh); 1145 1146 /* send the frame to the 802.11 layer */ 1147 ieee80211_input(ic, m, ni, desc->rssi, 0); 1148 1149 /*- 1150 * Keep track of the average RSSI using an Exponential Moving 1151 * Average (EMA) of 8 Wilder's days: 1152 * avg = (1 / N) x rssi + ((N - 1) / N) x avg 1153 */ 1154 rssi = rt2661_get_rssi(sc, desc->rssi); 1155 sc->avg_rssi = (rssi + 7 * sc->avg_rssi) / 8; 1156 1157 /* node is no longer needed */ 1158 ieee80211_free_node(ni); 1159 1160 skip: desc->flags |= htole32(RT2661_RX_BUSY); 1161 1162 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map, 1163 sc->rxq.cur * RT2661_RX_DESC_SIZE, RT2661_RX_DESC_SIZE, 1164 BUS_DMASYNC_PREWRITE); 1165 1166 DPRINTFN(16, ("rx intr idx=%u\n", sc->rxq.cur)); 1167 1168 sc->rxq.cur = (sc->rxq.cur + 1) % RT2661_RX_RING_COUNT; 1169 } 1170 1171 /* 1172 * In HostAP mode, ieee80211_input() will enqueue packets in if_snd 1173 * without calling if_start(). 1174 */ 1175 if (!IFQ_IS_EMPTY(&ifp->if_snd) && !(ifp->if_flags & IFF_OACTIVE)) 1176 rt2661_start(ifp); 1177 } 1178 1179 /* 1180 * This function is called in HostAP or IBSS modes when it's time to send a 1181 * new beacon (every ni_intval milliseconds). 1182 */ 1183 static void 1184 rt2661_mcu_beacon_expire(struct rt2661_softc *sc) 1185 { 1186 struct ieee80211com *ic = &sc->sc_ic; 1187 1188 if (sc->sc_flags & RT2661_UPDATE_SLOT) { 1189 sc->sc_flags &= ~RT2661_UPDATE_SLOT; 1190 sc->sc_flags |= RT2661_SET_SLOTTIME; 1191 } else if (sc->sc_flags & RT2661_SET_SLOTTIME) { 1192 sc->sc_flags &= ~RT2661_SET_SLOTTIME; 1193 rt2661_set_slottime(sc); 1194 } 1195 1196 if (ic->ic_curmode == IEEE80211_MODE_11G) { 1197 /* update ERP Information Element */ 1198 RAL_WRITE_1(sc, sc->erp_csr, ic->ic_bss->ni_erp); 1199 RAL_RW_BARRIER_1(sc, sc->erp_csr); 1200 } 1201 1202 DPRINTFN(15, ("beacon expired\n")); 1203 } 1204 1205 static void 1206 rt2661_mcu_wakeup(struct rt2661_softc *sc) 1207 { 1208 RAL_WRITE(sc, RT2661_MAC_CSR11, 5 << 16); 1209 1210 RAL_WRITE(sc, RT2661_SOFT_RESET_CSR, 0x7); 1211 RAL_WRITE(sc, RT2661_IO_CNTL_CSR, 0x18); 1212 RAL_WRITE(sc, RT2661_PCI_USEC_CSR, 0x20); 1213 1214 /* send wakeup command to MCU */ 1215 rt2661_tx_cmd(sc, RT2661_MCU_CMD_WAKEUP, 0); 1216 } 1217 1218 static void 1219 rt2661_mcu_cmd_intr(struct rt2661_softc *sc) 1220 { 1221 RAL_READ(sc, RT2661_M2H_CMD_DONE_CSR); 1222 RAL_WRITE(sc, RT2661_M2H_CMD_DONE_CSR, 0xffffffff); 1223 } 1224 1225 int 1226 rt2661_intr(void *arg) 1227 { 1228 struct rt2661_softc *sc = arg; 1229 struct ifnet *ifp = &sc->sc_if; 1230 uint32_t r1, r2; 1231 int rv = 0; 1232 1233 /* don't re-enable interrupts if we're shutting down */ 1234 if (!(ifp->if_flags & IFF_RUNNING)) { 1235 /* disable MAC and MCU interrupts */ 1236 RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0xffffff7f); 1237 RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0xffffffff); 1238 return 0; 1239 } 1240 1241 for (;;) { 1242 r1 = RAL_READ(sc, RT2661_INT_SOURCE_CSR); 1243 r2 = RAL_READ(sc, RT2661_MCU_INT_SOURCE_CSR); 1244 1245 if ((r1 & RT2661_INT_CSR_ALL) == 0 && 1246 (r2 & RT2661_MCU_INT_ALL) == 0) 1247 break; 1248 1249 RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, r1); 1250 RAL_WRITE(sc, RT2661_MCU_INT_SOURCE_CSR, r2); 1251 1252 rv = 1; 1253 1254 if (r1 & RT2661_MGT_DONE) 1255 rt2661_tx_dma_intr(sc, &sc->mgtq); 1256 1257 if (r1 & RT2661_RX_DONE) 1258 rt2661_rx_intr(sc); 1259 1260 if (r1 & RT2661_TX0_DMA_DONE) 1261 rt2661_tx_dma_intr(sc, &sc->txq[0]); 1262 1263 if (r1 & RT2661_TX1_DMA_DONE) 1264 rt2661_tx_dma_intr(sc, &sc->txq[1]); 1265 1266 if (r1 & RT2661_TX2_DMA_DONE) 1267 rt2661_tx_dma_intr(sc, &sc->txq[2]); 1268 1269 if (r1 & RT2661_TX3_DMA_DONE) 1270 rt2661_tx_dma_intr(sc, &sc->txq[3]); 1271 1272 if (r1 & RT2661_TX_DONE) 1273 rt2661_tx_intr(sc); 1274 1275 if (r2 & RT2661_MCU_CMD_DONE) 1276 rt2661_mcu_cmd_intr(sc); 1277 1278 if (r2 & RT2661_MCU_BEACON_EXPIRE) 1279 rt2661_mcu_beacon_expire(sc); 1280 1281 if (r2 & RT2661_MCU_WAKEUP) 1282 rt2661_mcu_wakeup(sc); 1283 } 1284 1285 return rv; 1286 } 1287 1288 /* quickly determine if a given rate is CCK or OFDM */ 1289 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22) 1290 1291 #define RAL_ACK_SIZE 14 /* 10 + 4(FCS) */ 1292 #define RAL_CTS_SIZE 14 /* 10 + 4(FCS) */ 1293 1294 /* 1295 * This function is only used by the Rx radiotap code. It returns the rate at 1296 * which a given frame was received. 1297 */ 1298 #if NBPFILTER > 0 1299 static uint8_t 1300 rt2661_rxrate(struct rt2661_rx_desc *desc) 1301 { 1302 if (le32toh(desc->flags) & RT2661_RX_OFDM) { 1303 /* reverse function of rt2661_plcp_signal */ 1304 switch (desc->rate & 0xf) { 1305 case 0xb: return 12; 1306 case 0xf: return 18; 1307 case 0xa: return 24; 1308 case 0xe: return 36; 1309 case 0x9: return 48; 1310 case 0xd: return 72; 1311 case 0x8: return 96; 1312 case 0xc: return 108; 1313 } 1314 } else { 1315 if (desc->rate == 10) 1316 return 2; 1317 if (desc->rate == 20) 1318 return 4; 1319 if (desc->rate == 55) 1320 return 11; 1321 if (desc->rate == 110) 1322 return 22; 1323 } 1324 return 2; /* should not get there */ 1325 } 1326 #endif 1327 1328 /* 1329 * Return the expected ack rate for a frame transmitted at rate `rate'. 1330 * XXX: this should depend on the destination node basic rate set. 1331 */ 1332 static int 1333 rt2661_ack_rate(struct ieee80211com *ic, int rate) 1334 { 1335 switch (rate) { 1336 /* CCK rates */ 1337 case 2: 1338 return 2; 1339 case 4: 1340 case 11: 1341 case 22: 1342 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate; 1343 1344 /* OFDM rates */ 1345 case 12: 1346 case 18: 1347 return 12; 1348 case 24: 1349 case 36: 1350 return 24; 1351 case 48: 1352 case 72: 1353 case 96: 1354 case 108: 1355 return 48; 1356 } 1357 1358 /* default to 1Mbps */ 1359 return 2; 1360 } 1361 1362 /* 1363 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'. 1364 * The function automatically determines the operating mode depending on the 1365 * given rate. `flags' indicates whether short preamble is in use or not. 1366 */ 1367 static uint16_t 1368 rt2661_txtime(int len, int rate, uint32_t flags) 1369 { 1370 uint16_t txtime; 1371 1372 if (RAL_RATE_IS_OFDM(rate)) { 1373 /* IEEE Std 802.11g-2003, pp. 44 */ 1374 txtime = (8 + 4 * len + 3 + rate - 1) / rate; 1375 txtime = 16 + 4 + 4 * txtime + 6; 1376 } else { 1377 /* IEEE Std 802.11b-1999, pp. 28 */ 1378 txtime = (16 * len + rate - 1) / rate; 1379 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE)) 1380 txtime += 72 + 24; 1381 else 1382 txtime += 144 + 48; 1383 } 1384 return txtime; 1385 } 1386 1387 static uint8_t 1388 rt2661_plcp_signal(int rate) 1389 { 1390 switch (rate) { 1391 /* CCK rates (returned values are device-dependent) */ 1392 case 2: return 0x0; 1393 case 4: return 0x1; 1394 case 11: return 0x2; 1395 case 22: return 0x3; 1396 1397 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 1398 case 12: return 0xb; 1399 case 18: return 0xf; 1400 case 24: return 0xa; 1401 case 36: return 0xe; 1402 case 48: return 0x9; 1403 case 72: return 0xd; 1404 case 96: return 0x8; 1405 case 108: return 0xc; 1406 1407 /* unsupported rates (should not get there) */ 1408 default: return 0xff; 1409 } 1410 } 1411 1412 static void 1413 rt2661_setup_tx_desc(struct rt2661_softc *sc, struct rt2661_tx_desc *desc, 1414 uint32_t flags, uint16_t xflags, int len, int rate, 1415 const bus_dma_segment_t *segs, int nsegs, int ac) 1416 { 1417 struct ieee80211com *ic = &sc->sc_ic; 1418 uint16_t plcp_length; 1419 int i, remainder; 1420 1421 desc->flags = htole32(flags); 1422 desc->flags |= htole32(len << 16); 1423 1424 desc->xflags = htole16(xflags); 1425 desc->xflags |= htole16(nsegs << 13); 1426 1427 desc->wme = htole16( 1428 RT2661_QID(ac) | 1429 RT2661_AIFSN(2) | 1430 RT2661_LOGCWMIN(4) | 1431 RT2661_LOGCWMAX(10)); 1432 1433 /* 1434 * Remember in which queue this frame was sent. This field is driver 1435 * private data only. It will be made available by the NIC in STA_CSR4 1436 * on Tx interrupts. 1437 */ 1438 desc->qid = ac; 1439 1440 /* setup PLCP fields */ 1441 desc->plcp_signal = rt2661_plcp_signal(rate); 1442 desc->plcp_service = 4; 1443 1444 len += IEEE80211_CRC_LEN; 1445 if (RAL_RATE_IS_OFDM(rate)) { 1446 desc->flags |= htole32(RT2661_TX_OFDM); 1447 1448 plcp_length = len & 0xfff; 1449 desc->plcp_length_hi = plcp_length >> 6; 1450 desc->plcp_length_lo = plcp_length & 0x3f; 1451 } else { 1452 plcp_length = (16 * len + rate - 1) / rate; 1453 if (rate == 22) { 1454 remainder = (16 * len) % 22; 1455 if (remainder != 0 && remainder < 7) 1456 desc->plcp_service |= RT2661_PLCP_LENGEXT; 1457 } 1458 desc->plcp_length_hi = plcp_length >> 8; 1459 desc->plcp_length_lo = plcp_length & 0xff; 1460 1461 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 1462 desc->plcp_signal |= 0x08; 1463 } 1464 1465 /* RT2x61 supports scatter with up to 5 segments */ 1466 for (i = 0; i < nsegs; i++) { 1467 desc->addr[i] = htole32(segs[i].ds_addr); 1468 desc->len [i] = htole16(segs[i].ds_len); 1469 } 1470 1471 desc->flags |= htole32(RT2661_TX_BUSY | RT2661_TX_VALID); 1472 } 1473 1474 static int 1475 rt2661_tx_mgt(struct rt2661_softc *sc, struct mbuf *m0, 1476 struct ieee80211_node *ni) 1477 { 1478 struct ieee80211com *ic = &sc->sc_ic; 1479 struct rt2661_tx_desc *desc; 1480 struct rt2661_tx_data *data; 1481 struct ieee80211_frame *wh; 1482 uint16_t dur; 1483 uint32_t flags = 0; 1484 int rate, error; 1485 1486 desc = &sc->mgtq.desc[sc->mgtq.cur]; 1487 data = &sc->mgtq.data[sc->mgtq.cur]; 1488 1489 /* send mgt frames at the lowest available rate */ 1490 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2; 1491 1492 wh = mtod(m0, struct ieee80211_frame *); 1493 1494 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1495 if (ieee80211_crypto_encap(ic, ni, m0) == NULL) { 1496 m_freem(m0); 1497 return ENOBUFS; 1498 } 1499 1500 /* packet header may have moved, reset our local pointer */ 1501 wh = mtod(m0, struct ieee80211_frame *); 1502 } 1503 1504 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0, 1505 BUS_DMA_NOWAIT); 1506 if (error != 0) { 1507 aprint_error_dev(&sc->sc_dev, "could not map mbuf (error %d)\n", 1508 error); 1509 m_freem(m0); 1510 return error; 1511 } 1512 1513 #if NBPFILTER > 0 1514 if (sc->sc_drvbpf != NULL) { 1515 struct rt2661_tx_radiotap_header *tap = &sc->sc_txtap; 1516 1517 tap->wt_flags = 0; 1518 tap->wt_rate = rate; 1519 tap->wt_chan_freq = htole16(sc->sc_curchan->ic_freq); 1520 tap->wt_chan_flags = htole16(sc->sc_curchan->ic_flags); 1521 1522 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0); 1523 } 1524 #endif 1525 1526 data->m = m0; 1527 data->ni = ni; 1528 1529 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1530 flags |= RT2661_TX_NEED_ACK; 1531 1532 dur = rt2661_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) + 1533 sc->sifs; 1534 *(uint16_t *)wh->i_dur = htole16(dur); 1535 1536 /* tell hardware to set timestamp in probe responses */ 1537 if ((wh->i_fc[0] & 1538 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 1539 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP)) 1540 flags |= RT2661_TX_TIMESTAMP; 1541 } 1542 1543 rt2661_setup_tx_desc(sc, desc, flags, 0 /* XXX HWSEQ */, 1544 m0->m_pkthdr.len, rate, data->map->dm_segs, data->map->dm_nsegs, 1545 RT2661_QID_MGT); 1546 1547 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, 1548 BUS_DMASYNC_PREWRITE); 1549 bus_dmamap_sync(sc->sc_dmat, sc->mgtq.map, 1550 sc->mgtq.cur * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE, 1551 BUS_DMASYNC_PREWRITE); 1552 1553 DPRINTFN(10, ("sending mgt frame len=%u idx=%u rate=%u\n", 1554 m0->m_pkthdr.len, sc->mgtq.cur, rate)); 1555 1556 /* kick mgt */ 1557 sc->mgtq.queued++; 1558 sc->mgtq.cur = (sc->mgtq.cur + 1) % RT2661_MGT_RING_COUNT; 1559 RAL_WRITE(sc, RT2661_TX_CNTL_CSR, RT2661_KICK_MGT); 1560 1561 return 0; 1562 } 1563 1564 /* 1565 * Build a RTS control frame. 1566 */ 1567 static struct mbuf * 1568 rt2661_get_rts(struct rt2661_softc *sc, struct ieee80211_frame *wh, 1569 uint16_t dur) 1570 { 1571 struct ieee80211_frame_rts *rts; 1572 struct mbuf *m; 1573 1574 MGETHDR(m, M_DONTWAIT, MT_DATA); 1575 if (m == NULL) { 1576 sc->sc_ic.ic_stats.is_tx_nobuf++; 1577 aprint_error_dev(&sc->sc_dev, "could not allocate RTS frame\n"); 1578 return NULL; 1579 } 1580 1581 rts = mtod(m, struct ieee80211_frame_rts *); 1582 1583 rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL | 1584 IEEE80211_FC0_SUBTYPE_RTS; 1585 rts->i_fc[1] = IEEE80211_FC1_DIR_NODS; 1586 *(uint16_t *)rts->i_dur = htole16(dur); 1587 IEEE80211_ADDR_COPY(rts->i_ra, wh->i_addr1); 1588 IEEE80211_ADDR_COPY(rts->i_ta, wh->i_addr2); 1589 1590 m->m_pkthdr.len = m->m_len = sizeof (struct ieee80211_frame_rts); 1591 1592 return m; 1593 } 1594 1595 static int 1596 rt2661_tx_data(struct rt2661_softc *sc, struct mbuf *m0, 1597 struct ieee80211_node *ni, int ac) 1598 { 1599 struct ieee80211com *ic = &sc->sc_ic; 1600 struct rt2661_tx_ring *txq = &sc->txq[ac]; 1601 struct rt2661_tx_desc *desc; 1602 struct rt2661_tx_data *data; 1603 struct ieee80211_frame *wh; 1604 struct ieee80211_key *k; 1605 struct mbuf *mnew; 1606 uint16_t dur; 1607 uint32_t flags = 0; 1608 int rate, useprot, error, tid; 1609 1610 wh = mtod(m0, struct ieee80211_frame *); 1611 1612 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) { 1613 rate = ic->ic_sup_rates[ic->ic_curmode]. 1614 rs_rates[ic->ic_fixed_rate]; 1615 } else 1616 rate = ni->ni_rates.rs_rates[ni->ni_txrate]; 1617 rate &= IEEE80211_RATE_VAL; 1618 if (rate == 0) 1619 rate = 2; /* XXX should not happen */ 1620 1621 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1622 k = ieee80211_crypto_encap(ic, ni, m0); 1623 if (k == NULL) { 1624 m_freem(m0); 1625 return ENOBUFS; 1626 } 1627 1628 /* packet header may have moved, reset our local pointer */ 1629 wh = mtod(m0, struct ieee80211_frame *); 1630 } 1631 1632 /* 1633 * Packet Bursting: backoff after ppb=8 frames to give other STAs a 1634 * chance to contend for the wireless medium. 1635 */ 1636 tid = WME_AC_TO_TID(M_WME_GETAC(m0)); 1637 if (ic->ic_opmode == IEEE80211_M_STA && (ni->ni_txseqs[tid] & 7)) 1638 flags |= RT2661_TX_IFS_SIFS; 1639 1640 /* 1641 * IEEE Std 802.11-1999, pp 82: "A STA shall use an RTS/CTS exchange 1642 * for directed frames only when the length of the MPDU is greater 1643 * than the length threshold indicated by" ic_rtsthreshold. 1644 * 1645 * IEEE Std 802.11-2003g, pp 13: "ERP STAs shall use protection 1646 * mechanism (such as RTS/CTS or CTS-to-self) for ERP-OFDM MPDUs of 1647 * type Data or an MMPDU". 1648 */ 1649 useprot = !IEEE80211_IS_MULTICAST(wh->i_addr1) && 1650 (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold || 1651 ((ic->ic_flags & IEEE80211_F_USEPROT) && RAL_RATE_IS_OFDM(rate))); 1652 if (useprot) { 1653 struct mbuf *m; 1654 int rtsrate, ackrate; 1655 1656 rtsrate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2; 1657 ackrate = rt2661_ack_rate(ic, rate); 1658 1659 dur = rt2661_txtime(m0->m_pkthdr.len + 4, rate, ic->ic_flags) + 1660 rt2661_txtime(RAL_CTS_SIZE, rtsrate, ic->ic_flags) + 1661 rt2661_txtime(RAL_ACK_SIZE, ackrate, ic->ic_flags) + 1662 3 * sc->sifs; 1663 1664 m = rt2661_get_rts(sc, wh, dur); 1665 if (m == NULL) { 1666 aprint_error_dev(&sc->sc_dev, "could not allocate RTS " 1667 "frame\n"); 1668 m_freem(m0); 1669 return ENOBUFS; 1670 } 1671 1672 desc = &txq->desc[txq->cur]; 1673 data = &txq->data[txq->cur]; 1674 1675 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m, 1676 BUS_DMA_NOWAIT); 1677 if (error != 0) { 1678 aprint_error_dev(&sc->sc_dev, "could not map mbuf (error %d)\n", error); 1679 m_freem(m); 1680 m_freem(m0); 1681 return error; 1682 } 1683 1684 /* avoid multiple free() of the same node for each fragment */ 1685 ieee80211_ref_node(ni); 1686 1687 data->m = m; 1688 data->ni = ni; 1689 1690 rt2661_setup_tx_desc(sc, desc, RT2661_TX_NEED_ACK | 1691 RT2661_TX_MORE_FRAG, 0, m->m_pkthdr.len, rtsrate, 1692 data->map->dm_segs, data->map->dm_nsegs, ac); 1693 1694 bus_dmamap_sync(sc->sc_dmat, data->map, 0, 1695 data->map->dm_mapsize, BUS_DMASYNC_PREWRITE); 1696 bus_dmamap_sync(sc->sc_dmat, txq->map, 1697 txq->cur * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE, 1698 BUS_DMASYNC_PREWRITE); 1699 1700 txq->queued++; 1701 txq->cur = (txq->cur + 1) % RT2661_TX_RING_COUNT; 1702 1703 flags |= RT2661_TX_LONG_RETRY | RT2661_TX_IFS_SIFS; 1704 } 1705 1706 data = &txq->data[txq->cur]; 1707 desc = &txq->desc[txq->cur]; 1708 1709 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0, 1710 BUS_DMA_NOWAIT); 1711 if (error != 0 && error != EFBIG) { 1712 aprint_error_dev(&sc->sc_dev, "could not map mbuf (error %d)\n", 1713 error); 1714 m_freem(m0); 1715 return error; 1716 } 1717 if (error != 0) { 1718 /* too many fragments, linearize */ 1719 1720 MGETHDR(mnew, M_DONTWAIT, MT_DATA); 1721 if (mnew == NULL) { 1722 m_freem(m0); 1723 return ENOMEM; 1724 } 1725 1726 M_COPY_PKTHDR(mnew, m0); 1727 if (m0->m_pkthdr.len > MHLEN) { 1728 MCLGET(mnew, M_DONTWAIT); 1729 if (!(mnew->m_flags & M_EXT)) { 1730 m_freem(m0); 1731 m_freem(mnew); 1732 return ENOMEM; 1733 } 1734 } 1735 1736 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *)); 1737 m_freem(m0); 1738 mnew->m_len = mnew->m_pkthdr.len; 1739 m0 = mnew; 1740 1741 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0, 1742 BUS_DMA_NOWAIT); 1743 if (error != 0) { 1744 aprint_error_dev(&sc->sc_dev, "could not map mbuf (error %d)\n", error); 1745 m_freem(m0); 1746 return error; 1747 } 1748 1749 /* packet header have moved, reset our local pointer */ 1750 wh = mtod(m0, struct ieee80211_frame *); 1751 } 1752 1753 #if NBPFILTER > 0 1754 if (sc->sc_drvbpf != NULL) { 1755 struct rt2661_tx_radiotap_header *tap = &sc->sc_txtap; 1756 1757 tap->wt_flags = 0; 1758 tap->wt_rate = rate; 1759 tap->wt_chan_freq = htole16(sc->sc_curchan->ic_freq); 1760 tap->wt_chan_flags = htole16(sc->sc_curchan->ic_flags); 1761 1762 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0); 1763 } 1764 #endif 1765 1766 data->m = m0; 1767 data->ni = ni; 1768 1769 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1770 flags |= RT2661_TX_NEED_ACK; 1771 1772 dur = rt2661_txtime(RAL_ACK_SIZE, rt2661_ack_rate(ic, rate), 1773 ic->ic_flags) + sc->sifs; 1774 *(uint16_t *)wh->i_dur = htole16(dur); 1775 } 1776 1777 rt2661_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate, 1778 data->map->dm_segs, data->map->dm_nsegs, ac); 1779 1780 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, 1781 BUS_DMASYNC_PREWRITE); 1782 bus_dmamap_sync(sc->sc_dmat, txq->map, txq->cur * RT2661_TX_DESC_SIZE, 1783 RT2661_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE); 1784 1785 DPRINTFN(10, ("sending data frame len=%u idx=%u rate=%u\n", 1786 m0->m_pkthdr.len, txq->cur, rate)); 1787 1788 /* kick Tx */ 1789 txq->queued++; 1790 txq->cur = (txq->cur + 1) % RT2661_TX_RING_COUNT; 1791 RAL_WRITE(sc, RT2661_TX_CNTL_CSR, 1); 1792 1793 return 0; 1794 } 1795 1796 static void 1797 rt2661_start(struct ifnet *ifp) 1798 { 1799 struct rt2661_softc *sc = ifp->if_softc; 1800 struct ieee80211com *ic = &sc->sc_ic; 1801 struct mbuf *m0; 1802 struct ether_header *eh; 1803 struct ieee80211_node *ni = NULL; 1804 1805 /* 1806 * net80211 may still try to send management frames even if the 1807 * IFF_RUNNING flag is not set... 1808 */ 1809 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) 1810 return; 1811 1812 for (;;) { 1813 IF_POLL(&ic->ic_mgtq, m0); 1814 if (m0 != NULL) { 1815 if (sc->mgtq.queued >= RT2661_MGT_RING_COUNT) { 1816 ifp->if_flags |= IFF_OACTIVE; 1817 break; 1818 } 1819 IF_DEQUEUE(&ic->ic_mgtq, m0); 1820 if (m0 == NULL) 1821 break; 1822 1823 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif; 1824 m0->m_pkthdr.rcvif = NULL; 1825 #if NBPFILTER > 0 1826 if (ic->ic_rawbpf != NULL) 1827 bpf_mtap(ic->ic_rawbpf, m0); 1828 #endif 1829 if (rt2661_tx_mgt(sc, m0, ni) != 0) 1830 break; 1831 1832 } else { 1833 IF_POLL(&ifp->if_snd, m0); 1834 if (m0 == NULL || ic->ic_state != IEEE80211_S_RUN) 1835 break; 1836 1837 if (sc->txq[0].queued >= RT2661_TX_RING_COUNT - 1) { 1838 /* there is no place left in this ring */ 1839 ifp->if_flags |= IFF_OACTIVE; 1840 break; 1841 } 1842 1843 IFQ_DEQUEUE(&ifp->if_snd, m0); 1844 1845 if (m0->m_len < sizeof (struct ether_header) && 1846 !(m0 = m_pullup(m0, sizeof (struct ether_header)))) 1847 continue; 1848 1849 eh = mtod(m0, struct ether_header *); 1850 ni = ieee80211_find_txnode(ic, eh->ether_dhost); 1851 if (ni == NULL) { 1852 m_freem(m0); 1853 ifp->if_oerrors++; 1854 continue; 1855 } 1856 1857 #if NBPFILTER > 0 1858 if (ifp->if_bpf != NULL) 1859 bpf_mtap(ifp->if_bpf, m0); 1860 #endif 1861 m0 = ieee80211_encap(ic, m0, ni); 1862 if (m0 == NULL) { 1863 ieee80211_free_node(ni); 1864 ifp->if_oerrors++; 1865 continue; 1866 } 1867 #if NBPFILTER > 0 1868 if (ic->ic_rawbpf != NULL) 1869 bpf_mtap(ic->ic_rawbpf, m0); 1870 #endif 1871 if (rt2661_tx_data(sc, m0, ni, 0) != 0) { 1872 if (ni != NULL) 1873 ieee80211_free_node(ni); 1874 ifp->if_oerrors++; 1875 break; 1876 } 1877 } 1878 1879 sc->sc_tx_timer = 5; 1880 ifp->if_timer = 1; 1881 } 1882 } 1883 1884 static void 1885 rt2661_watchdog(struct ifnet *ifp) 1886 { 1887 struct rt2661_softc *sc = ifp->if_softc; 1888 1889 ifp->if_timer = 0; 1890 1891 if (sc->sc_tx_timer > 0) { 1892 if (--sc->sc_tx_timer == 0) { 1893 aprint_error_dev(&sc->sc_dev, "device timeout\n"); 1894 rt2661_init(ifp); 1895 ifp->if_oerrors++; 1896 return; 1897 } 1898 ifp->if_timer = 1; 1899 } 1900 1901 ieee80211_watchdog(&sc->sc_ic); 1902 } 1903 1904 /* 1905 * This function allows for fast channel switching in monitor mode (used by 1906 * kismet). In IBSS mode, we must explicitly reset the interface to 1907 * generate a new beacon frame. 1908 */ 1909 static int 1910 rt2661_reset(struct ifnet *ifp) 1911 { 1912 struct rt2661_softc *sc = ifp->if_softc; 1913 struct ieee80211com *ic = &sc->sc_ic; 1914 1915 if (ic->ic_opmode != IEEE80211_M_MONITOR) 1916 return ENETRESET; 1917 1918 rt2661_set_chan(sc, ic->ic_curchan); 1919 1920 return 0; 1921 } 1922 1923 static int 1924 rt2661_ioctl(struct ifnet *ifp, u_long cmd, void *data) 1925 { 1926 struct rt2661_softc *sc = ifp->if_softc; 1927 struct ieee80211com *ic = &sc->sc_ic; 1928 int s, error = 0; 1929 1930 s = splnet(); 1931 1932 switch (cmd) { 1933 case SIOCSIFFLAGS: 1934 if ((error = ifioctl_common(ifp, cmd, data)) != 0) 1935 break; 1936 if (ifp->if_flags & IFF_UP) { 1937 if (ifp->if_flags & IFF_RUNNING) 1938 rt2661_update_promisc(sc); 1939 else 1940 rt2661_init(ifp); 1941 } else { 1942 if (ifp->if_flags & IFF_RUNNING) 1943 rt2661_stop(ifp, 1); 1944 } 1945 break; 1946 1947 case SIOCADDMULTI: 1948 case SIOCDELMULTI: 1949 /* XXX no h/w multicast filter? --dyoung */ 1950 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) 1951 error = 0; 1952 break; 1953 1954 case SIOCS80211CHANNEL: 1955 /* 1956 * This allows for fast channel switching in monitor mode 1957 * (used by kismet). In IBSS mode, we must explicitly reset 1958 * the interface to generate a new beacon frame. 1959 */ 1960 error = ieee80211_ioctl(ic, cmd, data); 1961 if (error == ENETRESET && 1962 ic->ic_opmode == IEEE80211_M_MONITOR) { 1963 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == 1964 (IFF_UP | IFF_RUNNING)) 1965 rt2661_set_chan(sc, ic->ic_ibss_chan); 1966 error = 0; 1967 } 1968 break; 1969 1970 default: 1971 error = ieee80211_ioctl(ic, cmd, data); 1972 1973 } 1974 1975 if (error == ENETRESET) { 1976 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == 1977 (IFF_UP | IFF_RUNNING)) 1978 rt2661_init(ifp); 1979 error = 0; 1980 } 1981 1982 splx(s); 1983 1984 return error; 1985 } 1986 1987 static void 1988 rt2661_bbp_write(struct rt2661_softc *sc, uint8_t reg, uint8_t val) 1989 { 1990 uint32_t tmp; 1991 int ntries; 1992 1993 for (ntries = 0; ntries < 100; ntries++) { 1994 if (!(RAL_READ(sc, RT2661_PHY_CSR3) & RT2661_BBP_BUSY)) 1995 break; 1996 DELAY(1); 1997 } 1998 if (ntries == 100) { 1999 aprint_error_dev(&sc->sc_dev, "could not write to BBP\n"); 2000 return; 2001 } 2002 2003 tmp = RT2661_BBP_BUSY | (reg & 0x7f) << 8 | val; 2004 RAL_WRITE(sc, RT2661_PHY_CSR3, tmp); 2005 2006 DPRINTFN(15, ("BBP R%u <- 0x%02x\n", reg, val)); 2007 } 2008 2009 static uint8_t 2010 rt2661_bbp_read(struct rt2661_softc *sc, uint8_t reg) 2011 { 2012 uint32_t val; 2013 int ntries; 2014 2015 for (ntries = 0; ntries < 100; ntries++) { 2016 if (!(RAL_READ(sc, RT2661_PHY_CSR3) & RT2661_BBP_BUSY)) 2017 break; 2018 DELAY(1); 2019 } 2020 if (ntries == 100) { 2021 aprint_error_dev(&sc->sc_dev, "could not read from BBP\n"); 2022 return 0; 2023 } 2024 2025 val = RT2661_BBP_BUSY | RT2661_BBP_READ | reg << 8; 2026 RAL_WRITE(sc, RT2661_PHY_CSR3, val); 2027 2028 for (ntries = 0; ntries < 100; ntries++) { 2029 val = RAL_READ(sc, RT2661_PHY_CSR3); 2030 if (!(val & RT2661_BBP_BUSY)) 2031 return val & 0xff; 2032 DELAY(1); 2033 } 2034 2035 aprint_error_dev(&sc->sc_dev, "could not read from BBP\n"); 2036 return 0; 2037 } 2038 2039 static void 2040 rt2661_rf_write(struct rt2661_softc *sc, uint8_t reg, uint32_t val) 2041 { 2042 uint32_t tmp; 2043 int ntries; 2044 2045 for (ntries = 0; ntries < 100; ntries++) { 2046 if (!(RAL_READ(sc, RT2661_PHY_CSR4) & RT2661_RF_BUSY)) 2047 break; 2048 DELAY(1); 2049 } 2050 if (ntries == 100) { 2051 aprint_error_dev(&sc->sc_dev, "could not write to RF\n"); 2052 return; 2053 } 2054 tmp = RT2661_RF_BUSY | RT2661_RF_21BIT | (val & 0x1fffff) << 2 | 2055 (reg & 3); 2056 RAL_WRITE(sc, RT2661_PHY_CSR4, tmp); 2057 2058 /* remember last written value in sc */ 2059 sc->rf_regs[reg] = val; 2060 2061 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0x1fffff)); 2062 } 2063 2064 static int 2065 rt2661_tx_cmd(struct rt2661_softc *sc, uint8_t cmd, uint16_t arg) 2066 { 2067 if (RAL_READ(sc, RT2661_H2M_MAILBOX_CSR) & RT2661_H2M_BUSY) 2068 return EIO; /* there is already a command pending */ 2069 2070 RAL_WRITE(sc, RT2661_H2M_MAILBOX_CSR, 2071 RT2661_H2M_BUSY | RT2661_TOKEN_NO_INTR << 16 | arg); 2072 2073 RAL_WRITE(sc, RT2661_HOST_CMD_CSR, RT2661_KICK_CMD | cmd); 2074 2075 return 0; 2076 } 2077 2078 static void 2079 rt2661_select_antenna(struct rt2661_softc *sc) 2080 { 2081 uint8_t bbp4, bbp77; 2082 uint32_t tmp; 2083 2084 bbp4 = rt2661_bbp_read(sc, 4); 2085 bbp77 = rt2661_bbp_read(sc, 77); 2086 2087 /* TBD */ 2088 2089 /* make sure Rx is disabled before switching antenna */ 2090 tmp = RAL_READ(sc, RT2661_TXRX_CSR0); 2091 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX); 2092 2093 rt2661_bbp_write(sc, 4, bbp4); 2094 rt2661_bbp_write(sc, 77, bbp77); 2095 2096 /* restore Rx filter */ 2097 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp); 2098 } 2099 2100 /* 2101 * Enable multi-rate retries for frames sent at OFDM rates. 2102 * In 802.11b/g mode, allow fallback to CCK rates. 2103 */ 2104 static void 2105 rt2661_enable_mrr(struct rt2661_softc *sc) 2106 { 2107 struct ieee80211com *ic = &sc->sc_ic; 2108 uint32_t tmp; 2109 2110 tmp = RAL_READ(sc, RT2661_TXRX_CSR4); 2111 2112 tmp &= ~RT2661_MRR_CCK_FALLBACK; 2113 if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) 2114 tmp |= RT2661_MRR_CCK_FALLBACK; 2115 tmp |= RT2661_MRR_ENABLED; 2116 2117 RAL_WRITE(sc, RT2661_TXRX_CSR4, tmp); 2118 } 2119 2120 static void 2121 rt2661_set_txpreamble(struct rt2661_softc *sc) 2122 { 2123 uint32_t tmp; 2124 2125 tmp = RAL_READ(sc, RT2661_TXRX_CSR4); 2126 2127 tmp &= ~RT2661_SHORT_PREAMBLE; 2128 if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE) 2129 tmp |= RT2661_SHORT_PREAMBLE; 2130 2131 RAL_WRITE(sc, RT2661_TXRX_CSR4, tmp); 2132 } 2133 2134 static void 2135 rt2661_set_basicrates(struct rt2661_softc *sc, 2136 const struct ieee80211_rateset *rs) 2137 { 2138 #define RV(r) ((r) & IEEE80211_RATE_VAL) 2139 uint32_t mask = 0; 2140 uint8_t rate; 2141 int i, j; 2142 2143 for (i = 0; i < rs->rs_nrates; i++) { 2144 rate = rs->rs_rates[i]; 2145 2146 if (!(rate & IEEE80211_RATE_BASIC)) 2147 continue; 2148 2149 /* 2150 * Find h/w rate index. We know it exists because the rate 2151 * set has already been negotiated. 2152 */ 2153 for (j = 0; rt2661_rateset_11g.rs_rates[j] != RV(rate); j++); 2154 2155 mask |= 1 << j; 2156 } 2157 2158 RAL_WRITE(sc, RT2661_TXRX_CSR5, mask); 2159 2160 DPRINTF(("Setting basic rate mask to 0x%x\n", mask)); 2161 #undef RV 2162 } 2163 2164 /* 2165 * Reprogram MAC/BBP to switch to a new band. Values taken from the reference 2166 * driver. 2167 */ 2168 static void 2169 rt2661_select_band(struct rt2661_softc *sc, struct ieee80211_channel *c) 2170 { 2171 uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104; 2172 uint32_t tmp; 2173 2174 /* update all BBP registers that depend on the band */ 2175 bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c; 2176 bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48; 2177 if (IEEE80211_IS_CHAN_5GHZ(c)) { 2178 bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c; 2179 bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10; 2180 } 2181 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || 2182 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { 2183 bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10; 2184 } 2185 2186 sc->bbp17 = bbp17; 2187 rt2661_bbp_write(sc, 17, bbp17); 2188 rt2661_bbp_write(sc, 96, bbp96); 2189 rt2661_bbp_write(sc, 104, bbp104); 2190 2191 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || 2192 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { 2193 rt2661_bbp_write(sc, 75, 0x80); 2194 rt2661_bbp_write(sc, 86, 0x80); 2195 rt2661_bbp_write(sc, 88, 0x80); 2196 } 2197 2198 rt2661_bbp_write(sc, 35, bbp35); 2199 rt2661_bbp_write(sc, 97, bbp97); 2200 rt2661_bbp_write(sc, 98, bbp98); 2201 2202 tmp = RAL_READ(sc, RT2661_PHY_CSR0); 2203 tmp &= ~(RT2661_PA_PE_2GHZ | RT2661_PA_PE_5GHZ); 2204 if (IEEE80211_IS_CHAN_2GHZ(c)) 2205 tmp |= RT2661_PA_PE_2GHZ; 2206 else 2207 tmp |= RT2661_PA_PE_5GHZ; 2208 RAL_WRITE(sc, RT2661_PHY_CSR0, tmp); 2209 2210 /* 802.11a uses a 16 microseconds short interframe space */ 2211 sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10; 2212 } 2213 2214 static void 2215 rt2661_set_chan(struct rt2661_softc *sc, struct ieee80211_channel *c) 2216 { 2217 struct ieee80211com *ic = &sc->sc_ic; 2218 const struct rfprog *rfprog; 2219 uint8_t bbp3, bbp94 = RT2661_BBPR94_DEFAULT; 2220 int8_t power; 2221 u_int i, chan; 2222 2223 chan = ieee80211_chan2ieee(ic, c); 2224 if (chan == 0 || chan == IEEE80211_CHAN_ANY) 2225 return; 2226 2227 /* select the appropriate RF settings based on what EEPROM says */ 2228 rfprog = (sc->rfprog == 0) ? rt2661_rf5225_1 : rt2661_rf5225_2; 2229 2230 /* find the settings for this channel (we know it exists) */ 2231 for (i = 0; rfprog[i].chan != chan; i++); 2232 2233 power = sc->txpow[i]; 2234 if (power < 0) { 2235 bbp94 += power; 2236 power = 0; 2237 } else if (power > 31) { 2238 bbp94 += power - 31; 2239 power = 31; 2240 } 2241 2242 /* 2243 * If we've yet to select a channel, or we are switching from the 2244 * 2GHz band to the 5GHz band or vice-versa, BBP registers need to 2245 * be reprogrammed. 2246 */ 2247 if (sc->sc_curchan == NULL || c->ic_flags != sc->sc_curchan->ic_flags) { 2248 rt2661_select_band(sc, c); 2249 rt2661_select_antenna(sc); 2250 } 2251 sc->sc_curchan = c; 2252 2253 rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1); 2254 rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2); 2255 rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7); 2256 rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10); 2257 2258 DELAY(200); 2259 2260 rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1); 2261 rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2); 2262 rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7 | 1); 2263 rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10); 2264 2265 DELAY(200); 2266 2267 rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1); 2268 rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2); 2269 rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7); 2270 rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10); 2271 2272 /* enable smart mode for MIMO-capable RFs */ 2273 bbp3 = rt2661_bbp_read(sc, 3); 2274 2275 bbp3 &= ~RT2661_SMART_MODE; 2276 if (sc->rf_rev == RT2661_RF_5325 || sc->rf_rev == RT2661_RF_2529) 2277 bbp3 |= RT2661_SMART_MODE; 2278 2279 rt2661_bbp_write(sc, 3, bbp3); 2280 2281 if (bbp94 != RT2661_BBPR94_DEFAULT) 2282 rt2661_bbp_write(sc, 94, bbp94); 2283 2284 /* 5GHz radio needs a 1ms delay here */ 2285 if (IEEE80211_IS_CHAN_5GHZ(c)) 2286 DELAY(1000); 2287 } 2288 2289 static void 2290 rt2661_set_bssid(struct rt2661_softc *sc, const uint8_t *bssid) 2291 { 2292 uint32_t tmp; 2293 2294 tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24; 2295 RAL_WRITE(sc, RT2661_MAC_CSR4, tmp); 2296 2297 tmp = bssid[4] | bssid[5] << 8 | RT2661_ONE_BSSID << 16; 2298 RAL_WRITE(sc, RT2661_MAC_CSR5, tmp); 2299 } 2300 2301 static void 2302 rt2661_set_macaddr(struct rt2661_softc *sc, const uint8_t *addr) 2303 { 2304 uint32_t tmp; 2305 2306 tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24; 2307 RAL_WRITE(sc, RT2661_MAC_CSR2, tmp); 2308 2309 tmp = addr[4] | addr[5] << 8 | 0xff << 16; 2310 RAL_WRITE(sc, RT2661_MAC_CSR3, tmp); 2311 } 2312 2313 static void 2314 rt2661_update_promisc(struct rt2661_softc *sc) 2315 { 2316 struct ifnet *ifp = sc->sc_ic.ic_ifp; 2317 uint32_t tmp; 2318 2319 tmp = RAL_READ(sc, RT2661_TXRX_CSR0); 2320 2321 tmp &= ~RT2661_DROP_NOT_TO_ME; 2322 if (!(ifp->if_flags & IFF_PROMISC)) 2323 tmp |= RT2661_DROP_NOT_TO_ME; 2324 2325 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp); 2326 2327 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ? 2328 "entering" : "leaving")); 2329 } 2330 2331 #if 0 2332 /* 2333 * Update QoS (802.11e) settings for each h/w Tx ring. 2334 */ 2335 static int 2336 rt2661_wme_update(struct ieee80211com *ic) 2337 { 2338 struct rt2661_softc *sc = ic->ic_ifp->if_softc; 2339 const struct wmeParams *wmep; 2340 2341 wmep = ic->ic_wme.wme_chanParams.cap_wmeParams; 2342 2343 /* XXX: not sure about shifts. */ 2344 /* XXX: the reference driver plays with AC_VI settings too. */ 2345 2346 /* update TxOp */ 2347 RAL_WRITE(sc, RT2661_AC_TXOP_CSR0, 2348 wmep[WME_AC_BE].wmep_txopLimit << 16 | 2349 wmep[WME_AC_BK].wmep_txopLimit); 2350 RAL_WRITE(sc, RT2661_AC_TXOP_CSR1, 2351 wmep[WME_AC_VI].wmep_txopLimit << 16 | 2352 wmep[WME_AC_VO].wmep_txopLimit); 2353 2354 /* update CWmin */ 2355 RAL_WRITE(sc, RT2661_CWMIN_CSR, 2356 wmep[WME_AC_BE].wmep_logcwmin << 12 | 2357 wmep[WME_AC_BK].wmep_logcwmin << 8 | 2358 wmep[WME_AC_VI].wmep_logcwmin << 4 | 2359 wmep[WME_AC_VO].wmep_logcwmin); 2360 2361 /* update CWmax */ 2362 RAL_WRITE(sc, RT2661_CWMAX_CSR, 2363 wmep[WME_AC_BE].wmep_logcwmax << 12 | 2364 wmep[WME_AC_BK].wmep_logcwmax << 8 | 2365 wmep[WME_AC_VI].wmep_logcwmax << 4 | 2366 wmep[WME_AC_VO].wmep_logcwmax); 2367 2368 /* update Aifsn */ 2369 RAL_WRITE(sc, RT2661_AIFSN_CSR, 2370 wmep[WME_AC_BE].wmep_aifsn << 12 | 2371 wmep[WME_AC_BK].wmep_aifsn << 8 | 2372 wmep[WME_AC_VI].wmep_aifsn << 4 | 2373 wmep[WME_AC_VO].wmep_aifsn); 2374 2375 return 0; 2376 } 2377 #endif 2378 2379 static void 2380 rt2661_updateslot(struct ifnet *ifp) 2381 { 2382 struct rt2661_softc *sc = ifp->if_softc; 2383 struct ieee80211com *ic = &sc->sc_ic; 2384 2385 if (ic->ic_opmode == IEEE80211_M_HOSTAP) { 2386 /* 2387 * In HostAP mode, we defer setting of new slot time until 2388 * updated ERP Information Element has propagated to all 2389 * associated STAs. 2390 */ 2391 sc->sc_flags |= RT2661_UPDATE_SLOT; 2392 } else 2393 rt2661_set_slottime(sc); 2394 } 2395 2396 static void 2397 rt2661_set_slottime(struct rt2661_softc *sc) 2398 { 2399 struct ieee80211com *ic = &sc->sc_ic; 2400 uint8_t slottime; 2401 uint32_t tmp; 2402 2403 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20; 2404 2405 tmp = RAL_READ(sc, RT2661_MAC_CSR9); 2406 tmp = (tmp & ~0xff) | slottime; 2407 RAL_WRITE(sc, RT2661_MAC_CSR9, tmp); 2408 2409 DPRINTF(("setting slot time to %uus\n", slottime)); 2410 } 2411 2412 static const char * 2413 rt2661_get_rf(int rev) 2414 { 2415 switch (rev) { 2416 case RT2661_RF_5225: return "RT5225"; 2417 case RT2661_RF_5325: return "RT5325 (MIMO XR)"; 2418 case RT2661_RF_2527: return "RT2527"; 2419 case RT2661_RF_2529: return "RT2529 (MIMO XR)"; 2420 default: return "unknown"; 2421 } 2422 } 2423 2424 static void 2425 rt2661_read_eeprom(struct rt2661_softc *sc) 2426 { 2427 struct ieee80211com *ic = &sc->sc_ic; 2428 uint16_t val; 2429 int i; 2430 2431 /* read MAC address */ 2432 val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC01); 2433 ic->ic_myaddr[0] = val & 0xff; 2434 ic->ic_myaddr[1] = val >> 8; 2435 2436 val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC23); 2437 ic->ic_myaddr[2] = val & 0xff; 2438 ic->ic_myaddr[3] = val >> 8; 2439 2440 val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC45); 2441 ic->ic_myaddr[4] = val & 0xff; 2442 ic->ic_myaddr[5] = val >> 8; 2443 2444 val = rt2661_eeprom_read(sc, RT2661_EEPROM_ANTENNA); 2445 /* XXX: test if different from 0xffff? */ 2446 sc->rf_rev = (val >> 11) & 0x1f; 2447 sc->hw_radio = (val >> 10) & 0x1; 2448 sc->rx_ant = (val >> 4) & 0x3; 2449 sc->tx_ant = (val >> 2) & 0x3; 2450 sc->nb_ant = val & 0x3; 2451 2452 DPRINTF(("RF revision=%d\n", sc->rf_rev)); 2453 2454 val = rt2661_eeprom_read(sc, RT2661_EEPROM_CONFIG2); 2455 sc->ext_5ghz_lna = (val >> 6) & 0x1; 2456 sc->ext_2ghz_lna = (val >> 4) & 0x1; 2457 2458 DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n", 2459 sc->ext_2ghz_lna, sc->ext_5ghz_lna)); 2460 2461 val = rt2661_eeprom_read(sc, RT2661_EEPROM_RSSI_2GHZ_OFFSET); 2462 if ((val & 0xff) != 0xff) 2463 sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */ 2464 2465 val = rt2661_eeprom_read(sc, RT2661_EEPROM_RSSI_5GHZ_OFFSET); 2466 if ((val & 0xff) != 0xff) 2467 sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */ 2468 2469 /* adjust RSSI correction for external low-noise amplifier */ 2470 if (sc->ext_2ghz_lna) 2471 sc->rssi_2ghz_corr -= 14; 2472 if (sc->ext_5ghz_lna) 2473 sc->rssi_5ghz_corr -= 14; 2474 2475 DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n", 2476 sc->rssi_2ghz_corr, sc->rssi_5ghz_corr)); 2477 2478 val = rt2661_eeprom_read(sc, RT2661_EEPROM_FREQ_OFFSET); 2479 if ((val >> 8) != 0xff) 2480 sc->rfprog = (val >> 8) & 0x3; 2481 if ((val & 0xff) != 0xff) 2482 sc->rffreq = val & 0xff; 2483 2484 DPRINTF(("RF prog=%d\nRF freq=%d\n", sc->rfprog, sc->rffreq)); 2485 2486 /* read Tx power for all a/b/g channels */ 2487 for (i = 0; i < 19; i++) { 2488 val = rt2661_eeprom_read(sc, RT2661_EEPROM_TXPOWER + i); 2489 sc->txpow[i * 2] = (int8_t)(val >> 8); /* signed */ 2490 DPRINTF(("Channel=%d Tx power=%d\n", 2491 rt2661_rf5225_1[i * 2].chan, sc->txpow[i * 2])); 2492 sc->txpow[i * 2 + 1] = (int8_t)(val & 0xff); /* signed */ 2493 DPRINTF(("Channel=%d Tx power=%d\n", 2494 rt2661_rf5225_1[i * 2 + 1].chan, sc->txpow[i * 2 + 1])); 2495 } 2496 2497 /* read vendor-specific BBP values */ 2498 for (i = 0; i < 16; i++) { 2499 val = rt2661_eeprom_read(sc, RT2661_EEPROM_BBP_BASE + i); 2500 if (val == 0 || val == 0xffff) 2501 continue; /* skip invalid entries */ 2502 sc->bbp_prom[i].reg = val >> 8; 2503 sc->bbp_prom[i].val = val & 0xff; 2504 DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg, 2505 sc->bbp_prom[i].val)); 2506 } 2507 } 2508 2509 static int 2510 rt2661_bbp_init(struct rt2661_softc *sc) 2511 { 2512 #define N(a) (sizeof (a) / sizeof ((a)[0])) 2513 int i, ntries; 2514 uint8_t val; 2515 2516 /* wait for BBP to be ready */ 2517 for (ntries = 0; ntries < 100; ntries++) { 2518 val = rt2661_bbp_read(sc, 0); 2519 if (val != 0 && val != 0xff) 2520 break; 2521 DELAY(100); 2522 } 2523 if (ntries == 100) { 2524 aprint_error_dev(&sc->sc_dev, "timeout waiting for BBP\n"); 2525 return EIO; 2526 } 2527 2528 /* initialize BBP registers to default values */ 2529 for (i = 0; i < N(rt2661_def_bbp); i++) { 2530 rt2661_bbp_write(sc, rt2661_def_bbp[i].reg, 2531 rt2661_def_bbp[i].val); 2532 } 2533 2534 /* write vendor-specific BBP values (from EEPROM) */ 2535 for (i = 0; i < 16; i++) { 2536 if (sc->bbp_prom[i].reg == 0) 2537 continue; 2538 rt2661_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val); 2539 } 2540 2541 return 0; 2542 #undef N 2543 } 2544 2545 static int 2546 rt2661_init(struct ifnet *ifp) 2547 { 2548 #define N(a) (sizeof (a) / sizeof ((a)[0])) 2549 struct rt2661_softc *sc = ifp->if_softc; 2550 struct ieee80211com *ic = &sc->sc_ic; 2551 const char *name = NULL; /* make lint happy */ 2552 uint8_t *ucode; 2553 size_t size; 2554 uint32_t tmp, star[3]; 2555 int i, ntries; 2556 firmware_handle_t fh; 2557 2558 /* for CardBus, power on the socket */ 2559 if (!(sc->sc_flags & RT2661_ENABLED)) { 2560 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) { 2561 aprint_error_dev(&sc->sc_dev, "could not enable device\n"); 2562 return EIO; 2563 } 2564 sc->sc_flags |= RT2661_ENABLED; 2565 } 2566 2567 rt2661_stop(ifp, 0); 2568 2569 if (!(sc->sc_flags & RT2661_FWLOADED)) { 2570 switch (sc->sc_id) { 2571 case PCI_PRODUCT_RALINK_RT2561: 2572 name = "ral-rt2561"; 2573 break; 2574 case PCI_PRODUCT_RALINK_RT2561S: 2575 name = "ral-rt2561s"; 2576 break; 2577 case PCI_PRODUCT_RALINK_RT2661: 2578 name = "ral-rt2661"; 2579 break; 2580 } 2581 2582 if (firmware_open("ral", name, &fh) != 0) { 2583 aprint_error_dev(&sc->sc_dev, "could not open microcode %s\n", name); 2584 rt2661_stop(ifp, 1); 2585 return EIO; 2586 } 2587 2588 size = firmware_get_size(fh); 2589 if (!(ucode = firmware_malloc(size))) { 2590 aprint_error_dev(&sc->sc_dev, "could not alloc microcode memory\n"); 2591 firmware_close(fh); 2592 rt2661_stop(ifp, 1); 2593 return ENOMEM; 2594 } 2595 2596 if (firmware_read(fh, 0, ucode, size) != 0) { 2597 aprint_error_dev(&sc->sc_dev, "could not read microcode %s\n", name); 2598 firmware_free(ucode, 0); 2599 firmware_close(fh); 2600 rt2661_stop(ifp, 1); 2601 return EIO; 2602 } 2603 2604 if (rt2661_load_microcode(sc, ucode, size) != 0) { 2605 aprint_error_dev(&sc->sc_dev, "could not load 8051 microcode\n"); 2606 firmware_free(ucode, 0); 2607 firmware_close(fh); 2608 rt2661_stop(ifp, 1); 2609 return EIO; 2610 } 2611 2612 firmware_free(ucode, 0); 2613 firmware_close(fh); 2614 sc->sc_flags |= RT2661_FWLOADED; 2615 } 2616 2617 /* initialize Tx rings */ 2618 RAL_WRITE(sc, RT2661_AC1_BASE_CSR, sc->txq[1].physaddr); 2619 RAL_WRITE(sc, RT2661_AC0_BASE_CSR, sc->txq[0].physaddr); 2620 RAL_WRITE(sc, RT2661_AC2_BASE_CSR, sc->txq[2].physaddr); 2621 RAL_WRITE(sc, RT2661_AC3_BASE_CSR, sc->txq[3].physaddr); 2622 2623 /* initialize Mgt ring */ 2624 RAL_WRITE(sc, RT2661_MGT_BASE_CSR, sc->mgtq.physaddr); 2625 2626 /* initialize Rx ring */ 2627 RAL_WRITE(sc, RT2661_RX_BASE_CSR, sc->rxq.physaddr); 2628 2629 /* initialize Tx rings sizes */ 2630 RAL_WRITE(sc, RT2661_TX_RING_CSR0, 2631 RT2661_TX_RING_COUNT << 24 | 2632 RT2661_TX_RING_COUNT << 16 | 2633 RT2661_TX_RING_COUNT << 8 | 2634 RT2661_TX_RING_COUNT); 2635 2636 RAL_WRITE(sc, RT2661_TX_RING_CSR1, 2637 RT2661_TX_DESC_WSIZE << 16 | 2638 RT2661_TX_RING_COUNT << 8 | /* XXX: HCCA ring unused */ 2639 RT2661_MGT_RING_COUNT); 2640 2641 /* initialize Rx rings */ 2642 RAL_WRITE(sc, RT2661_RX_RING_CSR, 2643 RT2661_RX_DESC_BACK << 16 | 2644 RT2661_RX_DESC_WSIZE << 8 | 2645 RT2661_RX_RING_COUNT); 2646 2647 /* XXX: some magic here */ 2648 RAL_WRITE(sc, RT2661_TX_DMA_DST_CSR, 0xaa); 2649 2650 /* load base addresses of all 5 Tx rings (4 data + 1 mgt) */ 2651 RAL_WRITE(sc, RT2661_LOAD_TX_RING_CSR, 0x1f); 2652 2653 /* load base address of Rx ring */ 2654 RAL_WRITE(sc, RT2661_RX_CNTL_CSR, 2); 2655 2656 /* initialize MAC registers to default values */ 2657 for (i = 0; i < N(rt2661_def_mac); i++) 2658 RAL_WRITE(sc, rt2661_def_mac[i].reg, rt2661_def_mac[i].val); 2659 2660 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl)); 2661 rt2661_set_macaddr(sc, ic->ic_myaddr); 2662 2663 /* set host ready */ 2664 RAL_WRITE(sc, RT2661_MAC_CSR1, 3); 2665 RAL_WRITE(sc, RT2661_MAC_CSR1, 0); 2666 2667 /* wait for BBP/RF to wakeup */ 2668 for (ntries = 0; ntries < 1000; ntries++) { 2669 if (RAL_READ(sc, RT2661_MAC_CSR12) & 8) 2670 break; 2671 DELAY(1000); 2672 } 2673 if (ntries == 1000) { 2674 printf("timeout waiting for BBP/RF to wakeup\n"); 2675 rt2661_stop(ifp, 1); 2676 return EIO; 2677 } 2678 2679 if (rt2661_bbp_init(sc) != 0) { 2680 rt2661_stop(ifp, 1); 2681 return EIO; 2682 } 2683 2684 /* select default channel */ 2685 sc->sc_curchan = ic->ic_curchan; 2686 rt2661_select_band(sc, sc->sc_curchan); 2687 rt2661_select_antenna(sc); 2688 rt2661_set_chan(sc, sc->sc_curchan); 2689 2690 /* update Rx filter */ 2691 tmp = RAL_READ(sc, RT2661_TXRX_CSR0) & 0xffff; 2692 2693 tmp |= RT2661_DROP_PHY_ERROR | RT2661_DROP_CRC_ERROR; 2694 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 2695 tmp |= RT2661_DROP_CTL | RT2661_DROP_VER_ERROR | 2696 RT2661_DROP_ACKCTS; 2697 if (ic->ic_opmode != IEEE80211_M_HOSTAP) 2698 tmp |= RT2661_DROP_TODS; 2699 if (!(ifp->if_flags & IFF_PROMISC)) 2700 tmp |= RT2661_DROP_NOT_TO_ME; 2701 } 2702 2703 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp); 2704 2705 /* clear STA registers */ 2706 RAL_READ_REGION_4(sc, RT2661_STA_CSR0, star, N(star)); 2707 2708 /* initialize ASIC */ 2709 RAL_WRITE(sc, RT2661_MAC_CSR1, 4); 2710 2711 /* clear any pending interrupt */ 2712 RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, 0xffffffff); 2713 2714 /* enable interrupts */ 2715 RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0x0000ff10); 2716 RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0); 2717 2718 /* kick Rx */ 2719 RAL_WRITE(sc, RT2661_RX_CNTL_CSR, 1); 2720 2721 ifp->if_flags &= ~IFF_OACTIVE; 2722 ifp->if_flags |= IFF_RUNNING; 2723 2724 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 2725 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL) 2726 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 2727 } else 2728 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 2729 2730 return 0; 2731 #undef N 2732 } 2733 2734 static void 2735 rt2661_stop(struct ifnet *ifp, int disable) 2736 { 2737 struct rt2661_softc *sc = ifp->if_softc; 2738 struct ieee80211com *ic = &sc->sc_ic; 2739 uint32_t tmp; 2740 2741 sc->sc_tx_timer = 0; 2742 ifp->if_timer = 0; 2743 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 2744 2745 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */ 2746 2747 /* abort Tx (for all 5 Tx rings) */ 2748 RAL_WRITE(sc, RT2661_TX_CNTL_CSR, 0x1f << 16); 2749 2750 /* disable Rx (value remains after reset!) */ 2751 tmp = RAL_READ(sc, RT2661_TXRX_CSR0); 2752 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX); 2753 2754 /* reset ASIC */ 2755 RAL_WRITE(sc, RT2661_MAC_CSR1, 3); 2756 RAL_WRITE(sc, RT2661_MAC_CSR1, 0); 2757 2758 /* disable interrupts */ 2759 RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0xffffff7f); 2760 RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0xffffffff); 2761 2762 /* clear any pending interrupt */ 2763 RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, 0xffffffff); 2764 RAL_WRITE(sc, RT2661_MCU_INT_SOURCE_CSR, 0xffffffff); 2765 2766 /* reset Tx and Rx rings */ 2767 rt2661_reset_tx_ring(sc, &sc->txq[0]); 2768 rt2661_reset_tx_ring(sc, &sc->txq[1]); 2769 rt2661_reset_tx_ring(sc, &sc->txq[2]); 2770 rt2661_reset_tx_ring(sc, &sc->txq[3]); 2771 rt2661_reset_tx_ring(sc, &sc->mgtq); 2772 rt2661_reset_rx_ring(sc, &sc->rxq); 2773 2774 /* for CardBus, power down the socket */ 2775 if (disable && sc->sc_disable != NULL) { 2776 if (sc->sc_flags & RT2661_ENABLED) { 2777 (*sc->sc_disable)(sc); 2778 sc->sc_flags &= ~(RT2661_ENABLED | RT2661_FWLOADED); 2779 } 2780 } 2781 } 2782 2783 static int 2784 rt2661_load_microcode(struct rt2661_softc *sc, const uint8_t *ucode, int size) 2785 { 2786 int ntries; 2787 2788 /* reset 8051 */ 2789 RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET); 2790 2791 /* cancel any pending Host to MCU command */ 2792 RAL_WRITE(sc, RT2661_H2M_MAILBOX_CSR, 0); 2793 RAL_WRITE(sc, RT2661_M2H_CMD_DONE_CSR, 0xffffffff); 2794 RAL_WRITE(sc, RT2661_HOST_CMD_CSR, 0); 2795 2796 /* write 8051's microcode */ 2797 RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET | RT2661_MCU_SEL); 2798 RAL_WRITE_REGION_1(sc, RT2661_MCU_CODE_BASE, ucode, size); 2799 RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET); 2800 2801 /* kick 8051's ass */ 2802 RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, 0); 2803 2804 /* wait for 8051 to initialize */ 2805 for (ntries = 0; ntries < 500; ntries++) { 2806 if (RAL_READ(sc, RT2661_MCU_CNTL_CSR) & RT2661_MCU_READY) 2807 break; 2808 DELAY(100); 2809 } 2810 if (ntries == 500) { 2811 printf("timeout waiting for MCU to initialize\n"); 2812 return EIO; 2813 } 2814 return 0; 2815 } 2816 2817 /* 2818 * Dynamically tune Rx sensitivity (BBP register 17) based on average RSSI and 2819 * false CCA count. This function is called periodically (every seconds) when 2820 * in the RUN state. Values taken from the reference driver. 2821 */ 2822 static void 2823 rt2661_rx_tune(struct rt2661_softc *sc) 2824 { 2825 uint8_t bbp17; 2826 uint16_t cca; 2827 int lo, hi, dbm; 2828 2829 /* 2830 * Tuning range depends on operating band and on the presence of an 2831 * external low-noise amplifier. 2832 */ 2833 lo = 0x20; 2834 if (IEEE80211_IS_CHAN_5GHZ(sc->sc_curchan)) 2835 lo += 0x08; 2836 if ((IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan) && sc->ext_2ghz_lna) || 2837 (IEEE80211_IS_CHAN_5GHZ(sc->sc_curchan) && sc->ext_5ghz_lna)) 2838 lo += 0x10; 2839 hi = lo + 0x20; 2840 2841 dbm = sc->avg_rssi; 2842 /* retrieve false CCA count since last call (clear on read) */ 2843 cca = RAL_READ(sc, RT2661_STA_CSR1) & 0xffff; 2844 2845 DPRINTFN(2, ("RSSI=%ddBm false CCA=%d\n", dbm, cca)); 2846 2847 if (dbm < -74) { 2848 /* very bad RSSI, tune using false CCA count */ 2849 bbp17 = sc->bbp17; /* current value */ 2850 2851 hi -= 2 * (-74 - dbm); 2852 if (hi < lo) 2853 hi = lo; 2854 2855 if (bbp17 > hi) 2856 bbp17 = hi; 2857 else if (cca > 512) 2858 bbp17 = min(bbp17 + 1, hi); 2859 else if (cca < 100) 2860 bbp17 = max(bbp17 - 1, lo); 2861 2862 } else if (dbm < -66) { 2863 bbp17 = lo + 0x08; 2864 } else if (dbm < -58) { 2865 bbp17 = lo + 0x10; 2866 } else if (dbm < -35) { 2867 bbp17 = hi; 2868 } else { /* very good RSSI >= -35dBm */ 2869 bbp17 = 0x60; /* very low sensitivity */ 2870 } 2871 2872 if (bbp17 != sc->bbp17) { 2873 DPRINTF(("BBP17 %x->%x\n", sc->bbp17, bbp17)); 2874 rt2661_bbp_write(sc, 17, bbp17); 2875 sc->bbp17 = bbp17; 2876 } 2877 } 2878 2879 #ifdef notyet 2880 /* 2881 * Enter/Leave radar detection mode. 2882 * This is for 802.11h additional regulatory domains. 2883 */ 2884 static void 2885 rt2661_radar_start(struct rt2661_softc *sc) 2886 { 2887 uint32_t tmp; 2888 2889 /* disable Rx */ 2890 tmp = RAL_READ(sc, RT2661_TXRX_CSR0); 2891 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX); 2892 2893 rt2661_bbp_write(sc, 82, 0x20); 2894 rt2661_bbp_write(sc, 83, 0x00); 2895 rt2661_bbp_write(sc, 84, 0x40); 2896 2897 /* save current BBP registers values */ 2898 sc->bbp18 = rt2661_bbp_read(sc, 18); 2899 sc->bbp21 = rt2661_bbp_read(sc, 21); 2900 sc->bbp22 = rt2661_bbp_read(sc, 22); 2901 sc->bbp16 = rt2661_bbp_read(sc, 16); 2902 sc->bbp17 = rt2661_bbp_read(sc, 17); 2903 sc->bbp64 = rt2661_bbp_read(sc, 64); 2904 2905 rt2661_bbp_write(sc, 18, 0xff); 2906 rt2661_bbp_write(sc, 21, 0x3f); 2907 rt2661_bbp_write(sc, 22, 0x3f); 2908 rt2661_bbp_write(sc, 16, 0xbd); 2909 rt2661_bbp_write(sc, 17, sc->ext_5ghz_lna ? 0x44 : 0x34); 2910 rt2661_bbp_write(sc, 64, 0x21); 2911 2912 /* restore Rx filter */ 2913 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp); 2914 } 2915 2916 static int 2917 rt2661_radar_stop(struct rt2661_softc *sc) 2918 { 2919 uint8_t bbp66; 2920 2921 /* read radar detection result */ 2922 bbp66 = rt2661_bbp_read(sc, 66); 2923 2924 /* restore BBP registers values */ 2925 rt2661_bbp_write(sc, 16, sc->bbp16); 2926 rt2661_bbp_write(sc, 17, sc->bbp17); 2927 rt2661_bbp_write(sc, 18, sc->bbp18); 2928 rt2661_bbp_write(sc, 21, sc->bbp21); 2929 rt2661_bbp_write(sc, 22, sc->bbp22); 2930 rt2661_bbp_write(sc, 64, sc->bbp64); 2931 2932 return bbp66 == 1; 2933 } 2934 #endif 2935 2936 static int 2937 rt2661_prepare_beacon(struct rt2661_softc *sc) 2938 { 2939 struct ieee80211com *ic = &sc->sc_ic; 2940 struct ieee80211_node *ni = ic->ic_bss; 2941 struct rt2661_tx_desc desc; 2942 struct mbuf *m0; 2943 struct ieee80211_beacon_offsets bo; 2944 int rate; 2945 2946 m0 = ieee80211_beacon_alloc(ic, ni, &bo); 2947 if (m0 == NULL) { 2948 aprint_error_dev(&sc->sc_dev, "could not allocate beacon frame\n"); 2949 return ENOBUFS; 2950 } 2951 2952 /* send beacons at the lowest available rate */ 2953 rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2; 2954 2955 rt2661_setup_tx_desc(sc, &desc, RT2661_TX_TIMESTAMP, RT2661_TX_HWSEQ, 2956 m0->m_pkthdr.len, rate, NULL, 0, RT2661_QID_MGT); 2957 2958 /* copy the first 24 bytes of Tx descriptor into NIC memory */ 2959 RAL_WRITE_REGION_1(sc, RT2661_HW_BEACON_BASE0, (uint8_t *)&desc, 24); 2960 2961 /* copy beacon header and payload into NIC memory */ 2962 RAL_WRITE_REGION_1(sc, RT2661_HW_BEACON_BASE0 + 24, 2963 mtod(m0, uint8_t *), m0->m_pkthdr.len); 2964 2965 m_freem(m0); 2966 2967 /* 2968 * Store offset of ERP Information Element so that we can update it 2969 * dynamically when the slot time changes. 2970 * XXX: this is ugly since it depends on how net80211 builds beacon 2971 * frames but ieee80211_beacon_alloc() doesn't store offsets for us. 2972 */ 2973 if (ic->ic_curmode == IEEE80211_MODE_11G) { 2974 sc->erp_csr = 2975 RT2661_HW_BEACON_BASE0 + 24 + 2976 sizeof (struct ieee80211_frame) + 2977 8 + 2 + 2 + 2 + ni->ni_esslen + 2978 2 + min(ni->ni_rates.rs_nrates, IEEE80211_RATE_SIZE) + 2979 2 + 1 + 2980 ((ic->ic_opmode == IEEE80211_M_IBSS) ? 4 : 6) + 2981 2; 2982 } 2983 2984 return 0; 2985 } 2986 2987 /* 2988 * Enable TSF synchronization and tell h/w to start sending beacons for IBSS 2989 * and HostAP operating modes. 2990 */ 2991 static void 2992 rt2661_enable_tsf_sync(struct rt2661_softc *sc) 2993 { 2994 struct ieee80211com *ic = &sc->sc_ic; 2995 uint32_t tmp; 2996 2997 if (ic->ic_opmode != IEEE80211_M_STA) { 2998 /* 2999 * Change default 16ms TBTT adjustment to 8ms. 3000 * Must be done before enabling beacon generation. 3001 */ 3002 RAL_WRITE(sc, RT2661_TXRX_CSR10, 1 << 12 | 8); 3003 } 3004 3005 tmp = RAL_READ(sc, RT2661_TXRX_CSR9) & 0xff000000; 3006 3007 /* set beacon interval (in 1/16ms unit) */ 3008 tmp |= ic->ic_bss->ni_intval * 16; 3009 3010 tmp |= RT2661_TSF_TICKING | RT2661_ENABLE_TBTT; 3011 if (ic->ic_opmode == IEEE80211_M_STA) 3012 tmp |= RT2661_TSF_MODE(1); 3013 else 3014 tmp |= RT2661_TSF_MODE(2) | RT2661_GENERATE_BEACON; 3015 3016 RAL_WRITE(sc, RT2661_TXRX_CSR9, tmp); 3017 } 3018 3019 /* 3020 * Retrieve the "Received Signal Strength Indicator" from the raw values 3021 * contained in Rx descriptors. The computation depends on which band the 3022 * frame was received. Correction values taken from the reference driver. 3023 */ 3024 static int 3025 rt2661_get_rssi(struct rt2661_softc *sc, uint8_t raw) 3026 { 3027 int lna, agc, rssi; 3028 3029 lna = (raw >> 5) & 0x3; 3030 agc = raw & 0x1f; 3031 3032 rssi = 2 * agc; 3033 3034 if (IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan)) { 3035 rssi += sc->rssi_2ghz_corr; 3036 3037 if (lna == 1) 3038 rssi -= 64; 3039 else if (lna == 2) 3040 rssi -= 74; 3041 else if (lna == 3) 3042 rssi -= 90; 3043 } else { 3044 rssi += sc->rssi_5ghz_corr; 3045 3046 if (lna == 1) 3047 rssi -= 64; 3048 else if (lna == 2) 3049 rssi -= 86; 3050 else if (lna == 3) 3051 rssi -= 100; 3052 } 3053 return rssi; 3054 } 3055