xref: /netbsd-src/sys/dev/ic/rt2661.c (revision 404fbe5fb94ca1e054339640cabb2801ce52dd30)
1 /*	$NetBSD: rt2661.c,v 1.25 2008/11/07 00:20:03 dyoung Exp $	*/
2 /*	$OpenBSD: rt2661.c,v 1.17 2006/05/01 08:41:11 damien Exp $	*/
3 /*	$FreeBSD: rt2560.c,v 1.5 2006/06/02 19:59:31 csjp Exp $	*/
4 
5 /*-
6  * Copyright (c) 2006
7  *	Damien Bergamini <damien.bergamini@free.fr>
8  *
9  * Permission to use, copy, modify, and distribute this software for any
10  * purpose with or without fee is hereby granted, provided that the above
11  * copyright notice and this permission notice appear in all copies.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20  */
21 
22 /*-
23  * Ralink Technology RT2561, RT2561S and RT2661 chipset driver
24  * http://www.ralinktech.com/
25  */
26 
27 #include <sys/cdefs.h>
28 __KERNEL_RCSID(0, "$NetBSD: rt2661.c,v 1.25 2008/11/07 00:20:03 dyoung Exp $");
29 
30 #include "bpfilter.h"
31 
32 #include <sys/param.h>
33 #include <sys/sockio.h>
34 #include <sys/sysctl.h>
35 #include <sys/mbuf.h>
36 #include <sys/kernel.h>
37 #include <sys/socket.h>
38 #include <sys/systm.h>
39 #include <sys/malloc.h>
40 #include <sys/callout.h>
41 #include <sys/conf.h>
42 #include <sys/device.h>
43 
44 #include <sys/bus.h>
45 #include <machine/endian.h>
46 #include <sys/intr.h>
47 
48 #if NBPFILTER > 0
49 #include <net/bpf.h>
50 #endif
51 #include <net/if.h>
52 #include <net/if_arp.h>
53 #include <net/if_dl.h>
54 #include <net/if_media.h>
55 #include <net/if_types.h>
56 #include <net/if_ether.h>
57 
58 #include <netinet/in.h>
59 #include <netinet/in_systm.h>
60 #include <netinet/in_var.h>
61 #include <netinet/ip.h>
62 
63 #include <net80211/ieee80211_var.h>
64 #include <net80211/ieee80211_amrr.h>
65 #include <net80211/ieee80211_radiotap.h>
66 
67 #include <dev/ic/rt2661reg.h>
68 #include <dev/ic/rt2661var.h>
69 
70 #include <dev/pci/pcireg.h>
71 #include <dev/pci/pcivar.h>
72 #include <dev/pci/pcidevs.h>
73 
74 #include <dev/firmload.h>
75 
76 #ifdef RAL_DEBUG
77 #define DPRINTF(x)	do { if (rt2661_debug > 0) printf x; } while (0)
78 #define DPRINTFN(n, x)	do { if (rt2661_debug >= (n)) printf x; } while (0)
79 int rt2661_debug = 0;
80 #else
81 #define DPRINTF(x)
82 #define DPRINTFN(n, x)
83 #endif
84 
85 static int	rt2661_alloc_tx_ring(struct rt2661_softc *,
86 		    struct rt2661_tx_ring *, int);
87 static void	rt2661_reset_tx_ring(struct rt2661_softc *,
88 		    struct rt2661_tx_ring *);
89 static void	rt2661_free_tx_ring(struct rt2661_softc *,
90 		    struct rt2661_tx_ring *);
91 static int	rt2661_alloc_rx_ring(struct rt2661_softc *,
92 		    struct rt2661_rx_ring *, int);
93 static void	rt2661_reset_rx_ring(struct rt2661_softc *,
94 		    struct rt2661_rx_ring *);
95 static void	rt2661_free_rx_ring(struct rt2661_softc *,
96 		    struct rt2661_rx_ring *);
97 static struct ieee80211_node *
98 		rt2661_node_alloc(struct ieee80211_node_table *);
99 static int	rt2661_media_change(struct ifnet *);
100 static void	rt2661_next_scan(void *);
101 static void	rt2661_iter_func(void *, struct ieee80211_node *);
102 static void	rt2661_updatestats(void *);
103 static void	rt2661_newassoc(struct ieee80211_node *, int);
104 static int	rt2661_newstate(struct ieee80211com *, enum ieee80211_state,
105 		    int);
106 static uint16_t	rt2661_eeprom_read(struct rt2661_softc *, uint8_t);
107 static void	rt2661_tx_intr(struct rt2661_softc *);
108 static void	rt2661_tx_dma_intr(struct rt2661_softc *,
109 		    struct rt2661_tx_ring *);
110 static void	rt2661_rx_intr(struct rt2661_softc *);
111 static void	rt2661_mcu_beacon_expire(struct rt2661_softc *);
112 static void	rt2661_mcu_wakeup(struct rt2661_softc *);
113 static void	rt2661_mcu_cmd_intr(struct rt2661_softc *);
114 int		rt2661_intr(void *);
115 #if NBPFILTER > 0
116 static uint8_t	rt2661_rxrate(struct rt2661_rx_desc *);
117 #endif
118 static int	rt2661_ack_rate(struct ieee80211com *, int);
119 static uint16_t	rt2661_txtime(int, int, uint32_t);
120 static uint8_t	rt2661_plcp_signal(int);
121 static void	rt2661_setup_tx_desc(struct rt2661_softc *,
122 		    struct rt2661_tx_desc *, uint32_t, uint16_t, int, int,
123 		    const bus_dma_segment_t *, int, int);
124 static int	rt2661_tx_mgt(struct rt2661_softc *, struct mbuf *,
125 		    struct ieee80211_node *);
126 static struct mbuf *
127 		rt2661_get_rts(struct rt2661_softc *,
128 		    struct ieee80211_frame *, uint16_t);
129 static int	rt2661_tx_data(struct rt2661_softc *, struct mbuf *,
130 		    struct ieee80211_node *, int);
131 static void	rt2661_start(struct ifnet *);
132 static void	rt2661_watchdog(struct ifnet *);
133 static int	rt2661_reset(struct ifnet *);
134 static int	rt2661_ioctl(struct ifnet *, u_long, void *);
135 static void	rt2661_bbp_write(struct rt2661_softc *, uint8_t, uint8_t);
136 static uint8_t	rt2661_bbp_read(struct rt2661_softc *, uint8_t);
137 static void	rt2661_rf_write(struct rt2661_softc *, uint8_t, uint32_t);
138 static int	rt2661_tx_cmd(struct rt2661_softc *, uint8_t, uint16_t);
139 static void	rt2661_select_antenna(struct rt2661_softc *);
140 static void	rt2661_enable_mrr(struct rt2661_softc *);
141 static void	rt2661_set_txpreamble(struct rt2661_softc *);
142 static void	rt2661_set_basicrates(struct rt2661_softc *,
143 			const struct ieee80211_rateset *);
144 static void	rt2661_select_band(struct rt2661_softc *,
145 		    struct ieee80211_channel *);
146 static void	rt2661_set_chan(struct rt2661_softc *,
147 		    struct ieee80211_channel *);
148 static void	rt2661_set_bssid(struct rt2661_softc *, const uint8_t *);
149 static void	rt2661_set_macaddr(struct rt2661_softc *, const uint8_t *);
150 static void	rt2661_update_promisc(struct rt2661_softc *);
151 #if 0
152 static int	rt2661_wme_update(struct ieee80211com *);
153 #endif
154 
155 static void	rt2661_updateslot(struct ifnet *);
156 static void	rt2661_set_slottime(struct rt2661_softc *);
157 static const char *
158 		rt2661_get_rf(int);
159 static void	rt2661_read_eeprom(struct rt2661_softc *);
160 static int	rt2661_bbp_init(struct rt2661_softc *);
161 static int     	rt2661_init(struct ifnet *);
162 static void	rt2661_stop(struct ifnet *, int);
163 static int	rt2661_load_microcode(struct rt2661_softc *, const uint8_t *,
164 		    int);
165 static void	rt2661_rx_tune(struct rt2661_softc *);
166 #ifdef notyet
167 static void	rt2661_radar_start(struct rt2661_softc *);
168 static int	rt2661_radar_stop(struct rt2661_softc *);
169 #endif
170 static int	rt2661_prepare_beacon(struct rt2661_softc *);
171 static void	rt2661_enable_tsf_sync(struct rt2661_softc *);
172 static int	rt2661_get_rssi(struct rt2661_softc *, uint8_t);
173 
174 /*
175  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
176  */
177 static const struct ieee80211_rateset rt2661_rateset_11a =
178 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
179 
180 static const struct ieee80211_rateset rt2661_rateset_11b =
181 	{ 4, { 2, 4, 11, 22 } };
182 
183 static const struct ieee80211_rateset rt2661_rateset_11g =
184 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
185 
186 static const struct {
187 	uint32_t	reg;
188 	uint32_t	val;
189 } rt2661_def_mac[] = {
190 	RT2661_DEF_MAC
191 };
192 
193 static const struct {
194 	uint8_t	reg;
195 	uint8_t	val;
196 } rt2661_def_bbp[] = {
197 	RT2661_DEF_BBP
198 };
199 
200 static const struct rfprog {
201 	uint8_t		chan;
202 	uint32_t	r1, r2, r3, r4;
203 } rt2661_rf5225_1[] = {
204 	RT2661_RF5225_1
205 }, rt2661_rf5225_2[] = {
206 	RT2661_RF5225_2
207 };
208 
209 int
210 rt2661_attach(void *xsc, int id)
211 {
212 	struct rt2661_softc *sc = xsc;
213 	struct ieee80211com *ic = &sc->sc_ic;
214 	struct ifnet *ifp = &sc->sc_if;
215 	uint32_t val;
216 	int error, i, ntries;
217 
218 	sc->sc_id = id;
219 
220 	sc->amrr.amrr_min_success_threshold =  1;
221 	sc->amrr.amrr_max_success_threshold = 15;
222 	callout_init(&sc->scan_ch, 0);
223 	callout_init(&sc->amrr_ch, 0);
224 
225 	/* wait for NIC to initialize */
226 	for (ntries = 0; ntries < 1000; ntries++) {
227 		if ((val = RAL_READ(sc, RT2661_MAC_CSR0)) != 0)
228 			break;
229 		DELAY(1000);
230 	}
231 	if (ntries == 1000) {
232 		aprint_error_dev(&sc->sc_dev, "timeout waiting for NIC to initialize\n");
233 		return EIO;
234 	}
235 
236 	/* retrieve RF rev. no and various other things from EEPROM */
237 	rt2661_read_eeprom(sc);
238 	aprint_normal_dev(&sc->sc_dev, "802.11 address %s\n",
239 	    ether_sprintf(ic->ic_myaddr));
240 
241 	aprint_normal_dev(&sc->sc_dev, "MAC/BBP RT%X, RF %s\n", val,
242 	    rt2661_get_rf(sc->rf_rev));
243 
244 	/*
245 	 * Allocate Tx and Rx rings.
246 	 */
247 	error = rt2661_alloc_tx_ring(sc, &sc->txq[0], RT2661_TX_RING_COUNT);
248 	if (error != 0) {
249 		aprint_error_dev(&sc->sc_dev, "could not allocate Tx ring 0\n");
250 		goto fail1;
251 	}
252 
253 	error = rt2661_alloc_tx_ring(sc, &sc->txq[1], RT2661_TX_RING_COUNT);
254 	if (error != 0) {
255 		aprint_error_dev(&sc->sc_dev, "could not allocate Tx ring 1\n");
256 		goto fail2;
257 	}
258 
259 	error = rt2661_alloc_tx_ring(sc, &sc->txq[2], RT2661_TX_RING_COUNT);
260 	if (error != 0) {
261 		aprint_error_dev(&sc->sc_dev, "could not allocate Tx ring 2\n");
262 		goto fail3;
263 	}
264 
265 	error = rt2661_alloc_tx_ring(sc, &sc->txq[3], RT2661_TX_RING_COUNT);
266 	if (error != 0) {
267 		aprint_error_dev(&sc->sc_dev, "could not allocate Tx ring 3\n");
268 		goto fail4;
269 	}
270 
271 	error = rt2661_alloc_tx_ring(sc, &sc->mgtq, RT2661_MGT_RING_COUNT);
272 	if (error != 0) {
273 		aprint_error_dev(&sc->sc_dev, "could not allocate Mgt ring\n");
274 		goto fail5;
275 	}
276 
277 	error = rt2661_alloc_rx_ring(sc, &sc->rxq, RT2661_RX_RING_COUNT);
278 	if (error != 0) {
279 		aprint_error_dev(&sc->sc_dev, "could not allocate Rx ring\n");
280 		goto fail6;
281 	}
282 
283 	ifp->if_softc = sc;
284 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
285 	ifp->if_init = rt2661_init;
286 	ifp->if_stop = rt2661_stop;
287 	ifp->if_ioctl = rt2661_ioctl;
288 	ifp->if_start = rt2661_start;
289 	ifp->if_watchdog = rt2661_watchdog;
290 	IFQ_SET_READY(&ifp->if_snd);
291 	memcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
292 
293 	ic->ic_ifp = ifp;
294 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
295 	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
296 	ic->ic_state = IEEE80211_S_INIT;
297 
298 	/* set device capabilities */
299 	ic->ic_caps =
300 	    IEEE80211_C_IBSS |		/* IBSS mode supported */
301 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
302 	    IEEE80211_C_HOSTAP |	/* HostAP mode supported */
303 	    IEEE80211_C_TXPMGT |	/* tx power management */
304 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
305 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
306 	    IEEE80211_C_WPA;		/* 802.11i */
307 
308 	if (sc->rf_rev == RT2661_RF_5225 || sc->rf_rev == RT2661_RF_5325) {
309 		/* set supported .11a rates */
310 		ic->ic_sup_rates[IEEE80211_MODE_11A] = rt2661_rateset_11a;
311 
312 		/* set supported .11a channels */
313 		for (i = 36; i <= 64; i += 4) {
314 			ic->ic_channels[i].ic_freq =
315 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
316 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
317 		}
318 		for (i = 100; i <= 140; i += 4) {
319 			ic->ic_channels[i].ic_freq =
320 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
321 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
322 		}
323 		for (i = 149; i <= 165; i += 4) {
324 			ic->ic_channels[i].ic_freq =
325 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
326 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
327 		}
328 	}
329 
330 	/* set supported .11b and .11g rates */
331 	ic->ic_sup_rates[IEEE80211_MODE_11B] = rt2661_rateset_11b;
332 	ic->ic_sup_rates[IEEE80211_MODE_11G] = rt2661_rateset_11g;
333 
334 	/* set supported .11b and .11g channels (1 through 14) */
335 	for (i = 1; i <= 14; i++) {
336 		ic->ic_channels[i].ic_freq =
337 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
338 		ic->ic_channels[i].ic_flags =
339 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
340 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
341 	}
342 
343 	if_attach(ifp);
344 	ieee80211_ifattach(ic);
345 	ic->ic_node_alloc = rt2661_node_alloc;
346 	ic->ic_newassoc = rt2661_newassoc;
347 	ic->ic_updateslot = rt2661_updateslot;
348 	ic->ic_reset = rt2661_reset;
349 
350 	/* override state transition machine */
351 	sc->sc_newstate = ic->ic_newstate;
352 	ic->ic_newstate = rt2661_newstate;
353 	ieee80211_media_init(ic, rt2661_media_change, ieee80211_media_status);
354 
355 #if NBPFILTER > 0
356 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
357 	    sizeof (struct ieee80211_frame) + sizeof(sc->sc_txtap),
358 	    &sc->sc_drvbpf);
359 
360 	sc->sc_rxtap_len = roundup(sizeof(sc->sc_rxtap), sizeof(u_int32_t));
361 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
362 	sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2661_RX_RADIOTAP_PRESENT);
363 
364 	sc->sc_txtap_len = roundup(sizeof(sc->sc_txtap), sizeof(u_int32_t));
365 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
366 	sc->sc_txtap.wt_ihdr.it_present = htole32(RT2661_TX_RADIOTAP_PRESENT);
367 #endif
368 
369 	ieee80211_announce(ic);
370 
371 	if (!pmf_device_register(&sc->sc_dev, NULL, NULL))
372 		aprint_error_dev(&sc->sc_dev, "couldn't establish power handler\n");
373 	else
374 		pmf_class_network_register(&sc->sc_dev, ifp);
375 
376 	return 0;
377 
378 fail6:	rt2661_free_tx_ring(sc, &sc->mgtq);
379 fail5:	rt2661_free_tx_ring(sc, &sc->txq[3]);
380 fail4:	rt2661_free_tx_ring(sc, &sc->txq[2]);
381 fail3:	rt2661_free_tx_ring(sc, &sc->txq[1]);
382 fail2:	rt2661_free_tx_ring(sc, &sc->txq[0]);
383 fail1:	return ENXIO;
384 }
385 
386 int
387 rt2661_detach(void *xsc)
388 {
389 	struct rt2661_softc *sc = xsc;
390 	struct ifnet *ifp = &sc->sc_if;
391 
392 	callout_stop(&sc->scan_ch);
393 	callout_stop(&sc->amrr_ch);
394 
395 	pmf_device_deregister(&sc->sc_dev);
396 
397 	ieee80211_ifdetach(&sc->sc_ic);
398 	if_detach(ifp);
399 
400 	rt2661_free_tx_ring(sc, &sc->txq[0]);
401 	rt2661_free_tx_ring(sc, &sc->txq[1]);
402 	rt2661_free_tx_ring(sc, &sc->txq[2]);
403 	rt2661_free_tx_ring(sc, &sc->txq[3]);
404 	rt2661_free_tx_ring(sc, &sc->mgtq);
405 	rt2661_free_rx_ring(sc, &sc->rxq);
406 
407 	return 0;
408 }
409 
410 static int
411 rt2661_alloc_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring,
412     int count)
413 {
414 	int i, nsegs, error;
415 
416 	ring->count = count;
417 	ring->queued = 0;
418 	ring->cur = ring->next = ring->stat = 0;
419 
420 	error = bus_dmamap_create(sc->sc_dmat, count * RT2661_TX_DESC_SIZE, 1,
421 	    count * RT2661_TX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map);
422 	if (error != 0) {
423 		aprint_error_dev(&sc->sc_dev, "could not create desc DMA map\n");
424 		goto fail;
425 	}
426 
427 	error = bus_dmamem_alloc(sc->sc_dmat, count * RT2661_TX_DESC_SIZE,
428 	    PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
429 	if (error != 0) {
430 		aprint_error_dev(&sc->sc_dev, "could not allocate DMA memory\n");
431 		goto fail;
432 	}
433 
434 	error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
435 	    count * RT2661_TX_DESC_SIZE, (void **)&ring->desc,
436 	    BUS_DMA_NOWAIT);
437 	if (error != 0) {
438 		aprint_error_dev(&sc->sc_dev, "could not map desc DMA memory\n");
439 		goto fail;
440 	}
441 
442 	error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
443 	    count * RT2661_TX_DESC_SIZE, NULL, BUS_DMA_NOWAIT);
444 	if (error != 0) {
445 		aprint_error_dev(&sc->sc_dev, "could not load desc DMA map\n");
446 		goto fail;
447 	}
448 
449 	memset(ring->desc, 0, count * RT2661_TX_DESC_SIZE);
450 	ring->physaddr = ring->map->dm_segs->ds_addr;
451 
452 	ring->data = malloc(count * sizeof (struct rt2661_tx_data), M_DEVBUF,
453 	    M_NOWAIT);
454 	if (ring->data == NULL) {
455 		aprint_error_dev(&sc->sc_dev, "could not allocate soft data\n");
456 		error = ENOMEM;
457 		goto fail;
458 	}
459 
460 	memset(ring->data, 0, count * sizeof (struct rt2661_tx_data));
461 	for (i = 0; i < count; i++) {
462 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
463 		    RT2661_MAX_SCATTER, MCLBYTES, 0, BUS_DMA_NOWAIT,
464 		    &ring->data[i].map);
465 		if (error != 0) {
466 			aprint_error_dev(&sc->sc_dev, "could not create DMA map\n");
467 			goto fail;
468 		}
469 	}
470 
471 	return 0;
472 
473 fail:	rt2661_free_tx_ring(sc, ring);
474 	return error;
475 }
476 
477 static void
478 rt2661_reset_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring)
479 {
480 	struct rt2661_tx_desc *desc;
481 	struct rt2661_tx_data *data;
482 	int i;
483 
484 	for (i = 0; i < ring->count; i++) {
485 		desc = &ring->desc[i];
486 		data = &ring->data[i];
487 
488 		if (data->m != NULL) {
489 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
490 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
491 			bus_dmamap_unload(sc->sc_dmat, data->map);
492 			m_freem(data->m);
493 			data->m = NULL;
494 		}
495 
496 		if (data->ni != NULL) {
497 			ieee80211_free_node(data->ni);
498 			data->ni = NULL;
499 		}
500 
501 		desc->flags = 0;
502 	}
503 
504 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
505 	    BUS_DMASYNC_PREWRITE);
506 
507 	ring->queued = 0;
508 	ring->cur = ring->next = ring->stat = 0;
509 }
510 
511 
512 static void
513 rt2661_free_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring)
514 {
515 	struct rt2661_tx_data *data;
516 	int i;
517 
518 	if (ring->desc != NULL) {
519 		bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
520 		    ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
521 		bus_dmamap_unload(sc->sc_dmat, ring->map);
522 		bus_dmamem_unmap(sc->sc_dmat, (void *)ring->desc,
523 		    ring->count * RT2661_TX_DESC_SIZE);
524 		bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
525 	}
526 
527 	if (ring->data != NULL) {
528 		for (i = 0; i < ring->count; i++) {
529 			data = &ring->data[i];
530 
531 			if (data->m != NULL) {
532 				bus_dmamap_sync(sc->sc_dmat, data->map, 0,
533 				    data->map->dm_mapsize,
534 				    BUS_DMASYNC_POSTWRITE);
535 				bus_dmamap_unload(sc->sc_dmat, data->map);
536 				m_freem(data->m);
537 			}
538 
539 			if (data->ni != NULL)
540 				ieee80211_free_node(data->ni);
541 
542 			if (data->map != NULL)
543 				bus_dmamap_destroy(sc->sc_dmat, data->map);
544 		}
545 		free(ring->data, M_DEVBUF);
546 	}
547 }
548 
549 static int
550 rt2661_alloc_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring,
551     int count)
552 {
553 	struct rt2661_rx_desc *desc;
554 	struct rt2661_rx_data *data;
555 	int i, nsegs, error;
556 
557 	ring->count = count;
558 	ring->cur = ring->next = 0;
559 
560 	error = bus_dmamap_create(sc->sc_dmat, count * RT2661_RX_DESC_SIZE, 1,
561 	    count * RT2661_RX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map);
562 	if (error != 0) {
563 		aprint_error_dev(&sc->sc_dev, "could not create desc DMA map\n");
564 		goto fail;
565 	}
566 
567 	error = bus_dmamem_alloc(sc->sc_dmat, count * RT2661_RX_DESC_SIZE,
568 	    PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
569 	if (error != 0) {
570 		aprint_error_dev(&sc->sc_dev, "could not allocate DMA memory\n");
571 		goto fail;
572 	}
573 
574 	error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
575 	    count * RT2661_RX_DESC_SIZE, (void **)&ring->desc,
576 	    BUS_DMA_NOWAIT);
577 	if (error != 0) {
578 		aprint_error_dev(&sc->sc_dev, "could not map desc DMA memory\n");
579 		goto fail;
580 	}
581 
582 	error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
583 	    count * RT2661_RX_DESC_SIZE, NULL, BUS_DMA_NOWAIT);
584 	if (error != 0) {
585 		aprint_error_dev(&sc->sc_dev, "could not load desc DMA map\n");
586 		goto fail;
587 	}
588 
589 	memset(ring->desc, 0, count * RT2661_RX_DESC_SIZE);
590 	ring->physaddr = ring->map->dm_segs->ds_addr;
591 
592 	ring->data = malloc(count * sizeof (struct rt2661_rx_data), M_DEVBUF,
593 	    M_NOWAIT);
594 	if (ring->data == NULL) {
595 		aprint_error_dev(&sc->sc_dev, "could not allocate soft data\n");
596 		error = ENOMEM;
597 		goto fail;
598 	}
599 
600 	/*
601 	 * Pre-allocate Rx buffers and populate Rx ring.
602 	 */
603 	memset(ring->data, 0, count * sizeof (struct rt2661_rx_data));
604 	for (i = 0; i < count; i++) {
605 		desc = &sc->rxq.desc[i];
606 		data = &sc->rxq.data[i];
607 
608 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
609 		    0, BUS_DMA_NOWAIT, &data->map);
610 		if (error != 0) {
611 			aprint_error_dev(&sc->sc_dev, "could not create DMA map\n");
612 			goto fail;
613 		}
614 
615 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
616 		if (data->m == NULL) {
617 			aprint_error_dev(&sc->sc_dev, "could not allocate rx mbuf\n");
618 			error = ENOMEM;
619 			goto fail;
620 		}
621 
622 		MCLGET(data->m, M_DONTWAIT);
623 		if (!(data->m->m_flags & M_EXT)) {
624 			aprint_error_dev(&sc->sc_dev, "could not allocate rx mbuf cluster\n");
625 			error = ENOMEM;
626 			goto fail;
627 		}
628 
629 		error = bus_dmamap_load(sc->sc_dmat, data->map,
630 		    mtod(data->m, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
631 		if (error != 0) {
632 			aprint_error_dev(&sc->sc_dev, "could not load rx buf DMA map");
633 			goto fail;
634 		}
635 
636 		desc->physaddr = htole32(data->map->dm_segs->ds_addr);
637 		desc->flags = htole32(RT2661_RX_BUSY);
638 	}
639 
640 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
641 	    BUS_DMASYNC_PREWRITE);
642 
643 	return 0;
644 
645 fail:	rt2661_free_rx_ring(sc, ring);
646 	return error;
647 }
648 
649 static void
650 rt2661_reset_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring)
651 {
652 	int i;
653 
654 	for (i = 0; i < ring->count; i++)
655 		ring->desc[i].flags = htole32(RT2661_RX_BUSY);
656 
657 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
658 	    BUS_DMASYNC_PREWRITE);
659 
660 	ring->cur = ring->next = 0;
661 }
662 
663 static void
664 rt2661_free_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring)
665 {
666 	struct rt2661_rx_data *data;
667 	int i;
668 
669 	if (ring->desc != NULL) {
670 		bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
671 		    ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
672 		bus_dmamap_unload(sc->sc_dmat, ring->map);
673 		bus_dmamem_unmap(sc->sc_dmat, (void *)ring->desc,
674 		    ring->count * RT2661_RX_DESC_SIZE);
675 		bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
676 	}
677 
678 	if (ring->data != NULL) {
679 		for (i = 0; i < ring->count; i++) {
680 			data = &ring->data[i];
681 
682 			if (data->m != NULL) {
683 				bus_dmamap_sync(sc->sc_dmat, data->map, 0,
684 				    data->map->dm_mapsize,
685 				    BUS_DMASYNC_POSTREAD);
686 				bus_dmamap_unload(sc->sc_dmat, data->map);
687 				m_freem(data->m);
688 			}
689 
690 			if (data->map != NULL)
691 				bus_dmamap_destroy(sc->sc_dmat, data->map);
692 		}
693 		free(ring->data, M_DEVBUF);
694 	}
695 }
696 
697 static struct ieee80211_node *
698 rt2661_node_alloc(struct ieee80211_node_table *nt)
699 {
700 	struct rt2661_node *rn;
701 
702 	rn = malloc(sizeof (struct rt2661_node), M_80211_NODE,
703 	    M_NOWAIT | M_ZERO);
704 
705 	return (rn != NULL) ? &rn->ni : NULL;
706 }
707 
708 static int
709 rt2661_media_change(struct ifnet *ifp)
710 {
711 	int error;
712 
713 	error = ieee80211_media_change(ifp);
714 	if (error != ENETRESET)
715 		return error;
716 
717 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
718 		rt2661_init(ifp);
719 
720 	return 0;
721 }
722 
723 /*
724  * This function is called periodically (every 200ms) during scanning to
725  * switch from one channel to another.
726  */
727 static void
728 rt2661_next_scan(void *arg)
729 {
730 	struct rt2661_softc *sc = arg;
731 	struct ieee80211com *ic = &sc->sc_ic;
732 	int s;
733 
734 	s = splnet();
735 	if (ic->ic_state == IEEE80211_S_SCAN)
736 		ieee80211_next_scan(ic);
737 	splx(s);
738 }
739 
740 /*
741  * This function is called for each neighbor node.
742  */
743 static void
744 rt2661_iter_func(void *arg, struct ieee80211_node *ni)
745 {
746 	struct rt2661_softc *sc = arg;
747 	struct rt2661_node *rn = (struct rt2661_node *)ni;
748 
749 	ieee80211_amrr_choose(&sc->amrr, ni, &rn->amn);
750 }
751 
752 /*
753  * This function is called periodically (every 500ms) in RUN state to update
754  * various settings like rate control statistics or Rx sensitivity.
755  */
756 static void
757 rt2661_updatestats(void *arg)
758 {
759 	struct rt2661_softc *sc = arg;
760 	struct ieee80211com *ic = &sc->sc_ic;
761 	int s;
762 
763 	s = splnet();
764 	if (ic->ic_opmode == IEEE80211_M_STA)
765 		rt2661_iter_func(sc, ic->ic_bss);
766 	else
767 		ieee80211_iterate_nodes(&ic->ic_sta, rt2661_iter_func, arg);
768 
769 	/* update rx sensitivity every 1 sec */
770 	if (++sc->ncalls & 1)
771 		rt2661_rx_tune(sc);
772 	splx(s);
773 
774 	callout_reset(&sc->amrr_ch, hz / 2, rt2661_updatestats, sc);
775 }
776 
777 static void
778 rt2661_newassoc(struct ieee80211_node *ni, int isnew)
779 {
780 	struct rt2661_softc *sc = ni->ni_ic->ic_ifp->if_softc;
781 	int i;
782 
783 	ieee80211_amrr_node_init(&sc->amrr, &((struct rt2661_node *)ni)->amn);
784 
785 	/* set rate to some reasonable initial value */
786 	for (i = ni->ni_rates.rs_nrates - 1;
787 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
788 	     i--);
789 	ni->ni_txrate = i;
790 }
791 
792 static int
793 rt2661_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
794 {
795 	struct rt2661_softc *sc = ic->ic_ifp->if_softc;
796 	enum ieee80211_state ostate;
797 	struct ieee80211_node *ni;
798 	uint32_t tmp;
799 
800 	ostate = ic->ic_state;
801 	callout_stop(&sc->scan_ch);
802 
803 	switch (nstate) {
804 	case IEEE80211_S_INIT:
805 		callout_stop(&sc->amrr_ch);
806 
807 		if (ostate == IEEE80211_S_RUN) {
808 			/* abort TSF synchronization */
809 			tmp = RAL_READ(sc, RT2661_TXRX_CSR9);
810 			RAL_WRITE(sc, RT2661_TXRX_CSR9, tmp & ~0x00ffffff);
811 		}
812 		break;
813 
814 	case IEEE80211_S_SCAN:
815 		rt2661_set_chan(sc, ic->ic_curchan);
816 		callout_reset(&sc->scan_ch, hz / 5, rt2661_next_scan, sc);
817 		break;
818 
819 	case IEEE80211_S_AUTH:
820 	case IEEE80211_S_ASSOC:
821 		rt2661_set_chan(sc, ic->ic_curchan);
822 		break;
823 
824 	case IEEE80211_S_RUN:
825 		rt2661_set_chan(sc, ic->ic_curchan);
826 
827 		ni = ic->ic_bss;
828 
829 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
830 			rt2661_set_slottime(sc);
831 			rt2661_enable_mrr(sc);
832 			rt2661_set_txpreamble(sc);
833 			rt2661_set_basicrates(sc, &ni->ni_rates);
834 			rt2661_set_bssid(sc, ni->ni_bssid);
835 		}
836 
837 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
838 		    ic->ic_opmode == IEEE80211_M_IBSS)
839 			rt2661_prepare_beacon(sc);
840 
841 		if (ic->ic_opmode == IEEE80211_M_STA) {
842 			/* fake a join to init the tx rate */
843 			rt2661_newassoc(ni, 1);
844 		}
845 
846 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
847 			sc->ncalls = 0;
848 			sc->avg_rssi = -95;	/* reset EMA */
849 			callout_reset(&sc->amrr_ch, hz / 2,
850 			    rt2661_updatestats, sc);
851 			rt2661_enable_tsf_sync(sc);
852 		}
853 		break;
854 	}
855 
856 	return sc->sc_newstate(ic, nstate, arg);
857 }
858 
859 /*
860  * Read 16 bits at address 'addr' from the serial EEPROM (either 93C46 or
861  * 93C66).
862  */
863 static uint16_t
864 rt2661_eeprom_read(struct rt2661_softc *sc, uint8_t addr)
865 {
866 	uint32_t tmp;
867 	uint16_t val;
868 	int n;
869 
870 	/* clock C once before the first command */
871 	RT2661_EEPROM_CTL(sc, 0);
872 
873 	RT2661_EEPROM_CTL(sc, RT2661_S);
874 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C);
875 	RT2661_EEPROM_CTL(sc, RT2661_S);
876 
877 	/* write start bit (1) */
878 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D);
879 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D | RT2661_C);
880 
881 	/* write READ opcode (10) */
882 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D);
883 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D | RT2661_C);
884 	RT2661_EEPROM_CTL(sc, RT2661_S);
885 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C);
886 
887 	/* write address (A5-A0 or A7-A0) */
888 	n = (RAL_READ(sc, RT2661_E2PROM_CSR) & RT2661_93C46) ? 5 : 7;
889 	for (; n >= 0; n--) {
890 		RT2661_EEPROM_CTL(sc, RT2661_S |
891 		    (((addr >> n) & 1) << RT2661_SHIFT_D));
892 		RT2661_EEPROM_CTL(sc, RT2661_S |
893 		    (((addr >> n) & 1) << RT2661_SHIFT_D) | RT2661_C);
894 	}
895 
896 	RT2661_EEPROM_CTL(sc, RT2661_S);
897 
898 	/* read data Q15-Q0 */
899 	val = 0;
900 	for (n = 15; n >= 0; n--) {
901 		RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C);
902 		tmp = RAL_READ(sc, RT2661_E2PROM_CSR);
903 		val |= ((tmp & RT2661_Q) >> RT2661_SHIFT_Q) << n;
904 		RT2661_EEPROM_CTL(sc, RT2661_S);
905 	}
906 
907 	RT2661_EEPROM_CTL(sc, 0);
908 
909 	/* clear Chip Select and clock C */
910 	RT2661_EEPROM_CTL(sc, RT2661_S);
911 	RT2661_EEPROM_CTL(sc, 0);
912 	RT2661_EEPROM_CTL(sc, RT2661_C);
913 
914 	return val;
915 }
916 
917 static void
918 rt2661_tx_intr(struct rt2661_softc *sc)
919 {
920 	struct ifnet *ifp = &sc->sc_if;
921 	struct rt2661_tx_ring *txq;
922 	struct rt2661_tx_data *data;
923 	struct rt2661_node *rn;
924 	uint32_t val;
925 	int qid, retrycnt;
926 
927 	for (;;) {
928 		val = RAL_READ(sc, RT2661_STA_CSR4);
929 		if (!(val & RT2661_TX_STAT_VALID))
930 			break;
931 
932 		/* retrieve the queue in which this frame was sent */
933 		qid = RT2661_TX_QID(val);
934 		txq = (qid <= 3) ? &sc->txq[qid] : &sc->mgtq;
935 
936 		/* retrieve rate control algorithm context */
937 		data = &txq->data[txq->stat];
938 		rn = (struct rt2661_node *)data->ni;
939 
940 		/* if no frame has been sent, ignore */
941 		if (rn == NULL)
942 			continue;
943 
944 		switch (RT2661_TX_RESULT(val)) {
945 		case RT2661_TX_SUCCESS:
946 			retrycnt = RT2661_TX_RETRYCNT(val);
947 
948 			DPRINTFN(10, ("data frame sent successfully after "
949 			    "%d retries\n", retrycnt));
950 			rn->amn.amn_txcnt++;
951 			if (retrycnt > 0)
952 				rn->amn.amn_retrycnt++;
953 			ifp->if_opackets++;
954 			break;
955 
956 		case RT2661_TX_RETRY_FAIL:
957 			DPRINTFN(9, ("sending data frame failed (too much "
958 			    "retries)\n"));
959 			rn->amn.amn_txcnt++;
960 			rn->amn.amn_retrycnt++;
961 			ifp->if_oerrors++;
962 			break;
963 
964 		default:
965 			/* other failure */
966 			aprint_error_dev(&sc->sc_dev, "sending data frame failed 0x%08x\n", val);
967 			ifp->if_oerrors++;
968 		}
969 
970 		ieee80211_free_node(data->ni);
971 		data->ni = NULL;
972 
973 		DPRINTFN(15, ("tx done q=%d idx=%u\n", qid, txq->stat));
974 
975 		txq->queued--;
976 		if (++txq->stat >= txq->count)	/* faster than % count */
977 			txq->stat = 0;
978 	}
979 
980 	sc->sc_tx_timer = 0;
981 	ifp->if_flags &= ~IFF_OACTIVE;
982 	rt2661_start(ifp);
983 }
984 
985 static void
986 rt2661_tx_dma_intr(struct rt2661_softc *sc, struct rt2661_tx_ring *txq)
987 {
988 	struct rt2661_tx_desc *desc;
989 	struct rt2661_tx_data *data;
990 
991 	for (;;) {
992 		desc = &txq->desc[txq->next];
993 		data = &txq->data[txq->next];
994 
995 		bus_dmamap_sync(sc->sc_dmat, txq->map,
996 		    txq->next * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
997 		    BUS_DMASYNC_POSTREAD);
998 
999 		if ((le32toh(desc->flags) & RT2661_TX_BUSY) ||
1000 		    !(le32toh(desc->flags) & RT2661_TX_VALID))
1001 			break;
1002 
1003 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1004 		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1005 		bus_dmamap_unload(sc->sc_dmat, data->map);
1006 		m_freem(data->m);
1007 		data->m = NULL;
1008 		/* node reference is released in rt2661_tx_intr() */
1009 
1010 		/* descriptor is no longer valid */
1011 		desc->flags &= ~htole32(RT2661_TX_VALID);
1012 
1013 		bus_dmamap_sync(sc->sc_dmat, txq->map,
1014 		    txq->next * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
1015 		    BUS_DMASYNC_PREWRITE);
1016 
1017 		DPRINTFN(15, ("tx dma done q=%p idx=%u\n", txq, txq->next));
1018 
1019 		if (++txq->next >= txq->count)	/* faster than % count */
1020 			txq->next = 0;
1021 	}
1022 }
1023 
1024 static void
1025 rt2661_rx_intr(struct rt2661_softc *sc)
1026 {
1027 	struct ieee80211com *ic = &sc->sc_ic;
1028 	struct ifnet *ifp = &sc->sc_if;
1029 	struct rt2661_rx_desc *desc;
1030 	struct rt2661_rx_data *data;
1031 	struct ieee80211_frame *wh;
1032 	struct ieee80211_node *ni;
1033 	struct mbuf *mnew, *m;
1034 	int error, rssi;
1035 
1036 	for (;;) {
1037 		desc = &sc->rxq.desc[sc->rxq.cur];
1038 		data = &sc->rxq.data[sc->rxq.cur];
1039 
1040 		bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1041 		    sc->rxq.cur * RT2661_RX_DESC_SIZE, RT2661_RX_DESC_SIZE,
1042 		    BUS_DMASYNC_POSTREAD);
1043 
1044 		if (le32toh(desc->flags) & RT2661_RX_BUSY)
1045 			break;
1046 
1047 		if ((le32toh(desc->flags) & RT2661_RX_PHY_ERROR) ||
1048 		    (le32toh(desc->flags) & RT2661_RX_CRC_ERROR)) {
1049 			/*
1050 			 * This should not happen since we did not request
1051 			 * to receive those frames when we filled TXRX_CSR0.
1052 			 */
1053 			DPRINTFN(5, ("PHY or CRC error flags 0x%08x\n",
1054 			    le32toh(desc->flags)));
1055 			ifp->if_ierrors++;
1056 			goto skip;
1057 		}
1058 
1059 		if ((le32toh(desc->flags) & RT2661_RX_CIPHER_MASK) != 0) {
1060 			ifp->if_ierrors++;
1061 			goto skip;
1062 		}
1063 
1064 		/*
1065 		 * Try to allocate a new mbuf for this ring element and load it
1066 		 * before processing the current mbuf. If the ring element
1067 		 * cannot be loaded, drop the received packet and reuse the old
1068 		 * mbuf. In the unlikely case that the old mbuf can't be
1069 		 * reloaded either, explicitly panic.
1070 		 */
1071 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1072 		if (mnew == NULL) {
1073 			ifp->if_ierrors++;
1074 			goto skip;
1075 		}
1076 
1077 		MCLGET(mnew, M_DONTWAIT);
1078 		if (!(mnew->m_flags & M_EXT)) {
1079 			m_freem(mnew);
1080 			ifp->if_ierrors++;
1081 			goto skip;
1082 		}
1083 
1084 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1085 		    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1086 		bus_dmamap_unload(sc->sc_dmat, data->map);
1087 
1088 		error = bus_dmamap_load(sc->sc_dmat, data->map,
1089 		    mtod(mnew, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
1090 		if (error != 0) {
1091 			m_freem(mnew);
1092 
1093 			/* try to reload the old mbuf */
1094 			error = bus_dmamap_load(sc->sc_dmat, data->map,
1095 			    mtod(data->m, void *), MCLBYTES, NULL,
1096 			    BUS_DMA_NOWAIT);
1097 			if (error != 0) {
1098 				/* very unlikely that it will fail... */
1099 				panic("%s: could not load old rx mbuf",
1100 				    device_xname(&sc->sc_dev));
1101 			}
1102 			/* physical address may have changed */
1103 			desc->physaddr = htole32(data->map->dm_segs->ds_addr);
1104 			ifp->if_ierrors++;
1105 			goto skip;
1106 		}
1107 
1108 		/*
1109 	 	 * New mbuf successfully loaded, update Rx ring and continue
1110 		 * processing.
1111 		 */
1112 		m = data->m;
1113 		data->m = mnew;
1114 		desc->physaddr = htole32(data->map->dm_segs->ds_addr);
1115 
1116 		/* finalize mbuf */
1117 		m->m_pkthdr.rcvif = ifp;
1118 		m->m_pkthdr.len = m->m_len =
1119 		    (le32toh(desc->flags) >> 16) & 0xfff;
1120 
1121 #if NBPFILTER > 0
1122 		if (sc->sc_drvbpf != NULL) {
1123 			struct rt2661_rx_radiotap_header *tap = &sc->sc_rxtap;
1124 			uint32_t tsf_lo, tsf_hi;
1125 
1126 			/* get timestamp (low and high 32 bits) */
1127 			tsf_hi = RAL_READ(sc, RT2661_TXRX_CSR13);
1128 			tsf_lo = RAL_READ(sc, RT2661_TXRX_CSR12);
1129 
1130 			tap->wr_tsf =
1131 			    htole64(((uint64_t)tsf_hi << 32) | tsf_lo);
1132 			tap->wr_flags = 0;
1133 			tap->wr_rate = rt2661_rxrate(desc);
1134 			tap->wr_chan_freq = htole16(sc->sc_curchan->ic_freq);
1135 			tap->wr_chan_flags = htole16(sc->sc_curchan->ic_flags);
1136 			tap->wr_antsignal = desc->rssi;
1137 
1138 			bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1139 		}
1140 #endif
1141 
1142 		wh = mtod(m, struct ieee80211_frame *);
1143 		ni = ieee80211_find_rxnode(ic,
1144 		    (struct ieee80211_frame_min *)wh);
1145 
1146 		/* send the frame to the 802.11 layer */
1147 		ieee80211_input(ic, m, ni, desc->rssi, 0);
1148 
1149 		/*-
1150 		 * Keep track of the average RSSI using an Exponential Moving
1151 		 * Average (EMA) of 8 Wilder's days:
1152 		 *     avg = (1 / N) x rssi + ((N - 1) / N) x avg
1153 		 */
1154 		rssi = rt2661_get_rssi(sc, desc->rssi);
1155 		sc->avg_rssi = (rssi + 7 * sc->avg_rssi) / 8;
1156 
1157 		/* node is no longer needed */
1158 		ieee80211_free_node(ni);
1159 
1160 skip:		desc->flags |= htole32(RT2661_RX_BUSY);
1161 
1162 		bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1163 		    sc->rxq.cur * RT2661_RX_DESC_SIZE, RT2661_RX_DESC_SIZE,
1164 		    BUS_DMASYNC_PREWRITE);
1165 
1166 		DPRINTFN(16, ("rx intr idx=%u\n", sc->rxq.cur));
1167 
1168 		sc->rxq.cur = (sc->rxq.cur + 1) % RT2661_RX_RING_COUNT;
1169 	}
1170 
1171 	/*
1172 	 * In HostAP mode, ieee80211_input() will enqueue packets in if_snd
1173 	 * without calling if_start().
1174 	 */
1175 	if (!IFQ_IS_EMPTY(&ifp->if_snd) && !(ifp->if_flags & IFF_OACTIVE))
1176 		rt2661_start(ifp);
1177 }
1178 
1179 /*
1180  * This function is called in HostAP or IBSS modes when it's time to send a
1181  * new beacon (every ni_intval milliseconds).
1182  */
1183 static void
1184 rt2661_mcu_beacon_expire(struct rt2661_softc *sc)
1185 {
1186 	struct ieee80211com *ic = &sc->sc_ic;
1187 
1188 	if (sc->sc_flags & RT2661_UPDATE_SLOT) {
1189 		sc->sc_flags &= ~RT2661_UPDATE_SLOT;
1190 		sc->sc_flags |= RT2661_SET_SLOTTIME;
1191 	} else if (sc->sc_flags & RT2661_SET_SLOTTIME) {
1192 		sc->sc_flags &= ~RT2661_SET_SLOTTIME;
1193 		rt2661_set_slottime(sc);
1194 	}
1195 
1196 	if (ic->ic_curmode == IEEE80211_MODE_11G) {
1197 		/* update ERP Information Element */
1198 		RAL_WRITE_1(sc, sc->erp_csr, ic->ic_bss->ni_erp);
1199 		RAL_RW_BARRIER_1(sc, sc->erp_csr);
1200 	}
1201 
1202 	DPRINTFN(15, ("beacon expired\n"));
1203 }
1204 
1205 static void
1206 rt2661_mcu_wakeup(struct rt2661_softc *sc)
1207 {
1208 	RAL_WRITE(sc, RT2661_MAC_CSR11, 5 << 16);
1209 
1210 	RAL_WRITE(sc, RT2661_SOFT_RESET_CSR, 0x7);
1211 	RAL_WRITE(sc, RT2661_IO_CNTL_CSR, 0x18);
1212 	RAL_WRITE(sc, RT2661_PCI_USEC_CSR, 0x20);
1213 
1214 	/* send wakeup command to MCU */
1215 	rt2661_tx_cmd(sc, RT2661_MCU_CMD_WAKEUP, 0);
1216 }
1217 
1218 static void
1219 rt2661_mcu_cmd_intr(struct rt2661_softc *sc)
1220 {
1221 	RAL_READ(sc, RT2661_M2H_CMD_DONE_CSR);
1222 	RAL_WRITE(sc, RT2661_M2H_CMD_DONE_CSR, 0xffffffff);
1223 }
1224 
1225 int
1226 rt2661_intr(void *arg)
1227 {
1228 	struct rt2661_softc *sc = arg;
1229 	struct ifnet *ifp = &sc->sc_if;
1230 	uint32_t r1, r2;
1231 	int rv = 0;
1232 
1233 	/* don't re-enable interrupts if we're shutting down */
1234 	if (!(ifp->if_flags & IFF_RUNNING)) {
1235 		/* disable MAC and MCU interrupts */
1236 		RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0xffffff7f);
1237 		RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0xffffffff);
1238 		return 0;
1239 	}
1240 
1241 	for (;;) {
1242 		r1 = RAL_READ(sc, RT2661_INT_SOURCE_CSR);
1243 		r2 = RAL_READ(sc, RT2661_MCU_INT_SOURCE_CSR);
1244 
1245 		if ((r1 & RT2661_INT_CSR_ALL) == 0 &&
1246 		    (r2 & RT2661_MCU_INT_ALL) == 0)
1247 			break;
1248 
1249 		RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, r1);
1250 		RAL_WRITE(sc, RT2661_MCU_INT_SOURCE_CSR, r2);
1251 
1252 		rv = 1;
1253 
1254 		if (r1 & RT2661_MGT_DONE)
1255 			rt2661_tx_dma_intr(sc, &sc->mgtq);
1256 
1257 		if (r1 & RT2661_RX_DONE)
1258 			rt2661_rx_intr(sc);
1259 
1260 		if (r1 & RT2661_TX0_DMA_DONE)
1261 			rt2661_tx_dma_intr(sc, &sc->txq[0]);
1262 
1263 		if (r1 & RT2661_TX1_DMA_DONE)
1264 			rt2661_tx_dma_intr(sc, &sc->txq[1]);
1265 
1266 		if (r1 & RT2661_TX2_DMA_DONE)
1267 			rt2661_tx_dma_intr(sc, &sc->txq[2]);
1268 
1269 		if (r1 & RT2661_TX3_DMA_DONE)
1270 			rt2661_tx_dma_intr(sc, &sc->txq[3]);
1271 
1272 		if (r1 & RT2661_TX_DONE)
1273 			rt2661_tx_intr(sc);
1274 
1275 		if (r2 & RT2661_MCU_CMD_DONE)
1276 			rt2661_mcu_cmd_intr(sc);
1277 
1278 		if (r2 & RT2661_MCU_BEACON_EXPIRE)
1279 			rt2661_mcu_beacon_expire(sc);
1280 
1281 		if (r2 & RT2661_MCU_WAKEUP)
1282 			rt2661_mcu_wakeup(sc);
1283 	}
1284 
1285 	return rv;
1286 }
1287 
1288 /* quickly determine if a given rate is CCK or OFDM */
1289 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1290 
1291 #define RAL_ACK_SIZE	14	/* 10 + 4(FCS) */
1292 #define RAL_CTS_SIZE	14	/* 10 + 4(FCS) */
1293 
1294 /*
1295  * This function is only used by the Rx radiotap code. It returns the rate at
1296  * which a given frame was received.
1297  */
1298 #if NBPFILTER > 0
1299 static uint8_t
1300 rt2661_rxrate(struct rt2661_rx_desc *desc)
1301 {
1302 	if (le32toh(desc->flags) & RT2661_RX_OFDM) {
1303 		/* reverse function of rt2661_plcp_signal */
1304 		switch (desc->rate & 0xf) {
1305 		case 0xb:	return 12;
1306 		case 0xf:	return 18;
1307 		case 0xa:	return 24;
1308 		case 0xe:	return 36;
1309 		case 0x9:	return 48;
1310 		case 0xd:	return 72;
1311 		case 0x8:	return 96;
1312 		case 0xc:	return 108;
1313 		}
1314 	} else {
1315 		if (desc->rate == 10)
1316 			return 2;
1317 		if (desc->rate == 20)
1318 			return 4;
1319 		if (desc->rate == 55)
1320 			return 11;
1321 		if (desc->rate == 110)
1322 			return 22;
1323 	}
1324 	return 2;	/* should not get there */
1325 }
1326 #endif
1327 
1328 /*
1329  * Return the expected ack rate for a frame transmitted at rate `rate'.
1330  * XXX: this should depend on the destination node basic rate set.
1331  */
1332 static int
1333 rt2661_ack_rate(struct ieee80211com *ic, int rate)
1334 {
1335 	switch (rate) {
1336 	/* CCK rates */
1337 	case 2:
1338 		return 2;
1339 	case 4:
1340 	case 11:
1341 	case 22:
1342 		return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
1343 
1344 	/* OFDM rates */
1345 	case 12:
1346 	case 18:
1347 		return 12;
1348 	case 24:
1349 	case 36:
1350 		return 24;
1351 	case 48:
1352 	case 72:
1353 	case 96:
1354 	case 108:
1355 		return 48;
1356 	}
1357 
1358 	/* default to 1Mbps */
1359 	return 2;
1360 }
1361 
1362 /*
1363  * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1364  * The function automatically determines the operating mode depending on the
1365  * given rate. `flags' indicates whether short preamble is in use or not.
1366  */
1367 static uint16_t
1368 rt2661_txtime(int len, int rate, uint32_t flags)
1369 {
1370 	uint16_t txtime;
1371 
1372 	if (RAL_RATE_IS_OFDM(rate)) {
1373 		/* IEEE Std 802.11g-2003, pp. 44 */
1374 		txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1375 		txtime = 16 + 4 + 4 * txtime + 6;
1376 	} else {
1377 		/* IEEE Std 802.11b-1999, pp. 28 */
1378 		txtime = (16 * len + rate - 1) / rate;
1379 		if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1380 			txtime +=  72 + 24;
1381 		else
1382 			txtime += 144 + 48;
1383 	}
1384 	return txtime;
1385 }
1386 
1387 static uint8_t
1388 rt2661_plcp_signal(int rate)
1389 {
1390 	switch (rate) {
1391 	/* CCK rates (returned values are device-dependent) */
1392 	case 2:		return 0x0;
1393 	case 4:		return 0x1;
1394 	case 11:	return 0x2;
1395 	case 22:	return 0x3;
1396 
1397 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1398 	case 12:	return 0xb;
1399 	case 18:	return 0xf;
1400 	case 24:	return 0xa;
1401 	case 36:	return 0xe;
1402 	case 48:	return 0x9;
1403 	case 72:	return 0xd;
1404 	case 96:	return 0x8;
1405 	case 108:	return 0xc;
1406 
1407 	/* unsupported rates (should not get there) */
1408 	default:	return 0xff;
1409 	}
1410 }
1411 
1412 static void
1413 rt2661_setup_tx_desc(struct rt2661_softc *sc, struct rt2661_tx_desc *desc,
1414     uint32_t flags, uint16_t xflags, int len, int rate,
1415     const bus_dma_segment_t *segs, int nsegs, int ac)
1416 {
1417 	struct ieee80211com *ic = &sc->sc_ic;
1418 	uint16_t plcp_length;
1419 	int i, remainder;
1420 
1421 	desc->flags = htole32(flags);
1422 	desc->flags |= htole32(len << 16);
1423 
1424 	desc->xflags = htole16(xflags);
1425 	desc->xflags |= htole16(nsegs << 13);
1426 
1427 	desc->wme = htole16(
1428 	    RT2661_QID(ac) |
1429 	    RT2661_AIFSN(2) |
1430 	    RT2661_LOGCWMIN(4) |
1431 	    RT2661_LOGCWMAX(10));
1432 
1433 	/*
1434 	 * Remember in which queue this frame was sent. This field is driver
1435 	 * private data only. It will be made available by the NIC in STA_CSR4
1436 	 * on Tx interrupts.
1437 	 */
1438 	desc->qid = ac;
1439 
1440 	/* setup PLCP fields */
1441 	desc->plcp_signal  = rt2661_plcp_signal(rate);
1442 	desc->plcp_service = 4;
1443 
1444 	len += IEEE80211_CRC_LEN;
1445 	if (RAL_RATE_IS_OFDM(rate)) {
1446 		desc->flags |= htole32(RT2661_TX_OFDM);
1447 
1448 		plcp_length = len & 0xfff;
1449 		desc->plcp_length_hi = plcp_length >> 6;
1450 		desc->plcp_length_lo = plcp_length & 0x3f;
1451 	} else {
1452 		plcp_length = (16 * len + rate - 1) / rate;
1453 		if (rate == 22) {
1454 			remainder = (16 * len) % 22;
1455 			if (remainder != 0 && remainder < 7)
1456 				desc->plcp_service |= RT2661_PLCP_LENGEXT;
1457 		}
1458 		desc->plcp_length_hi = plcp_length >> 8;
1459 		desc->plcp_length_lo = plcp_length & 0xff;
1460 
1461 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1462 			desc->plcp_signal |= 0x08;
1463 	}
1464 
1465 	/* RT2x61 supports scatter with up to 5 segments */
1466 	for (i = 0; i < nsegs; i++) {
1467 		desc->addr[i] = htole32(segs[i].ds_addr);
1468 		desc->len [i] = htole16(segs[i].ds_len);
1469 	}
1470 
1471 	desc->flags |= htole32(RT2661_TX_BUSY | RT2661_TX_VALID);
1472 }
1473 
1474 static int
1475 rt2661_tx_mgt(struct rt2661_softc *sc, struct mbuf *m0,
1476     struct ieee80211_node *ni)
1477 {
1478 	struct ieee80211com *ic = &sc->sc_ic;
1479 	struct rt2661_tx_desc *desc;
1480 	struct rt2661_tx_data *data;
1481 	struct ieee80211_frame *wh;
1482 	uint16_t dur;
1483 	uint32_t flags = 0;
1484 	int rate, error;
1485 
1486 	desc = &sc->mgtq.desc[sc->mgtq.cur];
1487 	data = &sc->mgtq.data[sc->mgtq.cur];
1488 
1489 	/* send mgt frames at the lowest available rate */
1490 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1491 
1492 	wh = mtod(m0, struct ieee80211_frame *);
1493 
1494 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1495 		if (ieee80211_crypto_encap(ic, ni, m0) == NULL) {
1496 			m_freem(m0);
1497 			return ENOBUFS;
1498 		}
1499 
1500 		/* packet header may have moved, reset our local pointer */
1501 		wh = mtod(m0, struct ieee80211_frame *);
1502 	}
1503 
1504 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1505 	    BUS_DMA_NOWAIT);
1506 	if (error != 0) {
1507 		aprint_error_dev(&sc->sc_dev, "could not map mbuf (error %d)\n",
1508 		    error);
1509 		m_freem(m0);
1510 		return error;
1511 	}
1512 
1513 #if NBPFILTER > 0
1514 	if (sc->sc_drvbpf != NULL) {
1515 		struct rt2661_tx_radiotap_header *tap = &sc->sc_txtap;
1516 
1517 		tap->wt_flags = 0;
1518 		tap->wt_rate = rate;
1519 		tap->wt_chan_freq = htole16(sc->sc_curchan->ic_freq);
1520 		tap->wt_chan_flags = htole16(sc->sc_curchan->ic_flags);
1521 
1522 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1523 	}
1524 #endif
1525 
1526 	data->m = m0;
1527 	data->ni = ni;
1528 
1529 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1530 		flags |= RT2661_TX_NEED_ACK;
1531 
1532 		dur = rt2661_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) +
1533 		    sc->sifs;
1534 		*(uint16_t *)wh->i_dur = htole16(dur);
1535 
1536 		/* tell hardware to set timestamp in probe responses */
1537 		if ((wh->i_fc[0] &
1538 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1539 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1540 			flags |= RT2661_TX_TIMESTAMP;
1541 	}
1542 
1543 	rt2661_setup_tx_desc(sc, desc, flags, 0 /* XXX HWSEQ */,
1544 	    m0->m_pkthdr.len, rate, data->map->dm_segs, data->map->dm_nsegs,
1545 	    RT2661_QID_MGT);
1546 
1547 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1548 	    BUS_DMASYNC_PREWRITE);
1549 	bus_dmamap_sync(sc->sc_dmat, sc->mgtq.map,
1550 	    sc->mgtq.cur * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
1551 	    BUS_DMASYNC_PREWRITE);
1552 
1553 	DPRINTFN(10, ("sending mgt frame len=%u idx=%u rate=%u\n",
1554 	    m0->m_pkthdr.len, sc->mgtq.cur, rate));
1555 
1556 	/* kick mgt */
1557 	sc->mgtq.queued++;
1558 	sc->mgtq.cur = (sc->mgtq.cur + 1) % RT2661_MGT_RING_COUNT;
1559 	RAL_WRITE(sc, RT2661_TX_CNTL_CSR, RT2661_KICK_MGT);
1560 
1561 	return 0;
1562 }
1563 
1564 /*
1565  * Build a RTS control frame.
1566  */
1567 static struct mbuf *
1568 rt2661_get_rts(struct rt2661_softc *sc, struct ieee80211_frame *wh,
1569     uint16_t dur)
1570 {
1571 	struct ieee80211_frame_rts *rts;
1572 	struct mbuf *m;
1573 
1574 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1575 	if (m == NULL) {
1576 		sc->sc_ic.ic_stats.is_tx_nobuf++;
1577 		aprint_error_dev(&sc->sc_dev, "could not allocate RTS frame\n");
1578 		return NULL;
1579 	}
1580 
1581 	rts = mtod(m, struct ieee80211_frame_rts *);
1582 
1583 	rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL |
1584 	    IEEE80211_FC0_SUBTYPE_RTS;
1585 	rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1586 	*(uint16_t *)rts->i_dur = htole16(dur);
1587 	IEEE80211_ADDR_COPY(rts->i_ra, wh->i_addr1);
1588 	IEEE80211_ADDR_COPY(rts->i_ta, wh->i_addr2);
1589 
1590 	m->m_pkthdr.len = m->m_len = sizeof (struct ieee80211_frame_rts);
1591 
1592 	return m;
1593 }
1594 
1595 static int
1596 rt2661_tx_data(struct rt2661_softc *sc, struct mbuf *m0,
1597     struct ieee80211_node *ni, int ac)
1598 {
1599 	struct ieee80211com *ic = &sc->sc_ic;
1600 	struct rt2661_tx_ring *txq = &sc->txq[ac];
1601 	struct rt2661_tx_desc *desc;
1602 	struct rt2661_tx_data *data;
1603 	struct ieee80211_frame *wh;
1604 	struct ieee80211_key *k;
1605 	struct mbuf *mnew;
1606 	uint16_t dur;
1607 	uint32_t flags = 0;
1608 	int rate, useprot, error, tid;
1609 
1610 	wh = mtod(m0, struct ieee80211_frame *);
1611 
1612 	if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
1613 		rate = ic->ic_sup_rates[ic->ic_curmode].
1614 		    rs_rates[ic->ic_fixed_rate];
1615 	} else
1616 		rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1617 	rate &= IEEE80211_RATE_VAL;
1618 	if (rate == 0)
1619 		rate = 2;	/* XXX should not happen */
1620 
1621 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1622 		k = ieee80211_crypto_encap(ic, ni, m0);
1623 		if (k == NULL) {
1624 			m_freem(m0);
1625 			return ENOBUFS;
1626 		}
1627 
1628 		/* packet header may have moved, reset our local pointer */
1629 		wh = mtod(m0, struct ieee80211_frame *);
1630 	}
1631 
1632 	/*
1633 	 * Packet Bursting: backoff after ppb=8 frames to give other STAs a
1634 	 * chance to contend for the wireless medium.
1635 	 */
1636 	tid = WME_AC_TO_TID(M_WME_GETAC(m0));
1637 	if (ic->ic_opmode == IEEE80211_M_STA && (ni->ni_txseqs[tid] & 7))
1638 		flags |= RT2661_TX_IFS_SIFS;
1639 
1640 	/*
1641 	 * IEEE Std 802.11-1999, pp 82: "A STA shall use an RTS/CTS exchange
1642 	 * for directed frames only when the length of the MPDU is greater
1643 	 * than the length threshold indicated by" ic_rtsthreshold.
1644 	 *
1645 	 * IEEE Std 802.11-2003g, pp 13: "ERP STAs shall use protection
1646 	 * mechanism (such as RTS/CTS or CTS-to-self) for ERP-OFDM MPDUs of
1647 	 * type Data or an MMPDU".
1648 	 */
1649 	useprot = !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1650 	    (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold ||
1651 	    ((ic->ic_flags & IEEE80211_F_USEPROT) && RAL_RATE_IS_OFDM(rate)));
1652 	if (useprot) {
1653 		struct mbuf *m;
1654 		int rtsrate, ackrate;
1655 
1656 		rtsrate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1657 		ackrate = rt2661_ack_rate(ic, rate);
1658 
1659 		dur = rt2661_txtime(m0->m_pkthdr.len + 4, rate, ic->ic_flags) +
1660 		      rt2661_txtime(RAL_CTS_SIZE, rtsrate, ic->ic_flags) +
1661 		      rt2661_txtime(RAL_ACK_SIZE, ackrate, ic->ic_flags) +
1662 		      3 * sc->sifs;
1663 
1664 		m = rt2661_get_rts(sc, wh, dur);
1665 		if (m == NULL) {
1666 			aprint_error_dev(&sc->sc_dev, "could not allocate RTS "
1667 			    "frame\n");
1668 			m_freem(m0);
1669 			return ENOBUFS;
1670 		}
1671 
1672 		desc = &txq->desc[txq->cur];
1673 		data = &txq->data[txq->cur];
1674 
1675 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
1676 		    BUS_DMA_NOWAIT);
1677 		if (error != 0) {
1678 			aprint_error_dev(&sc->sc_dev, "could not map mbuf (error %d)\n", error);
1679 			m_freem(m);
1680 			m_freem(m0);
1681 			return error;
1682 		}
1683 
1684 		/* avoid multiple free() of the same node for each fragment */
1685 		ieee80211_ref_node(ni);
1686 
1687 		data->m = m;
1688 		data->ni = ni;
1689 
1690 		rt2661_setup_tx_desc(sc, desc, RT2661_TX_NEED_ACK |
1691 		    RT2661_TX_MORE_FRAG, 0, m->m_pkthdr.len, rtsrate,
1692 		    data->map->dm_segs, data->map->dm_nsegs, ac);
1693 
1694 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1695 		    data->map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1696 		bus_dmamap_sync(sc->sc_dmat, txq->map,
1697 		    txq->cur * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
1698 		    BUS_DMASYNC_PREWRITE);
1699 
1700 		txq->queued++;
1701 		txq->cur = (txq->cur + 1) % RT2661_TX_RING_COUNT;
1702 
1703 		flags |= RT2661_TX_LONG_RETRY | RT2661_TX_IFS_SIFS;
1704 	}
1705 
1706 	data = &txq->data[txq->cur];
1707 	desc = &txq->desc[txq->cur];
1708 
1709 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1710 	    BUS_DMA_NOWAIT);
1711 	if (error != 0 && error != EFBIG) {
1712 		aprint_error_dev(&sc->sc_dev, "could not map mbuf (error %d)\n",
1713 		    error);
1714 		m_freem(m0);
1715 		return error;
1716 	}
1717 	if (error != 0) {
1718 		/* too many fragments, linearize */
1719 
1720 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1721 		if (mnew == NULL) {
1722 			m_freem(m0);
1723 			return ENOMEM;
1724 		}
1725 
1726 		M_COPY_PKTHDR(mnew, m0);
1727 		if (m0->m_pkthdr.len > MHLEN) {
1728 			MCLGET(mnew, M_DONTWAIT);
1729 			if (!(mnew->m_flags & M_EXT)) {
1730 				m_freem(m0);
1731 				m_freem(mnew);
1732 				return ENOMEM;
1733 			}
1734 		}
1735 
1736 		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
1737 		m_freem(m0);
1738 		mnew->m_len = mnew->m_pkthdr.len;
1739 		m0 = mnew;
1740 
1741 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1742 		    BUS_DMA_NOWAIT);
1743 		if (error != 0) {
1744 			aprint_error_dev(&sc->sc_dev, "could not map mbuf (error %d)\n", error);
1745 			m_freem(m0);
1746 			return error;
1747 		}
1748 
1749 		/* packet header have moved, reset our local pointer */
1750 		wh = mtod(m0, struct ieee80211_frame *);
1751 	}
1752 
1753 #if NBPFILTER > 0
1754 	if (sc->sc_drvbpf != NULL) {
1755 		struct rt2661_tx_radiotap_header *tap = &sc->sc_txtap;
1756 
1757 		tap->wt_flags = 0;
1758 		tap->wt_rate = rate;
1759 		tap->wt_chan_freq = htole16(sc->sc_curchan->ic_freq);
1760 		tap->wt_chan_flags = htole16(sc->sc_curchan->ic_flags);
1761 
1762 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1763 	}
1764 #endif
1765 
1766 	data->m = m0;
1767 	data->ni = ni;
1768 
1769 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1770 		flags |= RT2661_TX_NEED_ACK;
1771 
1772 		dur = rt2661_txtime(RAL_ACK_SIZE, rt2661_ack_rate(ic, rate),
1773 		    ic->ic_flags) + sc->sifs;
1774 		*(uint16_t *)wh->i_dur = htole16(dur);
1775 	}
1776 
1777 	rt2661_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate,
1778 	    data->map->dm_segs, data->map->dm_nsegs, ac);
1779 
1780 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1781 	    BUS_DMASYNC_PREWRITE);
1782 	bus_dmamap_sync(sc->sc_dmat, txq->map, txq->cur * RT2661_TX_DESC_SIZE,
1783 	    RT2661_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
1784 
1785 	DPRINTFN(10, ("sending data frame len=%u idx=%u rate=%u\n",
1786 	    m0->m_pkthdr.len, txq->cur, rate));
1787 
1788 	/* kick Tx */
1789 	txq->queued++;
1790 	txq->cur = (txq->cur + 1) % RT2661_TX_RING_COUNT;
1791 	RAL_WRITE(sc, RT2661_TX_CNTL_CSR, 1);
1792 
1793 	return 0;
1794 }
1795 
1796 static void
1797 rt2661_start(struct ifnet *ifp)
1798 {
1799 	struct rt2661_softc *sc = ifp->if_softc;
1800 	struct ieee80211com *ic = &sc->sc_ic;
1801 	struct mbuf *m0;
1802 	struct ether_header *eh;
1803 	struct ieee80211_node *ni = NULL;
1804 
1805 	/*
1806 	 * net80211 may still try to send management frames even if the
1807 	 * IFF_RUNNING flag is not set...
1808 	 */
1809 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1810 		return;
1811 
1812 	for (;;) {
1813 		IF_POLL(&ic->ic_mgtq, m0);
1814 		if (m0 != NULL) {
1815 			if (sc->mgtq.queued >= RT2661_MGT_RING_COUNT) {
1816 				ifp->if_flags |= IFF_OACTIVE;
1817 				break;
1818 			}
1819 			IF_DEQUEUE(&ic->ic_mgtq, m0);
1820 			if (m0 == NULL)
1821 				break;
1822 
1823 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1824 			m0->m_pkthdr.rcvif = NULL;
1825 #if NBPFILTER > 0
1826 			if (ic->ic_rawbpf != NULL)
1827 				bpf_mtap(ic->ic_rawbpf, m0);
1828 #endif
1829 			if (rt2661_tx_mgt(sc, m0, ni) != 0)
1830 				break;
1831 
1832 		} else {
1833 			IF_POLL(&ifp->if_snd, m0);
1834 			if (m0 == NULL || ic->ic_state != IEEE80211_S_RUN)
1835 				break;
1836 
1837 			if (sc->txq[0].queued >= RT2661_TX_RING_COUNT - 1) {
1838 				/* there is no place left in this ring */
1839 				ifp->if_flags |= IFF_OACTIVE;
1840 				break;
1841 			}
1842 
1843 			IFQ_DEQUEUE(&ifp->if_snd, m0);
1844 
1845 			if (m0->m_len < sizeof (struct ether_header) &&
1846 			    !(m0 = m_pullup(m0, sizeof (struct ether_header))))
1847 				continue;
1848 
1849 			eh = mtod(m0, struct ether_header *);
1850 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1851 			if (ni == NULL) {
1852 				m_freem(m0);
1853 				ifp->if_oerrors++;
1854 				continue;
1855 			}
1856 
1857 #if NBPFILTER > 0
1858 			if (ifp->if_bpf != NULL)
1859 				bpf_mtap(ifp->if_bpf, m0);
1860 #endif
1861 			m0 = ieee80211_encap(ic, m0, ni);
1862 			if (m0 == NULL) {
1863 				ieee80211_free_node(ni);
1864 				ifp->if_oerrors++;
1865 				continue;
1866 			}
1867 #if NBPFILTER > 0
1868 			if (ic->ic_rawbpf != NULL)
1869 				bpf_mtap(ic->ic_rawbpf, m0);
1870 #endif
1871 			if (rt2661_tx_data(sc, m0, ni, 0) != 0) {
1872 				if (ni != NULL)
1873 					ieee80211_free_node(ni);
1874 				ifp->if_oerrors++;
1875 				break;
1876 			}
1877 		}
1878 
1879 		sc->sc_tx_timer = 5;
1880 		ifp->if_timer = 1;
1881 	}
1882 }
1883 
1884 static void
1885 rt2661_watchdog(struct ifnet *ifp)
1886 {
1887 	struct rt2661_softc *sc = ifp->if_softc;
1888 
1889 	ifp->if_timer = 0;
1890 
1891 	if (sc->sc_tx_timer > 0) {
1892 		if (--sc->sc_tx_timer == 0) {
1893 			aprint_error_dev(&sc->sc_dev, "device timeout\n");
1894 			rt2661_init(ifp);
1895 			ifp->if_oerrors++;
1896 			return;
1897 		}
1898 		ifp->if_timer = 1;
1899 	}
1900 
1901 	ieee80211_watchdog(&sc->sc_ic);
1902 }
1903 
1904 /*
1905  * This function allows for fast channel switching in monitor mode (used by
1906  * kismet). In IBSS mode, we must explicitly reset the interface to
1907  * generate a new beacon frame.
1908  */
1909 static int
1910 rt2661_reset(struct ifnet *ifp)
1911 {
1912 	struct rt2661_softc *sc = ifp->if_softc;
1913 	struct ieee80211com *ic = &sc->sc_ic;
1914 
1915 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
1916 		return ENETRESET;
1917 
1918 	rt2661_set_chan(sc, ic->ic_curchan);
1919 
1920 	return 0;
1921 }
1922 
1923 static int
1924 rt2661_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1925 {
1926 	struct rt2661_softc *sc = ifp->if_softc;
1927 	struct ieee80211com *ic = &sc->sc_ic;
1928 	int s, error = 0;
1929 
1930 	s = splnet();
1931 
1932 	switch (cmd) {
1933 	case SIOCSIFFLAGS:
1934 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1935 			break;
1936 		if (ifp->if_flags & IFF_UP) {
1937 			if (ifp->if_flags & IFF_RUNNING)
1938 				rt2661_update_promisc(sc);
1939 			else
1940 				rt2661_init(ifp);
1941 		} else {
1942 			if (ifp->if_flags & IFF_RUNNING)
1943 				rt2661_stop(ifp, 1);
1944 		}
1945 		break;
1946 
1947 	case SIOCADDMULTI:
1948 	case SIOCDELMULTI:
1949 		/* XXX no h/w multicast filter? --dyoung */
1950 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET)
1951 			error = 0;
1952 		break;
1953 
1954 	case SIOCS80211CHANNEL:
1955 		/*
1956 		 * This allows for fast channel switching in monitor mode
1957 		 * (used by kismet). In IBSS mode, we must explicitly reset
1958 		 * the interface to generate a new beacon frame.
1959 		 */
1960 		error = ieee80211_ioctl(ic, cmd, data);
1961 		if (error == ENETRESET &&
1962 		    ic->ic_opmode == IEEE80211_M_MONITOR) {
1963 			if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1964 			     (IFF_UP | IFF_RUNNING))
1965 				rt2661_set_chan(sc, ic->ic_ibss_chan);
1966 			error = 0;
1967 		}
1968 		break;
1969 
1970 	default:
1971 		error = ieee80211_ioctl(ic, cmd, data);
1972 
1973 	}
1974 
1975 	if (error == ENETRESET) {
1976 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1977 		    (IFF_UP | IFF_RUNNING))
1978 			rt2661_init(ifp);
1979 		error = 0;
1980 	}
1981 
1982 	splx(s);
1983 
1984 	return error;
1985 }
1986 
1987 static void
1988 rt2661_bbp_write(struct rt2661_softc *sc, uint8_t reg, uint8_t val)
1989 {
1990 	uint32_t tmp;
1991 	int ntries;
1992 
1993 	for (ntries = 0; ntries < 100; ntries++) {
1994 		if (!(RAL_READ(sc, RT2661_PHY_CSR3) & RT2661_BBP_BUSY))
1995 			break;
1996 		DELAY(1);
1997 	}
1998 	if (ntries == 100) {
1999 		aprint_error_dev(&sc->sc_dev, "could not write to BBP\n");
2000 		return;
2001 	}
2002 
2003 	tmp = RT2661_BBP_BUSY | (reg & 0x7f) << 8 | val;
2004 	RAL_WRITE(sc, RT2661_PHY_CSR3, tmp);
2005 
2006 	DPRINTFN(15, ("BBP R%u <- 0x%02x\n", reg, val));
2007 }
2008 
2009 static uint8_t
2010 rt2661_bbp_read(struct rt2661_softc *sc, uint8_t reg)
2011 {
2012 	uint32_t val;
2013 	int ntries;
2014 
2015 	for (ntries = 0; ntries < 100; ntries++) {
2016 		if (!(RAL_READ(sc, RT2661_PHY_CSR3) & RT2661_BBP_BUSY))
2017 			break;
2018 		DELAY(1);
2019 	}
2020 	if (ntries == 100) {
2021 		aprint_error_dev(&sc->sc_dev, "could not read from BBP\n");
2022 		return 0;
2023 	}
2024 
2025 	val = RT2661_BBP_BUSY | RT2661_BBP_READ | reg << 8;
2026 	RAL_WRITE(sc, RT2661_PHY_CSR3, val);
2027 
2028 	for (ntries = 0; ntries < 100; ntries++) {
2029 		val = RAL_READ(sc, RT2661_PHY_CSR3);
2030 		if (!(val & RT2661_BBP_BUSY))
2031 			return val & 0xff;
2032 		DELAY(1);
2033 	}
2034 
2035 	aprint_error_dev(&sc->sc_dev, "could not read from BBP\n");
2036 	return 0;
2037 }
2038 
2039 static void
2040 rt2661_rf_write(struct rt2661_softc *sc, uint8_t reg, uint32_t val)
2041 {
2042 	uint32_t tmp;
2043 	int ntries;
2044 
2045 	for (ntries = 0; ntries < 100; ntries++) {
2046 		if (!(RAL_READ(sc, RT2661_PHY_CSR4) & RT2661_RF_BUSY))
2047 			break;
2048 		DELAY(1);
2049 	}
2050 	if (ntries == 100) {
2051 		aprint_error_dev(&sc->sc_dev, "could not write to RF\n");
2052 		return;
2053 	}
2054 	tmp = RT2661_RF_BUSY | RT2661_RF_21BIT | (val & 0x1fffff) << 2 |
2055 	    (reg & 3);
2056 	RAL_WRITE(sc, RT2661_PHY_CSR4, tmp);
2057 
2058 	/* remember last written value in sc */
2059 	sc->rf_regs[reg] = val;
2060 
2061 	DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0x1fffff));
2062 }
2063 
2064 static int
2065 rt2661_tx_cmd(struct rt2661_softc *sc, uint8_t cmd, uint16_t arg)
2066 {
2067 	if (RAL_READ(sc, RT2661_H2M_MAILBOX_CSR) & RT2661_H2M_BUSY)
2068 		return EIO;	/* there is already a command pending */
2069 
2070 	RAL_WRITE(sc, RT2661_H2M_MAILBOX_CSR,
2071 	    RT2661_H2M_BUSY | RT2661_TOKEN_NO_INTR << 16 | arg);
2072 
2073 	RAL_WRITE(sc, RT2661_HOST_CMD_CSR, RT2661_KICK_CMD | cmd);
2074 
2075 	return 0;
2076 }
2077 
2078 static void
2079 rt2661_select_antenna(struct rt2661_softc *sc)
2080 {
2081 	uint8_t bbp4, bbp77;
2082 	uint32_t tmp;
2083 
2084 	bbp4  = rt2661_bbp_read(sc,  4);
2085 	bbp77 = rt2661_bbp_read(sc, 77);
2086 
2087 	/* TBD */
2088 
2089 	/* make sure Rx is disabled before switching antenna */
2090 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2091 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX);
2092 
2093 	rt2661_bbp_write(sc,  4, bbp4);
2094 	rt2661_bbp_write(sc, 77, bbp77);
2095 
2096 	/* restore Rx filter */
2097 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2098 }
2099 
2100 /*
2101  * Enable multi-rate retries for frames sent at OFDM rates.
2102  * In 802.11b/g mode, allow fallback to CCK rates.
2103  */
2104 static void
2105 rt2661_enable_mrr(struct rt2661_softc *sc)
2106 {
2107 	struct ieee80211com *ic = &sc->sc_ic;
2108 	uint32_t tmp;
2109 
2110 	tmp = RAL_READ(sc, RT2661_TXRX_CSR4);
2111 
2112 	tmp &= ~RT2661_MRR_CCK_FALLBACK;
2113 	if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan))
2114 		tmp |= RT2661_MRR_CCK_FALLBACK;
2115 	tmp |= RT2661_MRR_ENABLED;
2116 
2117 	RAL_WRITE(sc, RT2661_TXRX_CSR4, tmp);
2118 }
2119 
2120 static void
2121 rt2661_set_txpreamble(struct rt2661_softc *sc)
2122 {
2123 	uint32_t tmp;
2124 
2125 	tmp = RAL_READ(sc, RT2661_TXRX_CSR4);
2126 
2127 	tmp &= ~RT2661_SHORT_PREAMBLE;
2128 	if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
2129 		tmp |= RT2661_SHORT_PREAMBLE;
2130 
2131 	RAL_WRITE(sc, RT2661_TXRX_CSR4, tmp);
2132 }
2133 
2134 static void
2135 rt2661_set_basicrates(struct rt2661_softc *sc,
2136     const struct ieee80211_rateset *rs)
2137 {
2138 #define RV(r)	((r) & IEEE80211_RATE_VAL)
2139 	uint32_t mask = 0;
2140 	uint8_t rate;
2141 	int i, j;
2142 
2143 	for (i = 0; i < rs->rs_nrates; i++) {
2144 		rate = rs->rs_rates[i];
2145 
2146 		if (!(rate & IEEE80211_RATE_BASIC))
2147 			continue;
2148 
2149 		/*
2150 		 * Find h/w rate index.  We know it exists because the rate
2151 		 * set has already been negotiated.
2152 		 */
2153 		for (j = 0; rt2661_rateset_11g.rs_rates[j] != RV(rate); j++);
2154 
2155 		mask |= 1 << j;
2156 	}
2157 
2158 	RAL_WRITE(sc, RT2661_TXRX_CSR5, mask);
2159 
2160 	DPRINTF(("Setting basic rate mask to 0x%x\n", mask));
2161 #undef RV
2162 }
2163 
2164 /*
2165  * Reprogram MAC/BBP to switch to a new band.  Values taken from the reference
2166  * driver.
2167  */
2168 static void
2169 rt2661_select_band(struct rt2661_softc *sc, struct ieee80211_channel *c)
2170 {
2171 	uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
2172 	uint32_t tmp;
2173 
2174 	/* update all BBP registers that depend on the band */
2175 	bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
2176 	bbp35 = 0x50; bbp97 = 0x48; bbp98  = 0x48;
2177 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2178 		bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
2179 		bbp35 += 0x10; bbp97 += 0x10; bbp98  += 0x10;
2180 	}
2181 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
2182 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
2183 		bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
2184 	}
2185 
2186 	sc->bbp17 = bbp17;
2187 	rt2661_bbp_write(sc,  17, bbp17);
2188 	rt2661_bbp_write(sc,  96, bbp96);
2189 	rt2661_bbp_write(sc, 104, bbp104);
2190 
2191 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
2192 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
2193 		rt2661_bbp_write(sc, 75, 0x80);
2194 		rt2661_bbp_write(sc, 86, 0x80);
2195 		rt2661_bbp_write(sc, 88, 0x80);
2196 	}
2197 
2198 	rt2661_bbp_write(sc, 35, bbp35);
2199 	rt2661_bbp_write(sc, 97, bbp97);
2200 	rt2661_bbp_write(sc, 98, bbp98);
2201 
2202 	tmp = RAL_READ(sc, RT2661_PHY_CSR0);
2203 	tmp &= ~(RT2661_PA_PE_2GHZ | RT2661_PA_PE_5GHZ);
2204 	if (IEEE80211_IS_CHAN_2GHZ(c))
2205 		tmp |= RT2661_PA_PE_2GHZ;
2206 	else
2207 		tmp |= RT2661_PA_PE_5GHZ;
2208 	RAL_WRITE(sc, RT2661_PHY_CSR0, tmp);
2209 
2210 	/* 802.11a uses a 16 microseconds short interframe space */
2211 	sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10;
2212 }
2213 
2214 static void
2215 rt2661_set_chan(struct rt2661_softc *sc, struct ieee80211_channel *c)
2216 {
2217 	struct ieee80211com *ic = &sc->sc_ic;
2218 	const struct rfprog *rfprog;
2219 	uint8_t bbp3, bbp94 = RT2661_BBPR94_DEFAULT;
2220 	int8_t power;
2221 	u_int i, chan;
2222 
2223 	chan = ieee80211_chan2ieee(ic, c);
2224 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
2225 		return;
2226 
2227 	/* select the appropriate RF settings based on what EEPROM says */
2228 	rfprog = (sc->rfprog == 0) ? rt2661_rf5225_1 : rt2661_rf5225_2;
2229 
2230 	/* find the settings for this channel (we know it exists) */
2231 	for (i = 0; rfprog[i].chan != chan; i++);
2232 
2233 	power = sc->txpow[i];
2234 	if (power < 0) {
2235 		bbp94 += power;
2236 		power = 0;
2237 	} else if (power > 31) {
2238 		bbp94 += power - 31;
2239 		power = 31;
2240 	}
2241 
2242 	/*
2243 	 * If we've yet to select a channel, or we are switching from the
2244 	 * 2GHz band to the 5GHz band or vice-versa, BBP registers need to
2245 	 * be reprogrammed.
2246 	 */
2247 	if (sc->sc_curchan == NULL || c->ic_flags != sc->sc_curchan->ic_flags) {
2248 		rt2661_select_band(sc, c);
2249 		rt2661_select_antenna(sc);
2250 	}
2251 	sc->sc_curchan = c;
2252 
2253 	rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1);
2254 	rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2);
2255 	rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7);
2256 	rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10);
2257 
2258 	DELAY(200);
2259 
2260 	rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1);
2261 	rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2);
2262 	rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7 | 1);
2263 	rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10);
2264 
2265 	DELAY(200);
2266 
2267 	rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1);
2268 	rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2);
2269 	rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7);
2270 	rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10);
2271 
2272 	/* enable smart mode for MIMO-capable RFs */
2273 	bbp3 = rt2661_bbp_read(sc, 3);
2274 
2275 	bbp3 &= ~RT2661_SMART_MODE;
2276 	if (sc->rf_rev == RT2661_RF_5325 || sc->rf_rev == RT2661_RF_2529)
2277 		bbp3 |= RT2661_SMART_MODE;
2278 
2279 	rt2661_bbp_write(sc, 3, bbp3);
2280 
2281 	if (bbp94 != RT2661_BBPR94_DEFAULT)
2282 		rt2661_bbp_write(sc, 94, bbp94);
2283 
2284 	/* 5GHz radio needs a 1ms delay here */
2285 	if (IEEE80211_IS_CHAN_5GHZ(c))
2286 		DELAY(1000);
2287 }
2288 
2289 static void
2290 rt2661_set_bssid(struct rt2661_softc *sc, const uint8_t *bssid)
2291 {
2292 	uint32_t tmp;
2293 
2294 	tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
2295 	RAL_WRITE(sc, RT2661_MAC_CSR4, tmp);
2296 
2297 	tmp = bssid[4] | bssid[5] << 8 | RT2661_ONE_BSSID << 16;
2298 	RAL_WRITE(sc, RT2661_MAC_CSR5, tmp);
2299 }
2300 
2301 static void
2302 rt2661_set_macaddr(struct rt2661_softc *sc, const uint8_t *addr)
2303 {
2304 	uint32_t tmp;
2305 
2306 	tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
2307 	RAL_WRITE(sc, RT2661_MAC_CSR2, tmp);
2308 
2309 	tmp = addr[4] | addr[5] << 8 | 0xff << 16;
2310 	RAL_WRITE(sc, RT2661_MAC_CSR3, tmp);
2311 }
2312 
2313 static void
2314 rt2661_update_promisc(struct rt2661_softc *sc)
2315 {
2316 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
2317 	uint32_t tmp;
2318 
2319 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2320 
2321 	tmp &= ~RT2661_DROP_NOT_TO_ME;
2322 	if (!(ifp->if_flags & IFF_PROMISC))
2323 		tmp |= RT2661_DROP_NOT_TO_ME;
2324 
2325 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2326 
2327 	DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
2328 	    "entering" : "leaving"));
2329 }
2330 
2331 #if 0
2332 /*
2333  * Update QoS (802.11e) settings for each h/w Tx ring.
2334  */
2335 static int
2336 rt2661_wme_update(struct ieee80211com *ic)
2337 {
2338 	struct rt2661_softc *sc = ic->ic_ifp->if_softc;
2339 	const struct wmeParams *wmep;
2340 
2341 	wmep = ic->ic_wme.wme_chanParams.cap_wmeParams;
2342 
2343 	/* XXX: not sure about shifts. */
2344 	/* XXX: the reference driver plays with AC_VI settings too. */
2345 
2346 	/* update TxOp */
2347 	RAL_WRITE(sc, RT2661_AC_TXOP_CSR0,
2348 	    wmep[WME_AC_BE].wmep_txopLimit << 16 |
2349 	    wmep[WME_AC_BK].wmep_txopLimit);
2350 	RAL_WRITE(sc, RT2661_AC_TXOP_CSR1,
2351 	    wmep[WME_AC_VI].wmep_txopLimit << 16 |
2352 	    wmep[WME_AC_VO].wmep_txopLimit);
2353 
2354 	/* update CWmin */
2355 	RAL_WRITE(sc, RT2661_CWMIN_CSR,
2356 	    wmep[WME_AC_BE].wmep_logcwmin << 12 |
2357 	    wmep[WME_AC_BK].wmep_logcwmin <<  8 |
2358 	    wmep[WME_AC_VI].wmep_logcwmin <<  4 |
2359 	    wmep[WME_AC_VO].wmep_logcwmin);
2360 
2361 	/* update CWmax */
2362 	RAL_WRITE(sc, RT2661_CWMAX_CSR,
2363 	    wmep[WME_AC_BE].wmep_logcwmax << 12 |
2364 	    wmep[WME_AC_BK].wmep_logcwmax <<  8 |
2365 	    wmep[WME_AC_VI].wmep_logcwmax <<  4 |
2366 	    wmep[WME_AC_VO].wmep_logcwmax);
2367 
2368 	/* update Aifsn */
2369 	RAL_WRITE(sc, RT2661_AIFSN_CSR,
2370 	    wmep[WME_AC_BE].wmep_aifsn << 12 |
2371 	    wmep[WME_AC_BK].wmep_aifsn <<  8 |
2372 	    wmep[WME_AC_VI].wmep_aifsn <<  4 |
2373 	    wmep[WME_AC_VO].wmep_aifsn);
2374 
2375 	return 0;
2376 }
2377 #endif
2378 
2379 static void
2380 rt2661_updateslot(struct ifnet *ifp)
2381 {
2382 	struct rt2661_softc *sc = ifp->if_softc;
2383 	struct ieee80211com *ic = &sc->sc_ic;
2384 
2385 	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2386 		/*
2387 		 * In HostAP mode, we defer setting of new slot time until
2388 		 * updated ERP Information Element has propagated to all
2389 		 * associated STAs.
2390 		 */
2391 		sc->sc_flags |= RT2661_UPDATE_SLOT;
2392 	} else
2393 		rt2661_set_slottime(sc);
2394 }
2395 
2396 static void
2397 rt2661_set_slottime(struct rt2661_softc *sc)
2398 {
2399 	struct ieee80211com *ic = &sc->sc_ic;
2400 	uint8_t slottime;
2401 	uint32_t tmp;
2402 
2403 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
2404 
2405 	tmp = RAL_READ(sc, RT2661_MAC_CSR9);
2406 	tmp = (tmp & ~0xff) | slottime;
2407 	RAL_WRITE(sc, RT2661_MAC_CSR9, tmp);
2408 
2409 	DPRINTF(("setting slot time to %uus\n", slottime));
2410 }
2411 
2412 static const char *
2413 rt2661_get_rf(int rev)
2414 {
2415 	switch (rev) {
2416 	case RT2661_RF_5225:	return "RT5225";
2417 	case RT2661_RF_5325:	return "RT5325 (MIMO XR)";
2418 	case RT2661_RF_2527:	return "RT2527";
2419 	case RT2661_RF_2529:	return "RT2529 (MIMO XR)";
2420 	default:		return "unknown";
2421 	}
2422 }
2423 
2424 static void
2425 rt2661_read_eeprom(struct rt2661_softc *sc)
2426 {
2427 	struct ieee80211com *ic = &sc->sc_ic;
2428 	uint16_t val;
2429 	int i;
2430 
2431 	/* read MAC address */
2432 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC01);
2433 	ic->ic_myaddr[0] = val & 0xff;
2434 	ic->ic_myaddr[1] = val >> 8;
2435 
2436 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC23);
2437 	ic->ic_myaddr[2] = val & 0xff;
2438 	ic->ic_myaddr[3] = val >> 8;
2439 
2440 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC45);
2441 	ic->ic_myaddr[4] = val & 0xff;
2442 	ic->ic_myaddr[5] = val >> 8;
2443 
2444 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_ANTENNA);
2445 	/* XXX: test if different from 0xffff? */
2446 	sc->rf_rev   = (val >> 11) & 0x1f;
2447 	sc->hw_radio = (val >> 10) & 0x1;
2448 	sc->rx_ant   = (val >> 4)  & 0x3;
2449 	sc->tx_ant   = (val >> 2)  & 0x3;
2450 	sc->nb_ant   = val & 0x3;
2451 
2452 	DPRINTF(("RF revision=%d\n", sc->rf_rev));
2453 
2454 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_CONFIG2);
2455 	sc->ext_5ghz_lna = (val >> 6) & 0x1;
2456 	sc->ext_2ghz_lna = (val >> 4) & 0x1;
2457 
2458 	DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
2459 	    sc->ext_2ghz_lna, sc->ext_5ghz_lna));
2460 
2461 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_RSSI_2GHZ_OFFSET);
2462 	if ((val & 0xff) != 0xff)
2463 		sc->rssi_2ghz_corr = (int8_t)(val & 0xff);	/* signed */
2464 
2465 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_RSSI_5GHZ_OFFSET);
2466 	if ((val & 0xff) != 0xff)
2467 		sc->rssi_5ghz_corr = (int8_t)(val & 0xff);	/* signed */
2468 
2469 	/* adjust RSSI correction for external low-noise amplifier */
2470 	if (sc->ext_2ghz_lna)
2471 		sc->rssi_2ghz_corr -= 14;
2472 	if (sc->ext_5ghz_lna)
2473 		sc->rssi_5ghz_corr -= 14;
2474 
2475 	DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
2476 	    sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
2477 
2478 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_FREQ_OFFSET);
2479 	if ((val >> 8) != 0xff)
2480 		sc->rfprog = (val >> 8) & 0x3;
2481 	if ((val & 0xff) != 0xff)
2482 		sc->rffreq = val & 0xff;
2483 
2484 	DPRINTF(("RF prog=%d\nRF freq=%d\n", sc->rfprog, sc->rffreq));
2485 
2486 	/* read Tx power for all a/b/g channels */
2487 	for (i = 0; i < 19; i++) {
2488 		val = rt2661_eeprom_read(sc, RT2661_EEPROM_TXPOWER + i);
2489 		sc->txpow[i * 2] = (int8_t)(val >> 8);		/* signed */
2490 		DPRINTF(("Channel=%d Tx power=%d\n",
2491 		    rt2661_rf5225_1[i * 2].chan, sc->txpow[i * 2]));
2492 		sc->txpow[i * 2 + 1] = (int8_t)(val & 0xff);	/* signed */
2493 		DPRINTF(("Channel=%d Tx power=%d\n",
2494 		    rt2661_rf5225_1[i * 2 + 1].chan, sc->txpow[i * 2 + 1]));
2495 	}
2496 
2497 	/* read vendor-specific BBP values */
2498 	for (i = 0; i < 16; i++) {
2499 		val = rt2661_eeprom_read(sc, RT2661_EEPROM_BBP_BASE + i);
2500 		if (val == 0 || val == 0xffff)
2501 			continue;	/* skip invalid entries */
2502 		sc->bbp_prom[i].reg = val >> 8;
2503 		sc->bbp_prom[i].val = val & 0xff;
2504 		DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
2505 		    sc->bbp_prom[i].val));
2506 	}
2507 }
2508 
2509 static int
2510 rt2661_bbp_init(struct rt2661_softc *sc)
2511 {
2512 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
2513 	int i, ntries;
2514 	uint8_t val;
2515 
2516 	/* wait for BBP to be ready */
2517 	for (ntries = 0; ntries < 100; ntries++) {
2518 		val = rt2661_bbp_read(sc, 0);
2519 		if (val != 0 && val != 0xff)
2520 			break;
2521 		DELAY(100);
2522 	}
2523 	if (ntries == 100) {
2524 		aprint_error_dev(&sc->sc_dev, "timeout waiting for BBP\n");
2525 		return EIO;
2526 	}
2527 
2528 	/* initialize BBP registers to default values */
2529 	for (i = 0; i < N(rt2661_def_bbp); i++) {
2530 		rt2661_bbp_write(sc, rt2661_def_bbp[i].reg,
2531 		    rt2661_def_bbp[i].val);
2532 	}
2533 
2534 	/* write vendor-specific BBP values (from EEPROM) */
2535 	for (i = 0; i < 16; i++) {
2536 		if (sc->bbp_prom[i].reg == 0)
2537 			continue;
2538 		rt2661_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2539 	}
2540 
2541 	return 0;
2542 #undef N
2543 }
2544 
2545 static int
2546 rt2661_init(struct ifnet *ifp)
2547 {
2548 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
2549 	struct rt2661_softc *sc = ifp->if_softc;
2550 	struct ieee80211com *ic = &sc->sc_ic;
2551 	const char *name = NULL;	/* make lint happy */
2552 	uint8_t *ucode;
2553 	size_t size;
2554 	uint32_t tmp, star[3];
2555 	int i, ntries;
2556 	firmware_handle_t fh;
2557 
2558 	/* for CardBus, power on the socket */
2559 	if (!(sc->sc_flags & RT2661_ENABLED)) {
2560 		if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
2561 			aprint_error_dev(&sc->sc_dev, "could not enable device\n");
2562 			return EIO;
2563 		}
2564 		sc->sc_flags |= RT2661_ENABLED;
2565 	}
2566 
2567 	rt2661_stop(ifp, 0);
2568 
2569 	if (!(sc->sc_flags & RT2661_FWLOADED)) {
2570 		switch (sc->sc_id) {
2571 		case PCI_PRODUCT_RALINK_RT2561:
2572 			name = "ral-rt2561";
2573 			break;
2574 		case PCI_PRODUCT_RALINK_RT2561S:
2575 			name = "ral-rt2561s";
2576 			break;
2577 		case PCI_PRODUCT_RALINK_RT2661:
2578 			name = "ral-rt2661";
2579 			break;
2580 		}
2581 
2582 		if (firmware_open("ral", name, &fh) != 0) {
2583 			aprint_error_dev(&sc->sc_dev, "could not open microcode %s\n", name);
2584 			rt2661_stop(ifp, 1);
2585 			return EIO;
2586 		}
2587 
2588 		size = firmware_get_size(fh);
2589 		if (!(ucode = firmware_malloc(size))) {
2590 			aprint_error_dev(&sc->sc_dev, "could not alloc microcode memory\n");
2591 			firmware_close(fh);
2592 			rt2661_stop(ifp, 1);
2593 			return ENOMEM;
2594 		}
2595 
2596 		if (firmware_read(fh, 0, ucode, size) != 0) {
2597 			aprint_error_dev(&sc->sc_dev, "could not read microcode %s\n", name);
2598 			firmware_free(ucode, 0);
2599 			firmware_close(fh);
2600 			rt2661_stop(ifp, 1);
2601 			return EIO;
2602 		}
2603 
2604 		if (rt2661_load_microcode(sc, ucode, size) != 0) {
2605 			aprint_error_dev(&sc->sc_dev, "could not load 8051 microcode\n");
2606 			firmware_free(ucode, 0);
2607 			firmware_close(fh);
2608 			rt2661_stop(ifp, 1);
2609 			return EIO;
2610 		}
2611 
2612 		firmware_free(ucode, 0);
2613 		firmware_close(fh);
2614 		sc->sc_flags |= RT2661_FWLOADED;
2615 	}
2616 
2617 	/* initialize Tx rings */
2618 	RAL_WRITE(sc, RT2661_AC1_BASE_CSR, sc->txq[1].physaddr);
2619 	RAL_WRITE(sc, RT2661_AC0_BASE_CSR, sc->txq[0].physaddr);
2620 	RAL_WRITE(sc, RT2661_AC2_BASE_CSR, sc->txq[2].physaddr);
2621 	RAL_WRITE(sc, RT2661_AC3_BASE_CSR, sc->txq[3].physaddr);
2622 
2623 	/* initialize Mgt ring */
2624 	RAL_WRITE(sc, RT2661_MGT_BASE_CSR, sc->mgtq.physaddr);
2625 
2626 	/* initialize Rx ring */
2627 	RAL_WRITE(sc, RT2661_RX_BASE_CSR, sc->rxq.physaddr);
2628 
2629 	/* initialize Tx rings sizes */
2630 	RAL_WRITE(sc, RT2661_TX_RING_CSR0,
2631 	    RT2661_TX_RING_COUNT << 24 |
2632 	    RT2661_TX_RING_COUNT << 16 |
2633 	    RT2661_TX_RING_COUNT <<  8 |
2634 	    RT2661_TX_RING_COUNT);
2635 
2636 	RAL_WRITE(sc, RT2661_TX_RING_CSR1,
2637 	    RT2661_TX_DESC_WSIZE << 16 |
2638 	    RT2661_TX_RING_COUNT <<  8 |	/* XXX: HCCA ring unused */
2639 	    RT2661_MGT_RING_COUNT);
2640 
2641 	/* initialize Rx rings */
2642 	RAL_WRITE(sc, RT2661_RX_RING_CSR,
2643 	    RT2661_RX_DESC_BACK  << 16 |
2644 	    RT2661_RX_DESC_WSIZE <<  8 |
2645 	    RT2661_RX_RING_COUNT);
2646 
2647 	/* XXX: some magic here */
2648 	RAL_WRITE(sc, RT2661_TX_DMA_DST_CSR, 0xaa);
2649 
2650 	/* load base addresses of all 5 Tx rings (4 data + 1 mgt) */
2651 	RAL_WRITE(sc, RT2661_LOAD_TX_RING_CSR, 0x1f);
2652 
2653 	/* load base address of Rx ring */
2654 	RAL_WRITE(sc, RT2661_RX_CNTL_CSR, 2);
2655 
2656 	/* initialize MAC registers to default values */
2657 	for (i = 0; i < N(rt2661_def_mac); i++)
2658 		RAL_WRITE(sc, rt2661_def_mac[i].reg, rt2661_def_mac[i].val);
2659 
2660 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2661 	rt2661_set_macaddr(sc, ic->ic_myaddr);
2662 
2663 	/* set host ready */
2664 	RAL_WRITE(sc, RT2661_MAC_CSR1, 3);
2665 	RAL_WRITE(sc, RT2661_MAC_CSR1, 0);
2666 
2667 	/* wait for BBP/RF to wakeup */
2668 	for (ntries = 0; ntries < 1000; ntries++) {
2669 		if (RAL_READ(sc, RT2661_MAC_CSR12) & 8)
2670 			break;
2671 		DELAY(1000);
2672 	}
2673 	if (ntries == 1000) {
2674 		printf("timeout waiting for BBP/RF to wakeup\n");
2675 		rt2661_stop(ifp, 1);
2676 		return EIO;
2677 	}
2678 
2679 	if (rt2661_bbp_init(sc) != 0) {
2680 		rt2661_stop(ifp, 1);
2681 		return EIO;
2682 	}
2683 
2684 	/* select default channel */
2685 	sc->sc_curchan = ic->ic_curchan;
2686 	rt2661_select_band(sc, sc->sc_curchan);
2687 	rt2661_select_antenna(sc);
2688 	rt2661_set_chan(sc, sc->sc_curchan);
2689 
2690 	/* update Rx filter */
2691 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0) & 0xffff;
2692 
2693 	tmp |= RT2661_DROP_PHY_ERROR | RT2661_DROP_CRC_ERROR;
2694 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2695 		tmp |= RT2661_DROP_CTL | RT2661_DROP_VER_ERROR |
2696 		       RT2661_DROP_ACKCTS;
2697 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2698 			tmp |= RT2661_DROP_TODS;
2699 		if (!(ifp->if_flags & IFF_PROMISC))
2700 			tmp |= RT2661_DROP_NOT_TO_ME;
2701 	}
2702 
2703 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2704 
2705 	/* clear STA registers */
2706 	RAL_READ_REGION_4(sc, RT2661_STA_CSR0, star, N(star));
2707 
2708 	/* initialize ASIC */
2709 	RAL_WRITE(sc, RT2661_MAC_CSR1, 4);
2710 
2711 	/* clear any pending interrupt */
2712 	RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, 0xffffffff);
2713 
2714 	/* enable interrupts */
2715 	RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0x0000ff10);
2716 	RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0);
2717 
2718 	/* kick Rx */
2719 	RAL_WRITE(sc, RT2661_RX_CNTL_CSR, 1);
2720 
2721 	ifp->if_flags &= ~IFF_OACTIVE;
2722 	ifp->if_flags |= IFF_RUNNING;
2723 
2724 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2725 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
2726 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2727 	} else
2728 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2729 
2730 	return 0;
2731 #undef N
2732 }
2733 
2734 static void
2735 rt2661_stop(struct ifnet *ifp, int disable)
2736 {
2737 	struct rt2661_softc *sc = ifp->if_softc;
2738 	struct ieee80211com *ic = &sc->sc_ic;
2739 	uint32_t tmp;
2740 
2741 	sc->sc_tx_timer = 0;
2742 	ifp->if_timer = 0;
2743 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2744 
2745 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);	/* free all nodes */
2746 
2747 	/* abort Tx (for all 5 Tx rings) */
2748 	RAL_WRITE(sc, RT2661_TX_CNTL_CSR, 0x1f << 16);
2749 
2750 	/* disable Rx (value remains after reset!) */
2751 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2752 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX);
2753 
2754 	/* reset ASIC */
2755 	RAL_WRITE(sc, RT2661_MAC_CSR1, 3);
2756 	RAL_WRITE(sc, RT2661_MAC_CSR1, 0);
2757 
2758 	/* disable interrupts */
2759 	RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0xffffff7f);
2760 	RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0xffffffff);
2761 
2762 	/* clear any pending interrupt */
2763 	RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, 0xffffffff);
2764 	RAL_WRITE(sc, RT2661_MCU_INT_SOURCE_CSR, 0xffffffff);
2765 
2766 	/* reset Tx and Rx rings */
2767 	rt2661_reset_tx_ring(sc, &sc->txq[0]);
2768 	rt2661_reset_tx_ring(sc, &sc->txq[1]);
2769 	rt2661_reset_tx_ring(sc, &sc->txq[2]);
2770 	rt2661_reset_tx_ring(sc, &sc->txq[3]);
2771 	rt2661_reset_tx_ring(sc, &sc->mgtq);
2772 	rt2661_reset_rx_ring(sc, &sc->rxq);
2773 
2774 	/* for CardBus, power down the socket */
2775 	if (disable && sc->sc_disable != NULL) {
2776 		if (sc->sc_flags & RT2661_ENABLED) {
2777 			(*sc->sc_disable)(sc);
2778 			sc->sc_flags &= ~(RT2661_ENABLED | RT2661_FWLOADED);
2779 		}
2780 	}
2781 }
2782 
2783 static int
2784 rt2661_load_microcode(struct rt2661_softc *sc, const uint8_t *ucode, int size)
2785 {
2786 	int ntries;
2787 
2788 	/* reset 8051 */
2789 	RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET);
2790 
2791 	/* cancel any pending Host to MCU command */
2792 	RAL_WRITE(sc, RT2661_H2M_MAILBOX_CSR, 0);
2793 	RAL_WRITE(sc, RT2661_M2H_CMD_DONE_CSR, 0xffffffff);
2794 	RAL_WRITE(sc, RT2661_HOST_CMD_CSR, 0);
2795 
2796 	/* write 8051's microcode */
2797 	RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET | RT2661_MCU_SEL);
2798 	RAL_WRITE_REGION_1(sc, RT2661_MCU_CODE_BASE, ucode, size);
2799 	RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET);
2800 
2801 	/* kick 8051's ass */
2802 	RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, 0);
2803 
2804 	/* wait for 8051 to initialize */
2805 	for (ntries = 0; ntries < 500; ntries++) {
2806 		if (RAL_READ(sc, RT2661_MCU_CNTL_CSR) & RT2661_MCU_READY)
2807 			break;
2808 		DELAY(100);
2809 	}
2810 	if (ntries == 500) {
2811 		printf("timeout waiting for MCU to initialize\n");
2812 		return EIO;
2813 	}
2814 	return 0;
2815 }
2816 
2817 /*
2818  * Dynamically tune Rx sensitivity (BBP register 17) based on average RSSI and
2819  * false CCA count.  This function is called periodically (every seconds) when
2820  * in the RUN state.  Values taken from the reference driver.
2821  */
2822 static void
2823 rt2661_rx_tune(struct rt2661_softc *sc)
2824 {
2825 	uint8_t bbp17;
2826 	uint16_t cca;
2827 	int lo, hi, dbm;
2828 
2829 	/*
2830 	 * Tuning range depends on operating band and on the presence of an
2831 	 * external low-noise amplifier.
2832 	 */
2833 	lo = 0x20;
2834 	if (IEEE80211_IS_CHAN_5GHZ(sc->sc_curchan))
2835 		lo += 0x08;
2836 	if ((IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan) && sc->ext_2ghz_lna) ||
2837 	    (IEEE80211_IS_CHAN_5GHZ(sc->sc_curchan) && sc->ext_5ghz_lna))
2838 		lo += 0x10;
2839 	hi = lo + 0x20;
2840 
2841 	dbm = sc->avg_rssi;
2842 	/* retrieve false CCA count since last call (clear on read) */
2843 	cca = RAL_READ(sc, RT2661_STA_CSR1) & 0xffff;
2844 
2845 	DPRINTFN(2, ("RSSI=%ddBm false CCA=%d\n", dbm, cca));
2846 
2847 	if (dbm < -74) {
2848 		/* very bad RSSI, tune using false CCA count */
2849 		bbp17 = sc->bbp17; /* current value */
2850 
2851 		hi -= 2 * (-74 - dbm);
2852 		if (hi < lo)
2853 			hi = lo;
2854 
2855 		if (bbp17 > hi)
2856 			bbp17 = hi;
2857 		else if (cca > 512)
2858 			bbp17 = min(bbp17 + 1, hi);
2859 		else if (cca < 100)
2860 			bbp17 = max(bbp17 - 1, lo);
2861 
2862 	} else if (dbm < -66) {
2863 		bbp17 = lo + 0x08;
2864 	} else if (dbm < -58) {
2865 		bbp17 = lo + 0x10;
2866 	} else if (dbm < -35) {
2867 		bbp17 = hi;
2868 	} else {	/* very good RSSI >= -35dBm */
2869 		bbp17 = 0x60;	/* very low sensitivity */
2870 	}
2871 
2872 	if (bbp17 != sc->bbp17) {
2873 		DPRINTF(("BBP17 %x->%x\n", sc->bbp17, bbp17));
2874 		rt2661_bbp_write(sc, 17, bbp17);
2875 		sc->bbp17 = bbp17;
2876 	}
2877 }
2878 
2879 #ifdef notyet
2880 /*
2881  * Enter/Leave radar detection mode.
2882  * This is for 802.11h additional regulatory domains.
2883  */
2884 static void
2885 rt2661_radar_start(struct rt2661_softc *sc)
2886 {
2887 	uint32_t tmp;
2888 
2889 	/* disable Rx */
2890 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2891 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX);
2892 
2893 	rt2661_bbp_write(sc, 82, 0x20);
2894 	rt2661_bbp_write(sc, 83, 0x00);
2895 	rt2661_bbp_write(sc, 84, 0x40);
2896 
2897 	/* save current BBP registers values */
2898 	sc->bbp18 = rt2661_bbp_read(sc, 18);
2899 	sc->bbp21 = rt2661_bbp_read(sc, 21);
2900 	sc->bbp22 = rt2661_bbp_read(sc, 22);
2901 	sc->bbp16 = rt2661_bbp_read(sc, 16);
2902 	sc->bbp17 = rt2661_bbp_read(sc, 17);
2903 	sc->bbp64 = rt2661_bbp_read(sc, 64);
2904 
2905 	rt2661_bbp_write(sc, 18, 0xff);
2906 	rt2661_bbp_write(sc, 21, 0x3f);
2907 	rt2661_bbp_write(sc, 22, 0x3f);
2908 	rt2661_bbp_write(sc, 16, 0xbd);
2909 	rt2661_bbp_write(sc, 17, sc->ext_5ghz_lna ? 0x44 : 0x34);
2910 	rt2661_bbp_write(sc, 64, 0x21);
2911 
2912 	/* restore Rx filter */
2913 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2914 }
2915 
2916 static int
2917 rt2661_radar_stop(struct rt2661_softc *sc)
2918 {
2919 	uint8_t bbp66;
2920 
2921 	/* read radar detection result */
2922 	bbp66 = rt2661_bbp_read(sc, 66);
2923 
2924 	/* restore BBP registers values */
2925 	rt2661_bbp_write(sc, 16, sc->bbp16);
2926 	rt2661_bbp_write(sc, 17, sc->bbp17);
2927 	rt2661_bbp_write(sc, 18, sc->bbp18);
2928 	rt2661_bbp_write(sc, 21, sc->bbp21);
2929 	rt2661_bbp_write(sc, 22, sc->bbp22);
2930 	rt2661_bbp_write(sc, 64, sc->bbp64);
2931 
2932 	return bbp66 == 1;
2933 }
2934 #endif
2935 
2936 static int
2937 rt2661_prepare_beacon(struct rt2661_softc *sc)
2938 {
2939 	struct ieee80211com *ic = &sc->sc_ic;
2940 	struct ieee80211_node *ni = ic->ic_bss;
2941 	struct rt2661_tx_desc desc;
2942 	struct mbuf *m0;
2943 	struct ieee80211_beacon_offsets bo;
2944 	int rate;
2945 
2946 	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2947 	if (m0 == NULL) {
2948 		aprint_error_dev(&sc->sc_dev, "could not allocate beacon frame\n");
2949 		return ENOBUFS;
2950 	}
2951 
2952 	/* send beacons at the lowest available rate */
2953 	rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
2954 
2955 	rt2661_setup_tx_desc(sc, &desc, RT2661_TX_TIMESTAMP, RT2661_TX_HWSEQ,
2956 	    m0->m_pkthdr.len, rate, NULL, 0, RT2661_QID_MGT);
2957 
2958 	/* copy the first 24 bytes of Tx descriptor into NIC memory */
2959 	RAL_WRITE_REGION_1(sc, RT2661_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
2960 
2961 	/* copy beacon header and payload into NIC memory */
2962 	RAL_WRITE_REGION_1(sc, RT2661_HW_BEACON_BASE0 + 24,
2963 	    mtod(m0, uint8_t *), m0->m_pkthdr.len);
2964 
2965 	m_freem(m0);
2966 
2967 	/*
2968 	 * Store offset of ERP Information Element so that we can update it
2969 	 * dynamically when the slot time changes.
2970 	 * XXX: this is ugly since it depends on how net80211 builds beacon
2971 	 * frames but ieee80211_beacon_alloc() doesn't store offsets for us.
2972 	 */
2973 	if (ic->ic_curmode == IEEE80211_MODE_11G) {
2974 		sc->erp_csr =
2975 		    RT2661_HW_BEACON_BASE0 + 24 +
2976 		    sizeof (struct ieee80211_frame) +
2977 		    8 + 2 + 2 + 2 + ni->ni_esslen +
2978 		    2 + min(ni->ni_rates.rs_nrates, IEEE80211_RATE_SIZE) +
2979 		    2 + 1 +
2980 		    ((ic->ic_opmode == IEEE80211_M_IBSS) ? 4 : 6) +
2981 		    2;
2982 	}
2983 
2984 	return 0;
2985 }
2986 
2987 /*
2988  * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
2989  * and HostAP operating modes.
2990  */
2991 static void
2992 rt2661_enable_tsf_sync(struct rt2661_softc *sc)
2993 {
2994 	struct ieee80211com *ic = &sc->sc_ic;
2995 	uint32_t tmp;
2996 
2997 	if (ic->ic_opmode != IEEE80211_M_STA) {
2998 		/*
2999 		 * Change default 16ms TBTT adjustment to 8ms.
3000 		 * Must be done before enabling beacon generation.
3001 		 */
3002 		RAL_WRITE(sc, RT2661_TXRX_CSR10, 1 << 12 | 8);
3003 	}
3004 
3005 	tmp = RAL_READ(sc, RT2661_TXRX_CSR9) & 0xff000000;
3006 
3007 	/* set beacon interval (in 1/16ms unit) */
3008 	tmp |= ic->ic_bss->ni_intval * 16;
3009 
3010 	tmp |= RT2661_TSF_TICKING | RT2661_ENABLE_TBTT;
3011 	if (ic->ic_opmode == IEEE80211_M_STA)
3012 		tmp |= RT2661_TSF_MODE(1);
3013 	else
3014 		tmp |= RT2661_TSF_MODE(2) | RT2661_GENERATE_BEACON;
3015 
3016 	RAL_WRITE(sc, RT2661_TXRX_CSR9, tmp);
3017 }
3018 
3019 /*
3020  * Retrieve the "Received Signal Strength Indicator" from the raw values
3021  * contained in Rx descriptors.  The computation depends on which band the
3022  * frame was received.  Correction values taken from the reference driver.
3023  */
3024 static int
3025 rt2661_get_rssi(struct rt2661_softc *sc, uint8_t raw)
3026 {
3027 	int lna, agc, rssi;
3028 
3029 	lna = (raw >> 5) & 0x3;
3030 	agc = raw & 0x1f;
3031 
3032 	rssi = 2 * agc;
3033 
3034 	if (IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan)) {
3035 		rssi += sc->rssi_2ghz_corr;
3036 
3037 		if (lna == 1)
3038 			rssi -= 64;
3039 		else if (lna == 2)
3040 			rssi -= 74;
3041 		else if (lna == 3)
3042 			rssi -= 90;
3043 	} else {
3044 		rssi += sc->rssi_5ghz_corr;
3045 
3046 		if (lna == 1)
3047 			rssi -= 64;
3048 		else if (lna == 2)
3049 			rssi -= 86;
3050 		else if (lna == 3)
3051 			rssi -= 100;
3052 	}
3053 	return rssi;
3054 }
3055