xref: /netbsd-src/sys/dev/ic/rt2661.c (revision 3816d47b2c42fcd6e549e3407f842a5b1a1d23ad)
1 /*	$NetBSD: rt2661.c,v 1.26 2009/09/05 14:19:30 tsutsui Exp $	*/
2 /*	$OpenBSD: rt2661.c,v 1.17 2006/05/01 08:41:11 damien Exp $	*/
3 /*	$FreeBSD: rt2560.c,v 1.5 2006/06/02 19:59:31 csjp Exp $	*/
4 
5 /*-
6  * Copyright (c) 2006
7  *	Damien Bergamini <damien.bergamini@free.fr>
8  *
9  * Permission to use, copy, modify, and distribute this software for any
10  * purpose with or without fee is hereby granted, provided that the above
11  * copyright notice and this permission notice appear in all copies.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20  */
21 
22 /*-
23  * Ralink Technology RT2561, RT2561S and RT2661 chipset driver
24  * http://www.ralinktech.com/
25  */
26 
27 #include <sys/cdefs.h>
28 __KERNEL_RCSID(0, "$NetBSD: rt2661.c,v 1.26 2009/09/05 14:19:30 tsutsui Exp $");
29 
30 #include "bpfilter.h"
31 
32 #include <sys/param.h>
33 #include <sys/sockio.h>
34 #include <sys/sysctl.h>
35 #include <sys/mbuf.h>
36 #include <sys/kernel.h>
37 #include <sys/socket.h>
38 #include <sys/systm.h>
39 #include <sys/malloc.h>
40 #include <sys/callout.h>
41 #include <sys/conf.h>
42 #include <sys/device.h>
43 
44 #include <sys/bus.h>
45 #include <machine/endian.h>
46 #include <sys/intr.h>
47 
48 #if NBPFILTER > 0
49 #include <net/bpf.h>
50 #endif
51 #include <net/if.h>
52 #include <net/if_arp.h>
53 #include <net/if_dl.h>
54 #include <net/if_media.h>
55 #include <net/if_types.h>
56 #include <net/if_ether.h>
57 
58 #include <netinet/in.h>
59 #include <netinet/in_systm.h>
60 #include <netinet/in_var.h>
61 #include <netinet/ip.h>
62 
63 #include <net80211/ieee80211_var.h>
64 #include <net80211/ieee80211_amrr.h>
65 #include <net80211/ieee80211_radiotap.h>
66 
67 #include <dev/ic/rt2661reg.h>
68 #include <dev/ic/rt2661var.h>
69 
70 #include <dev/pci/pcireg.h>
71 #include <dev/pci/pcivar.h>
72 #include <dev/pci/pcidevs.h>
73 
74 #include <dev/firmload.h>
75 
76 #ifdef RAL_DEBUG
77 #define DPRINTF(x)	do { if (rt2661_debug > 0) printf x; } while (0)
78 #define DPRINTFN(n, x)	do { if (rt2661_debug >= (n)) printf x; } while (0)
79 int rt2661_debug = 0;
80 #else
81 #define DPRINTF(x)
82 #define DPRINTFN(n, x)
83 #endif
84 
85 static int	rt2661_alloc_tx_ring(struct rt2661_softc *,
86 		    struct rt2661_tx_ring *, int);
87 static void	rt2661_reset_tx_ring(struct rt2661_softc *,
88 		    struct rt2661_tx_ring *);
89 static void	rt2661_free_tx_ring(struct rt2661_softc *,
90 		    struct rt2661_tx_ring *);
91 static int	rt2661_alloc_rx_ring(struct rt2661_softc *,
92 		    struct rt2661_rx_ring *, int);
93 static void	rt2661_reset_rx_ring(struct rt2661_softc *,
94 		    struct rt2661_rx_ring *);
95 static void	rt2661_free_rx_ring(struct rt2661_softc *,
96 		    struct rt2661_rx_ring *);
97 static struct ieee80211_node *
98 		rt2661_node_alloc(struct ieee80211_node_table *);
99 static int	rt2661_media_change(struct ifnet *);
100 static void	rt2661_next_scan(void *);
101 static void	rt2661_iter_func(void *, struct ieee80211_node *);
102 static void	rt2661_updatestats(void *);
103 static void	rt2661_newassoc(struct ieee80211_node *, int);
104 static int	rt2661_newstate(struct ieee80211com *, enum ieee80211_state,
105 		    int);
106 static uint16_t	rt2661_eeprom_read(struct rt2661_softc *, uint8_t);
107 static void	rt2661_tx_intr(struct rt2661_softc *);
108 static void	rt2661_tx_dma_intr(struct rt2661_softc *,
109 		    struct rt2661_tx_ring *);
110 static void	rt2661_rx_intr(struct rt2661_softc *);
111 static void	rt2661_mcu_beacon_expire(struct rt2661_softc *);
112 static void	rt2661_mcu_wakeup(struct rt2661_softc *);
113 static void	rt2661_mcu_cmd_intr(struct rt2661_softc *);
114 int		rt2661_intr(void *);
115 #if NBPFILTER > 0
116 static uint8_t	rt2661_rxrate(struct rt2661_rx_desc *);
117 #endif
118 static int	rt2661_ack_rate(struct ieee80211com *, int);
119 static uint16_t	rt2661_txtime(int, int, uint32_t);
120 static uint8_t	rt2661_plcp_signal(int);
121 static void	rt2661_setup_tx_desc(struct rt2661_softc *,
122 		    struct rt2661_tx_desc *, uint32_t, uint16_t, int, int,
123 		    const bus_dma_segment_t *, int, int);
124 static int	rt2661_tx_mgt(struct rt2661_softc *, struct mbuf *,
125 		    struct ieee80211_node *);
126 static struct mbuf *
127 		rt2661_get_rts(struct rt2661_softc *,
128 		    struct ieee80211_frame *, uint16_t);
129 static int	rt2661_tx_data(struct rt2661_softc *, struct mbuf *,
130 		    struct ieee80211_node *, int);
131 static void	rt2661_start(struct ifnet *);
132 static void	rt2661_watchdog(struct ifnet *);
133 static int	rt2661_reset(struct ifnet *);
134 static int	rt2661_ioctl(struct ifnet *, u_long, void *);
135 static void	rt2661_bbp_write(struct rt2661_softc *, uint8_t, uint8_t);
136 static uint8_t	rt2661_bbp_read(struct rt2661_softc *, uint8_t);
137 static void	rt2661_rf_write(struct rt2661_softc *, uint8_t, uint32_t);
138 static int	rt2661_tx_cmd(struct rt2661_softc *, uint8_t, uint16_t);
139 static void	rt2661_select_antenna(struct rt2661_softc *);
140 static void	rt2661_enable_mrr(struct rt2661_softc *);
141 static void	rt2661_set_txpreamble(struct rt2661_softc *);
142 static void	rt2661_set_basicrates(struct rt2661_softc *,
143 			const struct ieee80211_rateset *);
144 static void	rt2661_select_band(struct rt2661_softc *,
145 		    struct ieee80211_channel *);
146 static void	rt2661_set_chan(struct rt2661_softc *,
147 		    struct ieee80211_channel *);
148 static void	rt2661_set_bssid(struct rt2661_softc *, const uint8_t *);
149 static void	rt2661_set_macaddr(struct rt2661_softc *, const uint8_t *);
150 static void	rt2661_update_promisc(struct rt2661_softc *);
151 #if 0
152 static int	rt2661_wme_update(struct ieee80211com *);
153 #endif
154 
155 static void	rt2661_updateslot(struct ifnet *);
156 static void	rt2661_set_slottime(struct rt2661_softc *);
157 static const char *
158 		rt2661_get_rf(int);
159 static void	rt2661_read_eeprom(struct rt2661_softc *);
160 static int	rt2661_bbp_init(struct rt2661_softc *);
161 static int     	rt2661_init(struct ifnet *);
162 static void	rt2661_stop(struct ifnet *, int);
163 static int	rt2661_load_microcode(struct rt2661_softc *, const uint8_t *,
164 		    int);
165 static void	rt2661_rx_tune(struct rt2661_softc *);
166 #ifdef notyet
167 static void	rt2661_radar_start(struct rt2661_softc *);
168 static int	rt2661_radar_stop(struct rt2661_softc *);
169 #endif
170 static int	rt2661_prepare_beacon(struct rt2661_softc *);
171 static void	rt2661_enable_tsf_sync(struct rt2661_softc *);
172 static int	rt2661_get_rssi(struct rt2661_softc *, uint8_t);
173 
174 /*
175  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
176  */
177 static const struct ieee80211_rateset rt2661_rateset_11a =
178 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
179 
180 static const struct ieee80211_rateset rt2661_rateset_11b =
181 	{ 4, { 2, 4, 11, 22 } };
182 
183 static const struct ieee80211_rateset rt2661_rateset_11g =
184 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
185 
186 static const struct {
187 	uint32_t	reg;
188 	uint32_t	val;
189 } rt2661_def_mac[] = {
190 	RT2661_DEF_MAC
191 };
192 
193 static const struct {
194 	uint8_t	reg;
195 	uint8_t	val;
196 } rt2661_def_bbp[] = {
197 	RT2661_DEF_BBP
198 };
199 
200 static const struct rfprog {
201 	uint8_t		chan;
202 	uint32_t	r1, r2, r3, r4;
203 } rt2661_rf5225_1[] = {
204 	RT2661_RF5225_1
205 }, rt2661_rf5225_2[] = {
206 	RT2661_RF5225_2
207 };
208 
209 int
210 rt2661_attach(void *xsc, int id)
211 {
212 	struct rt2661_softc *sc = xsc;
213 	struct ieee80211com *ic = &sc->sc_ic;
214 	struct ifnet *ifp = &sc->sc_if;
215 	uint32_t val;
216 	int error, i, ntries;
217 
218 	sc->sc_id = id;
219 
220 	sc->amrr.amrr_min_success_threshold =  1;
221 	sc->amrr.amrr_max_success_threshold = 15;
222 	callout_init(&sc->scan_ch, 0);
223 	callout_init(&sc->amrr_ch, 0);
224 
225 	/* wait for NIC to initialize */
226 	for (ntries = 0; ntries < 1000; ntries++) {
227 		if ((val = RAL_READ(sc, RT2661_MAC_CSR0)) != 0)
228 			break;
229 		DELAY(1000);
230 	}
231 	if (ntries == 1000) {
232 		aprint_error_dev(&sc->sc_dev, "timeout waiting for NIC to initialize\n");
233 		return EIO;
234 	}
235 
236 	/* retrieve RF rev. no and various other things from EEPROM */
237 	rt2661_read_eeprom(sc);
238 	aprint_normal_dev(&sc->sc_dev, "802.11 address %s\n",
239 	    ether_sprintf(ic->ic_myaddr));
240 
241 	aprint_normal_dev(&sc->sc_dev, "MAC/BBP RT%X, RF %s\n", val,
242 	    rt2661_get_rf(sc->rf_rev));
243 
244 	/*
245 	 * Allocate Tx and Rx rings.
246 	 */
247 	error = rt2661_alloc_tx_ring(sc, &sc->txq[0], RT2661_TX_RING_COUNT);
248 	if (error != 0) {
249 		aprint_error_dev(&sc->sc_dev, "could not allocate Tx ring 0\n");
250 		goto fail1;
251 	}
252 
253 	error = rt2661_alloc_tx_ring(sc, &sc->txq[1], RT2661_TX_RING_COUNT);
254 	if (error != 0) {
255 		aprint_error_dev(&sc->sc_dev, "could not allocate Tx ring 1\n");
256 		goto fail2;
257 	}
258 
259 	error = rt2661_alloc_tx_ring(sc, &sc->txq[2], RT2661_TX_RING_COUNT);
260 	if (error != 0) {
261 		aprint_error_dev(&sc->sc_dev, "could not allocate Tx ring 2\n");
262 		goto fail3;
263 	}
264 
265 	error = rt2661_alloc_tx_ring(sc, &sc->txq[3], RT2661_TX_RING_COUNT);
266 	if (error != 0) {
267 		aprint_error_dev(&sc->sc_dev, "could not allocate Tx ring 3\n");
268 		goto fail4;
269 	}
270 
271 	error = rt2661_alloc_tx_ring(sc, &sc->mgtq, RT2661_MGT_RING_COUNT);
272 	if (error != 0) {
273 		aprint_error_dev(&sc->sc_dev, "could not allocate Mgt ring\n");
274 		goto fail5;
275 	}
276 
277 	error = rt2661_alloc_rx_ring(sc, &sc->rxq, RT2661_RX_RING_COUNT);
278 	if (error != 0) {
279 		aprint_error_dev(&sc->sc_dev, "could not allocate Rx ring\n");
280 		goto fail6;
281 	}
282 
283 	ifp->if_softc = sc;
284 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
285 	ifp->if_init = rt2661_init;
286 	ifp->if_stop = rt2661_stop;
287 	ifp->if_ioctl = rt2661_ioctl;
288 	ifp->if_start = rt2661_start;
289 	ifp->if_watchdog = rt2661_watchdog;
290 	IFQ_SET_READY(&ifp->if_snd);
291 	memcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
292 
293 	ic->ic_ifp = ifp;
294 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
295 	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
296 	ic->ic_state = IEEE80211_S_INIT;
297 
298 	/* set device capabilities */
299 	ic->ic_caps =
300 	    IEEE80211_C_IBSS |		/* IBSS mode supported */
301 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
302 	    IEEE80211_C_HOSTAP |	/* HostAP mode supported */
303 	    IEEE80211_C_TXPMGT |	/* tx power management */
304 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
305 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
306 	    IEEE80211_C_WPA;		/* 802.11i */
307 
308 	if (sc->rf_rev == RT2661_RF_5225 || sc->rf_rev == RT2661_RF_5325) {
309 		/* set supported .11a rates */
310 		ic->ic_sup_rates[IEEE80211_MODE_11A] = rt2661_rateset_11a;
311 
312 		/* set supported .11a channels */
313 		for (i = 36; i <= 64; i += 4) {
314 			ic->ic_channels[i].ic_freq =
315 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
316 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
317 		}
318 		for (i = 100; i <= 140; i += 4) {
319 			ic->ic_channels[i].ic_freq =
320 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
321 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
322 		}
323 		for (i = 149; i <= 165; i += 4) {
324 			ic->ic_channels[i].ic_freq =
325 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
326 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
327 		}
328 	}
329 
330 	/* set supported .11b and .11g rates */
331 	ic->ic_sup_rates[IEEE80211_MODE_11B] = rt2661_rateset_11b;
332 	ic->ic_sup_rates[IEEE80211_MODE_11G] = rt2661_rateset_11g;
333 
334 	/* set supported .11b and .11g channels (1 through 14) */
335 	for (i = 1; i <= 14; i++) {
336 		ic->ic_channels[i].ic_freq =
337 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
338 		ic->ic_channels[i].ic_flags =
339 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
340 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
341 	}
342 
343 	if_attach(ifp);
344 	ieee80211_ifattach(ic);
345 	ic->ic_node_alloc = rt2661_node_alloc;
346 	ic->ic_newassoc = rt2661_newassoc;
347 	ic->ic_updateslot = rt2661_updateslot;
348 	ic->ic_reset = rt2661_reset;
349 
350 	/* override state transition machine */
351 	sc->sc_newstate = ic->ic_newstate;
352 	ic->ic_newstate = rt2661_newstate;
353 	ieee80211_media_init(ic, rt2661_media_change, ieee80211_media_status);
354 
355 #if NBPFILTER > 0
356 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
357 	    sizeof (struct ieee80211_frame) + sizeof(sc->sc_txtap),
358 	    &sc->sc_drvbpf);
359 
360 	sc->sc_rxtap_len = roundup(sizeof(sc->sc_rxtap), sizeof(u_int32_t));
361 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
362 	sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2661_RX_RADIOTAP_PRESENT);
363 
364 	sc->sc_txtap_len = roundup(sizeof(sc->sc_txtap), sizeof(u_int32_t));
365 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
366 	sc->sc_txtap.wt_ihdr.it_present = htole32(RT2661_TX_RADIOTAP_PRESENT);
367 #endif
368 
369 	ieee80211_announce(ic);
370 
371 	if (pmf_device_register(&sc->sc_dev, NULL, NULL))
372 		pmf_class_network_register(&sc->sc_dev, ifp);
373 	else
374 		aprint_error_dev(&sc->sc_dev,
375 		    "couldn't establish power handler\n");
376 
377 	return 0;
378 
379 fail6:	rt2661_free_tx_ring(sc, &sc->mgtq);
380 fail5:	rt2661_free_tx_ring(sc, &sc->txq[3]);
381 fail4:	rt2661_free_tx_ring(sc, &sc->txq[2]);
382 fail3:	rt2661_free_tx_ring(sc, &sc->txq[1]);
383 fail2:	rt2661_free_tx_ring(sc, &sc->txq[0]);
384 fail1:	return ENXIO;
385 }
386 
387 int
388 rt2661_detach(void *xsc)
389 {
390 	struct rt2661_softc *sc = xsc;
391 	struct ifnet *ifp = &sc->sc_if;
392 
393 	callout_stop(&sc->scan_ch);
394 	callout_stop(&sc->amrr_ch);
395 
396 	pmf_device_deregister(&sc->sc_dev);
397 
398 	ieee80211_ifdetach(&sc->sc_ic);
399 	if_detach(ifp);
400 
401 	rt2661_free_tx_ring(sc, &sc->txq[0]);
402 	rt2661_free_tx_ring(sc, &sc->txq[1]);
403 	rt2661_free_tx_ring(sc, &sc->txq[2]);
404 	rt2661_free_tx_ring(sc, &sc->txq[3]);
405 	rt2661_free_tx_ring(sc, &sc->mgtq);
406 	rt2661_free_rx_ring(sc, &sc->rxq);
407 
408 	return 0;
409 }
410 
411 static int
412 rt2661_alloc_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring,
413     int count)
414 {
415 	int i, nsegs, error;
416 
417 	ring->count = count;
418 	ring->queued = 0;
419 	ring->cur = ring->next = ring->stat = 0;
420 
421 	error = bus_dmamap_create(sc->sc_dmat, count * RT2661_TX_DESC_SIZE, 1,
422 	    count * RT2661_TX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map);
423 	if (error != 0) {
424 		aprint_error_dev(&sc->sc_dev, "could not create desc DMA map\n");
425 		goto fail;
426 	}
427 
428 	error = bus_dmamem_alloc(sc->sc_dmat, count * RT2661_TX_DESC_SIZE,
429 	    PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
430 	if (error != 0) {
431 		aprint_error_dev(&sc->sc_dev, "could not allocate DMA memory\n");
432 		goto fail;
433 	}
434 
435 	error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
436 	    count * RT2661_TX_DESC_SIZE, (void **)&ring->desc,
437 	    BUS_DMA_NOWAIT);
438 	if (error != 0) {
439 		aprint_error_dev(&sc->sc_dev, "could not map desc DMA memory\n");
440 		goto fail;
441 	}
442 
443 	error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
444 	    count * RT2661_TX_DESC_SIZE, NULL, BUS_DMA_NOWAIT);
445 	if (error != 0) {
446 		aprint_error_dev(&sc->sc_dev, "could not load desc DMA map\n");
447 		goto fail;
448 	}
449 
450 	memset(ring->desc, 0, count * RT2661_TX_DESC_SIZE);
451 	ring->physaddr = ring->map->dm_segs->ds_addr;
452 
453 	ring->data = malloc(count * sizeof (struct rt2661_tx_data), M_DEVBUF,
454 	    M_NOWAIT);
455 	if (ring->data == NULL) {
456 		aprint_error_dev(&sc->sc_dev, "could not allocate soft data\n");
457 		error = ENOMEM;
458 		goto fail;
459 	}
460 
461 	memset(ring->data, 0, count * sizeof (struct rt2661_tx_data));
462 	for (i = 0; i < count; i++) {
463 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
464 		    RT2661_MAX_SCATTER, MCLBYTES, 0, BUS_DMA_NOWAIT,
465 		    &ring->data[i].map);
466 		if (error != 0) {
467 			aprint_error_dev(&sc->sc_dev, "could not create DMA map\n");
468 			goto fail;
469 		}
470 	}
471 
472 	return 0;
473 
474 fail:	rt2661_free_tx_ring(sc, ring);
475 	return error;
476 }
477 
478 static void
479 rt2661_reset_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring)
480 {
481 	struct rt2661_tx_desc *desc;
482 	struct rt2661_tx_data *data;
483 	int i;
484 
485 	for (i = 0; i < ring->count; i++) {
486 		desc = &ring->desc[i];
487 		data = &ring->data[i];
488 
489 		if (data->m != NULL) {
490 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
491 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
492 			bus_dmamap_unload(sc->sc_dmat, data->map);
493 			m_freem(data->m);
494 			data->m = NULL;
495 		}
496 
497 		if (data->ni != NULL) {
498 			ieee80211_free_node(data->ni);
499 			data->ni = NULL;
500 		}
501 
502 		desc->flags = 0;
503 	}
504 
505 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
506 	    BUS_DMASYNC_PREWRITE);
507 
508 	ring->queued = 0;
509 	ring->cur = ring->next = ring->stat = 0;
510 }
511 
512 
513 static void
514 rt2661_free_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring)
515 {
516 	struct rt2661_tx_data *data;
517 	int i;
518 
519 	if (ring->desc != NULL) {
520 		bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
521 		    ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
522 		bus_dmamap_unload(sc->sc_dmat, ring->map);
523 		bus_dmamem_unmap(sc->sc_dmat, (void *)ring->desc,
524 		    ring->count * RT2661_TX_DESC_SIZE);
525 		bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
526 	}
527 
528 	if (ring->data != NULL) {
529 		for (i = 0; i < ring->count; i++) {
530 			data = &ring->data[i];
531 
532 			if (data->m != NULL) {
533 				bus_dmamap_sync(sc->sc_dmat, data->map, 0,
534 				    data->map->dm_mapsize,
535 				    BUS_DMASYNC_POSTWRITE);
536 				bus_dmamap_unload(sc->sc_dmat, data->map);
537 				m_freem(data->m);
538 			}
539 
540 			if (data->ni != NULL)
541 				ieee80211_free_node(data->ni);
542 
543 			if (data->map != NULL)
544 				bus_dmamap_destroy(sc->sc_dmat, data->map);
545 		}
546 		free(ring->data, M_DEVBUF);
547 	}
548 }
549 
550 static int
551 rt2661_alloc_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring,
552     int count)
553 {
554 	struct rt2661_rx_desc *desc;
555 	struct rt2661_rx_data *data;
556 	int i, nsegs, error;
557 
558 	ring->count = count;
559 	ring->cur = ring->next = 0;
560 
561 	error = bus_dmamap_create(sc->sc_dmat, count * RT2661_RX_DESC_SIZE, 1,
562 	    count * RT2661_RX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map);
563 	if (error != 0) {
564 		aprint_error_dev(&sc->sc_dev, "could not create desc DMA map\n");
565 		goto fail;
566 	}
567 
568 	error = bus_dmamem_alloc(sc->sc_dmat, count * RT2661_RX_DESC_SIZE,
569 	    PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
570 	if (error != 0) {
571 		aprint_error_dev(&sc->sc_dev, "could not allocate DMA memory\n");
572 		goto fail;
573 	}
574 
575 	error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
576 	    count * RT2661_RX_DESC_SIZE, (void **)&ring->desc,
577 	    BUS_DMA_NOWAIT);
578 	if (error != 0) {
579 		aprint_error_dev(&sc->sc_dev, "could not map desc DMA memory\n");
580 		goto fail;
581 	}
582 
583 	error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
584 	    count * RT2661_RX_DESC_SIZE, NULL, BUS_DMA_NOWAIT);
585 	if (error != 0) {
586 		aprint_error_dev(&sc->sc_dev, "could not load desc DMA map\n");
587 		goto fail;
588 	}
589 
590 	memset(ring->desc, 0, count * RT2661_RX_DESC_SIZE);
591 	ring->physaddr = ring->map->dm_segs->ds_addr;
592 
593 	ring->data = malloc(count * sizeof (struct rt2661_rx_data), M_DEVBUF,
594 	    M_NOWAIT);
595 	if (ring->data == NULL) {
596 		aprint_error_dev(&sc->sc_dev, "could not allocate soft data\n");
597 		error = ENOMEM;
598 		goto fail;
599 	}
600 
601 	/*
602 	 * Pre-allocate Rx buffers and populate Rx ring.
603 	 */
604 	memset(ring->data, 0, count * sizeof (struct rt2661_rx_data));
605 	for (i = 0; i < count; i++) {
606 		desc = &sc->rxq.desc[i];
607 		data = &sc->rxq.data[i];
608 
609 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
610 		    0, BUS_DMA_NOWAIT, &data->map);
611 		if (error != 0) {
612 			aprint_error_dev(&sc->sc_dev, "could not create DMA map\n");
613 			goto fail;
614 		}
615 
616 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
617 		if (data->m == NULL) {
618 			aprint_error_dev(&sc->sc_dev, "could not allocate rx mbuf\n");
619 			error = ENOMEM;
620 			goto fail;
621 		}
622 
623 		MCLGET(data->m, M_DONTWAIT);
624 		if (!(data->m->m_flags & M_EXT)) {
625 			aprint_error_dev(&sc->sc_dev, "could not allocate rx mbuf cluster\n");
626 			error = ENOMEM;
627 			goto fail;
628 		}
629 
630 		error = bus_dmamap_load(sc->sc_dmat, data->map,
631 		    mtod(data->m, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
632 		if (error != 0) {
633 			aprint_error_dev(&sc->sc_dev, "could not load rx buf DMA map");
634 			goto fail;
635 		}
636 
637 		desc->physaddr = htole32(data->map->dm_segs->ds_addr);
638 		desc->flags = htole32(RT2661_RX_BUSY);
639 	}
640 
641 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
642 	    BUS_DMASYNC_PREWRITE);
643 
644 	return 0;
645 
646 fail:	rt2661_free_rx_ring(sc, ring);
647 	return error;
648 }
649 
650 static void
651 rt2661_reset_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring)
652 {
653 	int i;
654 
655 	for (i = 0; i < ring->count; i++)
656 		ring->desc[i].flags = htole32(RT2661_RX_BUSY);
657 
658 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
659 	    BUS_DMASYNC_PREWRITE);
660 
661 	ring->cur = ring->next = 0;
662 }
663 
664 static void
665 rt2661_free_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring)
666 {
667 	struct rt2661_rx_data *data;
668 	int i;
669 
670 	if (ring->desc != NULL) {
671 		bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
672 		    ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
673 		bus_dmamap_unload(sc->sc_dmat, ring->map);
674 		bus_dmamem_unmap(sc->sc_dmat, (void *)ring->desc,
675 		    ring->count * RT2661_RX_DESC_SIZE);
676 		bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
677 	}
678 
679 	if (ring->data != NULL) {
680 		for (i = 0; i < ring->count; i++) {
681 			data = &ring->data[i];
682 
683 			if (data->m != NULL) {
684 				bus_dmamap_sync(sc->sc_dmat, data->map, 0,
685 				    data->map->dm_mapsize,
686 				    BUS_DMASYNC_POSTREAD);
687 				bus_dmamap_unload(sc->sc_dmat, data->map);
688 				m_freem(data->m);
689 			}
690 
691 			if (data->map != NULL)
692 				bus_dmamap_destroy(sc->sc_dmat, data->map);
693 		}
694 		free(ring->data, M_DEVBUF);
695 	}
696 }
697 
698 static struct ieee80211_node *
699 rt2661_node_alloc(struct ieee80211_node_table *nt)
700 {
701 	struct rt2661_node *rn;
702 
703 	rn = malloc(sizeof (struct rt2661_node), M_80211_NODE,
704 	    M_NOWAIT | M_ZERO);
705 
706 	return (rn != NULL) ? &rn->ni : NULL;
707 }
708 
709 static int
710 rt2661_media_change(struct ifnet *ifp)
711 {
712 	int error;
713 
714 	error = ieee80211_media_change(ifp);
715 	if (error != ENETRESET)
716 		return error;
717 
718 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
719 		rt2661_init(ifp);
720 
721 	return 0;
722 }
723 
724 /*
725  * This function is called periodically (every 200ms) during scanning to
726  * switch from one channel to another.
727  */
728 static void
729 rt2661_next_scan(void *arg)
730 {
731 	struct rt2661_softc *sc = arg;
732 	struct ieee80211com *ic = &sc->sc_ic;
733 	int s;
734 
735 	s = splnet();
736 	if (ic->ic_state == IEEE80211_S_SCAN)
737 		ieee80211_next_scan(ic);
738 	splx(s);
739 }
740 
741 /*
742  * This function is called for each neighbor node.
743  */
744 static void
745 rt2661_iter_func(void *arg, struct ieee80211_node *ni)
746 {
747 	struct rt2661_softc *sc = arg;
748 	struct rt2661_node *rn = (struct rt2661_node *)ni;
749 
750 	ieee80211_amrr_choose(&sc->amrr, ni, &rn->amn);
751 }
752 
753 /*
754  * This function is called periodically (every 500ms) in RUN state to update
755  * various settings like rate control statistics or Rx sensitivity.
756  */
757 static void
758 rt2661_updatestats(void *arg)
759 {
760 	struct rt2661_softc *sc = arg;
761 	struct ieee80211com *ic = &sc->sc_ic;
762 	int s;
763 
764 	s = splnet();
765 	if (ic->ic_opmode == IEEE80211_M_STA)
766 		rt2661_iter_func(sc, ic->ic_bss);
767 	else
768 		ieee80211_iterate_nodes(&ic->ic_sta, rt2661_iter_func, arg);
769 
770 	/* update rx sensitivity every 1 sec */
771 	if (++sc->ncalls & 1)
772 		rt2661_rx_tune(sc);
773 	splx(s);
774 
775 	callout_reset(&sc->amrr_ch, hz / 2, rt2661_updatestats, sc);
776 }
777 
778 static void
779 rt2661_newassoc(struct ieee80211_node *ni, int isnew)
780 {
781 	struct rt2661_softc *sc = ni->ni_ic->ic_ifp->if_softc;
782 	int i;
783 
784 	ieee80211_amrr_node_init(&sc->amrr, &((struct rt2661_node *)ni)->amn);
785 
786 	/* set rate to some reasonable initial value */
787 	for (i = ni->ni_rates.rs_nrates - 1;
788 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
789 	     i--);
790 	ni->ni_txrate = i;
791 }
792 
793 static int
794 rt2661_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
795 {
796 	struct rt2661_softc *sc = ic->ic_ifp->if_softc;
797 	enum ieee80211_state ostate;
798 	struct ieee80211_node *ni;
799 	uint32_t tmp;
800 
801 	ostate = ic->ic_state;
802 	callout_stop(&sc->scan_ch);
803 
804 	switch (nstate) {
805 	case IEEE80211_S_INIT:
806 		callout_stop(&sc->amrr_ch);
807 
808 		if (ostate == IEEE80211_S_RUN) {
809 			/* abort TSF synchronization */
810 			tmp = RAL_READ(sc, RT2661_TXRX_CSR9);
811 			RAL_WRITE(sc, RT2661_TXRX_CSR9, tmp & ~0x00ffffff);
812 		}
813 		break;
814 
815 	case IEEE80211_S_SCAN:
816 		rt2661_set_chan(sc, ic->ic_curchan);
817 		callout_reset(&sc->scan_ch, hz / 5, rt2661_next_scan, sc);
818 		break;
819 
820 	case IEEE80211_S_AUTH:
821 	case IEEE80211_S_ASSOC:
822 		rt2661_set_chan(sc, ic->ic_curchan);
823 		break;
824 
825 	case IEEE80211_S_RUN:
826 		rt2661_set_chan(sc, ic->ic_curchan);
827 
828 		ni = ic->ic_bss;
829 
830 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
831 			rt2661_set_slottime(sc);
832 			rt2661_enable_mrr(sc);
833 			rt2661_set_txpreamble(sc);
834 			rt2661_set_basicrates(sc, &ni->ni_rates);
835 			rt2661_set_bssid(sc, ni->ni_bssid);
836 		}
837 
838 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
839 		    ic->ic_opmode == IEEE80211_M_IBSS)
840 			rt2661_prepare_beacon(sc);
841 
842 		if (ic->ic_opmode == IEEE80211_M_STA) {
843 			/* fake a join to init the tx rate */
844 			rt2661_newassoc(ni, 1);
845 		}
846 
847 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
848 			sc->ncalls = 0;
849 			sc->avg_rssi = -95;	/* reset EMA */
850 			callout_reset(&sc->amrr_ch, hz / 2,
851 			    rt2661_updatestats, sc);
852 			rt2661_enable_tsf_sync(sc);
853 		}
854 		break;
855 	}
856 
857 	return sc->sc_newstate(ic, nstate, arg);
858 }
859 
860 /*
861  * Read 16 bits at address 'addr' from the serial EEPROM (either 93C46 or
862  * 93C66).
863  */
864 static uint16_t
865 rt2661_eeprom_read(struct rt2661_softc *sc, uint8_t addr)
866 {
867 	uint32_t tmp;
868 	uint16_t val;
869 	int n;
870 
871 	/* clock C once before the first command */
872 	RT2661_EEPROM_CTL(sc, 0);
873 
874 	RT2661_EEPROM_CTL(sc, RT2661_S);
875 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C);
876 	RT2661_EEPROM_CTL(sc, RT2661_S);
877 
878 	/* write start bit (1) */
879 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D);
880 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D | RT2661_C);
881 
882 	/* write READ opcode (10) */
883 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D);
884 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D | RT2661_C);
885 	RT2661_EEPROM_CTL(sc, RT2661_S);
886 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C);
887 
888 	/* write address (A5-A0 or A7-A0) */
889 	n = (RAL_READ(sc, RT2661_E2PROM_CSR) & RT2661_93C46) ? 5 : 7;
890 	for (; n >= 0; n--) {
891 		RT2661_EEPROM_CTL(sc, RT2661_S |
892 		    (((addr >> n) & 1) << RT2661_SHIFT_D));
893 		RT2661_EEPROM_CTL(sc, RT2661_S |
894 		    (((addr >> n) & 1) << RT2661_SHIFT_D) | RT2661_C);
895 	}
896 
897 	RT2661_EEPROM_CTL(sc, RT2661_S);
898 
899 	/* read data Q15-Q0 */
900 	val = 0;
901 	for (n = 15; n >= 0; n--) {
902 		RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C);
903 		tmp = RAL_READ(sc, RT2661_E2PROM_CSR);
904 		val |= ((tmp & RT2661_Q) >> RT2661_SHIFT_Q) << n;
905 		RT2661_EEPROM_CTL(sc, RT2661_S);
906 	}
907 
908 	RT2661_EEPROM_CTL(sc, 0);
909 
910 	/* clear Chip Select and clock C */
911 	RT2661_EEPROM_CTL(sc, RT2661_S);
912 	RT2661_EEPROM_CTL(sc, 0);
913 	RT2661_EEPROM_CTL(sc, RT2661_C);
914 
915 	return val;
916 }
917 
918 static void
919 rt2661_tx_intr(struct rt2661_softc *sc)
920 {
921 	struct ifnet *ifp = &sc->sc_if;
922 	struct rt2661_tx_ring *txq;
923 	struct rt2661_tx_data *data;
924 	struct rt2661_node *rn;
925 	uint32_t val;
926 	int qid, retrycnt;
927 
928 	for (;;) {
929 		val = RAL_READ(sc, RT2661_STA_CSR4);
930 		if (!(val & RT2661_TX_STAT_VALID))
931 			break;
932 
933 		/* retrieve the queue in which this frame was sent */
934 		qid = RT2661_TX_QID(val);
935 		txq = (qid <= 3) ? &sc->txq[qid] : &sc->mgtq;
936 
937 		/* retrieve rate control algorithm context */
938 		data = &txq->data[txq->stat];
939 		rn = (struct rt2661_node *)data->ni;
940 
941 		/* if no frame has been sent, ignore */
942 		if (rn == NULL)
943 			continue;
944 
945 		switch (RT2661_TX_RESULT(val)) {
946 		case RT2661_TX_SUCCESS:
947 			retrycnt = RT2661_TX_RETRYCNT(val);
948 
949 			DPRINTFN(10, ("data frame sent successfully after "
950 			    "%d retries\n", retrycnt));
951 			rn->amn.amn_txcnt++;
952 			if (retrycnt > 0)
953 				rn->amn.amn_retrycnt++;
954 			ifp->if_opackets++;
955 			break;
956 
957 		case RT2661_TX_RETRY_FAIL:
958 			DPRINTFN(9, ("sending data frame failed (too much "
959 			    "retries)\n"));
960 			rn->amn.amn_txcnt++;
961 			rn->amn.amn_retrycnt++;
962 			ifp->if_oerrors++;
963 			break;
964 
965 		default:
966 			/* other failure */
967 			aprint_error_dev(&sc->sc_dev, "sending data frame failed 0x%08x\n", val);
968 			ifp->if_oerrors++;
969 		}
970 
971 		ieee80211_free_node(data->ni);
972 		data->ni = NULL;
973 
974 		DPRINTFN(15, ("tx done q=%d idx=%u\n", qid, txq->stat));
975 
976 		txq->queued--;
977 		if (++txq->stat >= txq->count)	/* faster than % count */
978 			txq->stat = 0;
979 	}
980 
981 	sc->sc_tx_timer = 0;
982 	ifp->if_flags &= ~IFF_OACTIVE;
983 	rt2661_start(ifp);
984 }
985 
986 static void
987 rt2661_tx_dma_intr(struct rt2661_softc *sc, struct rt2661_tx_ring *txq)
988 {
989 	struct rt2661_tx_desc *desc;
990 	struct rt2661_tx_data *data;
991 
992 	for (;;) {
993 		desc = &txq->desc[txq->next];
994 		data = &txq->data[txq->next];
995 
996 		bus_dmamap_sync(sc->sc_dmat, txq->map,
997 		    txq->next * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
998 		    BUS_DMASYNC_POSTREAD);
999 
1000 		if ((le32toh(desc->flags) & RT2661_TX_BUSY) ||
1001 		    !(le32toh(desc->flags) & RT2661_TX_VALID))
1002 			break;
1003 
1004 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1005 		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1006 		bus_dmamap_unload(sc->sc_dmat, data->map);
1007 		m_freem(data->m);
1008 		data->m = NULL;
1009 		/* node reference is released in rt2661_tx_intr() */
1010 
1011 		/* descriptor is no longer valid */
1012 		desc->flags &= ~htole32(RT2661_TX_VALID);
1013 
1014 		bus_dmamap_sync(sc->sc_dmat, txq->map,
1015 		    txq->next * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
1016 		    BUS_DMASYNC_PREWRITE);
1017 
1018 		DPRINTFN(15, ("tx dma done q=%p idx=%u\n", txq, txq->next));
1019 
1020 		if (++txq->next >= txq->count)	/* faster than % count */
1021 			txq->next = 0;
1022 	}
1023 }
1024 
1025 static void
1026 rt2661_rx_intr(struct rt2661_softc *sc)
1027 {
1028 	struct ieee80211com *ic = &sc->sc_ic;
1029 	struct ifnet *ifp = &sc->sc_if;
1030 	struct rt2661_rx_desc *desc;
1031 	struct rt2661_rx_data *data;
1032 	struct ieee80211_frame *wh;
1033 	struct ieee80211_node *ni;
1034 	struct mbuf *mnew, *m;
1035 	int error, rssi;
1036 
1037 	for (;;) {
1038 		desc = &sc->rxq.desc[sc->rxq.cur];
1039 		data = &sc->rxq.data[sc->rxq.cur];
1040 
1041 		bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1042 		    sc->rxq.cur * RT2661_RX_DESC_SIZE, RT2661_RX_DESC_SIZE,
1043 		    BUS_DMASYNC_POSTREAD);
1044 
1045 		if (le32toh(desc->flags) & RT2661_RX_BUSY)
1046 			break;
1047 
1048 		if ((le32toh(desc->flags) & RT2661_RX_PHY_ERROR) ||
1049 		    (le32toh(desc->flags) & RT2661_RX_CRC_ERROR)) {
1050 			/*
1051 			 * This should not happen since we did not request
1052 			 * to receive those frames when we filled TXRX_CSR0.
1053 			 */
1054 			DPRINTFN(5, ("PHY or CRC error flags 0x%08x\n",
1055 			    le32toh(desc->flags)));
1056 			ifp->if_ierrors++;
1057 			goto skip;
1058 		}
1059 
1060 		if ((le32toh(desc->flags) & RT2661_RX_CIPHER_MASK) != 0) {
1061 			ifp->if_ierrors++;
1062 			goto skip;
1063 		}
1064 
1065 		/*
1066 		 * Try to allocate a new mbuf for this ring element and load it
1067 		 * before processing the current mbuf. If the ring element
1068 		 * cannot be loaded, drop the received packet and reuse the old
1069 		 * mbuf. In the unlikely case that the old mbuf can't be
1070 		 * reloaded either, explicitly panic.
1071 		 */
1072 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1073 		if (mnew == NULL) {
1074 			ifp->if_ierrors++;
1075 			goto skip;
1076 		}
1077 
1078 		MCLGET(mnew, M_DONTWAIT);
1079 		if (!(mnew->m_flags & M_EXT)) {
1080 			m_freem(mnew);
1081 			ifp->if_ierrors++;
1082 			goto skip;
1083 		}
1084 
1085 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1086 		    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1087 		bus_dmamap_unload(sc->sc_dmat, data->map);
1088 
1089 		error = bus_dmamap_load(sc->sc_dmat, data->map,
1090 		    mtod(mnew, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
1091 		if (error != 0) {
1092 			m_freem(mnew);
1093 
1094 			/* try to reload the old mbuf */
1095 			error = bus_dmamap_load(sc->sc_dmat, data->map,
1096 			    mtod(data->m, void *), MCLBYTES, NULL,
1097 			    BUS_DMA_NOWAIT);
1098 			if (error != 0) {
1099 				/* very unlikely that it will fail... */
1100 				panic("%s: could not load old rx mbuf",
1101 				    device_xname(&sc->sc_dev));
1102 			}
1103 			/* physical address may have changed */
1104 			desc->physaddr = htole32(data->map->dm_segs->ds_addr);
1105 			ifp->if_ierrors++;
1106 			goto skip;
1107 		}
1108 
1109 		/*
1110 	 	 * New mbuf successfully loaded, update Rx ring and continue
1111 		 * processing.
1112 		 */
1113 		m = data->m;
1114 		data->m = mnew;
1115 		desc->physaddr = htole32(data->map->dm_segs->ds_addr);
1116 
1117 		/* finalize mbuf */
1118 		m->m_pkthdr.rcvif = ifp;
1119 		m->m_pkthdr.len = m->m_len =
1120 		    (le32toh(desc->flags) >> 16) & 0xfff;
1121 
1122 #if NBPFILTER > 0
1123 		if (sc->sc_drvbpf != NULL) {
1124 			struct rt2661_rx_radiotap_header *tap = &sc->sc_rxtap;
1125 			uint32_t tsf_lo, tsf_hi;
1126 
1127 			/* get timestamp (low and high 32 bits) */
1128 			tsf_hi = RAL_READ(sc, RT2661_TXRX_CSR13);
1129 			tsf_lo = RAL_READ(sc, RT2661_TXRX_CSR12);
1130 
1131 			tap->wr_tsf =
1132 			    htole64(((uint64_t)tsf_hi << 32) | tsf_lo);
1133 			tap->wr_flags = 0;
1134 			tap->wr_rate = rt2661_rxrate(desc);
1135 			tap->wr_chan_freq = htole16(sc->sc_curchan->ic_freq);
1136 			tap->wr_chan_flags = htole16(sc->sc_curchan->ic_flags);
1137 			tap->wr_antsignal = desc->rssi;
1138 
1139 			bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1140 		}
1141 #endif
1142 
1143 		wh = mtod(m, struct ieee80211_frame *);
1144 		ni = ieee80211_find_rxnode(ic,
1145 		    (struct ieee80211_frame_min *)wh);
1146 
1147 		/* send the frame to the 802.11 layer */
1148 		ieee80211_input(ic, m, ni, desc->rssi, 0);
1149 
1150 		/*-
1151 		 * Keep track of the average RSSI using an Exponential Moving
1152 		 * Average (EMA) of 8 Wilder's days:
1153 		 *     avg = (1 / N) x rssi + ((N - 1) / N) x avg
1154 		 */
1155 		rssi = rt2661_get_rssi(sc, desc->rssi);
1156 		sc->avg_rssi = (rssi + 7 * sc->avg_rssi) / 8;
1157 
1158 		/* node is no longer needed */
1159 		ieee80211_free_node(ni);
1160 
1161 skip:		desc->flags |= htole32(RT2661_RX_BUSY);
1162 
1163 		bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1164 		    sc->rxq.cur * RT2661_RX_DESC_SIZE, RT2661_RX_DESC_SIZE,
1165 		    BUS_DMASYNC_PREWRITE);
1166 
1167 		DPRINTFN(16, ("rx intr idx=%u\n", sc->rxq.cur));
1168 
1169 		sc->rxq.cur = (sc->rxq.cur + 1) % RT2661_RX_RING_COUNT;
1170 	}
1171 
1172 	/*
1173 	 * In HostAP mode, ieee80211_input() will enqueue packets in if_snd
1174 	 * without calling if_start().
1175 	 */
1176 	if (!IFQ_IS_EMPTY(&ifp->if_snd) && !(ifp->if_flags & IFF_OACTIVE))
1177 		rt2661_start(ifp);
1178 }
1179 
1180 /*
1181  * This function is called in HostAP or IBSS modes when it's time to send a
1182  * new beacon (every ni_intval milliseconds).
1183  */
1184 static void
1185 rt2661_mcu_beacon_expire(struct rt2661_softc *sc)
1186 {
1187 	struct ieee80211com *ic = &sc->sc_ic;
1188 
1189 	if (sc->sc_flags & RT2661_UPDATE_SLOT) {
1190 		sc->sc_flags &= ~RT2661_UPDATE_SLOT;
1191 		sc->sc_flags |= RT2661_SET_SLOTTIME;
1192 	} else if (sc->sc_flags & RT2661_SET_SLOTTIME) {
1193 		sc->sc_flags &= ~RT2661_SET_SLOTTIME;
1194 		rt2661_set_slottime(sc);
1195 	}
1196 
1197 	if (ic->ic_curmode == IEEE80211_MODE_11G) {
1198 		/* update ERP Information Element */
1199 		RAL_WRITE_1(sc, sc->erp_csr, ic->ic_bss->ni_erp);
1200 		RAL_RW_BARRIER_1(sc, sc->erp_csr);
1201 	}
1202 
1203 	DPRINTFN(15, ("beacon expired\n"));
1204 }
1205 
1206 static void
1207 rt2661_mcu_wakeup(struct rt2661_softc *sc)
1208 {
1209 	RAL_WRITE(sc, RT2661_MAC_CSR11, 5 << 16);
1210 
1211 	RAL_WRITE(sc, RT2661_SOFT_RESET_CSR, 0x7);
1212 	RAL_WRITE(sc, RT2661_IO_CNTL_CSR, 0x18);
1213 	RAL_WRITE(sc, RT2661_PCI_USEC_CSR, 0x20);
1214 
1215 	/* send wakeup command to MCU */
1216 	rt2661_tx_cmd(sc, RT2661_MCU_CMD_WAKEUP, 0);
1217 }
1218 
1219 static void
1220 rt2661_mcu_cmd_intr(struct rt2661_softc *sc)
1221 {
1222 	RAL_READ(sc, RT2661_M2H_CMD_DONE_CSR);
1223 	RAL_WRITE(sc, RT2661_M2H_CMD_DONE_CSR, 0xffffffff);
1224 }
1225 
1226 int
1227 rt2661_intr(void *arg)
1228 {
1229 	struct rt2661_softc *sc = arg;
1230 	struct ifnet *ifp = &sc->sc_if;
1231 	uint32_t r1, r2;
1232 	int rv = 0;
1233 
1234 	/* don't re-enable interrupts if we're shutting down */
1235 	if (!(ifp->if_flags & IFF_RUNNING)) {
1236 		/* disable MAC and MCU interrupts */
1237 		RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0xffffff7f);
1238 		RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0xffffffff);
1239 		return 0;
1240 	}
1241 
1242 	for (;;) {
1243 		r1 = RAL_READ(sc, RT2661_INT_SOURCE_CSR);
1244 		r2 = RAL_READ(sc, RT2661_MCU_INT_SOURCE_CSR);
1245 
1246 		if ((r1 & RT2661_INT_CSR_ALL) == 0 &&
1247 		    (r2 & RT2661_MCU_INT_ALL) == 0)
1248 			break;
1249 
1250 		RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, r1);
1251 		RAL_WRITE(sc, RT2661_MCU_INT_SOURCE_CSR, r2);
1252 
1253 		rv = 1;
1254 
1255 		if (r1 & RT2661_MGT_DONE)
1256 			rt2661_tx_dma_intr(sc, &sc->mgtq);
1257 
1258 		if (r1 & RT2661_RX_DONE)
1259 			rt2661_rx_intr(sc);
1260 
1261 		if (r1 & RT2661_TX0_DMA_DONE)
1262 			rt2661_tx_dma_intr(sc, &sc->txq[0]);
1263 
1264 		if (r1 & RT2661_TX1_DMA_DONE)
1265 			rt2661_tx_dma_intr(sc, &sc->txq[1]);
1266 
1267 		if (r1 & RT2661_TX2_DMA_DONE)
1268 			rt2661_tx_dma_intr(sc, &sc->txq[2]);
1269 
1270 		if (r1 & RT2661_TX3_DMA_DONE)
1271 			rt2661_tx_dma_intr(sc, &sc->txq[3]);
1272 
1273 		if (r1 & RT2661_TX_DONE)
1274 			rt2661_tx_intr(sc);
1275 
1276 		if (r2 & RT2661_MCU_CMD_DONE)
1277 			rt2661_mcu_cmd_intr(sc);
1278 
1279 		if (r2 & RT2661_MCU_BEACON_EXPIRE)
1280 			rt2661_mcu_beacon_expire(sc);
1281 
1282 		if (r2 & RT2661_MCU_WAKEUP)
1283 			rt2661_mcu_wakeup(sc);
1284 	}
1285 
1286 	return rv;
1287 }
1288 
1289 /* quickly determine if a given rate is CCK or OFDM */
1290 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1291 
1292 #define RAL_ACK_SIZE	14	/* 10 + 4(FCS) */
1293 #define RAL_CTS_SIZE	14	/* 10 + 4(FCS) */
1294 
1295 /*
1296  * This function is only used by the Rx radiotap code. It returns the rate at
1297  * which a given frame was received.
1298  */
1299 #if NBPFILTER > 0
1300 static uint8_t
1301 rt2661_rxrate(struct rt2661_rx_desc *desc)
1302 {
1303 	if (le32toh(desc->flags) & RT2661_RX_OFDM) {
1304 		/* reverse function of rt2661_plcp_signal */
1305 		switch (desc->rate & 0xf) {
1306 		case 0xb:	return 12;
1307 		case 0xf:	return 18;
1308 		case 0xa:	return 24;
1309 		case 0xe:	return 36;
1310 		case 0x9:	return 48;
1311 		case 0xd:	return 72;
1312 		case 0x8:	return 96;
1313 		case 0xc:	return 108;
1314 		}
1315 	} else {
1316 		if (desc->rate == 10)
1317 			return 2;
1318 		if (desc->rate == 20)
1319 			return 4;
1320 		if (desc->rate == 55)
1321 			return 11;
1322 		if (desc->rate == 110)
1323 			return 22;
1324 	}
1325 	return 2;	/* should not get there */
1326 }
1327 #endif
1328 
1329 /*
1330  * Return the expected ack rate for a frame transmitted at rate `rate'.
1331  * XXX: this should depend on the destination node basic rate set.
1332  */
1333 static int
1334 rt2661_ack_rate(struct ieee80211com *ic, int rate)
1335 {
1336 	switch (rate) {
1337 	/* CCK rates */
1338 	case 2:
1339 		return 2;
1340 	case 4:
1341 	case 11:
1342 	case 22:
1343 		return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
1344 
1345 	/* OFDM rates */
1346 	case 12:
1347 	case 18:
1348 		return 12;
1349 	case 24:
1350 	case 36:
1351 		return 24;
1352 	case 48:
1353 	case 72:
1354 	case 96:
1355 	case 108:
1356 		return 48;
1357 	}
1358 
1359 	/* default to 1Mbps */
1360 	return 2;
1361 }
1362 
1363 /*
1364  * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1365  * The function automatically determines the operating mode depending on the
1366  * given rate. `flags' indicates whether short preamble is in use or not.
1367  */
1368 static uint16_t
1369 rt2661_txtime(int len, int rate, uint32_t flags)
1370 {
1371 	uint16_t txtime;
1372 
1373 	if (RAL_RATE_IS_OFDM(rate)) {
1374 		/* IEEE Std 802.11g-2003, pp. 44 */
1375 		txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1376 		txtime = 16 + 4 + 4 * txtime + 6;
1377 	} else {
1378 		/* IEEE Std 802.11b-1999, pp. 28 */
1379 		txtime = (16 * len + rate - 1) / rate;
1380 		if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1381 			txtime +=  72 + 24;
1382 		else
1383 			txtime += 144 + 48;
1384 	}
1385 	return txtime;
1386 }
1387 
1388 static uint8_t
1389 rt2661_plcp_signal(int rate)
1390 {
1391 	switch (rate) {
1392 	/* CCK rates (returned values are device-dependent) */
1393 	case 2:		return 0x0;
1394 	case 4:		return 0x1;
1395 	case 11:	return 0x2;
1396 	case 22:	return 0x3;
1397 
1398 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1399 	case 12:	return 0xb;
1400 	case 18:	return 0xf;
1401 	case 24:	return 0xa;
1402 	case 36:	return 0xe;
1403 	case 48:	return 0x9;
1404 	case 72:	return 0xd;
1405 	case 96:	return 0x8;
1406 	case 108:	return 0xc;
1407 
1408 	/* unsupported rates (should not get there) */
1409 	default:	return 0xff;
1410 	}
1411 }
1412 
1413 static void
1414 rt2661_setup_tx_desc(struct rt2661_softc *sc, struct rt2661_tx_desc *desc,
1415     uint32_t flags, uint16_t xflags, int len, int rate,
1416     const bus_dma_segment_t *segs, int nsegs, int ac)
1417 {
1418 	struct ieee80211com *ic = &sc->sc_ic;
1419 	uint16_t plcp_length;
1420 	int i, remainder;
1421 
1422 	desc->flags = htole32(flags);
1423 	desc->flags |= htole32(len << 16);
1424 
1425 	desc->xflags = htole16(xflags);
1426 	desc->xflags |= htole16(nsegs << 13);
1427 
1428 	desc->wme = htole16(
1429 	    RT2661_QID(ac) |
1430 	    RT2661_AIFSN(2) |
1431 	    RT2661_LOGCWMIN(4) |
1432 	    RT2661_LOGCWMAX(10));
1433 
1434 	/*
1435 	 * Remember in which queue this frame was sent. This field is driver
1436 	 * private data only. It will be made available by the NIC in STA_CSR4
1437 	 * on Tx interrupts.
1438 	 */
1439 	desc->qid = ac;
1440 
1441 	/* setup PLCP fields */
1442 	desc->plcp_signal  = rt2661_plcp_signal(rate);
1443 	desc->plcp_service = 4;
1444 
1445 	len += IEEE80211_CRC_LEN;
1446 	if (RAL_RATE_IS_OFDM(rate)) {
1447 		desc->flags |= htole32(RT2661_TX_OFDM);
1448 
1449 		plcp_length = len & 0xfff;
1450 		desc->plcp_length_hi = plcp_length >> 6;
1451 		desc->plcp_length_lo = plcp_length & 0x3f;
1452 	} else {
1453 		plcp_length = (16 * len + rate - 1) / rate;
1454 		if (rate == 22) {
1455 			remainder = (16 * len) % 22;
1456 			if (remainder != 0 && remainder < 7)
1457 				desc->plcp_service |= RT2661_PLCP_LENGEXT;
1458 		}
1459 		desc->plcp_length_hi = plcp_length >> 8;
1460 		desc->plcp_length_lo = plcp_length & 0xff;
1461 
1462 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1463 			desc->plcp_signal |= 0x08;
1464 	}
1465 
1466 	/* RT2x61 supports scatter with up to 5 segments */
1467 	for (i = 0; i < nsegs; i++) {
1468 		desc->addr[i] = htole32(segs[i].ds_addr);
1469 		desc->len [i] = htole16(segs[i].ds_len);
1470 	}
1471 
1472 	desc->flags |= htole32(RT2661_TX_BUSY | RT2661_TX_VALID);
1473 }
1474 
1475 static int
1476 rt2661_tx_mgt(struct rt2661_softc *sc, struct mbuf *m0,
1477     struct ieee80211_node *ni)
1478 {
1479 	struct ieee80211com *ic = &sc->sc_ic;
1480 	struct rt2661_tx_desc *desc;
1481 	struct rt2661_tx_data *data;
1482 	struct ieee80211_frame *wh;
1483 	uint16_t dur;
1484 	uint32_t flags = 0;
1485 	int rate, error;
1486 
1487 	desc = &sc->mgtq.desc[sc->mgtq.cur];
1488 	data = &sc->mgtq.data[sc->mgtq.cur];
1489 
1490 	/* send mgt frames at the lowest available rate */
1491 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1492 
1493 	wh = mtod(m0, struct ieee80211_frame *);
1494 
1495 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1496 		if (ieee80211_crypto_encap(ic, ni, m0) == NULL) {
1497 			m_freem(m0);
1498 			return ENOBUFS;
1499 		}
1500 
1501 		/* packet header may have moved, reset our local pointer */
1502 		wh = mtod(m0, struct ieee80211_frame *);
1503 	}
1504 
1505 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1506 	    BUS_DMA_NOWAIT);
1507 	if (error != 0) {
1508 		aprint_error_dev(&sc->sc_dev, "could not map mbuf (error %d)\n",
1509 		    error);
1510 		m_freem(m0);
1511 		return error;
1512 	}
1513 
1514 #if NBPFILTER > 0
1515 	if (sc->sc_drvbpf != NULL) {
1516 		struct rt2661_tx_radiotap_header *tap = &sc->sc_txtap;
1517 
1518 		tap->wt_flags = 0;
1519 		tap->wt_rate = rate;
1520 		tap->wt_chan_freq = htole16(sc->sc_curchan->ic_freq);
1521 		tap->wt_chan_flags = htole16(sc->sc_curchan->ic_flags);
1522 
1523 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1524 	}
1525 #endif
1526 
1527 	data->m = m0;
1528 	data->ni = ni;
1529 
1530 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1531 		flags |= RT2661_TX_NEED_ACK;
1532 
1533 		dur = rt2661_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) +
1534 		    sc->sifs;
1535 		*(uint16_t *)wh->i_dur = htole16(dur);
1536 
1537 		/* tell hardware to set timestamp in probe responses */
1538 		if ((wh->i_fc[0] &
1539 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1540 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1541 			flags |= RT2661_TX_TIMESTAMP;
1542 	}
1543 
1544 	rt2661_setup_tx_desc(sc, desc, flags, 0 /* XXX HWSEQ */,
1545 	    m0->m_pkthdr.len, rate, data->map->dm_segs, data->map->dm_nsegs,
1546 	    RT2661_QID_MGT);
1547 
1548 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1549 	    BUS_DMASYNC_PREWRITE);
1550 	bus_dmamap_sync(sc->sc_dmat, sc->mgtq.map,
1551 	    sc->mgtq.cur * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
1552 	    BUS_DMASYNC_PREWRITE);
1553 
1554 	DPRINTFN(10, ("sending mgt frame len=%u idx=%u rate=%u\n",
1555 	    m0->m_pkthdr.len, sc->mgtq.cur, rate));
1556 
1557 	/* kick mgt */
1558 	sc->mgtq.queued++;
1559 	sc->mgtq.cur = (sc->mgtq.cur + 1) % RT2661_MGT_RING_COUNT;
1560 	RAL_WRITE(sc, RT2661_TX_CNTL_CSR, RT2661_KICK_MGT);
1561 
1562 	return 0;
1563 }
1564 
1565 /*
1566  * Build a RTS control frame.
1567  */
1568 static struct mbuf *
1569 rt2661_get_rts(struct rt2661_softc *sc, struct ieee80211_frame *wh,
1570     uint16_t dur)
1571 {
1572 	struct ieee80211_frame_rts *rts;
1573 	struct mbuf *m;
1574 
1575 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1576 	if (m == NULL) {
1577 		sc->sc_ic.ic_stats.is_tx_nobuf++;
1578 		aprint_error_dev(&sc->sc_dev, "could not allocate RTS frame\n");
1579 		return NULL;
1580 	}
1581 
1582 	rts = mtod(m, struct ieee80211_frame_rts *);
1583 
1584 	rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL |
1585 	    IEEE80211_FC0_SUBTYPE_RTS;
1586 	rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1587 	*(uint16_t *)rts->i_dur = htole16(dur);
1588 	IEEE80211_ADDR_COPY(rts->i_ra, wh->i_addr1);
1589 	IEEE80211_ADDR_COPY(rts->i_ta, wh->i_addr2);
1590 
1591 	m->m_pkthdr.len = m->m_len = sizeof (struct ieee80211_frame_rts);
1592 
1593 	return m;
1594 }
1595 
1596 static int
1597 rt2661_tx_data(struct rt2661_softc *sc, struct mbuf *m0,
1598     struct ieee80211_node *ni, int ac)
1599 {
1600 	struct ieee80211com *ic = &sc->sc_ic;
1601 	struct rt2661_tx_ring *txq = &sc->txq[ac];
1602 	struct rt2661_tx_desc *desc;
1603 	struct rt2661_tx_data *data;
1604 	struct ieee80211_frame *wh;
1605 	struct ieee80211_key *k;
1606 	struct mbuf *mnew;
1607 	uint16_t dur;
1608 	uint32_t flags = 0;
1609 	int rate, useprot, error, tid;
1610 
1611 	wh = mtod(m0, struct ieee80211_frame *);
1612 
1613 	if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
1614 		rate = ic->ic_sup_rates[ic->ic_curmode].
1615 		    rs_rates[ic->ic_fixed_rate];
1616 	} else
1617 		rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1618 	rate &= IEEE80211_RATE_VAL;
1619 	if (rate == 0)
1620 		rate = 2;	/* XXX should not happen */
1621 
1622 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1623 		k = ieee80211_crypto_encap(ic, ni, m0);
1624 		if (k == NULL) {
1625 			m_freem(m0);
1626 			return ENOBUFS;
1627 		}
1628 
1629 		/* packet header may have moved, reset our local pointer */
1630 		wh = mtod(m0, struct ieee80211_frame *);
1631 	}
1632 
1633 	/*
1634 	 * Packet Bursting: backoff after ppb=8 frames to give other STAs a
1635 	 * chance to contend for the wireless medium.
1636 	 */
1637 	tid = WME_AC_TO_TID(M_WME_GETAC(m0));
1638 	if (ic->ic_opmode == IEEE80211_M_STA && (ni->ni_txseqs[tid] & 7))
1639 		flags |= RT2661_TX_IFS_SIFS;
1640 
1641 	/*
1642 	 * IEEE Std 802.11-1999, pp 82: "A STA shall use an RTS/CTS exchange
1643 	 * for directed frames only when the length of the MPDU is greater
1644 	 * than the length threshold indicated by" ic_rtsthreshold.
1645 	 *
1646 	 * IEEE Std 802.11-2003g, pp 13: "ERP STAs shall use protection
1647 	 * mechanism (such as RTS/CTS or CTS-to-self) for ERP-OFDM MPDUs of
1648 	 * type Data or an MMPDU".
1649 	 */
1650 	useprot = !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1651 	    (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold ||
1652 	    ((ic->ic_flags & IEEE80211_F_USEPROT) && RAL_RATE_IS_OFDM(rate)));
1653 	if (useprot) {
1654 		struct mbuf *m;
1655 		int rtsrate, ackrate;
1656 
1657 		rtsrate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1658 		ackrate = rt2661_ack_rate(ic, rate);
1659 
1660 		dur = rt2661_txtime(m0->m_pkthdr.len + 4, rate, ic->ic_flags) +
1661 		      rt2661_txtime(RAL_CTS_SIZE, rtsrate, ic->ic_flags) +
1662 		      rt2661_txtime(RAL_ACK_SIZE, ackrate, ic->ic_flags) +
1663 		      3 * sc->sifs;
1664 
1665 		m = rt2661_get_rts(sc, wh, dur);
1666 		if (m == NULL) {
1667 			aprint_error_dev(&sc->sc_dev, "could not allocate RTS "
1668 			    "frame\n");
1669 			m_freem(m0);
1670 			return ENOBUFS;
1671 		}
1672 
1673 		desc = &txq->desc[txq->cur];
1674 		data = &txq->data[txq->cur];
1675 
1676 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
1677 		    BUS_DMA_NOWAIT);
1678 		if (error != 0) {
1679 			aprint_error_dev(&sc->sc_dev, "could not map mbuf (error %d)\n", error);
1680 			m_freem(m);
1681 			m_freem(m0);
1682 			return error;
1683 		}
1684 
1685 		/* avoid multiple free() of the same node for each fragment */
1686 		ieee80211_ref_node(ni);
1687 
1688 		data->m = m;
1689 		data->ni = ni;
1690 
1691 		rt2661_setup_tx_desc(sc, desc, RT2661_TX_NEED_ACK |
1692 		    RT2661_TX_MORE_FRAG, 0, m->m_pkthdr.len, rtsrate,
1693 		    data->map->dm_segs, data->map->dm_nsegs, ac);
1694 
1695 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1696 		    data->map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1697 		bus_dmamap_sync(sc->sc_dmat, txq->map,
1698 		    txq->cur * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
1699 		    BUS_DMASYNC_PREWRITE);
1700 
1701 		txq->queued++;
1702 		txq->cur = (txq->cur + 1) % RT2661_TX_RING_COUNT;
1703 
1704 		flags |= RT2661_TX_LONG_RETRY | RT2661_TX_IFS_SIFS;
1705 	}
1706 
1707 	data = &txq->data[txq->cur];
1708 	desc = &txq->desc[txq->cur];
1709 
1710 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1711 	    BUS_DMA_NOWAIT);
1712 	if (error != 0 && error != EFBIG) {
1713 		aprint_error_dev(&sc->sc_dev, "could not map mbuf (error %d)\n",
1714 		    error);
1715 		m_freem(m0);
1716 		return error;
1717 	}
1718 	if (error != 0) {
1719 		/* too many fragments, linearize */
1720 
1721 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1722 		if (mnew == NULL) {
1723 			m_freem(m0);
1724 			return ENOMEM;
1725 		}
1726 
1727 		M_COPY_PKTHDR(mnew, m0);
1728 		if (m0->m_pkthdr.len > MHLEN) {
1729 			MCLGET(mnew, M_DONTWAIT);
1730 			if (!(mnew->m_flags & M_EXT)) {
1731 				m_freem(m0);
1732 				m_freem(mnew);
1733 				return ENOMEM;
1734 			}
1735 		}
1736 
1737 		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
1738 		m_freem(m0);
1739 		mnew->m_len = mnew->m_pkthdr.len;
1740 		m0 = mnew;
1741 
1742 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1743 		    BUS_DMA_NOWAIT);
1744 		if (error != 0) {
1745 			aprint_error_dev(&sc->sc_dev, "could not map mbuf (error %d)\n", error);
1746 			m_freem(m0);
1747 			return error;
1748 		}
1749 
1750 		/* packet header have moved, reset our local pointer */
1751 		wh = mtod(m0, struct ieee80211_frame *);
1752 	}
1753 
1754 #if NBPFILTER > 0
1755 	if (sc->sc_drvbpf != NULL) {
1756 		struct rt2661_tx_radiotap_header *tap = &sc->sc_txtap;
1757 
1758 		tap->wt_flags = 0;
1759 		tap->wt_rate = rate;
1760 		tap->wt_chan_freq = htole16(sc->sc_curchan->ic_freq);
1761 		tap->wt_chan_flags = htole16(sc->sc_curchan->ic_flags);
1762 
1763 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1764 	}
1765 #endif
1766 
1767 	data->m = m0;
1768 	data->ni = ni;
1769 
1770 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1771 		flags |= RT2661_TX_NEED_ACK;
1772 
1773 		dur = rt2661_txtime(RAL_ACK_SIZE, rt2661_ack_rate(ic, rate),
1774 		    ic->ic_flags) + sc->sifs;
1775 		*(uint16_t *)wh->i_dur = htole16(dur);
1776 	}
1777 
1778 	rt2661_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate,
1779 	    data->map->dm_segs, data->map->dm_nsegs, ac);
1780 
1781 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1782 	    BUS_DMASYNC_PREWRITE);
1783 	bus_dmamap_sync(sc->sc_dmat, txq->map, txq->cur * RT2661_TX_DESC_SIZE,
1784 	    RT2661_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
1785 
1786 	DPRINTFN(10, ("sending data frame len=%u idx=%u rate=%u\n",
1787 	    m0->m_pkthdr.len, txq->cur, rate));
1788 
1789 	/* kick Tx */
1790 	txq->queued++;
1791 	txq->cur = (txq->cur + 1) % RT2661_TX_RING_COUNT;
1792 	RAL_WRITE(sc, RT2661_TX_CNTL_CSR, 1);
1793 
1794 	return 0;
1795 }
1796 
1797 static void
1798 rt2661_start(struct ifnet *ifp)
1799 {
1800 	struct rt2661_softc *sc = ifp->if_softc;
1801 	struct ieee80211com *ic = &sc->sc_ic;
1802 	struct mbuf *m0;
1803 	struct ether_header *eh;
1804 	struct ieee80211_node *ni = NULL;
1805 
1806 	/*
1807 	 * net80211 may still try to send management frames even if the
1808 	 * IFF_RUNNING flag is not set...
1809 	 */
1810 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1811 		return;
1812 
1813 	for (;;) {
1814 		IF_POLL(&ic->ic_mgtq, m0);
1815 		if (m0 != NULL) {
1816 			if (sc->mgtq.queued >= RT2661_MGT_RING_COUNT) {
1817 				ifp->if_flags |= IFF_OACTIVE;
1818 				break;
1819 			}
1820 			IF_DEQUEUE(&ic->ic_mgtq, m0);
1821 			if (m0 == NULL)
1822 				break;
1823 
1824 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1825 			m0->m_pkthdr.rcvif = NULL;
1826 #if NBPFILTER > 0
1827 			if (ic->ic_rawbpf != NULL)
1828 				bpf_mtap(ic->ic_rawbpf, m0);
1829 #endif
1830 			if (rt2661_tx_mgt(sc, m0, ni) != 0)
1831 				break;
1832 
1833 		} else {
1834 			IF_POLL(&ifp->if_snd, m0);
1835 			if (m0 == NULL || ic->ic_state != IEEE80211_S_RUN)
1836 				break;
1837 
1838 			if (sc->txq[0].queued >= RT2661_TX_RING_COUNT - 1) {
1839 				/* there is no place left in this ring */
1840 				ifp->if_flags |= IFF_OACTIVE;
1841 				break;
1842 			}
1843 
1844 			IFQ_DEQUEUE(&ifp->if_snd, m0);
1845 
1846 			if (m0->m_len < sizeof (struct ether_header) &&
1847 			    !(m0 = m_pullup(m0, sizeof (struct ether_header))))
1848 				continue;
1849 
1850 			eh = mtod(m0, struct ether_header *);
1851 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1852 			if (ni == NULL) {
1853 				m_freem(m0);
1854 				ifp->if_oerrors++;
1855 				continue;
1856 			}
1857 
1858 #if NBPFILTER > 0
1859 			if (ifp->if_bpf != NULL)
1860 				bpf_mtap(ifp->if_bpf, m0);
1861 #endif
1862 			m0 = ieee80211_encap(ic, m0, ni);
1863 			if (m0 == NULL) {
1864 				ieee80211_free_node(ni);
1865 				ifp->if_oerrors++;
1866 				continue;
1867 			}
1868 #if NBPFILTER > 0
1869 			if (ic->ic_rawbpf != NULL)
1870 				bpf_mtap(ic->ic_rawbpf, m0);
1871 #endif
1872 			if (rt2661_tx_data(sc, m0, ni, 0) != 0) {
1873 				if (ni != NULL)
1874 					ieee80211_free_node(ni);
1875 				ifp->if_oerrors++;
1876 				break;
1877 			}
1878 		}
1879 
1880 		sc->sc_tx_timer = 5;
1881 		ifp->if_timer = 1;
1882 	}
1883 }
1884 
1885 static void
1886 rt2661_watchdog(struct ifnet *ifp)
1887 {
1888 	struct rt2661_softc *sc = ifp->if_softc;
1889 
1890 	ifp->if_timer = 0;
1891 
1892 	if (sc->sc_tx_timer > 0) {
1893 		if (--sc->sc_tx_timer == 0) {
1894 			aprint_error_dev(&sc->sc_dev, "device timeout\n");
1895 			rt2661_init(ifp);
1896 			ifp->if_oerrors++;
1897 			return;
1898 		}
1899 		ifp->if_timer = 1;
1900 	}
1901 
1902 	ieee80211_watchdog(&sc->sc_ic);
1903 }
1904 
1905 /*
1906  * This function allows for fast channel switching in monitor mode (used by
1907  * kismet). In IBSS mode, we must explicitly reset the interface to
1908  * generate a new beacon frame.
1909  */
1910 static int
1911 rt2661_reset(struct ifnet *ifp)
1912 {
1913 	struct rt2661_softc *sc = ifp->if_softc;
1914 	struct ieee80211com *ic = &sc->sc_ic;
1915 
1916 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
1917 		return ENETRESET;
1918 
1919 	rt2661_set_chan(sc, ic->ic_curchan);
1920 
1921 	return 0;
1922 }
1923 
1924 static int
1925 rt2661_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1926 {
1927 	struct rt2661_softc *sc = ifp->if_softc;
1928 	struct ieee80211com *ic = &sc->sc_ic;
1929 	int s, error = 0;
1930 
1931 	s = splnet();
1932 
1933 	switch (cmd) {
1934 	case SIOCSIFFLAGS:
1935 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1936 			break;
1937 		if (ifp->if_flags & IFF_UP) {
1938 			if (ifp->if_flags & IFF_RUNNING)
1939 				rt2661_update_promisc(sc);
1940 			else
1941 				rt2661_init(ifp);
1942 		} else {
1943 			if (ifp->if_flags & IFF_RUNNING)
1944 				rt2661_stop(ifp, 1);
1945 		}
1946 		break;
1947 
1948 	case SIOCADDMULTI:
1949 	case SIOCDELMULTI:
1950 		/* XXX no h/w multicast filter? --dyoung */
1951 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET)
1952 			error = 0;
1953 		break;
1954 
1955 	case SIOCS80211CHANNEL:
1956 		/*
1957 		 * This allows for fast channel switching in monitor mode
1958 		 * (used by kismet). In IBSS mode, we must explicitly reset
1959 		 * the interface to generate a new beacon frame.
1960 		 */
1961 		error = ieee80211_ioctl(ic, cmd, data);
1962 		if (error == ENETRESET &&
1963 		    ic->ic_opmode == IEEE80211_M_MONITOR) {
1964 			if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1965 			     (IFF_UP | IFF_RUNNING))
1966 				rt2661_set_chan(sc, ic->ic_ibss_chan);
1967 			error = 0;
1968 		}
1969 		break;
1970 
1971 	default:
1972 		error = ieee80211_ioctl(ic, cmd, data);
1973 
1974 	}
1975 
1976 	if (error == ENETRESET) {
1977 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1978 		    (IFF_UP | IFF_RUNNING))
1979 			rt2661_init(ifp);
1980 		error = 0;
1981 	}
1982 
1983 	splx(s);
1984 
1985 	return error;
1986 }
1987 
1988 static void
1989 rt2661_bbp_write(struct rt2661_softc *sc, uint8_t reg, uint8_t val)
1990 {
1991 	uint32_t tmp;
1992 	int ntries;
1993 
1994 	for (ntries = 0; ntries < 100; ntries++) {
1995 		if (!(RAL_READ(sc, RT2661_PHY_CSR3) & RT2661_BBP_BUSY))
1996 			break;
1997 		DELAY(1);
1998 	}
1999 	if (ntries == 100) {
2000 		aprint_error_dev(&sc->sc_dev, "could not write to BBP\n");
2001 		return;
2002 	}
2003 
2004 	tmp = RT2661_BBP_BUSY | (reg & 0x7f) << 8 | val;
2005 	RAL_WRITE(sc, RT2661_PHY_CSR3, tmp);
2006 
2007 	DPRINTFN(15, ("BBP R%u <- 0x%02x\n", reg, val));
2008 }
2009 
2010 static uint8_t
2011 rt2661_bbp_read(struct rt2661_softc *sc, uint8_t reg)
2012 {
2013 	uint32_t val;
2014 	int ntries;
2015 
2016 	for (ntries = 0; ntries < 100; ntries++) {
2017 		if (!(RAL_READ(sc, RT2661_PHY_CSR3) & RT2661_BBP_BUSY))
2018 			break;
2019 		DELAY(1);
2020 	}
2021 	if (ntries == 100) {
2022 		aprint_error_dev(&sc->sc_dev, "could not read from BBP\n");
2023 		return 0;
2024 	}
2025 
2026 	val = RT2661_BBP_BUSY | RT2661_BBP_READ | reg << 8;
2027 	RAL_WRITE(sc, RT2661_PHY_CSR3, val);
2028 
2029 	for (ntries = 0; ntries < 100; ntries++) {
2030 		val = RAL_READ(sc, RT2661_PHY_CSR3);
2031 		if (!(val & RT2661_BBP_BUSY))
2032 			return val & 0xff;
2033 		DELAY(1);
2034 	}
2035 
2036 	aprint_error_dev(&sc->sc_dev, "could not read from BBP\n");
2037 	return 0;
2038 }
2039 
2040 static void
2041 rt2661_rf_write(struct rt2661_softc *sc, uint8_t reg, uint32_t val)
2042 {
2043 	uint32_t tmp;
2044 	int ntries;
2045 
2046 	for (ntries = 0; ntries < 100; ntries++) {
2047 		if (!(RAL_READ(sc, RT2661_PHY_CSR4) & RT2661_RF_BUSY))
2048 			break;
2049 		DELAY(1);
2050 	}
2051 	if (ntries == 100) {
2052 		aprint_error_dev(&sc->sc_dev, "could not write to RF\n");
2053 		return;
2054 	}
2055 	tmp = RT2661_RF_BUSY | RT2661_RF_21BIT | (val & 0x1fffff) << 2 |
2056 	    (reg & 3);
2057 	RAL_WRITE(sc, RT2661_PHY_CSR4, tmp);
2058 
2059 	/* remember last written value in sc */
2060 	sc->rf_regs[reg] = val;
2061 
2062 	DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0x1fffff));
2063 }
2064 
2065 static int
2066 rt2661_tx_cmd(struct rt2661_softc *sc, uint8_t cmd, uint16_t arg)
2067 {
2068 	if (RAL_READ(sc, RT2661_H2M_MAILBOX_CSR) & RT2661_H2M_BUSY)
2069 		return EIO;	/* there is already a command pending */
2070 
2071 	RAL_WRITE(sc, RT2661_H2M_MAILBOX_CSR,
2072 	    RT2661_H2M_BUSY | RT2661_TOKEN_NO_INTR << 16 | arg);
2073 
2074 	RAL_WRITE(sc, RT2661_HOST_CMD_CSR, RT2661_KICK_CMD | cmd);
2075 
2076 	return 0;
2077 }
2078 
2079 static void
2080 rt2661_select_antenna(struct rt2661_softc *sc)
2081 {
2082 	uint8_t bbp4, bbp77;
2083 	uint32_t tmp;
2084 
2085 	bbp4  = rt2661_bbp_read(sc,  4);
2086 	bbp77 = rt2661_bbp_read(sc, 77);
2087 
2088 	/* TBD */
2089 
2090 	/* make sure Rx is disabled before switching antenna */
2091 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2092 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX);
2093 
2094 	rt2661_bbp_write(sc,  4, bbp4);
2095 	rt2661_bbp_write(sc, 77, bbp77);
2096 
2097 	/* restore Rx filter */
2098 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2099 }
2100 
2101 /*
2102  * Enable multi-rate retries for frames sent at OFDM rates.
2103  * In 802.11b/g mode, allow fallback to CCK rates.
2104  */
2105 static void
2106 rt2661_enable_mrr(struct rt2661_softc *sc)
2107 {
2108 	struct ieee80211com *ic = &sc->sc_ic;
2109 	uint32_t tmp;
2110 
2111 	tmp = RAL_READ(sc, RT2661_TXRX_CSR4);
2112 
2113 	tmp &= ~RT2661_MRR_CCK_FALLBACK;
2114 	if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan))
2115 		tmp |= RT2661_MRR_CCK_FALLBACK;
2116 	tmp |= RT2661_MRR_ENABLED;
2117 
2118 	RAL_WRITE(sc, RT2661_TXRX_CSR4, tmp);
2119 }
2120 
2121 static void
2122 rt2661_set_txpreamble(struct rt2661_softc *sc)
2123 {
2124 	uint32_t tmp;
2125 
2126 	tmp = RAL_READ(sc, RT2661_TXRX_CSR4);
2127 
2128 	tmp &= ~RT2661_SHORT_PREAMBLE;
2129 	if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
2130 		tmp |= RT2661_SHORT_PREAMBLE;
2131 
2132 	RAL_WRITE(sc, RT2661_TXRX_CSR4, tmp);
2133 }
2134 
2135 static void
2136 rt2661_set_basicrates(struct rt2661_softc *sc,
2137     const struct ieee80211_rateset *rs)
2138 {
2139 #define RV(r)	((r) & IEEE80211_RATE_VAL)
2140 	uint32_t mask = 0;
2141 	uint8_t rate;
2142 	int i, j;
2143 
2144 	for (i = 0; i < rs->rs_nrates; i++) {
2145 		rate = rs->rs_rates[i];
2146 
2147 		if (!(rate & IEEE80211_RATE_BASIC))
2148 			continue;
2149 
2150 		/*
2151 		 * Find h/w rate index.  We know it exists because the rate
2152 		 * set has already been negotiated.
2153 		 */
2154 		for (j = 0; rt2661_rateset_11g.rs_rates[j] != RV(rate); j++);
2155 
2156 		mask |= 1 << j;
2157 	}
2158 
2159 	RAL_WRITE(sc, RT2661_TXRX_CSR5, mask);
2160 
2161 	DPRINTF(("Setting basic rate mask to 0x%x\n", mask));
2162 #undef RV
2163 }
2164 
2165 /*
2166  * Reprogram MAC/BBP to switch to a new band.  Values taken from the reference
2167  * driver.
2168  */
2169 static void
2170 rt2661_select_band(struct rt2661_softc *sc, struct ieee80211_channel *c)
2171 {
2172 	uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
2173 	uint32_t tmp;
2174 
2175 	/* update all BBP registers that depend on the band */
2176 	bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
2177 	bbp35 = 0x50; bbp97 = 0x48; bbp98  = 0x48;
2178 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2179 		bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
2180 		bbp35 += 0x10; bbp97 += 0x10; bbp98  += 0x10;
2181 	}
2182 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
2183 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
2184 		bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
2185 	}
2186 
2187 	sc->bbp17 = bbp17;
2188 	rt2661_bbp_write(sc,  17, bbp17);
2189 	rt2661_bbp_write(sc,  96, bbp96);
2190 	rt2661_bbp_write(sc, 104, bbp104);
2191 
2192 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
2193 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
2194 		rt2661_bbp_write(sc, 75, 0x80);
2195 		rt2661_bbp_write(sc, 86, 0x80);
2196 		rt2661_bbp_write(sc, 88, 0x80);
2197 	}
2198 
2199 	rt2661_bbp_write(sc, 35, bbp35);
2200 	rt2661_bbp_write(sc, 97, bbp97);
2201 	rt2661_bbp_write(sc, 98, bbp98);
2202 
2203 	tmp = RAL_READ(sc, RT2661_PHY_CSR0);
2204 	tmp &= ~(RT2661_PA_PE_2GHZ | RT2661_PA_PE_5GHZ);
2205 	if (IEEE80211_IS_CHAN_2GHZ(c))
2206 		tmp |= RT2661_PA_PE_2GHZ;
2207 	else
2208 		tmp |= RT2661_PA_PE_5GHZ;
2209 	RAL_WRITE(sc, RT2661_PHY_CSR0, tmp);
2210 
2211 	/* 802.11a uses a 16 microseconds short interframe space */
2212 	sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10;
2213 }
2214 
2215 static void
2216 rt2661_set_chan(struct rt2661_softc *sc, struct ieee80211_channel *c)
2217 {
2218 	struct ieee80211com *ic = &sc->sc_ic;
2219 	const struct rfprog *rfprog;
2220 	uint8_t bbp3, bbp94 = RT2661_BBPR94_DEFAULT;
2221 	int8_t power;
2222 	u_int i, chan;
2223 
2224 	chan = ieee80211_chan2ieee(ic, c);
2225 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
2226 		return;
2227 
2228 	/* select the appropriate RF settings based on what EEPROM says */
2229 	rfprog = (sc->rfprog == 0) ? rt2661_rf5225_1 : rt2661_rf5225_2;
2230 
2231 	/* find the settings for this channel (we know it exists) */
2232 	for (i = 0; rfprog[i].chan != chan; i++);
2233 
2234 	power = sc->txpow[i];
2235 	if (power < 0) {
2236 		bbp94 += power;
2237 		power = 0;
2238 	} else if (power > 31) {
2239 		bbp94 += power - 31;
2240 		power = 31;
2241 	}
2242 
2243 	/*
2244 	 * If we've yet to select a channel, or we are switching from the
2245 	 * 2GHz band to the 5GHz band or vice-versa, BBP registers need to
2246 	 * be reprogrammed.
2247 	 */
2248 	if (sc->sc_curchan == NULL || c->ic_flags != sc->sc_curchan->ic_flags) {
2249 		rt2661_select_band(sc, c);
2250 		rt2661_select_antenna(sc);
2251 	}
2252 	sc->sc_curchan = c;
2253 
2254 	rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1);
2255 	rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2);
2256 	rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7);
2257 	rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10);
2258 
2259 	DELAY(200);
2260 
2261 	rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1);
2262 	rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2);
2263 	rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7 | 1);
2264 	rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10);
2265 
2266 	DELAY(200);
2267 
2268 	rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1);
2269 	rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2);
2270 	rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7);
2271 	rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10);
2272 
2273 	/* enable smart mode for MIMO-capable RFs */
2274 	bbp3 = rt2661_bbp_read(sc, 3);
2275 
2276 	bbp3 &= ~RT2661_SMART_MODE;
2277 	if (sc->rf_rev == RT2661_RF_5325 || sc->rf_rev == RT2661_RF_2529)
2278 		bbp3 |= RT2661_SMART_MODE;
2279 
2280 	rt2661_bbp_write(sc, 3, bbp3);
2281 
2282 	if (bbp94 != RT2661_BBPR94_DEFAULT)
2283 		rt2661_bbp_write(sc, 94, bbp94);
2284 
2285 	/* 5GHz radio needs a 1ms delay here */
2286 	if (IEEE80211_IS_CHAN_5GHZ(c))
2287 		DELAY(1000);
2288 }
2289 
2290 static void
2291 rt2661_set_bssid(struct rt2661_softc *sc, const uint8_t *bssid)
2292 {
2293 	uint32_t tmp;
2294 
2295 	tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
2296 	RAL_WRITE(sc, RT2661_MAC_CSR4, tmp);
2297 
2298 	tmp = bssid[4] | bssid[5] << 8 | RT2661_ONE_BSSID << 16;
2299 	RAL_WRITE(sc, RT2661_MAC_CSR5, tmp);
2300 }
2301 
2302 static void
2303 rt2661_set_macaddr(struct rt2661_softc *sc, const uint8_t *addr)
2304 {
2305 	uint32_t tmp;
2306 
2307 	tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
2308 	RAL_WRITE(sc, RT2661_MAC_CSR2, tmp);
2309 
2310 	tmp = addr[4] | addr[5] << 8 | 0xff << 16;
2311 	RAL_WRITE(sc, RT2661_MAC_CSR3, tmp);
2312 }
2313 
2314 static void
2315 rt2661_update_promisc(struct rt2661_softc *sc)
2316 {
2317 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
2318 	uint32_t tmp;
2319 
2320 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2321 
2322 	tmp &= ~RT2661_DROP_NOT_TO_ME;
2323 	if (!(ifp->if_flags & IFF_PROMISC))
2324 		tmp |= RT2661_DROP_NOT_TO_ME;
2325 
2326 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2327 
2328 	DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
2329 	    "entering" : "leaving"));
2330 }
2331 
2332 #if 0
2333 /*
2334  * Update QoS (802.11e) settings for each h/w Tx ring.
2335  */
2336 static int
2337 rt2661_wme_update(struct ieee80211com *ic)
2338 {
2339 	struct rt2661_softc *sc = ic->ic_ifp->if_softc;
2340 	const struct wmeParams *wmep;
2341 
2342 	wmep = ic->ic_wme.wme_chanParams.cap_wmeParams;
2343 
2344 	/* XXX: not sure about shifts. */
2345 	/* XXX: the reference driver plays with AC_VI settings too. */
2346 
2347 	/* update TxOp */
2348 	RAL_WRITE(sc, RT2661_AC_TXOP_CSR0,
2349 	    wmep[WME_AC_BE].wmep_txopLimit << 16 |
2350 	    wmep[WME_AC_BK].wmep_txopLimit);
2351 	RAL_WRITE(sc, RT2661_AC_TXOP_CSR1,
2352 	    wmep[WME_AC_VI].wmep_txopLimit << 16 |
2353 	    wmep[WME_AC_VO].wmep_txopLimit);
2354 
2355 	/* update CWmin */
2356 	RAL_WRITE(sc, RT2661_CWMIN_CSR,
2357 	    wmep[WME_AC_BE].wmep_logcwmin << 12 |
2358 	    wmep[WME_AC_BK].wmep_logcwmin <<  8 |
2359 	    wmep[WME_AC_VI].wmep_logcwmin <<  4 |
2360 	    wmep[WME_AC_VO].wmep_logcwmin);
2361 
2362 	/* update CWmax */
2363 	RAL_WRITE(sc, RT2661_CWMAX_CSR,
2364 	    wmep[WME_AC_BE].wmep_logcwmax << 12 |
2365 	    wmep[WME_AC_BK].wmep_logcwmax <<  8 |
2366 	    wmep[WME_AC_VI].wmep_logcwmax <<  4 |
2367 	    wmep[WME_AC_VO].wmep_logcwmax);
2368 
2369 	/* update Aifsn */
2370 	RAL_WRITE(sc, RT2661_AIFSN_CSR,
2371 	    wmep[WME_AC_BE].wmep_aifsn << 12 |
2372 	    wmep[WME_AC_BK].wmep_aifsn <<  8 |
2373 	    wmep[WME_AC_VI].wmep_aifsn <<  4 |
2374 	    wmep[WME_AC_VO].wmep_aifsn);
2375 
2376 	return 0;
2377 }
2378 #endif
2379 
2380 static void
2381 rt2661_updateslot(struct ifnet *ifp)
2382 {
2383 	struct rt2661_softc *sc = ifp->if_softc;
2384 	struct ieee80211com *ic = &sc->sc_ic;
2385 
2386 	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2387 		/*
2388 		 * In HostAP mode, we defer setting of new slot time until
2389 		 * updated ERP Information Element has propagated to all
2390 		 * associated STAs.
2391 		 */
2392 		sc->sc_flags |= RT2661_UPDATE_SLOT;
2393 	} else
2394 		rt2661_set_slottime(sc);
2395 }
2396 
2397 static void
2398 rt2661_set_slottime(struct rt2661_softc *sc)
2399 {
2400 	struct ieee80211com *ic = &sc->sc_ic;
2401 	uint8_t slottime;
2402 	uint32_t tmp;
2403 
2404 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
2405 
2406 	tmp = RAL_READ(sc, RT2661_MAC_CSR9);
2407 	tmp = (tmp & ~0xff) | slottime;
2408 	RAL_WRITE(sc, RT2661_MAC_CSR9, tmp);
2409 
2410 	DPRINTF(("setting slot time to %uus\n", slottime));
2411 }
2412 
2413 static const char *
2414 rt2661_get_rf(int rev)
2415 {
2416 	switch (rev) {
2417 	case RT2661_RF_5225:	return "RT5225";
2418 	case RT2661_RF_5325:	return "RT5325 (MIMO XR)";
2419 	case RT2661_RF_2527:	return "RT2527";
2420 	case RT2661_RF_2529:	return "RT2529 (MIMO XR)";
2421 	default:		return "unknown";
2422 	}
2423 }
2424 
2425 static void
2426 rt2661_read_eeprom(struct rt2661_softc *sc)
2427 {
2428 	struct ieee80211com *ic = &sc->sc_ic;
2429 	uint16_t val;
2430 	int i;
2431 
2432 	/* read MAC address */
2433 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC01);
2434 	ic->ic_myaddr[0] = val & 0xff;
2435 	ic->ic_myaddr[1] = val >> 8;
2436 
2437 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC23);
2438 	ic->ic_myaddr[2] = val & 0xff;
2439 	ic->ic_myaddr[3] = val >> 8;
2440 
2441 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC45);
2442 	ic->ic_myaddr[4] = val & 0xff;
2443 	ic->ic_myaddr[5] = val >> 8;
2444 
2445 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_ANTENNA);
2446 	/* XXX: test if different from 0xffff? */
2447 	sc->rf_rev   = (val >> 11) & 0x1f;
2448 	sc->hw_radio = (val >> 10) & 0x1;
2449 	sc->rx_ant   = (val >> 4)  & 0x3;
2450 	sc->tx_ant   = (val >> 2)  & 0x3;
2451 	sc->nb_ant   = val & 0x3;
2452 
2453 	DPRINTF(("RF revision=%d\n", sc->rf_rev));
2454 
2455 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_CONFIG2);
2456 	sc->ext_5ghz_lna = (val >> 6) & 0x1;
2457 	sc->ext_2ghz_lna = (val >> 4) & 0x1;
2458 
2459 	DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
2460 	    sc->ext_2ghz_lna, sc->ext_5ghz_lna));
2461 
2462 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_RSSI_2GHZ_OFFSET);
2463 	if ((val & 0xff) != 0xff)
2464 		sc->rssi_2ghz_corr = (int8_t)(val & 0xff);	/* signed */
2465 
2466 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_RSSI_5GHZ_OFFSET);
2467 	if ((val & 0xff) != 0xff)
2468 		sc->rssi_5ghz_corr = (int8_t)(val & 0xff);	/* signed */
2469 
2470 	/* adjust RSSI correction for external low-noise amplifier */
2471 	if (sc->ext_2ghz_lna)
2472 		sc->rssi_2ghz_corr -= 14;
2473 	if (sc->ext_5ghz_lna)
2474 		sc->rssi_5ghz_corr -= 14;
2475 
2476 	DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
2477 	    sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
2478 
2479 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_FREQ_OFFSET);
2480 	if ((val >> 8) != 0xff)
2481 		sc->rfprog = (val >> 8) & 0x3;
2482 	if ((val & 0xff) != 0xff)
2483 		sc->rffreq = val & 0xff;
2484 
2485 	DPRINTF(("RF prog=%d\nRF freq=%d\n", sc->rfprog, sc->rffreq));
2486 
2487 	/* read Tx power for all a/b/g channels */
2488 	for (i = 0; i < 19; i++) {
2489 		val = rt2661_eeprom_read(sc, RT2661_EEPROM_TXPOWER + i);
2490 		sc->txpow[i * 2] = (int8_t)(val >> 8);		/* signed */
2491 		DPRINTF(("Channel=%d Tx power=%d\n",
2492 		    rt2661_rf5225_1[i * 2].chan, sc->txpow[i * 2]));
2493 		sc->txpow[i * 2 + 1] = (int8_t)(val & 0xff);	/* signed */
2494 		DPRINTF(("Channel=%d Tx power=%d\n",
2495 		    rt2661_rf5225_1[i * 2 + 1].chan, sc->txpow[i * 2 + 1]));
2496 	}
2497 
2498 	/* read vendor-specific BBP values */
2499 	for (i = 0; i < 16; i++) {
2500 		val = rt2661_eeprom_read(sc, RT2661_EEPROM_BBP_BASE + i);
2501 		if (val == 0 || val == 0xffff)
2502 			continue;	/* skip invalid entries */
2503 		sc->bbp_prom[i].reg = val >> 8;
2504 		sc->bbp_prom[i].val = val & 0xff;
2505 		DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
2506 		    sc->bbp_prom[i].val));
2507 	}
2508 }
2509 
2510 static int
2511 rt2661_bbp_init(struct rt2661_softc *sc)
2512 {
2513 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
2514 	int i, ntries;
2515 	uint8_t val;
2516 
2517 	/* wait for BBP to be ready */
2518 	for (ntries = 0; ntries < 100; ntries++) {
2519 		val = rt2661_bbp_read(sc, 0);
2520 		if (val != 0 && val != 0xff)
2521 			break;
2522 		DELAY(100);
2523 	}
2524 	if (ntries == 100) {
2525 		aprint_error_dev(&sc->sc_dev, "timeout waiting for BBP\n");
2526 		return EIO;
2527 	}
2528 
2529 	/* initialize BBP registers to default values */
2530 	for (i = 0; i < N(rt2661_def_bbp); i++) {
2531 		rt2661_bbp_write(sc, rt2661_def_bbp[i].reg,
2532 		    rt2661_def_bbp[i].val);
2533 	}
2534 
2535 	/* write vendor-specific BBP values (from EEPROM) */
2536 	for (i = 0; i < 16; i++) {
2537 		if (sc->bbp_prom[i].reg == 0)
2538 			continue;
2539 		rt2661_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2540 	}
2541 
2542 	return 0;
2543 #undef N
2544 }
2545 
2546 static int
2547 rt2661_init(struct ifnet *ifp)
2548 {
2549 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
2550 	struct rt2661_softc *sc = ifp->if_softc;
2551 	struct ieee80211com *ic = &sc->sc_ic;
2552 	const char *name = NULL;	/* make lint happy */
2553 	uint8_t *ucode;
2554 	size_t size;
2555 	uint32_t tmp, star[3];
2556 	int i, ntries;
2557 	firmware_handle_t fh;
2558 
2559 	/* for CardBus, power on the socket */
2560 	if (!(sc->sc_flags & RT2661_ENABLED)) {
2561 		if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
2562 			aprint_error_dev(&sc->sc_dev, "could not enable device\n");
2563 			return EIO;
2564 		}
2565 		sc->sc_flags |= RT2661_ENABLED;
2566 	}
2567 
2568 	rt2661_stop(ifp, 0);
2569 
2570 	if (!(sc->sc_flags & RT2661_FWLOADED)) {
2571 		switch (sc->sc_id) {
2572 		case PCI_PRODUCT_RALINK_RT2561:
2573 			name = "ral-rt2561";
2574 			break;
2575 		case PCI_PRODUCT_RALINK_RT2561S:
2576 			name = "ral-rt2561s";
2577 			break;
2578 		case PCI_PRODUCT_RALINK_RT2661:
2579 			name = "ral-rt2661";
2580 			break;
2581 		}
2582 
2583 		if (firmware_open("ral", name, &fh) != 0) {
2584 			aprint_error_dev(&sc->sc_dev, "could not open microcode %s\n", name);
2585 			rt2661_stop(ifp, 1);
2586 			return EIO;
2587 		}
2588 
2589 		size = firmware_get_size(fh);
2590 		if (!(ucode = firmware_malloc(size))) {
2591 			aprint_error_dev(&sc->sc_dev, "could not alloc microcode memory\n");
2592 			firmware_close(fh);
2593 			rt2661_stop(ifp, 1);
2594 			return ENOMEM;
2595 		}
2596 
2597 		if (firmware_read(fh, 0, ucode, size) != 0) {
2598 			aprint_error_dev(&sc->sc_dev, "could not read microcode %s\n", name);
2599 			firmware_free(ucode, 0);
2600 			firmware_close(fh);
2601 			rt2661_stop(ifp, 1);
2602 			return EIO;
2603 		}
2604 
2605 		if (rt2661_load_microcode(sc, ucode, size) != 0) {
2606 			aprint_error_dev(&sc->sc_dev, "could not load 8051 microcode\n");
2607 			firmware_free(ucode, 0);
2608 			firmware_close(fh);
2609 			rt2661_stop(ifp, 1);
2610 			return EIO;
2611 		}
2612 
2613 		firmware_free(ucode, 0);
2614 		firmware_close(fh);
2615 		sc->sc_flags |= RT2661_FWLOADED;
2616 	}
2617 
2618 	/* initialize Tx rings */
2619 	RAL_WRITE(sc, RT2661_AC1_BASE_CSR, sc->txq[1].physaddr);
2620 	RAL_WRITE(sc, RT2661_AC0_BASE_CSR, sc->txq[0].physaddr);
2621 	RAL_WRITE(sc, RT2661_AC2_BASE_CSR, sc->txq[2].physaddr);
2622 	RAL_WRITE(sc, RT2661_AC3_BASE_CSR, sc->txq[3].physaddr);
2623 
2624 	/* initialize Mgt ring */
2625 	RAL_WRITE(sc, RT2661_MGT_BASE_CSR, sc->mgtq.physaddr);
2626 
2627 	/* initialize Rx ring */
2628 	RAL_WRITE(sc, RT2661_RX_BASE_CSR, sc->rxq.physaddr);
2629 
2630 	/* initialize Tx rings sizes */
2631 	RAL_WRITE(sc, RT2661_TX_RING_CSR0,
2632 	    RT2661_TX_RING_COUNT << 24 |
2633 	    RT2661_TX_RING_COUNT << 16 |
2634 	    RT2661_TX_RING_COUNT <<  8 |
2635 	    RT2661_TX_RING_COUNT);
2636 
2637 	RAL_WRITE(sc, RT2661_TX_RING_CSR1,
2638 	    RT2661_TX_DESC_WSIZE << 16 |
2639 	    RT2661_TX_RING_COUNT <<  8 |	/* XXX: HCCA ring unused */
2640 	    RT2661_MGT_RING_COUNT);
2641 
2642 	/* initialize Rx rings */
2643 	RAL_WRITE(sc, RT2661_RX_RING_CSR,
2644 	    RT2661_RX_DESC_BACK  << 16 |
2645 	    RT2661_RX_DESC_WSIZE <<  8 |
2646 	    RT2661_RX_RING_COUNT);
2647 
2648 	/* XXX: some magic here */
2649 	RAL_WRITE(sc, RT2661_TX_DMA_DST_CSR, 0xaa);
2650 
2651 	/* load base addresses of all 5 Tx rings (4 data + 1 mgt) */
2652 	RAL_WRITE(sc, RT2661_LOAD_TX_RING_CSR, 0x1f);
2653 
2654 	/* load base address of Rx ring */
2655 	RAL_WRITE(sc, RT2661_RX_CNTL_CSR, 2);
2656 
2657 	/* initialize MAC registers to default values */
2658 	for (i = 0; i < N(rt2661_def_mac); i++)
2659 		RAL_WRITE(sc, rt2661_def_mac[i].reg, rt2661_def_mac[i].val);
2660 
2661 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2662 	rt2661_set_macaddr(sc, ic->ic_myaddr);
2663 
2664 	/* set host ready */
2665 	RAL_WRITE(sc, RT2661_MAC_CSR1, 3);
2666 	RAL_WRITE(sc, RT2661_MAC_CSR1, 0);
2667 
2668 	/* wait for BBP/RF to wakeup */
2669 	for (ntries = 0; ntries < 1000; ntries++) {
2670 		if (RAL_READ(sc, RT2661_MAC_CSR12) & 8)
2671 			break;
2672 		DELAY(1000);
2673 	}
2674 	if (ntries == 1000) {
2675 		printf("timeout waiting for BBP/RF to wakeup\n");
2676 		rt2661_stop(ifp, 1);
2677 		return EIO;
2678 	}
2679 
2680 	if (rt2661_bbp_init(sc) != 0) {
2681 		rt2661_stop(ifp, 1);
2682 		return EIO;
2683 	}
2684 
2685 	/* select default channel */
2686 	sc->sc_curchan = ic->ic_curchan;
2687 	rt2661_select_band(sc, sc->sc_curchan);
2688 	rt2661_select_antenna(sc);
2689 	rt2661_set_chan(sc, sc->sc_curchan);
2690 
2691 	/* update Rx filter */
2692 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0) & 0xffff;
2693 
2694 	tmp |= RT2661_DROP_PHY_ERROR | RT2661_DROP_CRC_ERROR;
2695 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2696 		tmp |= RT2661_DROP_CTL | RT2661_DROP_VER_ERROR |
2697 		       RT2661_DROP_ACKCTS;
2698 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2699 			tmp |= RT2661_DROP_TODS;
2700 		if (!(ifp->if_flags & IFF_PROMISC))
2701 			tmp |= RT2661_DROP_NOT_TO_ME;
2702 	}
2703 
2704 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2705 
2706 	/* clear STA registers */
2707 	RAL_READ_REGION_4(sc, RT2661_STA_CSR0, star, N(star));
2708 
2709 	/* initialize ASIC */
2710 	RAL_WRITE(sc, RT2661_MAC_CSR1, 4);
2711 
2712 	/* clear any pending interrupt */
2713 	RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, 0xffffffff);
2714 
2715 	/* enable interrupts */
2716 	RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0x0000ff10);
2717 	RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0);
2718 
2719 	/* kick Rx */
2720 	RAL_WRITE(sc, RT2661_RX_CNTL_CSR, 1);
2721 
2722 	ifp->if_flags &= ~IFF_OACTIVE;
2723 	ifp->if_flags |= IFF_RUNNING;
2724 
2725 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2726 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
2727 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2728 	} else
2729 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2730 
2731 	return 0;
2732 #undef N
2733 }
2734 
2735 static void
2736 rt2661_stop(struct ifnet *ifp, int disable)
2737 {
2738 	struct rt2661_softc *sc = ifp->if_softc;
2739 	struct ieee80211com *ic = &sc->sc_ic;
2740 	uint32_t tmp;
2741 
2742 	sc->sc_tx_timer = 0;
2743 	ifp->if_timer = 0;
2744 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2745 
2746 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);	/* free all nodes */
2747 
2748 	/* abort Tx (for all 5 Tx rings) */
2749 	RAL_WRITE(sc, RT2661_TX_CNTL_CSR, 0x1f << 16);
2750 
2751 	/* disable Rx (value remains after reset!) */
2752 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2753 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX);
2754 
2755 	/* reset ASIC */
2756 	RAL_WRITE(sc, RT2661_MAC_CSR1, 3);
2757 	RAL_WRITE(sc, RT2661_MAC_CSR1, 0);
2758 
2759 	/* disable interrupts */
2760 	RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0xffffff7f);
2761 	RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0xffffffff);
2762 
2763 	/* clear any pending interrupt */
2764 	RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, 0xffffffff);
2765 	RAL_WRITE(sc, RT2661_MCU_INT_SOURCE_CSR, 0xffffffff);
2766 
2767 	/* reset Tx and Rx rings */
2768 	rt2661_reset_tx_ring(sc, &sc->txq[0]);
2769 	rt2661_reset_tx_ring(sc, &sc->txq[1]);
2770 	rt2661_reset_tx_ring(sc, &sc->txq[2]);
2771 	rt2661_reset_tx_ring(sc, &sc->txq[3]);
2772 	rt2661_reset_tx_ring(sc, &sc->mgtq);
2773 	rt2661_reset_rx_ring(sc, &sc->rxq);
2774 
2775 	/* for CardBus, power down the socket */
2776 	if (disable && sc->sc_disable != NULL) {
2777 		if (sc->sc_flags & RT2661_ENABLED) {
2778 			(*sc->sc_disable)(sc);
2779 			sc->sc_flags &= ~(RT2661_ENABLED | RT2661_FWLOADED);
2780 		}
2781 	}
2782 }
2783 
2784 static int
2785 rt2661_load_microcode(struct rt2661_softc *sc, const uint8_t *ucode, int size)
2786 {
2787 	int ntries;
2788 
2789 	/* reset 8051 */
2790 	RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET);
2791 
2792 	/* cancel any pending Host to MCU command */
2793 	RAL_WRITE(sc, RT2661_H2M_MAILBOX_CSR, 0);
2794 	RAL_WRITE(sc, RT2661_M2H_CMD_DONE_CSR, 0xffffffff);
2795 	RAL_WRITE(sc, RT2661_HOST_CMD_CSR, 0);
2796 
2797 	/* write 8051's microcode */
2798 	RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET | RT2661_MCU_SEL);
2799 	RAL_WRITE_REGION_1(sc, RT2661_MCU_CODE_BASE, ucode, size);
2800 	RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET);
2801 
2802 	/* kick 8051's ass */
2803 	RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, 0);
2804 
2805 	/* wait for 8051 to initialize */
2806 	for (ntries = 0; ntries < 500; ntries++) {
2807 		if (RAL_READ(sc, RT2661_MCU_CNTL_CSR) & RT2661_MCU_READY)
2808 			break;
2809 		DELAY(100);
2810 	}
2811 	if (ntries == 500) {
2812 		printf("timeout waiting for MCU to initialize\n");
2813 		return EIO;
2814 	}
2815 	return 0;
2816 }
2817 
2818 /*
2819  * Dynamically tune Rx sensitivity (BBP register 17) based on average RSSI and
2820  * false CCA count.  This function is called periodically (every seconds) when
2821  * in the RUN state.  Values taken from the reference driver.
2822  */
2823 static void
2824 rt2661_rx_tune(struct rt2661_softc *sc)
2825 {
2826 	uint8_t bbp17;
2827 	uint16_t cca;
2828 	int lo, hi, dbm;
2829 
2830 	/*
2831 	 * Tuning range depends on operating band and on the presence of an
2832 	 * external low-noise amplifier.
2833 	 */
2834 	lo = 0x20;
2835 	if (IEEE80211_IS_CHAN_5GHZ(sc->sc_curchan))
2836 		lo += 0x08;
2837 	if ((IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan) && sc->ext_2ghz_lna) ||
2838 	    (IEEE80211_IS_CHAN_5GHZ(sc->sc_curchan) && sc->ext_5ghz_lna))
2839 		lo += 0x10;
2840 	hi = lo + 0x20;
2841 
2842 	dbm = sc->avg_rssi;
2843 	/* retrieve false CCA count since last call (clear on read) */
2844 	cca = RAL_READ(sc, RT2661_STA_CSR1) & 0xffff;
2845 
2846 	DPRINTFN(2, ("RSSI=%ddBm false CCA=%d\n", dbm, cca));
2847 
2848 	if (dbm < -74) {
2849 		/* very bad RSSI, tune using false CCA count */
2850 		bbp17 = sc->bbp17; /* current value */
2851 
2852 		hi -= 2 * (-74 - dbm);
2853 		if (hi < lo)
2854 			hi = lo;
2855 
2856 		if (bbp17 > hi)
2857 			bbp17 = hi;
2858 		else if (cca > 512)
2859 			bbp17 = min(bbp17 + 1, hi);
2860 		else if (cca < 100)
2861 			bbp17 = max(bbp17 - 1, lo);
2862 
2863 	} else if (dbm < -66) {
2864 		bbp17 = lo + 0x08;
2865 	} else if (dbm < -58) {
2866 		bbp17 = lo + 0x10;
2867 	} else if (dbm < -35) {
2868 		bbp17 = hi;
2869 	} else {	/* very good RSSI >= -35dBm */
2870 		bbp17 = 0x60;	/* very low sensitivity */
2871 	}
2872 
2873 	if (bbp17 != sc->bbp17) {
2874 		DPRINTF(("BBP17 %x->%x\n", sc->bbp17, bbp17));
2875 		rt2661_bbp_write(sc, 17, bbp17);
2876 		sc->bbp17 = bbp17;
2877 	}
2878 }
2879 
2880 #ifdef notyet
2881 /*
2882  * Enter/Leave radar detection mode.
2883  * This is for 802.11h additional regulatory domains.
2884  */
2885 static void
2886 rt2661_radar_start(struct rt2661_softc *sc)
2887 {
2888 	uint32_t tmp;
2889 
2890 	/* disable Rx */
2891 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2892 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX);
2893 
2894 	rt2661_bbp_write(sc, 82, 0x20);
2895 	rt2661_bbp_write(sc, 83, 0x00);
2896 	rt2661_bbp_write(sc, 84, 0x40);
2897 
2898 	/* save current BBP registers values */
2899 	sc->bbp18 = rt2661_bbp_read(sc, 18);
2900 	sc->bbp21 = rt2661_bbp_read(sc, 21);
2901 	sc->bbp22 = rt2661_bbp_read(sc, 22);
2902 	sc->bbp16 = rt2661_bbp_read(sc, 16);
2903 	sc->bbp17 = rt2661_bbp_read(sc, 17);
2904 	sc->bbp64 = rt2661_bbp_read(sc, 64);
2905 
2906 	rt2661_bbp_write(sc, 18, 0xff);
2907 	rt2661_bbp_write(sc, 21, 0x3f);
2908 	rt2661_bbp_write(sc, 22, 0x3f);
2909 	rt2661_bbp_write(sc, 16, 0xbd);
2910 	rt2661_bbp_write(sc, 17, sc->ext_5ghz_lna ? 0x44 : 0x34);
2911 	rt2661_bbp_write(sc, 64, 0x21);
2912 
2913 	/* restore Rx filter */
2914 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2915 }
2916 
2917 static int
2918 rt2661_radar_stop(struct rt2661_softc *sc)
2919 {
2920 	uint8_t bbp66;
2921 
2922 	/* read radar detection result */
2923 	bbp66 = rt2661_bbp_read(sc, 66);
2924 
2925 	/* restore BBP registers values */
2926 	rt2661_bbp_write(sc, 16, sc->bbp16);
2927 	rt2661_bbp_write(sc, 17, sc->bbp17);
2928 	rt2661_bbp_write(sc, 18, sc->bbp18);
2929 	rt2661_bbp_write(sc, 21, sc->bbp21);
2930 	rt2661_bbp_write(sc, 22, sc->bbp22);
2931 	rt2661_bbp_write(sc, 64, sc->bbp64);
2932 
2933 	return bbp66 == 1;
2934 }
2935 #endif
2936 
2937 static int
2938 rt2661_prepare_beacon(struct rt2661_softc *sc)
2939 {
2940 	struct ieee80211com *ic = &sc->sc_ic;
2941 	struct ieee80211_node *ni = ic->ic_bss;
2942 	struct rt2661_tx_desc desc;
2943 	struct mbuf *m0;
2944 	struct ieee80211_beacon_offsets bo;
2945 	int rate;
2946 
2947 	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2948 	if (m0 == NULL) {
2949 		aprint_error_dev(&sc->sc_dev, "could not allocate beacon frame\n");
2950 		return ENOBUFS;
2951 	}
2952 
2953 	/* send beacons at the lowest available rate */
2954 	rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
2955 
2956 	rt2661_setup_tx_desc(sc, &desc, RT2661_TX_TIMESTAMP, RT2661_TX_HWSEQ,
2957 	    m0->m_pkthdr.len, rate, NULL, 0, RT2661_QID_MGT);
2958 
2959 	/* copy the first 24 bytes of Tx descriptor into NIC memory */
2960 	RAL_WRITE_REGION_1(sc, RT2661_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
2961 
2962 	/* copy beacon header and payload into NIC memory */
2963 	RAL_WRITE_REGION_1(sc, RT2661_HW_BEACON_BASE0 + 24,
2964 	    mtod(m0, uint8_t *), m0->m_pkthdr.len);
2965 
2966 	m_freem(m0);
2967 
2968 	/*
2969 	 * Store offset of ERP Information Element so that we can update it
2970 	 * dynamically when the slot time changes.
2971 	 * XXX: this is ugly since it depends on how net80211 builds beacon
2972 	 * frames but ieee80211_beacon_alloc() doesn't store offsets for us.
2973 	 */
2974 	if (ic->ic_curmode == IEEE80211_MODE_11G) {
2975 		sc->erp_csr =
2976 		    RT2661_HW_BEACON_BASE0 + 24 +
2977 		    sizeof (struct ieee80211_frame) +
2978 		    8 + 2 + 2 + 2 + ni->ni_esslen +
2979 		    2 + min(ni->ni_rates.rs_nrates, IEEE80211_RATE_SIZE) +
2980 		    2 + 1 +
2981 		    ((ic->ic_opmode == IEEE80211_M_IBSS) ? 4 : 6) +
2982 		    2;
2983 	}
2984 
2985 	return 0;
2986 }
2987 
2988 /*
2989  * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
2990  * and HostAP operating modes.
2991  */
2992 static void
2993 rt2661_enable_tsf_sync(struct rt2661_softc *sc)
2994 {
2995 	struct ieee80211com *ic = &sc->sc_ic;
2996 	uint32_t tmp;
2997 
2998 	if (ic->ic_opmode != IEEE80211_M_STA) {
2999 		/*
3000 		 * Change default 16ms TBTT adjustment to 8ms.
3001 		 * Must be done before enabling beacon generation.
3002 		 */
3003 		RAL_WRITE(sc, RT2661_TXRX_CSR10, 1 << 12 | 8);
3004 	}
3005 
3006 	tmp = RAL_READ(sc, RT2661_TXRX_CSR9) & 0xff000000;
3007 
3008 	/* set beacon interval (in 1/16ms unit) */
3009 	tmp |= ic->ic_bss->ni_intval * 16;
3010 
3011 	tmp |= RT2661_TSF_TICKING | RT2661_ENABLE_TBTT;
3012 	if (ic->ic_opmode == IEEE80211_M_STA)
3013 		tmp |= RT2661_TSF_MODE(1);
3014 	else
3015 		tmp |= RT2661_TSF_MODE(2) | RT2661_GENERATE_BEACON;
3016 
3017 	RAL_WRITE(sc, RT2661_TXRX_CSR9, tmp);
3018 }
3019 
3020 /*
3021  * Retrieve the "Received Signal Strength Indicator" from the raw values
3022  * contained in Rx descriptors.  The computation depends on which band the
3023  * frame was received.  Correction values taken from the reference driver.
3024  */
3025 static int
3026 rt2661_get_rssi(struct rt2661_softc *sc, uint8_t raw)
3027 {
3028 	int lna, agc, rssi;
3029 
3030 	lna = (raw >> 5) & 0x3;
3031 	agc = raw & 0x1f;
3032 
3033 	rssi = 2 * agc;
3034 
3035 	if (IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan)) {
3036 		rssi += sc->rssi_2ghz_corr;
3037 
3038 		if (lna == 1)
3039 			rssi -= 64;
3040 		else if (lna == 2)
3041 			rssi -= 74;
3042 		else if (lna == 3)
3043 			rssi -= 90;
3044 	} else {
3045 		rssi += sc->rssi_5ghz_corr;
3046 
3047 		if (lna == 1)
3048 			rssi -= 64;
3049 		else if (lna == 2)
3050 			rssi -= 86;
3051 		else if (lna == 3)
3052 			rssi -= 100;
3053 	}
3054 	return rssi;
3055 }
3056