xref: /netbsd-src/sys/dev/ic/rt2661.c (revision 267197ec1eebfcb9810ea27a89625b6ddf68e3e7)
1 /*	$NetBSD: rt2661.c,v 1.21 2007/12/09 20:27:58 jmcneill Exp $	*/
2 /*	$OpenBSD: rt2661.c,v 1.17 2006/05/01 08:41:11 damien Exp $	*/
3 /*	$FreeBSD: rt2560.c,v 1.5 2006/06/02 19:59:31 csjp Exp $	*/
4 
5 /*-
6  * Copyright (c) 2006
7  *	Damien Bergamini <damien.bergamini@free.fr>
8  *
9  * Permission to use, copy, modify, and distribute this software for any
10  * purpose with or without fee is hereby granted, provided that the above
11  * copyright notice and this permission notice appear in all copies.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20  */
21 
22 /*-
23  * Ralink Technology RT2561, RT2561S and RT2661 chipset driver
24  * http://www.ralinktech.com/
25  */
26 
27 #include <sys/cdefs.h>
28 __KERNEL_RCSID(0, "$NetBSD: rt2661.c,v 1.21 2007/12/09 20:27:58 jmcneill Exp $");
29 
30 #include "bpfilter.h"
31 
32 #include <sys/param.h>
33 #include <sys/sockio.h>
34 #include <sys/sysctl.h>
35 #include <sys/mbuf.h>
36 #include <sys/kernel.h>
37 #include <sys/socket.h>
38 #include <sys/systm.h>
39 #include <sys/malloc.h>
40 #include <sys/callout.h>
41 #include <sys/conf.h>
42 #include <sys/device.h>
43 
44 #include <sys/bus.h>
45 #include <machine/endian.h>
46 #include <sys/intr.h>
47 
48 #if NBPFILTER > 0
49 #include <net/bpf.h>
50 #endif
51 #include <net/if.h>
52 #include <net/if_arp.h>
53 #include <net/if_dl.h>
54 #include <net/if_media.h>
55 #include <net/if_types.h>
56 #include <net/if_ether.h>
57 
58 #include <netinet/in.h>
59 #include <netinet/in_systm.h>
60 #include <netinet/in_var.h>
61 #include <netinet/ip.h>
62 
63 #include <net80211/ieee80211_var.h>
64 #include <net80211/ieee80211_rssadapt.h>
65 #include <net80211/ieee80211_radiotap.h>
66 
67 #include <dev/ic/rt2661reg.h>
68 #include <dev/ic/rt2661var.h>
69 
70 #include <dev/pci/pcireg.h>
71 #include <dev/pci/pcivar.h>
72 #include <dev/pci/pcidevs.h>
73 
74 #include <dev/firmload.h>
75 
76 #ifdef RAL_DEBUG
77 #define DPRINTF(x)	do { if (rt2661_debug > 0) printf x; } while (0)
78 #define DPRINTFN(n, x)	do { if (rt2661_debug >= (n)) printf x; } while (0)
79 int rt2661_debug = 0;
80 #else
81 #define DPRINTF(x)
82 #define DPRINTFN(n, x)
83 #endif
84 
85 static int	rt2661_alloc_tx_ring(struct rt2661_softc *,
86 		    struct rt2661_tx_ring *, int);
87 static void	rt2661_reset_tx_ring(struct rt2661_softc *,
88 		    struct rt2661_tx_ring *);
89 static void	rt2661_free_tx_ring(struct rt2661_softc *,
90 		    struct rt2661_tx_ring *);
91 static int	rt2661_alloc_rx_ring(struct rt2661_softc *,
92 		    struct rt2661_rx_ring *, int);
93 static void	rt2661_reset_rx_ring(struct rt2661_softc *,
94 		    struct rt2661_rx_ring *);
95 static void	rt2661_free_rx_ring(struct rt2661_softc *,
96 		    struct rt2661_rx_ring *);
97 static struct ieee80211_node *
98 		rt2661_node_alloc(struct ieee80211_node_table *);
99 static int	rt2661_media_change(struct ifnet *);
100 static void	rt2661_next_scan(void *);
101 static void	rt2661_iter_func(void *, struct ieee80211_node *);
102 static void	rt2661_rssadapt_updatestats(void *);
103 static int	rt2661_newstate(struct ieee80211com *, enum ieee80211_state,
104 		    int);
105 static uint16_t	rt2661_eeprom_read(struct rt2661_softc *, uint8_t);
106 static void	rt2661_tx_intr(struct rt2661_softc *);
107 static void	rt2661_tx_dma_intr(struct rt2661_softc *,
108 		    struct rt2661_tx_ring *);
109 static void	rt2661_rx_intr(struct rt2661_softc *);
110 static void	rt2661_mcu_beacon_expire(struct rt2661_softc *);
111 static void	rt2661_mcu_wakeup(struct rt2661_softc *);
112 static void	rt2661_mcu_cmd_intr(struct rt2661_softc *);
113 int		rt2661_intr(void *);
114 #if NBPFILTER > 0
115 static uint8_t	rt2661_rxrate(struct rt2661_rx_desc *);
116 #endif
117 static int	rt2661_ack_rate(struct ieee80211com *, int);
118 static uint16_t	rt2661_txtime(int, int, uint32_t);
119 static uint8_t	rt2661_plcp_signal(int);
120 static void	rt2661_setup_tx_desc(struct rt2661_softc *,
121 		    struct rt2661_tx_desc *, uint32_t, uint16_t, int, int,
122 		    const bus_dma_segment_t *, int, int);
123 static int	rt2661_tx_mgt(struct rt2661_softc *, struct mbuf *,
124 		    struct ieee80211_node *);
125 static struct mbuf *
126 		rt2661_get_rts(struct rt2661_softc *,
127 		    struct ieee80211_frame *, uint16_t);
128 static int	rt2661_tx_data(struct rt2661_softc *, struct mbuf *,
129 		    struct ieee80211_node *, int);
130 static void	rt2661_start(struct ifnet *);
131 static void	rt2661_watchdog(struct ifnet *);
132 static int	rt2661_reset(struct ifnet *);
133 static int	rt2661_ioctl(struct ifnet *, u_long, void *);
134 static void	rt2661_bbp_write(struct rt2661_softc *, uint8_t, uint8_t);
135 static uint8_t	rt2661_bbp_read(struct rt2661_softc *, uint8_t);
136 static void	rt2661_rf_write(struct rt2661_softc *, uint8_t, uint32_t);
137 static int	rt2661_tx_cmd(struct rt2661_softc *, uint8_t, uint16_t);
138 static void	rt2661_select_antenna(struct rt2661_softc *);
139 static void	rt2661_enable_mrr(struct rt2661_softc *);
140 static void	rt2661_set_txpreamble(struct rt2661_softc *);
141 static void	rt2661_set_basicrates(struct rt2661_softc *,
142 			const struct ieee80211_rateset *);
143 static void	rt2661_select_band(struct rt2661_softc *,
144 		    struct ieee80211_channel *);
145 static void	rt2661_set_chan(struct rt2661_softc *,
146 		    struct ieee80211_channel *);
147 static void	rt2661_set_bssid(struct rt2661_softc *, const uint8_t *);
148 static void	rt2661_set_macaddr(struct rt2661_softc *, const uint8_t *);
149 static void	rt2661_update_promisc(struct rt2661_softc *);
150 #if 0
151 static int	rt2661_wme_update(struct ieee80211com *);
152 #endif
153 
154 static void	rt2661_update_slot(struct ifnet *);
155 static const char *
156 		rt2661_get_rf(int);
157 static void	rt2661_read_eeprom(struct rt2661_softc *);
158 static int	rt2661_bbp_init(struct rt2661_softc *);
159 static int     	rt2661_init(struct ifnet *);
160 static void	rt2661_stop(struct ifnet *, int);
161 static int	rt2661_load_microcode(struct rt2661_softc *, const uint8_t *,
162 		    int);
163 #ifdef notyet
164 static void	rt2661_rx_tune(struct rt2661_softc *);
165 static void	rt2661_radar_start(struct rt2661_softc *);
166 static int	rt2661_radar_stop(struct rt2661_softc *);
167 #endif
168 static int	rt2661_prepare_beacon(struct rt2661_softc *);
169 static void	rt2661_enable_tsf_sync(struct rt2661_softc *);
170 static int	rt2661_get_rssi(struct rt2661_softc *, uint8_t);
171 
172 /*
173  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
174  */
175 static const struct ieee80211_rateset rt2661_rateset_11a =
176 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
177 
178 static const struct ieee80211_rateset rt2661_rateset_11b =
179 	{ 4, { 2, 4, 11, 22 } };
180 
181 static const struct ieee80211_rateset rt2661_rateset_11g =
182 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
183 
184 /*
185  * Default values for MAC registers; values taken from the reference driver.
186  */
187 static const struct {
188 	uint32_t	reg;
189 	uint32_t	val;
190 } rt2661_def_mac[] = {
191 	{ RT2661_TXRX_CSR0,        0x0000b032 },
192 	{ RT2661_TXRX_CSR1,        0x9eb39eb3 },
193 	{ RT2661_TXRX_CSR2,        0x8a8b8c8d },
194 	{ RT2661_TXRX_CSR3,        0x00858687 },
195 	{ RT2661_TXRX_CSR7,        0x2e31353b },
196 	{ RT2661_TXRX_CSR8,        0x2a2a2a2c },
197 	{ RT2661_TXRX_CSR15,       0x0000000f },
198 	{ RT2661_MAC_CSR6,         0x00000fff },
199 	{ RT2661_MAC_CSR8,         0x016c030a },
200 	{ RT2661_MAC_CSR10,        0x00000718 },
201 	{ RT2661_MAC_CSR12,        0x00000004 },
202 	{ RT2661_MAC_CSR13,        0x0000e000 },
203 	{ RT2661_SEC_CSR0,         0x00000000 },
204 	{ RT2661_SEC_CSR1,         0x00000000 },
205 	{ RT2661_SEC_CSR5,         0x00000000 },
206 	{ RT2661_PHY_CSR1,         0x000023b0 },
207 	{ RT2661_PHY_CSR5,         0x060a100c },
208 	{ RT2661_PHY_CSR6,         0x00080606 },
209 	{ RT2661_PHY_CSR7,         0x00000a08 },
210 	{ RT2661_PCI_CFG_CSR,      0x3cca4808 },
211 	{ RT2661_AIFSN_CSR,        0x00002273 },
212 	{ RT2661_CWMIN_CSR,        0x00002344 },
213 	{ RT2661_CWMAX_CSR,        0x000034aa },
214 	{ RT2661_TEST_MODE_CSR,    0x00000200 },
215 	{ RT2661_M2H_CMD_DONE_CSR, 0xffffffff }
216 };
217 
218 /*
219  * Default values for BBP registers; values taken from the reference driver.
220  */
221 static const struct {
222 	uint8_t	reg;
223 	uint8_t	val;
224 } rt2661_def_bbp[] = {
225 	{   3, 0x00 },
226 	{  15, 0x30 },
227 	{  17, 0x20 },
228 	{  21, 0xc8 },
229 	{  22, 0x38 },
230 	{  23, 0x06 },
231 	{  24, 0xfe },
232 	{  25, 0x0a },
233 	{  26, 0x0d },
234 	{  34, 0x12 },
235 	{  37, 0x07 },
236 	{  39, 0xf8 },
237 	{  41, 0x60 },
238 	{  53, 0x10 },
239 	{  54, 0x18 },
240 	{  60, 0x10 },
241 	{  61, 0x04 },
242 	{  62, 0x04 },
243 	{  75, 0xfe },
244 	{  86, 0xfe },
245 	{  88, 0xfe },
246 	{  90, 0x0f },
247 	{  99, 0x00 },
248 	{ 102, 0x16 },
249 	{ 107, 0x04 }
250 };
251 
252 /*
253  * Default settings for RF registers; values taken from the reference driver.
254  */
255 static const struct rfprog {
256 	uint8_t		chan;
257 	uint32_t	r1;
258 	uint32_t	r2;
259 	uint32_t	r3;
260 	uint32_t	r4;
261 } rt2661_rf5225_1[] = {
262 	{   1, 0x00b33, 0x011e1, 0x1a014, 0x30282 },
263 	{   2, 0x00b33, 0x011e1, 0x1a014, 0x30287 },
264 	{   3, 0x00b33, 0x011e2, 0x1a014, 0x30282 },
265 	{   4, 0x00b33, 0x011e2, 0x1a014, 0x30287 },
266 	{   5, 0x00b33, 0x011e3, 0x1a014, 0x30282 },
267 	{   6, 0x00b33, 0x011e3, 0x1a014, 0x30287 },
268 	{   7, 0x00b33, 0x011e4, 0x1a014, 0x30282 },
269 	{   8, 0x00b33, 0x011e4, 0x1a014, 0x30287 },
270 	{   9, 0x00b33, 0x011e5, 0x1a014, 0x30282 },
271 	{  10, 0x00b33, 0x011e5, 0x1a014, 0x30287 },
272 	{  11, 0x00b33, 0x011e6, 0x1a014, 0x30282 },
273 	{  12, 0x00b33, 0x011e6, 0x1a014, 0x30287 },
274 	{  13, 0x00b33, 0x011e7, 0x1a014, 0x30282 },
275 	{  14, 0x00b33, 0x011e8, 0x1a014, 0x30284 },
276 
277 	{  36, 0x00b33, 0x01266, 0x26014, 0x30288 },
278 	{  40, 0x00b33, 0x01268, 0x26014, 0x30280 },
279 	{  44, 0x00b33, 0x01269, 0x26014, 0x30282 },
280 	{  48, 0x00b33, 0x0126a, 0x26014, 0x30284 },
281 	{  52, 0x00b33, 0x0126b, 0x26014, 0x30286 },
282 	{  56, 0x00b33, 0x0126c, 0x26014, 0x30288 },
283 	{  60, 0x00b33, 0x0126e, 0x26014, 0x30280 },
284 	{  64, 0x00b33, 0x0126f, 0x26014, 0x30282 },
285 
286 	{ 100, 0x00b33, 0x0128a, 0x2e014, 0x30280 },
287 	{ 104, 0x00b33, 0x0128b, 0x2e014, 0x30282 },
288 	{ 108, 0x00b33, 0x0128c, 0x2e014, 0x30284 },
289 	{ 112, 0x00b33, 0x0128d, 0x2e014, 0x30286 },
290 	{ 116, 0x00b33, 0x0128e, 0x2e014, 0x30288 },
291 	{ 120, 0x00b33, 0x012a0, 0x2e014, 0x30280 },
292 	{ 124, 0x00b33, 0x012a1, 0x2e014, 0x30282 },
293 	{ 128, 0x00b33, 0x012a2, 0x2e014, 0x30284 },
294 	{ 132, 0x00b33, 0x012a3, 0x2e014, 0x30286 },
295 	{ 136, 0x00b33, 0x012a4, 0x2e014, 0x30288 },
296 	{ 140, 0x00b33, 0x012a6, 0x2e014, 0x30280 },
297 
298 	{ 149, 0x00b33, 0x012a8, 0x2e014, 0x30287 },
299 	{ 153, 0x00b33, 0x012a9, 0x2e014, 0x30289 },
300 	{ 157, 0x00b33, 0x012ab, 0x2e014, 0x30281 },
301 	{ 161, 0x00b33, 0x012ac, 0x2e014, 0x30283 },
302 	{ 165, 0x00b33, 0x012ad, 0x2e014, 0x30285 }
303 
304 }, rt2661_rf5225_2[] = {
305 	{   1, 0x00b33, 0x011e1, 0x1a014, 0x30282 },
306 	{   2, 0x00b33, 0x011e1, 0x1a014, 0x30287 },
307 	{   3, 0x00b33, 0x011e2, 0x1a014, 0x30282 },
308 	{   4, 0x00b33, 0x011e2, 0x1a014, 0x30287 },
309 	{   5, 0x00b33, 0x011e3, 0x1a014, 0x30282 },
310 	{   6, 0x00b33, 0x011e3, 0x1a014, 0x30287 },
311 	{   7, 0x00b33, 0x011e4, 0x1a014, 0x30282 },
312 	{   8, 0x00b33, 0x011e4, 0x1a014, 0x30287 },
313 	{   9, 0x00b33, 0x011e5, 0x1a014, 0x30282 },
314 	{  10, 0x00b33, 0x011e5, 0x1a014, 0x30287 },
315 	{  11, 0x00b33, 0x011e6, 0x1a014, 0x30282 },
316 	{  12, 0x00b33, 0x011e6, 0x1a014, 0x30287 },
317 	{  13, 0x00b33, 0x011e7, 0x1a014, 0x30282 },
318 	{  14, 0x00b33, 0x011e8, 0x1a014, 0x30284 },
319 
320 	{  36, 0x00b35, 0x11206, 0x26014, 0x30280 },
321 	{  40, 0x00b34, 0x111a0, 0x26014, 0x30280 },
322 	{  44, 0x00b34, 0x111a1, 0x26014, 0x30286 },
323 	{  48, 0x00b34, 0x111a3, 0x26014, 0x30282 },
324 	{  52, 0x00b34, 0x111a4, 0x26014, 0x30288 },
325 	{  56, 0x00b34, 0x111a6, 0x26014, 0x30284 },
326 	{  60, 0x00b34, 0x111a8, 0x26014, 0x30280 },
327 	{  64, 0x00b34, 0x111a9, 0x26014, 0x30286 },
328 
329 	{ 100, 0x00b35, 0x11226, 0x2e014, 0x30280 },
330 	{ 104, 0x00b35, 0x11228, 0x2e014, 0x30280 },
331 	{ 108, 0x00b35, 0x1122a, 0x2e014, 0x30280 },
332 	{ 112, 0x00b35, 0x1122c, 0x2e014, 0x30280 },
333 	{ 116, 0x00b35, 0x1122e, 0x2e014, 0x30280 },
334 	{ 120, 0x00b34, 0x111c0, 0x2e014, 0x30280 },
335 	{ 124, 0x00b34, 0x111c1, 0x2e014, 0x30286 },
336 	{ 128, 0x00b34, 0x111c3, 0x2e014, 0x30282 },
337 	{ 132, 0x00b34, 0x111c4, 0x2e014, 0x30288 },
338 	{ 136, 0x00b34, 0x111c6, 0x2e014, 0x30284 },
339 	{ 140, 0x00b34, 0x111c8, 0x2e014, 0x30280 },
340 
341 	{ 149, 0x00b34, 0x111cb, 0x2e014, 0x30286 },
342 	{ 153, 0x00b34, 0x111cd, 0x2e014, 0x30282 },
343 	{ 157, 0x00b35, 0x11242, 0x2e014, 0x30285 },
344 	{ 161, 0x00b35, 0x11244, 0x2e014, 0x30285 },
345 	{ 165, 0x00b35, 0x11246, 0x2e014, 0x30285 }
346 };
347 
348 int
349 rt2661_attach(void *xsc, int id)
350 {
351 	struct rt2661_softc *sc = xsc;
352 	struct ieee80211com *ic = &sc->sc_ic;
353 	struct ifnet *ifp = &sc->sc_if;
354 	uint32_t val;
355 	int error, i, ntries;
356 
357 	sc->sc_id = id;
358 
359 	callout_init(&sc->scan_ch, 0);
360 	callout_init(&sc->rssadapt_ch, 0);
361 
362 	/* wait for NIC to initialize */
363 	for (ntries = 0; ntries < 1000; ntries++) {
364 		if ((val = RAL_READ(sc, RT2661_MAC_CSR0)) != 0)
365 			break;
366 		DELAY(1000);
367 	}
368 	if (ntries == 1000) {
369 		aprint_error("%s: timeout waiting for NIC to initialize\n",
370 		    sc->sc_dev.dv_xname);
371 		return EIO;
372 	}
373 
374 	/* retrieve RF rev. no and various other things from EEPROM */
375 	rt2661_read_eeprom(sc);
376 	aprint_normal("%s: 802.11 address %s\n", sc->sc_dev.dv_xname,
377 	    ether_sprintf(ic->ic_myaddr));
378 
379 	aprint_normal("%s: MAC/BBP RT%X, RF %s\n", sc->sc_dev.dv_xname, val,
380 	    rt2661_get_rf(sc->rf_rev));
381 
382 	/*
383 	 * Allocate Tx and Rx rings.
384 	 */
385 	error = rt2661_alloc_tx_ring(sc, &sc->txq[0], RT2661_TX_RING_COUNT);
386 	if (error != 0) {
387 		aprint_error("%s: could not allocate Tx ring 0\n",
388 		    sc->sc_dev.dv_xname);
389 		goto fail1;
390 	}
391 
392 	error = rt2661_alloc_tx_ring(sc, &sc->txq[1], RT2661_TX_RING_COUNT);
393 	if (error != 0) {
394 		aprint_error("%s: could not allocate Tx ring 1\n",
395 		    sc->sc_dev.dv_xname);
396 		goto fail2;
397 	}
398 
399 	error = rt2661_alloc_tx_ring(sc, &sc->txq[2], RT2661_TX_RING_COUNT);
400 	if (error != 0) {
401 		aprint_error("%s: could not allocate Tx ring 2\n",
402 		    sc->sc_dev.dv_xname);
403 		goto fail3;
404 	}
405 
406 	error = rt2661_alloc_tx_ring(sc, &sc->txq[3], RT2661_TX_RING_COUNT);
407 	if (error != 0) {
408 		aprint_error("%s: could not allocate Tx ring 3\n",
409 		    sc->sc_dev.dv_xname);
410 		goto fail4;
411 	}
412 
413 	error = rt2661_alloc_tx_ring(sc, &sc->mgtq, RT2661_MGT_RING_COUNT);
414 	if (error != 0) {
415 		aprint_error("%s: could not allocate Mgt ring\n",
416 		    sc->sc_dev.dv_xname);
417 		goto fail5;
418 	}
419 
420 	error = rt2661_alloc_rx_ring(sc, &sc->rxq, RT2661_RX_RING_COUNT);
421 	if (error != 0) {
422 		aprint_error("%s: could not allocate Rx ring\n",
423 		    sc->sc_dev.dv_xname);
424 		goto fail6;
425 	}
426 
427 	ifp->if_softc = sc;
428 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
429 	ifp->if_init = rt2661_init;
430 	ifp->if_stop = rt2661_stop;
431 	ifp->if_ioctl = rt2661_ioctl;
432 	ifp->if_start = rt2661_start;
433 	ifp->if_watchdog = rt2661_watchdog;
434 	IFQ_SET_READY(&ifp->if_snd);
435 	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
436 
437 	ic->ic_ifp = ifp;
438 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
439 	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
440 	ic->ic_state = IEEE80211_S_INIT;
441 
442 	/* set device capabilities */
443 	ic->ic_caps =
444 	    IEEE80211_C_IBSS |		/* IBSS mode supported */
445 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
446 	    IEEE80211_C_HOSTAP |	/* HostAp mode supported */
447 	    IEEE80211_C_TXPMGT |	/* tx power management */
448 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
449 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
450 	    IEEE80211_C_WPA;		/* 802.11i */
451 
452 	if (sc->rf_rev == RT2661_RF_5225 || sc->rf_rev == RT2661_RF_5325) {
453 		/* set supported .11a rates */
454 		ic->ic_sup_rates[IEEE80211_MODE_11A] = rt2661_rateset_11a;
455 
456 		/* set supported .11a channels */
457 		for (i = 36; i <= 64; i += 4) {
458 			ic->ic_channels[i].ic_freq =
459 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
460 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
461 		}
462 		for (i = 100; i <= 140; i += 4) {
463 			ic->ic_channels[i].ic_freq =
464 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
465 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
466 		}
467 		for (i = 149; i <= 165; i += 4) {
468 			ic->ic_channels[i].ic_freq =
469 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
470 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
471 		}
472 	}
473 
474 	/* set supported .11b and .11g rates */
475 	ic->ic_sup_rates[IEEE80211_MODE_11B] = rt2661_rateset_11b;
476 	ic->ic_sup_rates[IEEE80211_MODE_11G] = rt2661_rateset_11g;
477 
478 	/* set supported .11b and .11g channels (1 through 14) */
479 	for (i = 1; i <= 14; i++) {
480 		ic->ic_channels[i].ic_freq =
481 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
482 		ic->ic_channels[i].ic_flags =
483 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
484 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
485 	}
486 
487 	if_attach(ifp);
488 	ieee80211_ifattach(ic);
489 	ic->ic_node_alloc = rt2661_node_alloc;
490 	ic->ic_updateslot = rt2661_update_slot;
491 	ic->ic_reset = rt2661_reset;
492 
493 	/* override state transition machine */
494 	sc->sc_newstate = ic->ic_newstate;
495 	ic->ic_newstate = rt2661_newstate;
496 	ieee80211_media_init(ic, rt2661_media_change, ieee80211_media_status);
497 
498 #if NBPFILTER > 0
499 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
500 	    sizeof (struct ieee80211_frame) + 64, &sc->sc_drvbpf);
501 
502 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
503 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
504 	sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2661_RX_RADIOTAP_PRESENT);
505 
506 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
507 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
508 	sc->sc_txtap.wt_ihdr.it_present = htole32(RT2661_TX_RADIOTAP_PRESENT);
509 #endif
510 
511 	ieee80211_announce(ic);
512 
513 	if (!pmf_device_register(&sc->sc_dev, NULL, NULL))
514 		aprint_error_dev(&sc->sc_dev, "couldn't establish power handler\n");
515 	else
516 		pmf_class_network_register(&sc->sc_dev, ifp);
517 
518 	return 0;
519 
520 fail6:	rt2661_free_tx_ring(sc, &sc->mgtq);
521 fail5:	rt2661_free_tx_ring(sc, &sc->txq[3]);
522 fail4:	rt2661_free_tx_ring(sc, &sc->txq[2]);
523 fail3:	rt2661_free_tx_ring(sc, &sc->txq[1]);
524 fail2:	rt2661_free_tx_ring(sc, &sc->txq[0]);
525 fail1:	return ENXIO;
526 }
527 
528 int
529 rt2661_detach(void *xsc)
530 {
531 	struct rt2661_softc *sc = xsc;
532 	struct ifnet *ifp = &sc->sc_if;
533 
534 	callout_stop(&sc->scan_ch);
535 	callout_stop(&sc->rssadapt_ch);
536 
537 	pmf_device_deregister(&sc->sc_dev);
538 
539 	ieee80211_ifdetach(&sc->sc_ic);
540 	if_detach(ifp);
541 
542 	rt2661_free_tx_ring(sc, &sc->txq[0]);
543 	rt2661_free_tx_ring(sc, &sc->txq[1]);
544 	rt2661_free_tx_ring(sc, &sc->txq[2]);
545 	rt2661_free_tx_ring(sc, &sc->txq[3]);
546 	rt2661_free_tx_ring(sc, &sc->mgtq);
547 	rt2661_free_rx_ring(sc, &sc->rxq);
548 
549 	return 0;
550 }
551 
552 static int
553 rt2661_alloc_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring,
554     int count)
555 {
556 	int i, nsegs, error;
557 
558 	ring->count = count;
559 	ring->queued = 0;
560 	ring->cur = ring->next = ring->stat = 0;
561 
562 	error = bus_dmamap_create(sc->sc_dmat, count * RT2661_TX_DESC_SIZE, 1,
563 	    count * RT2661_TX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map);
564 	if (error != 0) {
565 		aprint_error("%s: could not create desc DMA map\n",
566 		    sc->sc_dev.dv_xname);
567 		goto fail;
568 	}
569 
570 	error = bus_dmamem_alloc(sc->sc_dmat, count * RT2661_TX_DESC_SIZE,
571 	    PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
572 	if (error != 0) {
573 		aprint_error("%s: could not allocate DMA memory\n",
574 		    sc->sc_dev.dv_xname);
575 		goto fail;
576 	}
577 
578 	error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
579 	    count * RT2661_TX_DESC_SIZE, (void **)&ring->desc,
580 	    BUS_DMA_NOWAIT);
581 	if (error != 0) {
582 		aprint_error("%s: could not map desc DMA memory\n",
583 		    sc->sc_dev.dv_xname);
584 		goto fail;
585 	}
586 
587 	error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
588 	    count * RT2661_TX_DESC_SIZE, NULL, BUS_DMA_NOWAIT);
589 	if (error != 0) {
590 		aprint_error("%s: could not load desc DMA map\n",
591 		    sc->sc_dev.dv_xname);
592 		goto fail;
593 	}
594 
595 	memset(ring->desc, 0, count * RT2661_TX_DESC_SIZE);
596 	ring->physaddr = ring->map->dm_segs->ds_addr;
597 
598 	ring->data = malloc(count * sizeof (struct rt2661_tx_data), M_DEVBUF,
599 	    M_NOWAIT);
600 	if (ring->data == NULL) {
601 		aprint_error("%s: could not allocate soft data\n",
602 		    sc->sc_dev.dv_xname);
603 		error = ENOMEM;
604 		goto fail;
605 	}
606 
607 	memset(ring->data, 0, count * sizeof (struct rt2661_tx_data));
608 	for (i = 0; i < count; i++) {
609 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
610 		    RT2661_MAX_SCATTER, MCLBYTES, 0, BUS_DMA_NOWAIT,
611 		    &ring->data[i].map);
612 		if (error != 0) {
613 			aprint_error("%s: could not create DMA map\n",
614 			    sc->sc_dev.dv_xname);
615 			goto fail;
616 		}
617 	}
618 
619 	return 0;
620 
621 fail:	rt2661_free_tx_ring(sc, ring);
622 	return error;
623 }
624 
625 static void
626 rt2661_reset_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring)
627 {
628 	struct rt2661_tx_desc *desc;
629 	struct rt2661_tx_data *data;
630 	int i;
631 
632 	for (i = 0; i < ring->count; i++) {
633 		desc = &ring->desc[i];
634 		data = &ring->data[i];
635 
636 		if (data->m != NULL) {
637 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
638 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
639 			bus_dmamap_unload(sc->sc_dmat, data->map);
640 			m_freem(data->m);
641 			data->m = NULL;
642 		}
643 
644 		if (data->ni != NULL) {
645 			ieee80211_free_node(data->ni);
646 			data->ni = NULL;
647 		}
648 
649 		desc->flags = 0;
650 	}
651 
652 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
653 	    BUS_DMASYNC_PREWRITE);
654 
655 	ring->queued = 0;
656 	ring->cur = ring->next = ring->stat = 0;
657 }
658 
659 
660 static void
661 rt2661_free_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring)
662 {
663 	struct rt2661_tx_data *data;
664 	int i;
665 
666 	if (ring->desc != NULL) {
667 		bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
668 		    ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
669 		bus_dmamap_unload(sc->sc_dmat, ring->map);
670 		bus_dmamem_unmap(sc->sc_dmat, (void *)ring->desc,
671 		    ring->count * RT2661_TX_DESC_SIZE);
672 		bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
673 	}
674 
675 	if (ring->data != NULL) {
676 		for (i = 0; i < ring->count; i++) {
677 			data = &ring->data[i];
678 
679 			if (data->m != NULL) {
680 				bus_dmamap_sync(sc->sc_dmat, data->map, 0,
681 				    data->map->dm_mapsize,
682 				    BUS_DMASYNC_POSTWRITE);
683 				bus_dmamap_unload(sc->sc_dmat, data->map);
684 				m_freem(data->m);
685 			}
686 
687 			if (data->ni != NULL)
688 				ieee80211_free_node(data->ni);
689 
690 			if (data->map != NULL)
691 				bus_dmamap_destroy(sc->sc_dmat, data->map);
692 		}
693 		free(ring->data, M_DEVBUF);
694 	}
695 }
696 
697 static int
698 rt2661_alloc_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring,
699     int count)
700 {
701 	struct rt2661_rx_desc *desc;
702 	struct rt2661_rx_data *data;
703 	int i, nsegs, error;
704 
705 	ring->count = count;
706 	ring->cur = ring->next = 0;
707 
708 	error = bus_dmamap_create(sc->sc_dmat, count * RT2661_RX_DESC_SIZE, 1,
709 	    count * RT2661_RX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map);
710 	if (error != 0) {
711 		aprint_error("%s: could not create desc DMA map\n",
712 		    sc->sc_dev.dv_xname);
713 		goto fail;
714 	}
715 
716 	error = bus_dmamem_alloc(sc->sc_dmat, count * RT2661_RX_DESC_SIZE,
717 	    PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
718 	if (error != 0) {
719 		aprint_error("%s: could not allocate DMA memory\n",
720 		    sc->sc_dev.dv_xname);
721 		goto fail;
722 	}
723 
724 	error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
725 	    count * RT2661_RX_DESC_SIZE, (void **)&ring->desc,
726 	    BUS_DMA_NOWAIT);
727 	if (error != 0) {
728 		aprint_error("%s: could not map desc DMA memory\n",
729 		    sc->sc_dev.dv_xname);
730 		goto fail;
731 	}
732 
733 	error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
734 	    count * RT2661_RX_DESC_SIZE, NULL, BUS_DMA_NOWAIT);
735 	if (error != 0) {
736 		aprint_error("%s: could not load desc DMA map\n",
737 		    sc->sc_dev.dv_xname);
738 		goto fail;
739 	}
740 
741 	memset(ring->desc, 0, count * RT2661_RX_DESC_SIZE);
742 	ring->physaddr = ring->map->dm_segs->ds_addr;
743 
744 	ring->data = malloc(count * sizeof (struct rt2661_rx_data), M_DEVBUF,
745 	    M_NOWAIT);
746 	if (ring->data == NULL) {
747 		aprint_error("%s: could not allocate soft data\n",
748 		    sc->sc_dev.dv_xname);
749 		error = ENOMEM;
750 		goto fail;
751 	}
752 
753 	/*
754 	 * Pre-allocate Rx buffers and populate Rx ring.
755 	 */
756 	memset(ring->data, 0, count * sizeof (struct rt2661_rx_data));
757 	for (i = 0; i < count; i++) {
758 		desc = &sc->rxq.desc[i];
759 		data = &sc->rxq.data[i];
760 
761 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
762 		    0, BUS_DMA_NOWAIT, &data->map);
763 		if (error != 0) {
764 			printf("%s: could not create DMA map\n",
765 			    sc->sc_dev.dv_xname);
766 			goto fail;
767 		}
768 
769 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
770 		if (data->m == NULL) {
771 			printf("%s: could not allocate rx mbuf\n",
772 			    sc->sc_dev.dv_xname);
773 			error = ENOMEM;
774 			goto fail;
775 		}
776 
777 		MCLGET(data->m, M_DONTWAIT);
778 		if (!(data->m->m_flags & M_EXT)) {
779 			printf("%s: could not allocate rx mbuf cluster\n",
780 			    sc->sc_dev.dv_xname);
781 			error = ENOMEM;
782 			goto fail;
783 		}
784 
785 		error = bus_dmamap_load(sc->sc_dmat, data->map,
786 		    mtod(data->m, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
787 		if (error != 0) {
788 			printf("%s: could not load rx buf DMA map",
789 			    sc->sc_dev.dv_xname);
790 			goto fail;
791 		}
792 
793 		desc->flags = htole32(RT2661_RX_BUSY);
794 		desc->physaddr = htole32(data->map->dm_segs->ds_addr);
795 	}
796 
797 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
798 	    BUS_DMASYNC_PREWRITE);
799 
800 	return 0;
801 
802 fail:	rt2661_free_rx_ring(sc, ring);
803 	return error;
804 }
805 
806 static void
807 rt2661_reset_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring)
808 {
809 	int i;
810 
811 	for (i = 0; i < ring->count; i++)
812 		ring->desc[i].flags = htole32(RT2661_RX_BUSY);
813 
814 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
815 	    BUS_DMASYNC_PREWRITE);
816 
817 	ring->cur = ring->next = 0;
818 }
819 
820 static void
821 rt2661_free_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring)
822 {
823 	struct rt2661_rx_data *data;
824 	int i;
825 
826 	if (ring->desc != NULL) {
827 		bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
828 		    ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
829 		bus_dmamap_unload(sc->sc_dmat, ring->map);
830 		bus_dmamem_unmap(sc->sc_dmat, (void *)ring->desc,
831 		    ring->count * RT2661_RX_DESC_SIZE);
832 		bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
833 	}
834 
835 	if (ring->data != NULL) {
836 		for (i = 0; i < ring->count; i++) {
837 			data = &ring->data[i];
838 
839 			if (data->m != NULL) {
840 				bus_dmamap_sync(sc->sc_dmat, data->map, 0,
841 				    data->map->dm_mapsize,
842 				    BUS_DMASYNC_POSTREAD);
843 				bus_dmamap_unload(sc->sc_dmat, data->map);
844 				m_freem(data->m);
845 			}
846 
847 			if (data->map != NULL)
848 				bus_dmamap_destroy(sc->sc_dmat, data->map);
849 		}
850 		free(ring->data, M_DEVBUF);
851 	}
852 }
853 
854 static struct ieee80211_node *
855 rt2661_node_alloc(struct ieee80211_node_table *nt)
856 {
857 	struct rt2661_node *rn;
858 
859 	rn = malloc(sizeof (struct rt2661_node), M_80211_NODE,
860 	    M_NOWAIT | M_ZERO);
861 
862 	return (rn != NULL) ? &rn->ni : NULL;
863 }
864 
865 static int
866 rt2661_media_change(struct ifnet *ifp)
867 {
868 	int error;
869 
870 	error = ieee80211_media_change(ifp);
871 	if (error != ENETRESET)
872 		return error;
873 
874 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
875 		rt2661_init(ifp);
876 
877 	return 0;
878 }
879 
880 /*
881  * This function is called periodically (every 200ms) during scanning to
882  * switch from one channel to another.
883  */
884 static void
885 rt2661_next_scan(void *arg)
886 {
887 	struct rt2661_softc *sc = arg;
888 	struct ieee80211com *ic = &sc->sc_ic;
889 
890 	if (ic->ic_state == IEEE80211_S_SCAN)
891 		ieee80211_next_scan(ic);
892 }
893 
894 /*
895  * This function is called for each neighbor node.
896  */
897 static void
898 rt2661_iter_func(void *arg, struct ieee80211_node *ni)
899 {
900 	struct rt2661_node *rn = (struct rt2661_node *)ni;
901 
902 	ieee80211_rssadapt_updatestats(&rn->rssadapt);
903 }
904 
905 /*
906  * This function is called periodically (every 100ms) in RUN state to update
907  * the rate adaptation statistics.
908  */
909 static void
910 rt2661_rssadapt_updatestats(void *arg)
911 {
912 	struct rt2661_softc *sc = arg;
913 	struct ieee80211com *ic = &sc->sc_ic;
914 
915 	ieee80211_iterate_nodes(&ic->ic_sta, rt2661_iter_func, arg);
916 
917 	callout_reset(&sc->rssadapt_ch, hz / 10, rt2661_rssadapt_updatestats,
918 	    sc);
919 }
920 
921 static int
922 rt2661_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
923 {
924 	struct rt2661_softc *sc = ic->ic_ifp->if_softc;
925 	enum ieee80211_state ostate;
926 	struct ieee80211_node *ni;
927 	uint32_t tmp;
928 	int error = 0;
929 
930 	ostate = ic->ic_state;
931 	callout_stop(&sc->scan_ch);
932 
933 	switch (nstate) {
934 	case IEEE80211_S_INIT:
935 		callout_stop(&sc->rssadapt_ch);
936 
937 		if (ostate == IEEE80211_S_RUN) {
938 			/* abort TSF synchronization */
939 			tmp = RAL_READ(sc, RT2661_TXRX_CSR9);
940 			RAL_WRITE(sc, RT2661_TXRX_CSR9, tmp & ~0x00ffffff);
941 		}
942 		break;
943 
944 	case IEEE80211_S_SCAN:
945 		rt2661_set_chan(sc, ic->ic_curchan);
946 		callout_reset(&sc->scan_ch, hz / 5, rt2661_next_scan, sc);
947 		break;
948 
949 	case IEEE80211_S_AUTH:
950 	case IEEE80211_S_ASSOC:
951 		rt2661_set_chan(sc, ic->ic_curchan);
952 		break;
953 
954 	case IEEE80211_S_RUN:
955 		rt2661_set_chan(sc, ic->ic_curchan);
956 
957 		ni = ic->ic_bss;
958 
959 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
960 			rt2661_enable_mrr(sc);
961 			rt2661_set_txpreamble(sc);
962 			rt2661_set_basicrates(sc, &ni->ni_rates);
963 			rt2661_set_bssid(sc, ni->ni_bssid);
964 		}
965 
966 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
967 		    ic->ic_opmode == IEEE80211_M_IBSS) {
968 			if ((error = rt2661_prepare_beacon(sc)) != 0)
969 				break;
970 		}
971 
972 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
973 			callout_reset(&sc->rssadapt_ch, hz / 10,
974 			    rt2661_rssadapt_updatestats, sc);
975 			rt2661_enable_tsf_sync(sc);
976 		}
977 		break;
978 	}
979 
980 	return (error != 0) ? error : sc->sc_newstate(ic, nstate, arg);
981 }
982 
983 /*
984  * Read 16 bits at address 'addr' from the serial EEPROM (either 93C46 or
985  * 93C66).
986  */
987 static uint16_t
988 rt2661_eeprom_read(struct rt2661_softc *sc, uint8_t addr)
989 {
990 	uint32_t tmp;
991 	uint16_t val;
992 	int n;
993 
994 	/* clock C once before the first command */
995 	RT2661_EEPROM_CTL(sc, 0);
996 
997 	RT2661_EEPROM_CTL(sc, RT2661_S);
998 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C);
999 	RT2661_EEPROM_CTL(sc, RT2661_S);
1000 
1001 	/* write start bit (1) */
1002 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D);
1003 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D | RT2661_C);
1004 
1005 	/* write READ opcode (10) */
1006 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D);
1007 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D | RT2661_C);
1008 	RT2661_EEPROM_CTL(sc, RT2661_S);
1009 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C);
1010 
1011 	/* write address (A5-A0 or A7-A0) */
1012 	n = (RAL_READ(sc, RT2661_E2PROM_CSR) & RT2661_93C46) ? 5 : 7;
1013 	for (; n >= 0; n--) {
1014 		RT2661_EEPROM_CTL(sc, RT2661_S |
1015 		    (((addr >> n) & 1) << RT2661_SHIFT_D));
1016 		RT2661_EEPROM_CTL(sc, RT2661_S |
1017 		    (((addr >> n) & 1) << RT2661_SHIFT_D) | RT2661_C);
1018 	}
1019 
1020 	RT2661_EEPROM_CTL(sc, RT2661_S);
1021 
1022 	/* read data Q15-Q0 */
1023 	val = 0;
1024 	for (n = 15; n >= 0; n--) {
1025 		RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C);
1026 		tmp = RAL_READ(sc, RT2661_E2PROM_CSR);
1027 		val |= ((tmp & RT2661_Q) >> RT2661_SHIFT_Q) << n;
1028 		RT2661_EEPROM_CTL(sc, RT2661_S);
1029 	}
1030 
1031 	RT2661_EEPROM_CTL(sc, 0);
1032 
1033 	/* clear Chip Select and clock C */
1034 	RT2661_EEPROM_CTL(sc, RT2661_S);
1035 	RT2661_EEPROM_CTL(sc, 0);
1036 	RT2661_EEPROM_CTL(sc, RT2661_C);
1037 
1038 	return val;
1039 }
1040 
1041 static void
1042 rt2661_tx_intr(struct rt2661_softc *sc)
1043 {
1044 	struct ieee80211com *ic = &sc->sc_ic;
1045 	struct ifnet *ifp = &sc->sc_if;
1046 	struct rt2661_tx_ring *txq;
1047 	struct rt2661_tx_data *data;
1048 	struct rt2661_node *rn;
1049 	uint32_t val;
1050 	int qid, retrycnt;
1051 
1052 	for (;;) {
1053 		val = RAL_READ(sc, RT2661_STA_CSR4);
1054 		if (!(val & RT2661_TX_STAT_VALID))
1055 			break;
1056 
1057 		/* retrieve the queue in which this frame was sent */
1058 		qid = RT2661_TX_QID(val);
1059 		txq = (qid <= 3) ? &sc->txq[qid] : &sc->mgtq;
1060 
1061 		/* retrieve rate control algorithm context */
1062 		data = &txq->data[txq->stat];
1063 		rn = (struct rt2661_node *)data->ni;
1064 
1065 		/* if no frame has been sent, ignore */
1066 		if (rn == NULL)
1067 			continue;
1068 
1069 		switch (RT2661_TX_RESULT(val)) {
1070 		case RT2661_TX_SUCCESS:
1071 			retrycnt = RT2661_TX_RETRYCNT(val);
1072 
1073 			DPRINTFN(10, ("data frame sent successfully after "
1074 			    "%d retries\n", retrycnt));
1075 			if (retrycnt == 0 && data->id.id_node != NULL) {
1076 				ieee80211_rssadapt_raise_rate(ic,
1077 				    &rn->rssadapt, &data->id);
1078 			}
1079 			ifp->if_opackets++;
1080 			break;
1081 
1082 		case RT2661_TX_RETRY_FAIL:
1083 			DPRINTFN(9, ("sending data frame failed (too much "
1084 			    "retries)\n"));
1085 			if (data->id.id_node != NULL) {
1086 				ieee80211_rssadapt_lower_rate(ic, data->ni,
1087 				    &rn->rssadapt, &data->id);
1088 			}
1089 			ifp->if_oerrors++;
1090 			break;
1091 
1092 		default:
1093 			/* other failure */
1094 			printf("%s: sending data frame failed 0x%08x\n",
1095 			    sc->sc_dev.dv_xname, val);
1096 			ifp->if_oerrors++;
1097 		}
1098 
1099 		ieee80211_free_node(data->ni);
1100 		data->ni = NULL;
1101 
1102 		DPRINTFN(15, ("tx done q=%d idx=%u\n", qid, txq->stat));
1103 
1104 		txq->queued--;
1105 		if (++txq->stat >= txq->count)	/* faster than % count */
1106 			txq->stat = 0;
1107 	}
1108 
1109 	sc->sc_tx_timer = 0;
1110 	ifp->if_flags &= ~IFF_OACTIVE;
1111 	rt2661_start(ifp);
1112 }
1113 
1114 static void
1115 rt2661_tx_dma_intr(struct rt2661_softc *sc, struct rt2661_tx_ring *txq)
1116 {
1117 	struct rt2661_tx_desc *desc;
1118 	struct rt2661_tx_data *data;
1119 
1120 	for (;;) {
1121 		desc = &txq->desc[txq->next];
1122 		data = &txq->data[txq->next];
1123 
1124 		bus_dmamap_sync(sc->sc_dmat, txq->map,
1125 		    txq->next * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
1126 		    BUS_DMASYNC_POSTREAD);
1127 
1128 		if ((le32toh(desc->flags) & RT2661_TX_BUSY) ||
1129 		    !(le32toh(desc->flags) & RT2661_TX_VALID))
1130 			break;
1131 
1132 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1133 		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1134 		bus_dmamap_unload(sc->sc_dmat, data->map);
1135 		m_freem(data->m);
1136 		data->m = NULL;
1137 		/* node reference is released in rt2661_tx_intr() */
1138 
1139 		/* descriptor is no longer valid */
1140 		desc->flags &= ~htole32(RT2661_TX_VALID);
1141 
1142 		bus_dmamap_sync(sc->sc_dmat, txq->map,
1143 		    txq->next * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
1144 		    BUS_DMASYNC_PREWRITE);
1145 
1146 		DPRINTFN(15, ("tx dma done q=%p idx=%u\n", txq, txq->next));
1147 
1148 		if (++txq->next >= txq->count)	/* faster than % count */
1149 			txq->next = 0;
1150 	}
1151 }
1152 
1153 static void
1154 rt2661_rx_intr(struct rt2661_softc *sc)
1155 {
1156 	struct ieee80211com *ic = &sc->sc_ic;
1157 	struct ifnet *ifp = &sc->sc_if;
1158 	struct rt2661_rx_desc *desc;
1159 	struct rt2661_rx_data *data;
1160 	struct rt2661_node *rn;
1161 	struct ieee80211_frame *wh;
1162 	struct ieee80211_node *ni;
1163 	struct mbuf *mnew, *m;
1164 	int error;
1165 
1166 	for (;;) {
1167 		desc = &sc->rxq.desc[sc->rxq.cur];
1168 		data = &sc->rxq.data[sc->rxq.cur];
1169 
1170 		bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1171 		    sc->rxq.cur * RT2661_RX_DESC_SIZE, RT2661_RX_DESC_SIZE,
1172 		    BUS_DMASYNC_POSTREAD);
1173 
1174 		if (le32toh(desc->flags) & RT2661_RX_BUSY)
1175 			break;
1176 
1177 		if ((le32toh(desc->flags) & RT2661_RX_PHY_ERROR) ||
1178 		    (le32toh(desc->flags) & RT2661_RX_CRC_ERROR)) {
1179 			/*
1180 			 * This should not happen since we did not request
1181 			 * to receive those frames when we filled TXRX_CSR0.
1182 			 */
1183 			DPRINTFN(5, ("PHY or CRC error flags 0x%08x\n",
1184 			    le32toh(desc->flags)));
1185 			ifp->if_ierrors++;
1186 			goto skip;
1187 		}
1188 
1189 		if ((le32toh(desc->flags) & RT2661_RX_CIPHER_MASK) != 0) {
1190 			ifp->if_ierrors++;
1191 			goto skip;
1192 		}
1193 
1194 		/*
1195 		 * Try to allocate a new mbuf for this ring element and load it
1196 		 * before processing the current mbuf. If the ring element
1197 		 * cannot be loaded, drop the received packet and reuse the old
1198 		 * mbuf. In the unlikely case that the old mbuf can't be
1199 		 * reloaded either, explicitly panic.
1200 		 */
1201 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1202 		if (mnew == NULL) {
1203 			ifp->if_ierrors++;
1204 			goto skip;
1205 		}
1206 
1207 		MCLGET(mnew, M_DONTWAIT);
1208 		if (!(mnew->m_flags & M_EXT)) {
1209 			m_freem(mnew);
1210 			ifp->if_ierrors++;
1211 			goto skip;
1212 		}
1213 
1214 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1215 		    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1216 		bus_dmamap_unload(sc->sc_dmat, data->map);
1217 
1218 		error = bus_dmamap_load(sc->sc_dmat, data->map,
1219 		    mtod(mnew, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
1220 		if (error != 0) {
1221 			m_freem(mnew);
1222 
1223 			/* try to reload the old mbuf */
1224 			error = bus_dmamap_load(sc->sc_dmat, data->map,
1225 			    mtod(data->m, void *), MCLBYTES, NULL,
1226 			    BUS_DMA_NOWAIT);
1227 			if (error != 0) {
1228 				/* very unlikely that it will fail... */
1229 				panic("%s: could not load old rx mbuf",
1230 				    sc->sc_dev.dv_xname);
1231 			}
1232 			ifp->if_ierrors++;
1233 			goto skip;
1234 		}
1235 
1236 		/*
1237 	 	 * New mbuf successfully loaded, update Rx ring and continue
1238 		 * processing.
1239 		 */
1240 		m = data->m;
1241 		data->m = mnew;
1242 		desc->physaddr = htole32(data->map->dm_segs->ds_addr);
1243 
1244 		/* finalize mbuf */
1245 		m->m_pkthdr.rcvif = ifp;
1246 		m->m_pkthdr.len = m->m_len =
1247 		    (le32toh(desc->flags) >> 16) & 0xfff;
1248 
1249 #if NBPFILTER > 0
1250 		if (sc->sc_drvbpf != NULL) {
1251 			struct rt2661_rx_radiotap_header *tap = &sc->sc_rxtap;
1252 			uint32_t tsf_lo, tsf_hi;
1253 
1254 			/* get timestamp (low and high 32 bits) */
1255 			tsf_hi = RAL_READ(sc, RT2661_TXRX_CSR13);
1256 			tsf_lo = RAL_READ(sc, RT2661_TXRX_CSR12);
1257 
1258 			tap->wr_tsf =
1259 			    htole64(((uint64_t)tsf_hi << 32) | tsf_lo);
1260 			tap->wr_flags = 0;
1261 			tap->wr_rate = rt2661_rxrate(desc);
1262 			tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
1263 			tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
1264 			tap->wr_antsignal = desc->rssi;
1265 
1266 			bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1267 		}
1268 #endif
1269 
1270 		wh = mtod(m, struct ieee80211_frame *);
1271 		ni = ieee80211_find_rxnode(ic,
1272 		    (struct ieee80211_frame_min *)wh);
1273 
1274 		/* send the frame to the 802.11 layer */
1275 		ieee80211_input(ic, m, ni, desc->rssi, 0);
1276 
1277 
1278 		/* give rssi to the rate adatation algorithm */
1279 		rn = (struct rt2661_node *)ni;
1280 		ieee80211_rssadapt_input(ic, ni, &rn->rssadapt,
1281 		    rt2661_get_rssi(sc, desc->rssi));
1282 
1283 		/* node is no longer needed */
1284 		ieee80211_free_node(ni);
1285 
1286 skip:		desc->flags |= htole32(RT2661_RX_BUSY);
1287 
1288 		bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1289 		    sc->rxq.cur * RT2661_RX_DESC_SIZE, RT2661_RX_DESC_SIZE,
1290 		    BUS_DMASYNC_PREWRITE);
1291 
1292 		DPRINTFN(15, ("rx intr idx=%u\n", sc->rxq.cur));
1293 
1294 		sc->rxq.cur = (sc->rxq.cur + 1) % RT2661_RX_RING_COUNT;
1295 	}
1296 
1297 	/*
1298 	 * In HostAP mode, ieee80211_input() will enqueue packets in if_snd
1299 	 * without calling if_start().
1300 	 */
1301 	if (!IFQ_IS_EMPTY(&ifp->if_snd) && !(ifp->if_flags & IFF_OACTIVE))
1302 		rt2661_start(ifp);
1303 }
1304 
1305 /* ARGSUSED */
1306 static void
1307 rt2661_mcu_beacon_expire(struct rt2661_softc *sc)
1308 {
1309 	/* do nothing */
1310 }
1311 
1312 static void
1313 rt2661_mcu_wakeup(struct rt2661_softc *sc)
1314 {
1315 	RAL_WRITE(sc, RT2661_MAC_CSR11, 5 << 16);
1316 
1317 	RAL_WRITE(sc, RT2661_SOFT_RESET_CSR, 0x7);
1318 	RAL_WRITE(sc, RT2661_IO_CNTL_CSR, 0x18);
1319 	RAL_WRITE(sc, RT2661_PCI_USEC_CSR, 0x20);
1320 
1321 	/* send wakeup command to MCU */
1322 	rt2661_tx_cmd(sc, RT2661_MCU_CMD_WAKEUP, 0);
1323 }
1324 
1325 static void
1326 rt2661_mcu_cmd_intr(struct rt2661_softc *sc)
1327 {
1328 	RAL_READ(sc, RT2661_M2H_CMD_DONE_CSR);
1329 	RAL_WRITE(sc, RT2661_M2H_CMD_DONE_CSR, 0xffffffff);
1330 }
1331 
1332 int
1333 rt2661_intr(void *arg)
1334 {
1335 	struct rt2661_softc *sc = arg;
1336 	struct ifnet *ifp = &sc->sc_if;
1337 	uint32_t r1, r2;
1338 
1339 	/* disable MAC and MCU interrupts */
1340 	RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0xffffff7f);
1341 	RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0xffffffff);
1342 
1343 	/* don't re-enable interrupts if we're shutting down */
1344 	if (!(ifp->if_flags & IFF_RUNNING))
1345 		return 0;
1346 
1347 	r1 = RAL_READ(sc, RT2661_INT_SOURCE_CSR);
1348 	RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, r1);
1349 
1350 	r2 = RAL_READ(sc, RT2661_MCU_INT_SOURCE_CSR);
1351 	RAL_WRITE(sc, RT2661_MCU_INT_SOURCE_CSR, r2);
1352 
1353 	if (r1 & RT2661_MGT_DONE)
1354 		rt2661_tx_dma_intr(sc, &sc->mgtq);
1355 
1356 	if (r1 & RT2661_RX_DONE)
1357 		rt2661_rx_intr(sc);
1358 
1359 	if (r1 & RT2661_TX0_DMA_DONE)
1360 		rt2661_tx_dma_intr(sc, &sc->txq[0]);
1361 
1362 	if (r1 & RT2661_TX1_DMA_DONE)
1363 		rt2661_tx_dma_intr(sc, &sc->txq[1]);
1364 
1365 	if (r1 & RT2661_TX2_DMA_DONE)
1366 		rt2661_tx_dma_intr(sc, &sc->txq[2]);
1367 
1368 	if (r1 & RT2661_TX3_DMA_DONE)
1369 		rt2661_tx_dma_intr(sc, &sc->txq[3]);
1370 
1371 	if (r1 & RT2661_TX_DONE)
1372 		rt2661_tx_intr(sc);
1373 
1374 	if (r2 & RT2661_MCU_CMD_DONE)
1375 		rt2661_mcu_cmd_intr(sc);
1376 
1377 	if (r2 & RT2661_MCU_BEACON_EXPIRE)
1378 		rt2661_mcu_beacon_expire(sc);
1379 
1380 	if (r2 & RT2661_MCU_WAKEUP)
1381 		rt2661_mcu_wakeup(sc);
1382 
1383 	/* re-enable MAC and MCU interrupts */
1384 	RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0x0000ff10);
1385 	RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0);
1386 
1387 	return 1;
1388 }
1389 
1390 /* quickly determine if a given rate is CCK or OFDM */
1391 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1392 
1393 #define RAL_ACK_SIZE	14	/* 10 + 4(FCS) */
1394 #define RAL_CTS_SIZE	14	/* 10 + 4(FCS) */
1395 
1396 #define RAL_SIFS	10	/* us */
1397 
1398 /*
1399  * This function is only used by the Rx radiotap code. It returns the rate at
1400  * which a given frame was received.
1401  */
1402 #if NBPFILTER > 0
1403 static uint8_t
1404 rt2661_rxrate(struct rt2661_rx_desc *desc)
1405 {
1406 	if (le32toh(desc->flags) & RT2661_RX_OFDM) {
1407 		/* reverse function of rt2661_plcp_signal */
1408 		switch (desc->rate & 0xf) {
1409 		case 0xb:	return 12;
1410 		case 0xf:	return 18;
1411 		case 0xa:	return 24;
1412 		case 0xe:	return 36;
1413 		case 0x9:	return 48;
1414 		case 0xd:	return 72;
1415 		case 0x8:	return 96;
1416 		case 0xc:	return 108;
1417 		}
1418 	} else {
1419 		if (desc->rate == 10)
1420 			return 2;
1421 		if (desc->rate == 20)
1422 			return 4;
1423 		if (desc->rate == 55)
1424 			return 11;
1425 		if (desc->rate == 110)
1426 			return 22;
1427 	}
1428 	return 2;	/* should not get there */
1429 }
1430 #endif
1431 
1432 /*
1433  * Return the expected ack rate for a frame transmitted at rate `rate'.
1434  * XXX: this should depend on the destination node basic rate set.
1435  */
1436 static int
1437 rt2661_ack_rate(struct ieee80211com *ic, int rate)
1438 {
1439 	switch (rate) {
1440 	/* CCK rates */
1441 	case 2:
1442 		return 2;
1443 	case 4:
1444 	case 11:
1445 	case 22:
1446 		return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
1447 
1448 	/* OFDM rates */
1449 	case 12:
1450 	case 18:
1451 		return 12;
1452 	case 24:
1453 	case 36:
1454 		return 24;
1455 	case 48:
1456 	case 72:
1457 	case 96:
1458 	case 108:
1459 		return 48;
1460 	}
1461 
1462 	/* default to 1Mbps */
1463 	return 2;
1464 }
1465 
1466 /*
1467  * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1468  * The function automatically determines the operating mode depending on the
1469  * given rate. `flags' indicates whether short preamble is in use or not.
1470  */
1471 static uint16_t
1472 rt2661_txtime(int len, int rate, uint32_t flags)
1473 {
1474 	uint16_t txtime;
1475 
1476 	if (RAL_RATE_IS_OFDM(rate)) {
1477 		/* IEEE Std 802.11a-1999, pp. 37 */
1478 		txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1479 		txtime = 16 + 4 + 4 * txtime + 6;
1480 	} else {
1481 		/* IEEE Std 802.11b-1999, pp. 28 */
1482 		txtime = (16 * len + rate - 1) / rate;
1483 		if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1484 			txtime +=  72 + 24;
1485 		else
1486 			txtime += 144 + 48;
1487 	}
1488 	return txtime;
1489 }
1490 
1491 static uint8_t
1492 rt2661_plcp_signal(int rate)
1493 {
1494 	switch (rate) {
1495 	/* CCK rates (returned values are device-dependent) */
1496 	case 2:		return 0x0;
1497 	case 4:		return 0x1;
1498 	case 11:	return 0x2;
1499 	case 22:	return 0x3;
1500 
1501 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1502 	case 12:	return 0xb;
1503 	case 18:	return 0xf;
1504 	case 24:	return 0xa;
1505 	case 36:	return 0xe;
1506 	case 48:	return 0x9;
1507 	case 72:	return 0xd;
1508 	case 96:	return 0x8;
1509 	case 108:	return 0xc;
1510 
1511 	/* unsupported rates (should not get there) */
1512 	default:	return 0xff;
1513 	}
1514 }
1515 
1516 static void
1517 rt2661_setup_tx_desc(struct rt2661_softc *sc, struct rt2661_tx_desc *desc,
1518     uint32_t flags, uint16_t xflags, int len, int rate,
1519     const bus_dma_segment_t *segs, int nsegs, int ac)
1520 {
1521 	struct ieee80211com *ic = &sc->sc_ic;
1522 	uint16_t plcp_length;
1523 	int i, remainder;
1524 
1525 	desc->flags = htole32(flags);
1526 	desc->flags |= htole32(len << 16);
1527 	desc->flags |= htole32(RT2661_TX_BUSY | RT2661_TX_VALID);
1528 
1529 	desc->xflags = htole16(xflags);
1530 	desc->xflags |= htole16(nsegs << 13);
1531 
1532 	desc->wme = htole16(
1533 	    RT2661_QID(ac) |
1534 	    RT2661_AIFSN(2) |
1535 	    RT2661_LOGCWMIN(4) |
1536 	    RT2661_LOGCWMAX(10));
1537 
1538 	/*
1539 	 * Remember in which queue this frame was sent. This field is driver
1540 	 * private data only. It will be made available by the NIC in STA_CSR4
1541 	 * on Tx interrupts.
1542 	 */
1543 	desc->qid = ac;
1544 
1545 	/* setup PLCP fields */
1546 	desc->plcp_signal  = rt2661_plcp_signal(rate);
1547 	desc->plcp_service = 4;
1548 
1549 	len += IEEE80211_CRC_LEN;
1550 	if (RAL_RATE_IS_OFDM(rate)) {
1551 		desc->flags |= htole32(RT2661_TX_OFDM);
1552 
1553 		plcp_length = len & 0xfff;
1554 		desc->plcp_length_hi = plcp_length >> 6;
1555 		desc->plcp_length_lo = plcp_length & 0x3f;
1556 	} else {
1557 		plcp_length = (16 * len + rate - 1) / rate;
1558 		if (rate == 22) {
1559 			remainder = (16 * len) % 22;
1560 			if (remainder != 0 && remainder < 7)
1561 				desc->plcp_service |= RT2661_PLCP_LENGEXT;
1562 		}
1563 		desc->plcp_length_hi = plcp_length >> 8;
1564 		desc->plcp_length_lo = plcp_length & 0xff;
1565 
1566 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1567 			desc->plcp_signal |= 0x08;
1568 	}
1569 
1570 	/* RT2x61 supports scatter with up to 5 segments */
1571 	for (i = 0; i < nsegs; i++) {
1572 		desc->addr[i] = htole32(segs[i].ds_addr);
1573 		desc->len [i] = htole16(segs[i].ds_len);
1574 	}
1575 }
1576 
1577 static int
1578 rt2661_tx_mgt(struct rt2661_softc *sc, struct mbuf *m0,
1579     struct ieee80211_node *ni)
1580 {
1581 	struct ieee80211com *ic = &sc->sc_ic;
1582 	struct rt2661_tx_desc *desc;
1583 	struct rt2661_tx_data *data;
1584 	struct ieee80211_frame *wh;
1585 	struct ieee80211_key *k;
1586 	uint16_t dur;
1587 	uint32_t flags = 0;
1588 	int rate, error;
1589 
1590 	desc = &sc->mgtq.desc[sc->mgtq.cur];
1591 	data = &sc->mgtq.data[sc->mgtq.cur];
1592 
1593 	/* send mgt frames at the lowest available rate */
1594 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1595 
1596 	wh = mtod(m0, struct ieee80211_frame *);
1597 
1598 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1599 		k = ieee80211_crypto_encap(ic, ni, m0);
1600 		if (k == NULL) {
1601 			m_freem(m0);
1602 			return ENOBUFS;
1603 		}
1604 	}
1605 
1606 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1607 	    BUS_DMA_NOWAIT);
1608 	if (error != 0) {
1609 		printf("%s: could not map mbuf (error %d)\n",
1610 		    sc->sc_dev.dv_xname, error);
1611 		m_freem(m0);
1612 		return error;
1613 	}
1614 
1615 #if NBPFILTER > 0
1616 	if (sc->sc_drvbpf != NULL) {
1617 		struct rt2661_tx_radiotap_header *tap = &sc->sc_txtap;
1618 
1619 		tap->wt_flags = 0;
1620 		tap->wt_rate = rate;
1621 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1622 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1623 
1624 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1625 	}
1626 #endif
1627 
1628 	data->m = m0;
1629 	data->ni = ni;
1630 
1631 	wh = mtod(m0, struct ieee80211_frame *);
1632 
1633 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1634 		flags |= RT2661_TX_NEED_ACK;
1635 
1636 		dur = rt2661_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) +
1637 		    RAL_SIFS;
1638 		*(uint16_t *)wh->i_dur = htole16(dur);
1639 
1640 		/* tell hardware to add timestamp in probe responses */
1641 		if ((wh->i_fc[0] &
1642 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1643 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1644 			flags |= RT2661_TX_TIMESTAMP;
1645 	}
1646 
1647 	rt2661_setup_tx_desc(sc, desc, flags, 0 /* XXX HWSEQ */,
1648 	    m0->m_pkthdr.len, rate, data->map->dm_segs, data->map->dm_nsegs,
1649 	    RT2661_QID_MGT);
1650 
1651 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1652 	    BUS_DMASYNC_PREWRITE);
1653 	bus_dmamap_sync(sc->sc_dmat, sc->mgtq.map,
1654 	    sc->mgtq.cur * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
1655 	    BUS_DMASYNC_PREWRITE);
1656 
1657 	DPRINTFN(10, ("sending mgt frame len=%u idx=%u rate=%u\n",
1658 	    m0->m_pkthdr.len, sc->mgtq.cur, rate));
1659 
1660 	/* kick mgt */
1661 	sc->mgtq.queued++;
1662 	sc->mgtq.cur = (sc->mgtq.cur + 1) % RT2661_MGT_RING_COUNT;
1663 	RAL_WRITE(sc, RT2661_TX_CNTL_CSR, RT2661_KICK_MGT);
1664 
1665 	return 0;
1666 }
1667 
1668 /*
1669  * Build a RTS control frame.
1670  */
1671 static struct mbuf *
1672 rt2661_get_rts(struct rt2661_softc *sc, struct ieee80211_frame *wh,
1673     uint16_t dur)
1674 {
1675 	struct ieee80211_frame_rts *rts;
1676 	struct mbuf *m;
1677 
1678 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1679 	if (m == NULL) {
1680 		sc->sc_ic.ic_stats.is_tx_nobuf++;
1681 		printf("%s: could not allocate RTS frame\n",
1682 		    sc->sc_dev.dv_xname);
1683 		return NULL;
1684 	}
1685 
1686 	rts = mtod(m, struct ieee80211_frame_rts *);
1687 
1688 	rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL |
1689 	    IEEE80211_FC0_SUBTYPE_RTS;
1690 	rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1691 	*(uint16_t *)rts->i_dur = htole16(dur);
1692 	IEEE80211_ADDR_COPY(rts->i_ra, wh->i_addr1);
1693 	IEEE80211_ADDR_COPY(rts->i_ta, wh->i_addr2);
1694 
1695 	m->m_pkthdr.len = m->m_len = sizeof (struct ieee80211_frame_rts);
1696 
1697 	return m;
1698 }
1699 
1700 static int
1701 rt2661_tx_data(struct rt2661_softc *sc, struct mbuf *m0,
1702     struct ieee80211_node *ni, int ac)
1703 {
1704 	struct ieee80211com *ic = &sc->sc_ic;
1705 	struct rt2661_tx_ring *txq = &sc->txq[ac];
1706 	struct rt2661_tx_desc *desc;
1707 	struct rt2661_tx_data *data;
1708 	struct rt2661_node *rn;
1709 	struct ieee80211_rateset *rs;
1710 	struct ieee80211_frame *wh;
1711 	struct ieee80211_key *k;
1712 	struct mbuf *mnew;
1713 	uint16_t dur;
1714 	uint32_t flags = 0;
1715 	int rate, error;
1716 
1717 	wh = mtod(m0, struct ieee80211_frame *);
1718 
1719 	if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
1720 		rs = &ic->ic_sup_rates[ic->ic_curmode];
1721 		rate = rs->rs_rates[ic->ic_fixed_rate];
1722 	} else {
1723 		rs = &ni->ni_rates;
1724 		rn = (struct rt2661_node *)ni;
1725 		ni->ni_txrate = ieee80211_rssadapt_choose(&rn->rssadapt, rs,
1726 		    wh, m0->m_pkthdr.len, -1, NULL, 0);
1727 		rate = rs->rs_rates[ni->ni_txrate];
1728 	}
1729 	rate &= IEEE80211_RATE_VAL;
1730 
1731 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1732 		k = ieee80211_crypto_encap(ic, ni, m0);
1733 		if (k == NULL) {
1734 			m_freem(m0);
1735 			return ENOBUFS;
1736 		}
1737 
1738 		/* packet header may have moved, reset our local pointer */
1739 		wh = mtod(m0, struct ieee80211_frame *);
1740 	}
1741 
1742 	/*
1743 	 * IEEE Std 802.11-1999, pp 82: "A STA shall use an RTS/CTS exchange
1744 	 * for directed frames only when the length of the MPDU is greater
1745 	 * than the length threshold indicated by [...]" ic_rtsthreshold.
1746 	 */
1747 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1748 	    m0->m_pkthdr.len > ic->ic_rtsthreshold) {
1749 		struct mbuf *m;
1750 		int rtsrate, ackrate;
1751 
1752 		rtsrate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1753 		ackrate = rt2661_ack_rate(ic, rate);
1754 
1755 		dur = rt2661_txtime(m0->m_pkthdr.len + 4, rate, ic->ic_flags) +
1756 		      rt2661_txtime(RAL_CTS_SIZE, rtsrate, ic->ic_flags) +
1757 		      rt2661_txtime(RAL_ACK_SIZE, ackrate, ic->ic_flags) +
1758 		      3 * RAL_SIFS;
1759 
1760 		m = rt2661_get_rts(sc, wh, dur);
1761 
1762 		desc = &txq->desc[txq->cur];
1763 		data = &txq->data[txq->cur];
1764 
1765 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
1766 		    BUS_DMA_NOWAIT);
1767 		if (error != 0) {
1768 			printf("%s: could not map mbuf (error %d)\n",
1769 			    sc->sc_dev.dv_xname, error);
1770 			m_freem(m);
1771 			m_freem(m0);
1772 			return error;
1773 		}
1774 
1775 		/* avoid multiple free() of the same node for each fragment */
1776 		ieee80211_ref_node(ni);
1777 
1778 		data->m = m;
1779 		data->ni = ni;
1780 
1781 		/* RTS frames are not taken into account for rssadapt */
1782 		data->id.id_node = NULL;
1783 
1784 		rt2661_setup_tx_desc(sc, desc, RT2661_TX_NEED_ACK |
1785 		    RT2661_TX_MORE_FRAG, 0, m->m_pkthdr.len, rtsrate,
1786 		    data->map->dm_segs, data->map->dm_nsegs, ac);
1787 
1788 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1789 		    data->map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1790 		bus_dmamap_sync(sc->sc_dmat, txq->map,
1791 		    txq->cur * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
1792 		    BUS_DMASYNC_PREWRITE);
1793 
1794 		txq->queued++;
1795 		txq->cur = (txq->cur + 1) % RT2661_TX_RING_COUNT;
1796 
1797 		/*
1798 		 * IEEE Std 802.11-1999: when an RTS/CTS exchange is used, the
1799 		 * asynchronous data frame shall be transmitted after the CTS
1800 		 * frame and a SIFS period.
1801 		 */
1802 		flags |= RT2661_TX_LONG_RETRY | RT2661_TX_IFS;
1803 	}
1804 
1805 	data = &txq->data[txq->cur];
1806 	desc = &txq->desc[txq->cur];
1807 
1808 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1809 	    BUS_DMA_NOWAIT);
1810 	if (error != 0 && error != EFBIG) {
1811 		printf("%s: could not map mbuf (error %d)\n",
1812 		    sc->sc_dev.dv_xname, error);
1813 		m_freem(m0);
1814 		return error;
1815 	}
1816 	if (error != 0) {
1817 		/* too many fragments, linearize */
1818 
1819 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1820 		if (mnew == NULL) {
1821 			m_freem(m0);
1822 			return ENOMEM;
1823 		}
1824 
1825 		M_COPY_PKTHDR(mnew, m0);
1826 		if (m0->m_pkthdr.len > MHLEN) {
1827 			MCLGET(mnew, M_DONTWAIT);
1828 			if (!(mnew->m_flags & M_EXT)) {
1829 				m_freem(m0);
1830 				m_freem(mnew);
1831 				return ENOMEM;
1832 			}
1833 		}
1834 
1835 		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
1836 		m_freem(m0);
1837 		mnew->m_len = mnew->m_pkthdr.len;
1838 		m0 = mnew;
1839 
1840 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1841 		    BUS_DMA_NOWAIT);
1842 		if (error != 0) {
1843 			printf("%s: could not map mbuf (error %d)\n",
1844 			    sc->sc_dev.dv_xname, error);
1845 			m_freem(m0);
1846 			return error;
1847 		}
1848 
1849 		/* packet header have moved, reset our local pointer */
1850 		wh = mtod(m0, struct ieee80211_frame *);
1851 	}
1852 
1853 #if NBPFILTER > 0
1854 	if (sc->sc_drvbpf != NULL) {
1855 		struct rt2661_tx_radiotap_header *tap = &sc->sc_txtap;
1856 
1857 		tap->wt_flags = 0;
1858 		tap->wt_rate = rate;
1859 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1860 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1861 
1862 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1863 	}
1864 #endif
1865 
1866 	data->m = m0;
1867 	data->ni = ni;
1868 
1869 	/* remember link conditions for rate adaptation algorithm */
1870 	if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
1871 		data->id.id_len = m0->m_pkthdr.len;
1872 		data->id.id_rateidx = ni->ni_txrate;
1873 		data->id.id_node = ni;
1874 		data->id.id_rssi = ni->ni_rssi;
1875 	} else
1876 		data->id.id_node = NULL;
1877 
1878 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1879 		flags |= RT2661_TX_NEED_ACK;
1880 
1881 		dur = rt2661_txtime(RAL_ACK_SIZE, rt2661_ack_rate(ic, rate),
1882 		    ic->ic_flags) + RAL_SIFS;
1883 		*(uint16_t *)wh->i_dur = htole16(dur);
1884 	}
1885 
1886 	rt2661_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate,
1887 	    data->map->dm_segs, data->map->dm_nsegs, ac);
1888 
1889 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1890 	    BUS_DMASYNC_PREWRITE);
1891 	bus_dmamap_sync(sc->sc_dmat, txq->map, txq->cur * RT2661_TX_DESC_SIZE,
1892 	    RT2661_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
1893 
1894 	DPRINTFN(10, ("sending data frame len=%u idx=%u rate=%u\n",
1895 	    m0->m_pkthdr.len, txq->cur, rate));
1896 
1897 	/* kick Tx */
1898 	txq->queued++;
1899 	txq->cur = (txq->cur + 1) % RT2661_TX_RING_COUNT;
1900 	RAL_WRITE(sc, RT2661_TX_CNTL_CSR, 1);
1901 
1902 	return 0;
1903 }
1904 
1905 static void
1906 rt2661_start(struct ifnet *ifp)
1907 {
1908 	struct rt2661_softc *sc = ifp->if_softc;
1909 	struct ieee80211com *ic = &sc->sc_ic;
1910 	struct mbuf *m0;
1911 	struct ether_header *eh;
1912 	struct ieee80211_node *ni = NULL;
1913 	int ac;
1914 
1915 	/*
1916 	 * net80211 may still try to send management frames even if the
1917 	 * IFF_RUNNING flag is not set...
1918 	 */
1919 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1920 		return;
1921 
1922 	for (;;) {
1923 		IF_POLL(&ic->ic_mgtq, m0);
1924 		if (m0 != NULL) {
1925 			if (sc->mgtq.queued >= RT2661_MGT_RING_COUNT) {
1926 				ifp->if_flags |= IFF_OACTIVE;
1927 				break;
1928 			}
1929 			IF_DEQUEUE(&ic->ic_mgtq, m0);
1930 			if (m0 == NULL)
1931 				break;
1932 
1933 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1934 			m0->m_pkthdr.rcvif = NULL;
1935 #if NBPFILTER > 0
1936 			if (ic->ic_rawbpf != NULL)
1937 				bpf_mtap(ic->ic_rawbpf, m0);
1938 #endif
1939 			if (rt2661_tx_mgt(sc, m0, ni) != 0)
1940 				break;
1941 
1942 		} else {
1943 			if (ic->ic_state != IEEE80211_S_RUN)
1944 				break;
1945 			IFQ_DEQUEUE(&ifp->if_snd, m0);
1946 			if (m0 == NULL)
1947 				break;
1948 
1949 			if (m0->m_len < sizeof (struct ether_header) &&
1950 			    !(m0 = m_pullup(m0, sizeof (struct ether_header))))
1951 				continue;
1952 
1953 			eh = mtod(m0, struct ether_header *);
1954 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1955 			if (ni == NULL) {
1956 				m_freem(m0);
1957 				ifp->if_oerrors++;
1958 				continue;
1959 			}
1960 
1961 
1962 			/* classify mbuf so we can find which tx ring to use */
1963 			if (ieee80211_classify(ic, m0, ni) != 0) {
1964 				m_freem(m0);
1965 				ieee80211_free_node(ni);
1966 				ifp->if_oerrors++;
1967 				continue;
1968 			}
1969 
1970 			/* no QoS encapsulation for EAPOL frames */
1971 			ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
1972 			    M_WME_GETAC(m0) : WME_AC_BE;
1973 
1974 			if (sc->txq[0].queued >= RT2661_TX_RING_COUNT - 1) {
1975 				/* there is no place left in this ring */
1976 				ifp->if_flags |= IFF_OACTIVE;
1977 				break;
1978 			}
1979 #if NBPFILTER > 0
1980 			if (ifp->if_bpf != NULL)
1981 				bpf_mtap(ifp->if_bpf, m0);
1982 #endif
1983 			m0 = ieee80211_encap(ic, m0, ni);
1984 			if (m0 == NULL) {
1985 				ieee80211_free_node(ni);
1986 				ifp->if_oerrors++;
1987 				continue;
1988 			}
1989 #if NBPFILTER > 0
1990 			if (ic->ic_rawbpf != NULL)
1991 				bpf_mtap(ic->ic_rawbpf, m0);
1992 #endif
1993 			if (rt2661_tx_data(sc, m0, ni, 0) != 0) {
1994 				if (ni != NULL)
1995 					ieee80211_free_node(ni);
1996 				ifp->if_oerrors++;
1997 				break;
1998 			}
1999 		}
2000 
2001 		sc->sc_tx_timer = 5;
2002 		ifp->if_timer = 1;
2003 	}
2004 }
2005 
2006 static void
2007 rt2661_watchdog(struct ifnet *ifp)
2008 {
2009 	struct rt2661_softc *sc = ifp->if_softc;
2010 
2011 	ifp->if_timer = 0;
2012 
2013 	if (sc->sc_tx_timer > 0) {
2014 		if (--sc->sc_tx_timer == 0) {
2015 			printf("%s: device timeout\n", sc->sc_dev.dv_xname);
2016 			rt2661_init(ifp);
2017 			ifp->if_oerrors++;
2018 			return;
2019 		}
2020 		ifp->if_timer = 1;
2021 	}
2022 
2023 	ieee80211_watchdog(&sc->sc_ic);
2024 }
2025 
2026 /*
2027  * This function allows for fast channel switching in monitor mode (used by
2028  * kismet). In IBSS mode, we must explicitly reset the interface to
2029  * generate a new beacon frame.
2030  */
2031 static int
2032 rt2661_reset(struct ifnet *ifp)
2033 {
2034 	struct rt2661_softc *sc = ifp->if_softc;
2035 	struct ieee80211com *ic = &sc->sc_ic;
2036 
2037 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
2038 		return ENETRESET;
2039 
2040 	rt2661_set_chan(sc, ic->ic_curchan);
2041 
2042 	return 0;
2043 }
2044 
2045 static int
2046 rt2661_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2047 {
2048 	struct rt2661_softc *sc = ifp->if_softc;
2049 	struct ieee80211com *ic = &sc->sc_ic;
2050 	int s, error = 0;
2051 
2052 	s = splnet();
2053 
2054 	switch (cmd) {
2055 	case SIOCSIFFLAGS:
2056 		if (ifp->if_flags & IFF_UP) {
2057 			if (ifp->if_flags & IFF_RUNNING)
2058 				rt2661_update_promisc(sc);
2059 			else
2060 				rt2661_init(ifp);
2061 		} else {
2062 			if (ifp->if_flags & IFF_RUNNING)
2063 				rt2661_stop(ifp, 1);
2064 		}
2065 		break;
2066 
2067 	case SIOCADDMULTI:
2068 	case SIOCDELMULTI:
2069 		/* XXX no h/w multicast filter? --dyoung */
2070 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET)
2071 			error = 0;
2072 		break;
2073 
2074 	case SIOCS80211CHANNEL:
2075 		/*
2076 		 * This allows for fast channel switching in monitor mode
2077 		 * (used by kismet). In IBSS mode, we must explicitly reset
2078 		 * the interface to generate a new beacon frame.
2079 		 */
2080 		error = ieee80211_ioctl(ic, cmd, data);
2081 		if (error == ENETRESET &&
2082 		    ic->ic_opmode == IEEE80211_M_MONITOR) {
2083 			rt2661_set_chan(sc, ic->ic_ibss_chan);
2084 			error = 0;
2085 		}
2086 		break;
2087 
2088 	default:
2089 		error = ieee80211_ioctl(ic, cmd, data);
2090 
2091 	}
2092 
2093 	if (error == ENETRESET) {
2094 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
2095 		    (IFF_UP | IFF_RUNNING))
2096 			rt2661_init(ifp);
2097 		error = 0;
2098 	}
2099 
2100 	splx(s);
2101 
2102 	return error;
2103 }
2104 
2105 static void
2106 rt2661_bbp_write(struct rt2661_softc *sc, uint8_t reg, uint8_t val)
2107 {
2108 	uint32_t tmp;
2109 	int ntries;
2110 
2111 	for (ntries = 0; ntries < 100; ntries++) {
2112 		if (!(RAL_READ(sc, RT2661_PHY_CSR3) & RT2661_BBP_BUSY))
2113 			break;
2114 		DELAY(1);
2115 	}
2116 	if (ntries == 100) {
2117 		printf("%s: could not write to BBP\n", sc->sc_dev.dv_xname);
2118 		return;
2119 	}
2120 
2121 	tmp = RT2661_BBP_BUSY | (reg & 0x7f) << 8 | val;
2122 	RAL_WRITE(sc, RT2661_PHY_CSR3, tmp);
2123 
2124 	DPRINTFN(15, ("BBP R%u <- 0x%02x\n", reg, val));
2125 }
2126 
2127 static uint8_t
2128 rt2661_bbp_read(struct rt2661_softc *sc, uint8_t reg)
2129 {
2130 	uint32_t val;
2131 	int ntries;
2132 
2133 	for (ntries = 0; ntries < 100; ntries++) {
2134 		if (!(RAL_READ(sc, RT2661_PHY_CSR3) & RT2661_BBP_BUSY))
2135 			break;
2136 		DELAY(1);
2137 	}
2138 	if (ntries == 100) {
2139 		printf("%s: could not read from BBP\n", sc->sc_dev.dv_xname);
2140 		return 0;
2141 	}
2142 
2143 	val = RT2661_BBP_BUSY | RT2661_BBP_READ | reg << 8;
2144 	RAL_WRITE(sc, RT2661_PHY_CSR3, val);
2145 
2146 	for (ntries = 0; ntries < 100; ntries++) {
2147 		val = RAL_READ(sc, RT2661_PHY_CSR3);
2148 		if (!(val & RT2661_BBP_BUSY))
2149 			return val & 0xff;
2150 		DELAY(1);
2151 	}
2152 
2153 	printf("%s: could not read from BBP\n", sc->sc_dev.dv_xname);
2154 	return 0;
2155 }
2156 
2157 static void
2158 rt2661_rf_write(struct rt2661_softc *sc, uint8_t reg, uint32_t val)
2159 {
2160 	uint32_t tmp;
2161 	int ntries;
2162 
2163 	for (ntries = 0; ntries < 100; ntries++) {
2164 		if (!(RAL_READ(sc, RT2661_PHY_CSR4) & RT2661_RF_BUSY))
2165 			break;
2166 		DELAY(1);
2167 	}
2168 	if (ntries == 100) {
2169 		printf("%s: could not write to RF\n", sc->sc_dev.dv_xname);
2170 		return;
2171 	}
2172 
2173 	tmp = RT2661_RF_BUSY | RT2661_RF_21BIT | (val & 0x1fffff) << 2 |
2174 	    (reg & 3);
2175 	RAL_WRITE(sc, RT2661_PHY_CSR4, tmp);
2176 
2177 	/* remember last written value in sc */
2178 	sc->rf_regs[reg] = val;
2179 
2180 	DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0x1fffff));
2181 }
2182 
2183 static int
2184 rt2661_tx_cmd(struct rt2661_softc *sc, uint8_t cmd, uint16_t arg)
2185 {
2186 	if (RAL_READ(sc, RT2661_H2M_MAILBOX_CSR) & RT2661_H2M_BUSY)
2187 		return EIO;	/* there is already a command pending */
2188 
2189 	RAL_WRITE(sc, RT2661_H2M_MAILBOX_CSR,
2190 	    RT2661_H2M_BUSY | RT2661_TOKEN_NO_INTR << 16 | arg);
2191 
2192 	RAL_WRITE(sc, RT2661_HOST_CMD_CSR, RT2661_KICK_CMD | cmd);
2193 
2194 	return 0;
2195 }
2196 
2197 static void
2198 rt2661_select_antenna(struct rt2661_softc *sc)
2199 {
2200 	uint8_t bbp4, bbp77;
2201 	uint32_t tmp;
2202 
2203 	bbp4  = rt2661_bbp_read(sc,  4);
2204 	bbp77 = rt2661_bbp_read(sc, 77);
2205 
2206 	/* TBD */
2207 
2208 	/* make sure Rx is disabled before switching antenna */
2209 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2210 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX);
2211 
2212 	rt2661_bbp_write(sc,  4, bbp4);
2213 	rt2661_bbp_write(sc, 77, bbp77);
2214 
2215 	/* restore Rx filter */
2216 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2217 }
2218 
2219 /*
2220  * Enable multi-rate retries for frames sent at OFDM rates.
2221  * In 802.11b/g mode, allow fallback to CCK rates.
2222  */
2223 static void
2224 rt2661_enable_mrr(struct rt2661_softc *sc)
2225 {
2226 	struct ieee80211com *ic = &sc->sc_ic;
2227 	uint32_t tmp;
2228 
2229 	tmp = RAL_READ(sc, RT2661_TXRX_CSR4);
2230 
2231 	tmp &= ~RT2661_MRR_CCK_FALLBACK;
2232 	if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan))
2233 		tmp |= RT2661_MRR_CCK_FALLBACK;
2234 	tmp |= RT2661_MRR_ENABLED;
2235 
2236 	RAL_WRITE(sc, RT2661_TXRX_CSR4, tmp);
2237 }
2238 
2239 static void
2240 rt2661_set_txpreamble(struct rt2661_softc *sc)
2241 {
2242 	uint32_t tmp;
2243 
2244 	tmp = RAL_READ(sc, RT2661_TXRX_CSR4);
2245 
2246 	tmp &= ~RT2661_SHORT_PREAMBLE;
2247 	if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
2248 		tmp |= RT2661_SHORT_PREAMBLE;
2249 
2250 	RAL_WRITE(sc, RT2661_TXRX_CSR4, tmp);
2251 }
2252 
2253 static void
2254 rt2661_set_basicrates(struct rt2661_softc *sc,
2255     const struct ieee80211_rateset *rs)
2256 {
2257 #define RV(r)	((r) & IEEE80211_RATE_VAL)
2258 	uint32_t mask = 0;
2259 	uint8_t rate;
2260 	int i, j;
2261 
2262 	for (i = 0; i < rs->rs_nrates; i++) {
2263 		rate = rs->rs_rates[i];
2264 
2265 		if (!(rate & IEEE80211_RATE_BASIC))
2266 			continue;
2267 
2268 		/*
2269 		 * Find h/w rate index.  We know it exists because the rate
2270 		 * set has already been negotiated.
2271 		 */
2272 		for (j = 0; rt2661_rateset_11g.rs_rates[j] != RV(rate); j++);
2273 
2274 		mask |= 1 << j;
2275 	}
2276 
2277 	RAL_WRITE(sc, RT2661_TXRX_CSR5, mask);
2278 
2279 	DPRINTF(("Setting basic rate mask to 0x%x\n", mask));
2280 #undef RV
2281 }
2282 
2283 /*
2284  * Reprogram MAC/BBP to switch to a new band.  Values taken from the reference
2285  * driver.
2286  */
2287 static void
2288 rt2661_select_band(struct rt2661_softc *sc, struct ieee80211_channel *c)
2289 {
2290 	uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
2291 	uint32_t tmp;
2292 
2293 	/* update all BBP registers that depend on the band */
2294 	bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
2295 	bbp35 = 0x50; bbp97 = 0x48; bbp98  = 0x48;
2296 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2297 		bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
2298 		bbp35 += 0x10; bbp97 += 0x10; bbp98  += 0x10;
2299 	}
2300 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
2301 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
2302 		bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
2303 	}
2304 
2305 	rt2661_bbp_write(sc,  17, bbp17);
2306 	rt2661_bbp_write(sc,  96, bbp96);
2307 	rt2661_bbp_write(sc, 104, bbp104);
2308 
2309 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
2310 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
2311 		rt2661_bbp_write(sc, 75, 0x80);
2312 		rt2661_bbp_write(sc, 86, 0x80);
2313 		rt2661_bbp_write(sc, 88, 0x80);
2314 	}
2315 
2316 	rt2661_bbp_write(sc, 35, bbp35);
2317 	rt2661_bbp_write(sc, 97, bbp97);
2318 	rt2661_bbp_write(sc, 98, bbp98);
2319 
2320 	tmp = RAL_READ(sc, RT2661_PHY_CSR0);
2321 	tmp &= ~(RT2661_PA_PE_2GHZ | RT2661_PA_PE_5GHZ);
2322 	if (IEEE80211_IS_CHAN_2GHZ(c))
2323 		tmp |= RT2661_PA_PE_2GHZ;
2324 	else
2325 		tmp |= RT2661_PA_PE_5GHZ;
2326 	RAL_WRITE(sc, RT2661_PHY_CSR0, tmp);
2327 }
2328 
2329 static void
2330 rt2661_set_chan(struct rt2661_softc *sc, struct ieee80211_channel *c)
2331 {
2332 	struct ieee80211com *ic = &sc->sc_ic;
2333 	const struct rfprog *rfprog;
2334 	uint8_t bbp3, bbp94 = RT2661_BBPR94_DEFAULT;
2335 	int8_t power;
2336 	u_int i, chan;
2337 
2338 	chan = ieee80211_chan2ieee(ic, c);
2339 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
2340 		return;
2341 
2342 	/* select the appropriate RF settings based on what EEPROM says */
2343 	rfprog = (sc->rfprog == 0) ? rt2661_rf5225_1 : rt2661_rf5225_2;
2344 
2345 	/* find the settings for this channel (we know it exists) */
2346 	for (i = 0; rfprog[i].chan != chan; i++);
2347 
2348 	power = sc->txpow[i];
2349 	if (power < 0) {
2350 		bbp94 += power;
2351 		power = 0;
2352 	} else if (power > 31) {
2353 		bbp94 += power - 31;
2354 		power = 31;
2355 	}
2356 
2357 	/*
2358 	 * If we've yet to select a channel, or we are switching from the
2359 	 * 2GHz band to the 5GHz band or vice-versa, BBP registers need to
2360 	 * be reprogrammed.
2361 	 */
2362 	if (sc->sc_curchan == NULL || c->ic_flags != sc->sc_curchan->ic_flags) {
2363 		rt2661_select_band(sc, c);
2364 		rt2661_select_antenna(sc);
2365 	}
2366 	sc->sc_curchan = c;
2367 
2368 	rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1);
2369 	rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2);
2370 	rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7);
2371 	rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10);
2372 
2373 	DELAY(200);
2374 
2375 	rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1);
2376 	rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2);
2377 	rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7 | 1);
2378 	rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10);
2379 
2380 	DELAY(200);
2381 
2382 	rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1);
2383 	rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2);
2384 	rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7);
2385 	rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10);
2386 
2387 	/* enable smart mode for MIMO-capable RFs */
2388 	bbp3 = rt2661_bbp_read(sc, 3);
2389 
2390 	bbp3 &= ~RT2661_SMART_MODE;
2391 	if (sc->rf_rev == RT2661_RF_5325 || sc->rf_rev == RT2661_RF_2529)
2392 		bbp3 |= RT2661_SMART_MODE;
2393 
2394 	rt2661_bbp_write(sc, 3, bbp3);
2395 
2396 	if (bbp94 != RT2661_BBPR94_DEFAULT)
2397 		rt2661_bbp_write(sc, 94, bbp94);
2398 
2399 	/* 5GHz radio needs a 1ms delay here */
2400 	if (IEEE80211_IS_CHAN_5GHZ(c))
2401 		DELAY(1000);
2402 }
2403 
2404 static void
2405 rt2661_set_bssid(struct rt2661_softc *sc, const uint8_t *bssid)
2406 {
2407 	uint32_t tmp;
2408 
2409 	tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
2410 	RAL_WRITE(sc, RT2661_MAC_CSR4, tmp);
2411 
2412 	tmp = bssid[4] | bssid[5] << 8 | RT2661_ONE_BSSID << 16;
2413 	RAL_WRITE(sc, RT2661_MAC_CSR5, tmp);
2414 }
2415 
2416 static void
2417 rt2661_set_macaddr(struct rt2661_softc *sc, const uint8_t *addr)
2418 {
2419 	uint32_t tmp;
2420 
2421 	tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
2422 	RAL_WRITE(sc, RT2661_MAC_CSR2, tmp);
2423 
2424 	tmp = addr[4] | addr[5] << 8;
2425 	RAL_WRITE(sc, RT2661_MAC_CSR3, tmp);
2426 }
2427 
2428 static void
2429 rt2661_update_promisc(struct rt2661_softc *sc)
2430 {
2431 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
2432 	uint32_t tmp;
2433 
2434 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2435 
2436 	tmp &= ~RT2661_DROP_NOT_TO_ME;
2437 	if (!(ifp->if_flags & IFF_PROMISC))
2438 		tmp |= RT2661_DROP_NOT_TO_ME;
2439 
2440 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2441 
2442 	DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
2443 	    "entering" : "leaving"));
2444 }
2445 
2446 #if 0
2447 /*
2448  * Update QoS (802.11e) settings for each h/w Tx ring.
2449  */
2450 static int
2451 rt2661_wme_update(struct ieee80211com *ic)
2452 {
2453 	struct rt2661_softc *sc = ic->ic_ifp->if_softc;
2454 	const struct wmeParams *wmep;
2455 
2456 	wmep = ic->ic_wme.wme_chanParams.cap_wmeParams;
2457 
2458 	/* XXX: not sure about shifts. */
2459 	/* XXX: the reference driver plays with AC_VI settings too. */
2460 
2461 	/* update TxOp */
2462 	RAL_WRITE(sc, RT2661_AC_TXOP_CSR0,
2463 	    wmep[WME_AC_BE].wmep_txopLimit << 16 |
2464 	    wmep[WME_AC_BK].wmep_txopLimit);
2465 	RAL_WRITE(sc, RT2661_AC_TXOP_CSR1,
2466 	    wmep[WME_AC_VI].wmep_txopLimit << 16 |
2467 	    wmep[WME_AC_VO].wmep_txopLimit);
2468 
2469 	/* update CWmin */
2470 	RAL_WRITE(sc, RT2661_CWMIN_CSR,
2471 	    wmep[WME_AC_BE].wmep_logcwmin << 12 |
2472 	    wmep[WME_AC_BK].wmep_logcwmin <<  8 |
2473 	    wmep[WME_AC_VI].wmep_logcwmin <<  4 |
2474 	    wmep[WME_AC_VO].wmep_logcwmin);
2475 
2476 	/* update CWmax */
2477 	RAL_WRITE(sc, RT2661_CWMAX_CSR,
2478 	    wmep[WME_AC_BE].wmep_logcwmax << 12 |
2479 	    wmep[WME_AC_BK].wmep_logcwmax <<  8 |
2480 	    wmep[WME_AC_VI].wmep_logcwmax <<  4 |
2481 	    wmep[WME_AC_VO].wmep_logcwmax);
2482 
2483 	/* update Aifsn */
2484 	RAL_WRITE(sc, RT2661_AIFSN_CSR,
2485 	    wmep[WME_AC_BE].wmep_aifsn << 12 |
2486 	    wmep[WME_AC_BK].wmep_aifsn <<  8 |
2487 	    wmep[WME_AC_VI].wmep_aifsn <<  4 |
2488 	    wmep[WME_AC_VO].wmep_aifsn);
2489 
2490 	return 0;
2491 }
2492 #endif
2493 
2494 static void
2495 rt2661_update_slot(struct ifnet *ifp)
2496 {
2497 	struct rt2661_softc *sc = ifp->if_softc;
2498 	struct ieee80211com *ic = &sc->sc_ic;
2499 	uint8_t slottime;
2500 	uint32_t tmp;
2501 
2502 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
2503 
2504 	tmp = RAL_READ(sc, RT2661_MAC_CSR9);
2505 	tmp = (tmp & ~0xff) | slottime;
2506 	RAL_WRITE(sc, RT2661_MAC_CSR9, tmp);
2507 }
2508 
2509 static const char *
2510 rt2661_get_rf(int rev)
2511 {
2512 	switch (rev) {
2513 	case RT2661_RF_5225:	return "RT5225";
2514 	case RT2661_RF_5325:	return "RT5325 (MIMO XR)";
2515 	case RT2661_RF_2527:	return "RT2527";
2516 	case RT2661_RF_2529:	return "RT2529 (MIMO XR)";
2517 	default:		return "unknown";
2518 	}
2519 }
2520 
2521 static void
2522 rt2661_read_eeprom(struct rt2661_softc *sc)
2523 {
2524 	struct ieee80211com *ic = &sc->sc_ic;
2525 	uint16_t val;
2526 	int i;
2527 
2528 	/* read MAC address */
2529 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC01);
2530 	ic->ic_myaddr[0] = val & 0xff;
2531 	ic->ic_myaddr[1] = val >> 8;
2532 
2533 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC23);
2534 	ic->ic_myaddr[2] = val & 0xff;
2535 	ic->ic_myaddr[3] = val >> 8;
2536 
2537 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC45);
2538 	ic->ic_myaddr[4] = val & 0xff;
2539 	ic->ic_myaddr[5] = val >> 8;
2540 
2541 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_ANTENNA);
2542 	/* XXX: test if different from 0xffff? */
2543 	sc->rf_rev   = (val >> 11) & 0x1f;
2544 	sc->hw_radio = (val >> 10) & 0x1;
2545 	sc->rx_ant   = (val >> 4)  & 0x3;
2546 	sc->tx_ant   = (val >> 2)  & 0x3;
2547 	sc->nb_ant   = val & 0x3;
2548 
2549 	DPRINTF(("RF revision=%d\n", sc->rf_rev));
2550 
2551 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_CONFIG2);
2552 	sc->ext_5ghz_lna = (val >> 6) & 0x1;
2553 	sc->ext_2ghz_lna = (val >> 4) & 0x1;
2554 
2555 	DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
2556 	    sc->ext_2ghz_lna, sc->ext_5ghz_lna));
2557 
2558 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_RSSI_2GHZ_OFFSET);
2559 	if ((val & 0xff) != 0xff)
2560 		sc->rssi_2ghz_corr = (int8_t)(val & 0xff);	/* signed */
2561 
2562 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_RSSI_5GHZ_OFFSET);
2563 	if ((val & 0xff) != 0xff)
2564 		sc->rssi_5ghz_corr = (int8_t)(val & 0xff);	/* signed */
2565 
2566 	/* adjust RSSI correction for external low-noise amplifier */
2567 	if (sc->ext_2ghz_lna)
2568 		sc->rssi_2ghz_corr -= 14;
2569 	if (sc->ext_5ghz_lna)
2570 		sc->rssi_5ghz_corr -= 14;
2571 
2572 	DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
2573 	    sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
2574 
2575 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_FREQ_OFFSET);
2576 	if ((val >> 8) != 0xff)
2577 		sc->rfprog = (val >> 8) & 0x3;
2578 	if ((val & 0xff) != 0xff)
2579 		sc->rffreq = val & 0xff;
2580 
2581 	DPRINTF(("RF prog=%d\nRF freq=%d\n", sc->rfprog, sc->rffreq));
2582 
2583 	/* read Tx power for all a/b/g channels */
2584 	for (i = 0; i < 19; i++) {
2585 		val = rt2661_eeprom_read(sc, RT2661_EEPROM_TXPOWER + i);
2586 		sc->txpow[i * 2] = (int8_t)(val >> 8);		/* signed */
2587 		DPRINTF(("Channel=%d Tx power=%d\n",
2588 		    rt2661_rf5225_1[i * 2].chan, sc->txpow[i * 2]));
2589 		sc->txpow[i * 2 + 1] = (int8_t)(val & 0xff);	/* signed */
2590 		DPRINTF(("Channel=%d Tx power=%d\n",
2591 		    rt2661_rf5225_1[i * 2 + 1].chan, sc->txpow[i * 2 + 1]));
2592 	}
2593 
2594 	/* read vendor-specific BBP values */
2595 	for (i = 0; i < 16; i++) {
2596 		val = rt2661_eeprom_read(sc, RT2661_EEPROM_BBP_BASE + i);
2597 		if (val == 0 || val == 0xffff)
2598 			continue;	/* skip invalid entries */
2599 		sc->bbp_prom[i].reg = val >> 8;
2600 		sc->bbp_prom[i].val = val & 0xff;
2601 		DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
2602 		    sc->bbp_prom[i].val));
2603 	}
2604 }
2605 
2606 static int
2607 rt2661_bbp_init(struct rt2661_softc *sc)
2608 {
2609 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
2610 	int i, ntries;
2611 	uint8_t val;
2612 
2613 	/* wait for BBP to be ready */
2614 	for (ntries = 0; ntries < 100; ntries++) {
2615 		val = rt2661_bbp_read(sc, 0);
2616 		if (val != 0 && val != 0xff)
2617 			break;
2618 		DELAY(100);
2619 	}
2620 	if (ntries == 100) {
2621 		printf("%s: timeout waiting for BBP\n", sc->sc_dev.dv_xname);
2622 		return EIO;
2623 	}
2624 
2625 	/* initialize BBP registers to default values */
2626 	for (i = 0; i < N(rt2661_def_bbp); i++) {
2627 		rt2661_bbp_write(sc, rt2661_def_bbp[i].reg,
2628 		    rt2661_def_bbp[i].val);
2629 	}
2630 
2631 	/* write vendor-specific BBP values (from EEPROM) */
2632 	for (i = 0; i < 16; i++) {
2633 		if (sc->bbp_prom[i].reg == 0)
2634 			continue;
2635 		rt2661_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2636 	}
2637 
2638 	return 0;
2639 #undef N
2640 }
2641 
2642 static int
2643 rt2661_init(struct ifnet *ifp)
2644 {
2645 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
2646 	struct rt2661_softc *sc = ifp->if_softc;
2647 	struct ieee80211com *ic = &sc->sc_ic;
2648 	const char *name = NULL;	/* make lint happy */
2649 	uint8_t *ucode;
2650 	size_t size;
2651 	uint32_t tmp, star[3];
2652 	int i, ntries;
2653 	firmware_handle_t fh;
2654 
2655 	/* for CardBus, power on the socket */
2656 	if (!(sc->sc_flags & RT2661_ENABLED)) {
2657 		if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
2658 			printf("%s: could not enable device\n",
2659 			    sc->sc_dev.dv_xname);
2660 			return EIO;
2661 		}
2662 		sc->sc_flags |= RT2661_ENABLED;
2663 	}
2664 
2665 	rt2661_stop(ifp, 0);
2666 
2667 	if (!(sc->sc_flags & RT2661_FWLOADED)) {
2668 		switch (sc->sc_id) {
2669 		case PCI_PRODUCT_RALINK_RT2561:
2670 			name = "ral-rt2561";
2671 			break;
2672 		case PCI_PRODUCT_RALINK_RT2561S:
2673 			name = "ral-rt2561s";
2674 			break;
2675 		case PCI_PRODUCT_RALINK_RT2661:
2676 			name = "ral-rt2661";
2677 			break;
2678 		}
2679 
2680 		if (firmware_open("ral", name, &fh) != 0) {
2681 			printf("%s: could not open microcode %s\n",
2682 			    sc->sc_dev.dv_xname, name);
2683 			rt2661_stop(ifp, 1);
2684 			return EIO;
2685 		}
2686 
2687 		size = firmware_get_size(fh);
2688 		if (!(ucode = firmware_malloc(size))) {
2689 			printf("%s: could not alloc microcode memory\n",
2690 			    sc->sc_dev.dv_xname);
2691 			firmware_close(fh);
2692 			rt2661_stop(ifp, 1);
2693 			return ENOMEM;
2694 		}
2695 
2696 		if (firmware_read(fh, 0, ucode, size) != 0) {
2697 			printf("%s: could not read microcode %s\n",
2698 			    sc->sc_dev.dv_xname, name);
2699 			firmware_free(ucode, 0);
2700 			firmware_close(fh);
2701 			rt2661_stop(ifp, 1);
2702 			return EIO;
2703 		}
2704 
2705 		if (rt2661_load_microcode(sc, ucode, size) != 0) {
2706 			printf("%s: could not load 8051 microcode\n",
2707 			    sc->sc_dev.dv_xname);
2708 			firmware_free(ucode, 0);
2709 			firmware_close(fh);
2710 			rt2661_stop(ifp, 1);
2711 			return EIO;
2712 		}
2713 
2714 		firmware_free(ucode, 0);
2715 		firmware_close(fh);
2716 		sc->sc_flags |= RT2661_FWLOADED;
2717 	}
2718 
2719 	/* initialize Tx rings */
2720 	RAL_WRITE(sc, RT2661_AC1_BASE_CSR, sc->txq[1].physaddr);
2721 	RAL_WRITE(sc, RT2661_AC0_BASE_CSR, sc->txq[0].physaddr);
2722 	RAL_WRITE(sc, RT2661_AC2_BASE_CSR, sc->txq[2].physaddr);
2723 	RAL_WRITE(sc, RT2661_AC3_BASE_CSR, sc->txq[3].physaddr);
2724 
2725 	/* initialize Mgt ring */
2726 	RAL_WRITE(sc, RT2661_MGT_BASE_CSR, sc->mgtq.physaddr);
2727 
2728 	/* initialize Rx ring */
2729 	RAL_WRITE(sc, RT2661_RX_BASE_CSR, sc->rxq.physaddr);
2730 
2731 	/* initialize Tx rings sizes */
2732 	RAL_WRITE(sc, RT2661_TX_RING_CSR0,
2733 	    RT2661_TX_RING_COUNT << 24 |
2734 	    RT2661_TX_RING_COUNT << 16 |
2735 	    RT2661_TX_RING_COUNT <<  8 |
2736 	    RT2661_TX_RING_COUNT);
2737 
2738 	RAL_WRITE(sc, RT2661_TX_RING_CSR1,
2739 	    RT2661_TX_DESC_WSIZE << 16 |
2740 	    RT2661_TX_RING_COUNT <<  8 |	/* XXX: HCCA ring unused */
2741 	    RT2661_MGT_RING_COUNT);
2742 
2743 	/* initialize Rx rings */
2744 	RAL_WRITE(sc, RT2661_RX_RING_CSR,
2745 	    RT2661_RX_DESC_BACK  << 16 |
2746 	    RT2661_RX_DESC_WSIZE <<  8 |
2747 	    RT2661_RX_RING_COUNT);
2748 
2749 	/* XXX: some magic here */
2750 	RAL_WRITE(sc, RT2661_TX_DMA_DST_CSR, 0xaa);
2751 
2752 	/* load base addresses of all 5 Tx rings (4 data + 1 mgt) */
2753 	RAL_WRITE(sc, RT2661_LOAD_TX_RING_CSR, 0x1f);
2754 
2755 	/* load base address of Rx ring */
2756 	RAL_WRITE(sc, RT2661_RX_CNTL_CSR, 2);
2757 
2758 	/* initialize MAC registers to default values */
2759 	for (i = 0; i < N(rt2661_def_mac); i++)
2760 		RAL_WRITE(sc, rt2661_def_mac[i].reg, rt2661_def_mac[i].val);
2761 
2762 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2763 	rt2661_set_macaddr(sc, ic->ic_myaddr);
2764 
2765 	/* set host ready */
2766 	RAL_WRITE(sc, RT2661_MAC_CSR1, 3);
2767 	RAL_WRITE(sc, RT2661_MAC_CSR1, 0);
2768 
2769 	/* wait for BBP/RF to wakeup */
2770 	for (ntries = 0; ntries < 1000; ntries++) {
2771 		if (RAL_READ(sc, RT2661_MAC_CSR12) & 8)
2772 			break;
2773 		DELAY(1000);
2774 	}
2775 	if (ntries == 1000) {
2776 		printf("timeout waiting for BBP/RF to wakeup\n");
2777 		rt2661_stop(ifp, 1);
2778 		return EIO;
2779 	}
2780 
2781 	if (rt2661_bbp_init(sc) != 0) {
2782 		rt2661_stop(ifp, 1);
2783 		return EIO;
2784 	}
2785 
2786 	/* select default channel */
2787 	sc->sc_curchan = ic->ic_curchan;
2788 	rt2661_select_band(sc, sc->sc_curchan);
2789 	rt2661_select_antenna(sc);
2790 	rt2661_set_chan(sc, sc->sc_curchan);
2791 
2792 	/* update Rx filter */
2793 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0) & 0xffff;
2794 
2795 	tmp |= RT2661_DROP_PHY_ERROR | RT2661_DROP_CRC_ERROR;
2796 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2797 		tmp |= RT2661_DROP_CTL | RT2661_DROP_VER_ERROR |
2798 		       RT2661_DROP_ACKCTS;
2799 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2800 			tmp |= RT2661_DROP_TODS;
2801 		if (!(ifp->if_flags & IFF_PROMISC))
2802 			tmp |= RT2661_DROP_NOT_TO_ME;
2803 	}
2804 
2805 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2806 
2807 	/* clear STA registers */
2808 	RAL_READ_REGION_4(sc, RT2661_STA_CSR0, star, N(star));
2809 
2810 	/* initialize ASIC */
2811 	RAL_WRITE(sc, RT2661_MAC_CSR1, 4);
2812 
2813 	/* clear any pending interrupt */
2814 	RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, 0xffffffff);
2815 
2816 	/* enable interrupts */
2817 	RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0x0000ff10);
2818 	RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0);
2819 
2820 	/* kick Rx */
2821 	RAL_WRITE(sc, RT2661_RX_CNTL_CSR, 1);
2822 
2823 	ifp->if_flags &= ~IFF_OACTIVE;
2824 	ifp->if_flags |= IFF_RUNNING;
2825 
2826 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2827 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
2828 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2829 	} else
2830 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2831 
2832 	return 0;
2833 #undef N
2834 }
2835 
2836 static void
2837 rt2661_stop(struct ifnet *ifp, int disable)
2838 {
2839 	struct rt2661_softc *sc = ifp->if_softc;
2840 	struct ieee80211com *ic = &sc->sc_ic;
2841 	uint32_t tmp;
2842 
2843 	sc->sc_tx_timer = 0;
2844 	ifp->if_timer = 0;
2845 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2846 
2847 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);	/* free all nodes */
2848 
2849 	/* abort Tx (for all 5 Tx rings) */
2850 	RAL_WRITE(sc, RT2661_TX_CNTL_CSR, 0x1f << 16);
2851 
2852 	/* disable Rx (value remains after reset!) */
2853 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2854 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX);
2855 
2856 	/* reset ASIC */
2857 	RAL_WRITE(sc, RT2661_MAC_CSR1, 3);
2858 	RAL_WRITE(sc, RT2661_MAC_CSR1, 0);
2859 
2860 	/* disable interrupts */
2861 	RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0xffffff7f);
2862 	RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0xffffffff);
2863 
2864 	/* clear any pending interrupt */
2865 	RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, 0xffffffff);
2866 	RAL_WRITE(sc, RT2661_MCU_INT_SOURCE_CSR, 0xffffffff);
2867 
2868 	/* reset Tx and Rx rings */
2869 	rt2661_reset_tx_ring(sc, &sc->txq[0]);
2870 	rt2661_reset_tx_ring(sc, &sc->txq[1]);
2871 	rt2661_reset_tx_ring(sc, &sc->txq[2]);
2872 	rt2661_reset_tx_ring(sc, &sc->txq[3]);
2873 	rt2661_reset_tx_ring(sc, &sc->mgtq);
2874 	rt2661_reset_rx_ring(sc, &sc->rxq);
2875 
2876 	/* for CardBus, power down the socket */
2877 	if (disable && sc->sc_disable != NULL) {
2878 		if (sc->sc_flags & RT2661_ENABLED) {
2879 			(*sc->sc_disable)(sc);
2880 			sc->sc_flags &= ~(RT2661_ENABLED | RT2661_FWLOADED);
2881 		}
2882 	}
2883 }
2884 
2885 static int
2886 rt2661_load_microcode(struct rt2661_softc *sc, const uint8_t *ucode, int size)
2887 {
2888 	int ntries;
2889 
2890 	/* reset 8051 */
2891 	RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET);
2892 
2893 	/* cancel any pending Host to MCU command */
2894 	RAL_WRITE(sc, RT2661_H2M_MAILBOX_CSR, 0);
2895 	RAL_WRITE(sc, RT2661_M2H_CMD_DONE_CSR, 0xffffffff);
2896 	RAL_WRITE(sc, RT2661_HOST_CMD_CSR, 0);
2897 
2898 	/* write 8051's microcode */
2899 	RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET | RT2661_MCU_SEL);
2900 	RAL_WRITE_REGION_1(sc, RT2661_MCU_CODE_BASE, ucode, size);
2901 	RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET);
2902 
2903 	/* kick 8051's ass */
2904 	RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, 0);
2905 
2906 	/* wait for 8051 to initialize */
2907 	for (ntries = 0; ntries < 500; ntries++) {
2908 		if (RAL_READ(sc, RT2661_MCU_CNTL_CSR) & RT2661_MCU_READY)
2909 			break;
2910 		DELAY(100);
2911 	}
2912 	if (ntries == 500) {
2913 		printf("timeout waiting for MCU to initialize\n");
2914 		return EIO;
2915 	}
2916 	return 0;
2917 }
2918 
2919 #ifdef notyet
2920 /*
2921  * Dynamically tune Rx sensitivity (BBP register 17) based on average RSSI and
2922  * false CCA count.  This function is called periodically (every seconds) when
2923  * in the RUN state.  Values taken from the reference driver.
2924  */
2925 static void
2926 rt2661_rx_tune(struct rt2661_softc *sc)
2927 {
2928 	uint8_t bbp17;
2929 	uint16_t cca;
2930 	int lo, hi, dbm;
2931 
2932 	/*
2933 	 * Tuning range depends on operating band and on the presence of an
2934 	 * external low-noise amplifier.
2935 	 */
2936 	lo = 0x20;
2937 	if (IEEE80211_IS_CHAN_5GHZ(sc->sc_curchan))
2938 		lo += 0x08;
2939 	if ((IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan) && sc->ext_2ghz_lna) ||
2940 	    (IEEE80211_IS_CHAN_5GHZ(sc->sc_curchan) && sc->ext_5ghz_lna))
2941 		lo += 0x10;
2942 	hi = lo + 0x20;
2943 
2944 	/* retrieve false CCA count since last call (clear on read) */
2945 	cca = RAL_READ(sc, RT2661_STA_CSR1) & 0xffff;
2946 
2947 	if (dbm >= -35) {
2948 		bbp17 = 0x60;
2949 	} else if (dbm >= -58) {
2950 		bbp17 = hi;
2951 	} else if (dbm >= -66) {
2952 		bbp17 = lo + 0x10;
2953 	} else if (dbm >= -74) {
2954 		bbp17 = lo + 0x08;
2955 	} else {
2956 		/* RSSI < -74dBm, tune using false CCA count */
2957 
2958 		bbp17 = sc->bbp17; /* current value */
2959 
2960 		hi -= 2 * (-74 - dbm);
2961 		if (hi < lo)
2962 			hi = lo;
2963 
2964 		if (bbp17 > hi) {
2965 			bbp17 = hi;
2966 
2967 		} else if (cca > 512) {
2968 			if (++bbp17 > hi)
2969 				bbp17 = hi;
2970 		} else if (cca < 100) {
2971 			if (--bbp17 < lo)
2972 				bbp17 = lo;
2973 		}
2974 	}
2975 
2976 	if (bbp17 != sc->bbp17) {
2977 		rt2661_bbp_write(sc, 17, bbp17);
2978 		sc->bbp17 = bbp17;
2979 	}
2980 }
2981 
2982 /*
2983  * Enter/Leave radar detection mode.
2984  * This is for 802.11h additional regulatory domains.
2985  */
2986 static void
2987 rt2661_radar_start(struct rt2661_softc *sc)
2988 {
2989 	uint32_t tmp;
2990 
2991 	/* disable Rx */
2992 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2993 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX);
2994 
2995 	rt2661_bbp_write(sc, 82, 0x20);
2996 	rt2661_bbp_write(sc, 83, 0x00);
2997 	rt2661_bbp_write(sc, 84, 0x40);
2998 
2999 	/* save current BBP registers values */
3000 	sc->bbp18 = rt2661_bbp_read(sc, 18);
3001 	sc->bbp21 = rt2661_bbp_read(sc, 21);
3002 	sc->bbp22 = rt2661_bbp_read(sc, 22);
3003 	sc->bbp16 = rt2661_bbp_read(sc, 16);
3004 	sc->bbp17 = rt2661_bbp_read(sc, 17);
3005 	sc->bbp64 = rt2661_bbp_read(sc, 64);
3006 
3007 	rt2661_bbp_write(sc, 18, 0xff);
3008 	rt2661_bbp_write(sc, 21, 0x3f);
3009 	rt2661_bbp_write(sc, 22, 0x3f);
3010 	rt2661_bbp_write(sc, 16, 0xbd);
3011 	rt2661_bbp_write(sc, 17, sc->ext_5ghz_lna ? 0x44 : 0x34);
3012 	rt2661_bbp_write(sc, 64, 0x21);
3013 
3014 	/* restore Rx filter */
3015 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
3016 }
3017 
3018 static int
3019 rt2661_radar_stop(struct rt2661_softc *sc)
3020 {
3021 	uint8_t bbp66;
3022 
3023 	/* read radar detection result */
3024 	bbp66 = rt2661_bbp_read(sc, 66);
3025 
3026 	/* restore BBP registers values */
3027 	rt2661_bbp_write(sc, 16, sc->bbp16);
3028 	rt2661_bbp_write(sc, 17, sc->bbp17);
3029 	rt2661_bbp_write(sc, 18, sc->bbp18);
3030 	rt2661_bbp_write(sc, 21, sc->bbp21);
3031 	rt2661_bbp_write(sc, 22, sc->bbp22);
3032 	rt2661_bbp_write(sc, 64, sc->bbp64);
3033 
3034 	return bbp66 == 1;
3035 }
3036 #endif
3037 
3038 static int
3039 rt2661_prepare_beacon(struct rt2661_softc *sc)
3040 {
3041 	struct ieee80211com *ic = &sc->sc_ic;
3042 	struct rt2661_tx_desc desc;
3043 	struct mbuf *m0;
3044 	struct ieee80211_beacon_offsets bo;
3045 	int rate;
3046 
3047 	m0 = ieee80211_beacon_alloc(ic, ic->ic_bss, &bo);
3048 
3049 	if (m0 == NULL) {
3050 		printf("%s: could not allocate beacon frame\n",
3051 		    sc->sc_dev.dv_xname);
3052 		return ENOBUFS;
3053 	}
3054 
3055 	/* send beacons at the lowest available rate */
3056 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan) ? 12 : 2;
3057 
3058 	rt2661_setup_tx_desc(sc, &desc, RT2661_TX_TIMESTAMP, RT2661_TX_HWSEQ,
3059 	    m0->m_pkthdr.len, rate, NULL, 0, RT2661_QID_MGT);
3060 
3061 	/* copy the first 24 bytes of Tx descriptor into NIC memory */
3062 	RAL_WRITE_REGION_1(sc, RT2661_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
3063 
3064 	/* copy beacon header and payload into NIC memory */
3065 	RAL_WRITE_REGION_1(sc, RT2661_HW_BEACON_BASE0 + 24,
3066 	    mtod(m0, uint8_t *), m0->m_pkthdr.len);
3067 
3068 	m_freem(m0);
3069 
3070 	return 0;
3071 }
3072 
3073 /*
3074  * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
3075  * and HostAP operating modes.
3076  */
3077 static void
3078 rt2661_enable_tsf_sync(struct rt2661_softc *sc)
3079 {
3080 	struct ieee80211com *ic = &sc->sc_ic;
3081 	uint32_t tmp;
3082 
3083 	if (ic->ic_opmode != IEEE80211_M_STA) {
3084 		/*
3085 		 * Change default 16ms TBTT adjustment to 8ms.
3086 		 * Must be done before enabling beacon generation.
3087 		 */
3088 		RAL_WRITE(sc, RT2661_TXRX_CSR10, 1 << 12 | 8);
3089 	}
3090 
3091 	tmp = RAL_READ(sc, RT2661_TXRX_CSR9) & 0xff000000;
3092 
3093 	/* set beacon interval (in 1/16ms unit) */
3094 	tmp |= ic->ic_bss->ni_intval * 16;
3095 
3096 	tmp |= RT2661_TSF_TICKING | RT2661_ENABLE_TBTT;
3097 	if (ic->ic_opmode == IEEE80211_M_STA)
3098 		tmp |= RT2661_TSF_MODE(1);
3099 	else
3100 		tmp |= RT2661_TSF_MODE(2) | RT2661_GENERATE_BEACON;
3101 
3102 	RAL_WRITE(sc, RT2661_TXRX_CSR9, tmp);
3103 }
3104 
3105 /*
3106  * Retrieve the "Received Signal Strength Indicator" from the raw values
3107  * contained in Rx descriptors.  The computation depends on which band the
3108  * frame was received.  Correction values taken from the reference driver.
3109  */
3110 static int
3111 rt2661_get_rssi(struct rt2661_softc *sc, uint8_t raw)
3112 {
3113 	int lna, agc, rssi;
3114 
3115 	lna = (raw >> 5) & 0x3;
3116 	agc = raw & 0x1f;
3117 
3118 	rssi = 2 * agc;
3119 
3120 	if (IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan)) {
3121 		rssi += sc->rssi_2ghz_corr;
3122 
3123 		if (lna == 1)
3124 			rssi -= 64;
3125 		else if (lna == 2)
3126 			rssi -= 74;
3127 		else if (lna == 3)
3128 			rssi -= 90;
3129 	} else {
3130 		rssi += sc->rssi_5ghz_corr;
3131 
3132 		if (lna == 1)
3133 			rssi -= 64;
3134 		else if (lna == 2)
3135 			rssi -= 86;
3136 		else if (lna == 3)
3137 			rssi -= 100;
3138 	}
3139 	return rssi;
3140 }
3141