xref: /netbsd-src/sys/dev/ic/rt2661.c (revision 181254a7b1bdde6873432bffef2d2decc4b5c22f)
1 /*	$NetBSD: rt2661.c,v 1.43 2020/01/29 15:06:12 thorpej Exp $	*/
2 /*	$OpenBSD: rt2661.c,v 1.17 2006/05/01 08:41:11 damien Exp $	*/
3 /*	$FreeBSD: rt2560.c,v 1.5 2006/06/02 19:59:31 csjp Exp $	*/
4 
5 /*-
6  * Copyright (c) 2006
7  *	Damien Bergamini <damien.bergamini@free.fr>
8  *
9  * Permission to use, copy, modify, and distribute this software for any
10  * purpose with or without fee is hereby granted, provided that the above
11  * copyright notice and this permission notice appear in all copies.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20  */
21 
22 /*-
23  * Ralink Technology RT2561, RT2561S and RT2661 chipset driver
24  * http://www.ralinktech.com/
25  */
26 
27 #include <sys/cdefs.h>
28 __KERNEL_RCSID(0, "$NetBSD: rt2661.c,v 1.43 2020/01/29 15:06:12 thorpej Exp $");
29 
30 
31 #include <sys/param.h>
32 #include <sys/sockio.h>
33 #include <sys/sysctl.h>
34 #include <sys/mbuf.h>
35 #include <sys/kernel.h>
36 #include <sys/socket.h>
37 #include <sys/systm.h>
38 #include <sys/malloc.h>
39 #include <sys/callout.h>
40 #include <sys/conf.h>
41 #include <sys/device.h>
42 
43 #include <sys/bus.h>
44 #include <machine/endian.h>
45 #include <sys/intr.h>
46 
47 #include <net/bpf.h>
48 #include <net/if.h>
49 #include <net/if_arp.h>
50 #include <net/if_dl.h>
51 #include <net/if_media.h>
52 #include <net/if_types.h>
53 #include <net/if_ether.h>
54 
55 #include <netinet/in.h>
56 #include <netinet/in_systm.h>
57 #include <netinet/in_var.h>
58 #include <netinet/ip.h>
59 
60 #include <net80211/ieee80211_var.h>
61 #include <net80211/ieee80211_amrr.h>
62 #include <net80211/ieee80211_radiotap.h>
63 
64 #include <dev/ic/rt2661reg.h>
65 #include <dev/ic/rt2661var.h>
66 
67 #include <dev/pci/pcireg.h>
68 #include <dev/pci/pcivar.h>
69 #include <dev/pci/pcidevs.h>
70 
71 #include <dev/firmload.h>
72 
73 #ifdef RAL_DEBUG
74 #define DPRINTF(x)	do { if (rt2661_debug > 0) printf x; } while (0)
75 #define DPRINTFN(n, x)	do { if (rt2661_debug >= (n)) printf x; } while (0)
76 int rt2661_debug = 0;
77 #else
78 #define DPRINTF(x)
79 #define DPRINTFN(n, x)
80 #endif
81 
82 static int	rt2661_alloc_tx_ring(struct rt2661_softc *,
83 		    struct rt2661_tx_ring *, int);
84 static void	rt2661_reset_tx_ring(struct rt2661_softc *,
85 		    struct rt2661_tx_ring *);
86 static void	rt2661_free_tx_ring(struct rt2661_softc *,
87 		    struct rt2661_tx_ring *);
88 static int	rt2661_alloc_rx_ring(struct rt2661_softc *,
89 		    struct rt2661_rx_ring *, int);
90 static void	rt2661_reset_rx_ring(struct rt2661_softc *,
91 		    struct rt2661_rx_ring *);
92 static void	rt2661_free_rx_ring(struct rt2661_softc *,
93 		    struct rt2661_rx_ring *);
94 static struct ieee80211_node *
95 		rt2661_node_alloc(struct ieee80211_node_table *);
96 static int	rt2661_media_change(struct ifnet *);
97 static void	rt2661_next_scan(void *);
98 static void	rt2661_iter_func(void *, struct ieee80211_node *);
99 static void	rt2661_updatestats(void *);
100 static void	rt2661_newassoc(struct ieee80211_node *, int);
101 static int	rt2661_newstate(struct ieee80211com *, enum ieee80211_state,
102 		    int);
103 static uint16_t	rt2661_eeprom_read(struct rt2661_softc *, uint8_t);
104 static void	rt2661_tx_intr(struct rt2661_softc *);
105 static void	rt2661_tx_dma_intr(struct rt2661_softc *,
106 		    struct rt2661_tx_ring *);
107 static void	rt2661_rx_intr(struct rt2661_softc *);
108 static void	rt2661_mcu_beacon_expire(struct rt2661_softc *);
109 static void	rt2661_mcu_wakeup(struct rt2661_softc *);
110 static void	rt2661_mcu_cmd_intr(struct rt2661_softc *);
111 int		rt2661_intr(void *);
112 static uint8_t	rt2661_rxrate(struct rt2661_rx_desc *);
113 static int	rt2661_ack_rate(struct ieee80211com *, int);
114 static uint16_t	rt2661_txtime(int, int, uint32_t);
115 static uint8_t	rt2661_plcp_signal(int);
116 static void	rt2661_setup_tx_desc(struct rt2661_softc *,
117 		    struct rt2661_tx_desc *, uint32_t, uint16_t, int, int,
118 		    const bus_dma_segment_t *, int, int);
119 static int	rt2661_tx_mgt(struct rt2661_softc *, struct mbuf *,
120 		    struct ieee80211_node *);
121 static struct mbuf *
122 		rt2661_get_rts(struct rt2661_softc *,
123 		    struct ieee80211_frame *, uint16_t);
124 static int	rt2661_tx_data(struct rt2661_softc *, struct mbuf *,
125 		    struct ieee80211_node *, int);
126 static void	rt2661_start(struct ifnet *);
127 static void	rt2661_watchdog(struct ifnet *);
128 static int	rt2661_reset(struct ifnet *);
129 static int	rt2661_ioctl(struct ifnet *, u_long, void *);
130 static void	rt2661_bbp_write(struct rt2661_softc *, uint8_t, uint8_t);
131 static uint8_t	rt2661_bbp_read(struct rt2661_softc *, uint8_t);
132 static void	rt2661_rf_write(struct rt2661_softc *, uint8_t, uint32_t);
133 static int	rt2661_tx_cmd(struct rt2661_softc *, uint8_t, uint16_t);
134 static void	rt2661_select_antenna(struct rt2661_softc *);
135 static void	rt2661_enable_mrr(struct rt2661_softc *);
136 static void	rt2661_set_txpreamble(struct rt2661_softc *);
137 static void	rt2661_set_basicrates(struct rt2661_softc *,
138 			const struct ieee80211_rateset *);
139 static void	rt2661_select_band(struct rt2661_softc *,
140 		    struct ieee80211_channel *);
141 static void	rt2661_set_chan(struct rt2661_softc *,
142 		    struct ieee80211_channel *);
143 static void	rt2661_set_bssid(struct rt2661_softc *, const uint8_t *);
144 static void	rt2661_set_macaddr(struct rt2661_softc *, const uint8_t *);
145 static void	rt2661_update_promisc(struct rt2661_softc *);
146 #if 0
147 static int	rt2661_wme_update(struct ieee80211com *);
148 #endif
149 
150 static void	rt2661_updateslot(struct ifnet *);
151 static void	rt2661_set_slottime(struct rt2661_softc *);
152 static const char *
153 		rt2661_get_rf(int);
154 static void	rt2661_read_eeprom(struct rt2661_softc *);
155 static int	rt2661_bbp_init(struct rt2661_softc *);
156 static int     	rt2661_init(struct ifnet *);
157 static void	rt2661_stop(struct ifnet *, int);
158 static int	rt2661_load_microcode(struct rt2661_softc *, const uint8_t *,
159 		    int);
160 static void	rt2661_rx_tune(struct rt2661_softc *);
161 #ifdef notyet
162 static void	rt2661_radar_start(struct rt2661_softc *);
163 static int	rt2661_radar_stop(struct rt2661_softc *);
164 #endif
165 static int	rt2661_prepare_beacon(struct rt2661_softc *);
166 static void	rt2661_enable_tsf_sync(struct rt2661_softc *);
167 static int	rt2661_get_rssi(struct rt2661_softc *, uint8_t);
168 static void	rt2661_softintr(void *);
169 
170 static const struct {
171 	uint32_t	reg;
172 	uint32_t	val;
173 } rt2661_def_mac[] = {
174 	RT2661_DEF_MAC
175 };
176 
177 static const struct {
178 	uint8_t	reg;
179 	uint8_t	val;
180 } rt2661_def_bbp[] = {
181 	RT2661_DEF_BBP
182 };
183 
184 static const struct rfprog {
185 	uint8_t		chan;
186 	uint32_t	r1, r2, r3, r4;
187 } rt2661_rf5225_1[] = {
188 	RT2661_RF5225_1
189 }, rt2661_rf5225_2[] = {
190 	RT2661_RF5225_2
191 };
192 
193 int
194 rt2661_attach(void *xsc, int id)
195 {
196 	struct rt2661_softc *sc = xsc;
197 	struct ieee80211com *ic = &sc->sc_ic;
198 	struct ifnet *ifp = &sc->sc_if;
199 	uint32_t val;
200 	int error, i, ntries;
201 
202 	sc->sc_id = id;
203 
204 	sc->amrr.amrr_min_success_threshold =  1;
205 	sc->amrr.amrr_max_success_threshold = 15;
206 	callout_init(&sc->scan_ch, 0);
207 	callout_init(&sc->amrr_ch, 0);
208 
209 	/* wait for NIC to initialize */
210 	for (ntries = 0; ntries < 1000; ntries++) {
211 		if ((val = RAL_READ(sc, RT2661_MAC_CSR0)) != 0)
212 			break;
213 		DELAY(1000);
214 	}
215 	if (ntries == 1000) {
216 		aprint_error_dev(sc->sc_dev, "timeout waiting for NIC to initialize\n");
217 		return EIO;
218 	}
219 
220 	/* retrieve RF rev. no and various other things from EEPROM */
221 	rt2661_read_eeprom(sc);
222 	aprint_normal_dev(sc->sc_dev, "802.11 address %s\n",
223 	    ether_sprintf(ic->ic_myaddr));
224 
225 	aprint_normal_dev(sc->sc_dev, "MAC/BBP RT%X, RF %s\n", val,
226 	    rt2661_get_rf(sc->rf_rev));
227 
228 	sc->sc_soft_ih = softint_establish(SOFTINT_NET, rt2661_softintr, sc);
229 	if (sc->sc_soft_ih == NULL) {
230 		aprint_error_dev(sc->sc_dev, "could not establish softint\n");
231 		goto fail0;
232 	}
233 
234 	/*
235 	 * Allocate Tx and Rx rings.
236 	 */
237 	error = rt2661_alloc_tx_ring(sc, &sc->txq[0], RT2661_TX_RING_COUNT);
238 	if (error != 0) {
239 		aprint_error_dev(sc->sc_dev, "could not allocate Tx ring 0\n");
240 		goto fail1;
241 	}
242 
243 	error = rt2661_alloc_tx_ring(sc, &sc->txq[1], RT2661_TX_RING_COUNT);
244 	if (error != 0) {
245 		aprint_error_dev(sc->sc_dev, "could not allocate Tx ring 1\n");
246 		goto fail2;
247 	}
248 
249 	error = rt2661_alloc_tx_ring(sc, &sc->txq[2], RT2661_TX_RING_COUNT);
250 	if (error != 0) {
251 		aprint_error_dev(sc->sc_dev, "could not allocate Tx ring 2\n");
252 		goto fail3;
253 	}
254 
255 	error = rt2661_alloc_tx_ring(sc, &sc->txq[3], RT2661_TX_RING_COUNT);
256 	if (error != 0) {
257 		aprint_error_dev(sc->sc_dev, "could not allocate Tx ring 3\n");
258 		goto fail4;
259 	}
260 
261 	error = rt2661_alloc_tx_ring(sc, &sc->mgtq, RT2661_MGT_RING_COUNT);
262 	if (error != 0) {
263 		aprint_error_dev(sc->sc_dev, "could not allocate Mgt ring\n");
264 		goto fail5;
265 	}
266 
267 	error = rt2661_alloc_rx_ring(sc, &sc->rxq, RT2661_RX_RING_COUNT);
268 	if (error != 0) {
269 		aprint_error_dev(sc->sc_dev, "could not allocate Rx ring\n");
270 		goto fail6;
271 	}
272 
273 	ifp->if_softc = sc;
274 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
275 	ifp->if_init = rt2661_init;
276 	ifp->if_stop = rt2661_stop;
277 	ifp->if_ioctl = rt2661_ioctl;
278 	ifp->if_start = rt2661_start;
279 	ifp->if_watchdog = rt2661_watchdog;
280 	IFQ_SET_READY(&ifp->if_snd);
281 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
282 
283 	ic->ic_ifp = ifp;
284 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
285 	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
286 	ic->ic_state = IEEE80211_S_INIT;
287 
288 	/* set device capabilities */
289 	ic->ic_caps =
290 	    IEEE80211_C_IBSS |		/* IBSS mode supported */
291 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
292 	    IEEE80211_C_HOSTAP |	/* HostAP mode supported */
293 	    IEEE80211_C_TXPMGT |	/* tx power management */
294 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
295 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
296 	    IEEE80211_C_WPA;		/* 802.11i */
297 
298 	if (sc->rf_rev == RT2661_RF_5225 || sc->rf_rev == RT2661_RF_5325) {
299 		/* set supported .11a rates */
300 		ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a;
301 
302 		/* set supported .11a channels */
303 		for (i = 36; i <= 64; i += 4) {
304 			ic->ic_channels[i].ic_freq =
305 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
306 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
307 		}
308 		for (i = 100; i <= 140; i += 4) {
309 			ic->ic_channels[i].ic_freq =
310 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
311 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
312 		}
313 		for (i = 149; i <= 165; i += 4) {
314 			ic->ic_channels[i].ic_freq =
315 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
316 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
317 		}
318 	}
319 
320 	/* set supported .11b and .11g rates */
321 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
322 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
323 
324 	/* set supported .11b and .11g channels (1 through 14) */
325 	for (i = 1; i <= 14; i++) {
326 		ic->ic_channels[i].ic_freq =
327 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
328 		ic->ic_channels[i].ic_flags =
329 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
330 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
331 	}
332 
333 	error = if_initialize(ifp);
334 	if (error != 0) {
335 		aprint_error_dev(sc->sc_dev, "if_initialize failed(%d)\n",
336 		    error);
337 		goto fail7;
338 	}
339 	ieee80211_ifattach(ic);
340 	/* Use common softint-based if_input */
341 	ifp->if_percpuq = if_percpuq_create(ifp);
342 	if_register(ifp);
343 
344 	ic->ic_node_alloc = rt2661_node_alloc;
345 	ic->ic_newassoc = rt2661_newassoc;
346 	ic->ic_updateslot = rt2661_updateslot;
347 	ic->ic_reset = rt2661_reset;
348 
349 	/* override state transition machine */
350 	sc->sc_newstate = ic->ic_newstate;
351 	ic->ic_newstate = rt2661_newstate;
352 	ieee80211_media_init(ic, rt2661_media_change, ieee80211_media_status);
353 
354 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
355 	    sizeof(struct ieee80211_frame) + sizeof(sc->sc_txtap),
356 	    &sc->sc_drvbpf);
357 
358 	sc->sc_rxtap_len = roundup(sizeof(sc->sc_rxtap), sizeof(u_int32_t));
359 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
360 	sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2661_RX_RADIOTAP_PRESENT);
361 
362 	sc->sc_txtap_len = roundup(sizeof(sc->sc_txtap), sizeof(u_int32_t));
363 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
364 	sc->sc_txtap.wt_ihdr.it_present = htole32(RT2661_TX_RADIOTAP_PRESENT);
365 
366 	ieee80211_announce(ic);
367 
368 	if (pmf_device_register(sc->sc_dev, NULL, NULL))
369 		pmf_class_network_register(sc->sc_dev, ifp);
370 	else
371 		aprint_error_dev(sc->sc_dev,
372 		    "couldn't establish power handler\n");
373 
374 	return 0;
375 
376 fail7:	rt2661_free_rx_ring(sc, &sc->rxq);
377 fail6:	rt2661_free_tx_ring(sc, &sc->mgtq);
378 fail5:	rt2661_free_tx_ring(sc, &sc->txq[3]);
379 fail4:	rt2661_free_tx_ring(sc, &sc->txq[2]);
380 fail3:	rt2661_free_tx_ring(sc, &sc->txq[1]);
381 fail2:	rt2661_free_tx_ring(sc, &sc->txq[0]);
382 fail1:	softint_disestablish(sc->sc_soft_ih);
383 	sc->sc_soft_ih = NULL;
384 fail0:	return ENXIO;
385 }
386 
387 int
388 rt2661_detach(void *xsc)
389 {
390 	struct rt2661_softc *sc = xsc;
391 	struct ifnet *ifp = &sc->sc_if;
392 
393 	callout_stop(&sc->scan_ch);
394 	callout_stop(&sc->amrr_ch);
395 
396 	pmf_device_deregister(sc->sc_dev);
397 
398 	ieee80211_ifdetach(&sc->sc_ic);
399 	if_detach(ifp);
400 
401 	rt2661_free_tx_ring(sc, &sc->txq[0]);
402 	rt2661_free_tx_ring(sc, &sc->txq[1]);
403 	rt2661_free_tx_ring(sc, &sc->txq[2]);
404 	rt2661_free_tx_ring(sc, &sc->txq[3]);
405 	rt2661_free_tx_ring(sc, &sc->mgtq);
406 	rt2661_free_rx_ring(sc, &sc->rxq);
407 
408 	if (sc->sc_soft_ih != NULL) {
409 		softint_disestablish(sc->sc_soft_ih);
410 		sc->sc_soft_ih = NULL;
411 	}
412 
413 	return 0;
414 }
415 
416 static int
417 rt2661_alloc_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring,
418     int count)
419 {
420 	int i, nsegs, error;
421 
422 	ring->count = count;
423 	ring->queued = 0;
424 	ring->cur = ring->next = ring->stat = 0;
425 
426 	error = bus_dmamap_create(sc->sc_dmat, count * RT2661_TX_DESC_SIZE, 1,
427 	    count * RT2661_TX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map);
428 	if (error != 0) {
429 		aprint_error_dev(sc->sc_dev, "could not create desc DMA map\n");
430 		goto fail;
431 	}
432 
433 	error = bus_dmamem_alloc(sc->sc_dmat, count * RT2661_TX_DESC_SIZE,
434 	    PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
435 	if (error != 0) {
436 		aprint_error_dev(sc->sc_dev, "could not allocate DMA memory\n");
437 		goto fail;
438 	}
439 
440 	error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
441 	    count * RT2661_TX_DESC_SIZE, (void **)&ring->desc,
442 	    BUS_DMA_NOWAIT);
443 	if (error != 0) {
444 		aprint_error_dev(sc->sc_dev, "could not map desc DMA memory\n");
445 		goto fail;
446 	}
447 
448 	error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
449 	    count * RT2661_TX_DESC_SIZE, NULL, BUS_DMA_NOWAIT);
450 	if (error != 0) {
451 		aprint_error_dev(sc->sc_dev, "could not load desc DMA map\n");
452 		goto fail;
453 	}
454 
455 	memset(ring->desc, 0, count * RT2661_TX_DESC_SIZE);
456 	ring->physaddr = ring->map->dm_segs->ds_addr;
457 
458 	ring->data = malloc(count * sizeof (struct rt2661_tx_data), M_DEVBUF,
459 	    M_WAITOK | M_ZERO);
460 
461 	for (i = 0; i < count; i++) {
462 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
463 		    RT2661_MAX_SCATTER, MCLBYTES, 0, BUS_DMA_NOWAIT,
464 		    &ring->data[i].map);
465 		if (error != 0) {
466 			aprint_error_dev(sc->sc_dev, "could not create DMA map\n");
467 			goto fail;
468 		}
469 	}
470 
471 	return 0;
472 
473 fail:	rt2661_free_tx_ring(sc, ring);
474 	return error;
475 }
476 
477 static void
478 rt2661_reset_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring)
479 {
480 	struct rt2661_tx_desc *desc;
481 	struct rt2661_tx_data *data;
482 	int i;
483 
484 	for (i = 0; i < ring->count; i++) {
485 		desc = &ring->desc[i];
486 		data = &ring->data[i];
487 
488 		if (data->m != NULL) {
489 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
490 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
491 			bus_dmamap_unload(sc->sc_dmat, data->map);
492 			m_freem(data->m);
493 			data->m = NULL;
494 		}
495 
496 		if (data->ni != NULL) {
497 			ieee80211_free_node(data->ni);
498 			data->ni = NULL;
499 		}
500 
501 		desc->flags = 0;
502 	}
503 
504 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
505 	    BUS_DMASYNC_PREWRITE);
506 
507 	ring->queued = 0;
508 	ring->cur = ring->next = ring->stat = 0;
509 }
510 
511 
512 static void
513 rt2661_free_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring)
514 {
515 	struct rt2661_tx_data *data;
516 	int i;
517 
518 	if (ring->desc != NULL) {
519 		bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
520 		    ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
521 		bus_dmamap_unload(sc->sc_dmat, ring->map);
522 		bus_dmamem_unmap(sc->sc_dmat, (void *)ring->desc,
523 		    ring->count * RT2661_TX_DESC_SIZE);
524 		bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
525 	}
526 
527 	if (ring->data != NULL) {
528 		for (i = 0; i < ring->count; i++) {
529 			data = &ring->data[i];
530 
531 			if (data->m != NULL) {
532 				bus_dmamap_sync(sc->sc_dmat, data->map, 0,
533 				    data->map->dm_mapsize,
534 				    BUS_DMASYNC_POSTWRITE);
535 				bus_dmamap_unload(sc->sc_dmat, data->map);
536 				m_freem(data->m);
537 			}
538 
539 			if (data->ni != NULL)
540 				ieee80211_free_node(data->ni);
541 
542 			if (data->map != NULL)
543 				bus_dmamap_destroy(sc->sc_dmat, data->map);
544 		}
545 		free(ring->data, M_DEVBUF);
546 	}
547 }
548 
549 static int
550 rt2661_alloc_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring,
551     int count)
552 {
553 	struct rt2661_rx_desc *desc;
554 	struct rt2661_rx_data *data;
555 	int i, nsegs, error;
556 
557 	ring->count = count;
558 	ring->cur = ring->next = 0;
559 
560 	error = bus_dmamap_create(sc->sc_dmat, count * RT2661_RX_DESC_SIZE, 1,
561 	    count * RT2661_RX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map);
562 	if (error != 0) {
563 		aprint_error_dev(sc->sc_dev, "could not create desc DMA map\n");
564 		goto fail;
565 	}
566 
567 	error = bus_dmamem_alloc(sc->sc_dmat, count * RT2661_RX_DESC_SIZE,
568 	    PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
569 	if (error != 0) {
570 		aprint_error_dev(sc->sc_dev, "could not allocate DMA memory\n");
571 		goto fail;
572 	}
573 
574 	error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
575 	    count * RT2661_RX_DESC_SIZE, (void **)&ring->desc,
576 	    BUS_DMA_NOWAIT);
577 	if (error != 0) {
578 		aprint_error_dev(sc->sc_dev, "could not map desc DMA memory\n");
579 		goto fail;
580 	}
581 
582 	error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
583 	    count * RT2661_RX_DESC_SIZE, NULL, BUS_DMA_NOWAIT);
584 	if (error != 0) {
585 		aprint_error_dev(sc->sc_dev, "could not load desc DMA map\n");
586 		goto fail;
587 	}
588 
589 	memset(ring->desc, 0, count * RT2661_RX_DESC_SIZE);
590 	ring->physaddr = ring->map->dm_segs->ds_addr;
591 
592 	ring->data = malloc(count * sizeof (struct rt2661_rx_data), M_DEVBUF,
593 	    M_WAITOK | M_ZERO);
594 
595 	/*
596 	 * Pre-allocate Rx buffers and populate Rx ring.
597 	 */
598 	for (i = 0; i < count; i++) {
599 		desc = &sc->rxq.desc[i];
600 		data = &sc->rxq.data[i];
601 
602 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
603 		    0, BUS_DMA_NOWAIT, &data->map);
604 		if (error != 0) {
605 			aprint_error_dev(sc->sc_dev, "could not create DMA map\n");
606 			goto fail;
607 		}
608 
609 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
610 		if (data->m == NULL) {
611 			aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf\n");
612 			error = ENOMEM;
613 			goto fail;
614 		}
615 
616 		MCLGET(data->m, M_DONTWAIT);
617 		if (!(data->m->m_flags & M_EXT)) {
618 			aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf cluster\n");
619 			error = ENOMEM;
620 			goto fail;
621 		}
622 
623 		error = bus_dmamap_load(sc->sc_dmat, data->map,
624 		    mtod(data->m, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
625 		if (error != 0) {
626 			aprint_error_dev(sc->sc_dev, "could not load rx buf DMA map");
627 			goto fail;
628 		}
629 
630 		desc->physaddr = htole32(data->map->dm_segs->ds_addr);
631 		desc->flags = htole32(RT2661_RX_BUSY);
632 	}
633 
634 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
635 	    BUS_DMASYNC_PREWRITE);
636 
637 	return 0;
638 
639 fail:	rt2661_free_rx_ring(sc, ring);
640 	return error;
641 }
642 
643 static void
644 rt2661_reset_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring)
645 {
646 	int i;
647 
648 	for (i = 0; i < ring->count; i++)
649 		ring->desc[i].flags = htole32(RT2661_RX_BUSY);
650 
651 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
652 	    BUS_DMASYNC_PREWRITE);
653 
654 	ring->cur = ring->next = 0;
655 }
656 
657 static void
658 rt2661_free_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring)
659 {
660 	struct rt2661_rx_data *data;
661 	int i;
662 
663 	if (ring->desc != NULL) {
664 		bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
665 		    ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
666 		bus_dmamap_unload(sc->sc_dmat, ring->map);
667 		bus_dmamem_unmap(sc->sc_dmat, (void *)ring->desc,
668 		    ring->count * RT2661_RX_DESC_SIZE);
669 		bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
670 	}
671 
672 	if (ring->data != NULL) {
673 		for (i = 0; i < ring->count; i++) {
674 			data = &ring->data[i];
675 
676 			if (data->m != NULL) {
677 				bus_dmamap_sync(sc->sc_dmat, data->map, 0,
678 				    data->map->dm_mapsize,
679 				    BUS_DMASYNC_POSTREAD);
680 				bus_dmamap_unload(sc->sc_dmat, data->map);
681 				m_freem(data->m);
682 			}
683 
684 			if (data->map != NULL)
685 				bus_dmamap_destroy(sc->sc_dmat, data->map);
686 		}
687 		free(ring->data, M_DEVBUF);
688 	}
689 }
690 
691 static struct ieee80211_node *
692 rt2661_node_alloc(struct ieee80211_node_table *nt)
693 {
694 	struct rt2661_node *rn;
695 
696 	rn = malloc(sizeof (struct rt2661_node), M_80211_NODE,
697 	    M_NOWAIT | M_ZERO);
698 
699 	return (rn != NULL) ? &rn->ni : NULL;
700 }
701 
702 static int
703 rt2661_media_change(struct ifnet *ifp)
704 {
705 	int error;
706 
707 	error = ieee80211_media_change(ifp);
708 	if (error != ENETRESET)
709 		return error;
710 
711 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
712 		rt2661_init(ifp);
713 
714 	return 0;
715 }
716 
717 /*
718  * This function is called periodically (every 200ms) during scanning to
719  * switch from one channel to another.
720  */
721 static void
722 rt2661_next_scan(void *arg)
723 {
724 	struct rt2661_softc *sc = arg;
725 	struct ieee80211com *ic = &sc->sc_ic;
726 	int s;
727 
728 	s = splnet();
729 	if (ic->ic_state == IEEE80211_S_SCAN)
730 		ieee80211_next_scan(ic);
731 	splx(s);
732 }
733 
734 /*
735  * This function is called for each neighbor node.
736  */
737 static void
738 rt2661_iter_func(void *arg, struct ieee80211_node *ni)
739 {
740 	struct rt2661_softc *sc = arg;
741 	struct rt2661_node *rn = (struct rt2661_node *)ni;
742 
743 	ieee80211_amrr_choose(&sc->amrr, ni, &rn->amn);
744 }
745 
746 /*
747  * This function is called periodically (every 500ms) in RUN state to update
748  * various settings like rate control statistics or Rx sensitivity.
749  */
750 static void
751 rt2661_updatestats(void *arg)
752 {
753 	struct rt2661_softc *sc = arg;
754 	struct ieee80211com *ic = &sc->sc_ic;
755 	int s;
756 
757 	s = splnet();
758 	if (ic->ic_opmode == IEEE80211_M_STA)
759 		rt2661_iter_func(sc, ic->ic_bss);
760 	else
761 		ieee80211_iterate_nodes(&ic->ic_sta, rt2661_iter_func, arg);
762 
763 	/* update rx sensitivity every 1 sec */
764 	if (++sc->ncalls & 1)
765 		rt2661_rx_tune(sc);
766 	splx(s);
767 
768 	callout_reset(&sc->amrr_ch, hz / 2, rt2661_updatestats, sc);
769 }
770 
771 static void
772 rt2661_newassoc(struct ieee80211_node *ni, int isnew)
773 {
774 	struct rt2661_softc *sc = ni->ni_ic->ic_ifp->if_softc;
775 	int i;
776 
777 	ieee80211_amrr_node_init(&sc->amrr, &((struct rt2661_node *)ni)->amn);
778 
779 	/* set rate to some reasonable initial value */
780 	for (i = ni->ni_rates.rs_nrates - 1;
781 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
782 	     i--);
783 	ni->ni_txrate = i;
784 }
785 
786 static int
787 rt2661_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
788 {
789 	struct rt2661_softc *sc = ic->ic_ifp->if_softc;
790 	enum ieee80211_state ostate;
791 	struct ieee80211_node *ni;
792 	uint32_t tmp;
793 
794 	ostate = ic->ic_state;
795 	callout_stop(&sc->scan_ch);
796 
797 	switch (nstate) {
798 	case IEEE80211_S_INIT:
799 		callout_stop(&sc->amrr_ch);
800 
801 		if (ostate == IEEE80211_S_RUN) {
802 			/* abort TSF synchronization */
803 			tmp = RAL_READ(sc, RT2661_TXRX_CSR9);
804 			RAL_WRITE(sc, RT2661_TXRX_CSR9, tmp & ~0x00ffffff);
805 		}
806 		break;
807 
808 	case IEEE80211_S_SCAN:
809 		rt2661_set_chan(sc, ic->ic_curchan);
810 		callout_reset(&sc->scan_ch, hz / 5, rt2661_next_scan, sc);
811 		break;
812 
813 	case IEEE80211_S_AUTH:
814 	case IEEE80211_S_ASSOC:
815 		rt2661_set_chan(sc, ic->ic_curchan);
816 		break;
817 
818 	case IEEE80211_S_RUN:
819 		rt2661_set_chan(sc, ic->ic_curchan);
820 
821 		ni = ic->ic_bss;
822 
823 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
824 			rt2661_set_slottime(sc);
825 			rt2661_enable_mrr(sc);
826 			rt2661_set_txpreamble(sc);
827 			rt2661_set_basicrates(sc, &ni->ni_rates);
828 			rt2661_set_bssid(sc, ni->ni_bssid);
829 		}
830 
831 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
832 		    ic->ic_opmode == IEEE80211_M_IBSS)
833 			rt2661_prepare_beacon(sc);
834 
835 		if (ic->ic_opmode == IEEE80211_M_STA) {
836 			/* fake a join to init the tx rate */
837 			rt2661_newassoc(ni, 1);
838 		}
839 
840 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
841 			sc->ncalls = 0;
842 			sc->avg_rssi = -95;	/* reset EMA */
843 			callout_reset(&sc->amrr_ch, hz / 2,
844 			    rt2661_updatestats, sc);
845 			rt2661_enable_tsf_sync(sc);
846 		}
847 		break;
848 	}
849 
850 	return sc->sc_newstate(ic, nstate, arg);
851 }
852 
853 /*
854  * Read 16 bits at address 'addr' from the serial EEPROM (either 93C46 or
855  * 93C66).
856  */
857 static uint16_t
858 rt2661_eeprom_read(struct rt2661_softc *sc, uint8_t addr)
859 {
860 	uint32_t tmp;
861 	uint16_t val;
862 	int n;
863 
864 	/* clock C once before the first command */
865 	RT2661_EEPROM_CTL(sc, 0);
866 
867 	RT2661_EEPROM_CTL(sc, RT2661_S);
868 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C);
869 	RT2661_EEPROM_CTL(sc, RT2661_S);
870 
871 	/* write start bit (1) */
872 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D);
873 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D | RT2661_C);
874 
875 	/* write READ opcode (10) */
876 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D);
877 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D | RT2661_C);
878 	RT2661_EEPROM_CTL(sc, RT2661_S);
879 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C);
880 
881 	/* write address (A5-A0 or A7-A0) */
882 	n = (RAL_READ(sc, RT2661_E2PROM_CSR) & RT2661_93C46) ? 5 : 7;
883 	for (; n >= 0; n--) {
884 		RT2661_EEPROM_CTL(sc, RT2661_S |
885 		    (((addr >> n) & 1) << RT2661_SHIFT_D));
886 		RT2661_EEPROM_CTL(sc, RT2661_S |
887 		    (((addr >> n) & 1) << RT2661_SHIFT_D) | RT2661_C);
888 	}
889 
890 	RT2661_EEPROM_CTL(sc, RT2661_S);
891 
892 	/* read data Q15-Q0 */
893 	val = 0;
894 	for (n = 15; n >= 0; n--) {
895 		RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C);
896 		tmp = RAL_READ(sc, RT2661_E2PROM_CSR);
897 		val |= ((tmp & RT2661_Q) >> RT2661_SHIFT_Q) << n;
898 		RT2661_EEPROM_CTL(sc, RT2661_S);
899 	}
900 
901 	RT2661_EEPROM_CTL(sc, 0);
902 
903 	/* clear Chip Select and clock C */
904 	RT2661_EEPROM_CTL(sc, RT2661_S);
905 	RT2661_EEPROM_CTL(sc, 0);
906 	RT2661_EEPROM_CTL(sc, RT2661_C);
907 
908 	return val;
909 }
910 
911 static void
912 rt2661_tx_intr(struct rt2661_softc *sc)
913 {
914 	struct ifnet *ifp = &sc->sc_if;
915 	struct rt2661_tx_ring *txq;
916 	struct rt2661_tx_data *data;
917 	struct rt2661_node *rn;
918 	uint32_t val;
919 	int qid, retrycnt, s;
920 
921 	s = splnet();
922 
923 	for (;;) {
924 		val = RAL_READ(sc, RT2661_STA_CSR4);
925 		if (!(val & RT2661_TX_STAT_VALID))
926 			break;
927 
928 		/* retrieve the queue in which this frame was sent */
929 		qid = RT2661_TX_QID(val);
930 		txq = (qid <= 3) ? &sc->txq[qid] : &sc->mgtq;
931 
932 		/* retrieve rate control algorithm context */
933 		data = &txq->data[txq->stat];
934 		rn = (struct rt2661_node *)data->ni;
935 
936 		/* if no frame has been sent, ignore */
937 		if (rn == NULL)
938 			continue;
939 
940 		switch (RT2661_TX_RESULT(val)) {
941 		case RT2661_TX_SUCCESS:
942 			retrycnt = RT2661_TX_RETRYCNT(val);
943 
944 			DPRINTFN(10, ("data frame sent successfully after "
945 			    "%d retries\n", retrycnt));
946 			rn->amn.amn_txcnt++;
947 			if (retrycnt > 0)
948 				rn->amn.amn_retrycnt++;
949 			if_statinc(ifp, if_opackets);
950 			break;
951 
952 		case RT2661_TX_RETRY_FAIL:
953 			DPRINTFN(9, ("sending data frame failed (too much "
954 			    "retries)\n"));
955 			rn->amn.amn_txcnt++;
956 			rn->amn.amn_retrycnt++;
957 			if_statinc(ifp, if_oerrors);
958 			break;
959 
960 		default:
961 			/* other failure */
962 			aprint_error_dev(sc->sc_dev, "sending data frame failed 0x%08x\n", val);
963 			if_statinc(ifp, if_oerrors);
964 		}
965 
966 		ieee80211_free_node(data->ni);
967 		data->ni = NULL;
968 
969 		DPRINTFN(15, ("tx done q=%d idx=%u\n", qid, txq->stat));
970 
971 		txq->queued--;
972 		if (++txq->stat >= txq->count)	/* faster than % count */
973 			txq->stat = 0;
974 	}
975 
976 	sc->sc_tx_timer = 0;
977 	ifp->if_flags &= ~IFF_OACTIVE;
978 	rt2661_start(ifp); /* in softint */
979 
980 	splx(s);
981 }
982 
983 static void
984 rt2661_tx_dma_intr(struct rt2661_softc *sc, struct rt2661_tx_ring *txq)
985 {
986 	struct rt2661_tx_desc *desc;
987 	struct rt2661_tx_data *data;
988 
989 	for (;;) {
990 		desc = &txq->desc[txq->next];
991 		data = &txq->data[txq->next];
992 
993 		bus_dmamap_sync(sc->sc_dmat, txq->map,
994 		    txq->next * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
995 		    BUS_DMASYNC_POSTREAD);
996 
997 		if ((le32toh(desc->flags) & RT2661_TX_BUSY) ||
998 		    !(le32toh(desc->flags) & RT2661_TX_VALID))
999 			break;
1000 
1001 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1002 		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1003 		bus_dmamap_unload(sc->sc_dmat, data->map);
1004 		m_freem(data->m);
1005 		data->m = NULL;
1006 		/* node reference is released in rt2661_tx_intr() */
1007 
1008 		/* descriptor is no longer valid */
1009 		desc->flags &= ~htole32(RT2661_TX_VALID);
1010 
1011 		bus_dmamap_sync(sc->sc_dmat, txq->map,
1012 		    txq->next * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
1013 		    BUS_DMASYNC_PREWRITE);
1014 
1015 		DPRINTFN(15, ("tx dma done q=%p idx=%u\n", txq, txq->next));
1016 
1017 		if (++txq->next >= txq->count)	/* faster than % count */
1018 			txq->next = 0;
1019 	}
1020 }
1021 
1022 static void
1023 rt2661_rx_intr(struct rt2661_softc *sc)
1024 {
1025 	struct ieee80211com *ic = &sc->sc_ic;
1026 	struct ifnet *ifp = &sc->sc_if;
1027 	struct rt2661_rx_desc *desc;
1028 	struct rt2661_rx_data *data;
1029 	struct ieee80211_frame *wh;
1030 	struct ieee80211_node *ni;
1031 	struct mbuf *mnew, *m;
1032 	int error, rssi, s;
1033 
1034 	for (;;) {
1035 		desc = &sc->rxq.desc[sc->rxq.cur];
1036 		data = &sc->rxq.data[sc->rxq.cur];
1037 
1038 		bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1039 		    sc->rxq.cur * RT2661_RX_DESC_SIZE, RT2661_RX_DESC_SIZE,
1040 		    BUS_DMASYNC_POSTREAD);
1041 
1042 		if (le32toh(desc->flags) & RT2661_RX_BUSY)
1043 			break;
1044 
1045 		if ((le32toh(desc->flags) & RT2661_RX_PHY_ERROR) ||
1046 		    (le32toh(desc->flags) & RT2661_RX_CRC_ERROR)) {
1047 			/*
1048 			 * This should not happen since we did not request
1049 			 * to receive those frames when we filled TXRX_CSR0.
1050 			 */
1051 			DPRINTFN(5, ("PHY or CRC error flags 0x%08x\n",
1052 			    le32toh(desc->flags)));
1053 			if_statinc(ifp, if_ierrors);
1054 			goto skip;
1055 		}
1056 
1057 		if ((le32toh(desc->flags) & RT2661_RX_CIPHER_MASK) != 0) {
1058 			if_statinc(ifp, if_ierrors);
1059 			goto skip;
1060 		}
1061 
1062 		/*
1063 		 * Try to allocate a new mbuf for this ring element and load it
1064 		 * before processing the current mbuf. If the ring element
1065 		 * cannot be loaded, drop the received packet and reuse the old
1066 		 * mbuf. In the unlikely case that the old mbuf can't be
1067 		 * reloaded either, explicitly panic.
1068 		 */
1069 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1070 		if (mnew == NULL) {
1071 			if_statinc(ifp, if_ierrors);
1072 			goto skip;
1073 		}
1074 
1075 		MCLGET(mnew, M_DONTWAIT);
1076 		if (!(mnew->m_flags & M_EXT)) {
1077 			m_freem(mnew);
1078 			if_statinc(ifp, if_ierrors);
1079 			goto skip;
1080 		}
1081 
1082 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1083 		    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1084 		bus_dmamap_unload(sc->sc_dmat, data->map);
1085 
1086 		error = bus_dmamap_load(sc->sc_dmat, data->map,
1087 		    mtod(mnew, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
1088 		if (error != 0) {
1089 			m_freem(mnew);
1090 
1091 			/* try to reload the old mbuf */
1092 			error = bus_dmamap_load(sc->sc_dmat, data->map,
1093 			    mtod(data->m, void *), MCLBYTES, NULL,
1094 			    BUS_DMA_NOWAIT);
1095 			if (error != 0) {
1096 				/* very unlikely that it will fail... */
1097 				panic("%s: could not load old rx mbuf",
1098 				    device_xname(sc->sc_dev));
1099 			}
1100 			/* physical address may have changed */
1101 			desc->physaddr = htole32(data->map->dm_segs->ds_addr);
1102 			if_statinc(ifp, if_ierrors);
1103 			goto skip;
1104 		}
1105 
1106 		/*
1107 	 	 * New mbuf successfully loaded, update Rx ring and continue
1108 		 * processing.
1109 		 */
1110 		m = data->m;
1111 		data->m = mnew;
1112 		desc->physaddr = htole32(data->map->dm_segs->ds_addr);
1113 
1114 		/* finalize mbuf */
1115 		m_set_rcvif(m, ifp);
1116 		m->m_pkthdr.len = m->m_len =
1117 		    (le32toh(desc->flags) >> 16) & 0xfff;
1118 
1119 		s = splnet();
1120 
1121 		if (sc->sc_drvbpf != NULL) {
1122 			struct rt2661_rx_radiotap_header *tap = &sc->sc_rxtap;
1123 			uint32_t tsf_lo, tsf_hi;
1124 
1125 			/* get timestamp (low and high 32 bits) */
1126 			tsf_hi = RAL_READ(sc, RT2661_TXRX_CSR13);
1127 			tsf_lo = RAL_READ(sc, RT2661_TXRX_CSR12);
1128 
1129 			tap->wr_tsf =
1130 			    htole64(((uint64_t)tsf_hi << 32) | tsf_lo);
1131 			tap->wr_flags = 0;
1132 			tap->wr_rate = rt2661_rxrate(desc);
1133 			tap->wr_chan_freq = htole16(sc->sc_curchan->ic_freq);
1134 			tap->wr_chan_flags = htole16(sc->sc_curchan->ic_flags);
1135 			tap->wr_antsignal = desc->rssi;
1136 
1137 			bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m,
1138 			    BPF_D_IN);
1139 		}
1140 
1141 		wh = mtod(m, struct ieee80211_frame *);
1142 		ni = ieee80211_find_rxnode(ic,
1143 		    (struct ieee80211_frame_min *)wh);
1144 
1145 		/* send the frame to the 802.11 layer */
1146 		ieee80211_input(ic, m, ni, desc->rssi, 0);
1147 
1148 		/*-
1149 		 * Keep track of the average RSSI using an Exponential Moving
1150 		 * Average (EMA) of 8 Wilder's days:
1151 		 *     avg = (1 / N) x rssi + ((N - 1) / N) x avg
1152 		 */
1153 		rssi = rt2661_get_rssi(sc, desc->rssi);
1154 		sc->avg_rssi = (rssi + 7 * sc->avg_rssi) / 8;
1155 
1156 		/* node is no longer needed */
1157 		ieee80211_free_node(ni);
1158 
1159 		splx(s);
1160 
1161 skip:		desc->flags |= htole32(RT2661_RX_BUSY);
1162 
1163 		bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1164 		    sc->rxq.cur * RT2661_RX_DESC_SIZE, RT2661_RX_DESC_SIZE,
1165 		    BUS_DMASYNC_PREWRITE);
1166 
1167 		DPRINTFN(16, ("rx intr idx=%u\n", sc->rxq.cur));
1168 
1169 		sc->rxq.cur = (sc->rxq.cur + 1) % RT2661_RX_RING_COUNT;
1170 	}
1171 
1172 	/*
1173 	 * In HostAP mode, ieee80211_input() will enqueue packets in if_snd
1174 	 * without calling if_start().
1175 	 */
1176 	s = splnet();
1177 	if (!IFQ_IS_EMPTY(&ifp->if_snd) && !(ifp->if_flags & IFF_OACTIVE))
1178 		rt2661_start(ifp);
1179 	splx(s);
1180 }
1181 
1182 /*
1183  * This function is called in HostAP or IBSS modes when it's time to send a
1184  * new beacon (every ni_intval milliseconds).
1185  */
1186 static void
1187 rt2661_mcu_beacon_expire(struct rt2661_softc *sc)
1188 {
1189 	struct ieee80211com *ic = &sc->sc_ic;
1190 
1191 	if (sc->sc_flags & RT2661_UPDATE_SLOT) {
1192 		sc->sc_flags &= ~RT2661_UPDATE_SLOT;
1193 		sc->sc_flags |= RT2661_SET_SLOTTIME;
1194 	} else if (sc->sc_flags & RT2661_SET_SLOTTIME) {
1195 		sc->sc_flags &= ~RT2661_SET_SLOTTIME;
1196 		rt2661_set_slottime(sc);
1197 	}
1198 
1199 	if (ic->ic_curmode == IEEE80211_MODE_11G) {
1200 		/* update ERP Information Element */
1201 		RAL_WRITE_1(sc, sc->erp_csr, ic->ic_bss->ni_erp);
1202 		RAL_RW_BARRIER_1(sc, sc->erp_csr);
1203 	}
1204 
1205 	DPRINTFN(15, ("beacon expired\n"));
1206 }
1207 
1208 static void
1209 rt2661_mcu_wakeup(struct rt2661_softc *sc)
1210 {
1211 	RAL_WRITE(sc, RT2661_MAC_CSR11, 5 << 16);
1212 
1213 	RAL_WRITE(sc, RT2661_SOFT_RESET_CSR, 0x7);
1214 	RAL_WRITE(sc, RT2661_IO_CNTL_CSR, 0x18);
1215 	RAL_WRITE(sc, RT2661_PCI_USEC_CSR, 0x20);
1216 
1217 	/* send wakeup command to MCU */
1218 	rt2661_tx_cmd(sc, RT2661_MCU_CMD_WAKEUP, 0);
1219 }
1220 
1221 static void
1222 rt2661_mcu_cmd_intr(struct rt2661_softc *sc)
1223 {
1224 	RAL_READ(sc, RT2661_M2H_CMD_DONE_CSR);
1225 	RAL_WRITE(sc, RT2661_M2H_CMD_DONE_CSR, 0xffffffff);
1226 }
1227 
1228 int
1229 rt2661_intr(void *arg)
1230 {
1231 	struct rt2661_softc *sc = arg;
1232 	struct ifnet *ifp = &sc->sc_if;
1233 	uint32_t r1, r2;
1234 
1235 	/* don't re-enable interrupts if we're shutting down */
1236 	if (!(ifp->if_flags & IFF_RUNNING)) {
1237 		/* disable MAC and MCU interrupts */
1238 		RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0xffffff7f);
1239 		RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0xffffffff);
1240 		return 0;
1241 	}
1242 
1243 	r1 = RAL_READ(sc, RT2661_INT_SOURCE_CSR);
1244 	r2 = RAL_READ(sc, RT2661_MCU_INT_SOURCE_CSR);
1245 
1246 	if ((r1 & RT2661_INT_CSR_ALL) == 0 && (r2 & RT2661_MCU_INT_ALL) == 0)
1247 		return 0;
1248 
1249 	/* disable interrupts */
1250 	RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0xffffff7f);
1251 	RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0xffffffff);
1252 
1253 	softint_schedule(sc->sc_soft_ih);
1254 	return 1;
1255 }
1256 
1257 static void
1258 rt2661_softintr(void *arg)
1259 {
1260 	struct rt2661_softc *sc = arg;
1261 	uint32_t r1, r2;
1262 
1263 	for (;;) {
1264 		r1 = RAL_READ(sc, RT2661_INT_SOURCE_CSR);
1265 		r2 = RAL_READ(sc, RT2661_MCU_INT_SOURCE_CSR);
1266 
1267 		if ((r1 & RT2661_INT_CSR_ALL) == 0 &&
1268 		    (r2 & RT2661_MCU_INT_ALL) == 0)
1269 			break;
1270 
1271 		RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, r1);
1272 		RAL_WRITE(sc, RT2661_MCU_INT_SOURCE_CSR, r2);
1273 
1274 		if (r1 & RT2661_MGT_DONE)
1275 			rt2661_tx_dma_intr(sc, &sc->mgtq);
1276 
1277 		if (r1 & RT2661_RX_DONE)
1278 			rt2661_rx_intr(sc);
1279 
1280 		if (r1 & RT2661_TX0_DMA_DONE)
1281 			rt2661_tx_dma_intr(sc, &sc->txq[0]);
1282 
1283 		if (r1 & RT2661_TX1_DMA_DONE)
1284 			rt2661_tx_dma_intr(sc, &sc->txq[1]);
1285 
1286 		if (r1 & RT2661_TX2_DMA_DONE)
1287 			rt2661_tx_dma_intr(sc, &sc->txq[2]);
1288 
1289 		if (r1 & RT2661_TX3_DMA_DONE)
1290 			rt2661_tx_dma_intr(sc, &sc->txq[3]);
1291 
1292 		if (r1 & RT2661_TX_DONE)
1293 			rt2661_tx_intr(sc);
1294 
1295 		if (r2 & RT2661_MCU_CMD_DONE)
1296 			rt2661_mcu_cmd_intr(sc);
1297 
1298 		if (r2 & RT2661_MCU_BEACON_EXPIRE)
1299 			rt2661_mcu_beacon_expire(sc);
1300 
1301 		if (r2 & RT2661_MCU_WAKEUP)
1302 			rt2661_mcu_wakeup(sc);
1303 	}
1304 
1305 	/* enable interrupts */
1306 	RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0x0000ff10);
1307 	RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0);
1308 }
1309 
1310 /* quickly determine if a given rate is CCK or OFDM */
1311 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1312 
1313 #define RAL_ACK_SIZE	14	/* 10 + 4(FCS) */
1314 #define RAL_CTS_SIZE	14	/* 10 + 4(FCS) */
1315 
1316 /*
1317  * This function is only used by the Rx radiotap code. It returns the rate at
1318  * which a given frame was received.
1319  */
1320 static uint8_t
1321 rt2661_rxrate(struct rt2661_rx_desc *desc)
1322 {
1323 	if (le32toh(desc->flags) & RT2661_RX_OFDM) {
1324 		/* reverse function of rt2661_plcp_signal */
1325 		switch (desc->rate & 0xf) {
1326 		case 0xb:	return 12;
1327 		case 0xf:	return 18;
1328 		case 0xa:	return 24;
1329 		case 0xe:	return 36;
1330 		case 0x9:	return 48;
1331 		case 0xd:	return 72;
1332 		case 0x8:	return 96;
1333 		case 0xc:	return 108;
1334 		}
1335 	} else {
1336 		if (desc->rate == 10)
1337 			return 2;
1338 		if (desc->rate == 20)
1339 			return 4;
1340 		if (desc->rate == 55)
1341 			return 11;
1342 		if (desc->rate == 110)
1343 			return 22;
1344 	}
1345 	return 2;	/* should not get there */
1346 }
1347 
1348 /*
1349  * Return the expected ack rate for a frame transmitted at rate `rate'.
1350  * XXX: this should depend on the destination node basic rate set.
1351  */
1352 static int
1353 rt2661_ack_rate(struct ieee80211com *ic, int rate)
1354 {
1355 	switch (rate) {
1356 	/* CCK rates */
1357 	case 2:
1358 		return 2;
1359 	case 4:
1360 	case 11:
1361 	case 22:
1362 		return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
1363 
1364 	/* OFDM rates */
1365 	case 12:
1366 	case 18:
1367 		return 12;
1368 	case 24:
1369 	case 36:
1370 		return 24;
1371 	case 48:
1372 	case 72:
1373 	case 96:
1374 	case 108:
1375 		return 48;
1376 	}
1377 
1378 	/* default to 1Mbps */
1379 	return 2;
1380 }
1381 
1382 /*
1383  * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1384  * The function automatically determines the operating mode depending on the
1385  * given rate. `flags' indicates whether short preamble is in use or not.
1386  */
1387 static uint16_t
1388 rt2661_txtime(int len, int rate, uint32_t flags)
1389 {
1390 	uint16_t txtime;
1391 
1392 	if (RAL_RATE_IS_OFDM(rate)) {
1393 		/* IEEE Std 802.11g-2003, pp. 44 */
1394 		txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1395 		txtime = 16 + 4 + 4 * txtime + 6;
1396 	} else {
1397 		/* IEEE Std 802.11b-1999, pp. 28 */
1398 		txtime = (16 * len + rate - 1) / rate;
1399 		if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1400 			txtime +=  72 + 24;
1401 		else
1402 			txtime += 144 + 48;
1403 	}
1404 	return txtime;
1405 }
1406 
1407 static uint8_t
1408 rt2661_plcp_signal(int rate)
1409 {
1410 	switch (rate) {
1411 	/* CCK rates (returned values are device-dependent) */
1412 	case 2:		return 0x0;
1413 	case 4:		return 0x1;
1414 	case 11:	return 0x2;
1415 	case 22:	return 0x3;
1416 
1417 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1418 	case 12:	return 0xb;
1419 	case 18:	return 0xf;
1420 	case 24:	return 0xa;
1421 	case 36:	return 0xe;
1422 	case 48:	return 0x9;
1423 	case 72:	return 0xd;
1424 	case 96:	return 0x8;
1425 	case 108:	return 0xc;
1426 
1427 	/* unsupported rates (should not get there) */
1428 	default:	return 0xff;
1429 	}
1430 }
1431 
1432 static void
1433 rt2661_setup_tx_desc(struct rt2661_softc *sc, struct rt2661_tx_desc *desc,
1434     uint32_t flags, uint16_t xflags, int len, int rate,
1435     const bus_dma_segment_t *segs, int nsegs, int ac)
1436 {
1437 	struct ieee80211com *ic = &sc->sc_ic;
1438 	uint16_t plcp_length;
1439 	int i, remainder;
1440 
1441 	desc->flags = htole32(flags);
1442 	desc->flags |= htole32(len << 16);
1443 
1444 	desc->xflags = htole16(xflags);
1445 	desc->xflags |= htole16(nsegs << 13);
1446 
1447 	desc->wme = htole16(
1448 	    RT2661_QID(ac) |
1449 	    RT2661_AIFSN(2) |
1450 	    RT2661_LOGCWMIN(4) |
1451 	    RT2661_LOGCWMAX(10));
1452 
1453 	/*
1454 	 * Remember in which queue this frame was sent. This field is driver
1455 	 * private data only. It will be made available by the NIC in STA_CSR4
1456 	 * on Tx interrupts.
1457 	 */
1458 	desc->qid = ac;
1459 
1460 	/* setup PLCP fields */
1461 	desc->plcp_signal  = rt2661_plcp_signal(rate);
1462 	desc->plcp_service = 4;
1463 
1464 	len += IEEE80211_CRC_LEN;
1465 	if (RAL_RATE_IS_OFDM(rate)) {
1466 		desc->flags |= htole32(RT2661_TX_OFDM);
1467 
1468 		plcp_length = len & 0xfff;
1469 		desc->plcp_length_hi = plcp_length >> 6;
1470 		desc->plcp_length_lo = plcp_length & 0x3f;
1471 	} else {
1472 		plcp_length = (16 * len + rate - 1) / rate;
1473 		if (rate == 22) {
1474 			remainder = (16 * len) % 22;
1475 			if (remainder != 0 && remainder < 7)
1476 				desc->plcp_service |= RT2661_PLCP_LENGEXT;
1477 		}
1478 		desc->plcp_length_hi = plcp_length >> 8;
1479 		desc->plcp_length_lo = plcp_length & 0xff;
1480 
1481 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1482 			desc->plcp_signal |= 0x08;
1483 	}
1484 
1485 	/* RT2x61 supports scatter with up to 5 segments */
1486 	for (i = 0; i < nsegs; i++) {
1487 		desc->addr[i] = htole32(segs[i].ds_addr);
1488 		desc->len [i] = htole16(segs[i].ds_len);
1489 	}
1490 
1491 	desc->flags |= htole32(RT2661_TX_BUSY | RT2661_TX_VALID);
1492 }
1493 
1494 static int
1495 rt2661_tx_mgt(struct rt2661_softc *sc, struct mbuf *m0,
1496     struct ieee80211_node *ni)
1497 {
1498 	struct ieee80211com *ic = &sc->sc_ic;
1499 	struct rt2661_tx_desc *desc;
1500 	struct rt2661_tx_data *data;
1501 	struct ieee80211_frame *wh;
1502 	uint16_t dur;
1503 	uint32_t flags = 0;
1504 	int rate, error;
1505 
1506 	desc = &sc->mgtq.desc[sc->mgtq.cur];
1507 	data = &sc->mgtq.data[sc->mgtq.cur];
1508 
1509 	/* send mgt frames at the lowest available rate */
1510 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1511 
1512 	wh = mtod(m0, struct ieee80211_frame *);
1513 
1514 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1515 		if (ieee80211_crypto_encap(ic, ni, m0) == NULL) {
1516 			m_freem(m0);
1517 			return ENOBUFS;
1518 		}
1519 
1520 		/* packet header may have moved, reset our local pointer */
1521 		wh = mtod(m0, struct ieee80211_frame *);
1522 	}
1523 
1524 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1525 	    BUS_DMA_NOWAIT);
1526 	if (error != 0) {
1527 		aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
1528 		    error);
1529 		m_freem(m0);
1530 		return error;
1531 	}
1532 
1533 	if (sc->sc_drvbpf != NULL) {
1534 		struct rt2661_tx_radiotap_header *tap = &sc->sc_txtap;
1535 
1536 		tap->wt_flags = 0;
1537 		tap->wt_rate = rate;
1538 		tap->wt_chan_freq = htole16(sc->sc_curchan->ic_freq);
1539 		tap->wt_chan_flags = htole16(sc->sc_curchan->ic_flags);
1540 
1541 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0, BPF_D_OUT);
1542 	}
1543 
1544 	data->m = m0;
1545 	data->ni = ni;
1546 
1547 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1548 		flags |= RT2661_TX_NEED_ACK;
1549 
1550 		dur = rt2661_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) +
1551 		    sc->sifs;
1552 		*(uint16_t *)wh->i_dur = htole16(dur);
1553 
1554 		/* tell hardware to set timestamp in probe responses */
1555 		if ((wh->i_fc[0] &
1556 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1557 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1558 			flags |= RT2661_TX_TIMESTAMP;
1559 	}
1560 
1561 	rt2661_setup_tx_desc(sc, desc, flags, 0 /* XXX HWSEQ */,
1562 	    m0->m_pkthdr.len, rate, data->map->dm_segs, data->map->dm_nsegs,
1563 	    RT2661_QID_MGT);
1564 
1565 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1566 	    BUS_DMASYNC_PREWRITE);
1567 	bus_dmamap_sync(sc->sc_dmat, sc->mgtq.map,
1568 	    sc->mgtq.cur * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
1569 	    BUS_DMASYNC_PREWRITE);
1570 
1571 	DPRINTFN(10, ("sending mgt frame len=%u idx=%u rate=%u\n",
1572 	    m0->m_pkthdr.len, sc->mgtq.cur, rate));
1573 
1574 	/* kick mgt */
1575 	sc->mgtq.queued++;
1576 	sc->mgtq.cur = (sc->mgtq.cur + 1) % RT2661_MGT_RING_COUNT;
1577 	RAL_WRITE(sc, RT2661_TX_CNTL_CSR, RT2661_KICK_MGT);
1578 
1579 	return 0;
1580 }
1581 
1582 /*
1583  * Build a RTS control frame.
1584  */
1585 static struct mbuf *
1586 rt2661_get_rts(struct rt2661_softc *sc, struct ieee80211_frame *wh,
1587     uint16_t dur)
1588 {
1589 	struct ieee80211_frame_rts *rts;
1590 	struct mbuf *m;
1591 
1592 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1593 	if (m == NULL) {
1594 		sc->sc_ic.ic_stats.is_tx_nobuf++;
1595 		aprint_error_dev(sc->sc_dev, "could not allocate RTS frame\n");
1596 		return NULL;
1597 	}
1598 
1599 	rts = mtod(m, struct ieee80211_frame_rts *);
1600 
1601 	rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL |
1602 	    IEEE80211_FC0_SUBTYPE_RTS;
1603 	rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1604 	*(uint16_t *)rts->i_dur = htole16(dur);
1605 	IEEE80211_ADDR_COPY(rts->i_ra, wh->i_addr1);
1606 	IEEE80211_ADDR_COPY(rts->i_ta, wh->i_addr2);
1607 
1608 	m->m_pkthdr.len = m->m_len = sizeof (struct ieee80211_frame_rts);
1609 
1610 	return m;
1611 }
1612 
1613 static int
1614 rt2661_tx_data(struct rt2661_softc *sc, struct mbuf *m0,
1615     struct ieee80211_node *ni, int ac)
1616 {
1617 	struct ieee80211com *ic = &sc->sc_ic;
1618 	struct rt2661_tx_ring *txq = &sc->txq[ac];
1619 	struct rt2661_tx_desc *desc;
1620 	struct rt2661_tx_data *data;
1621 	struct ieee80211_frame *wh;
1622 	struct ieee80211_key *k;
1623 	struct mbuf *mnew;
1624 	uint16_t dur;
1625 	uint32_t flags = 0;
1626 	int rate, useprot, error, tid;
1627 
1628 	wh = mtod(m0, struct ieee80211_frame *);
1629 
1630 	if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
1631 		rate = ic->ic_sup_rates[ic->ic_curmode].
1632 		    rs_rates[ic->ic_fixed_rate];
1633 	} else
1634 		rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1635 	rate &= IEEE80211_RATE_VAL;
1636 	if (rate == 0)
1637 		rate = 2;	/* XXX should not happen */
1638 
1639 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1640 		k = ieee80211_crypto_encap(ic, ni, m0);
1641 		if (k == NULL) {
1642 			m_freem(m0);
1643 			return ENOBUFS;
1644 		}
1645 
1646 		/* packet header may have moved, reset our local pointer */
1647 		wh = mtod(m0, struct ieee80211_frame *);
1648 	}
1649 
1650 	/*
1651 	 * Packet Bursting: backoff after ppb=8 frames to give other STAs a
1652 	 * chance to contend for the wireless medium.
1653 	 */
1654 	tid = WME_AC_TO_TID(M_WME_GETAC(m0));
1655 	if (ic->ic_opmode == IEEE80211_M_STA && (ni->ni_txseqs[tid] & 7))
1656 		flags |= RT2661_TX_IFS_SIFS;
1657 
1658 	/*
1659 	 * IEEE Std 802.11-1999, pp 82: "A STA shall use an RTS/CTS exchange
1660 	 * for directed frames only when the length of the MPDU is greater
1661 	 * than the length threshold indicated by" ic_rtsthreshold.
1662 	 *
1663 	 * IEEE Std 802.11-2003g, pp 13: "ERP STAs shall use protection
1664 	 * mechanism (such as RTS/CTS or CTS-to-self) for ERP-OFDM MPDUs of
1665 	 * type Data or an MMPDU".
1666 	 */
1667 	useprot = !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1668 	    (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold ||
1669 	    ((ic->ic_flags & IEEE80211_F_USEPROT) && RAL_RATE_IS_OFDM(rate)));
1670 	if (useprot) {
1671 		struct mbuf *m;
1672 		int rtsrate, ackrate;
1673 
1674 		rtsrate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1675 		ackrate = rt2661_ack_rate(ic, rate);
1676 
1677 		dur = rt2661_txtime(m0->m_pkthdr.len + 4, rate, ic->ic_flags) +
1678 		      rt2661_txtime(RAL_CTS_SIZE, rtsrate, ic->ic_flags) +
1679 		      rt2661_txtime(RAL_ACK_SIZE, ackrate, ic->ic_flags) +
1680 		      3 * sc->sifs;
1681 
1682 		m = rt2661_get_rts(sc, wh, dur);
1683 		if (m == NULL) {
1684 			aprint_error_dev(sc->sc_dev, "could not allocate RTS "
1685 			    "frame\n");
1686 			m_freem(m0);
1687 			return ENOBUFS;
1688 		}
1689 
1690 		desc = &txq->desc[txq->cur];
1691 		data = &txq->data[txq->cur];
1692 
1693 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
1694 		    BUS_DMA_NOWAIT);
1695 		if (error != 0) {
1696 			aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n", error);
1697 			m_freem(m);
1698 			m_freem(m0);
1699 			return error;
1700 		}
1701 
1702 		/* avoid multiple free() of the same node for each fragment */
1703 		ieee80211_ref_node(ni);
1704 
1705 		data->m = m;
1706 		data->ni = ni;
1707 
1708 		rt2661_setup_tx_desc(sc, desc, RT2661_TX_NEED_ACK |
1709 		    RT2661_TX_MORE_FRAG, 0, m->m_pkthdr.len, rtsrate,
1710 		    data->map->dm_segs, data->map->dm_nsegs, ac);
1711 
1712 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1713 		    data->map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1714 		bus_dmamap_sync(sc->sc_dmat, txq->map,
1715 		    txq->cur * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
1716 		    BUS_DMASYNC_PREWRITE);
1717 
1718 		txq->queued++;
1719 		txq->cur = (txq->cur + 1) % RT2661_TX_RING_COUNT;
1720 
1721 		flags |= RT2661_TX_LONG_RETRY | RT2661_TX_IFS_SIFS;
1722 	}
1723 
1724 	data = &txq->data[txq->cur];
1725 	desc = &txq->desc[txq->cur];
1726 
1727 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1728 	    BUS_DMA_NOWAIT);
1729 	if (error != 0 && error != EFBIG) {
1730 		aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
1731 		    error);
1732 		m_freem(m0);
1733 		return error;
1734 	}
1735 	if (error != 0) {
1736 		/* too many fragments, linearize */
1737 
1738 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1739 		if (mnew == NULL) {
1740 			m_freem(m0);
1741 			return ENOMEM;
1742 		}
1743 
1744 		m_copy_pkthdr(mnew, m0);
1745 		if (m0->m_pkthdr.len > MHLEN) {
1746 			MCLGET(mnew, M_DONTWAIT);
1747 			if (!(mnew->m_flags & M_EXT)) {
1748 				m_freem(m0);
1749 				m_freem(mnew);
1750 				return ENOMEM;
1751 			}
1752 		}
1753 
1754 		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
1755 		m_freem(m0);
1756 		mnew->m_len = mnew->m_pkthdr.len;
1757 		m0 = mnew;
1758 
1759 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1760 		    BUS_DMA_NOWAIT);
1761 		if (error != 0) {
1762 			aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n", error);
1763 			m_freem(m0);
1764 			return error;
1765 		}
1766 
1767 		/* packet header have moved, reset our local pointer */
1768 		wh = mtod(m0, struct ieee80211_frame *);
1769 	}
1770 
1771 	if (sc->sc_drvbpf != NULL) {
1772 		struct rt2661_tx_radiotap_header *tap = &sc->sc_txtap;
1773 
1774 		tap->wt_flags = 0;
1775 		tap->wt_rate = rate;
1776 		tap->wt_chan_freq = htole16(sc->sc_curchan->ic_freq);
1777 		tap->wt_chan_flags = htole16(sc->sc_curchan->ic_flags);
1778 
1779 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0, BPF_D_OUT);
1780 	}
1781 
1782 	data->m = m0;
1783 	data->ni = ni;
1784 
1785 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1786 		flags |= RT2661_TX_NEED_ACK;
1787 
1788 		dur = rt2661_txtime(RAL_ACK_SIZE, rt2661_ack_rate(ic, rate),
1789 		    ic->ic_flags) + sc->sifs;
1790 		*(uint16_t *)wh->i_dur = htole16(dur);
1791 	}
1792 
1793 	rt2661_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate,
1794 	    data->map->dm_segs, data->map->dm_nsegs, ac);
1795 
1796 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1797 	    BUS_DMASYNC_PREWRITE);
1798 	bus_dmamap_sync(sc->sc_dmat, txq->map, txq->cur * RT2661_TX_DESC_SIZE,
1799 	    RT2661_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
1800 
1801 	DPRINTFN(10, ("sending data frame len=%u idx=%u rate=%u\n",
1802 	    m0->m_pkthdr.len, txq->cur, rate));
1803 
1804 	/* kick Tx */
1805 	txq->queued++;
1806 	txq->cur = (txq->cur + 1) % RT2661_TX_RING_COUNT;
1807 	RAL_WRITE(sc, RT2661_TX_CNTL_CSR, 1);
1808 
1809 	return 0;
1810 }
1811 
1812 static void
1813 rt2661_start(struct ifnet *ifp)
1814 {
1815 	struct rt2661_softc *sc = ifp->if_softc;
1816 	struct ieee80211com *ic = &sc->sc_ic;
1817 	struct mbuf *m0;
1818 	struct ether_header *eh;
1819 	struct ieee80211_node *ni = NULL;
1820 
1821 	/*
1822 	 * net80211 may still try to send management frames even if the
1823 	 * IFF_RUNNING flag is not set...
1824 	 */
1825 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1826 		return;
1827 
1828 	for (;;) {
1829 		IF_POLL(&ic->ic_mgtq, m0);
1830 		if (m0 != NULL) {
1831 			if (sc->mgtq.queued >= RT2661_MGT_RING_COUNT) {
1832 				ifp->if_flags |= IFF_OACTIVE;
1833 				break;
1834 			}
1835 			IF_DEQUEUE(&ic->ic_mgtq, m0);
1836 			if (m0 == NULL)
1837 				break;
1838 
1839 			ni = M_GETCTX(m0, struct ieee80211_node *);
1840 			M_CLEARCTX(m0);
1841 			bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
1842 			if (rt2661_tx_mgt(sc, m0, ni) != 0)
1843 				break;
1844 
1845 		} else {
1846 			IF_POLL(&ifp->if_snd, m0);
1847 			if (m0 == NULL || ic->ic_state != IEEE80211_S_RUN)
1848 				break;
1849 
1850 			if (sc->txq[0].queued >= RT2661_TX_RING_COUNT - 1) {
1851 				/* there is no place left in this ring */
1852 				ifp->if_flags |= IFF_OACTIVE;
1853 				break;
1854 			}
1855 
1856 			IFQ_DEQUEUE(&ifp->if_snd, m0);
1857 
1858 			if (m0->m_len < sizeof (struct ether_header) &&
1859 			    !(m0 = m_pullup(m0, sizeof (struct ether_header))))
1860 				continue;
1861 
1862 			eh = mtod(m0, struct ether_header *);
1863 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1864 			if (ni == NULL) {
1865 				m_freem(m0);
1866 				if_statinc(ifp, if_oerrors);
1867 				continue;
1868 			}
1869 
1870 			bpf_mtap(ifp, m0, BPF_D_OUT);
1871 			m0 = ieee80211_encap(ic, m0, ni);
1872 			if (m0 == NULL) {
1873 				ieee80211_free_node(ni);
1874 				if_statinc(ifp, if_oerrors);
1875 				continue;
1876 			}
1877 			bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
1878 			if (rt2661_tx_data(sc, m0, ni, 0) != 0) {
1879 				if (ni != NULL)
1880 					ieee80211_free_node(ni);
1881 				if_statinc(ifp, if_oerrors);
1882 				break;
1883 			}
1884 		}
1885 
1886 		sc->sc_tx_timer = 5;
1887 		ifp->if_timer = 1;
1888 	}
1889 }
1890 
1891 static void
1892 rt2661_watchdog(struct ifnet *ifp)
1893 {
1894 	struct rt2661_softc *sc = ifp->if_softc;
1895 
1896 	ifp->if_timer = 0;
1897 
1898 	if (sc->sc_tx_timer > 0) {
1899 		if (--sc->sc_tx_timer == 0) {
1900 			aprint_error_dev(sc->sc_dev, "device timeout\n");
1901 			rt2661_init(ifp);
1902 			if_statinc(ifp, if_oerrors);
1903 			return;
1904 		}
1905 		ifp->if_timer = 1;
1906 	}
1907 
1908 	ieee80211_watchdog(&sc->sc_ic);
1909 }
1910 
1911 /*
1912  * This function allows for fast channel switching in monitor mode (used by
1913  * kismet). In IBSS mode, we must explicitly reset the interface to
1914  * generate a new beacon frame.
1915  */
1916 static int
1917 rt2661_reset(struct ifnet *ifp)
1918 {
1919 	struct rt2661_softc *sc = ifp->if_softc;
1920 	struct ieee80211com *ic = &sc->sc_ic;
1921 
1922 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
1923 		return ENETRESET;
1924 
1925 	rt2661_set_chan(sc, ic->ic_curchan);
1926 
1927 	return 0;
1928 }
1929 
1930 static int
1931 rt2661_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1932 {
1933 	struct rt2661_softc *sc = ifp->if_softc;
1934 	struct ieee80211com *ic = &sc->sc_ic;
1935 	int s, error = 0;
1936 
1937 	s = splnet();
1938 
1939 	switch (cmd) {
1940 	case SIOCSIFFLAGS:
1941 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1942 			break;
1943 		if (ifp->if_flags & IFF_UP) {
1944 			if (ifp->if_flags & IFF_RUNNING)
1945 				rt2661_update_promisc(sc);
1946 			else
1947 				rt2661_init(ifp);
1948 		} else {
1949 			if (ifp->if_flags & IFF_RUNNING)
1950 				rt2661_stop(ifp, 1);
1951 		}
1952 		break;
1953 
1954 	case SIOCADDMULTI:
1955 	case SIOCDELMULTI:
1956 		/* XXX no h/w multicast filter? --dyoung */
1957 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET)
1958 			error = 0;
1959 		break;
1960 
1961 	case SIOCS80211CHANNEL:
1962 		/*
1963 		 * This allows for fast channel switching in monitor mode
1964 		 * (used by kismet). In IBSS mode, we must explicitly reset
1965 		 * the interface to generate a new beacon frame.
1966 		 */
1967 		error = ieee80211_ioctl(ic, cmd, data);
1968 		if (error == ENETRESET &&
1969 		    ic->ic_opmode == IEEE80211_M_MONITOR) {
1970 			if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1971 			     (IFF_UP | IFF_RUNNING))
1972 				rt2661_set_chan(sc, ic->ic_ibss_chan);
1973 			error = 0;
1974 		}
1975 		break;
1976 
1977 	default:
1978 		error = ieee80211_ioctl(ic, cmd, data);
1979 
1980 	}
1981 
1982 	if (error == ENETRESET) {
1983 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1984 		    (IFF_UP | IFF_RUNNING))
1985 			rt2661_init(ifp);
1986 		error = 0;
1987 	}
1988 
1989 	splx(s);
1990 
1991 	return error;
1992 }
1993 
1994 static void
1995 rt2661_bbp_write(struct rt2661_softc *sc, uint8_t reg, uint8_t val)
1996 {
1997 	uint32_t tmp;
1998 	int ntries;
1999 
2000 	for (ntries = 0; ntries < 100; ntries++) {
2001 		if (!(RAL_READ(sc, RT2661_PHY_CSR3) & RT2661_BBP_BUSY))
2002 			break;
2003 		DELAY(1);
2004 	}
2005 	if (ntries == 100) {
2006 		aprint_error_dev(sc->sc_dev, "could not write to BBP\n");
2007 		return;
2008 	}
2009 
2010 	tmp = RT2661_BBP_BUSY | (reg & 0x7f) << 8 | val;
2011 	RAL_WRITE(sc, RT2661_PHY_CSR3, tmp);
2012 
2013 	DPRINTFN(15, ("BBP R%u <- 0x%02x\n", reg, val));
2014 }
2015 
2016 static uint8_t
2017 rt2661_bbp_read(struct rt2661_softc *sc, uint8_t reg)
2018 {
2019 	uint32_t val;
2020 	int ntries;
2021 
2022 	for (ntries = 0; ntries < 100; ntries++) {
2023 		if (!(RAL_READ(sc, RT2661_PHY_CSR3) & RT2661_BBP_BUSY))
2024 			break;
2025 		DELAY(1);
2026 	}
2027 	if (ntries == 100) {
2028 		aprint_error_dev(sc->sc_dev, "could not read from BBP\n");
2029 		return 0;
2030 	}
2031 
2032 	val = RT2661_BBP_BUSY | RT2661_BBP_READ | reg << 8;
2033 	RAL_WRITE(sc, RT2661_PHY_CSR3, val);
2034 
2035 	for (ntries = 0; ntries < 100; ntries++) {
2036 		val = RAL_READ(sc, RT2661_PHY_CSR3);
2037 		if (!(val & RT2661_BBP_BUSY))
2038 			return val & 0xff;
2039 		DELAY(1);
2040 	}
2041 
2042 	aprint_error_dev(sc->sc_dev, "could not read from BBP\n");
2043 	return 0;
2044 }
2045 
2046 static void
2047 rt2661_rf_write(struct rt2661_softc *sc, uint8_t reg, uint32_t val)
2048 {
2049 	uint32_t tmp;
2050 	int ntries;
2051 
2052 	for (ntries = 0; ntries < 100; ntries++) {
2053 		if (!(RAL_READ(sc, RT2661_PHY_CSR4) & RT2661_RF_BUSY))
2054 			break;
2055 		DELAY(1);
2056 	}
2057 	if (ntries == 100) {
2058 		aprint_error_dev(sc->sc_dev, "could not write to RF\n");
2059 		return;
2060 	}
2061 	tmp = RT2661_RF_BUSY | RT2661_RF_21BIT | (val & 0x1fffff) << 2 |
2062 	    (reg & 3);
2063 	RAL_WRITE(sc, RT2661_PHY_CSR4, tmp);
2064 
2065 	/* remember last written value in sc */
2066 	sc->rf_regs[reg] = val;
2067 
2068 	DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0x1fffff));
2069 }
2070 
2071 static int
2072 rt2661_tx_cmd(struct rt2661_softc *sc, uint8_t cmd, uint16_t arg)
2073 {
2074 	if (RAL_READ(sc, RT2661_H2M_MAILBOX_CSR) & RT2661_H2M_BUSY)
2075 		return EIO;	/* there is already a command pending */
2076 
2077 	RAL_WRITE(sc, RT2661_H2M_MAILBOX_CSR,
2078 	    RT2661_H2M_BUSY | RT2661_TOKEN_NO_INTR << 16 | arg);
2079 
2080 	RAL_WRITE(sc, RT2661_HOST_CMD_CSR, RT2661_KICK_CMD | cmd);
2081 
2082 	return 0;
2083 }
2084 
2085 static void
2086 rt2661_select_antenna(struct rt2661_softc *sc)
2087 {
2088 	uint8_t bbp4, bbp77;
2089 	uint32_t tmp;
2090 
2091 	bbp4  = rt2661_bbp_read(sc,  4);
2092 	bbp77 = rt2661_bbp_read(sc, 77);
2093 
2094 	/* TBD */
2095 
2096 	/* make sure Rx is disabled before switching antenna */
2097 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2098 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX);
2099 
2100 	rt2661_bbp_write(sc,  4, bbp4);
2101 	rt2661_bbp_write(sc, 77, bbp77);
2102 
2103 	/* restore Rx filter */
2104 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2105 }
2106 
2107 /*
2108  * Enable multi-rate retries for frames sent at OFDM rates.
2109  * In 802.11b/g mode, allow fallback to CCK rates.
2110  */
2111 static void
2112 rt2661_enable_mrr(struct rt2661_softc *sc)
2113 {
2114 	struct ieee80211com *ic = &sc->sc_ic;
2115 	uint32_t tmp;
2116 
2117 	tmp = RAL_READ(sc, RT2661_TXRX_CSR4);
2118 
2119 	tmp &= ~RT2661_MRR_CCK_FALLBACK;
2120 	if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan))
2121 		tmp |= RT2661_MRR_CCK_FALLBACK;
2122 	tmp |= RT2661_MRR_ENABLED;
2123 
2124 	RAL_WRITE(sc, RT2661_TXRX_CSR4, tmp);
2125 }
2126 
2127 static void
2128 rt2661_set_txpreamble(struct rt2661_softc *sc)
2129 {
2130 	uint32_t tmp;
2131 
2132 	tmp = RAL_READ(sc, RT2661_TXRX_CSR4);
2133 
2134 	tmp &= ~RT2661_SHORT_PREAMBLE;
2135 	if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
2136 		tmp |= RT2661_SHORT_PREAMBLE;
2137 
2138 	RAL_WRITE(sc, RT2661_TXRX_CSR4, tmp);
2139 }
2140 
2141 static void
2142 rt2661_set_basicrates(struct rt2661_softc *sc,
2143     const struct ieee80211_rateset *rs)
2144 {
2145 #define RV(r)	((r) & IEEE80211_RATE_VAL)
2146 	uint32_t mask = 0;
2147 	uint8_t rate;
2148 	int i, j;
2149 
2150 	for (i = 0; i < rs->rs_nrates; i++) {
2151 		rate = rs->rs_rates[i];
2152 
2153 		if (!(rate & IEEE80211_RATE_BASIC))
2154 			continue;
2155 
2156 		/*
2157 		 * Find h/w rate index.  We know it exists because the rate
2158 		 * set has already been negotiated.
2159 		 */
2160 		for (j = 0; ieee80211_std_rateset_11g.rs_rates[j] != RV(rate); j++);
2161 
2162 		mask |= 1 << j;
2163 	}
2164 
2165 	RAL_WRITE(sc, RT2661_TXRX_CSR5, mask);
2166 
2167 	DPRINTF(("Setting basic rate mask to 0x%x\n", mask));
2168 #undef RV
2169 }
2170 
2171 /*
2172  * Reprogram MAC/BBP to switch to a new band.  Values taken from the reference
2173  * driver.
2174  */
2175 static void
2176 rt2661_select_band(struct rt2661_softc *sc, struct ieee80211_channel *c)
2177 {
2178 	uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
2179 	uint32_t tmp;
2180 
2181 	/* update all BBP registers that depend on the band */
2182 	bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
2183 	bbp35 = 0x50; bbp97 = 0x48; bbp98  = 0x48;
2184 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2185 		bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
2186 		bbp35 += 0x10; bbp97 += 0x10; bbp98  += 0x10;
2187 	}
2188 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
2189 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
2190 		bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
2191 	}
2192 
2193 	sc->bbp17 = bbp17;
2194 	rt2661_bbp_write(sc,  17, bbp17);
2195 	rt2661_bbp_write(sc,  96, bbp96);
2196 	rt2661_bbp_write(sc, 104, bbp104);
2197 
2198 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
2199 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
2200 		rt2661_bbp_write(sc, 75, 0x80);
2201 		rt2661_bbp_write(sc, 86, 0x80);
2202 		rt2661_bbp_write(sc, 88, 0x80);
2203 	}
2204 
2205 	rt2661_bbp_write(sc, 35, bbp35);
2206 	rt2661_bbp_write(sc, 97, bbp97);
2207 	rt2661_bbp_write(sc, 98, bbp98);
2208 
2209 	tmp = RAL_READ(sc, RT2661_PHY_CSR0);
2210 	tmp &= ~(RT2661_PA_PE_2GHZ | RT2661_PA_PE_5GHZ);
2211 	if (IEEE80211_IS_CHAN_2GHZ(c))
2212 		tmp |= RT2661_PA_PE_2GHZ;
2213 	else
2214 		tmp |= RT2661_PA_PE_5GHZ;
2215 	RAL_WRITE(sc, RT2661_PHY_CSR0, tmp);
2216 
2217 	/* 802.11a uses a 16 microseconds short interframe space */
2218 	sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10;
2219 }
2220 
2221 static void
2222 rt2661_set_chan(struct rt2661_softc *sc, struct ieee80211_channel *c)
2223 {
2224 	struct ieee80211com *ic = &sc->sc_ic;
2225 	const struct rfprog *rfprog;
2226 	uint8_t bbp3, bbp94 = RT2661_BBPR94_DEFAULT;
2227 	int8_t power;
2228 	u_int i, chan;
2229 
2230 	chan = ieee80211_chan2ieee(ic, c);
2231 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
2232 		return;
2233 
2234 	/* select the appropriate RF settings based on what EEPROM says */
2235 	rfprog = (sc->rfprog == 0) ? rt2661_rf5225_1 : rt2661_rf5225_2;
2236 
2237 	/* find the settings for this channel (we know it exists) */
2238 	for (i = 0; rfprog[i].chan != chan; i++);
2239 
2240 	power = sc->txpow[i];
2241 	if (power < 0) {
2242 		bbp94 += power;
2243 		power = 0;
2244 	} else if (power > 31) {
2245 		bbp94 += power - 31;
2246 		power = 31;
2247 	}
2248 
2249 	/*
2250 	 * If we've yet to select a channel, or we are switching from the
2251 	 * 2GHz band to the 5GHz band or vice-versa, BBP registers need to
2252 	 * be reprogrammed.
2253 	 */
2254 	if (sc->sc_curchan == NULL || c->ic_flags != sc->sc_curchan->ic_flags) {
2255 		rt2661_select_band(sc, c);
2256 		rt2661_select_antenna(sc);
2257 	}
2258 	sc->sc_curchan = c;
2259 
2260 	rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1);
2261 	rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2);
2262 	rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7);
2263 	rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10);
2264 
2265 	DELAY(200);
2266 
2267 	rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1);
2268 	rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2);
2269 	rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7 | 1);
2270 	rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10);
2271 
2272 	DELAY(200);
2273 
2274 	rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1);
2275 	rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2);
2276 	rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7);
2277 	rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10);
2278 
2279 	/* enable smart mode for MIMO-capable RFs */
2280 	bbp3 = rt2661_bbp_read(sc, 3);
2281 
2282 	bbp3 &= ~RT2661_SMART_MODE;
2283 	if (sc->rf_rev == RT2661_RF_5325 || sc->rf_rev == RT2661_RF_2529)
2284 		bbp3 |= RT2661_SMART_MODE;
2285 
2286 	rt2661_bbp_write(sc, 3, bbp3);
2287 
2288 	if (bbp94 != RT2661_BBPR94_DEFAULT)
2289 		rt2661_bbp_write(sc, 94, bbp94);
2290 
2291 	/* 5GHz radio needs a 1ms delay here */
2292 	if (IEEE80211_IS_CHAN_5GHZ(c))
2293 		DELAY(1000);
2294 }
2295 
2296 static void
2297 rt2661_set_bssid(struct rt2661_softc *sc, const uint8_t *bssid)
2298 {
2299 	uint32_t tmp;
2300 
2301 	tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
2302 	RAL_WRITE(sc, RT2661_MAC_CSR4, tmp);
2303 
2304 	tmp = bssid[4] | bssid[5] << 8 | RT2661_ONE_BSSID << 16;
2305 	RAL_WRITE(sc, RT2661_MAC_CSR5, tmp);
2306 }
2307 
2308 static void
2309 rt2661_set_macaddr(struct rt2661_softc *sc, const uint8_t *addr)
2310 {
2311 	uint32_t tmp;
2312 
2313 	tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
2314 	RAL_WRITE(sc, RT2661_MAC_CSR2, tmp);
2315 
2316 	tmp = addr[4] | addr[5] << 8 | 0xff << 16;
2317 	RAL_WRITE(sc, RT2661_MAC_CSR3, tmp);
2318 }
2319 
2320 static void
2321 rt2661_update_promisc(struct rt2661_softc *sc)
2322 {
2323 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
2324 	uint32_t tmp;
2325 
2326 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2327 
2328 	tmp &= ~RT2661_DROP_NOT_TO_ME;
2329 	if (!(ifp->if_flags & IFF_PROMISC))
2330 		tmp |= RT2661_DROP_NOT_TO_ME;
2331 
2332 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2333 
2334 	DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
2335 	    "entering" : "leaving"));
2336 }
2337 
2338 #if 0
2339 /*
2340  * Update QoS (802.11e) settings for each h/w Tx ring.
2341  */
2342 static int
2343 rt2661_wme_update(struct ieee80211com *ic)
2344 {
2345 	struct rt2661_softc *sc = ic->ic_ifp->if_softc;
2346 	const struct wmeParams *wmep;
2347 
2348 	wmep = ic->ic_wme.wme_chanParams.cap_wmeParams;
2349 
2350 	/* XXX: not sure about shifts. */
2351 	/* XXX: the reference driver plays with AC_VI settings too. */
2352 
2353 	/* update TxOp */
2354 	RAL_WRITE(sc, RT2661_AC_TXOP_CSR0,
2355 	    wmep[WME_AC_BE].wmep_txopLimit << 16 |
2356 	    wmep[WME_AC_BK].wmep_txopLimit);
2357 	RAL_WRITE(sc, RT2661_AC_TXOP_CSR1,
2358 	    wmep[WME_AC_VI].wmep_txopLimit << 16 |
2359 	    wmep[WME_AC_VO].wmep_txopLimit);
2360 
2361 	/* update CWmin */
2362 	RAL_WRITE(sc, RT2661_CWMIN_CSR,
2363 	    wmep[WME_AC_BE].wmep_logcwmin << 12 |
2364 	    wmep[WME_AC_BK].wmep_logcwmin <<  8 |
2365 	    wmep[WME_AC_VI].wmep_logcwmin <<  4 |
2366 	    wmep[WME_AC_VO].wmep_logcwmin);
2367 
2368 	/* update CWmax */
2369 	RAL_WRITE(sc, RT2661_CWMAX_CSR,
2370 	    wmep[WME_AC_BE].wmep_logcwmax << 12 |
2371 	    wmep[WME_AC_BK].wmep_logcwmax <<  8 |
2372 	    wmep[WME_AC_VI].wmep_logcwmax <<  4 |
2373 	    wmep[WME_AC_VO].wmep_logcwmax);
2374 
2375 	/* update Aifsn */
2376 	RAL_WRITE(sc, RT2661_AIFSN_CSR,
2377 	    wmep[WME_AC_BE].wmep_aifsn << 12 |
2378 	    wmep[WME_AC_BK].wmep_aifsn <<  8 |
2379 	    wmep[WME_AC_VI].wmep_aifsn <<  4 |
2380 	    wmep[WME_AC_VO].wmep_aifsn);
2381 
2382 	return 0;
2383 }
2384 #endif
2385 
2386 static void
2387 rt2661_updateslot(struct ifnet *ifp)
2388 {
2389 	struct rt2661_softc *sc = ifp->if_softc;
2390 	struct ieee80211com *ic = &sc->sc_ic;
2391 
2392 	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2393 		/*
2394 		 * In HostAP mode, we defer setting of new slot time until
2395 		 * updated ERP Information Element has propagated to all
2396 		 * associated STAs.
2397 		 */
2398 		sc->sc_flags |= RT2661_UPDATE_SLOT;
2399 	} else
2400 		rt2661_set_slottime(sc);
2401 }
2402 
2403 static void
2404 rt2661_set_slottime(struct rt2661_softc *sc)
2405 {
2406 	struct ieee80211com *ic = &sc->sc_ic;
2407 	uint8_t slottime;
2408 	uint32_t tmp;
2409 
2410 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
2411 
2412 	tmp = RAL_READ(sc, RT2661_MAC_CSR9);
2413 	tmp = (tmp & ~0xff) | slottime;
2414 	RAL_WRITE(sc, RT2661_MAC_CSR9, tmp);
2415 
2416 	DPRINTF(("setting slot time to %uus\n", slottime));
2417 }
2418 
2419 static const char *
2420 rt2661_get_rf(int rev)
2421 {
2422 	switch (rev) {
2423 	case RT2661_RF_5225:	return "RT5225";
2424 	case RT2661_RF_5325:	return "RT5325 (MIMO XR)";
2425 	case RT2661_RF_2527:	return "RT2527";
2426 	case RT2661_RF_2529:	return "RT2529 (MIMO XR)";
2427 	default:		return "unknown";
2428 	}
2429 }
2430 
2431 static void
2432 rt2661_read_eeprom(struct rt2661_softc *sc)
2433 {
2434 	struct ieee80211com *ic = &sc->sc_ic;
2435 	uint16_t val;
2436 	int i;
2437 
2438 	/* read MAC address */
2439 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC01);
2440 	ic->ic_myaddr[0] = val & 0xff;
2441 	ic->ic_myaddr[1] = val >> 8;
2442 
2443 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC23);
2444 	ic->ic_myaddr[2] = val & 0xff;
2445 	ic->ic_myaddr[3] = val >> 8;
2446 
2447 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC45);
2448 	ic->ic_myaddr[4] = val & 0xff;
2449 	ic->ic_myaddr[5] = val >> 8;
2450 
2451 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_ANTENNA);
2452 	/* XXX: test if different from 0xffff? */
2453 	sc->rf_rev   = (val >> 11) & 0x1f;
2454 	sc->hw_radio = (val >> 10) & 0x1;
2455 	sc->rx_ant   = (val >> 4)  & 0x3;
2456 	sc->tx_ant   = (val >> 2)  & 0x3;
2457 	sc->nb_ant   = val & 0x3;
2458 
2459 	DPRINTF(("RF revision=%d\n", sc->rf_rev));
2460 
2461 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_CONFIG2);
2462 	sc->ext_5ghz_lna = (val >> 6) & 0x1;
2463 	sc->ext_2ghz_lna = (val >> 4) & 0x1;
2464 
2465 	DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
2466 	    sc->ext_2ghz_lna, sc->ext_5ghz_lna));
2467 
2468 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_RSSI_2GHZ_OFFSET);
2469 	if ((val & 0xff) != 0xff)
2470 		sc->rssi_2ghz_corr = (int8_t)(val & 0xff);	/* signed */
2471 
2472 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_RSSI_5GHZ_OFFSET);
2473 	if ((val & 0xff) != 0xff)
2474 		sc->rssi_5ghz_corr = (int8_t)(val & 0xff);	/* signed */
2475 
2476 	/* adjust RSSI correction for external low-noise amplifier */
2477 	if (sc->ext_2ghz_lna)
2478 		sc->rssi_2ghz_corr -= 14;
2479 	if (sc->ext_5ghz_lna)
2480 		sc->rssi_5ghz_corr -= 14;
2481 
2482 	DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
2483 	    sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
2484 
2485 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_FREQ_OFFSET);
2486 	if ((val >> 8) != 0xff)
2487 		sc->rfprog = (val >> 8) & 0x3;
2488 	if ((val & 0xff) != 0xff)
2489 		sc->rffreq = val & 0xff;
2490 
2491 	DPRINTF(("RF prog=%d\nRF freq=%d\n", sc->rfprog, sc->rffreq));
2492 
2493 	/* read Tx power for all a/b/g channels */
2494 	for (i = 0; i < 19; i++) {
2495 		val = rt2661_eeprom_read(sc, RT2661_EEPROM_TXPOWER + i);
2496 		sc->txpow[i * 2] = (int8_t)(val >> 8);		/* signed */
2497 		DPRINTF(("Channel=%d Tx power=%d\n",
2498 		    rt2661_rf5225_1[i * 2].chan, sc->txpow[i * 2]));
2499 		sc->txpow[i * 2 + 1] = (int8_t)(val & 0xff);	/* signed */
2500 		DPRINTF(("Channel=%d Tx power=%d\n",
2501 		    rt2661_rf5225_1[i * 2 + 1].chan, sc->txpow[i * 2 + 1]));
2502 	}
2503 
2504 	/* read vendor-specific BBP values */
2505 	for (i = 0; i < 16; i++) {
2506 		val = rt2661_eeprom_read(sc, RT2661_EEPROM_BBP_BASE + i);
2507 		if (val == 0 || val == 0xffff)
2508 			continue;	/* skip invalid entries */
2509 		sc->bbp_prom[i].reg = val >> 8;
2510 		sc->bbp_prom[i].val = val & 0xff;
2511 		DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
2512 		    sc->bbp_prom[i].val));
2513 	}
2514 }
2515 
2516 static int
2517 rt2661_bbp_init(struct rt2661_softc *sc)
2518 {
2519 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
2520 	int i, ntries;
2521 	uint8_t val;
2522 
2523 	/* wait for BBP to be ready */
2524 	for (ntries = 0; ntries < 100; ntries++) {
2525 		val = rt2661_bbp_read(sc, 0);
2526 		if (val != 0 && val != 0xff)
2527 			break;
2528 		DELAY(100);
2529 	}
2530 	if (ntries == 100) {
2531 		aprint_error_dev(sc->sc_dev, "timeout waiting for BBP\n");
2532 		return EIO;
2533 	}
2534 
2535 	/* initialize BBP registers to default values */
2536 	for (i = 0; i < N(rt2661_def_bbp); i++) {
2537 		rt2661_bbp_write(sc, rt2661_def_bbp[i].reg,
2538 		    rt2661_def_bbp[i].val);
2539 	}
2540 
2541 	/* write vendor-specific BBP values (from EEPROM) */
2542 	for (i = 0; i < 16; i++) {
2543 		if (sc->bbp_prom[i].reg == 0)
2544 			continue;
2545 		rt2661_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2546 	}
2547 
2548 	return 0;
2549 #undef N
2550 }
2551 
2552 static int
2553 rt2661_init(struct ifnet *ifp)
2554 {
2555 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
2556 	struct rt2661_softc *sc = ifp->if_softc;
2557 	struct ieee80211com *ic = &sc->sc_ic;
2558 	const char *name = NULL;	/* make lint happy */
2559 	uint8_t *ucode;
2560 	size_t size;
2561 	uint32_t tmp, star[3];
2562 	int i, ntries;
2563 	firmware_handle_t fh;
2564 
2565 	/* for CardBus, power on the socket */
2566 	if (!(sc->sc_flags & RT2661_ENABLED)) {
2567 		if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
2568 			aprint_error_dev(sc->sc_dev, "could not enable device\n");
2569 			return EIO;
2570 		}
2571 		sc->sc_flags |= RT2661_ENABLED;
2572 	}
2573 
2574 	rt2661_stop(ifp, 0);
2575 
2576 	if (!(sc->sc_flags & RT2661_FWLOADED)) {
2577 		switch (sc->sc_id) {
2578 		case PCI_PRODUCT_RALINK_RT2561:
2579 			name = "ral-rt2561";
2580 			break;
2581 		case PCI_PRODUCT_RALINK_RT2561S:
2582 			name = "ral-rt2561s";
2583 			break;
2584 		case PCI_PRODUCT_RALINK_RT2661:
2585 			name = "ral-rt2661";
2586 			break;
2587 		}
2588 
2589 		if (firmware_open("ral", name, &fh) != 0) {
2590 			aprint_error_dev(sc->sc_dev, "could not open microcode %s\n", name);
2591 			rt2661_stop(ifp, 1);
2592 			return EIO;
2593 		}
2594 
2595 		size = firmware_get_size(fh);
2596 		if (!(ucode = firmware_malloc(size))) {
2597 			aprint_error_dev(sc->sc_dev, "could not alloc microcode memory\n");
2598 			firmware_close(fh);
2599 			rt2661_stop(ifp, 1);
2600 			return ENOMEM;
2601 		}
2602 
2603 		if (firmware_read(fh, 0, ucode, size) != 0) {
2604 			aprint_error_dev(sc->sc_dev, "could not read microcode %s\n", name);
2605 			firmware_free(ucode, size);
2606 			firmware_close(fh);
2607 			rt2661_stop(ifp, 1);
2608 			return EIO;
2609 		}
2610 
2611 		if (rt2661_load_microcode(sc, ucode, size) != 0) {
2612 			aprint_error_dev(sc->sc_dev, "could not load 8051 microcode\n");
2613 			firmware_free(ucode, size);
2614 			firmware_close(fh);
2615 			rt2661_stop(ifp, 1);
2616 			return EIO;
2617 		}
2618 
2619 		firmware_free(ucode, size);
2620 		firmware_close(fh);
2621 		sc->sc_flags |= RT2661_FWLOADED;
2622 	}
2623 
2624 	/* initialize Tx rings */
2625 	RAL_WRITE(sc, RT2661_AC1_BASE_CSR, sc->txq[1].physaddr);
2626 	RAL_WRITE(sc, RT2661_AC0_BASE_CSR, sc->txq[0].physaddr);
2627 	RAL_WRITE(sc, RT2661_AC2_BASE_CSR, sc->txq[2].physaddr);
2628 	RAL_WRITE(sc, RT2661_AC3_BASE_CSR, sc->txq[3].physaddr);
2629 
2630 	/* initialize Mgt ring */
2631 	RAL_WRITE(sc, RT2661_MGT_BASE_CSR, sc->mgtq.physaddr);
2632 
2633 	/* initialize Rx ring */
2634 	RAL_WRITE(sc, RT2661_RX_BASE_CSR, sc->rxq.physaddr);
2635 
2636 	/* initialize Tx rings sizes */
2637 	RAL_WRITE(sc, RT2661_TX_RING_CSR0,
2638 	    RT2661_TX_RING_COUNT << 24 |
2639 	    RT2661_TX_RING_COUNT << 16 |
2640 	    RT2661_TX_RING_COUNT <<  8 |
2641 	    RT2661_TX_RING_COUNT);
2642 
2643 	RAL_WRITE(sc, RT2661_TX_RING_CSR1,
2644 	    RT2661_TX_DESC_WSIZE << 16 |
2645 	    RT2661_TX_RING_COUNT <<  8 |	/* XXX: HCCA ring unused */
2646 	    RT2661_MGT_RING_COUNT);
2647 
2648 	/* initialize Rx rings */
2649 	RAL_WRITE(sc, RT2661_RX_RING_CSR,
2650 	    RT2661_RX_DESC_BACK  << 16 |
2651 	    RT2661_RX_DESC_WSIZE <<  8 |
2652 	    RT2661_RX_RING_COUNT);
2653 
2654 	/* XXX: some magic here */
2655 	RAL_WRITE(sc, RT2661_TX_DMA_DST_CSR, 0xaa);
2656 
2657 	/* load base addresses of all 5 Tx rings (4 data + 1 mgt) */
2658 	RAL_WRITE(sc, RT2661_LOAD_TX_RING_CSR, 0x1f);
2659 
2660 	/* load base address of Rx ring */
2661 	RAL_WRITE(sc, RT2661_RX_CNTL_CSR, 2);
2662 
2663 	/* initialize MAC registers to default values */
2664 	for (i = 0; i < N(rt2661_def_mac); i++)
2665 		RAL_WRITE(sc, rt2661_def_mac[i].reg, rt2661_def_mac[i].val);
2666 
2667 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2668 	rt2661_set_macaddr(sc, ic->ic_myaddr);
2669 
2670 	/* set host ready */
2671 	RAL_WRITE(sc, RT2661_MAC_CSR1, 3);
2672 	RAL_WRITE(sc, RT2661_MAC_CSR1, 0);
2673 
2674 	/* wait for BBP/RF to wakeup */
2675 	for (ntries = 0; ntries < 1000; ntries++) {
2676 		if (RAL_READ(sc, RT2661_MAC_CSR12) & 8)
2677 			break;
2678 		DELAY(1000);
2679 	}
2680 	if (ntries == 1000) {
2681 		printf("timeout waiting for BBP/RF to wakeup\n");
2682 		rt2661_stop(ifp, 1);
2683 		return EIO;
2684 	}
2685 
2686 	if (rt2661_bbp_init(sc) != 0) {
2687 		rt2661_stop(ifp, 1);
2688 		return EIO;
2689 	}
2690 
2691 	/* select default channel */
2692 	sc->sc_curchan = ic->ic_curchan;
2693 	rt2661_select_band(sc, sc->sc_curchan);
2694 	rt2661_select_antenna(sc);
2695 	rt2661_set_chan(sc, sc->sc_curchan);
2696 
2697 	/* update Rx filter */
2698 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0) & 0xffff;
2699 
2700 	tmp |= RT2661_DROP_PHY_ERROR | RT2661_DROP_CRC_ERROR;
2701 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2702 		tmp |= RT2661_DROP_CTL | RT2661_DROP_VER_ERROR |
2703 		       RT2661_DROP_ACKCTS;
2704 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2705 			tmp |= RT2661_DROP_TODS;
2706 		if (!(ifp->if_flags & IFF_PROMISC))
2707 			tmp |= RT2661_DROP_NOT_TO_ME;
2708 	}
2709 
2710 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2711 
2712 	/* clear STA registers */
2713 	RAL_READ_REGION_4(sc, RT2661_STA_CSR0, star, N(star));
2714 
2715 	/* initialize ASIC */
2716 	RAL_WRITE(sc, RT2661_MAC_CSR1, 4);
2717 
2718 	/* clear any pending interrupt */
2719 	RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, 0xffffffff);
2720 
2721 	/* enable interrupts */
2722 	RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0x0000ff10);
2723 	RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0);
2724 
2725 	/* kick Rx */
2726 	RAL_WRITE(sc, RT2661_RX_CNTL_CSR, 1);
2727 
2728 	ifp->if_flags &= ~IFF_OACTIVE;
2729 	ifp->if_flags |= IFF_RUNNING;
2730 
2731 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2732 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
2733 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2734 	} else
2735 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2736 
2737 	return 0;
2738 #undef N
2739 }
2740 
2741 static void
2742 rt2661_stop(struct ifnet *ifp, int disable)
2743 {
2744 	struct rt2661_softc *sc = ifp->if_softc;
2745 	struct ieee80211com *ic = &sc->sc_ic;
2746 	uint32_t tmp;
2747 
2748 	sc->sc_tx_timer = 0;
2749 	ifp->if_timer = 0;
2750 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2751 
2752 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);	/* free all nodes */
2753 
2754 	/* abort Tx (for all 5 Tx rings) */
2755 	RAL_WRITE(sc, RT2661_TX_CNTL_CSR, 0x1f << 16);
2756 
2757 	/* disable Rx (value remains after reset!) */
2758 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2759 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX);
2760 
2761 	/* reset ASIC */
2762 	RAL_WRITE(sc, RT2661_MAC_CSR1, 3);
2763 	RAL_WRITE(sc, RT2661_MAC_CSR1, 0);
2764 
2765 	/* disable interrupts */
2766 	RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0xffffff7f);
2767 	RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0xffffffff);
2768 
2769 	/* clear any pending interrupt */
2770 	RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, 0xffffffff);
2771 	RAL_WRITE(sc, RT2661_MCU_INT_SOURCE_CSR, 0xffffffff);
2772 
2773 	/* reset Tx and Rx rings */
2774 	rt2661_reset_tx_ring(sc, &sc->txq[0]);
2775 	rt2661_reset_tx_ring(sc, &sc->txq[1]);
2776 	rt2661_reset_tx_ring(sc, &sc->txq[2]);
2777 	rt2661_reset_tx_ring(sc, &sc->txq[3]);
2778 	rt2661_reset_tx_ring(sc, &sc->mgtq);
2779 	rt2661_reset_rx_ring(sc, &sc->rxq);
2780 
2781 	/* for CardBus, power down the socket */
2782 	if (disable && sc->sc_disable != NULL) {
2783 		if (sc->sc_flags & RT2661_ENABLED) {
2784 			(*sc->sc_disable)(sc);
2785 			sc->sc_flags &= ~(RT2661_ENABLED | RT2661_FWLOADED);
2786 		}
2787 	}
2788 }
2789 
2790 static int
2791 rt2661_load_microcode(struct rt2661_softc *sc, const uint8_t *ucode, int size)
2792 {
2793 	int ntries;
2794 
2795 	/* reset 8051 */
2796 	RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET);
2797 
2798 	/* cancel any pending Host to MCU command */
2799 	RAL_WRITE(sc, RT2661_H2M_MAILBOX_CSR, 0);
2800 	RAL_WRITE(sc, RT2661_M2H_CMD_DONE_CSR, 0xffffffff);
2801 	RAL_WRITE(sc, RT2661_HOST_CMD_CSR, 0);
2802 
2803 	/* write 8051's microcode */
2804 	RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET | RT2661_MCU_SEL);
2805 	RAL_WRITE_REGION_1(sc, RT2661_MCU_CODE_BASE, ucode, size);
2806 	RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET);
2807 
2808 	/* kick 8051's ass */
2809 	RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, 0);
2810 
2811 	/* wait for 8051 to initialize */
2812 	for (ntries = 0; ntries < 500; ntries++) {
2813 		if (RAL_READ(sc, RT2661_MCU_CNTL_CSR) & RT2661_MCU_READY)
2814 			break;
2815 		DELAY(100);
2816 	}
2817 	if (ntries == 500) {
2818 		printf("timeout waiting for MCU to initialize\n");
2819 		return EIO;
2820 	}
2821 	return 0;
2822 }
2823 
2824 /*
2825  * Dynamically tune Rx sensitivity (BBP register 17) based on average RSSI and
2826  * false CCA count.  This function is called periodically (every seconds) when
2827  * in the RUN state.  Values taken from the reference driver.
2828  */
2829 static void
2830 rt2661_rx_tune(struct rt2661_softc *sc)
2831 {
2832 	uint8_t bbp17;
2833 	uint16_t cca;
2834 	int lo, hi, dbm;
2835 
2836 	/*
2837 	 * Tuning range depends on operating band and on the presence of an
2838 	 * external low-noise amplifier.
2839 	 */
2840 	lo = 0x20;
2841 	if (IEEE80211_IS_CHAN_5GHZ(sc->sc_curchan))
2842 		lo += 0x08;
2843 	if ((IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan) && sc->ext_2ghz_lna) ||
2844 	    (IEEE80211_IS_CHAN_5GHZ(sc->sc_curchan) && sc->ext_5ghz_lna))
2845 		lo += 0x10;
2846 	hi = lo + 0x20;
2847 
2848 	dbm = sc->avg_rssi;
2849 	/* retrieve false CCA count since last call (clear on read) */
2850 	cca = RAL_READ(sc, RT2661_STA_CSR1) & 0xffff;
2851 
2852 	DPRINTFN(2, ("RSSI=%ddBm false CCA=%d\n", dbm, cca));
2853 
2854 	if (dbm < -74) {
2855 		/* very bad RSSI, tune using false CCA count */
2856 		bbp17 = sc->bbp17; /* current value */
2857 
2858 		hi -= 2 * (-74 - dbm);
2859 		if (hi < lo)
2860 			hi = lo;
2861 
2862 		if (bbp17 > hi)
2863 			bbp17 = hi;
2864 		else if (cca > 512)
2865 			bbp17 = uimin(bbp17 + 1, hi);
2866 		else if (cca < 100)
2867 			bbp17 = uimax(bbp17 - 1, lo);
2868 
2869 	} else if (dbm < -66) {
2870 		bbp17 = lo + 0x08;
2871 	} else if (dbm < -58) {
2872 		bbp17 = lo + 0x10;
2873 	} else if (dbm < -35) {
2874 		bbp17 = hi;
2875 	} else {	/* very good RSSI >= -35dBm */
2876 		bbp17 = 0x60;	/* very low sensitivity */
2877 	}
2878 
2879 	if (bbp17 != sc->bbp17) {
2880 		DPRINTF(("BBP17 %x->%x\n", sc->bbp17, bbp17));
2881 		rt2661_bbp_write(sc, 17, bbp17);
2882 		sc->bbp17 = bbp17;
2883 	}
2884 }
2885 
2886 #ifdef notyet
2887 /*
2888  * Enter/Leave radar detection mode.
2889  * This is for 802.11h additional regulatory domains.
2890  */
2891 static void
2892 rt2661_radar_start(struct rt2661_softc *sc)
2893 {
2894 	uint32_t tmp;
2895 
2896 	/* disable Rx */
2897 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2898 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX);
2899 
2900 	rt2661_bbp_write(sc, 82, 0x20);
2901 	rt2661_bbp_write(sc, 83, 0x00);
2902 	rt2661_bbp_write(sc, 84, 0x40);
2903 
2904 	/* save current BBP registers values */
2905 	sc->bbp18 = rt2661_bbp_read(sc, 18);
2906 	sc->bbp21 = rt2661_bbp_read(sc, 21);
2907 	sc->bbp22 = rt2661_bbp_read(sc, 22);
2908 	sc->bbp16 = rt2661_bbp_read(sc, 16);
2909 	sc->bbp17 = rt2661_bbp_read(sc, 17);
2910 	sc->bbp64 = rt2661_bbp_read(sc, 64);
2911 
2912 	rt2661_bbp_write(sc, 18, 0xff);
2913 	rt2661_bbp_write(sc, 21, 0x3f);
2914 	rt2661_bbp_write(sc, 22, 0x3f);
2915 	rt2661_bbp_write(sc, 16, 0xbd);
2916 	rt2661_bbp_write(sc, 17, sc->ext_5ghz_lna ? 0x44 : 0x34);
2917 	rt2661_bbp_write(sc, 64, 0x21);
2918 
2919 	/* restore Rx filter */
2920 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2921 }
2922 
2923 static int
2924 rt2661_radar_stop(struct rt2661_softc *sc)
2925 {
2926 	uint8_t bbp66;
2927 
2928 	/* read radar detection result */
2929 	bbp66 = rt2661_bbp_read(sc, 66);
2930 
2931 	/* restore BBP registers values */
2932 	rt2661_bbp_write(sc, 16, sc->bbp16);
2933 	rt2661_bbp_write(sc, 17, sc->bbp17);
2934 	rt2661_bbp_write(sc, 18, sc->bbp18);
2935 	rt2661_bbp_write(sc, 21, sc->bbp21);
2936 	rt2661_bbp_write(sc, 22, sc->bbp22);
2937 	rt2661_bbp_write(sc, 64, sc->bbp64);
2938 
2939 	return bbp66 == 1;
2940 }
2941 #endif
2942 
2943 static int
2944 rt2661_prepare_beacon(struct rt2661_softc *sc)
2945 {
2946 	struct ieee80211com *ic = &sc->sc_ic;
2947 	struct ieee80211_node *ni = ic->ic_bss;
2948 	struct rt2661_tx_desc desc;
2949 	struct mbuf *m0;
2950 	struct ieee80211_beacon_offsets bo;
2951 	int rate;
2952 
2953 	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2954 	if (m0 == NULL) {
2955 		aprint_error_dev(sc->sc_dev, "could not allocate beacon frame\n");
2956 		return ENOBUFS;
2957 	}
2958 
2959 	/* send beacons at the lowest available rate */
2960 	rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
2961 
2962 	rt2661_setup_tx_desc(sc, &desc, RT2661_TX_TIMESTAMP, RT2661_TX_HWSEQ,
2963 	    m0->m_pkthdr.len, rate, NULL, 0, RT2661_QID_MGT);
2964 
2965 	/* copy the first 24 bytes of Tx descriptor into NIC memory */
2966 	RAL_WRITE_REGION_1(sc, RT2661_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
2967 
2968 	/* copy beacon header and payload into NIC memory */
2969 	RAL_WRITE_REGION_1(sc, RT2661_HW_BEACON_BASE0 + 24,
2970 	    mtod(m0, uint8_t *), m0->m_pkthdr.len);
2971 
2972 	m_freem(m0);
2973 
2974 	/*
2975 	 * Store offset of ERP Information Element so that we can update it
2976 	 * dynamically when the slot time changes.
2977 	 * XXX: this is ugly since it depends on how net80211 builds beacon
2978 	 * frames but ieee80211_beacon_alloc() doesn't store offsets for us.
2979 	 */
2980 	if (ic->ic_curmode == IEEE80211_MODE_11G) {
2981 		sc->erp_csr =
2982 		    RT2661_HW_BEACON_BASE0 + 24 +
2983 		    sizeof (struct ieee80211_frame) +
2984 		    8 + 2 + 2 + 2 + ni->ni_esslen +
2985 		    2 + uimin(ni->ni_rates.rs_nrates, IEEE80211_RATE_SIZE) +
2986 		    2 + 1 +
2987 		    ((ic->ic_opmode == IEEE80211_M_IBSS) ? 4 : 6) +
2988 		    2;
2989 	}
2990 
2991 	return 0;
2992 }
2993 
2994 /*
2995  * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
2996  * and HostAP operating modes.
2997  */
2998 static void
2999 rt2661_enable_tsf_sync(struct rt2661_softc *sc)
3000 {
3001 	struct ieee80211com *ic = &sc->sc_ic;
3002 	uint32_t tmp;
3003 
3004 	if (ic->ic_opmode != IEEE80211_M_STA) {
3005 		/*
3006 		 * Change default 16ms TBTT adjustment to 8ms.
3007 		 * Must be done before enabling beacon generation.
3008 		 */
3009 		RAL_WRITE(sc, RT2661_TXRX_CSR10, 1 << 12 | 8);
3010 	}
3011 
3012 	tmp = RAL_READ(sc, RT2661_TXRX_CSR9) & 0xff000000;
3013 
3014 	/* set beacon interval (in 1/16ms unit) */
3015 	tmp |= ic->ic_bss->ni_intval * 16;
3016 
3017 	tmp |= RT2661_TSF_TICKING | RT2661_ENABLE_TBTT;
3018 	if (ic->ic_opmode == IEEE80211_M_STA)
3019 		tmp |= RT2661_TSF_MODE(1);
3020 	else
3021 		tmp |= RT2661_TSF_MODE(2) | RT2661_GENERATE_BEACON;
3022 
3023 	RAL_WRITE(sc, RT2661_TXRX_CSR9, tmp);
3024 }
3025 
3026 /*
3027  * Retrieve the "Received Signal Strength Indicator" from the raw values
3028  * contained in Rx descriptors.  The computation depends on which band the
3029  * frame was received.  Correction values taken from the reference driver.
3030  */
3031 static int
3032 rt2661_get_rssi(struct rt2661_softc *sc, uint8_t raw)
3033 {
3034 	int lna, agc, rssi;
3035 
3036 	lna = (raw >> 5) & 0x3;
3037 	agc = raw & 0x1f;
3038 
3039 	rssi = 2 * agc;
3040 
3041 	if (IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan)) {
3042 		rssi += sc->rssi_2ghz_corr;
3043 
3044 		if (lna == 1)
3045 			rssi -= 64;
3046 		else if (lna == 2)
3047 			rssi -= 74;
3048 		else if (lna == 3)
3049 			rssi -= 90;
3050 	} else {
3051 		rssi += sc->rssi_5ghz_corr;
3052 
3053 		if (lna == 1)
3054 			rssi -= 64;
3055 		else if (lna == 2)
3056 			rssi -= 86;
3057 		else if (lna == 3)
3058 			rssi -= 100;
3059 	}
3060 	return rssi;
3061 }
3062