xref: /netbsd-src/sys/dev/ic/rt2560.c (revision fad4c9f71477ae11cea2ee75ec82151ac770a534)
1 /*	$NetBSD: rt2560.c,v 1.3 2006/06/18 15:44:49 rpaulo Exp $	*/
2 /*	$OpenBSD: rt2560.c,v 1.15 2006/04/20 20:31:12 miod Exp $  */
3 /*	$FreeBSD: rt2560.c,v 1.3 2006/03/21 21:15:43 damien Exp $*/
4 
5 /*-
6  * Copyright (c) 2005, 2006
7  *	Damien Bergamini <damien.bergamini@free.fr>
8  *
9  * Permission to use, copy, modify, and distribute this software for any
10  * purpose with or without fee is hereby granted, provided that the above
11  * copyright notice and this permission notice appear in all copies.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20  */
21 
22 /*-
23  * Ralink Technology RT2560 chipset driver
24  * http://www.ralinktech.com/
25  */
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: rt2560.c,v 1.3 2006/06/18 15:44:49 rpaulo Exp $");
28 
29 #include "bpfilter.h"
30 
31 #include <sys/param.h>
32 #include <sys/sockio.h>
33 #include <sys/mbuf.h>
34 #include <sys/kernel.h>
35 #include <sys/socket.h>
36 #include <sys/systm.h>
37 #include <sys/malloc.h>
38 #include <sys/callout.h>
39 #include <sys/conf.h>
40 #include <sys/device.h>
41 
42 #include <machine/bus.h>
43 #include <machine/endian.h>
44 #include <machine/intr.h>
45 
46 #if NBPFILTER > 0
47 #include <net/bpf.h>
48 #endif
49 #include <net/if.h>
50 #include <net/if_arp.h>
51 #include <net/if_dl.h>
52 #include <net/if_media.h>
53 #include <net/if_types.h>
54 #include <net/if_ether.h>
55 
56 #include <netinet/in.h>
57 #include <netinet/in_systm.h>
58 #include <netinet/in_var.h>
59 #include <netinet/ip.h>
60 
61 #include <net80211/ieee80211_var.h>
62 #include <net80211/ieee80211_rssadapt.h>
63 #include <net80211/ieee80211_radiotap.h>
64 
65 #include <dev/ic/rt2560reg.h>
66 #include <dev/ic/rt2560var.h>
67 
68 #include <dev/pci/pcireg.h>
69 #include <dev/pci/pcivar.h>
70 #include <dev/pci/pcidevs.h>
71 
72 #ifdef RAL_DEBUG
73 #define DPRINTF(x)	do { if (rt2560_debug > 0) printf x; } while (0)
74 #define DPRINTFN(n, x)	do { if (rt2560_debug >= (n)) printf x; } while (0)
75 int rt2560_debug = 0;
76 #else
77 #define DPRINTF(x)
78 #define DPRINTFN(n, x)
79 #endif
80 
81 static int	rt2560_alloc_tx_ring(struct rt2560_softc *,
82 		    struct rt2560_tx_ring *, int);
83 static void	rt2560_reset_tx_ring(struct rt2560_softc *,
84 		    struct rt2560_tx_ring *);
85 static void	rt2560_free_tx_ring(struct rt2560_softc *,
86 		    struct rt2560_tx_ring *);
87 static int	rt2560_alloc_rx_ring(struct rt2560_softc *,
88 		    struct rt2560_rx_ring *, int);
89 static void	rt2560_reset_rx_ring(struct rt2560_softc *,
90 		    struct rt2560_rx_ring *);
91 static void	rt2560_free_rx_ring(struct rt2560_softc *,
92 		    struct rt2560_rx_ring *);
93 static struct ieee80211_node *
94 		rt2560_node_alloc(struct ieee80211_node_table *);
95 static int	rt2560_media_change(struct ifnet *);
96 static void	rt2560_next_scan(void *);
97 static void	rt2560_iter_func(void *, struct ieee80211_node *);
98 static void	rt2560_update_rssadapt(void *);
99 static int	rt2560_newstate(struct ieee80211com *, enum ieee80211_state,
100     		    int);
101 static uint16_t	rt2560_eeprom_read(struct rt2560_softc *, uint8_t);
102 static void	rt2560_encryption_intr(struct rt2560_softc *);
103 static void	rt2560_tx_intr(struct rt2560_softc *);
104 static void	rt2560_prio_intr(struct rt2560_softc *);
105 static void	rt2560_decryption_intr(struct rt2560_softc *);
106 static void	rt2560_rx_intr(struct rt2560_softc *);
107 static void	rt2560_beacon_expire(struct rt2560_softc *);
108 static void	rt2560_wakeup_expire(struct rt2560_softc *);
109 #if NBPFILTER > 0
110 static uint8_t	rt2560_rxrate(struct rt2560_rx_desc *);
111 #endif
112 static int	rt2560_ack_rate(struct ieee80211com *, int);
113 static uint16_t	rt2560_txtime(int, int, uint32_t);
114 static uint8_t	rt2560_plcp_signal(int);
115 static void	rt2560_setup_tx_desc(struct rt2560_softc *,
116 		    struct rt2560_tx_desc *, uint32_t, int, int, int,
117 		    bus_addr_t);
118 static int	rt2560_tx_bcn(struct rt2560_softc *, struct mbuf *,
119 		    struct ieee80211_node *);
120 static int	rt2560_tx_mgt(struct rt2560_softc *, struct mbuf *,
121 		    struct ieee80211_node *);
122 static struct mbuf *rt2560_get_rts(struct rt2560_softc *,
123 		    struct ieee80211_frame *, uint16_t);
124 static int	rt2560_tx_data(struct rt2560_softc *, struct mbuf *,
125 		    struct ieee80211_node *);
126 static void	rt2560_start(struct ifnet *);
127 static void	rt2560_watchdog(struct ifnet *);
128 static int	rt2560_reset(struct ifnet *);
129 static int	rt2560_ioctl(struct ifnet *, u_long, caddr_t);
130 static void	rt2560_bbp_write(struct rt2560_softc *, uint8_t, uint8_t);
131 static uint8_t	rt2560_bbp_read(struct rt2560_softc *, uint8_t);
132 static void	rt2560_rf_write(struct rt2560_softc *, uint8_t, uint32_t);
133 static void	rt2560_set_chan(struct rt2560_softc *,
134 		    struct ieee80211_channel *);
135 static void	rt2560_disable_rf_tune(struct rt2560_softc *);
136 static void	rt2560_enable_tsf_sync(struct rt2560_softc *);
137 static void	rt2560_update_plcp(struct rt2560_softc *);
138 static void	rt2560_update_slot(struct ifnet *);
139 static void	rt2560_set_basicrates(struct rt2560_softc *);
140 static void	rt2560_update_led(struct rt2560_softc *, int, int);
141 static void	rt2560_set_bssid(struct rt2560_softc *, uint8_t *);
142 static void	rt2560_set_macaddr(struct rt2560_softc *, uint8_t *);
143 static void	rt2560_get_macaddr(struct rt2560_softc *, uint8_t *);
144 static void	rt2560_update_promisc(struct rt2560_softc *);
145 static void	rt2560_set_txantenna(struct rt2560_softc *, int);
146 static void	rt2560_set_rxantenna(struct rt2560_softc *, int);
147 static const char *rt2560_get_rf(int);
148 static void	rt2560_read_eeprom(struct rt2560_softc *);
149 static int	rt2560_bbp_init(struct rt2560_softc *);
150 static int	rt2560_init(struct ifnet *);
151 static void	rt2560_stop(void *);
152 
153 /*
154  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
155  */
156 static const struct ieee80211_rateset rt2560_rateset_11a =
157 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
158 
159 static const struct ieee80211_rateset rt2560_rateset_11b =
160 	{ 4, { 2, 4, 11, 22 } };
161 
162 static const struct ieee80211_rateset rt2560_rateset_11g =
163 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
164 
165 /*
166  * Default values for MAC registers; values taken from the reference driver.
167  */
168 static const struct {
169 	uint32_t	reg;
170 	uint32_t	val;
171 } rt2560_def_mac[] = {
172 	{ RT2560_PSCSR0,      0x00020002 },
173 	{ RT2560_PSCSR1,      0x00000002 },
174 	{ RT2560_PSCSR2,      0x00020002 },
175 	{ RT2560_PSCSR3,      0x00000002 },
176 	{ RT2560_TIMECSR,     0x00003f21 },
177 	{ RT2560_CSR9,        0x00000780 },
178 	{ RT2560_CSR11,       0x07041483 },
179 	{ RT2560_CNT3,        0x00000000 },
180 	{ RT2560_TXCSR1,      0x07614562 },
181 	{ RT2560_ARSP_PLCP_0, 0x8c8d8b8a },
182 	{ RT2560_ACKPCTCSR,   0x7038140a },
183 	{ RT2560_ARTCSR1,     0x1d21252d },
184 	{ RT2560_ARTCSR2,     0x1919191d },
185 	{ RT2560_RXCSR0,      0xffffffff },
186 	{ RT2560_RXCSR3,      0xb3aab3af },
187 	{ RT2560_PCICSR,      0x000003b8 },
188 	{ RT2560_PWRCSR0,     0x3f3b3100 },
189 	{ RT2560_GPIOCSR,     0x0000ff00 },
190 	{ RT2560_TESTCSR,     0x000000f0 },
191 	{ RT2560_PWRCSR1,     0x000001ff },
192 	{ RT2560_MACCSR0,     0x00213223 },
193 	{ RT2560_MACCSR1,     0x00235518 },
194 	{ RT2560_RLPWCSR,     0x00000040 },
195 	{ RT2560_RALINKCSR,   0x9a009a11 },
196 	{ RT2560_CSR7,        0xffffffff },
197 	{ RT2560_BBPCSR1,     0x82188200 },
198 	{ RT2560_TXACKCSR0,   0x00000020 },
199 	{ RT2560_SECCSR3,     0x0000e78f }
200 };
201 
202 /*
203  * Default values for BBP registers; values taken from the reference driver.
204  */
205 static const struct {
206 	uint8_t	reg;
207 	uint8_t	val;
208 } rt2560_def_bbp[] = {
209 	{  3, 0x02 },
210 	{  4, 0x19 },
211 	{ 14, 0x1c },
212 	{ 15, 0x30 },
213 	{ 16, 0xac },
214 	{ 17, 0x48 },
215 	{ 18, 0x18 },
216 	{ 19, 0xff },
217 	{ 20, 0x1e },
218 	{ 21, 0x08 },
219 	{ 22, 0x08 },
220 	{ 23, 0x08 },
221 	{ 24, 0x80 },
222 	{ 25, 0x50 },
223 	{ 26, 0x08 },
224 	{ 27, 0x23 },
225 	{ 30, 0x10 },
226 	{ 31, 0x2b },
227 	{ 32, 0xb9 },
228 	{ 34, 0x12 },
229 	{ 35, 0x50 },
230 	{ 39, 0xc4 },
231 	{ 40, 0x02 },
232 	{ 41, 0x60 },
233 	{ 53, 0x10 },
234 	{ 54, 0x18 },
235 	{ 56, 0x08 },
236 	{ 57, 0x10 },
237 	{ 58, 0x08 },
238 	{ 61, 0x60 },
239 	{ 62, 0x10 },
240 	{ 75, 0xff }
241 };
242 
243 /*
244  * Default values for RF register R2 indexed by channel numbers; values taken
245  * from the reference driver.
246  */
247 static const uint32_t rt2560_rf2522_r2[] = {
248 	0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814,
249 	0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e
250 };
251 
252 static const uint32_t rt2560_rf2523_r2[] = {
253 	0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
254 	0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
255 };
256 
257 static const uint32_t rt2560_rf2524_r2[] = {
258 	0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
259 	0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
260 };
261 
262 static const uint32_t rt2560_rf2525_r2[] = {
263 	0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d,
264 	0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346
265 };
266 
267 static const uint32_t rt2560_rf2525_hi_r2[] = {
268 	0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345,
269 	0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e
270 };
271 
272 static const uint32_t rt2560_rf2525e_r2[] = {
273 	0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463,
274 	0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b
275 };
276 
277 static const uint32_t rt2560_rf2526_hi_r2[] = {
278 	0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d,
279 	0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241
280 };
281 
282 static const uint32_t rt2560_rf2526_r2[] = {
283 	0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229,
284 	0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d
285 };
286 
287 /*
288  * For dual-band RF, RF registers R1 and R4 also depend on channel number;
289  * values taken from the reference driver.
290  */
291 static const struct {
292 	uint8_t		chan;
293 	uint32_t	r1;
294 	uint32_t	r2;
295 	uint32_t	r4;
296 } rt2560_rf5222[] = {
297 	{   1, 0x08808, 0x0044d, 0x00282 },
298 	{   2, 0x08808, 0x0044e, 0x00282 },
299 	{   3, 0x08808, 0x0044f, 0x00282 },
300 	{   4, 0x08808, 0x00460, 0x00282 },
301 	{   5, 0x08808, 0x00461, 0x00282 },
302 	{   6, 0x08808, 0x00462, 0x00282 },
303 	{   7, 0x08808, 0x00463, 0x00282 },
304 	{   8, 0x08808, 0x00464, 0x00282 },
305 	{   9, 0x08808, 0x00465, 0x00282 },
306 	{  10, 0x08808, 0x00466, 0x00282 },
307 	{  11, 0x08808, 0x00467, 0x00282 },
308 	{  12, 0x08808, 0x00468, 0x00282 },
309 	{  13, 0x08808, 0x00469, 0x00282 },
310 	{  14, 0x08808, 0x0046b, 0x00286 },
311 
312 	{  36, 0x08804, 0x06225, 0x00287 },
313 	{  40, 0x08804, 0x06226, 0x00287 },
314 	{  44, 0x08804, 0x06227, 0x00287 },
315 	{  48, 0x08804, 0x06228, 0x00287 },
316 	{  52, 0x08804, 0x06229, 0x00287 },
317 	{  56, 0x08804, 0x0622a, 0x00287 },
318 	{  60, 0x08804, 0x0622b, 0x00287 },
319 	{  64, 0x08804, 0x0622c, 0x00287 },
320 
321 	{ 100, 0x08804, 0x02200, 0x00283 },
322 	{ 104, 0x08804, 0x02201, 0x00283 },
323 	{ 108, 0x08804, 0x02202, 0x00283 },
324 	{ 112, 0x08804, 0x02203, 0x00283 },
325 	{ 116, 0x08804, 0x02204, 0x00283 },
326 	{ 120, 0x08804, 0x02205, 0x00283 },
327 	{ 124, 0x08804, 0x02206, 0x00283 },
328 	{ 128, 0x08804, 0x02207, 0x00283 },
329 	{ 132, 0x08804, 0x02208, 0x00283 },
330 	{ 136, 0x08804, 0x02209, 0x00283 },
331 	{ 140, 0x08804, 0x0220a, 0x00283 },
332 
333 	{ 149, 0x08808, 0x02429, 0x00281 },
334 	{ 153, 0x08808, 0x0242b, 0x00281 },
335 	{ 157, 0x08808, 0x0242d, 0x00281 },
336 	{ 161, 0x08808, 0x0242f, 0x00281 }
337 };
338 
339 int
340 rt2560_attach(void *xsc, int id)
341 {
342 	struct rt2560_softc *sc = xsc;
343 	struct ieee80211com *ic = &sc->sc_ic;
344 	struct ifnet *ifp = &sc->sc_if;
345 	int error, i;
346 
347 	callout_init(&sc->scan_ch);
348 	callout_init(&sc->rssadapt_ch);
349 
350 	/* retrieve RT2560 rev. no */
351 	sc->asic_rev = RAL_READ(sc, RT2560_CSR0);
352 
353 	/* retrieve MAC address */
354 	rt2560_get_macaddr(sc, ic->ic_myaddr);
355 
356 	aprint_normal("%s: 802.11 address %s\n", sc->sc_dev.dv_xname,
357 	    ether_sprintf(ic->ic_myaddr));
358 
359 	/* retrieve RF rev. no and various other things from EEPROM */
360 	rt2560_read_eeprom(sc);
361 
362 	aprint_normal("%s: MAC/BBP RT2560 (rev 0x%02x), RF %s\n",
363 	    sc->sc_dev.dv_xname, sc->asic_rev, rt2560_get_rf(sc->rf_rev));
364 
365 	/*
366 	 * Allocate Tx and Rx rings.
367 	 */
368 	error = rt2560_alloc_tx_ring(sc, &sc->txq, RT2560_TX_RING_COUNT);
369 	if (error != 0) {
370 		aprint_error("%s: could not allocate Tx ring\n)",
371 		    sc->sc_dev.dv_xname);
372 		goto fail1;
373 	}
374 
375 	error = rt2560_alloc_tx_ring(sc, &sc->atimq, RT2560_ATIM_RING_COUNT);
376 	if (error != 0) {
377 		aprint_error("%s: could not allocate ATIM ring\n",
378 		    sc->sc_dev.dv_xname);
379 		goto fail2;
380 	}
381 
382 	error = rt2560_alloc_tx_ring(sc, &sc->prioq, RT2560_PRIO_RING_COUNT);
383 	if (error != 0) {
384 		aprint_error("%s: could not allocate Prio ring\n",
385 		    sc->sc_dev.dv_xname);
386 		goto fail3;
387 	}
388 
389 	error = rt2560_alloc_tx_ring(sc, &sc->bcnq, RT2560_BEACON_RING_COUNT);
390 	if (error != 0) {
391 		aprint_error("%s: could not allocate Beacon ring\n",
392 		    sc->sc_dev.dv_xname);
393 		goto fail4;
394 	}
395 
396 	error = rt2560_alloc_rx_ring(sc, &sc->rxq, RT2560_RX_RING_COUNT);
397 	if (error != 0) {
398 		aprint_error("%s: could not allocate Rx ring\n",
399 		    sc->sc_dev.dv_xname);
400 		goto fail5;
401 	}
402 
403 	ifp->if_softc = sc;
404 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
405 	ifp->if_init = rt2560_init;
406 	ifp->if_ioctl = rt2560_ioctl;
407 	ifp->if_start = rt2560_start;
408 	ifp->if_watchdog = rt2560_watchdog;
409 	IFQ_SET_READY(&ifp->if_snd);
410 	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
411 
412 	ic->ic_ifp = ifp;
413 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
414 	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
415 	ic->ic_state = IEEE80211_S_INIT;
416 
417 	/* set device capabilities */
418 	ic->ic_caps =
419 	    IEEE80211_C_IBSS |		/* IBSS mode supported */
420 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
421 	    IEEE80211_C_HOSTAP |	/* HostAp mode supported */
422 	    IEEE80211_C_TXPMGT |	/* tx power management */
423 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
424 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
425 	    IEEE80211_C_WPA;		/* 802.11i */
426 
427 	if (sc->rf_rev == RT2560_RF_5222) {
428 		/* set supported .11a rates */
429 		ic->ic_sup_rates[IEEE80211_MODE_11A] = rt2560_rateset_11a;
430 
431 		/* set supported .11a channels */
432 		for (i = 36; i <= 64; i += 4) {
433 			ic->ic_channels[i].ic_freq =
434 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
435 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
436 		}
437 		for (i = 100; i <= 140; i += 4) {
438 			ic->ic_channels[i].ic_freq =
439 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
440 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
441 		}
442 		for (i = 149; i <= 161; i += 4) {
443 			ic->ic_channels[i].ic_freq =
444 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
445 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
446 		}
447 	}
448 
449 	/* set supported .11b and .11g rates */
450 	ic->ic_sup_rates[IEEE80211_MODE_11B] = rt2560_rateset_11b;
451 	ic->ic_sup_rates[IEEE80211_MODE_11G] = rt2560_rateset_11g;
452 
453 	/* set supported .11b and .11g channels (1 through 14) */
454 	for (i = 1; i <= 14; i++) {
455 		ic->ic_channels[i].ic_freq =
456 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
457 		ic->ic_channels[i].ic_flags =
458 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
459 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
460 	}
461 
462 	if_attach(ifp);
463 	ieee80211_ifattach(ic);
464 	ic->ic_node_alloc = rt2560_node_alloc;
465 	ic->ic_updateslot = rt2560_update_slot;
466 	ic->ic_reset = rt2560_reset;
467 
468 	/* override state transition machine */
469 	sc->sc_newstate = ic->ic_newstate;
470 	ic->ic_newstate = rt2560_newstate;
471 	ieee80211_media_init(ic, rt2560_media_change, ieee80211_media_status);
472 
473 #if NBPFILTER > 0
474 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
475 	    sizeof (struct ieee80211_frame) + 64, &sc->sc_drvbpf);
476 #endif
477 
478 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
479 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
480 	sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2560_RX_RADIOTAP_PRESENT);
481 
482 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
483 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
484 	sc->sc_txtap.wt_ihdr.it_present = htole32(RT2560_TX_RADIOTAP_PRESENT);
485 
486 
487 	sc->dwelltime = 200;
488 
489 	ieee80211_announce(ic);
490 
491 	return 0;
492 
493 fail5:	rt2560_free_tx_ring(sc, &sc->bcnq);
494 fail4:	rt2560_free_tx_ring(sc, &sc->prioq);
495 fail3:	rt2560_free_tx_ring(sc, &sc->atimq);
496 fail2:	rt2560_free_tx_ring(sc, &sc->txq);
497 fail1:
498 	return ENXIO;
499 }
500 
501 
502 int
503 rt2560_detach(void *xsc)
504 {
505 	struct rt2560_softc *sc = xsc;
506 	struct ifnet *ifp = &sc->sc_if;
507 
508 	callout_stop(&sc->scan_ch);
509 	callout_stop(&sc->rssadapt_ch);
510 
511 	ieee80211_ifdetach(&sc->sc_ic);	/* free all nodes */
512 	if_detach(ifp);
513 
514 	rt2560_free_tx_ring(sc, &sc->txq);
515 	rt2560_free_tx_ring(sc, &sc->atimq);
516 	rt2560_free_tx_ring(sc, &sc->prioq);
517 	rt2560_free_tx_ring(sc, &sc->bcnq);
518 	rt2560_free_rx_ring(sc, &sc->rxq);
519 
520 	return 0;
521 }
522 
523 int
524 rt2560_alloc_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring,
525     int count)
526 {
527 	int i, nsegs, error;
528 
529 	ring->count = count;
530 	ring->queued = 0;
531 	ring->cur = ring->next = 0;
532 	ring->cur_encrypt = ring->next_encrypt = 0;
533 
534 	error = bus_dmamap_create(sc->sc_dmat, count * RT2560_TX_DESC_SIZE, 1,
535 	    count * RT2560_TX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map);
536 	if (error != 0) {
537 		printf("%s: could not create desc DMA map\n",
538 		    sc->sc_dev.dv_xname);
539 		goto fail;
540 	}
541 
542 	error = bus_dmamem_alloc(sc->sc_dmat, count * RT2560_TX_DESC_SIZE,
543 	    PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
544 	if (error != 0) {
545 		printf("%s: could not allocate DMA memory\n",
546 		    sc->sc_dev.dv_xname);
547 		goto fail;
548 	}
549 
550 	error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
551 	    count * RT2560_TX_DESC_SIZE, (caddr_t *)&ring->desc,
552 	    BUS_DMA_NOWAIT);
553 	if (error != 0) {
554 		printf("%s: could not map desc DMA memory\n",
555 		    sc->sc_dev.dv_xname);
556 		goto fail;
557 	}
558 
559 	error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
560 	    count * RT2560_TX_DESC_SIZE, NULL, BUS_DMA_NOWAIT);
561 	if (error != 0) {
562 		printf("%s: could not load desc DMA map\n",
563 		    sc->sc_dev.dv_xname);
564 		goto fail;
565 	}
566 
567 	memset(ring->desc, 0, count * RT2560_TX_DESC_SIZE);
568 	ring->physaddr = ring->map->dm_segs->ds_addr;
569 
570 	ring->data = malloc(count * sizeof (struct rt2560_tx_data), M_DEVBUF,
571 	    M_NOWAIT);
572 	if (ring->data == NULL) {
573 		printf("%s: could not allocate soft data\n",
574 		    sc->sc_dev.dv_xname);
575 		error = ENOMEM;
576 		goto fail;
577 	}
578 
579 	memset(ring->data, 0, count * sizeof (struct rt2560_tx_data));
580 	for (i = 0; i < count; i++) {
581 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
582 		    RT2560_MAX_SCATTER, MCLBYTES, 0, BUS_DMA_NOWAIT,
583 		    &ring->data[i].map);
584 		if (error != 0) {
585 			printf("%s: could not create DMA map\n",
586 			    sc->sc_dev.dv_xname);
587 			goto fail;
588 		}
589 	}
590 
591 	return 0;
592 
593 fail:	rt2560_free_tx_ring(sc, ring);
594 	return error;
595 }
596 
597 void
598 rt2560_reset_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring)
599 {
600 	struct rt2560_tx_desc *desc;
601 	struct rt2560_tx_data *data;
602 	int i;
603 
604 	for (i = 0; i < ring->count; i++) {
605 		desc = &ring->desc[i];
606 		data = &ring->data[i];
607 
608 		if (data->m != NULL) {
609 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
610 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
611 			bus_dmamap_unload(sc->sc_dmat, data->map);
612 			m_freem(data->m);
613 			data->m = NULL;
614 		}
615 
616 		if (data->ni != NULL) {
617 			ieee80211_free_node(data->ni);
618 			data->ni = NULL;
619 		}
620 
621 		desc->flags = 0;
622 	}
623 
624 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
625 	    BUS_DMASYNC_PREWRITE);
626 
627 	ring->queued = 0;
628 	ring->cur = ring->next = 0;
629 	ring->cur_encrypt = ring->next_encrypt = 0;
630 }
631 
632 void
633 rt2560_free_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring)
634 {
635 	struct rt2560_tx_data *data;
636 	int i;
637 
638 	if (ring->desc != NULL) {
639 		bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
640 		    ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
641 		bus_dmamap_unload(sc->sc_dmat, ring->map);
642 		bus_dmamem_unmap(sc->sc_dmat, (caddr_t)ring->desc,
643 		    ring->count * RT2560_TX_DESC_SIZE);
644 		bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
645 	}
646 
647 	if (ring->data != NULL) {
648 		for (i = 0; i < ring->count; i++) {
649 			data = &ring->data[i];
650 
651 			if (data->m != NULL) {
652 				bus_dmamap_sync(sc->sc_dmat, data->map, 0,
653 				    data->map->dm_mapsize,
654 				    BUS_DMASYNC_POSTWRITE);
655 				bus_dmamap_unload(sc->sc_dmat, data->map);
656 				m_freem(data->m);
657 			}
658 
659 			if (data->ni != NULL)
660 				ieee80211_free_node(data->ni);
661 
662 
663 			if (data->map != NULL)
664 				bus_dmamap_destroy(sc->sc_dmat, data->map);
665 		}
666 		free(ring->data, M_DEVBUF);
667 	}
668 }
669 
670 int
671 rt2560_alloc_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring,
672     int count)
673 {
674 	struct rt2560_rx_desc *desc;
675 	struct rt2560_rx_data *data;
676 	int i, nsegs, error;
677 
678 	ring->count = count;
679 	ring->cur = ring->next = 0;
680 	ring->cur_decrypt = 0;
681 
682 	error = bus_dmamap_create(sc->sc_dmat, count * RT2560_RX_DESC_SIZE, 1,
683 	    count * RT2560_RX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map);
684 	if (error != 0) {
685 		printf("%s: could not create desc DMA map\n",
686 		    sc->sc_dev.dv_xname);
687 		goto fail;
688 	}
689 
690 	error = bus_dmamem_alloc(sc->sc_dmat, count * RT2560_RX_DESC_SIZE,
691 	    PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
692 	if (error != 0) {
693 		printf("%s: could not allocate DMA memory\n",
694 		    sc->sc_dev.dv_xname);
695 		goto fail;
696 	}
697 
698 	error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
699 	    count * RT2560_RX_DESC_SIZE, (caddr_t *)&ring->desc,
700 	    BUS_DMA_NOWAIT);
701 	if (error != 0) {
702 		printf("%s: could not map desc DMA memory\n",
703 		    sc->sc_dev.dv_xname);
704 		goto fail;
705 	}
706 
707 	error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
708 	    count * RT2560_RX_DESC_SIZE, NULL, BUS_DMA_NOWAIT);
709 	if (error != 0) {
710 		printf("%s: could not load desc DMA map\n",
711 		    sc->sc_dev.dv_xname);
712 		goto fail;
713 	}
714 
715 	memset(ring->desc, 0, count * RT2560_RX_DESC_SIZE);
716 	ring->physaddr = ring->map->dm_segs->ds_addr;
717 
718 	ring->data = malloc(count * sizeof (struct rt2560_rx_data), M_DEVBUF,
719 	    M_NOWAIT);
720 	if (ring->data == NULL) {
721 		printf("%s: could not allocate soft data\n",
722 		    sc->sc_dev.dv_xname);
723 		error = ENOMEM;
724 		goto fail;
725 	}
726 
727 	/*
728 	 * Pre-allocate Rx buffers and populate Rx ring.
729 	 */
730 	memset(ring->data, 0, count * sizeof (struct rt2560_rx_data));
731 	for (i = 0; i < count; i++) {
732 		desc = &sc->rxq.desc[i];
733 		data = &sc->rxq.data[i];
734 
735 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
736 		    0, BUS_DMA_NOWAIT, &data->map);
737 		if (error != 0) {
738 			printf("%s: could not create DMA map\n",
739 			    sc->sc_dev.dv_xname);
740 			goto fail;
741 		}
742 
743 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
744 		if (data->m == NULL) {
745 			printf("%s: could not allocate rx mbuf\n",
746 			    sc->sc_dev.dv_xname);
747 			error = ENOMEM;
748 			goto fail;
749 		}
750 
751 		MCLGET(data->m, M_DONTWAIT);
752 		if (!(data->m->m_flags & M_EXT)) {
753 			printf("%s: could not allocate rx mbuf cluster\n",
754 			    sc->sc_dev.dv_xname);
755 			error = ENOMEM;
756 			goto fail;
757 		}
758 
759 		error = bus_dmamap_load(sc->sc_dmat, data->map,
760 		    mtod(data->m, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
761 		if (error != 0) {
762 			printf("%s: could not load rx buf DMA map",
763 			    sc->sc_dev.dv_xname);
764 			goto fail;
765 		}
766 
767 		desc->flags = htole32(RT2560_RX_BUSY);
768 		desc->physaddr = htole32(data->map->dm_segs->ds_addr);
769 	}
770 
771 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
772 	    BUS_DMASYNC_PREWRITE);
773 
774 	return 0;
775 
776 fail:	rt2560_free_rx_ring(sc, ring);
777 	return error;
778 }
779 
780 void
781 rt2560_reset_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring)
782 {
783 	int i;
784 
785 	for (i = 0; i < ring->count; i++) {
786 		ring->desc[i].flags = htole32(RT2560_RX_BUSY);
787 		ring->data[i].drop = 0;
788 	}
789 
790 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
791 	    BUS_DMASYNC_PREWRITE);
792 
793 	ring->cur = ring->next = 0;
794 	ring->cur_decrypt = 0;
795 }
796 
797 void
798 rt2560_free_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring)
799 {
800 	struct rt2560_rx_data *data;
801 	int i;
802 
803 	if (ring->desc != NULL) {
804 		bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
805 		    ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
806 		bus_dmamap_unload(sc->sc_dmat, ring->map);
807 		bus_dmamem_unmap(sc->sc_dmat, (caddr_t)ring->desc,
808 		    ring->count * RT2560_RX_DESC_SIZE);
809 		bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
810 	}
811 
812 	if (ring->data != NULL) {
813 		for (i = 0; i < ring->count; i++) {
814 			data = &ring->data[i];
815 
816 			if (data->m != NULL) {
817 				bus_dmamap_sync(sc->sc_dmat, data->map, 0,
818 				    data->map->dm_mapsize,
819 				    BUS_DMASYNC_POSTREAD);
820 				bus_dmamap_unload(sc->sc_dmat, data->map);
821 				m_freem(data->m);
822 			}
823 
824 			if (data->map != NULL)
825 				bus_dmamap_destroy(sc->sc_dmat, data->map);
826 		}
827 		free(ring->data, M_DEVBUF);
828 	}
829 }
830 
831 struct ieee80211_node *
832 rt2560_node_alloc(struct ieee80211_node_table *nt)
833 {
834 	struct rt2560_node *rn;
835 
836 	rn = malloc(sizeof (struct rt2560_node), M_80211_NODE,
837 	    M_NOWAIT | M_ZERO);
838 
839 	return (rn != NULL) ? &rn->ni : NULL;
840 }
841 
842 int
843 rt2560_media_change(struct ifnet *ifp)
844 {
845 	int error;
846 
847 	error = ieee80211_media_change(ifp);
848 	if (error != ENETRESET)
849 		return error;
850 
851 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
852 		rt2560_init(ifp);
853 
854 	return 0;
855 }
856 
857 /*
858  * This function is called periodically (every 200ms) during scanning to
859  * switch from one channel to another.
860  */
861 void
862 rt2560_next_scan(void *arg)
863 {
864 	struct rt2560_softc *sc = arg;
865 	struct ieee80211com *ic = &sc->sc_ic;
866 
867 	if (ic->ic_state == IEEE80211_S_SCAN)
868 		ieee80211_next_scan(ic);
869 }
870 
871 /*
872  * This function is called for each neighbor node.
873  */
874 void
875 rt2560_iter_func(void *arg, struct ieee80211_node *ni)
876 {
877 	struct rt2560_node *rn = (struct rt2560_node *)ni;
878 
879 	ieee80211_rssadapt_updatestats(&rn->rssadapt);
880 }
881 
882 /*
883  * This function is called periodically (every 100ms) in RUN state to update
884  * the rate adaptation statistics.
885  */
886 void
887 rt2560_update_rssadapt(void *arg)
888 {
889 	struct rt2560_softc *sc = arg;
890 	struct ieee80211com *ic = &sc->sc_ic;
891 
892 	ieee80211_iterate_nodes(&ic->ic_sta, rt2560_iter_func, arg);
893 
894 	callout_reset(&sc->rssadapt_ch, hz / 10, rt2560_update_rssadapt, sc);
895 }
896 
897 int
898 rt2560_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
899 {
900 	struct rt2560_softc *sc = ic->ic_ifp->if_softc;
901 	enum ieee80211_state ostate;
902 	struct ieee80211_node *ni;
903 	struct mbuf *m;
904 	int error = 0;
905 
906 	ostate = ic->ic_state;
907 	callout_stop(&sc->scan_ch);
908 
909 	switch (nstate) {
910 	case IEEE80211_S_INIT:
911 		callout_stop(&sc->rssadapt_ch);
912 
913 		if (ostate == IEEE80211_S_RUN) {
914 			/* abort TSF synchronization */
915 			RAL_WRITE(sc, RT2560_CSR14, 0);
916 
917 			/* turn association led off */
918 			rt2560_update_led(sc, 0, 0);
919 		}
920 		break;
921 
922 	case IEEE80211_S_SCAN:
923 		rt2560_set_chan(sc, ic->ic_curchan);
924 		callout_reset(&sc->scan_ch, (sc->dwelltime * hz) / 1000,
925 		    rt2560_next_scan, sc);
926 		break;
927 
928 	case IEEE80211_S_AUTH:
929 		rt2560_set_chan(sc, ic->ic_curchan);
930 		break;
931 
932 	case IEEE80211_S_ASSOC:
933 		rt2560_set_chan(sc, ic->ic_curchan);
934 		break;
935 
936 	case IEEE80211_S_RUN:
937 		rt2560_set_chan(sc, ic->ic_curchan);
938 
939 		ni = ic->ic_bss;
940 
941 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
942 			rt2560_update_plcp(sc);
943 			rt2560_set_basicrates(sc);
944 			rt2560_set_bssid(sc, ni->ni_bssid);
945 		}
946 
947 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
948 		    ic->ic_opmode == IEEE80211_M_IBSS) {
949 			m = ieee80211_beacon_alloc(ic, ni, &sc->sc_bo);
950 			if (m == NULL) {
951 				printf("%s: could not allocate beacon\n",
952 				    sc->sc_dev.dv_xname);
953 				error = ENOBUFS;
954 				break;
955 			}
956 
957 			ieee80211_ref_node(ni);
958 			error = rt2560_tx_bcn(sc, m, ni);
959 			if (error != 0)
960 				break;
961 		}
962 
963 		/* turn assocation led on */
964 		rt2560_update_led(sc, 1, 0);
965 
966 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
967 			callout_reset(&sc->rssadapt_ch, hz / 10,
968 			    rt2560_update_rssadapt, sc);
969 			rt2560_enable_tsf_sync(sc);
970 		}
971 		break;
972 	}
973 
974 	return (error != 0) ? error : sc->sc_newstate(ic, nstate, arg);
975 }
976 
977 /*
978  * Read 16 bits at address 'addr' from the serial EEPROM (either 93C46 or
979  * 93C66).
980  */
981 uint16_t
982 rt2560_eeprom_read(struct rt2560_softc *sc, uint8_t addr)
983 {
984 	uint32_t tmp;
985 	uint16_t val;
986 	int n;
987 
988 	/* clock C once before the first command */
989 	RT2560_EEPROM_CTL(sc, 0);
990 
991 	RT2560_EEPROM_CTL(sc, RT2560_S);
992 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
993 	RT2560_EEPROM_CTL(sc, RT2560_S);
994 
995 	/* write start bit (1) */
996 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D);
997 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C);
998 
999 	/* write READ opcode (10) */
1000 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D);
1001 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C);
1002 	RT2560_EEPROM_CTL(sc, RT2560_S);
1003 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
1004 
1005 	/* write address (A5-A0 or A7-A0) */
1006 	n = (RAL_READ(sc, RT2560_CSR21) & RT2560_93C46) ? 5 : 7;
1007 	for (; n >= 0; n--) {
1008 		RT2560_EEPROM_CTL(sc, RT2560_S |
1009 		    (((addr >> n) & 1) << RT2560_SHIFT_D));
1010 		RT2560_EEPROM_CTL(sc, RT2560_S |
1011 		    (((addr >> n) & 1) << RT2560_SHIFT_D) | RT2560_C);
1012 	}
1013 
1014 	RT2560_EEPROM_CTL(sc, RT2560_S);
1015 
1016 	/* read data Q15-Q0 */
1017 	val = 0;
1018 	for (n = 15; n >= 0; n--) {
1019 		RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
1020 		tmp = RAL_READ(sc, RT2560_CSR21);
1021 		val |= ((tmp & RT2560_Q) >> RT2560_SHIFT_Q) << n;
1022 		RT2560_EEPROM_CTL(sc, RT2560_S);
1023 	}
1024 
1025 	RT2560_EEPROM_CTL(sc, 0);
1026 
1027 	/* clear Chip Select and clock C */
1028 	RT2560_EEPROM_CTL(sc, RT2560_S);
1029 	RT2560_EEPROM_CTL(sc, 0);
1030 	RT2560_EEPROM_CTL(sc, RT2560_C);
1031 
1032 	return val;
1033 }
1034 
1035 /*
1036  * Some frames were processed by the hardware cipher engine and are ready for
1037  * transmission.
1038  */
1039 void
1040 rt2560_encryption_intr(struct rt2560_softc *sc)
1041 {
1042 	struct rt2560_tx_desc *desc;
1043 	int hw;
1044 
1045 	/* retrieve last descriptor index processed by cipher engine */
1046 	hw = (RAL_READ(sc, RT2560_SECCSR1) - sc->txq.physaddr) /
1047 	    RT2560_TX_DESC_SIZE;
1048 
1049 	for (; sc->txq.next_encrypt != hw;) {
1050 		desc = &sc->txq.desc[sc->txq.next_encrypt];
1051 
1052 		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
1053 		    sc->txq.next_encrypt * RT2560_TX_DESC_SIZE,
1054 		    RT2560_TX_DESC_SIZE, BUS_DMASYNC_POSTREAD);
1055 
1056 		if (le32toh(desc->flags) &
1057 		    (RT2560_TX_BUSY | RT2560_TX_CIPHER_BUSY))
1058 			break;
1059 
1060 		/* for TKIP, swap eiv field to fix a bug in ASIC */
1061 		if ((le32toh(desc->flags) & RT2560_TX_CIPHER_MASK) ==
1062 		    RT2560_TX_CIPHER_TKIP)
1063 			desc->eiv = bswap32(desc->eiv);
1064 
1065 		/* mark the frame ready for transmission */
1066 		desc->flags |= htole32(RT2560_TX_BUSY | RT2560_TX_VALID);
1067 
1068 		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
1069 		    sc->txq.next_encrypt * RT2560_TX_DESC_SIZE,
1070 		    RT2560_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
1071 
1072 		DPRINTFN(15, ("encryption done idx=%u\n",
1073 		    sc->txq.next_encrypt));
1074 
1075 		sc->txq.next_encrypt =
1076 		    (sc->txq.next_encrypt + 1) % RT2560_TX_RING_COUNT;
1077 	}
1078 
1079 	/* kick Tx */
1080 	RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_TX);
1081 }
1082 
1083 void
1084 rt2560_tx_intr(struct rt2560_softc *sc)
1085 {
1086 	struct ieee80211com *ic = &sc->sc_ic;
1087 	struct ifnet *ifp = ic->ic_ifp;
1088 	struct rt2560_tx_desc *desc;
1089 	struct rt2560_tx_data *data;
1090 	struct rt2560_node *rn;
1091 
1092 	for (;;) {
1093 		desc = &sc->txq.desc[sc->txq.next];
1094 		data = &sc->txq.data[sc->txq.next];
1095 
1096 		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
1097 		    sc->txq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1098 		    BUS_DMASYNC_POSTREAD);
1099 
1100 		if ((le32toh(desc->flags) & RT2560_TX_BUSY) ||
1101 		    (le32toh(desc->flags) & RT2560_TX_CIPHER_BUSY) ||
1102 		    !(le32toh(desc->flags) & RT2560_TX_VALID))
1103 			break;
1104 
1105 		rn = (struct rt2560_node *)data->ni;
1106 
1107 		switch (le32toh(desc->flags) & RT2560_TX_RESULT_MASK) {
1108 		case RT2560_TX_SUCCESS:
1109 			DPRINTFN(10, ("data frame sent successfully\n"));
1110 			if (data->id.id_node != NULL) {
1111 				ieee80211_rssadapt_raise_rate(ic,
1112 				    &rn->rssadapt, &data->id);
1113 			}
1114 			ifp->if_opackets++;
1115 			break;
1116 
1117 		case RT2560_TX_SUCCESS_RETRY:
1118 			DPRINTFN(9, ("data frame sent after %u retries\n",
1119 			    (le32toh(desc->flags) >> 5) & 0x7));
1120 			ifp->if_opackets++;
1121 			break;
1122 
1123 		case RT2560_TX_FAIL_RETRY:
1124 			DPRINTFN(9, ("sending data frame failed (too much "
1125 			    "retries)\n"));
1126 			if (data->id.id_node != NULL) {
1127 				ieee80211_rssadapt_lower_rate(ic, data->ni,
1128 				    &rn->rssadapt, &data->id);
1129 			}
1130 			ifp->if_oerrors++;
1131 			break;
1132 
1133 		case RT2560_TX_FAIL_INVALID:
1134 		case RT2560_TX_FAIL_OTHER:
1135 		default:
1136 			printf("%s: sending data frame failed 0x%08x\n",
1137 			    sc->sc_dev.dv_xname, le32toh(desc->flags));
1138 			ifp->if_oerrors++;
1139 		}
1140 
1141 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1142 		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1143 		bus_dmamap_unload(sc->sc_dmat, data->map);
1144 		m_freem(data->m);
1145 		data->m = NULL;
1146 		ieee80211_free_node(data->ni);
1147 		data->ni = NULL;
1148 
1149 		/* descriptor is no longer valid */
1150 		desc->flags &= ~htole32(RT2560_TX_VALID);
1151 
1152 		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
1153 		    sc->txq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1154 		    BUS_DMASYNC_PREWRITE);
1155 
1156 		DPRINTFN(15, ("tx done idx=%u\n", sc->txq.next));
1157 
1158 		sc->txq.queued--;
1159 		sc->txq.next = (sc->txq.next + 1) % RT2560_TX_RING_COUNT;
1160 	}
1161 
1162 	sc->sc_tx_timer = 0;
1163 	ifp->if_flags &= ~IFF_OACTIVE;
1164 	rt2560_start(ifp);
1165 }
1166 
1167 void
1168 rt2560_prio_intr(struct rt2560_softc *sc)
1169 {
1170 	struct ieee80211com *ic = &sc->sc_ic;
1171 	struct ifnet *ifp = ic->ic_ifp;
1172 	struct rt2560_tx_desc *desc;
1173 	struct rt2560_tx_data *data;
1174 
1175 	for (;;) {
1176 		desc = &sc->prioq.desc[sc->prioq.next];
1177 		data = &sc->prioq.data[sc->prioq.next];
1178 
1179 		bus_dmamap_sync(sc->sc_dmat, sc->prioq.map,
1180 		    sc->prioq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1181 		    BUS_DMASYNC_POSTREAD);
1182 
1183 		if ((le32toh(desc->flags) & RT2560_TX_BUSY) ||
1184 		    !(le32toh(desc->flags) & RT2560_TX_VALID))
1185 			break;
1186 
1187 		switch (le32toh(desc->flags) & RT2560_TX_RESULT_MASK) {
1188 		case RT2560_TX_SUCCESS:
1189 			DPRINTFN(10, ("mgt frame sent successfully\n"));
1190 			break;
1191 
1192 		case RT2560_TX_SUCCESS_RETRY:
1193 			DPRINTFN(9, ("mgt frame sent after %u retries\n",
1194 			    (le32toh(desc->flags) >> 5) & 0x7));
1195 			break;
1196 
1197 		case RT2560_TX_FAIL_RETRY:
1198 			DPRINTFN(9, ("sending mgt frame failed (too much "
1199 			    "retries)\n"));
1200 			break;
1201 
1202 		case RT2560_TX_FAIL_INVALID:
1203 		case RT2560_TX_FAIL_OTHER:
1204 		default:
1205 			printf("%s: sending mgt frame failed 0x%08x\n",
1206 			    sc->sc_dev.dv_xname, le32toh(desc->flags));
1207 		}
1208 
1209 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1210 		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1211 		bus_dmamap_unload(sc->sc_dmat, data->map);
1212 		m_freem(data->m);
1213 		data->m = NULL;
1214 		ieee80211_free_node(data->ni);
1215 		data->ni = NULL;
1216 
1217 		/* descriptor is no longer valid */
1218 		desc->flags &= ~htole32(RT2560_TX_VALID);
1219 
1220 		bus_dmamap_sync(sc->sc_dmat, sc->prioq.map,
1221 		    sc->prioq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1222 		    BUS_DMASYNC_PREWRITE);
1223 
1224 		DPRINTFN(15, ("prio done idx=%u\n", sc->prioq.next));
1225 
1226 		sc->prioq.queued--;
1227 		sc->prioq.next = (sc->prioq.next + 1) % RT2560_PRIO_RING_COUNT;
1228 	}
1229 
1230 	sc->sc_tx_timer = 0;
1231 	ifp->if_flags &= ~IFF_OACTIVE;
1232 	rt2560_start(ifp);
1233 }
1234 
1235 /*
1236  * Some frames were processed by the hardware cipher engine and are ready for
1237  * transmission to the IEEE802.11 layer.
1238  */
1239 void
1240 rt2560_decryption_intr(struct rt2560_softc *sc)
1241 {
1242 	struct ieee80211com *ic = &sc->sc_ic;
1243 	struct ifnet *ifp = ic->ic_ifp;
1244 	struct rt2560_rx_desc *desc;
1245 	struct rt2560_rx_data *data;
1246 	struct rt2560_node *rn;
1247 	struct ieee80211_frame *wh;
1248 	struct ieee80211_node *ni;
1249 	struct mbuf *mnew, *m;
1250 	int hw, error;
1251 
1252 	/* retrieve last decriptor index processed by cipher engine */
1253 	hw = (RAL_READ(sc, RT2560_SECCSR0) - sc->rxq.physaddr) /
1254 	    RT2560_RX_DESC_SIZE;
1255 
1256 	for (; sc->rxq.cur_decrypt != hw;) {
1257 		desc = &sc->rxq.desc[sc->rxq.cur_decrypt];
1258 		data = &sc->rxq.data[sc->rxq.cur_decrypt];
1259 
1260 		bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1261 		    sc->rxq.cur_decrypt * RT2560_TX_DESC_SIZE,
1262 		    RT2560_TX_DESC_SIZE, BUS_DMASYNC_POSTREAD);
1263 
1264 		if (le32toh(desc->flags) &
1265 		    (RT2560_RX_BUSY | RT2560_RX_CIPHER_BUSY))
1266 			break;
1267 
1268 		if (data->drop) {
1269 			ifp->if_ierrors++;
1270 			goto skip;
1271 		}
1272 
1273 		if ((le32toh(desc->flags) & RT2560_RX_CIPHER_MASK) != 0 &&
1274 		    (le32toh(desc->flags) & RT2560_RX_ICV_ERROR)) {
1275 			ifp->if_ierrors++;
1276 			goto skip;
1277 		}
1278 
1279 		/*
1280 		 * Try to allocate a new mbuf for this ring element and load it
1281 		 * before processing the current mbuf.  If the ring element
1282 		 * cannot be loaded, drop the received packet and reuse the old
1283 		 * mbuf.  In the unlikely case that the old mbuf can't be
1284 		 * reloaded either, explicitly panic.
1285 		 */
1286 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1287 		if (mnew == NULL) {
1288 			ifp->if_ierrors++;
1289 			goto skip;
1290 		}
1291 
1292 		MCLGET(mnew, M_DONTWAIT);
1293 		if (!(mnew->m_flags & M_EXT)) {
1294 			m_freem(mnew);
1295 			ifp->if_ierrors++;
1296 			goto skip;
1297 		}
1298 
1299 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1300 		    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1301 		bus_dmamap_unload(sc->sc_dmat, data->map);
1302 
1303 		error = bus_dmamap_load(sc->sc_dmat, data->map,
1304 		    mtod(mnew, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
1305 		if (error != 0) {
1306 			m_freem(mnew);
1307 
1308 			/* try to reload the old mbuf */
1309 			error = bus_dmamap_load(sc->sc_dmat, data->map,
1310 			    mtod(data->m, void *), MCLBYTES, NULL,
1311 			    BUS_DMA_NOWAIT);
1312 			if (error != 0) {
1313 				/* very unlikely that it will fail... */
1314 				panic("%s: could not load old rx mbuf",
1315 				    sc->sc_dev.dv_xname);
1316 			}
1317 			ifp->if_ierrors++;
1318 			goto skip;
1319 		}
1320 
1321 		/*
1322 		 * New mbuf successfully loaded, update Rx ring and continue
1323 		 * processing.
1324 		 */
1325 		m = data->m;
1326 		data->m = mnew;
1327 		desc->physaddr = htole32(data->map->dm_segs->ds_addr);
1328 
1329 		/* finalize mbuf */
1330 		m->m_pkthdr.rcvif = ifp;
1331 		m->m_pkthdr.len = m->m_len =
1332 		    (le32toh(desc->flags) >> 16) & 0xfff;
1333 
1334 #if NBPFILTER > 0
1335 		if (sc->sc_drvbpf != NULL) {
1336 			struct mbuf mb;
1337 			struct rt2560_rx_radiotap_header *tap = &sc->sc_rxtap;
1338 			uint32_t tsf_lo, tsf_hi;
1339 
1340 			/* get timestamp (low and high 32 bits) */
1341 			tsf_hi = RAL_READ(sc, RT2560_CSR17);
1342 			tsf_lo = RAL_READ(sc, RT2560_CSR16);
1343 
1344 			tap->wr_tsf =
1345 			    htole64(((uint64_t)tsf_hi << 32) | tsf_lo);
1346 			tap->wr_flags = 0;
1347 			tap->wr_rate = rt2560_rxrate(desc);
1348 			tap->wr_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
1349 			tap->wr_chan_flags =
1350 			    htole16(ic->ic_ibss_chan->ic_flags);
1351 			tap->wr_antenna = sc->rx_ant;
1352 			tap->wr_antsignal = desc->rssi;
1353 
1354 			M_COPY_PKTHDR(&mb, m);
1355 			mb.m_data = (caddr_t)tap;
1356 			mb.m_len = sc->sc_txtap_len;
1357 			mb.m_next = m;
1358 			mb.m_pkthdr.len += mb.m_len;
1359 			bpf_mtap(sc->sc_drvbpf, &mb);
1360 		}
1361 #endif
1362 
1363 		wh = mtod(m, struct ieee80211_frame *);
1364 		ni = ieee80211_find_rxnode(ic,
1365 		    (struct ieee80211_frame_min *)wh);
1366 
1367 		/* send the frame to the 802.11 layer */
1368 		ieee80211_input(ic, m, ni, desc->rssi, 0);
1369 
1370 		/* give rssi to the rate adatation algorithm */
1371 		rn = (struct rt2560_node *)ni;
1372 		ieee80211_rssadapt_input(ic, ni, &rn->rssadapt, desc->rssi);
1373 
1374 		/* node is no longer needed */
1375 		ieee80211_free_node(ni);
1376 
1377 skip:		desc->flags = htole32(RT2560_RX_BUSY);
1378 
1379 		bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1380 		    sc->rxq.cur_decrypt * RT2560_TX_DESC_SIZE,
1381 		    RT2560_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
1382 
1383 		DPRINTFN(15, ("decryption done idx=%u\n", sc->rxq.cur_decrypt));
1384 
1385 		sc->rxq.cur_decrypt =
1386 		    (sc->rxq.cur_decrypt + 1) % RT2560_RX_RING_COUNT;
1387 	}
1388 
1389 	/*
1390 	 * In HostAP mode, ieee80211_input() will enqueue packets in if_snd
1391 	 * without calling if_start().
1392 	 */
1393 	if (!IFQ_IS_EMPTY(&ifp->if_snd) && !(ifp->if_flags & IFF_OACTIVE))
1394 		rt2560_start(ifp);
1395 }
1396 
1397 /*
1398  * Some frames were received. Pass them to the hardware cipher engine before
1399  * sending them to the 802.11 layer.
1400  */
1401 void
1402 rt2560_rx_intr(struct rt2560_softc *sc)
1403 {
1404 	struct rt2560_rx_desc *desc;
1405 	struct rt2560_rx_data *data;
1406 
1407 	for (;;) {
1408 		desc = &sc->rxq.desc[sc->rxq.cur];
1409 		data = &sc->rxq.data[sc->rxq.cur];
1410 
1411 		bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1412 		    sc->rxq.cur * RT2560_RX_DESC_SIZE, RT2560_RX_DESC_SIZE,
1413 		    BUS_DMASYNC_POSTREAD);
1414 
1415 		if (le32toh(desc->flags) &
1416 		    (RT2560_RX_BUSY | RT2560_RX_CIPHER_BUSY))
1417 			break;
1418 
1419 		data->drop = 0;
1420 
1421 		if (le32toh(desc->flags) &
1422 		    (RT2560_RX_PHY_ERROR | RT2560_RX_CRC_ERROR)) {
1423 			/*
1424 			 * This should not happen since we did not request
1425 			 * to receive those frames when we filled RXCSR0.
1426 			 */
1427 			DPRINTFN(5, ("PHY or CRC error flags 0x%08x\n",
1428 			    le32toh(desc->flags)));
1429 			data->drop = 1;
1430 		}
1431 
1432 		if (((le32toh(desc->flags) >> 16) & 0xfff) > MCLBYTES) {
1433 			DPRINTFN(5, ("bad length\n"));
1434 			data->drop = 1;
1435 		}
1436 
1437 		/* mark the frame for decryption */
1438 		desc->flags |= htole32(RT2560_RX_CIPHER_BUSY);
1439 
1440 		bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1441 		    sc->rxq.cur * RT2560_RX_DESC_SIZE, RT2560_RX_DESC_SIZE,
1442 		    BUS_DMASYNC_PREWRITE);
1443 
1444 		DPRINTFN(15, ("rx done idx=%u\n", sc->rxq.cur));
1445 
1446 		sc->rxq.cur = (sc->rxq.cur + 1) % RT2560_RX_RING_COUNT;
1447 	}
1448 
1449 	/* kick decrypt */
1450 	RAL_WRITE(sc, RT2560_SECCSR0, RT2560_KICK_DECRYPT);
1451 }
1452 
1453 #if 0
1454 void
1455 rt2560_shutdown(void *xsc)
1456 {
1457 	struct rt2560_softc *sc = xsc;
1458 
1459 	rt2560_stop(sc);
1460 }
1461 
1462 void
1463 rt2560_suspend(void *xsc)
1464 {
1465 	struct rt2560_softc *sc = xsc;
1466 
1467 	rt2560_stop(sc);
1468 }
1469 
1470 void
1471 rt2560_resume(void *xsc)
1472 {
1473 	struct rt2560_softc *sc = xsc;
1474 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1475 
1476 	if (ifp->if_flags & IFF_UP) {
1477 		ifp->if_init(ifp->if_softc);
1478 		if (ifp->if_flags & IFF_RUNNING)
1479 			ifp->if_start(ifp);
1480 	}
1481 }
1482 
1483 #endif
1484 /*
1485  * This function is called periodically in IBSS mode when a new beacon must be
1486  * sent out.
1487  */
1488 static void
1489 rt2560_beacon_expire(struct rt2560_softc *sc)
1490 {
1491 	struct ieee80211com *ic = &sc->sc_ic;
1492 	struct rt2560_tx_data *data;
1493 
1494 	if (ic->ic_opmode != IEEE80211_M_IBSS &&
1495 	    ic->ic_opmode != IEEE80211_M_HOSTAP)
1496 		return;
1497 
1498 	data = &sc->bcnq.data[sc->bcnq.next];
1499 
1500 	bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1501 	    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1502 	bus_dmamap_unload(sc->sc_dmat, data->map);
1503 
1504 	ieee80211_beacon_update(ic, data->ni, &sc->sc_bo, data->m, 1);
1505 
1506 #if NBPFILTER > 0
1507 	if (ic->ic_rawbpf != NULL)
1508 		bpf_mtap(ic->ic_rawbpf, data->m);
1509 #endif
1510 	rt2560_tx_bcn(sc, data->m, data->ni);
1511 
1512 	DPRINTFN(15, ("beacon expired\n"));
1513 
1514 	sc->bcnq.next = (sc->bcnq.next + 1) % RT2560_BEACON_RING_COUNT;
1515 }
1516 
1517 static void
1518 rt2560_wakeup_expire(struct rt2560_softc *sc)
1519 {
1520 	DPRINTFN(15, ("wakeup expired\n"));
1521 }
1522 
1523 int
1524 rt2560_intr(void *arg)
1525 {
1526 	struct rt2560_softc *sc = arg;
1527 	struct ifnet *ifp = &sc->sc_if;
1528 	uint32_t r;
1529 
1530 	/* disable interrupts */
1531 	RAL_WRITE(sc, RT2560_CSR8, 0xffffffff);
1532 
1533 	/* don't re-enable interrupts if we're shutting down */
1534 	if (!(ifp->if_flags & IFF_RUNNING))
1535 		return 0;
1536 
1537 	r = RAL_READ(sc, RT2560_CSR7);
1538 	RAL_WRITE(sc, RT2560_CSR7, r);
1539 
1540 	if (r & RT2560_BEACON_EXPIRE)
1541 		rt2560_beacon_expire(sc);
1542 
1543 	if (r & RT2560_WAKEUP_EXPIRE)
1544 		rt2560_wakeup_expire(sc);
1545 
1546 	if (r & RT2560_ENCRYPTION_DONE)
1547 		rt2560_encryption_intr(sc);
1548 
1549 	if (r & RT2560_TX_DONE)
1550 		rt2560_tx_intr(sc);
1551 
1552 	if (r & RT2560_PRIO_DONE)
1553 		rt2560_prio_intr(sc);
1554 
1555 	if (r & RT2560_DECRYPTION_DONE)
1556 		rt2560_decryption_intr(sc);
1557 
1558 	if (r & RT2560_RX_DONE)
1559 		rt2560_rx_intr(sc);
1560 
1561 	/* re-enable interrupts */
1562 	RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK);
1563 
1564 	return 1;
1565 }
1566 
1567 /* quickly determine if a given rate is CCK or OFDM */
1568 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1569 
1570 #define RAL_ACK_SIZE	14	/* 10 + 4(FCS) */
1571 #define RAL_CTS_SIZE	14	/* 10 + 4(FCS) */
1572 
1573 #define RAL_SIFS		10	/* us */
1574 
1575 #define RT2560_RXTX_TURNAROUND	10	/* us */
1576 
1577 /*
1578  * This function is only used by the Rx radiotap code. It returns the rate at
1579  * which a given frame was received.
1580  */
1581 #if NBPFILTER > 0
1582 static uint8_t
1583 rt2560_rxrate(struct rt2560_rx_desc *desc)
1584 {
1585 	if (le32toh(desc->flags) & RT2560_RX_OFDM) {
1586 		/* reverse function of rt2560_plcp_signal */
1587 		switch (desc->rate) {
1588 		case 0xb:	return 12;
1589 		case 0xf:	return 18;
1590 		case 0xa:	return 24;
1591 		case 0xe:	return 36;
1592 		case 0x9:	return 48;
1593 		case 0xd:	return 72;
1594 		case 0x8:	return 96;
1595 		case 0xc:	return 108;
1596 		}
1597 	} else {
1598 		if (desc->rate == 10)
1599 			return 2;
1600 		if (desc->rate == 20)
1601 			return 4;
1602 		if (desc->rate == 55)
1603 			return 11;
1604 		if (desc->rate == 110)
1605 			return 22;
1606 	}
1607 	return 2;	/* should not get there */
1608 }
1609 #endif
1610 
1611 /*
1612  * Return the expected ack rate for a frame transmitted at rate `rate'.
1613  * XXX: this should depend on the destination node basic rate set.
1614  */
1615 static int
1616 rt2560_ack_rate(struct ieee80211com *ic, int rate)
1617 {
1618 	switch (rate) {
1619 	/* CCK rates */
1620 	case 2:
1621 		return 2;
1622 	case 4:
1623 	case 11:
1624 	case 22:
1625 		return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
1626 
1627 	/* OFDM rates */
1628 	case 12:
1629 	case 18:
1630 		return 12;
1631 	case 24:
1632 	case 36:
1633 		return 24;
1634 	case 48:
1635 	case 72:
1636 	case 96:
1637 	case 108:
1638 		return 48;
1639 	}
1640 
1641 	/* default to 1Mbps */
1642 	return 2;
1643 }
1644 
1645 /*
1646  * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1647  * The function automatically determines the operating mode depending on the
1648  * given rate. `flags' indicates whether short preamble is in use or not.
1649  */
1650 static uint16_t
1651 rt2560_txtime(int len, int rate, uint32_t flags)
1652 {
1653 	uint16_t txtime;
1654 
1655 	if (RAL_RATE_IS_OFDM(rate)) {
1656 		/* IEEE Std 802.11a-1999, pp. 37 */
1657 		txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1658 		txtime = 16 + 4 + 4 * txtime + 6;
1659 	} else {
1660 		/* IEEE Std 802.11b-1999, pp. 28 */
1661 		txtime = (16 * len + rate - 1) / rate;
1662 		if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1663 			txtime +=  72 + 24;
1664 		else
1665 			txtime += 144 + 48;
1666 	}
1667 	return txtime;
1668 }
1669 
1670 static uint8_t
1671 rt2560_plcp_signal(int rate)
1672 {
1673 	switch (rate) {
1674 	/* CCK rates (returned values are device-dependent) */
1675 	case 2:		return 0x0;
1676 	case 4:		return 0x1;
1677 	case 11:	return 0x2;
1678 	case 22:	return 0x3;
1679 
1680 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1681 	case 12:	return 0xb;
1682 	case 18:	return 0xf;
1683 	case 24:	return 0xa;
1684 	case 36:	return 0xe;
1685 	case 48:	return 0x9;
1686 	case 72:	return 0xd;
1687 	case 96:	return 0x8;
1688 	case 108:	return 0xc;
1689 
1690 	/* unsupported rates (should not get there) */
1691 	default:	return 0xff;
1692 	}
1693 }
1694 
1695 static void
1696 rt2560_setup_tx_desc(struct rt2560_softc *sc, struct rt2560_tx_desc *desc,
1697     uint32_t flags, int len, int rate, int encrypt, bus_addr_t physaddr)
1698 {
1699 	struct ieee80211com *ic = &sc->sc_ic;
1700 	uint16_t plcp_length;
1701 	int remainder;
1702 
1703 	desc->flags = htole32(flags);
1704 	desc->flags |= htole32(len << 16);
1705 	desc->flags |= encrypt ? htole32(RT2560_TX_CIPHER_BUSY) :
1706 	    htole32(RT2560_TX_BUSY | RT2560_TX_VALID);
1707 
1708 	desc->physaddr = htole32(physaddr);
1709 	desc->wme = htole16(
1710 	    RT2560_AIFSN(2) |
1711 	    RT2560_LOGCWMIN(3) |
1712 	    RT2560_LOGCWMAX(8));
1713 
1714 	/* setup PLCP fields */
1715 	desc->plcp_signal  = rt2560_plcp_signal(rate);
1716 	desc->plcp_service = 4;
1717 
1718 	len += IEEE80211_CRC_LEN;
1719 	if (RAL_RATE_IS_OFDM(rate)) {
1720 		desc->flags |= htole32(RT2560_TX_OFDM);
1721 
1722 		plcp_length = len & 0xfff;
1723 		desc->plcp_length_hi = plcp_length >> 6;
1724 		desc->plcp_length_lo = plcp_length & 0x3f;
1725 	} else {
1726 		plcp_length = (16 * len + rate - 1) / rate;
1727 		if (rate == 22) {
1728 			remainder = (16 * len) % 22;
1729 			if (remainder != 0 && remainder < 7)
1730 				desc->plcp_service |= RT2560_PLCP_LENGEXT;
1731 		}
1732 		desc->plcp_length_hi = plcp_length >> 8;
1733 		desc->plcp_length_lo = plcp_length & 0xff;
1734 
1735 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1736 			desc->plcp_signal |= 0x08;
1737 	}
1738 }
1739 
1740 static int
1741 rt2560_tx_bcn(struct rt2560_softc *sc, struct mbuf *m0,
1742     struct ieee80211_node *ni)
1743 {
1744 	struct rt2560_tx_desc *desc;
1745 	struct rt2560_tx_data *data;
1746 	int rate, error;
1747 
1748 	desc = &sc->bcnq.desc[sc->bcnq.cur];
1749 	data = &sc->bcnq.data[sc->bcnq.cur];
1750 
1751 	rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1752 
1753 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1754 	    BUS_DMA_NOWAIT);
1755 	if (error != 0) {
1756 		printf("%s: could not map mbuf (error %d)\n",
1757 		    sc->sc_dev.dv_xname, error);
1758 		m_freem(m0);
1759 		return error;
1760 	}
1761 
1762 	data->m = m0;
1763 	data->ni = ni;
1764 
1765 	rt2560_setup_tx_desc(sc, desc, RT2560_TX_IFS_NEWBACKOFF |
1766 	    RT2560_TX_TIMESTAMP, m0->m_pkthdr.len, rate, 0,
1767 	    data->map->dm_segs->ds_addr);
1768 
1769 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1770 	    BUS_DMASYNC_PREWRITE);
1771 	bus_dmamap_sync(sc->sc_dmat, sc->bcnq.map,
1772 	    sc->bcnq.cur * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1773 	    BUS_DMASYNC_PREWRITE);
1774 
1775 	return 0;
1776 }
1777 
1778 static int
1779 rt2560_tx_mgt(struct rt2560_softc *sc, struct mbuf *m0,
1780     struct ieee80211_node *ni)
1781 {
1782 	struct ieee80211com *ic = &sc->sc_ic;
1783 	struct rt2560_tx_desc *desc;
1784 	struct rt2560_tx_data *data;
1785 	struct ieee80211_frame *wh;
1786 	uint16_t dur;
1787 	uint32_t flags = 0;
1788 	int rate, error;
1789 
1790 	desc = &sc->prioq.desc[sc->prioq.cur];
1791 	data = &sc->prioq.data[sc->prioq.cur];
1792 
1793 	rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1794 
1795 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1796 	    BUS_DMA_NOWAIT);
1797 	if (error != 0) {
1798 		printf("%s: could not map mbuf (error %d)\n",
1799 		    sc->sc_dev.dv_xname, error);
1800 		m_freem(m0);
1801 		return error;
1802 	}
1803 
1804 #if NBPFILTER > 0
1805 	if (sc->sc_drvbpf != NULL) {
1806 		struct mbuf mb;
1807 		struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
1808 
1809 		tap->wt_flags = 0;
1810 		tap->wt_rate = rate;
1811 		tap->wt_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
1812 		tap->wt_chan_flags = htole16(ic->ic_ibss_chan->ic_flags);
1813 		tap->wt_antenna = sc->tx_ant;
1814 
1815 		M_COPY_PKTHDR(&mb, m0);
1816 		mb.m_data = (caddr_t)tap;
1817 		mb.m_len = sc->sc_txtap_len;
1818 		mb.m_next = m0;
1819 		mb.m_pkthdr.len += mb.m_len;
1820 		bpf_mtap(sc->sc_drvbpf, &mb);
1821 	}
1822 #endif
1823 
1824 	data->m = m0;
1825 	data->ni = ni;
1826 
1827 	wh = mtod(m0, struct ieee80211_frame *);
1828 
1829 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1830 		flags |= RT2560_TX_ACK;
1831 
1832 		dur = rt2560_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) +
1833 		    RAL_SIFS;
1834 		*(uint16_t *)wh->i_dur = htole16(dur);
1835 
1836 		/* tell hardware to add timestamp for probe responses */
1837 		if ((wh->i_fc[0] &
1838 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1839 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1840 			flags |= RT2560_TX_TIMESTAMP;
1841 	}
1842 
1843 	rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 0,
1844 	    data->map->dm_segs->ds_addr);
1845 
1846 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1847 	    BUS_DMASYNC_PREWRITE);
1848 	bus_dmamap_sync(sc->sc_dmat, sc->prioq.map,
1849 	    sc->prioq.cur * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1850 	    BUS_DMASYNC_PREWRITE);
1851 
1852 	DPRINTFN(10, ("sending mgt frame len=%u idx=%u rate=%u\n",
1853 	    m0->m_pkthdr.len, sc->prioq.cur, rate));
1854 
1855 	/* kick prio */
1856 	sc->prioq.queued++;
1857 	sc->prioq.cur = (sc->prioq.cur + 1) % RT2560_PRIO_RING_COUNT;
1858 	RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_PRIO);
1859 
1860 	return 0;
1861 }
1862 
1863 /*
1864  * Build a RTS control frame.
1865  */
1866 static struct mbuf *
1867 rt2560_get_rts(struct rt2560_softc *sc, struct ieee80211_frame *wh,
1868     uint16_t dur)
1869 {
1870 	struct ieee80211_frame_rts *rts;
1871 	struct mbuf *m;
1872 
1873 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1874 	if (m == NULL) {
1875 		sc->sc_ic.ic_stats.is_tx_nobuf++;
1876 		printf("%s: could not allocate RTS frame\n",
1877 		    sc->sc_dev.dv_xname);
1878 		return NULL;
1879 	}
1880 
1881 	rts = mtod(m, struct ieee80211_frame_rts *);
1882 
1883 	rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL |
1884 	    IEEE80211_FC0_SUBTYPE_RTS;
1885 	rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1886 	*(uint16_t *)rts->i_dur = htole16(dur);
1887 	IEEE80211_ADDR_COPY(rts->i_ra, wh->i_addr1);
1888 	IEEE80211_ADDR_COPY(rts->i_ta, wh->i_addr2);
1889 
1890 	m->m_pkthdr.len = m->m_len = sizeof (struct ieee80211_frame_rts);
1891 
1892 	return m;
1893 }
1894 
1895 static int
1896 rt2560_tx_data(struct rt2560_softc *sc, struct mbuf *m0,
1897     struct ieee80211_node *ni)
1898 {
1899 	struct ieee80211com *ic = &sc->sc_ic;
1900 	struct rt2560_tx_desc *desc;
1901 	struct rt2560_tx_data *data;
1902 	struct rt2560_node *rn;
1903 	struct ieee80211_rateset *rs;
1904 	struct ieee80211_frame *wh;
1905 	struct ieee80211_key *k;
1906 	struct mbuf *mnew;
1907 	uint16_t dur;
1908 	uint32_t flags = 0;
1909 	int rate, error;
1910 
1911 	wh = mtod(m0, struct ieee80211_frame *);
1912 
1913 	if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
1914 		rs = &ic->ic_sup_rates[ic->ic_curmode];
1915 		rate = rs->rs_rates[ic->ic_fixed_rate];
1916 	} else {
1917 		rs = &ni->ni_rates;
1918 		rn = (struct rt2560_node *)ni;
1919 		ni->ni_txrate = ieee80211_rssadapt_choose(&rn->rssadapt, rs,
1920 		    wh, m0->m_pkthdr.len, -1, NULL, 0);
1921 		rate = rs->rs_rates[ni->ni_txrate];
1922 	}
1923 	rate &= IEEE80211_RATE_VAL;
1924 
1925 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1926 		k = ieee80211_crypto_encap(ic, ni, m0);
1927 		if (k == NULL) {
1928 			m_freem(m0);
1929 			return ENOBUFS;
1930 		}
1931 
1932 		/* packet header may have moved, reset our local pointer */
1933 		wh = mtod(m0, struct ieee80211_frame *);
1934 	}
1935 
1936 	/*
1937 	 * IEEE Std 802.11-1999, pp 82: "A STA shall use an RTS/CTS exchange
1938 	 * for directed frames only when the length of the MPDU is greater
1939 	 * than the length threshold indicated by [...]" ic_rtsthreshold.
1940 	 */
1941 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1942 	    m0->m_pkthdr.len > ic->ic_rtsthreshold) {
1943 		struct mbuf *m;
1944 		int rtsrate, ackrate;
1945 
1946 		rtsrate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1947 		ackrate = rt2560_ack_rate(ic, rate);
1948 
1949 		dur = rt2560_txtime(m0->m_pkthdr.len + 4, rate, ic->ic_flags) +
1950 		      rt2560_txtime(RAL_CTS_SIZE, rtsrate, ic->ic_flags) +
1951 		      rt2560_txtime(RAL_ACK_SIZE, ackrate, ic->ic_flags) +
1952 		      3 * RAL_SIFS;
1953 
1954 		m = rt2560_get_rts(sc, wh, dur);
1955 
1956 		desc = &sc->txq.desc[sc->txq.cur_encrypt];
1957 		data = &sc->txq.data[sc->txq.cur_encrypt];
1958 
1959 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
1960 		    BUS_DMA_NOWAIT);
1961 		if (error != 0) {
1962 			printf("%s: could not map mbuf (error %d)\n",
1963 			    sc->sc_dev.dv_xname, error);
1964 			m_freem(m);
1965 			m_freem(m0);
1966 			return error;
1967 		}
1968 
1969 		/* avoid multiple free() of the same node for each fragment */
1970 		ieee80211_ref_node(ni);
1971 
1972 		data->m = m;
1973 		data->ni = ni;
1974 
1975 		/* RTS frames are not taken into account for rssadapt */
1976 		data->id.id_node = NULL;
1977 
1978 		rt2560_setup_tx_desc(sc, desc, RT2560_TX_ACK |
1979 		    RT2560_TX_MORE_FRAG, m->m_pkthdr.len, rtsrate, 1,
1980 		    data->map->dm_segs->ds_addr);
1981 
1982 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1983 		    data->map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1984 		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
1985 		    sc->txq.cur_encrypt * RT2560_TX_DESC_SIZE,
1986 		    RT2560_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
1987 
1988 		sc->txq.queued++;
1989 		sc->txq.cur_encrypt =
1990 		    (sc->txq.cur_encrypt + 1) % RT2560_TX_RING_COUNT;
1991 
1992 		/*
1993 		 * IEEE Std 802.11-1999: when an RTS/CTS exchange is used, the
1994 		 * asynchronous data frame shall be transmitted after the CTS
1995 		 * frame and a SIFS period.
1996 		 */
1997 		flags |= RT2560_TX_LONG_RETRY | RT2560_TX_IFS_SIFS;
1998 	}
1999 
2000 	data = &sc->txq.data[sc->txq.cur_encrypt];
2001 	desc = &sc->txq.desc[sc->txq.cur_encrypt];
2002 
2003 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2004 	    BUS_DMA_NOWAIT);
2005 	if (error != 0 && error != EFBIG) {
2006 		printf("%s: could not map mbuf (error %d)\n",
2007 		    sc->sc_dev.dv_xname, error);
2008 		m_freem(m0);
2009 		return error;
2010 	}
2011 	if (error != 0) {
2012 		/* too many fragments, linearize */
2013 
2014 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
2015 		if (mnew == NULL) {
2016 			m_freem(m0);
2017 			return ENOMEM;
2018 		}
2019 
2020 		M_COPY_PKTHDR(mnew, m0);
2021 		if (m0->m_pkthdr.len > MHLEN) {
2022 			MCLGET(mnew, M_DONTWAIT);
2023 			if (!(mnew->m_flags & M_EXT)) {
2024 				m_freem(m0);
2025 				m_freem(mnew);
2026 				return ENOMEM;
2027 			}
2028 		}
2029 
2030 		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, caddr_t));
2031 		m_freem(m0);
2032 		mnew->m_len = mnew->m_pkthdr.len;
2033 		m0 = mnew;
2034 
2035 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2036 		    BUS_DMA_NOWAIT);
2037 		if (error != 0) {
2038 			printf("%s: could not map mbuf (error %d)\n",
2039 			    sc->sc_dev.dv_xname, error);
2040 			m_freem(m0);
2041 			return error;
2042 		}
2043 
2044 		/* packet header have moved, reset our local pointer */
2045 		wh = mtod(m0, struct ieee80211_frame *);
2046 	}
2047 
2048 #if NBPFILTER > 0
2049 	if (sc->sc_drvbpf != NULL) {
2050 		struct mbuf mb;
2051 		struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
2052 
2053 		tap->wt_flags = 0;
2054 		tap->wt_rate = rate;
2055 		tap->wt_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
2056 		tap->wt_chan_flags = htole16(ic->ic_ibss_chan->ic_flags);
2057 		tap->wt_antenna = sc->tx_ant;
2058 
2059 		M_COPY_PKTHDR(&mb, m0);
2060 		mb.m_data = (caddr_t)tap;
2061 		mb.m_len = sc->sc_txtap_len;
2062 		mb.m_next = m0;
2063 		mb.m_pkthdr.len += mb.m_len;
2064 		bpf_mtap(sc->sc_drvbpf, &mb);
2065 
2066 	}
2067 #endif
2068 
2069 	data->m = m0;
2070 	data->ni = ni;
2071 
2072 	/* remember link conditions for rate adaptation algorithm */
2073 	if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
2074 		data->id.id_len = m0->m_pkthdr.len;
2075 		data->id.id_rateidx = ni->ni_txrate;
2076 		data->id.id_node = ni;
2077 		data->id.id_rssi = ni->ni_rssi;
2078 	} else
2079 		data->id.id_node = NULL;
2080 
2081 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2082 		flags |= RT2560_TX_ACK;
2083 
2084 		dur = rt2560_txtime(RAL_ACK_SIZE, rt2560_ack_rate(ic, rate),
2085 		    ic->ic_flags) + RAL_SIFS;
2086 		*(uint16_t *)wh->i_dur = htole16(dur);
2087 	}
2088 
2089 	rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 1,
2090 	    data->map->dm_segs->ds_addr);
2091 
2092 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2093 	    BUS_DMASYNC_PREWRITE);
2094 	bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
2095 	    sc->txq.cur_encrypt * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
2096 	    BUS_DMASYNC_PREWRITE);
2097 
2098 	DPRINTFN(10, ("sending data frame len=%u idx=%u rate=%u\n",
2099 	    m0->m_pkthdr.len, sc->txq.cur_encrypt, rate));
2100 
2101 	/* kick encrypt */
2102 	sc->txq.queued++;
2103 	sc->txq.cur_encrypt = (sc->txq.cur_encrypt + 1) % RT2560_TX_RING_COUNT;
2104 	RAL_WRITE(sc, RT2560_SECCSR1, RT2560_KICK_ENCRYPT);
2105 
2106 	return 0;
2107 }
2108 
2109 static void
2110 rt2560_start(struct ifnet *ifp)
2111 {
2112 	struct rt2560_softc *sc = ifp->if_softc;
2113 	struct ieee80211com *ic = &sc->sc_ic;
2114 	struct mbuf *m0;
2115 	struct ieee80211_node *ni;
2116 	struct ether_header *eh;
2117 
2118 	/*
2119 	 * net80211 may still try to send management frames even if the
2120 	 * IFF_RUNNING flag is not set...
2121 	 */
2122 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2123 		return;
2124 
2125 	for (;;) {
2126 		IF_POLL(&ic->ic_mgtq, m0);
2127 		if (m0 != NULL) {
2128 			if (sc->prioq.queued >= RT2560_PRIO_RING_COUNT) {
2129 				ifp->if_flags |= IFF_OACTIVE;
2130 				break;
2131 			}
2132 			IF_DEQUEUE(&ic->ic_mgtq, m0);
2133 			if (m0 == NULL)
2134 				break;
2135 
2136 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
2137 			m0->m_pkthdr.rcvif = NULL;
2138 #if NBPFILTER > 0
2139 			if (ic->ic_rawbpf != NULL)
2140 				bpf_mtap(ic->ic_rawbpf, m0);
2141 #endif
2142 			if (rt2560_tx_mgt(sc, m0, ni) != 0)
2143 				break;
2144 
2145 		} else {
2146 			if (ic->ic_state != IEEE80211_S_RUN)
2147 				break;
2148 			IFQ_DEQUEUE(&ifp->if_snd, m0);
2149 			if (m0 == NULL)
2150 				break;
2151 			if (sc->txq.queued >= RT2560_TX_RING_COUNT - 1) {
2152 				ifp->if_flags |= IFF_OACTIVE;
2153 				break;
2154 			}
2155 
2156 			if (m0->m_len < sizeof (struct ether_header) &&
2157 			    !(m0 = m_pullup(m0, sizeof (struct ether_header))))
2158                                 continue;
2159 
2160 			eh = mtod(m0, struct ether_header *);
2161 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2162 			if (ni == NULL) {
2163 				m_freem(m0);
2164 				continue;
2165 			}
2166 #if NBPFILTER > 0
2167 			if (ifp->if_bpf != NULL)
2168 				bpf_mtap(ifp->if_bpf, m0);
2169 #endif
2170 
2171 			m0 = ieee80211_encap(ic, m0, ni);
2172 			if (m0 == NULL) {
2173 				ieee80211_free_node(ni);
2174 				continue;
2175                         }
2176 
2177 #if NBPFILTER > 0
2178 			if (ic->ic_rawbpf != NULL)
2179 				bpf_mtap(ic->ic_rawbpf, m0);
2180 
2181 #endif
2182 			if (rt2560_tx_data(sc, m0, ni) != 0) {
2183 				ieee80211_free_node(ni);
2184 				ifp->if_oerrors++;
2185 				break;
2186 			}
2187 		}
2188 
2189 		sc->sc_tx_timer = 5;
2190 		ifp->if_timer = 1;
2191 	}
2192 }
2193 
2194 static void
2195 rt2560_watchdog(struct ifnet *ifp)
2196 {
2197 	struct rt2560_softc *sc = ifp->if_softc;
2198 
2199 	ifp->if_timer = 0;
2200 
2201 	if (sc->sc_tx_timer > 0) {
2202 		if (--sc->sc_tx_timer == 0) {
2203 			printf("%s: device timeout\n", sc->sc_dev.dv_xname);
2204 			rt2560_init(ifp);
2205 			ifp->if_oerrors++;
2206 			return;
2207 		}
2208 		ifp->if_timer = 1;
2209 	}
2210 
2211 	ieee80211_watchdog(&sc->sc_ic);
2212 }
2213 
2214 /*
2215  * This function allows for fast channel switching in monitor mode (used by
2216  * net-mgmt/kismet). In IBSS mode, we must explicitly reset the interface to
2217  * generate a new beacon frame.
2218  */
2219 static int
2220 rt2560_reset(struct ifnet *ifp)
2221 {
2222 	struct rt2560_softc *sc = ifp->if_softc;
2223 	struct ieee80211com *ic = &sc->sc_ic;
2224 
2225 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
2226 		return ENETRESET;
2227 
2228 	rt2560_set_chan(sc, ic->ic_curchan);
2229 
2230 	return 0;
2231 }
2232 
2233 int
2234 rt2560_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2235 {
2236 	struct rt2560_softc *sc = ifp->if_softc;
2237 	struct ieee80211com *ic = &sc->sc_ic;
2238 	struct ifreq *ifr;
2239 	int s, error = 0;
2240 
2241 	s = splnet();
2242 
2243 	switch (cmd) {
2244 	case SIOCSIFFLAGS:
2245 		if (ifp->if_flags & IFF_UP) {
2246 			if (ifp->if_flags & IFF_RUNNING)
2247 				rt2560_update_promisc(sc);
2248 			else
2249 				rt2560_init(ifp);
2250 		} else {
2251 			if (ifp->if_flags & IFF_RUNNING)
2252 				rt2560_stop(sc);
2253 		}
2254 		break;
2255 
2256 	case SIOCADDMULTI:
2257 	case SIOCDELMULTI:
2258 		ifr = (struct ifreq *)data;
2259 		error = (cmd == SIOCADDMULTI) ?
2260 		    ether_addmulti(ifr, &sc->sc_ec) :
2261 		    ether_delmulti(ifr, &sc->sc_ec);
2262 
2263 		if (error == ENETRESET)
2264 			error = 0;
2265 		break;
2266 
2267 	case SIOCS80211CHANNEL:
2268 		/*
2269 		 * This allows for fast channel switching in monitor mode
2270 		 * (used by kismet). In IBSS mode, we must explicitly reset
2271 		 * the interface to generate a new beacon frame.
2272 		 */
2273 		error = ieee80211_ioctl(ic, cmd, data);
2274 		if (error == ENETRESET &&
2275 		    ic->ic_opmode == IEEE80211_M_MONITOR) {
2276 			rt2560_set_chan(sc, ic->ic_ibss_chan);
2277 			error = 0;
2278 		}
2279 		break;
2280 
2281 	default:
2282 		error = ieee80211_ioctl(ic, cmd, data);
2283 	}
2284 
2285 	if (error == ENETRESET) {
2286 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
2287 		    (IFF_UP | IFF_RUNNING))
2288 			rt2560_init(ifp);
2289 		error = 0;
2290 	}
2291 
2292 	splx(s);
2293 
2294 	return error;
2295 }
2296 
2297 static void
2298 rt2560_bbp_write(struct rt2560_softc *sc, uint8_t reg, uint8_t val)
2299 {
2300 	uint32_t tmp;
2301 	int ntries;
2302 
2303 	for (ntries = 0; ntries < 100; ntries++) {
2304 		if (!(RAL_READ(sc, RT2560_BBPCSR) & RT2560_BBP_BUSY))
2305 			break;
2306 		DELAY(1);
2307 	}
2308 	if (ntries == 100) {
2309 		printf("%s: could not write to BBP\n", sc->sc_dev.dv_xname);
2310 		return;
2311 	}
2312 
2313 	tmp = RT2560_BBP_WRITE | RT2560_BBP_BUSY | reg << 8 | val;
2314 	RAL_WRITE(sc, RT2560_BBPCSR, tmp);
2315 
2316 	DPRINTFN(15, ("BBP R%u <- 0x%02x\n", reg, val));
2317 }
2318 
2319 static uint8_t
2320 rt2560_bbp_read(struct rt2560_softc *sc, uint8_t reg)
2321 {
2322 	uint32_t val;
2323 	int ntries;
2324 
2325 	val = RT2560_BBP_BUSY | reg << 8;
2326 	RAL_WRITE(sc, RT2560_BBPCSR, val);
2327 
2328 	for (ntries = 0; ntries < 100; ntries++) {
2329 		val = RAL_READ(sc, RT2560_BBPCSR);
2330 		if (!(val & RT2560_BBP_BUSY))
2331 			return val & 0xff;
2332 		DELAY(1);
2333 	}
2334 
2335 	printf("%s: could not read from BBP\n", sc->sc_dev.dv_xname);
2336 	return 0;
2337 }
2338 
2339 static void
2340 rt2560_rf_write(struct rt2560_softc *sc, uint8_t reg, uint32_t val)
2341 {
2342 	uint32_t tmp;
2343 	int ntries;
2344 
2345 	for (ntries = 0; ntries < 100; ntries++) {
2346 		if (!(RAL_READ(sc, RT2560_RFCSR) & RT2560_RF_BUSY))
2347 			break;
2348 		DELAY(1);
2349 	}
2350 	if (ntries == 100) {
2351 		printf("%s: could not write to RF\n", sc->sc_dev.dv_xname);
2352 		return;
2353 	}
2354 
2355 	tmp = RT2560_RF_BUSY | RT2560_RF_20BIT | (val & 0xfffff) << 2 |
2356 	    (reg & 0x3);
2357 	RAL_WRITE(sc, RT2560_RFCSR, tmp);
2358 
2359 	/* remember last written value in sc */
2360 	sc->rf_regs[reg] = val;
2361 
2362 	DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff));
2363 }
2364 
2365 static void
2366 rt2560_set_chan(struct rt2560_softc *sc, struct ieee80211_channel *c)
2367 {
2368 	struct ieee80211com *ic = &sc->sc_ic;
2369 	uint8_t power, tmp;
2370 	u_int i, chan;
2371 
2372 	chan = ieee80211_chan2ieee(ic, c);
2373 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
2374 		return;
2375 
2376 	if (IEEE80211_IS_CHAN_2GHZ(c))
2377 		power = min(sc->txpow[chan - 1], 31);
2378 	else
2379 		power = 31;
2380 
2381 	DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power));
2382 
2383 	switch (sc->rf_rev) {
2384 	case RT2560_RF_2522:
2385 		rt2560_rf_write(sc, RT2560_RF1, 0x00814);
2386 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2522_r2[chan - 1]);
2387 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x00040);
2388 		break;
2389 
2390 	case RT2560_RF_2523:
2391 		rt2560_rf_write(sc, RT2560_RF1, 0x08804);
2392 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2523_r2[chan - 1]);
2393 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x38044);
2394 		rt2560_rf_write(sc, RT2560_RF4,
2395 		    (chan == 14) ? 0x00280 : 0x00286);
2396 		break;
2397 
2398 	case RT2560_RF_2524:
2399 		rt2560_rf_write(sc, RT2560_RF1, 0x0c808);
2400 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2524_r2[chan - 1]);
2401 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x00040);
2402 		rt2560_rf_write(sc, RT2560_RF4,
2403 		    (chan == 14) ? 0x00280 : 0x00286);
2404 		break;
2405 
2406 	case RT2560_RF_2525:
2407 		rt2560_rf_write(sc, RT2560_RF1, 0x08808);
2408 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2525_hi_r2[chan - 1]);
2409 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044);
2410 		rt2560_rf_write(sc, RT2560_RF4,
2411 		    (chan == 14) ? 0x00280 : 0x00286);
2412 
2413 		rt2560_rf_write(sc, RT2560_RF1, 0x08808);
2414 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2525_r2[chan - 1]);
2415 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044);
2416 		rt2560_rf_write(sc, RT2560_RF4,
2417 		    (chan == 14) ? 0x00280 : 0x00286);
2418 		break;
2419 
2420 	case RT2560_RF_2525E:
2421 		rt2560_rf_write(sc, RT2560_RF1, 0x08808);
2422 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2525e_r2[chan - 1]);
2423 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044);
2424 		rt2560_rf_write(sc, RT2560_RF4,
2425 		    (chan == 14) ? 0x00286 : 0x00282);
2426 		break;
2427 
2428 	case RT2560_RF_2526:
2429 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2526_hi_r2[chan - 1]);
2430 		rt2560_rf_write(sc, RT2560_RF4,
2431 		   (chan & 1) ? 0x00386 : 0x00381);
2432 		rt2560_rf_write(sc, RT2560_RF1, 0x08804);
2433 
2434 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2526_r2[chan - 1]);
2435 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044);
2436 		rt2560_rf_write(sc, RT2560_RF4,
2437 		    (chan & 1) ? 0x00386 : 0x00381);
2438 		break;
2439 
2440 	/* dual-band RF */
2441 	case RT2560_RF_5222:
2442 		for (i = 0; rt2560_rf5222[i].chan != chan; i++);
2443 
2444 		rt2560_rf_write(sc, RT2560_RF1, rt2560_rf5222[i].r1);
2445 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf5222[i].r2);
2446 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x00040);
2447 		rt2560_rf_write(sc, RT2560_RF4, rt2560_rf5222[i].r4);
2448 		break;
2449 	}
2450 
2451 	if (ic->ic_opmode != IEEE80211_M_MONITOR &&
2452 	    ic->ic_state != IEEE80211_S_SCAN) {
2453 		/* set Japan filter bit for channel 14 */
2454 		tmp = rt2560_bbp_read(sc, 70);
2455 
2456 		tmp &= ~RT2560_JAPAN_FILTER;
2457 		if (chan == 14)
2458 			tmp |= RT2560_JAPAN_FILTER;
2459 
2460 		rt2560_bbp_write(sc, 70, tmp);
2461 
2462 		DELAY(1000); /* RF needs a 1ms delay here */
2463 		rt2560_disable_rf_tune(sc);
2464 
2465 		/* clear CRC errors */
2466 		RAL_READ(sc, RT2560_CNT0);
2467 	}
2468 }
2469 
2470 /*
2471  * Disable RF auto-tuning.
2472  */
2473 static void
2474 rt2560_disable_rf_tune(struct rt2560_softc *sc)
2475 {
2476 	uint32_t tmp;
2477 
2478 	if (sc->rf_rev != RT2560_RF_2523) {
2479 		tmp = sc->rf_regs[RT2560_RF1] & ~RT2560_RF1_AUTOTUNE;
2480 		rt2560_rf_write(sc, RT2560_RF1, tmp);
2481 	}
2482 
2483 	tmp = sc->rf_regs[RT2560_RF3] & ~RT2560_RF3_AUTOTUNE;
2484 	rt2560_rf_write(sc, RT2560_RF3, tmp);
2485 
2486 	DPRINTFN(2, ("disabling RF autotune\n"));
2487 }
2488 
2489 /*
2490  * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
2491  * synchronization.
2492  */
2493 static void
2494 rt2560_enable_tsf_sync(struct rt2560_softc *sc)
2495 {
2496 	struct ieee80211com *ic = &sc->sc_ic;
2497 	uint16_t logcwmin, preload;
2498 	uint32_t tmp;
2499 
2500 	/* first, disable TSF synchronization */
2501 	RAL_WRITE(sc, RT2560_CSR14, 0);
2502 
2503 	tmp = 16 * ic->ic_bss->ni_intval;
2504 	RAL_WRITE(sc, RT2560_CSR12, tmp);
2505 
2506 	RAL_WRITE(sc, RT2560_CSR13, 0);
2507 
2508 	logcwmin = 5;
2509 	preload = (ic->ic_opmode == IEEE80211_M_STA) ? 384 : 1024;
2510 	tmp = logcwmin << 16 | preload;
2511 	RAL_WRITE(sc, RT2560_BCNOCSR, tmp);
2512 
2513 	/* finally, enable TSF synchronization */
2514 	tmp = RT2560_ENABLE_TSF | RT2560_ENABLE_TBCN;
2515 	if (ic->ic_opmode == IEEE80211_M_STA)
2516 		tmp |= RT2560_ENABLE_TSF_SYNC(1);
2517 	else
2518 		tmp |= RT2560_ENABLE_TSF_SYNC(2) |
2519 		       RT2560_ENABLE_BEACON_GENERATOR;
2520 	RAL_WRITE(sc, RT2560_CSR14, tmp);
2521 
2522 	DPRINTF(("enabling TSF synchronization\n"));
2523 }
2524 
2525 static void
2526 rt2560_update_plcp(struct rt2560_softc *sc)
2527 {
2528 	struct ieee80211com *ic = &sc->sc_ic;
2529 
2530 	/* no short preamble for 1Mbps */
2531 	RAL_WRITE(sc, RT2560_PLCP1MCSR, 0x00700400);
2532 
2533 	if (!(ic->ic_flags & IEEE80211_F_SHPREAMBLE)) {
2534 		/* values taken from the reference driver */
2535 		RAL_WRITE(sc, RT2560_PLCP2MCSR,   0x00380401);
2536 		RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x00150402);
2537 		RAL_WRITE(sc, RT2560_PLCP11MCSR,  0x000b8403);
2538 	} else {
2539 		/* same values as above or'ed 0x8 */
2540 		RAL_WRITE(sc, RT2560_PLCP2MCSR,   0x00380409);
2541 		RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x0015040a);
2542 		RAL_WRITE(sc, RT2560_PLCP11MCSR,  0x000b840b);
2543 	}
2544 
2545 	DPRINTF(("updating PLCP for %s preamble\n",
2546 	    (ic->ic_flags & IEEE80211_F_SHPREAMBLE) ? "short" : "long"));
2547 }
2548 
2549 /*
2550  * IEEE 802.11a uses short slot time. Refer to IEEE Std 802.11-1999 pp. 85 to
2551  * know how these values are computed.
2552  */
2553 static void
2554 rt2560_update_slot(struct ifnet *ifp)
2555 {
2556 	struct rt2560_softc *sc = ifp->if_softc;
2557 	struct ieee80211com *ic = &sc->sc_ic;
2558 	uint8_t slottime;
2559 	uint16_t sifs, pifs, difs, eifs;
2560 	uint32_t tmp;
2561 
2562 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
2563 
2564 	/* define the MAC slot boundaries */
2565 	sifs = RAL_SIFS - RT2560_RXTX_TURNAROUND;
2566 	pifs = sifs + slottime;
2567 	difs = sifs + 2 * slottime;
2568 	eifs = (ic->ic_curmode == IEEE80211_MODE_11B) ? 364 : 60;
2569 
2570 	tmp = RAL_READ(sc, RT2560_CSR11);
2571 	tmp = (tmp & ~0x1f00) | slottime << 8;
2572 	RAL_WRITE(sc, RT2560_CSR11, tmp);
2573 
2574 	tmp = pifs << 16 | sifs;
2575 	RAL_WRITE(sc, RT2560_CSR18, tmp);
2576 
2577 	tmp = eifs << 16 | difs;
2578 	RAL_WRITE(sc, RT2560_CSR19, tmp);
2579 
2580 	DPRINTF(("setting slottime to %uus\n", slottime));
2581 }
2582 
2583 static void
2584 rt2560_set_basicrates(struct rt2560_softc *sc)
2585 {
2586 	struct ieee80211com *ic = &sc->sc_ic;
2587 
2588 	/* update basic rate set */
2589 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
2590 		/* 11b basic rates: 1, 2Mbps */
2591 		RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x3);
2592 	} else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) {
2593 		/* 11a basic rates: 6, 12, 24Mbps */
2594 		RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x150);
2595 	} else {
2596 		/* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
2597 		RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x15f);
2598 	}
2599 }
2600 
2601 static void
2602 rt2560_update_led(struct rt2560_softc *sc, int led1, int led2)
2603 {
2604 	uint32_t tmp;
2605 
2606 	/* set ON period to 70ms and OFF period to 30ms */
2607 	tmp = led1 << 16 | led2 << 17 | 70 << 8 | 30;
2608 	RAL_WRITE(sc, RT2560_LEDCSR, tmp);
2609 }
2610 
2611 static void
2612 rt2560_set_bssid(struct rt2560_softc *sc, uint8_t *bssid)
2613 {
2614 	uint32_t tmp;
2615 
2616 	tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
2617 	RAL_WRITE(sc, RT2560_CSR5, tmp);
2618 
2619 	tmp = bssid[4] | bssid[5] << 8;
2620 	RAL_WRITE(sc, RT2560_CSR6, tmp);
2621 
2622 	DPRINTF(("setting BSSID to %s\n", ether_sprintf(bssid)));
2623 }
2624 
2625 static void
2626 rt2560_set_macaddr(struct rt2560_softc *sc, uint8_t *addr)
2627 {
2628 	uint32_t tmp;
2629 
2630 	tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
2631 	RAL_WRITE(sc, RT2560_CSR3, tmp);
2632 
2633 	tmp = addr[4] | addr[5] << 8;
2634 	RAL_WRITE(sc, RT2560_CSR4, tmp);
2635 
2636 	DPRINTF(("setting MAC address to %s\n", ether_sprintf(addr)));
2637 }
2638 
2639 static void
2640 rt2560_get_macaddr(struct rt2560_softc *sc, uint8_t *addr)
2641 {
2642 	uint32_t tmp;
2643 
2644 	tmp = RAL_READ(sc, RT2560_CSR3);
2645 	addr[0] = tmp & 0xff;
2646 	addr[1] = (tmp >>  8) & 0xff;
2647 	addr[2] = (tmp >> 16) & 0xff;
2648 	addr[3] = (tmp >> 24);
2649 
2650 	tmp = RAL_READ(sc, RT2560_CSR4);
2651 	addr[4] = tmp & 0xff;
2652 	addr[5] = (tmp >> 8) & 0xff;
2653 }
2654 
2655 static void
2656 rt2560_update_promisc(struct rt2560_softc *sc)
2657 {
2658 	struct ifnet *ifp = &sc->sc_if;
2659 	uint32_t tmp;
2660 
2661 	tmp = RAL_READ(sc, RT2560_RXCSR0);
2662 
2663 	tmp &= ~RT2560_DROP_NOT_TO_ME;
2664 	if (!(ifp->if_flags & IFF_PROMISC))
2665 		tmp |= RT2560_DROP_NOT_TO_ME;
2666 
2667 	RAL_WRITE(sc, RT2560_RXCSR0, tmp);
2668 
2669 	DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
2670 	    "entering" : "leaving"));
2671 }
2672 
2673 static void
2674 rt2560_set_txantenna(struct rt2560_softc *sc, int antenna)
2675 {
2676 	uint32_t tmp;
2677 	uint8_t tx;
2678 
2679 	tx = rt2560_bbp_read(sc, RT2560_BBP_TX) & ~RT2560_BBP_ANTMASK;
2680 	if (antenna == 1)
2681 		tx |= RT2560_BBP_ANTA;
2682 	else if (antenna == 2)
2683 		tx |= RT2560_BBP_ANTB;
2684 	else
2685 		tx |= RT2560_BBP_DIVERSITY;
2686 
2687 	/* need to force I/Q flip for RF 2525e, 2526 and 5222 */
2688 	if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526 ||
2689 	    sc->rf_rev == RT2560_RF_5222)
2690 		tx |= RT2560_BBP_FLIPIQ;
2691 
2692 	rt2560_bbp_write(sc, RT2560_BBP_TX, tx);
2693 
2694 	/* update values for CCK and OFDM in BBPCSR1 */
2695 	tmp = RAL_READ(sc, RT2560_BBPCSR1) & ~0x00070007;
2696 	tmp |= (tx & 0x7) << 16 | (tx & 0x7);
2697 	RAL_WRITE(sc, RT2560_BBPCSR1, tmp);
2698 }
2699 
2700 static void
2701 rt2560_set_rxantenna(struct rt2560_softc *sc, int antenna)
2702 {
2703 	uint8_t rx;
2704 
2705 	rx = rt2560_bbp_read(sc, RT2560_BBP_RX) & ~RT2560_BBP_ANTMASK;
2706 	if (antenna == 1)
2707 		rx |= RT2560_BBP_ANTA;
2708 	else if (antenna == 2)
2709 		rx |= RT2560_BBP_ANTB;
2710 	else
2711 		rx |= RT2560_BBP_DIVERSITY;
2712 
2713 	/* need to force no I/Q flip for RF 2525e and 2526 */
2714 	if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526)
2715 		rx &= ~RT2560_BBP_FLIPIQ;
2716 
2717 	rt2560_bbp_write(sc, RT2560_BBP_RX, rx);
2718 }
2719 
2720 static const char *
2721 rt2560_get_rf(int rev)
2722 {
2723 	switch (rev) {
2724 	case RT2560_RF_2522:	return "RT2522";
2725 	case RT2560_RF_2523:	return "RT2523";
2726 	case RT2560_RF_2524:	return "RT2524";
2727 	case RT2560_RF_2525:	return "RT2525";
2728 	case RT2560_RF_2525E:	return "RT2525e";
2729 	case RT2560_RF_2526:	return "RT2526";
2730 	case RT2560_RF_5222:	return "RT5222";
2731 	default:		return "unknown";
2732 	}
2733 }
2734 
2735 static void
2736 rt2560_read_eeprom(struct rt2560_softc *sc)
2737 {
2738 	uint16_t val;
2739 	int i;
2740 
2741 	val = rt2560_eeprom_read(sc, RT2560_EEPROM_CONFIG0);
2742 	sc->rf_rev =   (val >> 11) & 0x1f;
2743 	sc->hw_radio = (val >> 10) & 0x1;
2744 	sc->led_mode = (val >> 6)  & 0x7;
2745 	sc->rx_ant =   (val >> 4)  & 0x3;
2746 	sc->tx_ant =   (val >> 2)  & 0x3;
2747 	sc->nb_ant =   val & 0x3;
2748 
2749 	/* read default values for BBP registers */
2750 	for (i = 0; i < 16; i++) {
2751 		val = rt2560_eeprom_read(sc, RT2560_EEPROM_BBP_BASE + i);
2752 		sc->bbp_prom[i].reg = val >> 8;
2753 		sc->bbp_prom[i].val = val & 0xff;
2754 	}
2755 
2756 	/* read Tx power for all b/g channels */
2757 	for (i = 0; i < 14 / 2; i++) {
2758 		val = rt2560_eeprom_read(sc, RT2560_EEPROM_TXPOWER + i);
2759 		sc->txpow[i * 2] = val >> 8;
2760 		sc->txpow[i * 2 + 1] = val & 0xff;
2761 	}
2762 }
2763 
2764 static int
2765 rt2560_bbp_init(struct rt2560_softc *sc)
2766 {
2767 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
2768 	int i, ntries;
2769 
2770 	/* wait for BBP to be ready */
2771 	for (ntries = 0; ntries < 100; ntries++) {
2772 		if (rt2560_bbp_read(sc, RT2560_BBP_VERSION) != 0)
2773 			break;
2774 		DELAY(1);
2775 	}
2776 	if (ntries == 100) {
2777 		printf("%s: timeout waiting for BBP\n", sc->sc_dev.dv_xname);
2778 		return EIO;
2779 	}
2780 
2781 	/* initialize BBP registers to default values */
2782 	for (i = 0; i < N(rt2560_def_bbp); i++) {
2783 		rt2560_bbp_write(sc, rt2560_def_bbp[i].reg,
2784 		    rt2560_def_bbp[i].val);
2785 	}
2786 #if 0
2787 	/* initialize BBP registers to values stored in EEPROM */
2788 	for (i = 0; i < 16; i++) {
2789 		if (sc->bbp_prom[i].reg == 0xff)
2790 			continue;
2791 		rt2560_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2792 	}
2793 #endif
2794 
2795 	return 0;
2796 #undef N
2797 }
2798 
2799 static int
2800 rt2560_init(struct ifnet *ifp)
2801 {
2802 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
2803 	struct rt2560_softc *sc = ifp->if_softc;
2804 	struct ieee80211com *ic = &sc->sc_ic;
2805 	uint32_t tmp;
2806 	int i;
2807 
2808 	/* for CardBus, power on the socket */
2809 	if (!(sc->sc_flags & RT2560_ENABLED)) {
2810 		if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
2811 			printf("%s: could not enable device\n",
2812 			    sc->sc_dev.dv_xname);
2813 			return EIO;
2814 		}
2815 		sc->sc_flags |= RT2560_ENABLED;
2816 	}
2817 
2818 	rt2560_stop(sc);
2819 
2820 	/* setup tx rings */
2821 	tmp = RT2560_PRIO_RING_COUNT << 24 |
2822 	      RT2560_ATIM_RING_COUNT << 16 |
2823 	      RT2560_TX_RING_COUNT   <<  8 |
2824 	      RT2560_TX_DESC_SIZE;
2825 
2826 	/* rings _must_ be initialized in this _exact_ order! */
2827 	RAL_WRITE(sc, RT2560_TXCSR2, tmp);
2828 	RAL_WRITE(sc, RT2560_TXCSR3, sc->txq.physaddr);
2829 	RAL_WRITE(sc, RT2560_TXCSR5, sc->prioq.physaddr);
2830 	RAL_WRITE(sc, RT2560_TXCSR4, sc->atimq.physaddr);
2831 	RAL_WRITE(sc, RT2560_TXCSR6, sc->bcnq.physaddr);
2832 
2833 	/* setup rx ring */
2834 	tmp = RT2560_RX_RING_COUNT << 8 | RT2560_RX_DESC_SIZE;
2835 
2836 	RAL_WRITE(sc, RT2560_RXCSR1, tmp);
2837 	RAL_WRITE(sc, RT2560_RXCSR2, sc->rxq.physaddr);
2838 
2839 	/* initialize MAC registers to default values */
2840 	for (i = 0; i < N(rt2560_def_mac); i++)
2841 		RAL_WRITE(sc, rt2560_def_mac[i].reg, rt2560_def_mac[i].val);
2842 
2843 	IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
2844 	rt2560_set_macaddr(sc, ic->ic_myaddr);
2845 
2846 	/* set basic rate set (will be updated later) */
2847 	RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x153);
2848 
2849 	rt2560_set_txantenna(sc, 1);
2850 	rt2560_set_rxantenna(sc, 1);
2851 	rt2560_update_slot(ifp);
2852 	rt2560_update_plcp(sc);
2853 	rt2560_update_led(sc, 0, 0);
2854 
2855 	RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC);
2856 	RAL_WRITE(sc, RT2560_CSR1, RT2560_HOST_READY);
2857 
2858 	if (rt2560_bbp_init(sc) != 0) {
2859 		rt2560_stop(sc);
2860 		return EIO;
2861 	}
2862 
2863 	/* set default BSS channel */
2864 	ic->ic_bss->ni_chan = ic->ic_ibss_chan;
2865 	rt2560_set_chan(sc, ic->ic_bss->ni_chan);
2866 
2867 	/* kick Rx */
2868 	tmp = RT2560_DROP_PHY_ERROR | RT2560_DROP_CRC_ERROR;
2869 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2870 		tmp |= RT2560_DROP_CTL | RT2560_DROP_VERSION_ERROR;
2871 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2872 			tmp |= RT2560_DROP_TODS;
2873 		if (!(ifp->if_flags & IFF_PROMISC))
2874 			tmp |= RT2560_DROP_NOT_TO_ME;
2875 	}
2876 	RAL_WRITE(sc, RT2560_RXCSR0, tmp);
2877 
2878 	/* clear old FCS and Rx FIFO errors */
2879 	RAL_READ(sc, RT2560_CNT0);
2880 	RAL_READ(sc, RT2560_CNT4);
2881 
2882 	/* clear any pending interrupts */
2883 	RAL_WRITE(sc, RT2560_CSR7, 0xffffffff);
2884 
2885 	/* enable interrupts */
2886 	RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK);
2887 
2888 	ifp->if_flags &= ~IFF_OACTIVE;
2889 	ifp->if_flags |= IFF_RUNNING;
2890 
2891 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2892 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2893 	else
2894 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2895 
2896 	return 0;
2897 #undef N
2898 }
2899 
2900 static void
2901 rt2560_stop(void *priv)
2902 {
2903 	struct rt2560_softc *sc = priv;
2904 	struct ieee80211com *ic = &sc->sc_ic;
2905 	struct ifnet *ifp = ic->ic_ifp;
2906 
2907 	sc->sc_tx_timer = 0;
2908 	ifp->if_timer = 0;
2909 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2910 
2911 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);	/* free all nodes */
2912 
2913 	/* abort Tx */
2914 	RAL_WRITE(sc, RT2560_TXCSR0, RT2560_ABORT_TX);
2915 
2916 	/* disable Rx */
2917 	RAL_WRITE(sc, RT2560_RXCSR0, RT2560_DISABLE_RX);
2918 
2919 	/* reset ASIC (and thus, BBP) */
2920 	RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC);
2921 	RAL_WRITE(sc, RT2560_CSR1, 0);
2922 
2923 	/* disable interrupts */
2924 	RAL_WRITE(sc, RT2560_CSR8, 0xffffffff);
2925 
2926 	/* clear any pending interrupt */
2927 	RAL_WRITE(sc, RT2560_CSR7, 0xffffffff);
2928 
2929 	/* reset Tx and Rx rings */
2930 	rt2560_reset_tx_ring(sc, &sc->txq);
2931 	rt2560_reset_tx_ring(sc, &sc->atimq);
2932 	rt2560_reset_tx_ring(sc, &sc->prioq);
2933 	rt2560_reset_tx_ring(sc, &sc->bcnq);
2934 	rt2560_reset_rx_ring(sc, &sc->rxq);
2935 
2936 }
2937