xref: /netbsd-src/sys/dev/ic/rt2560.c (revision 8b0f9554ff8762542c4defc4f70e1eb76fb508fa)
1 /*	$NetBSD: rt2560.c,v 1.15 2007/12/09 20:27:58 jmcneill Exp $	*/
2 /*	$OpenBSD: rt2560.c,v 1.15 2006/04/20 20:31:12 miod Exp $  */
3 /*	$FreeBSD: rt2560.c,v 1.3 2006/03/21 21:15:43 damien Exp $*/
4 
5 /*-
6  * Copyright (c) 2005, 2006
7  *	Damien Bergamini <damien.bergamini@free.fr>
8  *
9  * Permission to use, copy, modify, and distribute this software for any
10  * purpose with or without fee is hereby granted, provided that the above
11  * copyright notice and this permission notice appear in all copies.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20  */
21 
22 /*-
23  * Ralink Technology RT2560 chipset driver
24  * http://www.ralinktech.com/
25  */
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: rt2560.c,v 1.15 2007/12/09 20:27:58 jmcneill Exp $");
28 
29 #include "bpfilter.h"
30 
31 #include <sys/param.h>
32 #include <sys/sockio.h>
33 #include <sys/mbuf.h>
34 #include <sys/kernel.h>
35 #include <sys/socket.h>
36 #include <sys/systm.h>
37 #include <sys/malloc.h>
38 #include <sys/callout.h>
39 #include <sys/conf.h>
40 #include <sys/device.h>
41 
42 #include <sys/bus.h>
43 #include <machine/endian.h>
44 #include <sys/intr.h>
45 
46 #if NBPFILTER > 0
47 #include <net/bpf.h>
48 #endif
49 #include <net/if.h>
50 #include <net/if_arp.h>
51 #include <net/if_dl.h>
52 #include <net/if_media.h>
53 #include <net/if_types.h>
54 #include <net/if_ether.h>
55 
56 #include <netinet/in.h>
57 #include <netinet/in_systm.h>
58 #include <netinet/in_var.h>
59 #include <netinet/ip.h>
60 
61 #include <net80211/ieee80211_var.h>
62 #include <net80211/ieee80211_rssadapt.h>
63 #include <net80211/ieee80211_radiotap.h>
64 
65 #include <dev/ic/rt2560reg.h>
66 #include <dev/ic/rt2560var.h>
67 
68 #include <dev/pci/pcireg.h>
69 #include <dev/pci/pcivar.h>
70 #include <dev/pci/pcidevs.h>
71 
72 #ifdef RAL_DEBUG
73 #define DPRINTF(x)	do { if (rt2560_debug > 0) printf x; } while (0)
74 #define DPRINTFN(n, x)	do { if (rt2560_debug >= (n)) printf x; } while (0)
75 int rt2560_debug = 0;
76 #else
77 #define DPRINTF(x)
78 #define DPRINTFN(n, x)
79 #endif
80 
81 static int	rt2560_alloc_tx_ring(struct rt2560_softc *,
82 		    struct rt2560_tx_ring *, int);
83 static void	rt2560_reset_tx_ring(struct rt2560_softc *,
84 		    struct rt2560_tx_ring *);
85 static void	rt2560_free_tx_ring(struct rt2560_softc *,
86 		    struct rt2560_tx_ring *);
87 static int	rt2560_alloc_rx_ring(struct rt2560_softc *,
88 		    struct rt2560_rx_ring *, int);
89 static void	rt2560_reset_rx_ring(struct rt2560_softc *,
90 		    struct rt2560_rx_ring *);
91 static void	rt2560_free_rx_ring(struct rt2560_softc *,
92 		    struct rt2560_rx_ring *);
93 static struct ieee80211_node *
94 		rt2560_node_alloc(struct ieee80211_node_table *);
95 static int	rt2560_media_change(struct ifnet *);
96 static void	rt2560_next_scan(void *);
97 static void	rt2560_iter_func(void *, struct ieee80211_node *);
98 static void	rt2560_update_rssadapt(void *);
99 static int	rt2560_newstate(struct ieee80211com *, enum ieee80211_state,
100     		    int);
101 static uint16_t	rt2560_eeprom_read(struct rt2560_softc *, uint8_t);
102 static void	rt2560_encryption_intr(struct rt2560_softc *);
103 static void	rt2560_tx_intr(struct rt2560_softc *);
104 static void	rt2560_prio_intr(struct rt2560_softc *);
105 static void	rt2560_decryption_intr(struct rt2560_softc *);
106 static void	rt2560_rx_intr(struct rt2560_softc *);
107 static void	rt2560_beacon_expire(struct rt2560_softc *);
108 static void	rt2560_wakeup_expire(struct rt2560_softc *);
109 #if NBPFILTER > 0
110 static uint8_t	rt2560_rxrate(struct rt2560_rx_desc *);
111 #endif
112 static int	rt2560_ack_rate(struct ieee80211com *, int);
113 static uint16_t	rt2560_txtime(int, int, uint32_t);
114 static uint8_t	rt2560_plcp_signal(int);
115 static void	rt2560_setup_tx_desc(struct rt2560_softc *,
116 		    struct rt2560_tx_desc *, uint32_t, int, int, int,
117 		    bus_addr_t);
118 static int	rt2560_tx_bcn(struct rt2560_softc *, struct mbuf *,
119 		    struct ieee80211_node *);
120 static int	rt2560_tx_mgt(struct rt2560_softc *, struct mbuf *,
121 		    struct ieee80211_node *);
122 static struct mbuf *rt2560_get_rts(struct rt2560_softc *,
123 		    struct ieee80211_frame *, uint16_t);
124 static int	rt2560_tx_data(struct rt2560_softc *, struct mbuf *,
125 		    struct ieee80211_node *);
126 static void	rt2560_start(struct ifnet *);
127 static void	rt2560_watchdog(struct ifnet *);
128 static int	rt2560_reset(struct ifnet *);
129 static int	rt2560_ioctl(struct ifnet *, u_long, void *);
130 static void	rt2560_bbp_write(struct rt2560_softc *, uint8_t, uint8_t);
131 static uint8_t	rt2560_bbp_read(struct rt2560_softc *, uint8_t);
132 static void	rt2560_rf_write(struct rt2560_softc *, uint8_t, uint32_t);
133 static void	rt2560_set_chan(struct rt2560_softc *,
134 		    struct ieee80211_channel *);
135 static void	rt2560_disable_rf_tune(struct rt2560_softc *);
136 static void	rt2560_enable_tsf_sync(struct rt2560_softc *);
137 static void	rt2560_update_plcp(struct rt2560_softc *);
138 static void	rt2560_update_slot(struct ifnet *);
139 static void	rt2560_set_basicrates(struct rt2560_softc *);
140 static void	rt2560_update_led(struct rt2560_softc *, int, int);
141 static void	rt2560_set_bssid(struct rt2560_softc *, uint8_t *);
142 static void	rt2560_set_macaddr(struct rt2560_softc *, uint8_t *);
143 static void	rt2560_get_macaddr(struct rt2560_softc *, uint8_t *);
144 static void	rt2560_update_promisc(struct rt2560_softc *);
145 static void	rt2560_set_txantenna(struct rt2560_softc *, int);
146 static void	rt2560_set_rxantenna(struct rt2560_softc *, int);
147 static const char *rt2560_get_rf(int);
148 static void	rt2560_read_eeprom(struct rt2560_softc *);
149 static int	rt2560_bbp_init(struct rt2560_softc *);
150 static int	rt2560_init(struct ifnet *);
151 static void	rt2560_stop(struct ifnet *, int);
152 
153 /*
154  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
155  */
156 static const struct ieee80211_rateset rt2560_rateset_11a =
157 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
158 
159 static const struct ieee80211_rateset rt2560_rateset_11b =
160 	{ 4, { 2, 4, 11, 22 } };
161 
162 static const struct ieee80211_rateset rt2560_rateset_11g =
163 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
164 
165 /*
166  * Default values for MAC registers; values taken from the reference driver.
167  */
168 static const struct {
169 	uint32_t	reg;
170 	uint32_t	val;
171 } rt2560_def_mac[] = {
172 	{ RT2560_PSCSR0,      0x00020002 },
173 	{ RT2560_PSCSR1,      0x00000002 },
174 	{ RT2560_PSCSR2,      0x00020002 },
175 	{ RT2560_PSCSR3,      0x00000002 },
176 	{ RT2560_TIMECSR,     0x00003f21 },
177 	{ RT2560_CSR9,        0x00000780 },
178 	{ RT2560_CSR11,       0x07041483 },
179 	{ RT2560_CNT3,        0x00000000 },
180 	{ RT2560_TXCSR1,      0x07614562 },
181 	{ RT2560_ARSP_PLCP_0, 0x8c8d8b8a },
182 	{ RT2560_ACKPCTCSR,   0x7038140a },
183 	{ RT2560_ARTCSR1,     0x1d21252d },
184 	{ RT2560_ARTCSR2,     0x1919191d },
185 	{ RT2560_RXCSR0,      0xffffffff },
186 	{ RT2560_RXCSR3,      0xb3aab3af },
187 	{ RT2560_PCICSR,      0x000003b8 },
188 	{ RT2560_PWRCSR0,     0x3f3b3100 },
189 	{ RT2560_GPIOCSR,     0x0000ff00 },
190 	{ RT2560_TESTCSR,     0x000000f0 },
191 	{ RT2560_PWRCSR1,     0x000001ff },
192 	{ RT2560_MACCSR0,     0x00213223 },
193 	{ RT2560_MACCSR1,     0x00235518 },
194 	{ RT2560_RLPWCSR,     0x00000040 },
195 	{ RT2560_RALINKCSR,   0x9a009a11 },
196 	{ RT2560_CSR7,        0xffffffff },
197 	{ RT2560_BBPCSR1,     0x82188200 },
198 	{ RT2560_TXACKCSR0,   0x00000020 },
199 	{ RT2560_SECCSR3,     0x0000e78f }
200 };
201 
202 /*
203  * Default values for BBP registers; values taken from the reference driver.
204  */
205 static const struct {
206 	uint8_t	reg;
207 	uint8_t	val;
208 } rt2560_def_bbp[] = {
209 	{  3, 0x02 },
210 	{  4, 0x19 },
211 	{ 14, 0x1c },
212 	{ 15, 0x30 },
213 	{ 16, 0xac },
214 	{ 17, 0x48 },
215 	{ 18, 0x18 },
216 	{ 19, 0xff },
217 	{ 20, 0x1e },
218 	{ 21, 0x08 },
219 	{ 22, 0x08 },
220 	{ 23, 0x08 },
221 	{ 24, 0x80 },
222 	{ 25, 0x50 },
223 	{ 26, 0x08 },
224 	{ 27, 0x23 },
225 	{ 30, 0x10 },
226 	{ 31, 0x2b },
227 	{ 32, 0xb9 },
228 	{ 34, 0x12 },
229 	{ 35, 0x50 },
230 	{ 39, 0xc4 },
231 	{ 40, 0x02 },
232 	{ 41, 0x60 },
233 	{ 53, 0x10 },
234 	{ 54, 0x18 },
235 	{ 56, 0x08 },
236 	{ 57, 0x10 },
237 	{ 58, 0x08 },
238 	{ 61, 0x60 },
239 	{ 62, 0x10 },
240 	{ 75, 0xff }
241 };
242 
243 /*
244  * Default values for RF register R2 indexed by channel numbers; values taken
245  * from the reference driver.
246  */
247 static const uint32_t rt2560_rf2522_r2[] = {
248 	0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814,
249 	0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e
250 };
251 
252 static const uint32_t rt2560_rf2523_r2[] = {
253 	0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
254 	0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
255 };
256 
257 static const uint32_t rt2560_rf2524_r2[] = {
258 	0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
259 	0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
260 };
261 
262 static const uint32_t rt2560_rf2525_r2[] = {
263 	0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d,
264 	0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346
265 };
266 
267 static const uint32_t rt2560_rf2525_hi_r2[] = {
268 	0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345,
269 	0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e
270 };
271 
272 static const uint32_t rt2560_rf2525e_r2[] = {
273 	0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463,
274 	0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b
275 };
276 
277 static const uint32_t rt2560_rf2526_hi_r2[] = {
278 	0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d,
279 	0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241
280 };
281 
282 static const uint32_t rt2560_rf2526_r2[] = {
283 	0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229,
284 	0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d
285 };
286 
287 /*
288  * For dual-band RF, RF registers R1 and R4 also depend on channel number;
289  * values taken from the reference driver.
290  */
291 static const struct {
292 	uint8_t		chan;
293 	uint32_t	r1;
294 	uint32_t	r2;
295 	uint32_t	r4;
296 } rt2560_rf5222[] = {
297 	{   1, 0x08808, 0x0044d, 0x00282 },
298 	{   2, 0x08808, 0x0044e, 0x00282 },
299 	{   3, 0x08808, 0x0044f, 0x00282 },
300 	{   4, 0x08808, 0x00460, 0x00282 },
301 	{   5, 0x08808, 0x00461, 0x00282 },
302 	{   6, 0x08808, 0x00462, 0x00282 },
303 	{   7, 0x08808, 0x00463, 0x00282 },
304 	{   8, 0x08808, 0x00464, 0x00282 },
305 	{   9, 0x08808, 0x00465, 0x00282 },
306 	{  10, 0x08808, 0x00466, 0x00282 },
307 	{  11, 0x08808, 0x00467, 0x00282 },
308 	{  12, 0x08808, 0x00468, 0x00282 },
309 	{  13, 0x08808, 0x00469, 0x00282 },
310 	{  14, 0x08808, 0x0046b, 0x00286 },
311 
312 	{  36, 0x08804, 0x06225, 0x00287 },
313 	{  40, 0x08804, 0x06226, 0x00287 },
314 	{  44, 0x08804, 0x06227, 0x00287 },
315 	{  48, 0x08804, 0x06228, 0x00287 },
316 	{  52, 0x08804, 0x06229, 0x00287 },
317 	{  56, 0x08804, 0x0622a, 0x00287 },
318 	{  60, 0x08804, 0x0622b, 0x00287 },
319 	{  64, 0x08804, 0x0622c, 0x00287 },
320 
321 	{ 100, 0x08804, 0x02200, 0x00283 },
322 	{ 104, 0x08804, 0x02201, 0x00283 },
323 	{ 108, 0x08804, 0x02202, 0x00283 },
324 	{ 112, 0x08804, 0x02203, 0x00283 },
325 	{ 116, 0x08804, 0x02204, 0x00283 },
326 	{ 120, 0x08804, 0x02205, 0x00283 },
327 	{ 124, 0x08804, 0x02206, 0x00283 },
328 	{ 128, 0x08804, 0x02207, 0x00283 },
329 	{ 132, 0x08804, 0x02208, 0x00283 },
330 	{ 136, 0x08804, 0x02209, 0x00283 },
331 	{ 140, 0x08804, 0x0220a, 0x00283 },
332 
333 	{ 149, 0x08808, 0x02429, 0x00281 },
334 	{ 153, 0x08808, 0x0242b, 0x00281 },
335 	{ 157, 0x08808, 0x0242d, 0x00281 },
336 	{ 161, 0x08808, 0x0242f, 0x00281 }
337 };
338 
339 int
340 rt2560_attach(void *xsc, int id)
341 {
342 	struct rt2560_softc *sc = xsc;
343 	struct ieee80211com *ic = &sc->sc_ic;
344 	struct ifnet *ifp = &sc->sc_if;
345 	int error, i;
346 
347 	callout_init(&sc->scan_ch, 0);
348 	callout_init(&sc->rssadapt_ch, 0);
349 
350 	/* retrieve RT2560 rev. no */
351 	sc->asic_rev = RAL_READ(sc, RT2560_CSR0);
352 
353 	/* retrieve MAC address */
354 	rt2560_get_macaddr(sc, ic->ic_myaddr);
355 
356 	aprint_normal("%s: 802.11 address %s\n", sc->sc_dev.dv_xname,
357 	    ether_sprintf(ic->ic_myaddr));
358 
359 	/* retrieve RF rev. no and various other things from EEPROM */
360 	rt2560_read_eeprom(sc);
361 
362 	aprint_normal("%s: MAC/BBP RT2560 (rev 0x%02x), RF %s\n",
363 	    sc->sc_dev.dv_xname, sc->asic_rev, rt2560_get_rf(sc->rf_rev));
364 
365 	/*
366 	 * Allocate Tx and Rx rings.
367 	 */
368 	error = rt2560_alloc_tx_ring(sc, &sc->txq, RT2560_TX_RING_COUNT);
369 	if (error != 0) {
370 		aprint_error("%s: could not allocate Tx ring\n)",
371 		    sc->sc_dev.dv_xname);
372 		goto fail1;
373 	}
374 
375 	error = rt2560_alloc_tx_ring(sc, &sc->atimq, RT2560_ATIM_RING_COUNT);
376 	if (error != 0) {
377 		aprint_error("%s: could not allocate ATIM ring\n",
378 		    sc->sc_dev.dv_xname);
379 		goto fail2;
380 	}
381 
382 	error = rt2560_alloc_tx_ring(sc, &sc->prioq, RT2560_PRIO_RING_COUNT);
383 	if (error != 0) {
384 		aprint_error("%s: could not allocate Prio ring\n",
385 		    sc->sc_dev.dv_xname);
386 		goto fail3;
387 	}
388 
389 	error = rt2560_alloc_tx_ring(sc, &sc->bcnq, RT2560_BEACON_RING_COUNT);
390 	if (error != 0) {
391 		aprint_error("%s: could not allocate Beacon ring\n",
392 		    sc->sc_dev.dv_xname);
393 		goto fail4;
394 	}
395 
396 	error = rt2560_alloc_rx_ring(sc, &sc->rxq, RT2560_RX_RING_COUNT);
397 	if (error != 0) {
398 		aprint_error("%s: could not allocate Rx ring\n",
399 		    sc->sc_dev.dv_xname);
400 		goto fail5;
401 	}
402 
403 	ifp->if_softc = sc;
404 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
405 	ifp->if_init = rt2560_init;
406 	ifp->if_stop = rt2560_stop;
407 	ifp->if_ioctl = rt2560_ioctl;
408 	ifp->if_start = rt2560_start;
409 	ifp->if_watchdog = rt2560_watchdog;
410 	IFQ_SET_READY(&ifp->if_snd);
411 	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
412 
413 	ic->ic_ifp = ifp;
414 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
415 	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
416 	ic->ic_state = IEEE80211_S_INIT;
417 
418 	/* set device capabilities */
419 	ic->ic_caps =
420 	    IEEE80211_C_IBSS |		/* IBSS mode supported */
421 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
422 	    IEEE80211_C_HOSTAP |	/* HostAp mode supported */
423 	    IEEE80211_C_TXPMGT |	/* tx power management */
424 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
425 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
426 	    IEEE80211_C_WPA;		/* 802.11i */
427 
428 	if (sc->rf_rev == RT2560_RF_5222) {
429 		/* set supported .11a rates */
430 		ic->ic_sup_rates[IEEE80211_MODE_11A] = rt2560_rateset_11a;
431 
432 		/* set supported .11a channels */
433 		for (i = 36; i <= 64; i += 4) {
434 			ic->ic_channels[i].ic_freq =
435 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
436 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
437 		}
438 		for (i = 100; i <= 140; i += 4) {
439 			ic->ic_channels[i].ic_freq =
440 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
441 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
442 		}
443 		for (i = 149; i <= 161; i += 4) {
444 			ic->ic_channels[i].ic_freq =
445 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
446 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
447 		}
448 	}
449 
450 	/* set supported .11b and .11g rates */
451 	ic->ic_sup_rates[IEEE80211_MODE_11B] = rt2560_rateset_11b;
452 	ic->ic_sup_rates[IEEE80211_MODE_11G] = rt2560_rateset_11g;
453 
454 	/* set supported .11b and .11g channels (1 through 14) */
455 	for (i = 1; i <= 14; i++) {
456 		ic->ic_channels[i].ic_freq =
457 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
458 		ic->ic_channels[i].ic_flags =
459 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
460 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
461 	}
462 
463 	if_attach(ifp);
464 	ieee80211_ifattach(ic);
465 	ic->ic_node_alloc = rt2560_node_alloc;
466 	ic->ic_updateslot = rt2560_update_slot;
467 	ic->ic_reset = rt2560_reset;
468 
469 	/* override state transition machine */
470 	sc->sc_newstate = ic->ic_newstate;
471 	ic->ic_newstate = rt2560_newstate;
472 	ieee80211_media_init(ic, rt2560_media_change, ieee80211_media_status);
473 
474 #if NBPFILTER > 0
475 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
476 	    sizeof (struct ieee80211_frame) + 64, &sc->sc_drvbpf);
477 #endif
478 
479 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
480 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
481 	sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2560_RX_RADIOTAP_PRESENT);
482 
483 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
484 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
485 	sc->sc_txtap.wt_ihdr.it_present = htole32(RT2560_TX_RADIOTAP_PRESENT);
486 
487 
488 	sc->dwelltime = 200;
489 
490 	ieee80211_announce(ic);
491 
492 	if (!pmf_device_register(&sc->sc_dev, NULL, NULL))
493 		aprint_error_dev(&sc->sc_dev, "couldn't establish power handler\n");
494 	else
495 		pmf_class_network_register(&sc->sc_dev, ifp);
496 
497 	return 0;
498 
499 fail5:	rt2560_free_tx_ring(sc, &sc->bcnq);
500 fail4:	rt2560_free_tx_ring(sc, &sc->prioq);
501 fail3:	rt2560_free_tx_ring(sc, &sc->atimq);
502 fail2:	rt2560_free_tx_ring(sc, &sc->txq);
503 fail1:
504 	return ENXIO;
505 }
506 
507 
508 int
509 rt2560_detach(void *xsc)
510 {
511 	struct rt2560_softc *sc = xsc;
512 	struct ifnet *ifp = &sc->sc_if;
513 
514 	callout_stop(&sc->scan_ch);
515 	callout_stop(&sc->rssadapt_ch);
516 
517 	pmf_device_deregister(&sc->sc_dev);
518 
519 	rt2560_stop(ifp, 1);
520 
521 	ieee80211_ifdetach(&sc->sc_ic);	/* free all nodes */
522 	if_detach(ifp);
523 
524 	rt2560_free_tx_ring(sc, &sc->txq);
525 	rt2560_free_tx_ring(sc, &sc->atimq);
526 	rt2560_free_tx_ring(sc, &sc->prioq);
527 	rt2560_free_tx_ring(sc, &sc->bcnq);
528 	rt2560_free_rx_ring(sc, &sc->rxq);
529 
530 	return 0;
531 }
532 
533 int
534 rt2560_alloc_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring,
535     int count)
536 {
537 	int i, nsegs, error;
538 
539 	ring->count = count;
540 	ring->queued = 0;
541 	ring->cur = ring->next = 0;
542 	ring->cur_encrypt = ring->next_encrypt = 0;
543 
544 	error = bus_dmamap_create(sc->sc_dmat, count * RT2560_TX_DESC_SIZE, 1,
545 	    count * RT2560_TX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map);
546 	if (error != 0) {
547 		printf("%s: could not create desc DMA map\n",
548 		    sc->sc_dev.dv_xname);
549 		goto fail;
550 	}
551 
552 	error = bus_dmamem_alloc(sc->sc_dmat, count * RT2560_TX_DESC_SIZE,
553 	    PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
554 	if (error != 0) {
555 		printf("%s: could not allocate DMA memory\n",
556 		    sc->sc_dev.dv_xname);
557 		goto fail;
558 	}
559 
560 	error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
561 	    count * RT2560_TX_DESC_SIZE, (void **)&ring->desc,
562 	    BUS_DMA_NOWAIT);
563 	if (error != 0) {
564 		printf("%s: could not map desc DMA memory\n",
565 		    sc->sc_dev.dv_xname);
566 		goto fail;
567 	}
568 
569 	error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
570 	    count * RT2560_TX_DESC_SIZE, NULL, BUS_DMA_NOWAIT);
571 	if (error != 0) {
572 		printf("%s: could not load desc DMA map\n",
573 		    sc->sc_dev.dv_xname);
574 		goto fail;
575 	}
576 
577 	memset(ring->desc, 0, count * RT2560_TX_DESC_SIZE);
578 	ring->physaddr = ring->map->dm_segs->ds_addr;
579 
580 	ring->data = malloc(count * sizeof (struct rt2560_tx_data), M_DEVBUF,
581 	    M_NOWAIT);
582 	if (ring->data == NULL) {
583 		printf("%s: could not allocate soft data\n",
584 		    sc->sc_dev.dv_xname);
585 		error = ENOMEM;
586 		goto fail;
587 	}
588 
589 	memset(ring->data, 0, count * sizeof (struct rt2560_tx_data));
590 	for (i = 0; i < count; i++) {
591 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
592 		    RT2560_MAX_SCATTER, MCLBYTES, 0, BUS_DMA_NOWAIT,
593 		    &ring->data[i].map);
594 		if (error != 0) {
595 			printf("%s: could not create DMA map\n",
596 			    sc->sc_dev.dv_xname);
597 			goto fail;
598 		}
599 	}
600 
601 	return 0;
602 
603 fail:	rt2560_free_tx_ring(sc, ring);
604 	return error;
605 }
606 
607 void
608 rt2560_reset_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring)
609 {
610 	struct rt2560_tx_desc *desc;
611 	struct rt2560_tx_data *data;
612 	int i;
613 
614 	for (i = 0; i < ring->count; i++) {
615 		desc = &ring->desc[i];
616 		data = &ring->data[i];
617 
618 		if (data->m != NULL) {
619 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
620 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
621 			bus_dmamap_unload(sc->sc_dmat, data->map);
622 			m_freem(data->m);
623 			data->m = NULL;
624 		}
625 
626 		if (data->ni != NULL) {
627 			ieee80211_free_node(data->ni);
628 			data->ni = NULL;
629 		}
630 
631 		desc->flags = 0;
632 	}
633 
634 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
635 	    BUS_DMASYNC_PREWRITE);
636 
637 	ring->queued = 0;
638 	ring->cur = ring->next = 0;
639 	ring->cur_encrypt = ring->next_encrypt = 0;
640 }
641 
642 void
643 rt2560_free_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring)
644 {
645 	struct rt2560_tx_data *data;
646 	int i;
647 
648 	if (ring->desc != NULL) {
649 		bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
650 		    ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
651 		bus_dmamap_unload(sc->sc_dmat, ring->map);
652 		bus_dmamem_unmap(sc->sc_dmat, (void *)ring->desc,
653 		    ring->count * RT2560_TX_DESC_SIZE);
654 		bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
655 	}
656 
657 	if (ring->data != NULL) {
658 		for (i = 0; i < ring->count; i++) {
659 			data = &ring->data[i];
660 
661 			if (data->m != NULL) {
662 				bus_dmamap_sync(sc->sc_dmat, data->map, 0,
663 				    data->map->dm_mapsize,
664 				    BUS_DMASYNC_POSTWRITE);
665 				bus_dmamap_unload(sc->sc_dmat, data->map);
666 				m_freem(data->m);
667 			}
668 
669 			if (data->ni != NULL)
670 				ieee80211_free_node(data->ni);
671 
672 
673 			if (data->map != NULL)
674 				bus_dmamap_destroy(sc->sc_dmat, data->map);
675 		}
676 		free(ring->data, M_DEVBUF);
677 	}
678 }
679 
680 int
681 rt2560_alloc_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring,
682     int count)
683 {
684 	struct rt2560_rx_desc *desc;
685 	struct rt2560_rx_data *data;
686 	int i, nsegs, error;
687 
688 	ring->count = count;
689 	ring->cur = ring->next = 0;
690 	ring->cur_decrypt = 0;
691 
692 	error = bus_dmamap_create(sc->sc_dmat, count * RT2560_RX_DESC_SIZE, 1,
693 	    count * RT2560_RX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map);
694 	if (error != 0) {
695 		printf("%s: could not create desc DMA map\n",
696 		    sc->sc_dev.dv_xname);
697 		goto fail;
698 	}
699 
700 	error = bus_dmamem_alloc(sc->sc_dmat, count * RT2560_RX_DESC_SIZE,
701 	    PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
702 	if (error != 0) {
703 		printf("%s: could not allocate DMA memory\n",
704 		    sc->sc_dev.dv_xname);
705 		goto fail;
706 	}
707 
708 	error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
709 	    count * RT2560_RX_DESC_SIZE, (void **)&ring->desc,
710 	    BUS_DMA_NOWAIT);
711 	if (error != 0) {
712 		printf("%s: could not map desc DMA memory\n",
713 		    sc->sc_dev.dv_xname);
714 		goto fail;
715 	}
716 
717 	error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
718 	    count * RT2560_RX_DESC_SIZE, NULL, BUS_DMA_NOWAIT);
719 	if (error != 0) {
720 		printf("%s: could not load desc DMA map\n",
721 		    sc->sc_dev.dv_xname);
722 		goto fail;
723 	}
724 
725 	memset(ring->desc, 0, count * RT2560_RX_DESC_SIZE);
726 	ring->physaddr = ring->map->dm_segs->ds_addr;
727 
728 	ring->data = malloc(count * sizeof (struct rt2560_rx_data), M_DEVBUF,
729 	    M_NOWAIT);
730 	if (ring->data == NULL) {
731 		printf("%s: could not allocate soft data\n",
732 		    sc->sc_dev.dv_xname);
733 		error = ENOMEM;
734 		goto fail;
735 	}
736 
737 	/*
738 	 * Pre-allocate Rx buffers and populate Rx ring.
739 	 */
740 	memset(ring->data, 0, count * sizeof (struct rt2560_rx_data));
741 	for (i = 0; i < count; i++) {
742 		desc = &sc->rxq.desc[i];
743 		data = &sc->rxq.data[i];
744 
745 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
746 		    0, BUS_DMA_NOWAIT, &data->map);
747 		if (error != 0) {
748 			printf("%s: could not create DMA map\n",
749 			    sc->sc_dev.dv_xname);
750 			goto fail;
751 		}
752 
753 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
754 		if (data->m == NULL) {
755 			printf("%s: could not allocate rx mbuf\n",
756 			    sc->sc_dev.dv_xname);
757 			error = ENOMEM;
758 			goto fail;
759 		}
760 
761 		MCLGET(data->m, M_DONTWAIT);
762 		if (!(data->m->m_flags & M_EXT)) {
763 			printf("%s: could not allocate rx mbuf cluster\n",
764 			    sc->sc_dev.dv_xname);
765 			error = ENOMEM;
766 			goto fail;
767 		}
768 
769 		error = bus_dmamap_load(sc->sc_dmat, data->map,
770 		    mtod(data->m, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
771 		if (error != 0) {
772 			printf("%s: could not load rx buf DMA map",
773 			    sc->sc_dev.dv_xname);
774 			goto fail;
775 		}
776 
777 		desc->flags = htole32(RT2560_RX_BUSY);
778 		desc->physaddr = htole32(data->map->dm_segs->ds_addr);
779 	}
780 
781 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
782 	    BUS_DMASYNC_PREWRITE);
783 
784 	return 0;
785 
786 fail:	rt2560_free_rx_ring(sc, ring);
787 	return error;
788 }
789 
790 void
791 rt2560_reset_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring)
792 {
793 	int i;
794 
795 	for (i = 0; i < ring->count; i++) {
796 		ring->desc[i].flags = htole32(RT2560_RX_BUSY);
797 		ring->data[i].drop = 0;
798 	}
799 
800 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
801 	    BUS_DMASYNC_PREWRITE);
802 
803 	ring->cur = ring->next = 0;
804 	ring->cur_decrypt = 0;
805 }
806 
807 void
808 rt2560_free_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring)
809 {
810 	struct rt2560_rx_data *data;
811 	int i;
812 
813 	if (ring->desc != NULL) {
814 		bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
815 		    ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
816 		bus_dmamap_unload(sc->sc_dmat, ring->map);
817 		bus_dmamem_unmap(sc->sc_dmat, (void *)ring->desc,
818 		    ring->count * RT2560_RX_DESC_SIZE);
819 		bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
820 	}
821 
822 	if (ring->data != NULL) {
823 		for (i = 0; i < ring->count; i++) {
824 			data = &ring->data[i];
825 
826 			if (data->m != NULL) {
827 				bus_dmamap_sync(sc->sc_dmat, data->map, 0,
828 				    data->map->dm_mapsize,
829 				    BUS_DMASYNC_POSTREAD);
830 				bus_dmamap_unload(sc->sc_dmat, data->map);
831 				m_freem(data->m);
832 			}
833 
834 			if (data->map != NULL)
835 				bus_dmamap_destroy(sc->sc_dmat, data->map);
836 		}
837 		free(ring->data, M_DEVBUF);
838 	}
839 }
840 
841 struct ieee80211_node *
842 rt2560_node_alloc(struct ieee80211_node_table *nt)
843 {
844 	struct rt2560_node *rn;
845 
846 	rn = malloc(sizeof (struct rt2560_node), M_80211_NODE,
847 	    M_NOWAIT | M_ZERO);
848 
849 	return (rn != NULL) ? &rn->ni : NULL;
850 }
851 
852 int
853 rt2560_media_change(struct ifnet *ifp)
854 {
855 	int error;
856 
857 	error = ieee80211_media_change(ifp);
858 	if (error != ENETRESET)
859 		return error;
860 
861 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
862 		rt2560_init(ifp);
863 
864 	return 0;
865 }
866 
867 /*
868  * This function is called periodically (every 200ms) during scanning to
869  * switch from one channel to another.
870  */
871 void
872 rt2560_next_scan(void *arg)
873 {
874 	struct rt2560_softc *sc = arg;
875 	struct ieee80211com *ic = &sc->sc_ic;
876 
877 	if (ic->ic_state == IEEE80211_S_SCAN)
878 		ieee80211_next_scan(ic);
879 }
880 
881 /*
882  * This function is called for each neighbor node.
883  */
884 void
885 rt2560_iter_func(void *arg, struct ieee80211_node *ni)
886 {
887 	struct rt2560_node *rn = (struct rt2560_node *)ni;
888 
889 	ieee80211_rssadapt_updatestats(&rn->rssadapt);
890 }
891 
892 /*
893  * This function is called periodically (every 100ms) in RUN state to update
894  * the rate adaptation statistics.
895  */
896 void
897 rt2560_update_rssadapt(void *arg)
898 {
899 	struct rt2560_softc *sc = arg;
900 	struct ieee80211com *ic = &sc->sc_ic;
901 
902 	ieee80211_iterate_nodes(&ic->ic_sta, rt2560_iter_func, arg);
903 
904 	callout_reset(&sc->rssadapt_ch, hz / 10, rt2560_update_rssadapt, sc);
905 }
906 
907 int
908 rt2560_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
909 {
910 	struct rt2560_softc *sc = ic->ic_ifp->if_softc;
911 	enum ieee80211_state ostate;
912 	struct ieee80211_node *ni;
913 	struct mbuf *m;
914 	int error = 0;
915 
916 	ostate = ic->ic_state;
917 	callout_stop(&sc->scan_ch);
918 
919 	switch (nstate) {
920 	case IEEE80211_S_INIT:
921 		callout_stop(&sc->rssadapt_ch);
922 
923 		if (ostate == IEEE80211_S_RUN) {
924 			/* abort TSF synchronization */
925 			RAL_WRITE(sc, RT2560_CSR14, 0);
926 
927 			/* turn association led off */
928 			rt2560_update_led(sc, 0, 0);
929 		}
930 		break;
931 
932 	case IEEE80211_S_SCAN:
933 		rt2560_set_chan(sc, ic->ic_curchan);
934 		callout_reset(&sc->scan_ch, (sc->dwelltime * hz) / 1000,
935 		    rt2560_next_scan, sc);
936 		break;
937 
938 	case IEEE80211_S_AUTH:
939 		rt2560_set_chan(sc, ic->ic_curchan);
940 		break;
941 
942 	case IEEE80211_S_ASSOC:
943 		rt2560_set_chan(sc, ic->ic_curchan);
944 		break;
945 
946 	case IEEE80211_S_RUN:
947 		rt2560_set_chan(sc, ic->ic_curchan);
948 
949 		ni = ic->ic_bss;
950 
951 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
952 			rt2560_update_plcp(sc);
953 			rt2560_set_basicrates(sc);
954 			rt2560_set_bssid(sc, ni->ni_bssid);
955 		}
956 
957 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
958 		    ic->ic_opmode == IEEE80211_M_IBSS) {
959 			m = ieee80211_beacon_alloc(ic, ni, &sc->sc_bo);
960 			if (m == NULL) {
961 				printf("%s: could not allocate beacon\n",
962 				    sc->sc_dev.dv_xname);
963 				error = ENOBUFS;
964 				break;
965 			}
966 
967 			ieee80211_ref_node(ni);
968 			error = rt2560_tx_bcn(sc, m, ni);
969 			if (error != 0)
970 				break;
971 		}
972 
973 		/* turn assocation led on */
974 		rt2560_update_led(sc, 1, 0);
975 
976 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
977 			callout_reset(&sc->rssadapt_ch, hz / 10,
978 			    rt2560_update_rssadapt, sc);
979 			rt2560_enable_tsf_sync(sc);
980 		}
981 		break;
982 	}
983 
984 	return (error != 0) ? error : sc->sc_newstate(ic, nstate, arg);
985 }
986 
987 /*
988  * Read 16 bits at address 'addr' from the serial EEPROM (either 93C46 or
989  * 93C66).
990  */
991 uint16_t
992 rt2560_eeprom_read(struct rt2560_softc *sc, uint8_t addr)
993 {
994 	uint32_t tmp;
995 	uint16_t val;
996 	int n;
997 
998 	/* clock C once before the first command */
999 	RT2560_EEPROM_CTL(sc, 0);
1000 
1001 	RT2560_EEPROM_CTL(sc, RT2560_S);
1002 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
1003 	RT2560_EEPROM_CTL(sc, RT2560_S);
1004 
1005 	/* write start bit (1) */
1006 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D);
1007 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C);
1008 
1009 	/* write READ opcode (10) */
1010 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D);
1011 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C);
1012 	RT2560_EEPROM_CTL(sc, RT2560_S);
1013 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
1014 
1015 	/* write address (A5-A0 or A7-A0) */
1016 	n = (RAL_READ(sc, RT2560_CSR21) & RT2560_93C46) ? 5 : 7;
1017 	for (; n >= 0; n--) {
1018 		RT2560_EEPROM_CTL(sc, RT2560_S |
1019 		    (((addr >> n) & 1) << RT2560_SHIFT_D));
1020 		RT2560_EEPROM_CTL(sc, RT2560_S |
1021 		    (((addr >> n) & 1) << RT2560_SHIFT_D) | RT2560_C);
1022 	}
1023 
1024 	RT2560_EEPROM_CTL(sc, RT2560_S);
1025 
1026 	/* read data Q15-Q0 */
1027 	val = 0;
1028 	for (n = 15; n >= 0; n--) {
1029 		RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
1030 		tmp = RAL_READ(sc, RT2560_CSR21);
1031 		val |= ((tmp & RT2560_Q) >> RT2560_SHIFT_Q) << n;
1032 		RT2560_EEPROM_CTL(sc, RT2560_S);
1033 	}
1034 
1035 	RT2560_EEPROM_CTL(sc, 0);
1036 
1037 	/* clear Chip Select and clock C */
1038 	RT2560_EEPROM_CTL(sc, RT2560_S);
1039 	RT2560_EEPROM_CTL(sc, 0);
1040 	RT2560_EEPROM_CTL(sc, RT2560_C);
1041 
1042 	return val;
1043 }
1044 
1045 /*
1046  * Some frames were processed by the hardware cipher engine and are ready for
1047  * transmission.
1048  */
1049 void
1050 rt2560_encryption_intr(struct rt2560_softc *sc)
1051 {
1052 	struct rt2560_tx_desc *desc;
1053 	int hw;
1054 
1055 	/* retrieve last descriptor index processed by cipher engine */
1056 	hw = (RAL_READ(sc, RT2560_SECCSR1) - sc->txq.physaddr) /
1057 	    RT2560_TX_DESC_SIZE;
1058 
1059 	for (; sc->txq.next_encrypt != hw;) {
1060 		desc = &sc->txq.desc[sc->txq.next_encrypt];
1061 
1062 		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
1063 		    sc->txq.next_encrypt * RT2560_TX_DESC_SIZE,
1064 		    RT2560_TX_DESC_SIZE, BUS_DMASYNC_POSTREAD);
1065 
1066 		if (le32toh(desc->flags) &
1067 		    (RT2560_TX_BUSY | RT2560_TX_CIPHER_BUSY))
1068 			break;
1069 
1070 		/* for TKIP, swap eiv field to fix a bug in ASIC */
1071 		if ((le32toh(desc->flags) & RT2560_TX_CIPHER_MASK) ==
1072 		    RT2560_TX_CIPHER_TKIP)
1073 			desc->eiv = bswap32(desc->eiv);
1074 
1075 		/* mark the frame ready for transmission */
1076 		desc->flags |= htole32(RT2560_TX_BUSY | RT2560_TX_VALID);
1077 
1078 		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
1079 		    sc->txq.next_encrypt * RT2560_TX_DESC_SIZE,
1080 		    RT2560_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
1081 
1082 		DPRINTFN(15, ("encryption done idx=%u\n",
1083 		    sc->txq.next_encrypt));
1084 
1085 		sc->txq.next_encrypt =
1086 		    (sc->txq.next_encrypt + 1) % RT2560_TX_RING_COUNT;
1087 	}
1088 
1089 	/* kick Tx */
1090 	RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_TX);
1091 }
1092 
1093 void
1094 rt2560_tx_intr(struct rt2560_softc *sc)
1095 {
1096 	struct ieee80211com *ic = &sc->sc_ic;
1097 	struct ifnet *ifp = ic->ic_ifp;
1098 	struct rt2560_tx_desc *desc;
1099 	struct rt2560_tx_data *data;
1100 	struct rt2560_node *rn;
1101 
1102 	for (;;) {
1103 		desc = &sc->txq.desc[sc->txq.next];
1104 		data = &sc->txq.data[sc->txq.next];
1105 
1106 		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
1107 		    sc->txq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1108 		    BUS_DMASYNC_POSTREAD);
1109 
1110 		if ((le32toh(desc->flags) & RT2560_TX_BUSY) ||
1111 		    (le32toh(desc->flags) & RT2560_TX_CIPHER_BUSY) ||
1112 		    !(le32toh(desc->flags) & RT2560_TX_VALID))
1113 			break;
1114 
1115 		rn = (struct rt2560_node *)data->ni;
1116 
1117 		switch (le32toh(desc->flags) & RT2560_TX_RESULT_MASK) {
1118 		case RT2560_TX_SUCCESS:
1119 			DPRINTFN(10, ("data frame sent successfully\n"));
1120 			if (data->id.id_node != NULL) {
1121 				ieee80211_rssadapt_raise_rate(ic,
1122 				    &rn->rssadapt, &data->id);
1123 			}
1124 			ifp->if_opackets++;
1125 			break;
1126 
1127 		case RT2560_TX_SUCCESS_RETRY:
1128 			DPRINTFN(9, ("data frame sent after %u retries\n",
1129 			    (le32toh(desc->flags) >> 5) & 0x7));
1130 			ifp->if_opackets++;
1131 			break;
1132 
1133 		case RT2560_TX_FAIL_RETRY:
1134 			DPRINTFN(9, ("sending data frame failed (too much "
1135 			    "retries)\n"));
1136 			if (data->id.id_node != NULL) {
1137 				ieee80211_rssadapt_lower_rate(ic, data->ni,
1138 				    &rn->rssadapt, &data->id);
1139 			}
1140 			ifp->if_oerrors++;
1141 			break;
1142 
1143 		case RT2560_TX_FAIL_INVALID:
1144 		case RT2560_TX_FAIL_OTHER:
1145 		default:
1146 			printf("%s: sending data frame failed 0x%08x\n",
1147 			    sc->sc_dev.dv_xname, le32toh(desc->flags));
1148 			ifp->if_oerrors++;
1149 		}
1150 
1151 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1152 		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1153 		bus_dmamap_unload(sc->sc_dmat, data->map);
1154 		m_freem(data->m);
1155 		data->m = NULL;
1156 		ieee80211_free_node(data->ni);
1157 		data->ni = NULL;
1158 
1159 		/* descriptor is no longer valid */
1160 		desc->flags &= ~htole32(RT2560_TX_VALID);
1161 
1162 		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
1163 		    sc->txq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1164 		    BUS_DMASYNC_PREWRITE);
1165 
1166 		DPRINTFN(15, ("tx done idx=%u\n", sc->txq.next));
1167 
1168 		sc->txq.queued--;
1169 		sc->txq.next = (sc->txq.next + 1) % RT2560_TX_RING_COUNT;
1170 	}
1171 
1172 	sc->sc_tx_timer = 0;
1173 	ifp->if_flags &= ~IFF_OACTIVE;
1174 	rt2560_start(ifp);
1175 }
1176 
1177 void
1178 rt2560_prio_intr(struct rt2560_softc *sc)
1179 {
1180 	struct ieee80211com *ic = &sc->sc_ic;
1181 	struct ifnet *ifp = ic->ic_ifp;
1182 	struct rt2560_tx_desc *desc;
1183 	struct rt2560_tx_data *data;
1184 
1185 	for (;;) {
1186 		desc = &sc->prioq.desc[sc->prioq.next];
1187 		data = &sc->prioq.data[sc->prioq.next];
1188 
1189 		bus_dmamap_sync(sc->sc_dmat, sc->prioq.map,
1190 		    sc->prioq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1191 		    BUS_DMASYNC_POSTREAD);
1192 
1193 		if ((le32toh(desc->flags) & RT2560_TX_BUSY) ||
1194 		    !(le32toh(desc->flags) & RT2560_TX_VALID))
1195 			break;
1196 
1197 		switch (le32toh(desc->flags) & RT2560_TX_RESULT_MASK) {
1198 		case RT2560_TX_SUCCESS:
1199 			DPRINTFN(10, ("mgt frame sent successfully\n"));
1200 			break;
1201 
1202 		case RT2560_TX_SUCCESS_RETRY:
1203 			DPRINTFN(9, ("mgt frame sent after %u retries\n",
1204 			    (le32toh(desc->flags) >> 5) & 0x7));
1205 			break;
1206 
1207 		case RT2560_TX_FAIL_RETRY:
1208 			DPRINTFN(9, ("sending mgt frame failed (too much "
1209 			    "retries)\n"));
1210 			break;
1211 
1212 		case RT2560_TX_FAIL_INVALID:
1213 		case RT2560_TX_FAIL_OTHER:
1214 		default:
1215 			printf("%s: sending mgt frame failed 0x%08x\n",
1216 			    sc->sc_dev.dv_xname, le32toh(desc->flags));
1217 		}
1218 
1219 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1220 		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1221 		bus_dmamap_unload(sc->sc_dmat, data->map);
1222 		m_freem(data->m);
1223 		data->m = NULL;
1224 		ieee80211_free_node(data->ni);
1225 		data->ni = NULL;
1226 
1227 		/* descriptor is no longer valid */
1228 		desc->flags &= ~htole32(RT2560_TX_VALID);
1229 
1230 		bus_dmamap_sync(sc->sc_dmat, sc->prioq.map,
1231 		    sc->prioq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1232 		    BUS_DMASYNC_PREWRITE);
1233 
1234 		DPRINTFN(15, ("prio done idx=%u\n", sc->prioq.next));
1235 
1236 		sc->prioq.queued--;
1237 		sc->prioq.next = (sc->prioq.next + 1) % RT2560_PRIO_RING_COUNT;
1238 	}
1239 
1240 	sc->sc_tx_timer = 0;
1241 	ifp->if_flags &= ~IFF_OACTIVE;
1242 	rt2560_start(ifp);
1243 }
1244 
1245 /*
1246  * Some frames were processed by the hardware cipher engine and are ready for
1247  * transmission to the IEEE802.11 layer.
1248  */
1249 void
1250 rt2560_decryption_intr(struct rt2560_softc *sc)
1251 {
1252 	struct ieee80211com *ic = &sc->sc_ic;
1253 	struct ifnet *ifp = ic->ic_ifp;
1254 	struct rt2560_rx_desc *desc;
1255 	struct rt2560_rx_data *data;
1256 	struct rt2560_node *rn;
1257 	struct ieee80211_frame *wh;
1258 	struct ieee80211_node *ni;
1259 	struct mbuf *mnew, *m;
1260 	int hw, error;
1261 
1262 	/* retrieve last decriptor index processed by cipher engine */
1263 	hw = (RAL_READ(sc, RT2560_SECCSR0) - sc->rxq.physaddr) /
1264 	    RT2560_RX_DESC_SIZE;
1265 
1266 	for (; sc->rxq.cur_decrypt != hw;) {
1267 		desc = &sc->rxq.desc[sc->rxq.cur_decrypt];
1268 		data = &sc->rxq.data[sc->rxq.cur_decrypt];
1269 
1270 		bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1271 		    sc->rxq.cur_decrypt * RT2560_TX_DESC_SIZE,
1272 		    RT2560_TX_DESC_SIZE, BUS_DMASYNC_POSTREAD);
1273 
1274 		if (le32toh(desc->flags) &
1275 		    (RT2560_RX_BUSY | RT2560_RX_CIPHER_BUSY))
1276 			break;
1277 
1278 		if (data->drop) {
1279 			ifp->if_ierrors++;
1280 			goto skip;
1281 		}
1282 
1283 		if ((le32toh(desc->flags) & RT2560_RX_CIPHER_MASK) != 0 &&
1284 		    (le32toh(desc->flags) & RT2560_RX_ICV_ERROR)) {
1285 			ifp->if_ierrors++;
1286 			goto skip;
1287 		}
1288 
1289 		/*
1290 		 * Try to allocate a new mbuf for this ring element and load it
1291 		 * before processing the current mbuf.  If the ring element
1292 		 * cannot be loaded, drop the received packet and reuse the old
1293 		 * mbuf.  In the unlikely case that the old mbuf can't be
1294 		 * reloaded either, explicitly panic.
1295 		 */
1296 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1297 		if (mnew == NULL) {
1298 			ifp->if_ierrors++;
1299 			goto skip;
1300 		}
1301 
1302 		MCLGET(mnew, M_DONTWAIT);
1303 		if (!(mnew->m_flags & M_EXT)) {
1304 			m_freem(mnew);
1305 			ifp->if_ierrors++;
1306 			goto skip;
1307 		}
1308 
1309 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1310 		    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1311 		bus_dmamap_unload(sc->sc_dmat, data->map);
1312 
1313 		error = bus_dmamap_load(sc->sc_dmat, data->map,
1314 		    mtod(mnew, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
1315 		if (error != 0) {
1316 			m_freem(mnew);
1317 
1318 			/* try to reload the old mbuf */
1319 			error = bus_dmamap_load(sc->sc_dmat, data->map,
1320 			    mtod(data->m, void *), MCLBYTES, NULL,
1321 			    BUS_DMA_NOWAIT);
1322 			if (error != 0) {
1323 				/* very unlikely that it will fail... */
1324 				panic("%s: could not load old rx mbuf",
1325 				    sc->sc_dev.dv_xname);
1326 			}
1327 			ifp->if_ierrors++;
1328 			goto skip;
1329 		}
1330 
1331 		/*
1332 		 * New mbuf successfully loaded, update Rx ring and continue
1333 		 * processing.
1334 		 */
1335 		m = data->m;
1336 		data->m = mnew;
1337 		desc->physaddr = htole32(data->map->dm_segs->ds_addr);
1338 
1339 		/* finalize mbuf */
1340 		m->m_pkthdr.rcvif = ifp;
1341 		m->m_pkthdr.len = m->m_len =
1342 		    (le32toh(desc->flags) >> 16) & 0xfff;
1343 
1344 #if NBPFILTER > 0
1345 		if (sc->sc_drvbpf != NULL) {
1346 			struct rt2560_rx_radiotap_header *tap = &sc->sc_rxtap;
1347 			uint32_t tsf_lo, tsf_hi;
1348 
1349 			/* get timestamp (low and high 32 bits) */
1350 			tsf_hi = RAL_READ(sc, RT2560_CSR17);
1351 			tsf_lo = RAL_READ(sc, RT2560_CSR16);
1352 
1353 			tap->wr_tsf =
1354 			    htole64(((uint64_t)tsf_hi << 32) | tsf_lo);
1355 			tap->wr_flags = 0;
1356 			tap->wr_rate = rt2560_rxrate(desc);
1357 			tap->wr_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
1358 			tap->wr_chan_flags =
1359 			    htole16(ic->ic_ibss_chan->ic_flags);
1360 			tap->wr_antenna = sc->rx_ant;
1361 			tap->wr_antsignal = desc->rssi;
1362 
1363 			bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m);
1364 		}
1365 #endif
1366 
1367 		wh = mtod(m, struct ieee80211_frame *);
1368 		ni = ieee80211_find_rxnode(ic,
1369 		    (struct ieee80211_frame_min *)wh);
1370 
1371 		/* send the frame to the 802.11 layer */
1372 		ieee80211_input(ic, m, ni, desc->rssi, 0);
1373 
1374 		/* give rssi to the rate adatation algorithm */
1375 		rn = (struct rt2560_node *)ni;
1376 		ieee80211_rssadapt_input(ic, ni, &rn->rssadapt, desc->rssi);
1377 
1378 		/* node is no longer needed */
1379 		ieee80211_free_node(ni);
1380 
1381 skip:		desc->flags = htole32(RT2560_RX_BUSY);
1382 
1383 		bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1384 		    sc->rxq.cur_decrypt * RT2560_TX_DESC_SIZE,
1385 		    RT2560_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
1386 
1387 		DPRINTFN(15, ("decryption done idx=%u\n", sc->rxq.cur_decrypt));
1388 
1389 		sc->rxq.cur_decrypt =
1390 		    (sc->rxq.cur_decrypt + 1) % RT2560_RX_RING_COUNT;
1391 	}
1392 
1393 	/*
1394 	 * In HostAP mode, ieee80211_input() will enqueue packets in if_snd
1395 	 * without calling if_start().
1396 	 */
1397 	if (!IFQ_IS_EMPTY(&ifp->if_snd) && !(ifp->if_flags & IFF_OACTIVE))
1398 		rt2560_start(ifp);
1399 }
1400 
1401 /*
1402  * Some frames were received. Pass them to the hardware cipher engine before
1403  * sending them to the 802.11 layer.
1404  */
1405 void
1406 rt2560_rx_intr(struct rt2560_softc *sc)
1407 {
1408 	struct rt2560_rx_desc *desc;
1409 	struct rt2560_rx_data *data;
1410 
1411 	for (;;) {
1412 		desc = &sc->rxq.desc[sc->rxq.cur];
1413 		data = &sc->rxq.data[sc->rxq.cur];
1414 
1415 		bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1416 		    sc->rxq.cur * RT2560_RX_DESC_SIZE, RT2560_RX_DESC_SIZE,
1417 		    BUS_DMASYNC_POSTREAD);
1418 
1419 		if (le32toh(desc->flags) &
1420 		    (RT2560_RX_BUSY | RT2560_RX_CIPHER_BUSY))
1421 			break;
1422 
1423 		data->drop = 0;
1424 
1425 		if (le32toh(desc->flags) &
1426 		    (RT2560_RX_PHY_ERROR | RT2560_RX_CRC_ERROR)) {
1427 			/*
1428 			 * This should not happen since we did not request
1429 			 * to receive those frames when we filled RXCSR0.
1430 			 */
1431 			DPRINTFN(5, ("PHY or CRC error flags 0x%08x\n",
1432 			    le32toh(desc->flags)));
1433 			data->drop = 1;
1434 		}
1435 
1436 		if (((le32toh(desc->flags) >> 16) & 0xfff) > MCLBYTES) {
1437 			DPRINTFN(5, ("bad length\n"));
1438 			data->drop = 1;
1439 		}
1440 
1441 		/* mark the frame for decryption */
1442 		desc->flags |= htole32(RT2560_RX_CIPHER_BUSY);
1443 
1444 		bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1445 		    sc->rxq.cur * RT2560_RX_DESC_SIZE, RT2560_RX_DESC_SIZE,
1446 		    BUS_DMASYNC_PREWRITE);
1447 
1448 		DPRINTFN(15, ("rx done idx=%u\n", sc->rxq.cur));
1449 
1450 		sc->rxq.cur = (sc->rxq.cur + 1) % RT2560_RX_RING_COUNT;
1451 	}
1452 
1453 	/* kick decrypt */
1454 	RAL_WRITE(sc, RT2560_SECCSR0, RT2560_KICK_DECRYPT);
1455 }
1456 
1457 #if 0
1458 void
1459 rt2560_shutdown(void *xsc)
1460 {
1461 	struct rt2560_softc *sc = xsc;
1462 
1463 	rt2560_stop(&sc->sc_if, 1);
1464 }
1465 
1466 void
1467 rt2560_suspend(void *xsc)
1468 {
1469 	struct rt2560_softc *sc = xsc;
1470 
1471 	rt2560_stop(&sc->sc_if, 1);
1472 }
1473 
1474 void
1475 rt2560_resume(void *xsc)
1476 {
1477 	struct rt2560_softc *sc = xsc;
1478 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1479 
1480 	if (ifp->if_flags & IFF_UP) {
1481 		ifp->if_init(ifp->if_softc);
1482 		if (ifp->if_flags & IFF_RUNNING)
1483 			ifp->if_start(ifp);
1484 	}
1485 }
1486 
1487 #endif
1488 /*
1489  * This function is called periodically in IBSS mode when a new beacon must be
1490  * sent out.
1491  */
1492 static void
1493 rt2560_beacon_expire(struct rt2560_softc *sc)
1494 {
1495 	struct ieee80211com *ic = &sc->sc_ic;
1496 	struct rt2560_tx_data *data;
1497 
1498 	if (ic->ic_opmode != IEEE80211_M_IBSS &&
1499 	    ic->ic_opmode != IEEE80211_M_HOSTAP)
1500 		return;
1501 
1502 	data = &sc->bcnq.data[sc->bcnq.next];
1503 
1504 	bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1505 	    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1506 	bus_dmamap_unload(sc->sc_dmat, data->map);
1507 
1508 	ieee80211_beacon_update(ic, data->ni, &sc->sc_bo, data->m, 1);
1509 
1510 #if NBPFILTER > 0
1511 	if (ic->ic_rawbpf != NULL)
1512 		bpf_mtap(ic->ic_rawbpf, data->m);
1513 #endif
1514 	rt2560_tx_bcn(sc, data->m, data->ni);
1515 
1516 	DPRINTFN(15, ("beacon expired\n"));
1517 
1518 	sc->bcnq.next = (sc->bcnq.next + 1) % RT2560_BEACON_RING_COUNT;
1519 }
1520 
1521 static void
1522 rt2560_wakeup_expire(struct rt2560_softc *sc)
1523 {
1524 	DPRINTFN(15, ("wakeup expired\n"));
1525 }
1526 
1527 int
1528 rt2560_intr(void *arg)
1529 {
1530 	struct rt2560_softc *sc = arg;
1531 	struct ifnet *ifp = &sc->sc_if;
1532 	uint32_t r;
1533 
1534 	if (!device_is_active(&sc->sc_dev))
1535 		return 0;
1536 
1537 	/* disable interrupts */
1538 	RAL_WRITE(sc, RT2560_CSR8, 0xffffffff);
1539 
1540 	/* don't re-enable interrupts if we're shutting down */
1541 	if (!(ifp->if_flags & IFF_RUNNING))
1542 		return 0;
1543 
1544 	r = RAL_READ(sc, RT2560_CSR7);
1545 	RAL_WRITE(sc, RT2560_CSR7, r);
1546 
1547 	if (r & RT2560_BEACON_EXPIRE)
1548 		rt2560_beacon_expire(sc);
1549 
1550 	if (r & RT2560_WAKEUP_EXPIRE)
1551 		rt2560_wakeup_expire(sc);
1552 
1553 	if (r & RT2560_ENCRYPTION_DONE)
1554 		rt2560_encryption_intr(sc);
1555 
1556 	if (r & RT2560_TX_DONE)
1557 		rt2560_tx_intr(sc);
1558 
1559 	if (r & RT2560_PRIO_DONE)
1560 		rt2560_prio_intr(sc);
1561 
1562 	if (r & RT2560_DECRYPTION_DONE)
1563 		rt2560_decryption_intr(sc);
1564 
1565 	if (r & RT2560_RX_DONE)
1566 		rt2560_rx_intr(sc);
1567 
1568 	/* re-enable interrupts */
1569 	RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK);
1570 
1571 	return 1;
1572 }
1573 
1574 /* quickly determine if a given rate is CCK or OFDM */
1575 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1576 
1577 #define RAL_ACK_SIZE	14	/* 10 + 4(FCS) */
1578 #define RAL_CTS_SIZE	14	/* 10 + 4(FCS) */
1579 
1580 #define RAL_SIFS		10	/* us */
1581 
1582 #define RT2560_RXTX_TURNAROUND	10	/* us */
1583 
1584 /*
1585  * This function is only used by the Rx radiotap code. It returns the rate at
1586  * which a given frame was received.
1587  */
1588 #if NBPFILTER > 0
1589 static uint8_t
1590 rt2560_rxrate(struct rt2560_rx_desc *desc)
1591 {
1592 	if (le32toh(desc->flags) & RT2560_RX_OFDM) {
1593 		/* reverse function of rt2560_plcp_signal */
1594 		switch (desc->rate) {
1595 		case 0xb:	return 12;
1596 		case 0xf:	return 18;
1597 		case 0xa:	return 24;
1598 		case 0xe:	return 36;
1599 		case 0x9:	return 48;
1600 		case 0xd:	return 72;
1601 		case 0x8:	return 96;
1602 		case 0xc:	return 108;
1603 		}
1604 	} else {
1605 		if (desc->rate == 10)
1606 			return 2;
1607 		if (desc->rate == 20)
1608 			return 4;
1609 		if (desc->rate == 55)
1610 			return 11;
1611 		if (desc->rate == 110)
1612 			return 22;
1613 	}
1614 	return 2;	/* should not get there */
1615 }
1616 #endif
1617 
1618 /*
1619  * Return the expected ack rate for a frame transmitted at rate `rate'.
1620  * XXX: this should depend on the destination node basic rate set.
1621  */
1622 static int
1623 rt2560_ack_rate(struct ieee80211com *ic, int rate)
1624 {
1625 	switch (rate) {
1626 	/* CCK rates */
1627 	case 2:
1628 		return 2;
1629 	case 4:
1630 	case 11:
1631 	case 22:
1632 		return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
1633 
1634 	/* OFDM rates */
1635 	case 12:
1636 	case 18:
1637 		return 12;
1638 	case 24:
1639 	case 36:
1640 		return 24;
1641 	case 48:
1642 	case 72:
1643 	case 96:
1644 	case 108:
1645 		return 48;
1646 	}
1647 
1648 	/* default to 1Mbps */
1649 	return 2;
1650 }
1651 
1652 /*
1653  * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1654  * The function automatically determines the operating mode depending on the
1655  * given rate. `flags' indicates whether short preamble is in use or not.
1656  */
1657 static uint16_t
1658 rt2560_txtime(int len, int rate, uint32_t flags)
1659 {
1660 	uint16_t txtime;
1661 
1662 	if (RAL_RATE_IS_OFDM(rate)) {
1663 		/* IEEE Std 802.11a-1999, pp. 37 */
1664 		txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1665 		txtime = 16 + 4 + 4 * txtime + 6;
1666 	} else {
1667 		/* IEEE Std 802.11b-1999, pp. 28 */
1668 		txtime = (16 * len + rate - 1) / rate;
1669 		if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1670 			txtime +=  72 + 24;
1671 		else
1672 			txtime += 144 + 48;
1673 	}
1674 	return txtime;
1675 }
1676 
1677 static uint8_t
1678 rt2560_plcp_signal(int rate)
1679 {
1680 	switch (rate) {
1681 	/* CCK rates (returned values are device-dependent) */
1682 	case 2:		return 0x0;
1683 	case 4:		return 0x1;
1684 	case 11:	return 0x2;
1685 	case 22:	return 0x3;
1686 
1687 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1688 	case 12:	return 0xb;
1689 	case 18:	return 0xf;
1690 	case 24:	return 0xa;
1691 	case 36:	return 0xe;
1692 	case 48:	return 0x9;
1693 	case 72:	return 0xd;
1694 	case 96:	return 0x8;
1695 	case 108:	return 0xc;
1696 
1697 	/* unsupported rates (should not get there) */
1698 	default:	return 0xff;
1699 	}
1700 }
1701 
1702 static void
1703 rt2560_setup_tx_desc(struct rt2560_softc *sc, struct rt2560_tx_desc *desc,
1704     uint32_t flags, int len, int rate, int encrypt, bus_addr_t physaddr)
1705 {
1706 	struct ieee80211com *ic = &sc->sc_ic;
1707 	uint16_t plcp_length;
1708 	int remainder;
1709 
1710 	desc->flags = htole32(flags);
1711 	desc->flags |= htole32(len << 16);
1712 	desc->flags |= encrypt ? htole32(RT2560_TX_CIPHER_BUSY) :
1713 	    htole32(RT2560_TX_BUSY | RT2560_TX_VALID);
1714 
1715 	desc->physaddr = htole32(physaddr);
1716 	desc->wme = htole16(
1717 	    RT2560_AIFSN(2) |
1718 	    RT2560_LOGCWMIN(3) |
1719 	    RT2560_LOGCWMAX(8));
1720 
1721 	/* setup PLCP fields */
1722 	desc->plcp_signal  = rt2560_plcp_signal(rate);
1723 	desc->plcp_service = 4;
1724 
1725 	len += IEEE80211_CRC_LEN;
1726 	if (RAL_RATE_IS_OFDM(rate)) {
1727 		desc->flags |= htole32(RT2560_TX_OFDM);
1728 
1729 		plcp_length = len & 0xfff;
1730 		desc->plcp_length_hi = plcp_length >> 6;
1731 		desc->plcp_length_lo = plcp_length & 0x3f;
1732 	} else {
1733 		plcp_length = (16 * len + rate - 1) / rate;
1734 		if (rate == 22) {
1735 			remainder = (16 * len) % 22;
1736 			if (remainder != 0 && remainder < 7)
1737 				desc->plcp_service |= RT2560_PLCP_LENGEXT;
1738 		}
1739 		desc->plcp_length_hi = plcp_length >> 8;
1740 		desc->plcp_length_lo = plcp_length & 0xff;
1741 
1742 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1743 			desc->plcp_signal |= 0x08;
1744 	}
1745 }
1746 
1747 static int
1748 rt2560_tx_bcn(struct rt2560_softc *sc, struct mbuf *m0,
1749     struct ieee80211_node *ni)
1750 {
1751 	struct rt2560_tx_desc *desc;
1752 	struct rt2560_tx_data *data;
1753 	int rate, error;
1754 
1755 	desc = &sc->bcnq.desc[sc->bcnq.cur];
1756 	data = &sc->bcnq.data[sc->bcnq.cur];
1757 
1758 	rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1759 
1760 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1761 	    BUS_DMA_NOWAIT);
1762 	if (error != 0) {
1763 		printf("%s: could not map mbuf (error %d)\n",
1764 		    sc->sc_dev.dv_xname, error);
1765 		m_freem(m0);
1766 		return error;
1767 	}
1768 
1769 	data->m = m0;
1770 	data->ni = ni;
1771 
1772 	rt2560_setup_tx_desc(sc, desc, RT2560_TX_IFS_NEWBACKOFF |
1773 	    RT2560_TX_TIMESTAMP, m0->m_pkthdr.len, rate, 0,
1774 	    data->map->dm_segs->ds_addr);
1775 
1776 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1777 	    BUS_DMASYNC_PREWRITE);
1778 	bus_dmamap_sync(sc->sc_dmat, sc->bcnq.map,
1779 	    sc->bcnq.cur * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1780 	    BUS_DMASYNC_PREWRITE);
1781 
1782 	return 0;
1783 }
1784 
1785 static int
1786 rt2560_tx_mgt(struct rt2560_softc *sc, struct mbuf *m0,
1787     struct ieee80211_node *ni)
1788 {
1789 	struct ieee80211com *ic = &sc->sc_ic;
1790 	struct rt2560_tx_desc *desc;
1791 	struct rt2560_tx_data *data;
1792 	struct ieee80211_frame *wh;
1793 	struct ieee80211_key *k;
1794 	uint16_t dur;
1795 	uint32_t flags = 0;
1796 	int rate, error;
1797 
1798 	desc = &sc->prioq.desc[sc->prioq.cur];
1799 	data = &sc->prioq.data[sc->prioq.cur];
1800 
1801 	rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1802 
1803 	wh = mtod(m0, struct ieee80211_frame *);
1804 
1805 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1806 		k = ieee80211_crypto_encap(ic, ni, m0);
1807 		if (k == NULL) {
1808 			m_freem(m0);
1809 			return ENOBUFS;
1810 		}
1811 	}
1812 
1813 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1814 	    BUS_DMA_NOWAIT);
1815 	if (error != 0) {
1816 		printf("%s: could not map mbuf (error %d)\n",
1817 		    sc->sc_dev.dv_xname, error);
1818 		m_freem(m0);
1819 		return error;
1820 	}
1821 
1822 #if NBPFILTER > 0
1823 	if (sc->sc_drvbpf != NULL) {
1824 		struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
1825 
1826 		tap->wt_flags = 0;
1827 		tap->wt_rate = rate;
1828 		tap->wt_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
1829 		tap->wt_chan_flags = htole16(ic->ic_ibss_chan->ic_flags);
1830 		tap->wt_antenna = sc->tx_ant;
1831 
1832 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1833 	}
1834 #endif
1835 
1836 	data->m = m0;
1837 	data->ni = ni;
1838 
1839 	wh = mtod(m0, struct ieee80211_frame *);
1840 
1841 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1842 		flags |= RT2560_TX_ACK;
1843 
1844 		dur = rt2560_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) +
1845 		    RAL_SIFS;
1846 		*(uint16_t *)wh->i_dur = htole16(dur);
1847 
1848 		/* tell hardware to add timestamp for probe responses */
1849 		if ((wh->i_fc[0] &
1850 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1851 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1852 			flags |= RT2560_TX_TIMESTAMP;
1853 	}
1854 
1855 	rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 0,
1856 	    data->map->dm_segs->ds_addr);
1857 
1858 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1859 	    BUS_DMASYNC_PREWRITE);
1860 	bus_dmamap_sync(sc->sc_dmat, sc->prioq.map,
1861 	    sc->prioq.cur * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1862 	    BUS_DMASYNC_PREWRITE);
1863 
1864 	DPRINTFN(10, ("sending mgt frame len=%u idx=%u rate=%u\n",
1865 	    m0->m_pkthdr.len, sc->prioq.cur, rate));
1866 
1867 	/* kick prio */
1868 	sc->prioq.queued++;
1869 	sc->prioq.cur = (sc->prioq.cur + 1) % RT2560_PRIO_RING_COUNT;
1870 	RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_PRIO);
1871 
1872 	return 0;
1873 }
1874 
1875 /*
1876  * Build a RTS control frame.
1877  */
1878 static struct mbuf *
1879 rt2560_get_rts(struct rt2560_softc *sc, struct ieee80211_frame *wh,
1880     uint16_t dur)
1881 {
1882 	struct ieee80211_frame_rts *rts;
1883 	struct mbuf *m;
1884 
1885 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1886 	if (m == NULL) {
1887 		sc->sc_ic.ic_stats.is_tx_nobuf++;
1888 		printf("%s: could not allocate RTS frame\n",
1889 		    sc->sc_dev.dv_xname);
1890 		return NULL;
1891 	}
1892 
1893 	rts = mtod(m, struct ieee80211_frame_rts *);
1894 
1895 	rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL |
1896 	    IEEE80211_FC0_SUBTYPE_RTS;
1897 	rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1898 	*(uint16_t *)rts->i_dur = htole16(dur);
1899 	IEEE80211_ADDR_COPY(rts->i_ra, wh->i_addr1);
1900 	IEEE80211_ADDR_COPY(rts->i_ta, wh->i_addr2);
1901 
1902 	m->m_pkthdr.len = m->m_len = sizeof (struct ieee80211_frame_rts);
1903 
1904 	return m;
1905 }
1906 
1907 static int
1908 rt2560_tx_data(struct rt2560_softc *sc, struct mbuf *m0,
1909     struct ieee80211_node *ni)
1910 {
1911 	struct ieee80211com *ic = &sc->sc_ic;
1912 	struct rt2560_tx_desc *desc;
1913 	struct rt2560_tx_data *data;
1914 	struct rt2560_node *rn;
1915 	struct ieee80211_rateset *rs;
1916 	struct ieee80211_frame *wh;
1917 	struct ieee80211_key *k;
1918 	struct mbuf *mnew;
1919 	uint16_t dur;
1920 	uint32_t flags = 0;
1921 	int rate, error;
1922 
1923 	wh = mtod(m0, struct ieee80211_frame *);
1924 
1925 	if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
1926 		rs = &ic->ic_sup_rates[ic->ic_curmode];
1927 		rate = rs->rs_rates[ic->ic_fixed_rate];
1928 	} else {
1929 		rs = &ni->ni_rates;
1930 		rn = (struct rt2560_node *)ni;
1931 		ni->ni_txrate = ieee80211_rssadapt_choose(&rn->rssadapt, rs,
1932 		    wh, m0->m_pkthdr.len, -1, NULL, 0);
1933 		rate = rs->rs_rates[ni->ni_txrate];
1934 	}
1935 	rate &= IEEE80211_RATE_VAL;
1936 
1937 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1938 		k = ieee80211_crypto_encap(ic, ni, m0);
1939 		if (k == NULL) {
1940 			m_freem(m0);
1941 			return ENOBUFS;
1942 		}
1943 
1944 		/* packet header may have moved, reset our local pointer */
1945 		wh = mtod(m0, struct ieee80211_frame *);
1946 	}
1947 
1948 	/*
1949 	 * IEEE Std 802.11-1999, pp 82: "A STA shall use an RTS/CTS exchange
1950 	 * for directed frames only when the length of the MPDU is greater
1951 	 * than the length threshold indicated by [...]" ic_rtsthreshold.
1952 	 */
1953 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1954 	    m0->m_pkthdr.len > ic->ic_rtsthreshold) {
1955 		struct mbuf *m;
1956 		int rtsrate, ackrate;
1957 
1958 		rtsrate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1959 		ackrate = rt2560_ack_rate(ic, rate);
1960 
1961 		dur = rt2560_txtime(m0->m_pkthdr.len + 4, rate, ic->ic_flags) +
1962 		      rt2560_txtime(RAL_CTS_SIZE, rtsrate, ic->ic_flags) +
1963 		      rt2560_txtime(RAL_ACK_SIZE, ackrate, ic->ic_flags) +
1964 		      3 * RAL_SIFS;
1965 
1966 		m = rt2560_get_rts(sc, wh, dur);
1967 
1968 		desc = &sc->txq.desc[sc->txq.cur_encrypt];
1969 		data = &sc->txq.data[sc->txq.cur_encrypt];
1970 
1971 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
1972 		    BUS_DMA_NOWAIT);
1973 		if (error != 0) {
1974 			printf("%s: could not map mbuf (error %d)\n",
1975 			    sc->sc_dev.dv_xname, error);
1976 			m_freem(m);
1977 			m_freem(m0);
1978 			return error;
1979 		}
1980 
1981 		/* avoid multiple free() of the same node for each fragment */
1982 		ieee80211_ref_node(ni);
1983 
1984 		data->m = m;
1985 		data->ni = ni;
1986 
1987 		/* RTS frames are not taken into account for rssadapt */
1988 		data->id.id_node = NULL;
1989 
1990 		rt2560_setup_tx_desc(sc, desc, RT2560_TX_ACK |
1991 		    RT2560_TX_MORE_FRAG, m->m_pkthdr.len, rtsrate, 1,
1992 		    data->map->dm_segs->ds_addr);
1993 
1994 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1995 		    data->map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1996 		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
1997 		    sc->txq.cur_encrypt * RT2560_TX_DESC_SIZE,
1998 		    RT2560_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
1999 
2000 		sc->txq.queued++;
2001 		sc->txq.cur_encrypt =
2002 		    (sc->txq.cur_encrypt + 1) % RT2560_TX_RING_COUNT;
2003 
2004 		/*
2005 		 * IEEE Std 802.11-1999: when an RTS/CTS exchange is used, the
2006 		 * asynchronous data frame shall be transmitted after the CTS
2007 		 * frame and a SIFS period.
2008 		 */
2009 		flags |= RT2560_TX_LONG_RETRY | RT2560_TX_IFS_SIFS;
2010 	}
2011 
2012 	data = &sc->txq.data[sc->txq.cur_encrypt];
2013 	desc = &sc->txq.desc[sc->txq.cur_encrypt];
2014 
2015 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2016 	    BUS_DMA_NOWAIT);
2017 	if (error != 0 && error != EFBIG) {
2018 		printf("%s: could not map mbuf (error %d)\n",
2019 		    sc->sc_dev.dv_xname, error);
2020 		m_freem(m0);
2021 		return error;
2022 	}
2023 	if (error != 0) {
2024 		/* too many fragments, linearize */
2025 
2026 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
2027 		if (mnew == NULL) {
2028 			m_freem(m0);
2029 			return ENOMEM;
2030 		}
2031 
2032 		M_COPY_PKTHDR(mnew, m0);
2033 		if (m0->m_pkthdr.len > MHLEN) {
2034 			MCLGET(mnew, M_DONTWAIT);
2035 			if (!(mnew->m_flags & M_EXT)) {
2036 				m_freem(m0);
2037 				m_freem(mnew);
2038 				return ENOMEM;
2039 			}
2040 		}
2041 
2042 		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
2043 		m_freem(m0);
2044 		mnew->m_len = mnew->m_pkthdr.len;
2045 		m0 = mnew;
2046 
2047 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2048 		    BUS_DMA_NOWAIT);
2049 		if (error != 0) {
2050 			printf("%s: could not map mbuf (error %d)\n",
2051 			    sc->sc_dev.dv_xname, error);
2052 			m_freem(m0);
2053 			return error;
2054 		}
2055 
2056 		/* packet header have moved, reset our local pointer */
2057 		wh = mtod(m0, struct ieee80211_frame *);
2058 	}
2059 
2060 #if NBPFILTER > 0
2061 	if (sc->sc_drvbpf != NULL) {
2062 		struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
2063 
2064 		tap->wt_flags = 0;
2065 		tap->wt_rate = rate;
2066 		tap->wt_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
2067 		tap->wt_chan_flags = htole16(ic->ic_ibss_chan->ic_flags);
2068 		tap->wt_antenna = sc->tx_ant;
2069 
2070 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
2071 	}
2072 #endif
2073 
2074 	data->m = m0;
2075 	data->ni = ni;
2076 
2077 	/* remember link conditions for rate adaptation algorithm */
2078 	if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
2079 		data->id.id_len = m0->m_pkthdr.len;
2080 		data->id.id_rateidx = ni->ni_txrate;
2081 		data->id.id_node = ni;
2082 		data->id.id_rssi = ni->ni_rssi;
2083 	} else
2084 		data->id.id_node = NULL;
2085 
2086 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2087 		flags |= RT2560_TX_ACK;
2088 
2089 		dur = rt2560_txtime(RAL_ACK_SIZE, rt2560_ack_rate(ic, rate),
2090 		    ic->ic_flags) + RAL_SIFS;
2091 		*(uint16_t *)wh->i_dur = htole16(dur);
2092 	}
2093 
2094 	rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 1,
2095 	    data->map->dm_segs->ds_addr);
2096 
2097 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2098 	    BUS_DMASYNC_PREWRITE);
2099 	bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
2100 	    sc->txq.cur_encrypt * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
2101 	    BUS_DMASYNC_PREWRITE);
2102 
2103 	DPRINTFN(10, ("sending data frame len=%u idx=%u rate=%u\n",
2104 	    m0->m_pkthdr.len, sc->txq.cur_encrypt, rate));
2105 
2106 	/* kick encrypt */
2107 	sc->txq.queued++;
2108 	sc->txq.cur_encrypt = (sc->txq.cur_encrypt + 1) % RT2560_TX_RING_COUNT;
2109 	RAL_WRITE(sc, RT2560_SECCSR1, RT2560_KICK_ENCRYPT);
2110 
2111 	return 0;
2112 }
2113 
2114 static void
2115 rt2560_start(struct ifnet *ifp)
2116 {
2117 	struct rt2560_softc *sc = ifp->if_softc;
2118 	struct ieee80211com *ic = &sc->sc_ic;
2119 	struct mbuf *m0;
2120 	struct ieee80211_node *ni;
2121 	struct ether_header *eh;
2122 
2123 	/*
2124 	 * net80211 may still try to send management frames even if the
2125 	 * IFF_RUNNING flag is not set...
2126 	 */
2127 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2128 		return;
2129 
2130 	for (;;) {
2131 		IF_POLL(&ic->ic_mgtq, m0);
2132 		if (m0 != NULL) {
2133 			if (sc->prioq.queued >= RT2560_PRIO_RING_COUNT) {
2134 				ifp->if_flags |= IFF_OACTIVE;
2135 				break;
2136 			}
2137 			IF_DEQUEUE(&ic->ic_mgtq, m0);
2138 			if (m0 == NULL)
2139 				break;
2140 
2141 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
2142 			m0->m_pkthdr.rcvif = NULL;
2143 #if NBPFILTER > 0
2144 			if (ic->ic_rawbpf != NULL)
2145 				bpf_mtap(ic->ic_rawbpf, m0);
2146 #endif
2147 			if (rt2560_tx_mgt(sc, m0, ni) != 0)
2148 				break;
2149 
2150 		} else {
2151 			if (ic->ic_state != IEEE80211_S_RUN)
2152 				break;
2153 			IFQ_DEQUEUE(&ifp->if_snd, m0);
2154 			if (m0 == NULL)
2155 				break;
2156 			if (sc->txq.queued >= RT2560_TX_RING_COUNT - 1) {
2157 				ifp->if_flags |= IFF_OACTIVE;
2158 				break;
2159 			}
2160 
2161 			if (m0->m_len < sizeof (struct ether_header) &&
2162 			    !(m0 = m_pullup(m0, sizeof (struct ether_header))))
2163                                 continue;
2164 
2165 			eh = mtod(m0, struct ether_header *);
2166 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2167 			if (ni == NULL) {
2168 				m_freem(m0);
2169 				continue;
2170 			}
2171 #if NBPFILTER > 0
2172 			if (ifp->if_bpf != NULL)
2173 				bpf_mtap(ifp->if_bpf, m0);
2174 #endif
2175 
2176 			m0 = ieee80211_encap(ic, m0, ni);
2177 			if (m0 == NULL) {
2178 				ieee80211_free_node(ni);
2179 				continue;
2180                         }
2181 
2182 #if NBPFILTER > 0
2183 			if (ic->ic_rawbpf != NULL)
2184 				bpf_mtap(ic->ic_rawbpf, m0);
2185 
2186 #endif
2187 			if (rt2560_tx_data(sc, m0, ni) != 0) {
2188 				ieee80211_free_node(ni);
2189 				ifp->if_oerrors++;
2190 				break;
2191 			}
2192 		}
2193 
2194 		sc->sc_tx_timer = 5;
2195 		ifp->if_timer = 1;
2196 	}
2197 }
2198 
2199 static void
2200 rt2560_watchdog(struct ifnet *ifp)
2201 {
2202 	struct rt2560_softc *sc = ifp->if_softc;
2203 
2204 	ifp->if_timer = 0;
2205 
2206 	if (sc->sc_tx_timer > 0) {
2207 		if (--sc->sc_tx_timer == 0) {
2208 			printf("%s: device timeout\n", sc->sc_dev.dv_xname);
2209 			rt2560_init(ifp);
2210 			ifp->if_oerrors++;
2211 			return;
2212 		}
2213 		ifp->if_timer = 1;
2214 	}
2215 
2216 	ieee80211_watchdog(&sc->sc_ic);
2217 }
2218 
2219 /*
2220  * This function allows for fast channel switching in monitor mode (used by
2221  * net-mgmt/kismet). In IBSS mode, we must explicitly reset the interface to
2222  * generate a new beacon frame.
2223  */
2224 static int
2225 rt2560_reset(struct ifnet *ifp)
2226 {
2227 	struct rt2560_softc *sc = ifp->if_softc;
2228 	struct ieee80211com *ic = &sc->sc_ic;
2229 
2230 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
2231 		return ENETRESET;
2232 
2233 	rt2560_set_chan(sc, ic->ic_curchan);
2234 
2235 	return 0;
2236 }
2237 
2238 int
2239 rt2560_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2240 {
2241 	struct rt2560_softc *sc = ifp->if_softc;
2242 	struct ieee80211com *ic = &sc->sc_ic;
2243 	int s, error = 0;
2244 
2245 	s = splnet();
2246 
2247 	switch (cmd) {
2248 	case SIOCSIFFLAGS:
2249 		if (ifp->if_flags & IFF_UP) {
2250 			if (ifp->if_flags & IFF_RUNNING)
2251 				rt2560_update_promisc(sc);
2252 			else
2253 				rt2560_init(ifp);
2254 		} else {
2255 			if (ifp->if_flags & IFF_RUNNING)
2256 				rt2560_stop(ifp, 1);
2257 		}
2258 		break;
2259 
2260 	case SIOCADDMULTI:
2261 	case SIOCDELMULTI:
2262 		/* XXX no h/w multicast filter? --dyoung */
2263 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET)
2264 			error = 0;
2265 		break;
2266 
2267 	case SIOCS80211CHANNEL:
2268 		/*
2269 		 * This allows for fast channel switching in monitor mode
2270 		 * (used by kismet). In IBSS mode, we must explicitly reset
2271 		 * the interface to generate a new beacon frame.
2272 		 */
2273 		error = ieee80211_ioctl(ic, cmd, data);
2274 		if (error == ENETRESET &&
2275 		    ic->ic_opmode == IEEE80211_M_MONITOR) {
2276 			rt2560_set_chan(sc, ic->ic_ibss_chan);
2277 			error = 0;
2278 		}
2279 		break;
2280 
2281 	default:
2282 		error = ieee80211_ioctl(ic, cmd, data);
2283 	}
2284 
2285 	if (error == ENETRESET) {
2286 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
2287 		    (IFF_UP | IFF_RUNNING))
2288 			rt2560_init(ifp);
2289 		error = 0;
2290 	}
2291 
2292 	splx(s);
2293 
2294 	return error;
2295 }
2296 
2297 static void
2298 rt2560_bbp_write(struct rt2560_softc *sc, uint8_t reg, uint8_t val)
2299 {
2300 	uint32_t tmp;
2301 	int ntries;
2302 
2303 	for (ntries = 0; ntries < 100; ntries++) {
2304 		if (!(RAL_READ(sc, RT2560_BBPCSR) & RT2560_BBP_BUSY))
2305 			break;
2306 		DELAY(1);
2307 	}
2308 	if (ntries == 100) {
2309 		printf("%s: could not write to BBP\n", sc->sc_dev.dv_xname);
2310 		return;
2311 	}
2312 
2313 	tmp = RT2560_BBP_WRITE | RT2560_BBP_BUSY | reg << 8 | val;
2314 	RAL_WRITE(sc, RT2560_BBPCSR, tmp);
2315 
2316 	DPRINTFN(15, ("BBP R%u <- 0x%02x\n", reg, val));
2317 }
2318 
2319 static uint8_t
2320 rt2560_bbp_read(struct rt2560_softc *sc, uint8_t reg)
2321 {
2322 	uint32_t val;
2323 	int ntries;
2324 
2325 	val = RT2560_BBP_BUSY | reg << 8;
2326 	RAL_WRITE(sc, RT2560_BBPCSR, val);
2327 
2328 	for (ntries = 0; ntries < 100; ntries++) {
2329 		val = RAL_READ(sc, RT2560_BBPCSR);
2330 		if (!(val & RT2560_BBP_BUSY))
2331 			return val & 0xff;
2332 		DELAY(1);
2333 	}
2334 
2335 	printf("%s: could not read from BBP\n", sc->sc_dev.dv_xname);
2336 	return 0;
2337 }
2338 
2339 static void
2340 rt2560_rf_write(struct rt2560_softc *sc, uint8_t reg, uint32_t val)
2341 {
2342 	uint32_t tmp;
2343 	int ntries;
2344 
2345 	for (ntries = 0; ntries < 100; ntries++) {
2346 		if (!(RAL_READ(sc, RT2560_RFCSR) & RT2560_RF_BUSY))
2347 			break;
2348 		DELAY(1);
2349 	}
2350 	if (ntries == 100) {
2351 		printf("%s: could not write to RF\n", sc->sc_dev.dv_xname);
2352 		return;
2353 	}
2354 
2355 	tmp = RT2560_RF_BUSY | RT2560_RF_20BIT | (val & 0xfffff) << 2 |
2356 	    (reg & 0x3);
2357 	RAL_WRITE(sc, RT2560_RFCSR, tmp);
2358 
2359 	/* remember last written value in sc */
2360 	sc->rf_regs[reg] = val;
2361 
2362 	DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff));
2363 }
2364 
2365 static void
2366 rt2560_set_chan(struct rt2560_softc *sc, struct ieee80211_channel *c)
2367 {
2368 	struct ieee80211com *ic = &sc->sc_ic;
2369 	uint8_t power, tmp;
2370 	u_int i, chan;
2371 
2372 	chan = ieee80211_chan2ieee(ic, c);
2373 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
2374 		return;
2375 
2376 	if (IEEE80211_IS_CHAN_2GHZ(c))
2377 		power = min(sc->txpow[chan - 1], 31);
2378 	else
2379 		power = 31;
2380 
2381 	DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power));
2382 
2383 	switch (sc->rf_rev) {
2384 	case RT2560_RF_2522:
2385 		rt2560_rf_write(sc, RT2560_RF1, 0x00814);
2386 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2522_r2[chan - 1]);
2387 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x00040);
2388 		break;
2389 
2390 	case RT2560_RF_2523:
2391 		rt2560_rf_write(sc, RT2560_RF1, 0x08804);
2392 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2523_r2[chan - 1]);
2393 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x38044);
2394 		rt2560_rf_write(sc, RT2560_RF4,
2395 		    (chan == 14) ? 0x00280 : 0x00286);
2396 		break;
2397 
2398 	case RT2560_RF_2524:
2399 		rt2560_rf_write(sc, RT2560_RF1, 0x0c808);
2400 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2524_r2[chan - 1]);
2401 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x00040);
2402 		rt2560_rf_write(sc, RT2560_RF4,
2403 		    (chan == 14) ? 0x00280 : 0x00286);
2404 		break;
2405 
2406 	case RT2560_RF_2525:
2407 		rt2560_rf_write(sc, RT2560_RF1, 0x08808);
2408 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2525_hi_r2[chan - 1]);
2409 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044);
2410 		rt2560_rf_write(sc, RT2560_RF4,
2411 		    (chan == 14) ? 0x00280 : 0x00286);
2412 
2413 		rt2560_rf_write(sc, RT2560_RF1, 0x08808);
2414 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2525_r2[chan - 1]);
2415 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044);
2416 		rt2560_rf_write(sc, RT2560_RF4,
2417 		    (chan == 14) ? 0x00280 : 0x00286);
2418 		break;
2419 
2420 	case RT2560_RF_2525E:
2421 		rt2560_rf_write(sc, RT2560_RF1, 0x08808);
2422 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2525e_r2[chan - 1]);
2423 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044);
2424 		rt2560_rf_write(sc, RT2560_RF4,
2425 		    (chan == 14) ? 0x00286 : 0x00282);
2426 		break;
2427 
2428 	case RT2560_RF_2526:
2429 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2526_hi_r2[chan - 1]);
2430 		rt2560_rf_write(sc, RT2560_RF4,
2431 		   (chan & 1) ? 0x00386 : 0x00381);
2432 		rt2560_rf_write(sc, RT2560_RF1, 0x08804);
2433 
2434 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2526_r2[chan - 1]);
2435 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044);
2436 		rt2560_rf_write(sc, RT2560_RF4,
2437 		    (chan & 1) ? 0x00386 : 0x00381);
2438 		break;
2439 
2440 	/* dual-band RF */
2441 	case RT2560_RF_5222:
2442 		for (i = 0; rt2560_rf5222[i].chan != chan; i++);
2443 
2444 		rt2560_rf_write(sc, RT2560_RF1, rt2560_rf5222[i].r1);
2445 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf5222[i].r2);
2446 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x00040);
2447 		rt2560_rf_write(sc, RT2560_RF4, rt2560_rf5222[i].r4);
2448 		break;
2449 	}
2450 
2451 	if (ic->ic_opmode != IEEE80211_M_MONITOR &&
2452 	    ic->ic_state != IEEE80211_S_SCAN) {
2453 		/* set Japan filter bit for channel 14 */
2454 		tmp = rt2560_bbp_read(sc, 70);
2455 
2456 		tmp &= ~RT2560_JAPAN_FILTER;
2457 		if (chan == 14)
2458 			tmp |= RT2560_JAPAN_FILTER;
2459 
2460 		rt2560_bbp_write(sc, 70, tmp);
2461 
2462 		DELAY(1000); /* RF needs a 1ms delay here */
2463 		rt2560_disable_rf_tune(sc);
2464 
2465 		/* clear CRC errors */
2466 		RAL_READ(sc, RT2560_CNT0);
2467 	}
2468 }
2469 
2470 /*
2471  * Disable RF auto-tuning.
2472  */
2473 static void
2474 rt2560_disable_rf_tune(struct rt2560_softc *sc)
2475 {
2476 	uint32_t tmp;
2477 
2478 	if (sc->rf_rev != RT2560_RF_2523) {
2479 		tmp = sc->rf_regs[RT2560_RF1] & ~RT2560_RF1_AUTOTUNE;
2480 		rt2560_rf_write(sc, RT2560_RF1, tmp);
2481 	}
2482 
2483 	tmp = sc->rf_regs[RT2560_RF3] & ~RT2560_RF3_AUTOTUNE;
2484 	rt2560_rf_write(sc, RT2560_RF3, tmp);
2485 
2486 	DPRINTFN(2, ("disabling RF autotune\n"));
2487 }
2488 
2489 /*
2490  * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
2491  * synchronization.
2492  */
2493 static void
2494 rt2560_enable_tsf_sync(struct rt2560_softc *sc)
2495 {
2496 	struct ieee80211com *ic = &sc->sc_ic;
2497 	uint16_t logcwmin, preload;
2498 	uint32_t tmp;
2499 
2500 	/* first, disable TSF synchronization */
2501 	RAL_WRITE(sc, RT2560_CSR14, 0);
2502 
2503 	tmp = 16 * ic->ic_bss->ni_intval;
2504 	RAL_WRITE(sc, RT2560_CSR12, tmp);
2505 
2506 	RAL_WRITE(sc, RT2560_CSR13, 0);
2507 
2508 	logcwmin = 5;
2509 	preload = (ic->ic_opmode == IEEE80211_M_STA) ? 384 : 1024;
2510 	tmp = logcwmin << 16 | preload;
2511 	RAL_WRITE(sc, RT2560_BCNOCSR, tmp);
2512 
2513 	/* finally, enable TSF synchronization */
2514 	tmp = RT2560_ENABLE_TSF | RT2560_ENABLE_TBCN;
2515 	if (ic->ic_opmode == IEEE80211_M_STA)
2516 		tmp |= RT2560_ENABLE_TSF_SYNC(1);
2517 	else
2518 		tmp |= RT2560_ENABLE_TSF_SYNC(2) |
2519 		       RT2560_ENABLE_BEACON_GENERATOR;
2520 	RAL_WRITE(sc, RT2560_CSR14, tmp);
2521 
2522 	DPRINTF(("enabling TSF synchronization\n"));
2523 }
2524 
2525 static void
2526 rt2560_update_plcp(struct rt2560_softc *sc)
2527 {
2528 	struct ieee80211com *ic = &sc->sc_ic;
2529 
2530 	/* no short preamble for 1Mbps */
2531 	RAL_WRITE(sc, RT2560_PLCP1MCSR, 0x00700400);
2532 
2533 	if (!(ic->ic_flags & IEEE80211_F_SHPREAMBLE)) {
2534 		/* values taken from the reference driver */
2535 		RAL_WRITE(sc, RT2560_PLCP2MCSR,   0x00380401);
2536 		RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x00150402);
2537 		RAL_WRITE(sc, RT2560_PLCP11MCSR,  0x000b8403);
2538 	} else {
2539 		/* same values as above or'ed 0x8 */
2540 		RAL_WRITE(sc, RT2560_PLCP2MCSR,   0x00380409);
2541 		RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x0015040a);
2542 		RAL_WRITE(sc, RT2560_PLCP11MCSR,  0x000b840b);
2543 	}
2544 
2545 	DPRINTF(("updating PLCP for %s preamble\n",
2546 	    (ic->ic_flags & IEEE80211_F_SHPREAMBLE) ? "short" : "long"));
2547 }
2548 
2549 /*
2550  * IEEE 802.11a uses short slot time. Refer to IEEE Std 802.11-1999 pp. 85 to
2551  * know how these values are computed.
2552  */
2553 static void
2554 rt2560_update_slot(struct ifnet *ifp)
2555 {
2556 	struct rt2560_softc *sc = ifp->if_softc;
2557 	struct ieee80211com *ic = &sc->sc_ic;
2558 	uint8_t slottime;
2559 	uint16_t sifs, pifs, difs, eifs;
2560 	uint32_t tmp;
2561 
2562 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
2563 
2564 	/* define the MAC slot boundaries */
2565 	sifs = RAL_SIFS - RT2560_RXTX_TURNAROUND;
2566 	pifs = sifs + slottime;
2567 	difs = sifs + 2 * slottime;
2568 	eifs = (ic->ic_curmode == IEEE80211_MODE_11B) ? 364 : 60;
2569 
2570 	tmp = RAL_READ(sc, RT2560_CSR11);
2571 	tmp = (tmp & ~0x1f00) | slottime << 8;
2572 	RAL_WRITE(sc, RT2560_CSR11, tmp);
2573 
2574 	tmp = pifs << 16 | sifs;
2575 	RAL_WRITE(sc, RT2560_CSR18, tmp);
2576 
2577 	tmp = eifs << 16 | difs;
2578 	RAL_WRITE(sc, RT2560_CSR19, tmp);
2579 
2580 	DPRINTF(("setting slottime to %uus\n", slottime));
2581 }
2582 
2583 static void
2584 rt2560_set_basicrates(struct rt2560_softc *sc)
2585 {
2586 	struct ieee80211com *ic = &sc->sc_ic;
2587 
2588 	/* update basic rate set */
2589 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
2590 		/* 11b basic rates: 1, 2Mbps */
2591 		RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x3);
2592 	} else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) {
2593 		/* 11a basic rates: 6, 12, 24Mbps */
2594 		RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x150);
2595 	} else {
2596 		/* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
2597 		RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x15f);
2598 	}
2599 }
2600 
2601 static void
2602 rt2560_update_led(struct rt2560_softc *sc, int led1, int led2)
2603 {
2604 	uint32_t tmp;
2605 
2606 	/* set ON period to 70ms and OFF period to 30ms */
2607 	tmp = led1 << 16 | led2 << 17 | 70 << 8 | 30;
2608 	RAL_WRITE(sc, RT2560_LEDCSR, tmp);
2609 }
2610 
2611 static void
2612 rt2560_set_bssid(struct rt2560_softc *sc, uint8_t *bssid)
2613 {
2614 	uint32_t tmp;
2615 
2616 	tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
2617 	RAL_WRITE(sc, RT2560_CSR5, tmp);
2618 
2619 	tmp = bssid[4] | bssid[5] << 8;
2620 	RAL_WRITE(sc, RT2560_CSR6, tmp);
2621 
2622 	DPRINTF(("setting BSSID to %s\n", ether_sprintf(bssid)));
2623 }
2624 
2625 static void
2626 rt2560_set_macaddr(struct rt2560_softc *sc, uint8_t *addr)
2627 {
2628 	uint32_t tmp;
2629 
2630 	tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
2631 	RAL_WRITE(sc, RT2560_CSR3, tmp);
2632 
2633 	tmp = addr[4] | addr[5] << 8;
2634 	RAL_WRITE(sc, RT2560_CSR4, tmp);
2635 
2636 	DPRINTF(("setting MAC address to %s\n", ether_sprintf(addr)));
2637 }
2638 
2639 static void
2640 rt2560_get_macaddr(struct rt2560_softc *sc, uint8_t *addr)
2641 {
2642 	uint32_t tmp;
2643 
2644 	tmp = RAL_READ(sc, RT2560_CSR3);
2645 	addr[0] = tmp & 0xff;
2646 	addr[1] = (tmp >>  8) & 0xff;
2647 	addr[2] = (tmp >> 16) & 0xff;
2648 	addr[3] = (tmp >> 24);
2649 
2650 	tmp = RAL_READ(sc, RT2560_CSR4);
2651 	addr[4] = tmp & 0xff;
2652 	addr[5] = (tmp >> 8) & 0xff;
2653 }
2654 
2655 static void
2656 rt2560_update_promisc(struct rt2560_softc *sc)
2657 {
2658 	struct ifnet *ifp = &sc->sc_if;
2659 	uint32_t tmp;
2660 
2661 	tmp = RAL_READ(sc, RT2560_RXCSR0);
2662 
2663 	tmp &= ~RT2560_DROP_NOT_TO_ME;
2664 	if (!(ifp->if_flags & IFF_PROMISC))
2665 		tmp |= RT2560_DROP_NOT_TO_ME;
2666 
2667 	RAL_WRITE(sc, RT2560_RXCSR0, tmp);
2668 
2669 	DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
2670 	    "entering" : "leaving"));
2671 }
2672 
2673 static void
2674 rt2560_set_txantenna(struct rt2560_softc *sc, int antenna)
2675 {
2676 	uint32_t tmp;
2677 	uint8_t tx;
2678 
2679 	tx = rt2560_bbp_read(sc, RT2560_BBP_TX) & ~RT2560_BBP_ANTMASK;
2680 	if (antenna == 1)
2681 		tx |= RT2560_BBP_ANTA;
2682 	else if (antenna == 2)
2683 		tx |= RT2560_BBP_ANTB;
2684 	else
2685 		tx |= RT2560_BBP_DIVERSITY;
2686 
2687 	/* need to force I/Q flip for RF 2525e, 2526 and 5222 */
2688 	if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526 ||
2689 	    sc->rf_rev == RT2560_RF_5222)
2690 		tx |= RT2560_BBP_FLIPIQ;
2691 
2692 	rt2560_bbp_write(sc, RT2560_BBP_TX, tx);
2693 
2694 	/* update values for CCK and OFDM in BBPCSR1 */
2695 	tmp = RAL_READ(sc, RT2560_BBPCSR1) & ~0x00070007;
2696 	tmp |= (tx & 0x7) << 16 | (tx & 0x7);
2697 	RAL_WRITE(sc, RT2560_BBPCSR1, tmp);
2698 }
2699 
2700 static void
2701 rt2560_set_rxantenna(struct rt2560_softc *sc, int antenna)
2702 {
2703 	uint8_t rx;
2704 
2705 	rx = rt2560_bbp_read(sc, RT2560_BBP_RX) & ~RT2560_BBP_ANTMASK;
2706 	if (antenna == 1)
2707 		rx |= RT2560_BBP_ANTA;
2708 	else if (antenna == 2)
2709 		rx |= RT2560_BBP_ANTB;
2710 	else
2711 		rx |= RT2560_BBP_DIVERSITY;
2712 
2713 	/* need to force no I/Q flip for RF 2525e and 2526 */
2714 	if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526)
2715 		rx &= ~RT2560_BBP_FLIPIQ;
2716 
2717 	rt2560_bbp_write(sc, RT2560_BBP_RX, rx);
2718 }
2719 
2720 static const char *
2721 rt2560_get_rf(int rev)
2722 {
2723 	switch (rev) {
2724 	case RT2560_RF_2522:	return "RT2522";
2725 	case RT2560_RF_2523:	return "RT2523";
2726 	case RT2560_RF_2524:	return "RT2524";
2727 	case RT2560_RF_2525:	return "RT2525";
2728 	case RT2560_RF_2525E:	return "RT2525e";
2729 	case RT2560_RF_2526:	return "RT2526";
2730 	case RT2560_RF_5222:	return "RT5222";
2731 	default:		return "unknown";
2732 	}
2733 }
2734 
2735 static void
2736 rt2560_read_eeprom(struct rt2560_softc *sc)
2737 {
2738 	uint16_t val;
2739 	int i;
2740 
2741 	val = rt2560_eeprom_read(sc, RT2560_EEPROM_CONFIG0);
2742 	sc->rf_rev =   (val >> 11) & 0x1f;
2743 	sc->hw_radio = (val >> 10) & 0x1;
2744 	sc->led_mode = (val >> 6)  & 0x7;
2745 	sc->rx_ant =   (val >> 4)  & 0x3;
2746 	sc->tx_ant =   (val >> 2)  & 0x3;
2747 	sc->nb_ant =   val & 0x3;
2748 
2749 	/* read default values for BBP registers */
2750 	for (i = 0; i < 16; i++) {
2751 		val = rt2560_eeprom_read(sc, RT2560_EEPROM_BBP_BASE + i);
2752 		sc->bbp_prom[i].reg = val >> 8;
2753 		sc->bbp_prom[i].val = val & 0xff;
2754 	}
2755 
2756 	/* read Tx power for all b/g channels */
2757 	for (i = 0; i < 14 / 2; i++) {
2758 		val = rt2560_eeprom_read(sc, RT2560_EEPROM_TXPOWER + i);
2759 		sc->txpow[i * 2] = val >> 8;
2760 		sc->txpow[i * 2 + 1] = val & 0xff;
2761 	}
2762 }
2763 
2764 static int
2765 rt2560_bbp_init(struct rt2560_softc *sc)
2766 {
2767 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
2768 	int i, ntries;
2769 
2770 	/* wait for BBP to be ready */
2771 	for (ntries = 0; ntries < 100; ntries++) {
2772 		if (rt2560_bbp_read(sc, RT2560_BBP_VERSION) != 0)
2773 			break;
2774 		DELAY(1);
2775 	}
2776 	if (ntries == 100) {
2777 		printf("%s: timeout waiting for BBP\n", sc->sc_dev.dv_xname);
2778 		return EIO;
2779 	}
2780 
2781 	/* initialize BBP registers to default values */
2782 	for (i = 0; i < N(rt2560_def_bbp); i++) {
2783 		rt2560_bbp_write(sc, rt2560_def_bbp[i].reg,
2784 		    rt2560_def_bbp[i].val);
2785 	}
2786 #if 0
2787 	/* initialize BBP registers to values stored in EEPROM */
2788 	for (i = 0; i < 16; i++) {
2789 		if (sc->bbp_prom[i].reg == 0xff)
2790 			continue;
2791 		rt2560_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2792 	}
2793 #endif
2794 
2795 	return 0;
2796 #undef N
2797 }
2798 
2799 static int
2800 rt2560_init(struct ifnet *ifp)
2801 {
2802 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
2803 	struct rt2560_softc *sc = ifp->if_softc;
2804 	struct ieee80211com *ic = &sc->sc_ic;
2805 	uint32_t tmp;
2806 	int i;
2807 
2808 	/* for CardBus, power on the socket */
2809 	if (!(sc->sc_flags & RT2560_ENABLED)) {
2810 		if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
2811 			printf("%s: could not enable device\n",
2812 			    sc->sc_dev.dv_xname);
2813 			return EIO;
2814 		}
2815 		sc->sc_flags |= RT2560_ENABLED;
2816 	}
2817 
2818 	rt2560_stop(ifp, 1);
2819 
2820 	/* setup tx rings */
2821 	tmp = RT2560_PRIO_RING_COUNT << 24 |
2822 	      RT2560_ATIM_RING_COUNT << 16 |
2823 	      RT2560_TX_RING_COUNT   <<  8 |
2824 	      RT2560_TX_DESC_SIZE;
2825 
2826 	/* rings _must_ be initialized in this _exact_ order! */
2827 	RAL_WRITE(sc, RT2560_TXCSR2, tmp);
2828 	RAL_WRITE(sc, RT2560_TXCSR3, sc->txq.physaddr);
2829 	RAL_WRITE(sc, RT2560_TXCSR5, sc->prioq.physaddr);
2830 	RAL_WRITE(sc, RT2560_TXCSR4, sc->atimq.physaddr);
2831 	RAL_WRITE(sc, RT2560_TXCSR6, sc->bcnq.physaddr);
2832 
2833 	/* setup rx ring */
2834 	tmp = RT2560_RX_RING_COUNT << 8 | RT2560_RX_DESC_SIZE;
2835 
2836 	RAL_WRITE(sc, RT2560_RXCSR1, tmp);
2837 	RAL_WRITE(sc, RT2560_RXCSR2, sc->rxq.physaddr);
2838 
2839 	/* initialize MAC registers to default values */
2840 	for (i = 0; i < N(rt2560_def_mac); i++)
2841 		RAL_WRITE(sc, rt2560_def_mac[i].reg, rt2560_def_mac[i].val);
2842 
2843 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2844 	rt2560_set_macaddr(sc, ic->ic_myaddr);
2845 
2846 	/* set basic rate set (will be updated later) */
2847 	RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x153);
2848 
2849 	rt2560_set_txantenna(sc, 1);
2850 	rt2560_set_rxantenna(sc, 1);
2851 	rt2560_update_slot(ifp);
2852 	rt2560_update_plcp(sc);
2853 	rt2560_update_led(sc, 0, 0);
2854 
2855 	RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC);
2856 	RAL_WRITE(sc, RT2560_CSR1, RT2560_HOST_READY);
2857 
2858 	if (rt2560_bbp_init(sc) != 0) {
2859 		rt2560_stop(ifp, 1);
2860 		return EIO;
2861 	}
2862 
2863 	/* set default BSS channel */
2864 	ic->ic_bss->ni_chan = ic->ic_ibss_chan;
2865 	rt2560_set_chan(sc, ic->ic_bss->ni_chan);
2866 
2867 	/* kick Rx */
2868 	tmp = RT2560_DROP_PHY_ERROR | RT2560_DROP_CRC_ERROR;
2869 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2870 		tmp |= RT2560_DROP_CTL | RT2560_DROP_VERSION_ERROR;
2871 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2872 			tmp |= RT2560_DROP_TODS;
2873 		if (!(ifp->if_flags & IFF_PROMISC))
2874 			tmp |= RT2560_DROP_NOT_TO_ME;
2875 	}
2876 	RAL_WRITE(sc, RT2560_RXCSR0, tmp);
2877 
2878 	/* clear old FCS and Rx FIFO errors */
2879 	RAL_READ(sc, RT2560_CNT0);
2880 	RAL_READ(sc, RT2560_CNT4);
2881 
2882 	/* clear any pending interrupts */
2883 	RAL_WRITE(sc, RT2560_CSR7, 0xffffffff);
2884 
2885 	/* enable interrupts */
2886 	RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK);
2887 
2888 	ifp->if_flags &= ~IFF_OACTIVE;
2889 	ifp->if_flags |= IFF_RUNNING;
2890 
2891 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2892 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2893 	else
2894 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2895 
2896 	return 0;
2897 #undef N
2898 }
2899 
2900 static void
2901 rt2560_stop(struct ifnet *ifp, int disable)
2902 {
2903 	struct rt2560_softc *sc = ifp->if_softc;
2904 	struct ieee80211com *ic = &sc->sc_ic;
2905 
2906 	sc->sc_tx_timer = 0;
2907 	ifp->if_timer = 0;
2908 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2909 
2910 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);	/* free all nodes */
2911 
2912 	/* abort Tx */
2913 	RAL_WRITE(sc, RT2560_TXCSR0, RT2560_ABORT_TX);
2914 
2915 	/* disable Rx */
2916 	RAL_WRITE(sc, RT2560_RXCSR0, RT2560_DISABLE_RX);
2917 
2918 	/* reset ASIC (and thus, BBP) */
2919 	RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC);
2920 	RAL_WRITE(sc, RT2560_CSR1, 0);
2921 
2922 	/* disable interrupts */
2923 	RAL_WRITE(sc, RT2560_CSR8, 0xffffffff);
2924 
2925 	/* clear any pending interrupt */
2926 	RAL_WRITE(sc, RT2560_CSR7, 0xffffffff);
2927 
2928 	/* reset Tx and Rx rings */
2929 	rt2560_reset_tx_ring(sc, &sc->txq);
2930 	rt2560_reset_tx_ring(sc, &sc->atimq);
2931 	rt2560_reset_tx_ring(sc, &sc->prioq);
2932 	rt2560_reset_tx_ring(sc, &sc->bcnq);
2933 	rt2560_reset_rx_ring(sc, &sc->rxq);
2934 
2935 }
2936