xref: /netbsd-src/sys/dev/ic/rt2560.c (revision 7f21db1c0118155e0dd40b75182e30c589d9f63e)
1 /*	$NetBSD: rt2560.c,v 1.22 2010/01/19 22:06:25 pooka Exp $	*/
2 /*	$OpenBSD: rt2560.c,v 1.15 2006/04/20 20:31:12 miod Exp $  */
3 /*	$FreeBSD: rt2560.c,v 1.3 2006/03/21 21:15:43 damien Exp $*/
4 
5 /*-
6  * Copyright (c) 2005, 2006
7  *	Damien Bergamini <damien.bergamini@free.fr>
8  *
9  * Permission to use, copy, modify, and distribute this software for any
10  * purpose with or without fee is hereby granted, provided that the above
11  * copyright notice and this permission notice appear in all copies.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20  */
21 
22 /*-
23  * Ralink Technology RT2560 chipset driver
24  * http://www.ralinktech.com/
25  */
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: rt2560.c,v 1.22 2010/01/19 22:06:25 pooka Exp $");
28 
29 
30 #include <sys/param.h>
31 #include <sys/sockio.h>
32 #include <sys/mbuf.h>
33 #include <sys/kernel.h>
34 #include <sys/socket.h>
35 #include <sys/systm.h>
36 #include <sys/malloc.h>
37 #include <sys/callout.h>
38 #include <sys/conf.h>
39 #include <sys/device.h>
40 
41 #include <sys/bus.h>
42 #include <machine/endian.h>
43 #include <sys/intr.h>
44 
45 #include <net/bpf.h>
46 #include <net/if.h>
47 #include <net/if_arp.h>
48 #include <net/if_dl.h>
49 #include <net/if_media.h>
50 #include <net/if_types.h>
51 #include <net/if_ether.h>
52 
53 #include <netinet/in.h>
54 #include <netinet/in_systm.h>
55 #include <netinet/in_var.h>
56 #include <netinet/ip.h>
57 
58 #include <net80211/ieee80211_var.h>
59 #include <net80211/ieee80211_rssadapt.h>
60 #include <net80211/ieee80211_radiotap.h>
61 
62 #include <dev/ic/rt2560reg.h>
63 #include <dev/ic/rt2560var.h>
64 
65 #include <dev/pci/pcireg.h>
66 #include <dev/pci/pcivar.h>
67 #include <dev/pci/pcidevs.h>
68 
69 #ifdef RAL_DEBUG
70 #define DPRINTF(x)	do { if (rt2560_debug > 0) printf x; } while (0)
71 #define DPRINTFN(n, x)	do { if (rt2560_debug >= (n)) printf x; } while (0)
72 int rt2560_debug = 0;
73 #else
74 #define DPRINTF(x)
75 #define DPRINTFN(n, x)
76 #endif
77 
78 static int	rt2560_alloc_tx_ring(struct rt2560_softc *,
79 		    struct rt2560_tx_ring *, int);
80 static void	rt2560_reset_tx_ring(struct rt2560_softc *,
81 		    struct rt2560_tx_ring *);
82 static void	rt2560_free_tx_ring(struct rt2560_softc *,
83 		    struct rt2560_tx_ring *);
84 static int	rt2560_alloc_rx_ring(struct rt2560_softc *,
85 		    struct rt2560_rx_ring *, int);
86 static void	rt2560_reset_rx_ring(struct rt2560_softc *,
87 		    struct rt2560_rx_ring *);
88 static void	rt2560_free_rx_ring(struct rt2560_softc *,
89 		    struct rt2560_rx_ring *);
90 static struct ieee80211_node *
91 		rt2560_node_alloc(struct ieee80211_node_table *);
92 static int	rt2560_media_change(struct ifnet *);
93 static void	rt2560_next_scan(void *);
94 static void	rt2560_iter_func(void *, struct ieee80211_node *);
95 static void	rt2560_update_rssadapt(void *);
96 static int	rt2560_newstate(struct ieee80211com *, enum ieee80211_state,
97     		    int);
98 static uint16_t	rt2560_eeprom_read(struct rt2560_softc *, uint8_t);
99 static void	rt2560_encryption_intr(struct rt2560_softc *);
100 static void	rt2560_tx_intr(struct rt2560_softc *);
101 static void	rt2560_prio_intr(struct rt2560_softc *);
102 static void	rt2560_decryption_intr(struct rt2560_softc *);
103 static void	rt2560_rx_intr(struct rt2560_softc *);
104 static void	rt2560_beacon_expire(struct rt2560_softc *);
105 static void	rt2560_wakeup_expire(struct rt2560_softc *);
106 static uint8_t	rt2560_rxrate(struct rt2560_rx_desc *);
107 static int	rt2560_ack_rate(struct ieee80211com *, int);
108 static uint16_t	rt2560_txtime(int, int, uint32_t);
109 static uint8_t	rt2560_plcp_signal(int);
110 static void	rt2560_setup_tx_desc(struct rt2560_softc *,
111 		    struct rt2560_tx_desc *, uint32_t, int, int, int,
112 		    bus_addr_t);
113 static int	rt2560_tx_bcn(struct rt2560_softc *, struct mbuf *,
114 		    struct ieee80211_node *);
115 static int	rt2560_tx_mgt(struct rt2560_softc *, struct mbuf *,
116 		    struct ieee80211_node *);
117 static struct mbuf *rt2560_get_rts(struct rt2560_softc *,
118 		    struct ieee80211_frame *, uint16_t);
119 static int	rt2560_tx_data(struct rt2560_softc *, struct mbuf *,
120 		    struct ieee80211_node *);
121 static void	rt2560_start(struct ifnet *);
122 static void	rt2560_watchdog(struct ifnet *);
123 static int	rt2560_reset(struct ifnet *);
124 static int	rt2560_ioctl(struct ifnet *, u_long, void *);
125 static void	rt2560_bbp_write(struct rt2560_softc *, uint8_t, uint8_t);
126 static uint8_t	rt2560_bbp_read(struct rt2560_softc *, uint8_t);
127 static void	rt2560_rf_write(struct rt2560_softc *, uint8_t, uint32_t);
128 static void	rt2560_set_chan(struct rt2560_softc *,
129 		    struct ieee80211_channel *);
130 static void	rt2560_disable_rf_tune(struct rt2560_softc *);
131 static void	rt2560_enable_tsf_sync(struct rt2560_softc *);
132 static void	rt2560_update_plcp(struct rt2560_softc *);
133 static void	rt2560_update_slot(struct ifnet *);
134 static void	rt2560_set_basicrates(struct rt2560_softc *);
135 static void	rt2560_update_led(struct rt2560_softc *, int, int);
136 static void	rt2560_set_bssid(struct rt2560_softc *, uint8_t *);
137 static void	rt2560_set_macaddr(struct rt2560_softc *, uint8_t *);
138 static void	rt2560_get_macaddr(struct rt2560_softc *, uint8_t *);
139 static void	rt2560_update_promisc(struct rt2560_softc *);
140 static void	rt2560_set_txantenna(struct rt2560_softc *, int);
141 static void	rt2560_set_rxantenna(struct rt2560_softc *, int);
142 static const char *rt2560_get_rf(int);
143 static void	rt2560_read_eeprom(struct rt2560_softc *);
144 static int	rt2560_bbp_init(struct rt2560_softc *);
145 static int	rt2560_init(struct ifnet *);
146 static void	rt2560_stop(struct ifnet *, int);
147 
148 /*
149  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
150  */
151 static const struct ieee80211_rateset rt2560_rateset_11a =
152 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
153 
154 static const struct ieee80211_rateset rt2560_rateset_11b =
155 	{ 4, { 2, 4, 11, 22 } };
156 
157 static const struct ieee80211_rateset rt2560_rateset_11g =
158 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
159 
160 /*
161  * Default values for MAC registers; values taken from the reference driver.
162  */
163 static const struct {
164 	uint32_t	reg;
165 	uint32_t	val;
166 } rt2560_def_mac[] = {
167 	{ RT2560_PSCSR0,      0x00020002 },
168 	{ RT2560_PSCSR1,      0x00000002 },
169 	{ RT2560_PSCSR2,      0x00020002 },
170 	{ RT2560_PSCSR3,      0x00000002 },
171 	{ RT2560_TIMECSR,     0x00003f21 },
172 	{ RT2560_CSR9,        0x00000780 },
173 	{ RT2560_CSR11,       0x07041483 },
174 	{ RT2560_CNT3,        0x00000000 },
175 	{ RT2560_TXCSR1,      0x07614562 },
176 	{ RT2560_ARSP_PLCP_0, 0x8c8d8b8a },
177 	{ RT2560_ACKPCTCSR,   0x7038140a },
178 	{ RT2560_ARTCSR1,     0x1d21252d },
179 	{ RT2560_ARTCSR2,     0x1919191d },
180 	{ RT2560_RXCSR0,      0xffffffff },
181 	{ RT2560_RXCSR3,      0xb3aab3af },
182 	{ RT2560_PCICSR,      0x000003b8 },
183 	{ RT2560_PWRCSR0,     0x3f3b3100 },
184 	{ RT2560_GPIOCSR,     0x0000ff00 },
185 	{ RT2560_TESTCSR,     0x000000f0 },
186 	{ RT2560_PWRCSR1,     0x000001ff },
187 	{ RT2560_MACCSR0,     0x00213223 },
188 	{ RT2560_MACCSR1,     0x00235518 },
189 	{ RT2560_RLPWCSR,     0x00000040 },
190 	{ RT2560_RALINKCSR,   0x9a009a11 },
191 	{ RT2560_CSR7,        0xffffffff },
192 	{ RT2560_BBPCSR1,     0x82188200 },
193 	{ RT2560_TXACKCSR0,   0x00000020 },
194 	{ RT2560_SECCSR3,     0x0000e78f }
195 };
196 
197 /*
198  * Default values for BBP registers; values taken from the reference driver.
199  */
200 static const struct {
201 	uint8_t	reg;
202 	uint8_t	val;
203 } rt2560_def_bbp[] = {
204 	{  3, 0x02 },
205 	{  4, 0x19 },
206 	{ 14, 0x1c },
207 	{ 15, 0x30 },
208 	{ 16, 0xac },
209 	{ 17, 0x48 },
210 	{ 18, 0x18 },
211 	{ 19, 0xff },
212 	{ 20, 0x1e },
213 	{ 21, 0x08 },
214 	{ 22, 0x08 },
215 	{ 23, 0x08 },
216 	{ 24, 0x80 },
217 	{ 25, 0x50 },
218 	{ 26, 0x08 },
219 	{ 27, 0x23 },
220 	{ 30, 0x10 },
221 	{ 31, 0x2b },
222 	{ 32, 0xb9 },
223 	{ 34, 0x12 },
224 	{ 35, 0x50 },
225 	{ 39, 0xc4 },
226 	{ 40, 0x02 },
227 	{ 41, 0x60 },
228 	{ 53, 0x10 },
229 	{ 54, 0x18 },
230 	{ 56, 0x08 },
231 	{ 57, 0x10 },
232 	{ 58, 0x08 },
233 	{ 61, 0x60 },
234 	{ 62, 0x10 },
235 	{ 75, 0xff }
236 };
237 
238 /*
239  * Default values for RF register R2 indexed by channel numbers; values taken
240  * from the reference driver.
241  */
242 static const uint32_t rt2560_rf2522_r2[] = {
243 	0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814,
244 	0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e
245 };
246 
247 static const uint32_t rt2560_rf2523_r2[] = {
248 	0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
249 	0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
250 };
251 
252 static const uint32_t rt2560_rf2524_r2[] = {
253 	0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
254 	0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
255 };
256 
257 static const uint32_t rt2560_rf2525_r2[] = {
258 	0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d,
259 	0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346
260 };
261 
262 static const uint32_t rt2560_rf2525_hi_r2[] = {
263 	0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345,
264 	0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e
265 };
266 
267 static const uint32_t rt2560_rf2525e_r2[] = {
268 	0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463,
269 	0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b
270 };
271 
272 static const uint32_t rt2560_rf2526_hi_r2[] = {
273 	0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d,
274 	0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241
275 };
276 
277 static const uint32_t rt2560_rf2526_r2[] = {
278 	0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229,
279 	0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d
280 };
281 
282 /*
283  * For dual-band RF, RF registers R1 and R4 also depend on channel number;
284  * values taken from the reference driver.
285  */
286 static const struct {
287 	uint8_t		chan;
288 	uint32_t	r1;
289 	uint32_t	r2;
290 	uint32_t	r4;
291 } rt2560_rf5222[] = {
292 	{   1, 0x08808, 0x0044d, 0x00282 },
293 	{   2, 0x08808, 0x0044e, 0x00282 },
294 	{   3, 0x08808, 0x0044f, 0x00282 },
295 	{   4, 0x08808, 0x00460, 0x00282 },
296 	{   5, 0x08808, 0x00461, 0x00282 },
297 	{   6, 0x08808, 0x00462, 0x00282 },
298 	{   7, 0x08808, 0x00463, 0x00282 },
299 	{   8, 0x08808, 0x00464, 0x00282 },
300 	{   9, 0x08808, 0x00465, 0x00282 },
301 	{  10, 0x08808, 0x00466, 0x00282 },
302 	{  11, 0x08808, 0x00467, 0x00282 },
303 	{  12, 0x08808, 0x00468, 0x00282 },
304 	{  13, 0x08808, 0x00469, 0x00282 },
305 	{  14, 0x08808, 0x0046b, 0x00286 },
306 
307 	{  36, 0x08804, 0x06225, 0x00287 },
308 	{  40, 0x08804, 0x06226, 0x00287 },
309 	{  44, 0x08804, 0x06227, 0x00287 },
310 	{  48, 0x08804, 0x06228, 0x00287 },
311 	{  52, 0x08804, 0x06229, 0x00287 },
312 	{  56, 0x08804, 0x0622a, 0x00287 },
313 	{  60, 0x08804, 0x0622b, 0x00287 },
314 	{  64, 0x08804, 0x0622c, 0x00287 },
315 
316 	{ 100, 0x08804, 0x02200, 0x00283 },
317 	{ 104, 0x08804, 0x02201, 0x00283 },
318 	{ 108, 0x08804, 0x02202, 0x00283 },
319 	{ 112, 0x08804, 0x02203, 0x00283 },
320 	{ 116, 0x08804, 0x02204, 0x00283 },
321 	{ 120, 0x08804, 0x02205, 0x00283 },
322 	{ 124, 0x08804, 0x02206, 0x00283 },
323 	{ 128, 0x08804, 0x02207, 0x00283 },
324 	{ 132, 0x08804, 0x02208, 0x00283 },
325 	{ 136, 0x08804, 0x02209, 0x00283 },
326 	{ 140, 0x08804, 0x0220a, 0x00283 },
327 
328 	{ 149, 0x08808, 0x02429, 0x00281 },
329 	{ 153, 0x08808, 0x0242b, 0x00281 },
330 	{ 157, 0x08808, 0x0242d, 0x00281 },
331 	{ 161, 0x08808, 0x0242f, 0x00281 }
332 };
333 
334 int
335 rt2560_attach(void *xsc, int id)
336 {
337 	struct rt2560_softc *sc = xsc;
338 	struct ieee80211com *ic = &sc->sc_ic;
339 	struct ifnet *ifp = &sc->sc_if;
340 	int error, i;
341 
342 	callout_init(&sc->scan_ch, 0);
343 	callout_init(&sc->rssadapt_ch, 0);
344 
345 	/* retrieve RT2560 rev. no */
346 	sc->asic_rev = RAL_READ(sc, RT2560_CSR0);
347 
348 	/* retrieve MAC address */
349 	rt2560_get_macaddr(sc, ic->ic_myaddr);
350 
351 	aprint_normal_dev(&sc->sc_dev, "802.11 address %s\n",
352 	    ether_sprintf(ic->ic_myaddr));
353 
354 	/* retrieve RF rev. no and various other things from EEPROM */
355 	rt2560_read_eeprom(sc);
356 
357 	aprint_normal_dev(&sc->sc_dev, "MAC/BBP RT2560 (rev 0x%02x), RF %s\n",
358 	    sc->asic_rev, rt2560_get_rf(sc->rf_rev));
359 
360 	/*
361 	 * Allocate Tx and Rx rings.
362 	 */
363 	error = rt2560_alloc_tx_ring(sc, &sc->txq, RT2560_TX_RING_COUNT);
364 	if (error != 0) {
365 		aprint_error_dev(&sc->sc_dev, "could not allocate Tx ring\n)");
366 		goto fail1;
367 	}
368 
369 	error = rt2560_alloc_tx_ring(sc, &sc->atimq, RT2560_ATIM_RING_COUNT);
370 	if (error != 0) {
371 		aprint_error_dev(&sc->sc_dev, "could not allocate ATIM ring\n");
372 		goto fail2;
373 	}
374 
375 	error = rt2560_alloc_tx_ring(sc, &sc->prioq, RT2560_PRIO_RING_COUNT);
376 	if (error != 0) {
377 		aprint_error_dev(&sc->sc_dev, "could not allocate Prio ring\n");
378 		goto fail3;
379 	}
380 
381 	error = rt2560_alloc_tx_ring(sc, &sc->bcnq, RT2560_BEACON_RING_COUNT);
382 	if (error != 0) {
383 		aprint_error_dev(&sc->sc_dev, "could not allocate Beacon ring\n");
384 		goto fail4;
385 	}
386 
387 	error = rt2560_alloc_rx_ring(sc, &sc->rxq, RT2560_RX_RING_COUNT);
388 	if (error != 0) {
389 		aprint_error_dev(&sc->sc_dev, "could not allocate Rx ring\n");
390 		goto fail5;
391 	}
392 
393 	ifp->if_softc = sc;
394 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
395 	ifp->if_init = rt2560_init;
396 	ifp->if_stop = rt2560_stop;
397 	ifp->if_ioctl = rt2560_ioctl;
398 	ifp->if_start = rt2560_start;
399 	ifp->if_watchdog = rt2560_watchdog;
400 	IFQ_SET_READY(&ifp->if_snd);
401 	memcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
402 
403 	ic->ic_ifp = ifp;
404 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
405 	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
406 	ic->ic_state = IEEE80211_S_INIT;
407 
408 	/* set device capabilities */
409 	ic->ic_caps =
410 	    IEEE80211_C_IBSS |		/* IBSS mode supported */
411 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
412 	    IEEE80211_C_HOSTAP |	/* HostAp mode supported */
413 	    IEEE80211_C_TXPMGT |	/* tx power management */
414 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
415 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
416 	    IEEE80211_C_WPA;		/* 802.11i */
417 
418 	if (sc->rf_rev == RT2560_RF_5222) {
419 		/* set supported .11a rates */
420 		ic->ic_sup_rates[IEEE80211_MODE_11A] = rt2560_rateset_11a;
421 
422 		/* set supported .11a channels */
423 		for (i = 36; i <= 64; i += 4) {
424 			ic->ic_channels[i].ic_freq =
425 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
426 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
427 		}
428 		for (i = 100; i <= 140; i += 4) {
429 			ic->ic_channels[i].ic_freq =
430 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
431 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
432 		}
433 		for (i = 149; i <= 161; i += 4) {
434 			ic->ic_channels[i].ic_freq =
435 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
436 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
437 		}
438 	}
439 
440 	/* set supported .11b and .11g rates */
441 	ic->ic_sup_rates[IEEE80211_MODE_11B] = rt2560_rateset_11b;
442 	ic->ic_sup_rates[IEEE80211_MODE_11G] = rt2560_rateset_11g;
443 
444 	/* set supported .11b and .11g channels (1 through 14) */
445 	for (i = 1; i <= 14; i++) {
446 		ic->ic_channels[i].ic_freq =
447 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
448 		ic->ic_channels[i].ic_flags =
449 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
450 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
451 	}
452 
453 	if_attach(ifp);
454 	ieee80211_ifattach(ic);
455 	ic->ic_node_alloc = rt2560_node_alloc;
456 	ic->ic_updateslot = rt2560_update_slot;
457 	ic->ic_reset = rt2560_reset;
458 
459 	/* override state transition machine */
460 	sc->sc_newstate = ic->ic_newstate;
461 	ic->ic_newstate = rt2560_newstate;
462 	ieee80211_media_init(ic, rt2560_media_change, ieee80211_media_status);
463 
464 	bpf_ops->bpf_attach(ifp, DLT_IEEE802_11_RADIO,
465 	    sizeof(struct ieee80211_frame) + 64, &sc->sc_drvbpf);
466 
467 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
468 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
469 	sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2560_RX_RADIOTAP_PRESENT);
470 
471 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
472 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
473 	sc->sc_txtap.wt_ihdr.it_present = htole32(RT2560_TX_RADIOTAP_PRESENT);
474 
475 
476 	sc->dwelltime = 200;
477 
478 	ieee80211_announce(ic);
479 
480 	if (pmf_device_register(&sc->sc_dev, NULL, NULL))
481 		pmf_class_network_register(&sc->sc_dev, ifp);
482 	else
483 		aprint_error_dev(&sc->sc_dev,
484 		    "couldn't establish power handler\n");
485 
486 	return 0;
487 
488 fail5:	rt2560_free_tx_ring(sc, &sc->bcnq);
489 fail4:	rt2560_free_tx_ring(sc, &sc->prioq);
490 fail3:	rt2560_free_tx_ring(sc, &sc->atimq);
491 fail2:	rt2560_free_tx_ring(sc, &sc->txq);
492 fail1:
493 	return ENXIO;
494 }
495 
496 
497 int
498 rt2560_detach(void *xsc)
499 {
500 	struct rt2560_softc *sc = xsc;
501 	struct ifnet *ifp = &sc->sc_if;
502 
503 	callout_stop(&sc->scan_ch);
504 	callout_stop(&sc->rssadapt_ch);
505 
506 	pmf_device_deregister(&sc->sc_dev);
507 
508 	rt2560_stop(ifp, 1);
509 
510 	ieee80211_ifdetach(&sc->sc_ic);	/* free all nodes */
511 	if_detach(ifp);
512 
513 	rt2560_free_tx_ring(sc, &sc->txq);
514 	rt2560_free_tx_ring(sc, &sc->atimq);
515 	rt2560_free_tx_ring(sc, &sc->prioq);
516 	rt2560_free_tx_ring(sc, &sc->bcnq);
517 	rt2560_free_rx_ring(sc, &sc->rxq);
518 
519 	return 0;
520 }
521 
522 int
523 rt2560_alloc_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring,
524     int count)
525 {
526 	int i, nsegs, error;
527 
528 	ring->count = count;
529 	ring->queued = 0;
530 	ring->cur = ring->next = 0;
531 	ring->cur_encrypt = ring->next_encrypt = 0;
532 
533 	error = bus_dmamap_create(sc->sc_dmat, count * RT2560_TX_DESC_SIZE, 1,
534 	    count * RT2560_TX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map);
535 	if (error != 0) {
536 		aprint_error_dev(&sc->sc_dev, "could not create desc DMA map\n");
537 		goto fail;
538 	}
539 
540 	error = bus_dmamem_alloc(sc->sc_dmat, count * RT2560_TX_DESC_SIZE,
541 	    PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
542 	if (error != 0) {
543 		aprint_error_dev(&sc->sc_dev, "could not allocate DMA memory\n");
544 		goto fail;
545 	}
546 
547 	error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
548 	    count * RT2560_TX_DESC_SIZE, (void **)&ring->desc,
549 	    BUS_DMA_NOWAIT);
550 	if (error != 0) {
551 		aprint_error_dev(&sc->sc_dev, "could not map desc DMA memory\n");
552 		goto fail;
553 	}
554 
555 	error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
556 	    count * RT2560_TX_DESC_SIZE, NULL, BUS_DMA_NOWAIT);
557 	if (error != 0) {
558 		aprint_error_dev(&sc->sc_dev, "could not load desc DMA map\n");
559 		goto fail;
560 	}
561 
562 	memset(ring->desc, 0, count * RT2560_TX_DESC_SIZE);
563 	ring->physaddr = ring->map->dm_segs->ds_addr;
564 
565 	ring->data = malloc(count * sizeof (struct rt2560_tx_data), M_DEVBUF,
566 	    M_NOWAIT);
567 	if (ring->data == NULL) {
568 		aprint_error_dev(&sc->sc_dev, "could not allocate soft data\n");
569 		error = ENOMEM;
570 		goto fail;
571 	}
572 
573 	memset(ring->data, 0, count * sizeof (struct rt2560_tx_data));
574 	for (i = 0; i < count; i++) {
575 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
576 		    RT2560_MAX_SCATTER, MCLBYTES, 0, BUS_DMA_NOWAIT,
577 		    &ring->data[i].map);
578 		if (error != 0) {
579 			aprint_error_dev(&sc->sc_dev, "could not create DMA map\n");
580 			goto fail;
581 		}
582 	}
583 
584 	return 0;
585 
586 fail:	rt2560_free_tx_ring(sc, ring);
587 	return error;
588 }
589 
590 void
591 rt2560_reset_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring)
592 {
593 	struct rt2560_tx_desc *desc;
594 	struct rt2560_tx_data *data;
595 	int i;
596 
597 	for (i = 0; i < ring->count; i++) {
598 		desc = &ring->desc[i];
599 		data = &ring->data[i];
600 
601 		if (data->m != NULL) {
602 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
603 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
604 			bus_dmamap_unload(sc->sc_dmat, data->map);
605 			m_freem(data->m);
606 			data->m = NULL;
607 		}
608 
609 		if (data->ni != NULL) {
610 			ieee80211_free_node(data->ni);
611 			data->ni = NULL;
612 		}
613 
614 		desc->flags = 0;
615 	}
616 
617 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
618 	    BUS_DMASYNC_PREWRITE);
619 
620 	ring->queued = 0;
621 	ring->cur = ring->next = 0;
622 	ring->cur_encrypt = ring->next_encrypt = 0;
623 }
624 
625 void
626 rt2560_free_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring)
627 {
628 	struct rt2560_tx_data *data;
629 	int i;
630 
631 	if (ring->desc != NULL) {
632 		bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
633 		    ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
634 		bus_dmamap_unload(sc->sc_dmat, ring->map);
635 		bus_dmamem_unmap(sc->sc_dmat, (void *)ring->desc,
636 		    ring->count * RT2560_TX_DESC_SIZE);
637 		bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
638 	}
639 
640 	if (ring->data != NULL) {
641 		for (i = 0; i < ring->count; i++) {
642 			data = &ring->data[i];
643 
644 			if (data->m != NULL) {
645 				bus_dmamap_sync(sc->sc_dmat, data->map, 0,
646 				    data->map->dm_mapsize,
647 				    BUS_DMASYNC_POSTWRITE);
648 				bus_dmamap_unload(sc->sc_dmat, data->map);
649 				m_freem(data->m);
650 			}
651 
652 			if (data->ni != NULL)
653 				ieee80211_free_node(data->ni);
654 
655 
656 			if (data->map != NULL)
657 				bus_dmamap_destroy(sc->sc_dmat, data->map);
658 		}
659 		free(ring->data, M_DEVBUF);
660 	}
661 }
662 
663 int
664 rt2560_alloc_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring,
665     int count)
666 {
667 	struct rt2560_rx_desc *desc;
668 	struct rt2560_rx_data *data;
669 	int i, nsegs, error;
670 
671 	ring->count = count;
672 	ring->cur = ring->next = 0;
673 	ring->cur_decrypt = 0;
674 
675 	error = bus_dmamap_create(sc->sc_dmat, count * RT2560_RX_DESC_SIZE, 1,
676 	    count * RT2560_RX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map);
677 	if (error != 0) {
678 		aprint_error_dev(&sc->sc_dev, "could not create desc DMA map\n");
679 		goto fail;
680 	}
681 
682 	error = bus_dmamem_alloc(sc->sc_dmat, count * RT2560_RX_DESC_SIZE,
683 	    PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
684 	if (error != 0) {
685 		aprint_error_dev(&sc->sc_dev, "could not allocate DMA memory\n");
686 		goto fail;
687 	}
688 
689 	error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
690 	    count * RT2560_RX_DESC_SIZE, (void **)&ring->desc,
691 	    BUS_DMA_NOWAIT);
692 	if (error != 0) {
693 		aprint_error_dev(&sc->sc_dev, "could not map desc DMA memory\n");
694 		goto fail;
695 	}
696 
697 	error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
698 	    count * RT2560_RX_DESC_SIZE, NULL, BUS_DMA_NOWAIT);
699 	if (error != 0) {
700 		aprint_error_dev(&sc->sc_dev, "could not load desc DMA map\n");
701 		goto fail;
702 	}
703 
704 	memset(ring->desc, 0, count * RT2560_RX_DESC_SIZE);
705 	ring->physaddr = ring->map->dm_segs->ds_addr;
706 
707 	ring->data = malloc(count * sizeof (struct rt2560_rx_data), M_DEVBUF,
708 	    M_NOWAIT);
709 	if (ring->data == NULL) {
710 		aprint_error_dev(&sc->sc_dev, "could not allocate soft data\n");
711 		error = ENOMEM;
712 		goto fail;
713 	}
714 
715 	/*
716 	 * Pre-allocate Rx buffers and populate Rx ring.
717 	 */
718 	memset(ring->data, 0, count * sizeof (struct rt2560_rx_data));
719 	for (i = 0; i < count; i++) {
720 		desc = &sc->rxq.desc[i];
721 		data = &sc->rxq.data[i];
722 
723 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
724 		    0, BUS_DMA_NOWAIT, &data->map);
725 		if (error != 0) {
726 			aprint_error_dev(&sc->sc_dev, "could not create DMA map\n");
727 			goto fail;
728 		}
729 
730 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
731 		if (data->m == NULL) {
732 			aprint_error_dev(&sc->sc_dev, "could not allocate rx mbuf\n");
733 			error = ENOMEM;
734 			goto fail;
735 		}
736 
737 		MCLGET(data->m, M_DONTWAIT);
738 		if (!(data->m->m_flags & M_EXT)) {
739 			aprint_error_dev(&sc->sc_dev, "could not allocate rx mbuf cluster\n");
740 			error = ENOMEM;
741 			goto fail;
742 		}
743 
744 		error = bus_dmamap_load(sc->sc_dmat, data->map,
745 		    mtod(data->m, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
746 		if (error != 0) {
747 			aprint_error_dev(&sc->sc_dev, "could not load rx buf DMA map");
748 			goto fail;
749 		}
750 
751 		desc->flags = htole32(RT2560_RX_BUSY);
752 		desc->physaddr = htole32(data->map->dm_segs->ds_addr);
753 	}
754 
755 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
756 	    BUS_DMASYNC_PREWRITE);
757 
758 	return 0;
759 
760 fail:	rt2560_free_rx_ring(sc, ring);
761 	return error;
762 }
763 
764 void
765 rt2560_reset_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring)
766 {
767 	int i;
768 
769 	for (i = 0; i < ring->count; i++) {
770 		ring->desc[i].flags = htole32(RT2560_RX_BUSY);
771 		ring->data[i].drop = 0;
772 	}
773 
774 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
775 	    BUS_DMASYNC_PREWRITE);
776 
777 	ring->cur = ring->next = 0;
778 	ring->cur_decrypt = 0;
779 }
780 
781 void
782 rt2560_free_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring)
783 {
784 	struct rt2560_rx_data *data;
785 	int i;
786 
787 	if (ring->desc != NULL) {
788 		bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
789 		    ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
790 		bus_dmamap_unload(sc->sc_dmat, ring->map);
791 		bus_dmamem_unmap(sc->sc_dmat, (void *)ring->desc,
792 		    ring->count * RT2560_RX_DESC_SIZE);
793 		bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
794 	}
795 
796 	if (ring->data != NULL) {
797 		for (i = 0; i < ring->count; i++) {
798 			data = &ring->data[i];
799 
800 			if (data->m != NULL) {
801 				bus_dmamap_sync(sc->sc_dmat, data->map, 0,
802 				    data->map->dm_mapsize,
803 				    BUS_DMASYNC_POSTREAD);
804 				bus_dmamap_unload(sc->sc_dmat, data->map);
805 				m_freem(data->m);
806 			}
807 
808 			if (data->map != NULL)
809 				bus_dmamap_destroy(sc->sc_dmat, data->map);
810 		}
811 		free(ring->data, M_DEVBUF);
812 	}
813 }
814 
815 struct ieee80211_node *
816 rt2560_node_alloc(struct ieee80211_node_table *nt)
817 {
818 	struct rt2560_node *rn;
819 
820 	rn = malloc(sizeof (struct rt2560_node), M_80211_NODE,
821 	    M_NOWAIT | M_ZERO);
822 
823 	return (rn != NULL) ? &rn->ni : NULL;
824 }
825 
826 int
827 rt2560_media_change(struct ifnet *ifp)
828 {
829 	int error;
830 
831 	error = ieee80211_media_change(ifp);
832 	if (error != ENETRESET)
833 		return error;
834 
835 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
836 		rt2560_init(ifp);
837 
838 	return 0;
839 }
840 
841 /*
842  * This function is called periodically (every 200ms) during scanning to
843  * switch from one channel to another.
844  */
845 void
846 rt2560_next_scan(void *arg)
847 {
848 	struct rt2560_softc *sc = arg;
849 	struct ieee80211com *ic = &sc->sc_ic;
850 
851 	if (ic->ic_state == IEEE80211_S_SCAN)
852 		ieee80211_next_scan(ic);
853 }
854 
855 /*
856  * This function is called for each neighbor node.
857  */
858 void
859 rt2560_iter_func(void *arg, struct ieee80211_node *ni)
860 {
861 	struct rt2560_node *rn = (struct rt2560_node *)ni;
862 
863 	ieee80211_rssadapt_updatestats(&rn->rssadapt);
864 }
865 
866 /*
867  * This function is called periodically (every 100ms) in RUN state to update
868  * the rate adaptation statistics.
869  */
870 void
871 rt2560_update_rssadapt(void *arg)
872 {
873 	struct rt2560_softc *sc = arg;
874 	struct ieee80211com *ic = &sc->sc_ic;
875 
876 	ieee80211_iterate_nodes(&ic->ic_sta, rt2560_iter_func, arg);
877 
878 	callout_reset(&sc->rssadapt_ch, hz / 10, rt2560_update_rssadapt, sc);
879 }
880 
881 int
882 rt2560_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
883 {
884 	struct rt2560_softc *sc = ic->ic_ifp->if_softc;
885 	enum ieee80211_state ostate;
886 	struct ieee80211_node *ni;
887 	struct mbuf *m;
888 	int error = 0;
889 
890 	ostate = ic->ic_state;
891 	callout_stop(&sc->scan_ch);
892 
893 	switch (nstate) {
894 	case IEEE80211_S_INIT:
895 		callout_stop(&sc->rssadapt_ch);
896 
897 		if (ostate == IEEE80211_S_RUN) {
898 			/* abort TSF synchronization */
899 			RAL_WRITE(sc, RT2560_CSR14, 0);
900 
901 			/* turn association led off */
902 			rt2560_update_led(sc, 0, 0);
903 		}
904 		break;
905 
906 	case IEEE80211_S_SCAN:
907 		rt2560_set_chan(sc, ic->ic_curchan);
908 		callout_reset(&sc->scan_ch, (sc->dwelltime * hz) / 1000,
909 		    rt2560_next_scan, sc);
910 		break;
911 
912 	case IEEE80211_S_AUTH:
913 		rt2560_set_chan(sc, ic->ic_curchan);
914 		break;
915 
916 	case IEEE80211_S_ASSOC:
917 		rt2560_set_chan(sc, ic->ic_curchan);
918 		break;
919 
920 	case IEEE80211_S_RUN:
921 		rt2560_set_chan(sc, ic->ic_curchan);
922 
923 		ni = ic->ic_bss;
924 
925 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
926 			rt2560_update_plcp(sc);
927 			rt2560_set_basicrates(sc);
928 			rt2560_set_bssid(sc, ni->ni_bssid);
929 		}
930 
931 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
932 		    ic->ic_opmode == IEEE80211_M_IBSS) {
933 			m = ieee80211_beacon_alloc(ic, ni, &sc->sc_bo);
934 			if (m == NULL) {
935 				aprint_error_dev(&sc->sc_dev, "could not allocate beacon\n");
936 				error = ENOBUFS;
937 				break;
938 			}
939 
940 			ieee80211_ref_node(ni);
941 			error = rt2560_tx_bcn(sc, m, ni);
942 			if (error != 0)
943 				break;
944 		}
945 
946 		/* turn assocation led on */
947 		rt2560_update_led(sc, 1, 0);
948 
949 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
950 			callout_reset(&sc->rssadapt_ch, hz / 10,
951 			    rt2560_update_rssadapt, sc);
952 			rt2560_enable_tsf_sync(sc);
953 		}
954 		break;
955 	}
956 
957 	return (error != 0) ? error : sc->sc_newstate(ic, nstate, arg);
958 }
959 
960 /*
961  * Read 16 bits at address 'addr' from the serial EEPROM (either 93C46 or
962  * 93C66).
963  */
964 uint16_t
965 rt2560_eeprom_read(struct rt2560_softc *sc, uint8_t addr)
966 {
967 	uint32_t tmp;
968 	uint16_t val;
969 	int n;
970 
971 	/* clock C once before the first command */
972 	RT2560_EEPROM_CTL(sc, 0);
973 
974 	RT2560_EEPROM_CTL(sc, RT2560_S);
975 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
976 	RT2560_EEPROM_CTL(sc, RT2560_S);
977 
978 	/* write start bit (1) */
979 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D);
980 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C);
981 
982 	/* write READ opcode (10) */
983 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D);
984 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C);
985 	RT2560_EEPROM_CTL(sc, RT2560_S);
986 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
987 
988 	/* write address (A5-A0 or A7-A0) */
989 	n = (RAL_READ(sc, RT2560_CSR21) & RT2560_93C46) ? 5 : 7;
990 	for (; n >= 0; n--) {
991 		RT2560_EEPROM_CTL(sc, RT2560_S |
992 		    (((addr >> n) & 1) << RT2560_SHIFT_D));
993 		RT2560_EEPROM_CTL(sc, RT2560_S |
994 		    (((addr >> n) & 1) << RT2560_SHIFT_D) | RT2560_C);
995 	}
996 
997 	RT2560_EEPROM_CTL(sc, RT2560_S);
998 
999 	/* read data Q15-Q0 */
1000 	val = 0;
1001 	for (n = 15; n >= 0; n--) {
1002 		RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
1003 		tmp = RAL_READ(sc, RT2560_CSR21);
1004 		val |= ((tmp & RT2560_Q) >> RT2560_SHIFT_Q) << n;
1005 		RT2560_EEPROM_CTL(sc, RT2560_S);
1006 	}
1007 
1008 	RT2560_EEPROM_CTL(sc, 0);
1009 
1010 	/* clear Chip Select and clock C */
1011 	RT2560_EEPROM_CTL(sc, RT2560_S);
1012 	RT2560_EEPROM_CTL(sc, 0);
1013 	RT2560_EEPROM_CTL(sc, RT2560_C);
1014 
1015 	return val;
1016 }
1017 
1018 /*
1019  * Some frames were processed by the hardware cipher engine and are ready for
1020  * transmission.
1021  */
1022 void
1023 rt2560_encryption_intr(struct rt2560_softc *sc)
1024 {
1025 	struct rt2560_tx_desc *desc;
1026 	int hw;
1027 
1028 	/* retrieve last descriptor index processed by cipher engine */
1029 	hw = (RAL_READ(sc, RT2560_SECCSR1) - sc->txq.physaddr) /
1030 	    RT2560_TX_DESC_SIZE;
1031 
1032 	for (; sc->txq.next_encrypt != hw;) {
1033 		desc = &sc->txq.desc[sc->txq.next_encrypt];
1034 
1035 		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
1036 		    sc->txq.next_encrypt * RT2560_TX_DESC_SIZE,
1037 		    RT2560_TX_DESC_SIZE, BUS_DMASYNC_POSTREAD);
1038 
1039 		if (le32toh(desc->flags) &
1040 		    (RT2560_TX_BUSY | RT2560_TX_CIPHER_BUSY))
1041 			break;
1042 
1043 		/* for TKIP, swap eiv field to fix a bug in ASIC */
1044 		if ((le32toh(desc->flags) & RT2560_TX_CIPHER_MASK) ==
1045 		    RT2560_TX_CIPHER_TKIP)
1046 			desc->eiv = bswap32(desc->eiv);
1047 
1048 		/* mark the frame ready for transmission */
1049 		desc->flags |= htole32(RT2560_TX_BUSY | RT2560_TX_VALID);
1050 
1051 		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
1052 		    sc->txq.next_encrypt * RT2560_TX_DESC_SIZE,
1053 		    RT2560_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
1054 
1055 		DPRINTFN(15, ("encryption done idx=%u\n",
1056 		    sc->txq.next_encrypt));
1057 
1058 		sc->txq.next_encrypt =
1059 		    (sc->txq.next_encrypt + 1) % RT2560_TX_RING_COUNT;
1060 	}
1061 
1062 	/* kick Tx */
1063 	RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_TX);
1064 }
1065 
1066 void
1067 rt2560_tx_intr(struct rt2560_softc *sc)
1068 {
1069 	struct ieee80211com *ic = &sc->sc_ic;
1070 	struct ifnet *ifp = ic->ic_ifp;
1071 	struct rt2560_tx_desc *desc;
1072 	struct rt2560_tx_data *data;
1073 	struct rt2560_node *rn;
1074 
1075 	for (;;) {
1076 		desc = &sc->txq.desc[sc->txq.next];
1077 		data = &sc->txq.data[sc->txq.next];
1078 
1079 		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
1080 		    sc->txq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1081 		    BUS_DMASYNC_POSTREAD);
1082 
1083 		if ((le32toh(desc->flags) & RT2560_TX_BUSY) ||
1084 		    (le32toh(desc->flags) & RT2560_TX_CIPHER_BUSY) ||
1085 		    !(le32toh(desc->flags) & RT2560_TX_VALID))
1086 			break;
1087 
1088 		rn = (struct rt2560_node *)data->ni;
1089 
1090 		switch (le32toh(desc->flags) & RT2560_TX_RESULT_MASK) {
1091 		case RT2560_TX_SUCCESS:
1092 			DPRINTFN(10, ("data frame sent successfully\n"));
1093 			if (data->id.id_node != NULL) {
1094 				ieee80211_rssadapt_raise_rate(ic,
1095 				    &rn->rssadapt, &data->id);
1096 			}
1097 			ifp->if_opackets++;
1098 			break;
1099 
1100 		case RT2560_TX_SUCCESS_RETRY:
1101 			DPRINTFN(9, ("data frame sent after %u retries\n",
1102 			    (le32toh(desc->flags) >> 5) & 0x7));
1103 			ifp->if_opackets++;
1104 			break;
1105 
1106 		case RT2560_TX_FAIL_RETRY:
1107 			DPRINTFN(9, ("sending data frame failed (too much "
1108 			    "retries)\n"));
1109 			if (data->id.id_node != NULL) {
1110 				ieee80211_rssadapt_lower_rate(ic, data->ni,
1111 				    &rn->rssadapt, &data->id);
1112 			}
1113 			ifp->if_oerrors++;
1114 			break;
1115 
1116 		case RT2560_TX_FAIL_INVALID:
1117 		case RT2560_TX_FAIL_OTHER:
1118 		default:
1119 			aprint_error_dev(&sc->sc_dev, "sending data frame failed 0x%08x\n",
1120 			    le32toh(desc->flags));
1121 			ifp->if_oerrors++;
1122 		}
1123 
1124 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1125 		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1126 		bus_dmamap_unload(sc->sc_dmat, data->map);
1127 		m_freem(data->m);
1128 		data->m = NULL;
1129 		ieee80211_free_node(data->ni);
1130 		data->ni = NULL;
1131 
1132 		/* descriptor is no longer valid */
1133 		desc->flags &= ~htole32(RT2560_TX_VALID);
1134 
1135 		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
1136 		    sc->txq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1137 		    BUS_DMASYNC_PREWRITE);
1138 
1139 		DPRINTFN(15, ("tx done idx=%u\n", sc->txq.next));
1140 
1141 		sc->txq.queued--;
1142 		sc->txq.next = (sc->txq.next + 1) % RT2560_TX_RING_COUNT;
1143 	}
1144 
1145 	sc->sc_tx_timer = 0;
1146 	ifp->if_flags &= ~IFF_OACTIVE;
1147 	rt2560_start(ifp);
1148 }
1149 
1150 void
1151 rt2560_prio_intr(struct rt2560_softc *sc)
1152 {
1153 	struct ieee80211com *ic = &sc->sc_ic;
1154 	struct ifnet *ifp = ic->ic_ifp;
1155 	struct rt2560_tx_desc *desc;
1156 	struct rt2560_tx_data *data;
1157 
1158 	for (;;) {
1159 		desc = &sc->prioq.desc[sc->prioq.next];
1160 		data = &sc->prioq.data[sc->prioq.next];
1161 
1162 		bus_dmamap_sync(sc->sc_dmat, sc->prioq.map,
1163 		    sc->prioq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1164 		    BUS_DMASYNC_POSTREAD);
1165 
1166 		if ((le32toh(desc->flags) & RT2560_TX_BUSY) ||
1167 		    !(le32toh(desc->flags) & RT2560_TX_VALID))
1168 			break;
1169 
1170 		switch (le32toh(desc->flags) & RT2560_TX_RESULT_MASK) {
1171 		case RT2560_TX_SUCCESS:
1172 			DPRINTFN(10, ("mgt frame sent successfully\n"));
1173 			break;
1174 
1175 		case RT2560_TX_SUCCESS_RETRY:
1176 			DPRINTFN(9, ("mgt frame sent after %u retries\n",
1177 			    (le32toh(desc->flags) >> 5) & 0x7));
1178 			break;
1179 
1180 		case RT2560_TX_FAIL_RETRY:
1181 			DPRINTFN(9, ("sending mgt frame failed (too much "
1182 			    "retries)\n"));
1183 			break;
1184 
1185 		case RT2560_TX_FAIL_INVALID:
1186 		case RT2560_TX_FAIL_OTHER:
1187 		default:
1188 			aprint_error_dev(&sc->sc_dev, "sending mgt frame failed 0x%08x\n",
1189 			    le32toh(desc->flags));
1190 		}
1191 
1192 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1193 		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1194 		bus_dmamap_unload(sc->sc_dmat, data->map);
1195 		m_freem(data->m);
1196 		data->m = NULL;
1197 		ieee80211_free_node(data->ni);
1198 		data->ni = NULL;
1199 
1200 		/* descriptor is no longer valid */
1201 		desc->flags &= ~htole32(RT2560_TX_VALID);
1202 
1203 		bus_dmamap_sync(sc->sc_dmat, sc->prioq.map,
1204 		    sc->prioq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1205 		    BUS_DMASYNC_PREWRITE);
1206 
1207 		DPRINTFN(15, ("prio done idx=%u\n", sc->prioq.next));
1208 
1209 		sc->prioq.queued--;
1210 		sc->prioq.next = (sc->prioq.next + 1) % RT2560_PRIO_RING_COUNT;
1211 	}
1212 
1213 	sc->sc_tx_timer = 0;
1214 	ifp->if_flags &= ~IFF_OACTIVE;
1215 	rt2560_start(ifp);
1216 }
1217 
1218 /*
1219  * Some frames were processed by the hardware cipher engine and are ready for
1220  * transmission to the IEEE802.11 layer.
1221  */
1222 void
1223 rt2560_decryption_intr(struct rt2560_softc *sc)
1224 {
1225 	struct ieee80211com *ic = &sc->sc_ic;
1226 	struct ifnet *ifp = ic->ic_ifp;
1227 	struct rt2560_rx_desc *desc;
1228 	struct rt2560_rx_data *data;
1229 	struct rt2560_node *rn;
1230 	struct ieee80211_frame *wh;
1231 	struct ieee80211_node *ni;
1232 	struct mbuf *mnew, *m;
1233 	int hw, error;
1234 
1235 	/* retrieve last decriptor index processed by cipher engine */
1236 	hw = (RAL_READ(sc, RT2560_SECCSR0) - sc->rxq.physaddr) /
1237 	    RT2560_RX_DESC_SIZE;
1238 
1239 	for (; sc->rxq.cur_decrypt != hw;) {
1240 		desc = &sc->rxq.desc[sc->rxq.cur_decrypt];
1241 		data = &sc->rxq.data[sc->rxq.cur_decrypt];
1242 
1243 		bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1244 		    sc->rxq.cur_decrypt * RT2560_TX_DESC_SIZE,
1245 		    RT2560_TX_DESC_SIZE, BUS_DMASYNC_POSTREAD);
1246 
1247 		if (le32toh(desc->flags) &
1248 		    (RT2560_RX_BUSY | RT2560_RX_CIPHER_BUSY))
1249 			break;
1250 
1251 		if (data->drop) {
1252 			ifp->if_ierrors++;
1253 			goto skip;
1254 		}
1255 
1256 		if ((le32toh(desc->flags) & RT2560_RX_CIPHER_MASK) != 0 &&
1257 		    (le32toh(desc->flags) & RT2560_RX_ICV_ERROR)) {
1258 			ifp->if_ierrors++;
1259 			goto skip;
1260 		}
1261 
1262 		/*
1263 		 * Try to allocate a new mbuf for this ring element and load it
1264 		 * before processing the current mbuf.  If the ring element
1265 		 * cannot be loaded, drop the received packet and reuse the old
1266 		 * mbuf.  In the unlikely case that the old mbuf can't be
1267 		 * reloaded either, explicitly panic.
1268 		 */
1269 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1270 		if (mnew == NULL) {
1271 			ifp->if_ierrors++;
1272 			goto skip;
1273 		}
1274 
1275 		MCLGET(mnew, M_DONTWAIT);
1276 		if (!(mnew->m_flags & M_EXT)) {
1277 			m_freem(mnew);
1278 			ifp->if_ierrors++;
1279 			goto skip;
1280 		}
1281 
1282 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1283 		    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1284 		bus_dmamap_unload(sc->sc_dmat, data->map);
1285 
1286 		error = bus_dmamap_load(sc->sc_dmat, data->map,
1287 		    mtod(mnew, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
1288 		if (error != 0) {
1289 			m_freem(mnew);
1290 
1291 			/* try to reload the old mbuf */
1292 			error = bus_dmamap_load(sc->sc_dmat, data->map,
1293 			    mtod(data->m, void *), MCLBYTES, NULL,
1294 			    BUS_DMA_NOWAIT);
1295 			if (error != 0) {
1296 				/* very unlikely that it will fail... */
1297 				panic("%s: could not load old rx mbuf",
1298 				    device_xname(&sc->sc_dev));
1299 			}
1300 			/* physical address may have changed */
1301 			desc->physaddr = htole32(data->map->dm_segs->ds_addr);
1302 			ifp->if_ierrors++;
1303 			goto skip;
1304 		}
1305 
1306 		/*
1307 		 * New mbuf successfully loaded, update Rx ring and continue
1308 		 * processing.
1309 		 */
1310 		m = data->m;
1311 		data->m = mnew;
1312 		desc->physaddr = htole32(data->map->dm_segs->ds_addr);
1313 
1314 		/* finalize mbuf */
1315 		m->m_pkthdr.rcvif = ifp;
1316 		m->m_pkthdr.len = m->m_len =
1317 		    (le32toh(desc->flags) >> 16) & 0xfff;
1318 
1319 		if (sc->sc_drvbpf != NULL) {
1320 			struct rt2560_rx_radiotap_header *tap = &sc->sc_rxtap;
1321 			uint32_t tsf_lo, tsf_hi;
1322 
1323 			/* get timestamp (low and high 32 bits) */
1324 			tsf_hi = RAL_READ(sc, RT2560_CSR17);
1325 			tsf_lo = RAL_READ(sc, RT2560_CSR16);
1326 
1327 			tap->wr_tsf =
1328 			    htole64(((uint64_t)tsf_hi << 32) | tsf_lo);
1329 			tap->wr_flags = 0;
1330 			tap->wr_rate = rt2560_rxrate(desc);
1331 			tap->wr_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
1332 			tap->wr_chan_flags =
1333 			    htole16(ic->ic_ibss_chan->ic_flags);
1334 			tap->wr_antenna = sc->rx_ant;
1335 			tap->wr_antsignal = desc->rssi;
1336 
1337 			bpf_ops->bpf_mtap2(sc->sc_drvbpf,
1338 			    tap, sc->sc_txtap_len, m);
1339 		}
1340 
1341 		wh = mtod(m, struct ieee80211_frame *);
1342 		ni = ieee80211_find_rxnode(ic,
1343 		    (struct ieee80211_frame_min *)wh);
1344 
1345 		/* send the frame to the 802.11 layer */
1346 		ieee80211_input(ic, m, ni, desc->rssi, 0);
1347 
1348 		/* give rssi to the rate adatation algorithm */
1349 		rn = (struct rt2560_node *)ni;
1350 		ieee80211_rssadapt_input(ic, ni, &rn->rssadapt, desc->rssi);
1351 
1352 		/* node is no longer needed */
1353 		ieee80211_free_node(ni);
1354 
1355 skip:		desc->flags = htole32(RT2560_RX_BUSY);
1356 
1357 		bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1358 		    sc->rxq.cur_decrypt * RT2560_TX_DESC_SIZE,
1359 		    RT2560_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
1360 
1361 		DPRINTFN(15, ("decryption done idx=%u\n", sc->rxq.cur_decrypt));
1362 
1363 		sc->rxq.cur_decrypt =
1364 		    (sc->rxq.cur_decrypt + 1) % RT2560_RX_RING_COUNT;
1365 	}
1366 
1367 	/*
1368 	 * In HostAP mode, ieee80211_input() will enqueue packets in if_snd
1369 	 * without calling if_start().
1370 	 */
1371 	if (!IFQ_IS_EMPTY(&ifp->if_snd) && !(ifp->if_flags & IFF_OACTIVE))
1372 		rt2560_start(ifp);
1373 }
1374 
1375 /*
1376  * Some frames were received. Pass them to the hardware cipher engine before
1377  * sending them to the 802.11 layer.
1378  */
1379 void
1380 rt2560_rx_intr(struct rt2560_softc *sc)
1381 {
1382 	struct rt2560_rx_desc *desc;
1383 	struct rt2560_rx_data *data;
1384 
1385 	for (;;) {
1386 		desc = &sc->rxq.desc[sc->rxq.cur];
1387 		data = &sc->rxq.data[sc->rxq.cur];
1388 
1389 		bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1390 		    sc->rxq.cur * RT2560_RX_DESC_SIZE, RT2560_RX_DESC_SIZE,
1391 		    BUS_DMASYNC_POSTREAD);
1392 
1393 		if (le32toh(desc->flags) &
1394 		    (RT2560_RX_BUSY | RT2560_RX_CIPHER_BUSY))
1395 			break;
1396 
1397 		data->drop = 0;
1398 
1399 		if (le32toh(desc->flags) &
1400 		    (RT2560_RX_PHY_ERROR | RT2560_RX_CRC_ERROR)) {
1401 			/*
1402 			 * This should not happen since we did not request
1403 			 * to receive those frames when we filled RXCSR0.
1404 			 */
1405 			DPRINTFN(5, ("PHY or CRC error flags 0x%08x\n",
1406 			    le32toh(desc->flags)));
1407 			data->drop = 1;
1408 		}
1409 
1410 		if (((le32toh(desc->flags) >> 16) & 0xfff) > MCLBYTES) {
1411 			DPRINTFN(5, ("bad length\n"));
1412 			data->drop = 1;
1413 		}
1414 
1415 		/* mark the frame for decryption */
1416 		desc->flags |= htole32(RT2560_RX_CIPHER_BUSY);
1417 
1418 		bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1419 		    sc->rxq.cur * RT2560_RX_DESC_SIZE, RT2560_RX_DESC_SIZE,
1420 		    BUS_DMASYNC_PREWRITE);
1421 
1422 		DPRINTFN(15, ("rx done idx=%u\n", sc->rxq.cur));
1423 
1424 		sc->rxq.cur = (sc->rxq.cur + 1) % RT2560_RX_RING_COUNT;
1425 	}
1426 
1427 	/* kick decrypt */
1428 	RAL_WRITE(sc, RT2560_SECCSR0, RT2560_KICK_DECRYPT);
1429 }
1430 
1431 /*
1432  * This function is called periodically in IBSS mode when a new beacon must be
1433  * sent out.
1434  */
1435 static void
1436 rt2560_beacon_expire(struct rt2560_softc *sc)
1437 {
1438 	struct ieee80211com *ic = &sc->sc_ic;
1439 	struct rt2560_tx_data *data;
1440 
1441 	if (ic->ic_opmode != IEEE80211_M_IBSS &&
1442 	    ic->ic_opmode != IEEE80211_M_HOSTAP)
1443 		return;
1444 
1445 	data = &sc->bcnq.data[sc->bcnq.next];
1446 
1447 	bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1448 	    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1449 	bus_dmamap_unload(sc->sc_dmat, data->map);
1450 
1451 	ieee80211_beacon_update(ic, data->ni, &sc->sc_bo, data->m, 1);
1452 
1453 	if (ic->ic_rawbpf != NULL)
1454 		bpf_ops->bpf_mtap(ic->ic_rawbpf, data->m);
1455 	rt2560_tx_bcn(sc, data->m, data->ni);
1456 
1457 	DPRINTFN(15, ("beacon expired\n"));
1458 
1459 	sc->bcnq.next = (sc->bcnq.next + 1) % RT2560_BEACON_RING_COUNT;
1460 }
1461 
1462 static void
1463 rt2560_wakeup_expire(struct rt2560_softc *sc)
1464 {
1465 	DPRINTFN(15, ("wakeup expired\n"));
1466 }
1467 
1468 int
1469 rt2560_intr(void *arg)
1470 {
1471 	struct rt2560_softc *sc = arg;
1472 	struct ifnet *ifp = &sc->sc_if;
1473 	uint32_t r;
1474 
1475 	if (!device_is_active(&sc->sc_dev))
1476 		return 0;
1477 
1478 	if ((r = RAL_READ(sc, RT2560_CSR7)) == 0)
1479 		return 0;       /* not for us */
1480 
1481 	/* disable interrupts */
1482 	RAL_WRITE(sc, RT2560_CSR8, 0xffffffff);
1483 
1484 	/* acknowledge interrupts */
1485 	RAL_WRITE(sc, RT2560_CSR7, r);
1486 
1487 	/* don't re-enable interrupts if we're shutting down */
1488 	if (!(ifp->if_flags & IFF_RUNNING))
1489 		return 0;
1490 
1491 	if (r & RT2560_BEACON_EXPIRE)
1492 		rt2560_beacon_expire(sc);
1493 
1494 	if (r & RT2560_WAKEUP_EXPIRE)
1495 		rt2560_wakeup_expire(sc);
1496 
1497 	if (r & RT2560_ENCRYPTION_DONE)
1498 		rt2560_encryption_intr(sc);
1499 
1500 	if (r & RT2560_TX_DONE)
1501 		rt2560_tx_intr(sc);
1502 
1503 	if (r & RT2560_PRIO_DONE)
1504 		rt2560_prio_intr(sc);
1505 
1506 	if (r & RT2560_DECRYPTION_DONE)
1507 		rt2560_decryption_intr(sc);
1508 
1509 	if (r & RT2560_RX_DONE)
1510 		rt2560_rx_intr(sc);
1511 
1512 	/* re-enable interrupts */
1513 	RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK);
1514 
1515 	return 1;
1516 }
1517 
1518 /* quickly determine if a given rate is CCK or OFDM */
1519 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1520 
1521 #define RAL_ACK_SIZE	14	/* 10 + 4(FCS) */
1522 #define RAL_CTS_SIZE	14	/* 10 + 4(FCS) */
1523 
1524 #define RAL_SIFS		10	/* us */
1525 
1526 #define RT2560_RXTX_TURNAROUND	10	/* us */
1527 
1528 /*
1529  * This function is only used by the Rx radiotap code. It returns the rate at
1530  * which a given frame was received.
1531  */
1532 static uint8_t
1533 rt2560_rxrate(struct rt2560_rx_desc *desc)
1534 {
1535 	if (le32toh(desc->flags) & RT2560_RX_OFDM) {
1536 		/* reverse function of rt2560_plcp_signal */
1537 		switch (desc->rate) {
1538 		case 0xb:	return 12;
1539 		case 0xf:	return 18;
1540 		case 0xa:	return 24;
1541 		case 0xe:	return 36;
1542 		case 0x9:	return 48;
1543 		case 0xd:	return 72;
1544 		case 0x8:	return 96;
1545 		case 0xc:	return 108;
1546 		}
1547 	} else {
1548 		if (desc->rate == 10)
1549 			return 2;
1550 		if (desc->rate == 20)
1551 			return 4;
1552 		if (desc->rate == 55)
1553 			return 11;
1554 		if (desc->rate == 110)
1555 			return 22;
1556 	}
1557 	return 2;	/* should not get there */
1558 }
1559 
1560 /*
1561  * Return the expected ack rate for a frame transmitted at rate `rate'.
1562  * XXX: this should depend on the destination node basic rate set.
1563  */
1564 static int
1565 rt2560_ack_rate(struct ieee80211com *ic, int rate)
1566 {
1567 	switch (rate) {
1568 	/* CCK rates */
1569 	case 2:
1570 		return 2;
1571 	case 4:
1572 	case 11:
1573 	case 22:
1574 		return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
1575 
1576 	/* OFDM rates */
1577 	case 12:
1578 	case 18:
1579 		return 12;
1580 	case 24:
1581 	case 36:
1582 		return 24;
1583 	case 48:
1584 	case 72:
1585 	case 96:
1586 	case 108:
1587 		return 48;
1588 	}
1589 
1590 	/* default to 1Mbps */
1591 	return 2;
1592 }
1593 
1594 /*
1595  * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1596  * The function automatically determines the operating mode depending on the
1597  * given rate. `flags' indicates whether short preamble is in use or not.
1598  */
1599 static uint16_t
1600 rt2560_txtime(int len, int rate, uint32_t flags)
1601 {
1602 	uint16_t txtime;
1603 
1604 	if (RAL_RATE_IS_OFDM(rate)) {
1605 		/* IEEE Std 802.11a-1999, pp. 37 */
1606 		txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1607 		txtime = 16 + 4 + 4 * txtime + 6;
1608 	} else {
1609 		/* IEEE Std 802.11b-1999, pp. 28 */
1610 		txtime = (16 * len + rate - 1) / rate;
1611 		if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1612 			txtime +=  72 + 24;
1613 		else
1614 			txtime += 144 + 48;
1615 	}
1616 	return txtime;
1617 }
1618 
1619 static uint8_t
1620 rt2560_plcp_signal(int rate)
1621 {
1622 	switch (rate) {
1623 	/* CCK rates (returned values are device-dependent) */
1624 	case 2:		return 0x0;
1625 	case 4:		return 0x1;
1626 	case 11:	return 0x2;
1627 	case 22:	return 0x3;
1628 
1629 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1630 	case 12:	return 0xb;
1631 	case 18:	return 0xf;
1632 	case 24:	return 0xa;
1633 	case 36:	return 0xe;
1634 	case 48:	return 0x9;
1635 	case 72:	return 0xd;
1636 	case 96:	return 0x8;
1637 	case 108:	return 0xc;
1638 
1639 	/* unsupported rates (should not get there) */
1640 	default:	return 0xff;
1641 	}
1642 }
1643 
1644 static void
1645 rt2560_setup_tx_desc(struct rt2560_softc *sc, struct rt2560_tx_desc *desc,
1646     uint32_t flags, int len, int rate, int encrypt, bus_addr_t physaddr)
1647 {
1648 	struct ieee80211com *ic = &sc->sc_ic;
1649 	uint16_t plcp_length;
1650 	int remainder;
1651 
1652 	desc->flags = htole32(flags);
1653 	desc->flags |= htole32(len << 16);
1654 	desc->flags |= encrypt ? htole32(RT2560_TX_CIPHER_BUSY) :
1655 	    htole32(RT2560_TX_BUSY | RT2560_TX_VALID);
1656 
1657 	desc->physaddr = htole32(physaddr);
1658 	desc->wme = htole16(
1659 	    RT2560_AIFSN(2) |
1660 	    RT2560_LOGCWMIN(3) |
1661 	    RT2560_LOGCWMAX(8));
1662 
1663 	/* setup PLCP fields */
1664 	desc->plcp_signal  = rt2560_plcp_signal(rate);
1665 	desc->plcp_service = 4;
1666 
1667 	len += IEEE80211_CRC_LEN;
1668 	if (RAL_RATE_IS_OFDM(rate)) {
1669 		desc->flags |= htole32(RT2560_TX_OFDM);
1670 
1671 		plcp_length = len & 0xfff;
1672 		desc->plcp_length_hi = plcp_length >> 6;
1673 		desc->plcp_length_lo = plcp_length & 0x3f;
1674 	} else {
1675 		plcp_length = (16 * len + rate - 1) / rate;
1676 		if (rate == 22) {
1677 			remainder = (16 * len) % 22;
1678 			if (remainder != 0 && remainder < 7)
1679 				desc->plcp_service |= RT2560_PLCP_LENGEXT;
1680 		}
1681 		desc->plcp_length_hi = plcp_length >> 8;
1682 		desc->plcp_length_lo = plcp_length & 0xff;
1683 
1684 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1685 			desc->plcp_signal |= 0x08;
1686 	}
1687 }
1688 
1689 static int
1690 rt2560_tx_bcn(struct rt2560_softc *sc, struct mbuf *m0,
1691     struct ieee80211_node *ni)
1692 {
1693 	struct rt2560_tx_desc *desc;
1694 	struct rt2560_tx_data *data;
1695 	int rate, error;
1696 
1697 	desc = &sc->bcnq.desc[sc->bcnq.cur];
1698 	data = &sc->bcnq.data[sc->bcnq.cur];
1699 
1700 	rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1701 
1702 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1703 	    BUS_DMA_NOWAIT);
1704 	if (error != 0) {
1705 		aprint_error_dev(&sc->sc_dev, "could not map mbuf (error %d)\n",
1706 		    error);
1707 		m_freem(m0);
1708 		return error;
1709 	}
1710 
1711 	data->m = m0;
1712 	data->ni = ni;
1713 
1714 	rt2560_setup_tx_desc(sc, desc, RT2560_TX_IFS_NEWBACKOFF |
1715 	    RT2560_TX_TIMESTAMP, m0->m_pkthdr.len, rate, 0,
1716 	    data->map->dm_segs->ds_addr);
1717 
1718 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1719 	    BUS_DMASYNC_PREWRITE);
1720 	bus_dmamap_sync(sc->sc_dmat, sc->bcnq.map,
1721 	    sc->bcnq.cur * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1722 	    BUS_DMASYNC_PREWRITE);
1723 
1724 	return 0;
1725 }
1726 
1727 static int
1728 rt2560_tx_mgt(struct rt2560_softc *sc, struct mbuf *m0,
1729     struct ieee80211_node *ni)
1730 {
1731 	struct ieee80211com *ic = &sc->sc_ic;
1732 	struct rt2560_tx_desc *desc;
1733 	struct rt2560_tx_data *data;
1734 	struct ieee80211_frame *wh;
1735 	struct ieee80211_key *k;
1736 	uint16_t dur;
1737 	uint32_t flags = 0;
1738 	int rate, error;
1739 
1740 	desc = &sc->prioq.desc[sc->prioq.cur];
1741 	data = &sc->prioq.data[sc->prioq.cur];
1742 
1743 	rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1744 
1745 	wh = mtod(m0, struct ieee80211_frame *);
1746 
1747 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1748 		k = ieee80211_crypto_encap(ic, ni, m0);
1749 		if (k == NULL) {
1750 			m_freem(m0);
1751 			return ENOBUFS;
1752 		}
1753 
1754 		/* packet header may have moved, reset our local pointer */
1755 		wh = mtod(m0, struct ieee80211_frame *);
1756 	}
1757 
1758 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1759 	    BUS_DMA_NOWAIT);
1760 	if (error != 0) {
1761 		aprint_error_dev(&sc->sc_dev, "could not map mbuf (error %d)\n",
1762 		    error);
1763 		m_freem(m0);
1764 		return error;
1765 	}
1766 
1767 	if (sc->sc_drvbpf != NULL) {
1768 		struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
1769 
1770 		tap->wt_flags = 0;
1771 		tap->wt_rate = rate;
1772 		tap->wt_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
1773 		tap->wt_chan_flags = htole16(ic->ic_ibss_chan->ic_flags);
1774 		tap->wt_antenna = sc->tx_ant;
1775 
1776 		bpf_ops->bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1777 	}
1778 
1779 	data->m = m0;
1780 	data->ni = ni;
1781 
1782 	wh = mtod(m0, struct ieee80211_frame *);
1783 
1784 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1785 		flags |= RT2560_TX_ACK;
1786 
1787 		dur = rt2560_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) +
1788 		    RAL_SIFS;
1789 		*(uint16_t *)wh->i_dur = htole16(dur);
1790 
1791 		/* tell hardware to add timestamp for probe responses */
1792 		if ((wh->i_fc[0] &
1793 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1794 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1795 			flags |= RT2560_TX_TIMESTAMP;
1796 	}
1797 
1798 	rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 0,
1799 	    data->map->dm_segs->ds_addr);
1800 
1801 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1802 	    BUS_DMASYNC_PREWRITE);
1803 	bus_dmamap_sync(sc->sc_dmat, sc->prioq.map,
1804 	    sc->prioq.cur * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1805 	    BUS_DMASYNC_PREWRITE);
1806 
1807 	DPRINTFN(10, ("sending mgt frame len=%u idx=%u rate=%u\n",
1808 	    m0->m_pkthdr.len, sc->prioq.cur, rate));
1809 
1810 	/* kick prio */
1811 	sc->prioq.queued++;
1812 	sc->prioq.cur = (sc->prioq.cur + 1) % RT2560_PRIO_RING_COUNT;
1813 	RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_PRIO);
1814 
1815 	return 0;
1816 }
1817 
1818 /*
1819  * Build a RTS control frame.
1820  */
1821 static struct mbuf *
1822 rt2560_get_rts(struct rt2560_softc *sc, struct ieee80211_frame *wh,
1823     uint16_t dur)
1824 {
1825 	struct ieee80211_frame_rts *rts;
1826 	struct mbuf *m;
1827 
1828 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1829 	if (m == NULL) {
1830 		sc->sc_ic.ic_stats.is_tx_nobuf++;
1831 		aprint_error_dev(&sc->sc_dev, "could not allocate RTS frame\n");
1832 		return NULL;
1833 	}
1834 
1835 	rts = mtod(m, struct ieee80211_frame_rts *);
1836 
1837 	rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL |
1838 	    IEEE80211_FC0_SUBTYPE_RTS;
1839 	rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1840 	*(uint16_t *)rts->i_dur = htole16(dur);
1841 	IEEE80211_ADDR_COPY(rts->i_ra, wh->i_addr1);
1842 	IEEE80211_ADDR_COPY(rts->i_ta, wh->i_addr2);
1843 
1844 	m->m_pkthdr.len = m->m_len = sizeof (struct ieee80211_frame_rts);
1845 
1846 	return m;
1847 }
1848 
1849 static int
1850 rt2560_tx_data(struct rt2560_softc *sc, struct mbuf *m0,
1851     struct ieee80211_node *ni)
1852 {
1853 	struct ieee80211com *ic = &sc->sc_ic;
1854 	struct rt2560_tx_desc *desc;
1855 	struct rt2560_tx_data *data;
1856 	struct rt2560_node *rn;
1857 	struct ieee80211_rateset *rs;
1858 	struct ieee80211_frame *wh;
1859 	struct ieee80211_key *k;
1860 	struct mbuf *mnew;
1861 	uint16_t dur;
1862 	uint32_t flags = 0;
1863 	int rate, error;
1864 
1865 	wh = mtod(m0, struct ieee80211_frame *);
1866 
1867 	if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
1868 		rs = &ic->ic_sup_rates[ic->ic_curmode];
1869 		rate = rs->rs_rates[ic->ic_fixed_rate];
1870 	} else {
1871 		rs = &ni->ni_rates;
1872 		rn = (struct rt2560_node *)ni;
1873 		ni->ni_txrate = ieee80211_rssadapt_choose(&rn->rssadapt, rs,
1874 		    wh, m0->m_pkthdr.len, -1, NULL, 0);
1875 		rate = rs->rs_rates[ni->ni_txrate];
1876 	}
1877 	rate &= IEEE80211_RATE_VAL;
1878 
1879 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1880 		k = ieee80211_crypto_encap(ic, ni, m0);
1881 		if (k == NULL) {
1882 			m_freem(m0);
1883 			return ENOBUFS;
1884 		}
1885 
1886 		/* packet header may have moved, reset our local pointer */
1887 		wh = mtod(m0, struct ieee80211_frame *);
1888 	}
1889 
1890 	/*
1891 	 * IEEE Std 802.11-1999, pp 82: "A STA shall use an RTS/CTS exchange
1892 	 * for directed frames only when the length of the MPDU is greater
1893 	 * than the length threshold indicated by [...]" ic_rtsthreshold.
1894 	 */
1895 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1896 	    m0->m_pkthdr.len > ic->ic_rtsthreshold) {
1897 		struct mbuf *m;
1898 		int rtsrate, ackrate;
1899 
1900 		rtsrate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1901 		ackrate = rt2560_ack_rate(ic, rate);
1902 
1903 		dur = rt2560_txtime(m0->m_pkthdr.len + 4, rate, ic->ic_flags) +
1904 		      rt2560_txtime(RAL_CTS_SIZE, rtsrate, ic->ic_flags) +
1905 		      rt2560_txtime(RAL_ACK_SIZE, ackrate, ic->ic_flags) +
1906 		      3 * RAL_SIFS;
1907 
1908 		m = rt2560_get_rts(sc, wh, dur);
1909 
1910 		desc = &sc->txq.desc[sc->txq.cur_encrypt];
1911 		data = &sc->txq.data[sc->txq.cur_encrypt];
1912 
1913 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
1914 		    BUS_DMA_NOWAIT);
1915 		if (error != 0) {
1916 			aprint_error_dev(&sc->sc_dev, "could not map mbuf (error %d)\n",
1917 			    error);
1918 			m_freem(m);
1919 			m_freem(m0);
1920 			return error;
1921 		}
1922 
1923 		/* avoid multiple free() of the same node for each fragment */
1924 		ieee80211_ref_node(ni);
1925 
1926 		data->m = m;
1927 		data->ni = ni;
1928 
1929 		/* RTS frames are not taken into account for rssadapt */
1930 		data->id.id_node = NULL;
1931 
1932 		rt2560_setup_tx_desc(sc, desc, RT2560_TX_ACK |
1933 		    RT2560_TX_MORE_FRAG, m->m_pkthdr.len, rtsrate, 1,
1934 		    data->map->dm_segs->ds_addr);
1935 
1936 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1937 		    data->map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1938 		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
1939 		    sc->txq.cur_encrypt * RT2560_TX_DESC_SIZE,
1940 		    RT2560_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
1941 
1942 		sc->txq.queued++;
1943 		sc->txq.cur_encrypt =
1944 		    (sc->txq.cur_encrypt + 1) % RT2560_TX_RING_COUNT;
1945 
1946 		/*
1947 		 * IEEE Std 802.11-1999: when an RTS/CTS exchange is used, the
1948 		 * asynchronous data frame shall be transmitted after the CTS
1949 		 * frame and a SIFS period.
1950 		 */
1951 		flags |= RT2560_TX_LONG_RETRY | RT2560_TX_IFS_SIFS;
1952 	}
1953 
1954 	data = &sc->txq.data[sc->txq.cur_encrypt];
1955 	desc = &sc->txq.desc[sc->txq.cur_encrypt];
1956 
1957 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1958 	    BUS_DMA_NOWAIT);
1959 	if (error != 0 && error != EFBIG) {
1960 		aprint_error_dev(&sc->sc_dev, "could not map mbuf (error %d)\n",
1961 		    error);
1962 		m_freem(m0);
1963 		return error;
1964 	}
1965 	if (error != 0) {
1966 		/* too many fragments, linearize */
1967 
1968 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1969 		if (mnew == NULL) {
1970 			m_freem(m0);
1971 			return ENOMEM;
1972 		}
1973 
1974 		M_COPY_PKTHDR(mnew, m0);
1975 		if (m0->m_pkthdr.len > MHLEN) {
1976 			MCLGET(mnew, M_DONTWAIT);
1977 			if (!(mnew->m_flags & M_EXT)) {
1978 				m_freem(m0);
1979 				m_freem(mnew);
1980 				return ENOMEM;
1981 			}
1982 		}
1983 
1984 		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
1985 		m_freem(m0);
1986 		mnew->m_len = mnew->m_pkthdr.len;
1987 		m0 = mnew;
1988 
1989 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1990 		    BUS_DMA_NOWAIT);
1991 		if (error != 0) {
1992 			aprint_error_dev(&sc->sc_dev, "could not map mbuf (error %d)\n",
1993 			    error);
1994 			m_freem(m0);
1995 			return error;
1996 		}
1997 
1998 		/* packet header have moved, reset our local pointer */
1999 		wh = mtod(m0, struct ieee80211_frame *);
2000 	}
2001 
2002 	if (sc->sc_drvbpf != NULL) {
2003 		struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
2004 
2005 		tap->wt_flags = 0;
2006 		tap->wt_rate = rate;
2007 		tap->wt_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
2008 		tap->wt_chan_flags = htole16(ic->ic_ibss_chan->ic_flags);
2009 		tap->wt_antenna = sc->tx_ant;
2010 
2011 		bpf_ops->bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
2012 	}
2013 
2014 	data->m = m0;
2015 	data->ni = ni;
2016 
2017 	/* remember link conditions for rate adaptation algorithm */
2018 	if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
2019 		data->id.id_len = m0->m_pkthdr.len;
2020 		data->id.id_rateidx = ni->ni_txrate;
2021 		data->id.id_node = ni;
2022 		data->id.id_rssi = ni->ni_rssi;
2023 	} else
2024 		data->id.id_node = NULL;
2025 
2026 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2027 		flags |= RT2560_TX_ACK;
2028 
2029 		dur = rt2560_txtime(RAL_ACK_SIZE, rt2560_ack_rate(ic, rate),
2030 		    ic->ic_flags) + RAL_SIFS;
2031 		*(uint16_t *)wh->i_dur = htole16(dur);
2032 	}
2033 
2034 	rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 1,
2035 	    data->map->dm_segs->ds_addr);
2036 
2037 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2038 	    BUS_DMASYNC_PREWRITE);
2039 	bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
2040 	    sc->txq.cur_encrypt * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
2041 	    BUS_DMASYNC_PREWRITE);
2042 
2043 	DPRINTFN(10, ("sending data frame len=%u idx=%u rate=%u\n",
2044 	    m0->m_pkthdr.len, sc->txq.cur_encrypt, rate));
2045 
2046 	/* kick encrypt */
2047 	sc->txq.queued++;
2048 	sc->txq.cur_encrypt = (sc->txq.cur_encrypt + 1) % RT2560_TX_RING_COUNT;
2049 	RAL_WRITE(sc, RT2560_SECCSR1, RT2560_KICK_ENCRYPT);
2050 
2051 	return 0;
2052 }
2053 
2054 static void
2055 rt2560_start(struct ifnet *ifp)
2056 {
2057 	struct rt2560_softc *sc = ifp->if_softc;
2058 	struct ieee80211com *ic = &sc->sc_ic;
2059 	struct mbuf *m0;
2060 	struct ieee80211_node *ni;
2061 	struct ether_header *eh;
2062 
2063 	/*
2064 	 * net80211 may still try to send management frames even if the
2065 	 * IFF_RUNNING flag is not set...
2066 	 */
2067 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2068 		return;
2069 
2070 	for (;;) {
2071 		IF_POLL(&ic->ic_mgtq, m0);
2072 		if (m0 != NULL) {
2073 			if (sc->prioq.queued >= RT2560_PRIO_RING_COUNT) {
2074 				ifp->if_flags |= IFF_OACTIVE;
2075 				break;
2076 			}
2077 			IF_DEQUEUE(&ic->ic_mgtq, m0);
2078 			if (m0 == NULL)
2079 				break;
2080 
2081 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
2082 			m0->m_pkthdr.rcvif = NULL;
2083 			if (ic->ic_rawbpf != NULL)
2084 				bpf_ops->bpf_mtap(ic->ic_rawbpf, m0);
2085 			if (rt2560_tx_mgt(sc, m0, ni) != 0)
2086 				break;
2087 
2088 		} else {
2089 			if (ic->ic_state != IEEE80211_S_RUN)
2090 				break;
2091 			IFQ_DEQUEUE(&ifp->if_snd, m0);
2092 			if (m0 == NULL)
2093 				break;
2094 			if (sc->txq.queued >= RT2560_TX_RING_COUNT - 1) {
2095 				ifp->if_flags |= IFF_OACTIVE;
2096 				break;
2097 			}
2098 
2099 			if (m0->m_len < sizeof (struct ether_header) &&
2100 			    !(m0 = m_pullup(m0, sizeof (struct ether_header))))
2101                                 continue;
2102 
2103 			eh = mtod(m0, struct ether_header *);
2104 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2105 			if (ni == NULL) {
2106 				m_freem(m0);
2107 				continue;
2108 			}
2109 			if (ifp->if_bpf != NULL)
2110 				bpf_ops->bpf_mtap(ifp->if_bpf, m0);
2111 
2112 			m0 = ieee80211_encap(ic, m0, ni);
2113 			if (m0 == NULL) {
2114 				ieee80211_free_node(ni);
2115 				continue;
2116                         }
2117 
2118 			if (ic->ic_rawbpf != NULL)
2119 				bpf_ops->bpf_mtap(ic->ic_rawbpf, m0);
2120 
2121 			if (rt2560_tx_data(sc, m0, ni) != 0) {
2122 				ieee80211_free_node(ni);
2123 				ifp->if_oerrors++;
2124 				break;
2125 			}
2126 		}
2127 
2128 		sc->sc_tx_timer = 5;
2129 		ifp->if_timer = 1;
2130 	}
2131 }
2132 
2133 static void
2134 rt2560_watchdog(struct ifnet *ifp)
2135 {
2136 	struct rt2560_softc *sc = ifp->if_softc;
2137 
2138 	ifp->if_timer = 0;
2139 
2140 	if (sc->sc_tx_timer > 0) {
2141 		if (--sc->sc_tx_timer == 0) {
2142 			aprint_error_dev(&sc->sc_dev, "device timeout\n");
2143 			rt2560_init(ifp);
2144 			ifp->if_oerrors++;
2145 			return;
2146 		}
2147 		ifp->if_timer = 1;
2148 	}
2149 
2150 	ieee80211_watchdog(&sc->sc_ic);
2151 }
2152 
2153 /*
2154  * This function allows for fast channel switching in monitor mode (used by
2155  * net-mgmt/kismet). In IBSS mode, we must explicitly reset the interface to
2156  * generate a new beacon frame.
2157  */
2158 static int
2159 rt2560_reset(struct ifnet *ifp)
2160 {
2161 	struct rt2560_softc *sc = ifp->if_softc;
2162 	struct ieee80211com *ic = &sc->sc_ic;
2163 
2164 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
2165 		return ENETRESET;
2166 
2167 	rt2560_set_chan(sc, ic->ic_curchan);
2168 
2169 	return 0;
2170 }
2171 
2172 int
2173 rt2560_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2174 {
2175 	struct rt2560_softc *sc = ifp->if_softc;
2176 	struct ieee80211com *ic = &sc->sc_ic;
2177 	int s, error = 0;
2178 
2179 	s = splnet();
2180 
2181 	switch (cmd) {
2182 	case SIOCSIFFLAGS:
2183 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
2184 			break;
2185 		if (ifp->if_flags & IFF_UP) {
2186 			if (ifp->if_flags & IFF_RUNNING)
2187 				rt2560_update_promisc(sc);
2188 			else
2189 				rt2560_init(ifp);
2190 		} else {
2191 			if (ifp->if_flags & IFF_RUNNING)
2192 				rt2560_stop(ifp, 1);
2193 		}
2194 		break;
2195 
2196 	case SIOCADDMULTI:
2197 	case SIOCDELMULTI:
2198 		/* XXX no h/w multicast filter? --dyoung */
2199 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET)
2200 			error = 0;
2201 		break;
2202 
2203 	case SIOCS80211CHANNEL:
2204 		/*
2205 		 * This allows for fast channel switching in monitor mode
2206 		 * (used by kismet). In IBSS mode, we must explicitly reset
2207 		 * the interface to generate a new beacon frame.
2208 		 */
2209 		error = ieee80211_ioctl(ic, cmd, data);
2210 		if (error == ENETRESET &&
2211 		    ic->ic_opmode == IEEE80211_M_MONITOR) {
2212 			rt2560_set_chan(sc, ic->ic_ibss_chan);
2213 			error = 0;
2214 		}
2215 		break;
2216 
2217 	default:
2218 		error = ieee80211_ioctl(ic, cmd, data);
2219 	}
2220 
2221 	if (error == ENETRESET) {
2222 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
2223 		    (IFF_UP | IFF_RUNNING))
2224 			rt2560_init(ifp);
2225 		error = 0;
2226 	}
2227 
2228 	splx(s);
2229 
2230 	return error;
2231 }
2232 
2233 static void
2234 rt2560_bbp_write(struct rt2560_softc *sc, uint8_t reg, uint8_t val)
2235 {
2236 	uint32_t tmp;
2237 	int ntries;
2238 
2239 	for (ntries = 0; ntries < 100; ntries++) {
2240 		if (!(RAL_READ(sc, RT2560_BBPCSR) & RT2560_BBP_BUSY))
2241 			break;
2242 		DELAY(1);
2243 	}
2244 	if (ntries == 100) {
2245 		aprint_error_dev(&sc->sc_dev, "could not write to BBP\n");
2246 		return;
2247 	}
2248 
2249 	tmp = RT2560_BBP_WRITE | RT2560_BBP_BUSY | reg << 8 | val;
2250 	RAL_WRITE(sc, RT2560_BBPCSR, tmp);
2251 
2252 	DPRINTFN(15, ("BBP R%u <- 0x%02x\n", reg, val));
2253 }
2254 
2255 static uint8_t
2256 rt2560_bbp_read(struct rt2560_softc *sc, uint8_t reg)
2257 {
2258 	uint32_t val;
2259 	int ntries;
2260 
2261 	val = RT2560_BBP_BUSY | reg << 8;
2262 	RAL_WRITE(sc, RT2560_BBPCSR, val);
2263 
2264 	for (ntries = 0; ntries < 100; ntries++) {
2265 		val = RAL_READ(sc, RT2560_BBPCSR);
2266 		if (!(val & RT2560_BBP_BUSY))
2267 			return val & 0xff;
2268 		DELAY(1);
2269 	}
2270 
2271 	aprint_error_dev(&sc->sc_dev, "could not read from BBP\n");
2272 	return 0;
2273 }
2274 
2275 static void
2276 rt2560_rf_write(struct rt2560_softc *sc, uint8_t reg, uint32_t val)
2277 {
2278 	uint32_t tmp;
2279 	int ntries;
2280 
2281 	for (ntries = 0; ntries < 100; ntries++) {
2282 		if (!(RAL_READ(sc, RT2560_RFCSR) & RT2560_RF_BUSY))
2283 			break;
2284 		DELAY(1);
2285 	}
2286 	if (ntries == 100) {
2287 		aprint_error_dev(&sc->sc_dev, "could not write to RF\n");
2288 		return;
2289 	}
2290 
2291 	tmp = RT2560_RF_BUSY | RT2560_RF_20BIT | (val & 0xfffff) << 2 |
2292 	    (reg & 0x3);
2293 	RAL_WRITE(sc, RT2560_RFCSR, tmp);
2294 
2295 	/* remember last written value in sc */
2296 	sc->rf_regs[reg] = val;
2297 
2298 	DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff));
2299 }
2300 
2301 static void
2302 rt2560_set_chan(struct rt2560_softc *sc, struct ieee80211_channel *c)
2303 {
2304 	struct ieee80211com *ic = &sc->sc_ic;
2305 	uint8_t power, tmp;
2306 	u_int i, chan;
2307 
2308 	chan = ieee80211_chan2ieee(ic, c);
2309 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
2310 		return;
2311 
2312 	if (IEEE80211_IS_CHAN_2GHZ(c))
2313 		power = min(sc->txpow[chan - 1], 31);
2314 	else
2315 		power = 31;
2316 
2317 	DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power));
2318 
2319 	switch (sc->rf_rev) {
2320 	case RT2560_RF_2522:
2321 		rt2560_rf_write(sc, RT2560_RF1, 0x00814);
2322 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2522_r2[chan - 1]);
2323 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x00040);
2324 		break;
2325 
2326 	case RT2560_RF_2523:
2327 		rt2560_rf_write(sc, RT2560_RF1, 0x08804);
2328 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2523_r2[chan - 1]);
2329 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x38044);
2330 		rt2560_rf_write(sc, RT2560_RF4,
2331 		    (chan == 14) ? 0x00280 : 0x00286);
2332 		break;
2333 
2334 	case RT2560_RF_2524:
2335 		rt2560_rf_write(sc, RT2560_RF1, 0x0c808);
2336 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2524_r2[chan - 1]);
2337 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x00040);
2338 		rt2560_rf_write(sc, RT2560_RF4,
2339 		    (chan == 14) ? 0x00280 : 0x00286);
2340 		break;
2341 
2342 	case RT2560_RF_2525:
2343 		rt2560_rf_write(sc, RT2560_RF1, 0x08808);
2344 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2525_hi_r2[chan - 1]);
2345 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044);
2346 		rt2560_rf_write(sc, RT2560_RF4,
2347 		    (chan == 14) ? 0x00280 : 0x00286);
2348 
2349 		rt2560_rf_write(sc, RT2560_RF1, 0x08808);
2350 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2525_r2[chan - 1]);
2351 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044);
2352 		rt2560_rf_write(sc, RT2560_RF4,
2353 		    (chan == 14) ? 0x00280 : 0x00286);
2354 		break;
2355 
2356 	case RT2560_RF_2525E:
2357 		rt2560_rf_write(sc, RT2560_RF1, 0x08808);
2358 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2525e_r2[chan - 1]);
2359 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044);
2360 		rt2560_rf_write(sc, RT2560_RF4,
2361 		    (chan == 14) ? 0x00286 : 0x00282);
2362 		break;
2363 
2364 	case RT2560_RF_2526:
2365 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2526_hi_r2[chan - 1]);
2366 		rt2560_rf_write(sc, RT2560_RF4,
2367 		   (chan & 1) ? 0x00386 : 0x00381);
2368 		rt2560_rf_write(sc, RT2560_RF1, 0x08804);
2369 
2370 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2526_r2[chan - 1]);
2371 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044);
2372 		rt2560_rf_write(sc, RT2560_RF4,
2373 		    (chan & 1) ? 0x00386 : 0x00381);
2374 		break;
2375 
2376 	/* dual-band RF */
2377 	case RT2560_RF_5222:
2378 		for (i = 0; rt2560_rf5222[i].chan != chan; i++);
2379 
2380 		rt2560_rf_write(sc, RT2560_RF1, rt2560_rf5222[i].r1);
2381 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf5222[i].r2);
2382 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x00040);
2383 		rt2560_rf_write(sc, RT2560_RF4, rt2560_rf5222[i].r4);
2384 		break;
2385 	}
2386 
2387 	if (ic->ic_opmode != IEEE80211_M_MONITOR &&
2388 	    ic->ic_state != IEEE80211_S_SCAN) {
2389 		/* set Japan filter bit for channel 14 */
2390 		tmp = rt2560_bbp_read(sc, 70);
2391 
2392 		tmp &= ~RT2560_JAPAN_FILTER;
2393 		if (chan == 14)
2394 			tmp |= RT2560_JAPAN_FILTER;
2395 
2396 		rt2560_bbp_write(sc, 70, tmp);
2397 
2398 		DELAY(1000); /* RF needs a 1ms delay here */
2399 		rt2560_disable_rf_tune(sc);
2400 
2401 		/* clear CRC errors */
2402 		RAL_READ(sc, RT2560_CNT0);
2403 	}
2404 }
2405 
2406 /*
2407  * Disable RF auto-tuning.
2408  */
2409 static void
2410 rt2560_disable_rf_tune(struct rt2560_softc *sc)
2411 {
2412 	uint32_t tmp;
2413 
2414 	if (sc->rf_rev != RT2560_RF_2523) {
2415 		tmp = sc->rf_regs[RT2560_RF1] & ~RT2560_RF1_AUTOTUNE;
2416 		rt2560_rf_write(sc, RT2560_RF1, tmp);
2417 	}
2418 
2419 	tmp = sc->rf_regs[RT2560_RF3] & ~RT2560_RF3_AUTOTUNE;
2420 	rt2560_rf_write(sc, RT2560_RF3, tmp);
2421 
2422 	DPRINTFN(2, ("disabling RF autotune\n"));
2423 }
2424 
2425 /*
2426  * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
2427  * synchronization.
2428  */
2429 static void
2430 rt2560_enable_tsf_sync(struct rt2560_softc *sc)
2431 {
2432 	struct ieee80211com *ic = &sc->sc_ic;
2433 	uint16_t logcwmin, preload;
2434 	uint32_t tmp;
2435 
2436 	/* first, disable TSF synchronization */
2437 	RAL_WRITE(sc, RT2560_CSR14, 0);
2438 
2439 	tmp = 16 * ic->ic_bss->ni_intval;
2440 	RAL_WRITE(sc, RT2560_CSR12, tmp);
2441 
2442 	RAL_WRITE(sc, RT2560_CSR13, 0);
2443 
2444 	logcwmin = 5;
2445 	preload = (ic->ic_opmode == IEEE80211_M_STA) ? 384 : 1024;
2446 	tmp = logcwmin << 16 | preload;
2447 	RAL_WRITE(sc, RT2560_BCNOCSR, tmp);
2448 
2449 	/* finally, enable TSF synchronization */
2450 	tmp = RT2560_ENABLE_TSF | RT2560_ENABLE_TBCN;
2451 	if (ic->ic_opmode == IEEE80211_M_STA)
2452 		tmp |= RT2560_ENABLE_TSF_SYNC(1);
2453 	else
2454 		tmp |= RT2560_ENABLE_TSF_SYNC(2) |
2455 		       RT2560_ENABLE_BEACON_GENERATOR;
2456 	RAL_WRITE(sc, RT2560_CSR14, tmp);
2457 
2458 	DPRINTF(("enabling TSF synchronization\n"));
2459 }
2460 
2461 static void
2462 rt2560_update_plcp(struct rt2560_softc *sc)
2463 {
2464 	struct ieee80211com *ic = &sc->sc_ic;
2465 
2466 	/* no short preamble for 1Mbps */
2467 	RAL_WRITE(sc, RT2560_PLCP1MCSR, 0x00700400);
2468 
2469 	if (!(ic->ic_flags & IEEE80211_F_SHPREAMBLE)) {
2470 		/* values taken from the reference driver */
2471 		RAL_WRITE(sc, RT2560_PLCP2MCSR,   0x00380401);
2472 		RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x00150402);
2473 		RAL_WRITE(sc, RT2560_PLCP11MCSR,  0x000b8403);
2474 	} else {
2475 		/* same values as above or'ed 0x8 */
2476 		RAL_WRITE(sc, RT2560_PLCP2MCSR,   0x00380409);
2477 		RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x0015040a);
2478 		RAL_WRITE(sc, RT2560_PLCP11MCSR,  0x000b840b);
2479 	}
2480 
2481 	DPRINTF(("updating PLCP for %s preamble\n",
2482 	    (ic->ic_flags & IEEE80211_F_SHPREAMBLE) ? "short" : "long"));
2483 }
2484 
2485 /*
2486  * IEEE 802.11a uses short slot time. Refer to IEEE Std 802.11-1999 pp. 85 to
2487  * know how these values are computed.
2488  */
2489 static void
2490 rt2560_update_slot(struct ifnet *ifp)
2491 {
2492 	struct rt2560_softc *sc = ifp->if_softc;
2493 	struct ieee80211com *ic = &sc->sc_ic;
2494 	uint8_t slottime;
2495 	uint16_t sifs, pifs, difs, eifs;
2496 	uint32_t tmp;
2497 
2498 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
2499 
2500 	/* define the MAC slot boundaries */
2501 	sifs = RAL_SIFS - RT2560_RXTX_TURNAROUND;
2502 	pifs = sifs + slottime;
2503 	difs = sifs + 2 * slottime;
2504 	eifs = (ic->ic_curmode == IEEE80211_MODE_11B) ? 364 : 60;
2505 
2506 	tmp = RAL_READ(sc, RT2560_CSR11);
2507 	tmp = (tmp & ~0x1f00) | slottime << 8;
2508 	RAL_WRITE(sc, RT2560_CSR11, tmp);
2509 
2510 	tmp = pifs << 16 | sifs;
2511 	RAL_WRITE(sc, RT2560_CSR18, tmp);
2512 
2513 	tmp = eifs << 16 | difs;
2514 	RAL_WRITE(sc, RT2560_CSR19, tmp);
2515 
2516 	DPRINTF(("setting slottime to %uus\n", slottime));
2517 }
2518 
2519 static void
2520 rt2560_set_basicrates(struct rt2560_softc *sc)
2521 {
2522 	struct ieee80211com *ic = &sc->sc_ic;
2523 
2524 	/* update basic rate set */
2525 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
2526 		/* 11b basic rates: 1, 2Mbps */
2527 		RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x3);
2528 	} else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) {
2529 		/* 11a basic rates: 6, 12, 24Mbps */
2530 		RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x150);
2531 	} else {
2532 		/* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
2533 		RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x15f);
2534 	}
2535 }
2536 
2537 static void
2538 rt2560_update_led(struct rt2560_softc *sc, int led1, int led2)
2539 {
2540 	uint32_t tmp;
2541 
2542 	/* set ON period to 70ms and OFF period to 30ms */
2543 	tmp = led1 << 16 | led2 << 17 | 70 << 8 | 30;
2544 	RAL_WRITE(sc, RT2560_LEDCSR, tmp);
2545 }
2546 
2547 static void
2548 rt2560_set_bssid(struct rt2560_softc *sc, uint8_t *bssid)
2549 {
2550 	uint32_t tmp;
2551 
2552 	tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
2553 	RAL_WRITE(sc, RT2560_CSR5, tmp);
2554 
2555 	tmp = bssid[4] | bssid[5] << 8;
2556 	RAL_WRITE(sc, RT2560_CSR6, tmp);
2557 
2558 	DPRINTF(("setting BSSID to %s\n", ether_sprintf(bssid)));
2559 }
2560 
2561 static void
2562 rt2560_set_macaddr(struct rt2560_softc *sc, uint8_t *addr)
2563 {
2564 	uint32_t tmp;
2565 
2566 	tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
2567 	RAL_WRITE(sc, RT2560_CSR3, tmp);
2568 
2569 	tmp = addr[4] | addr[5] << 8;
2570 	RAL_WRITE(sc, RT2560_CSR4, tmp);
2571 
2572 	DPRINTF(("setting MAC address to %s\n", ether_sprintf(addr)));
2573 }
2574 
2575 static void
2576 rt2560_get_macaddr(struct rt2560_softc *sc, uint8_t *addr)
2577 {
2578 	uint32_t tmp;
2579 
2580 	tmp = RAL_READ(sc, RT2560_CSR3);
2581 	addr[0] = tmp & 0xff;
2582 	addr[1] = (tmp >>  8) & 0xff;
2583 	addr[2] = (tmp >> 16) & 0xff;
2584 	addr[3] = (tmp >> 24);
2585 
2586 	tmp = RAL_READ(sc, RT2560_CSR4);
2587 	addr[4] = tmp & 0xff;
2588 	addr[5] = (tmp >> 8) & 0xff;
2589 }
2590 
2591 static void
2592 rt2560_update_promisc(struct rt2560_softc *sc)
2593 {
2594 	struct ifnet *ifp = &sc->sc_if;
2595 	uint32_t tmp;
2596 
2597 	tmp = RAL_READ(sc, RT2560_RXCSR0);
2598 
2599 	tmp &= ~RT2560_DROP_NOT_TO_ME;
2600 	if (!(ifp->if_flags & IFF_PROMISC))
2601 		tmp |= RT2560_DROP_NOT_TO_ME;
2602 
2603 	RAL_WRITE(sc, RT2560_RXCSR0, tmp);
2604 
2605 	DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
2606 	    "entering" : "leaving"));
2607 }
2608 
2609 static void
2610 rt2560_set_txantenna(struct rt2560_softc *sc, int antenna)
2611 {
2612 	uint32_t tmp;
2613 	uint8_t tx;
2614 
2615 	tx = rt2560_bbp_read(sc, RT2560_BBP_TX) & ~RT2560_BBP_ANTMASK;
2616 	if (antenna == 1)
2617 		tx |= RT2560_BBP_ANTA;
2618 	else if (antenna == 2)
2619 		tx |= RT2560_BBP_ANTB;
2620 	else
2621 		tx |= RT2560_BBP_DIVERSITY;
2622 
2623 	/* need to force I/Q flip for RF 2525e, 2526 and 5222 */
2624 	if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526 ||
2625 	    sc->rf_rev == RT2560_RF_5222)
2626 		tx |= RT2560_BBP_FLIPIQ;
2627 
2628 	rt2560_bbp_write(sc, RT2560_BBP_TX, tx);
2629 
2630 	/* update values for CCK and OFDM in BBPCSR1 */
2631 	tmp = RAL_READ(sc, RT2560_BBPCSR1) & ~0x00070007;
2632 	tmp |= (tx & 0x7) << 16 | (tx & 0x7);
2633 	RAL_WRITE(sc, RT2560_BBPCSR1, tmp);
2634 }
2635 
2636 static void
2637 rt2560_set_rxantenna(struct rt2560_softc *sc, int antenna)
2638 {
2639 	uint8_t rx;
2640 
2641 	rx = rt2560_bbp_read(sc, RT2560_BBP_RX) & ~RT2560_BBP_ANTMASK;
2642 	if (antenna == 1)
2643 		rx |= RT2560_BBP_ANTA;
2644 	else if (antenna == 2)
2645 		rx |= RT2560_BBP_ANTB;
2646 	else
2647 		rx |= RT2560_BBP_DIVERSITY;
2648 
2649 	/* need to force no I/Q flip for RF 2525e and 2526 */
2650 	if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526)
2651 		rx &= ~RT2560_BBP_FLIPIQ;
2652 
2653 	rt2560_bbp_write(sc, RT2560_BBP_RX, rx);
2654 }
2655 
2656 static const char *
2657 rt2560_get_rf(int rev)
2658 {
2659 	switch (rev) {
2660 	case RT2560_RF_2522:	return "RT2522";
2661 	case RT2560_RF_2523:	return "RT2523";
2662 	case RT2560_RF_2524:	return "RT2524";
2663 	case RT2560_RF_2525:	return "RT2525";
2664 	case RT2560_RF_2525E:	return "RT2525e";
2665 	case RT2560_RF_2526:	return "RT2526";
2666 	case RT2560_RF_5222:	return "RT5222";
2667 	default:		return "unknown";
2668 	}
2669 }
2670 
2671 static void
2672 rt2560_read_eeprom(struct rt2560_softc *sc)
2673 {
2674 	uint16_t val;
2675 	int i;
2676 
2677 	val = rt2560_eeprom_read(sc, RT2560_EEPROM_CONFIG0);
2678 	sc->rf_rev =   (val >> 11) & 0x1f;
2679 	sc->hw_radio = (val >> 10) & 0x1;
2680 	sc->led_mode = (val >> 6)  & 0x7;
2681 	sc->rx_ant =   (val >> 4)  & 0x3;
2682 	sc->tx_ant =   (val >> 2)  & 0x3;
2683 	sc->nb_ant =   val & 0x3;
2684 
2685 	/* read default values for BBP registers */
2686 	for (i = 0; i < 16; i++) {
2687 		val = rt2560_eeprom_read(sc, RT2560_EEPROM_BBP_BASE + i);
2688 		sc->bbp_prom[i].reg = val >> 8;
2689 		sc->bbp_prom[i].val = val & 0xff;
2690 	}
2691 
2692 	/* read Tx power for all b/g channels */
2693 	for (i = 0; i < 14 / 2; i++) {
2694 		val = rt2560_eeprom_read(sc, RT2560_EEPROM_TXPOWER + i);
2695 		sc->txpow[i * 2] = val >> 8;
2696 		sc->txpow[i * 2 + 1] = val & 0xff;
2697 	}
2698 }
2699 
2700 static int
2701 rt2560_bbp_init(struct rt2560_softc *sc)
2702 {
2703 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
2704 	int i, ntries;
2705 
2706 	/* wait for BBP to be ready */
2707 	for (ntries = 0; ntries < 100; ntries++) {
2708 		if (rt2560_bbp_read(sc, RT2560_BBP_VERSION) != 0)
2709 			break;
2710 		DELAY(1);
2711 	}
2712 	if (ntries == 100) {
2713 		aprint_error_dev(&sc->sc_dev, "timeout waiting for BBP\n");
2714 		return EIO;
2715 	}
2716 
2717 	/* initialize BBP registers to default values */
2718 	for (i = 0; i < N(rt2560_def_bbp); i++) {
2719 		rt2560_bbp_write(sc, rt2560_def_bbp[i].reg,
2720 		    rt2560_def_bbp[i].val);
2721 	}
2722 #if 0
2723 	/* initialize BBP registers to values stored in EEPROM */
2724 	for (i = 0; i < 16; i++) {
2725 		if (sc->bbp_prom[i].reg == 0xff)
2726 			continue;
2727 		rt2560_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2728 	}
2729 #endif
2730 
2731 	return 0;
2732 #undef N
2733 }
2734 
2735 static int
2736 rt2560_init(struct ifnet *ifp)
2737 {
2738 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
2739 	struct rt2560_softc *sc = ifp->if_softc;
2740 	struct ieee80211com *ic = &sc->sc_ic;
2741 	uint32_t tmp;
2742 	int i;
2743 
2744 	/* for CardBus, power on the socket */
2745 	if (!(sc->sc_flags & RT2560_ENABLED)) {
2746 		if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
2747 			aprint_error_dev(&sc->sc_dev, "could not enable device\n");
2748 			return EIO;
2749 		}
2750 		sc->sc_flags |= RT2560_ENABLED;
2751 	}
2752 
2753 	rt2560_stop(ifp, 1);
2754 
2755 	/* setup tx rings */
2756 	tmp = RT2560_PRIO_RING_COUNT << 24 |
2757 	      RT2560_ATIM_RING_COUNT << 16 |
2758 	      RT2560_TX_RING_COUNT   <<  8 |
2759 	      RT2560_TX_DESC_SIZE;
2760 
2761 	/* rings _must_ be initialized in this _exact_ order! */
2762 	RAL_WRITE(sc, RT2560_TXCSR2, tmp);
2763 	RAL_WRITE(sc, RT2560_TXCSR3, sc->txq.physaddr);
2764 	RAL_WRITE(sc, RT2560_TXCSR5, sc->prioq.physaddr);
2765 	RAL_WRITE(sc, RT2560_TXCSR4, sc->atimq.physaddr);
2766 	RAL_WRITE(sc, RT2560_TXCSR6, sc->bcnq.physaddr);
2767 
2768 	/* setup rx ring */
2769 	tmp = RT2560_RX_RING_COUNT << 8 | RT2560_RX_DESC_SIZE;
2770 
2771 	RAL_WRITE(sc, RT2560_RXCSR1, tmp);
2772 	RAL_WRITE(sc, RT2560_RXCSR2, sc->rxq.physaddr);
2773 
2774 	/* initialize MAC registers to default values */
2775 	for (i = 0; i < N(rt2560_def_mac); i++)
2776 		RAL_WRITE(sc, rt2560_def_mac[i].reg, rt2560_def_mac[i].val);
2777 
2778 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2779 	rt2560_set_macaddr(sc, ic->ic_myaddr);
2780 
2781 	/* set basic rate set (will be updated later) */
2782 	RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x153);
2783 
2784 	rt2560_update_slot(ifp);
2785 	rt2560_update_plcp(sc);
2786 	rt2560_update_led(sc, 0, 0);
2787 
2788 	RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC);
2789 	RAL_WRITE(sc, RT2560_CSR1, RT2560_HOST_READY);
2790 
2791 	if (rt2560_bbp_init(sc) != 0) {
2792 		rt2560_stop(ifp, 1);
2793 		return EIO;
2794 	}
2795 
2796 	rt2560_set_txantenna(sc, 1);
2797 	rt2560_set_rxantenna(sc, 1);
2798 
2799 	/* set default BSS channel */
2800 	ic->ic_bss->ni_chan = ic->ic_ibss_chan;
2801 	rt2560_set_chan(sc, ic->ic_bss->ni_chan);
2802 
2803 	/* kick Rx */
2804 	tmp = RT2560_DROP_PHY_ERROR | RT2560_DROP_CRC_ERROR;
2805 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2806 		tmp |= RT2560_DROP_CTL | RT2560_DROP_VERSION_ERROR;
2807 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2808 			tmp |= RT2560_DROP_TODS;
2809 		if (!(ifp->if_flags & IFF_PROMISC))
2810 			tmp |= RT2560_DROP_NOT_TO_ME;
2811 	}
2812 	RAL_WRITE(sc, RT2560_RXCSR0, tmp);
2813 
2814 	/* clear old FCS and Rx FIFO errors */
2815 	RAL_READ(sc, RT2560_CNT0);
2816 	RAL_READ(sc, RT2560_CNT4);
2817 
2818 	/* clear any pending interrupts */
2819 	RAL_WRITE(sc, RT2560_CSR7, 0xffffffff);
2820 
2821 	/* enable interrupts */
2822 	RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK);
2823 
2824 	ifp->if_flags &= ~IFF_OACTIVE;
2825 	ifp->if_flags |= IFF_RUNNING;
2826 
2827 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2828 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2829 	else
2830 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2831 
2832 	return 0;
2833 #undef N
2834 }
2835 
2836 static void
2837 rt2560_stop(struct ifnet *ifp, int disable)
2838 {
2839 	struct rt2560_softc *sc = ifp->if_softc;
2840 	struct ieee80211com *ic = &sc->sc_ic;
2841 
2842 	sc->sc_tx_timer = 0;
2843 	ifp->if_timer = 0;
2844 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2845 
2846 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);	/* free all nodes */
2847 
2848 	/* abort Tx */
2849 	RAL_WRITE(sc, RT2560_TXCSR0, RT2560_ABORT_TX);
2850 
2851 	/* disable Rx */
2852 	RAL_WRITE(sc, RT2560_RXCSR0, RT2560_DISABLE_RX);
2853 
2854 	/* reset ASIC (and thus, BBP) */
2855 	RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC);
2856 	RAL_WRITE(sc, RT2560_CSR1, 0);
2857 
2858 	/* disable interrupts */
2859 	RAL_WRITE(sc, RT2560_CSR8, 0xffffffff);
2860 
2861 	/* clear any pending interrupt */
2862 	RAL_WRITE(sc, RT2560_CSR7, 0xffffffff);
2863 
2864 	/* reset Tx and Rx rings */
2865 	rt2560_reset_tx_ring(sc, &sc->txq);
2866 	rt2560_reset_tx_ring(sc, &sc->atimq);
2867 	rt2560_reset_tx_ring(sc, &sc->prioq);
2868 	rt2560_reset_tx_ring(sc, &sc->bcnq);
2869 	rt2560_reset_rx_ring(sc, &sc->rxq);
2870 
2871 }
2872