xref: /netbsd-src/sys/dev/ic/rt2560.c (revision 3816d47b2c42fcd6e549e3407f842a5b1a1d23ad)
1 /*	$NetBSD: rt2560.c,v 1.21 2009/09/05 14:19:30 tsutsui Exp $	*/
2 /*	$OpenBSD: rt2560.c,v 1.15 2006/04/20 20:31:12 miod Exp $  */
3 /*	$FreeBSD: rt2560.c,v 1.3 2006/03/21 21:15:43 damien Exp $*/
4 
5 /*-
6  * Copyright (c) 2005, 2006
7  *	Damien Bergamini <damien.bergamini@free.fr>
8  *
9  * Permission to use, copy, modify, and distribute this software for any
10  * purpose with or without fee is hereby granted, provided that the above
11  * copyright notice and this permission notice appear in all copies.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20  */
21 
22 /*-
23  * Ralink Technology RT2560 chipset driver
24  * http://www.ralinktech.com/
25  */
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: rt2560.c,v 1.21 2009/09/05 14:19:30 tsutsui Exp $");
28 
29 #include "bpfilter.h"
30 
31 #include <sys/param.h>
32 #include <sys/sockio.h>
33 #include <sys/mbuf.h>
34 #include <sys/kernel.h>
35 #include <sys/socket.h>
36 #include <sys/systm.h>
37 #include <sys/malloc.h>
38 #include <sys/callout.h>
39 #include <sys/conf.h>
40 #include <sys/device.h>
41 
42 #include <sys/bus.h>
43 #include <machine/endian.h>
44 #include <sys/intr.h>
45 
46 #if NBPFILTER > 0
47 #include <net/bpf.h>
48 #endif
49 #include <net/if.h>
50 #include <net/if_arp.h>
51 #include <net/if_dl.h>
52 #include <net/if_media.h>
53 #include <net/if_types.h>
54 #include <net/if_ether.h>
55 
56 #include <netinet/in.h>
57 #include <netinet/in_systm.h>
58 #include <netinet/in_var.h>
59 #include <netinet/ip.h>
60 
61 #include <net80211/ieee80211_var.h>
62 #include <net80211/ieee80211_rssadapt.h>
63 #include <net80211/ieee80211_radiotap.h>
64 
65 #include <dev/ic/rt2560reg.h>
66 #include <dev/ic/rt2560var.h>
67 
68 #include <dev/pci/pcireg.h>
69 #include <dev/pci/pcivar.h>
70 #include <dev/pci/pcidevs.h>
71 
72 #ifdef RAL_DEBUG
73 #define DPRINTF(x)	do { if (rt2560_debug > 0) printf x; } while (0)
74 #define DPRINTFN(n, x)	do { if (rt2560_debug >= (n)) printf x; } while (0)
75 int rt2560_debug = 0;
76 #else
77 #define DPRINTF(x)
78 #define DPRINTFN(n, x)
79 #endif
80 
81 static int	rt2560_alloc_tx_ring(struct rt2560_softc *,
82 		    struct rt2560_tx_ring *, int);
83 static void	rt2560_reset_tx_ring(struct rt2560_softc *,
84 		    struct rt2560_tx_ring *);
85 static void	rt2560_free_tx_ring(struct rt2560_softc *,
86 		    struct rt2560_tx_ring *);
87 static int	rt2560_alloc_rx_ring(struct rt2560_softc *,
88 		    struct rt2560_rx_ring *, int);
89 static void	rt2560_reset_rx_ring(struct rt2560_softc *,
90 		    struct rt2560_rx_ring *);
91 static void	rt2560_free_rx_ring(struct rt2560_softc *,
92 		    struct rt2560_rx_ring *);
93 static struct ieee80211_node *
94 		rt2560_node_alloc(struct ieee80211_node_table *);
95 static int	rt2560_media_change(struct ifnet *);
96 static void	rt2560_next_scan(void *);
97 static void	rt2560_iter_func(void *, struct ieee80211_node *);
98 static void	rt2560_update_rssadapt(void *);
99 static int	rt2560_newstate(struct ieee80211com *, enum ieee80211_state,
100     		    int);
101 static uint16_t	rt2560_eeprom_read(struct rt2560_softc *, uint8_t);
102 static void	rt2560_encryption_intr(struct rt2560_softc *);
103 static void	rt2560_tx_intr(struct rt2560_softc *);
104 static void	rt2560_prio_intr(struct rt2560_softc *);
105 static void	rt2560_decryption_intr(struct rt2560_softc *);
106 static void	rt2560_rx_intr(struct rt2560_softc *);
107 static void	rt2560_beacon_expire(struct rt2560_softc *);
108 static void	rt2560_wakeup_expire(struct rt2560_softc *);
109 #if NBPFILTER > 0
110 static uint8_t	rt2560_rxrate(struct rt2560_rx_desc *);
111 #endif
112 static int	rt2560_ack_rate(struct ieee80211com *, int);
113 static uint16_t	rt2560_txtime(int, int, uint32_t);
114 static uint8_t	rt2560_plcp_signal(int);
115 static void	rt2560_setup_tx_desc(struct rt2560_softc *,
116 		    struct rt2560_tx_desc *, uint32_t, int, int, int,
117 		    bus_addr_t);
118 static int	rt2560_tx_bcn(struct rt2560_softc *, struct mbuf *,
119 		    struct ieee80211_node *);
120 static int	rt2560_tx_mgt(struct rt2560_softc *, struct mbuf *,
121 		    struct ieee80211_node *);
122 static struct mbuf *rt2560_get_rts(struct rt2560_softc *,
123 		    struct ieee80211_frame *, uint16_t);
124 static int	rt2560_tx_data(struct rt2560_softc *, struct mbuf *,
125 		    struct ieee80211_node *);
126 static void	rt2560_start(struct ifnet *);
127 static void	rt2560_watchdog(struct ifnet *);
128 static int	rt2560_reset(struct ifnet *);
129 static int	rt2560_ioctl(struct ifnet *, u_long, void *);
130 static void	rt2560_bbp_write(struct rt2560_softc *, uint8_t, uint8_t);
131 static uint8_t	rt2560_bbp_read(struct rt2560_softc *, uint8_t);
132 static void	rt2560_rf_write(struct rt2560_softc *, uint8_t, uint32_t);
133 static void	rt2560_set_chan(struct rt2560_softc *,
134 		    struct ieee80211_channel *);
135 static void	rt2560_disable_rf_tune(struct rt2560_softc *);
136 static void	rt2560_enable_tsf_sync(struct rt2560_softc *);
137 static void	rt2560_update_plcp(struct rt2560_softc *);
138 static void	rt2560_update_slot(struct ifnet *);
139 static void	rt2560_set_basicrates(struct rt2560_softc *);
140 static void	rt2560_update_led(struct rt2560_softc *, int, int);
141 static void	rt2560_set_bssid(struct rt2560_softc *, uint8_t *);
142 static void	rt2560_set_macaddr(struct rt2560_softc *, uint8_t *);
143 static void	rt2560_get_macaddr(struct rt2560_softc *, uint8_t *);
144 static void	rt2560_update_promisc(struct rt2560_softc *);
145 static void	rt2560_set_txantenna(struct rt2560_softc *, int);
146 static void	rt2560_set_rxantenna(struct rt2560_softc *, int);
147 static const char *rt2560_get_rf(int);
148 static void	rt2560_read_eeprom(struct rt2560_softc *);
149 static int	rt2560_bbp_init(struct rt2560_softc *);
150 static int	rt2560_init(struct ifnet *);
151 static void	rt2560_stop(struct ifnet *, int);
152 
153 /*
154  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
155  */
156 static const struct ieee80211_rateset rt2560_rateset_11a =
157 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
158 
159 static const struct ieee80211_rateset rt2560_rateset_11b =
160 	{ 4, { 2, 4, 11, 22 } };
161 
162 static const struct ieee80211_rateset rt2560_rateset_11g =
163 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
164 
165 /*
166  * Default values for MAC registers; values taken from the reference driver.
167  */
168 static const struct {
169 	uint32_t	reg;
170 	uint32_t	val;
171 } rt2560_def_mac[] = {
172 	{ RT2560_PSCSR0,      0x00020002 },
173 	{ RT2560_PSCSR1,      0x00000002 },
174 	{ RT2560_PSCSR2,      0x00020002 },
175 	{ RT2560_PSCSR3,      0x00000002 },
176 	{ RT2560_TIMECSR,     0x00003f21 },
177 	{ RT2560_CSR9,        0x00000780 },
178 	{ RT2560_CSR11,       0x07041483 },
179 	{ RT2560_CNT3,        0x00000000 },
180 	{ RT2560_TXCSR1,      0x07614562 },
181 	{ RT2560_ARSP_PLCP_0, 0x8c8d8b8a },
182 	{ RT2560_ACKPCTCSR,   0x7038140a },
183 	{ RT2560_ARTCSR1,     0x1d21252d },
184 	{ RT2560_ARTCSR2,     0x1919191d },
185 	{ RT2560_RXCSR0,      0xffffffff },
186 	{ RT2560_RXCSR3,      0xb3aab3af },
187 	{ RT2560_PCICSR,      0x000003b8 },
188 	{ RT2560_PWRCSR0,     0x3f3b3100 },
189 	{ RT2560_GPIOCSR,     0x0000ff00 },
190 	{ RT2560_TESTCSR,     0x000000f0 },
191 	{ RT2560_PWRCSR1,     0x000001ff },
192 	{ RT2560_MACCSR0,     0x00213223 },
193 	{ RT2560_MACCSR1,     0x00235518 },
194 	{ RT2560_RLPWCSR,     0x00000040 },
195 	{ RT2560_RALINKCSR,   0x9a009a11 },
196 	{ RT2560_CSR7,        0xffffffff },
197 	{ RT2560_BBPCSR1,     0x82188200 },
198 	{ RT2560_TXACKCSR0,   0x00000020 },
199 	{ RT2560_SECCSR3,     0x0000e78f }
200 };
201 
202 /*
203  * Default values for BBP registers; values taken from the reference driver.
204  */
205 static const struct {
206 	uint8_t	reg;
207 	uint8_t	val;
208 } rt2560_def_bbp[] = {
209 	{  3, 0x02 },
210 	{  4, 0x19 },
211 	{ 14, 0x1c },
212 	{ 15, 0x30 },
213 	{ 16, 0xac },
214 	{ 17, 0x48 },
215 	{ 18, 0x18 },
216 	{ 19, 0xff },
217 	{ 20, 0x1e },
218 	{ 21, 0x08 },
219 	{ 22, 0x08 },
220 	{ 23, 0x08 },
221 	{ 24, 0x80 },
222 	{ 25, 0x50 },
223 	{ 26, 0x08 },
224 	{ 27, 0x23 },
225 	{ 30, 0x10 },
226 	{ 31, 0x2b },
227 	{ 32, 0xb9 },
228 	{ 34, 0x12 },
229 	{ 35, 0x50 },
230 	{ 39, 0xc4 },
231 	{ 40, 0x02 },
232 	{ 41, 0x60 },
233 	{ 53, 0x10 },
234 	{ 54, 0x18 },
235 	{ 56, 0x08 },
236 	{ 57, 0x10 },
237 	{ 58, 0x08 },
238 	{ 61, 0x60 },
239 	{ 62, 0x10 },
240 	{ 75, 0xff }
241 };
242 
243 /*
244  * Default values for RF register R2 indexed by channel numbers; values taken
245  * from the reference driver.
246  */
247 static const uint32_t rt2560_rf2522_r2[] = {
248 	0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814,
249 	0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e
250 };
251 
252 static const uint32_t rt2560_rf2523_r2[] = {
253 	0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
254 	0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
255 };
256 
257 static const uint32_t rt2560_rf2524_r2[] = {
258 	0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
259 	0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
260 };
261 
262 static const uint32_t rt2560_rf2525_r2[] = {
263 	0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d,
264 	0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346
265 };
266 
267 static const uint32_t rt2560_rf2525_hi_r2[] = {
268 	0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345,
269 	0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e
270 };
271 
272 static const uint32_t rt2560_rf2525e_r2[] = {
273 	0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463,
274 	0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b
275 };
276 
277 static const uint32_t rt2560_rf2526_hi_r2[] = {
278 	0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d,
279 	0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241
280 };
281 
282 static const uint32_t rt2560_rf2526_r2[] = {
283 	0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229,
284 	0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d
285 };
286 
287 /*
288  * For dual-band RF, RF registers R1 and R4 also depend on channel number;
289  * values taken from the reference driver.
290  */
291 static const struct {
292 	uint8_t		chan;
293 	uint32_t	r1;
294 	uint32_t	r2;
295 	uint32_t	r4;
296 } rt2560_rf5222[] = {
297 	{   1, 0x08808, 0x0044d, 0x00282 },
298 	{   2, 0x08808, 0x0044e, 0x00282 },
299 	{   3, 0x08808, 0x0044f, 0x00282 },
300 	{   4, 0x08808, 0x00460, 0x00282 },
301 	{   5, 0x08808, 0x00461, 0x00282 },
302 	{   6, 0x08808, 0x00462, 0x00282 },
303 	{   7, 0x08808, 0x00463, 0x00282 },
304 	{   8, 0x08808, 0x00464, 0x00282 },
305 	{   9, 0x08808, 0x00465, 0x00282 },
306 	{  10, 0x08808, 0x00466, 0x00282 },
307 	{  11, 0x08808, 0x00467, 0x00282 },
308 	{  12, 0x08808, 0x00468, 0x00282 },
309 	{  13, 0x08808, 0x00469, 0x00282 },
310 	{  14, 0x08808, 0x0046b, 0x00286 },
311 
312 	{  36, 0x08804, 0x06225, 0x00287 },
313 	{  40, 0x08804, 0x06226, 0x00287 },
314 	{  44, 0x08804, 0x06227, 0x00287 },
315 	{  48, 0x08804, 0x06228, 0x00287 },
316 	{  52, 0x08804, 0x06229, 0x00287 },
317 	{  56, 0x08804, 0x0622a, 0x00287 },
318 	{  60, 0x08804, 0x0622b, 0x00287 },
319 	{  64, 0x08804, 0x0622c, 0x00287 },
320 
321 	{ 100, 0x08804, 0x02200, 0x00283 },
322 	{ 104, 0x08804, 0x02201, 0x00283 },
323 	{ 108, 0x08804, 0x02202, 0x00283 },
324 	{ 112, 0x08804, 0x02203, 0x00283 },
325 	{ 116, 0x08804, 0x02204, 0x00283 },
326 	{ 120, 0x08804, 0x02205, 0x00283 },
327 	{ 124, 0x08804, 0x02206, 0x00283 },
328 	{ 128, 0x08804, 0x02207, 0x00283 },
329 	{ 132, 0x08804, 0x02208, 0x00283 },
330 	{ 136, 0x08804, 0x02209, 0x00283 },
331 	{ 140, 0x08804, 0x0220a, 0x00283 },
332 
333 	{ 149, 0x08808, 0x02429, 0x00281 },
334 	{ 153, 0x08808, 0x0242b, 0x00281 },
335 	{ 157, 0x08808, 0x0242d, 0x00281 },
336 	{ 161, 0x08808, 0x0242f, 0x00281 }
337 };
338 
339 int
340 rt2560_attach(void *xsc, int id)
341 {
342 	struct rt2560_softc *sc = xsc;
343 	struct ieee80211com *ic = &sc->sc_ic;
344 	struct ifnet *ifp = &sc->sc_if;
345 	int error, i;
346 
347 	callout_init(&sc->scan_ch, 0);
348 	callout_init(&sc->rssadapt_ch, 0);
349 
350 	/* retrieve RT2560 rev. no */
351 	sc->asic_rev = RAL_READ(sc, RT2560_CSR0);
352 
353 	/* retrieve MAC address */
354 	rt2560_get_macaddr(sc, ic->ic_myaddr);
355 
356 	aprint_normal_dev(&sc->sc_dev, "802.11 address %s\n",
357 	    ether_sprintf(ic->ic_myaddr));
358 
359 	/* retrieve RF rev. no and various other things from EEPROM */
360 	rt2560_read_eeprom(sc);
361 
362 	aprint_normal_dev(&sc->sc_dev, "MAC/BBP RT2560 (rev 0x%02x), RF %s\n",
363 	    sc->asic_rev, rt2560_get_rf(sc->rf_rev));
364 
365 	/*
366 	 * Allocate Tx and Rx rings.
367 	 */
368 	error = rt2560_alloc_tx_ring(sc, &sc->txq, RT2560_TX_RING_COUNT);
369 	if (error != 0) {
370 		aprint_error_dev(&sc->sc_dev, "could not allocate Tx ring\n)");
371 		goto fail1;
372 	}
373 
374 	error = rt2560_alloc_tx_ring(sc, &sc->atimq, RT2560_ATIM_RING_COUNT);
375 	if (error != 0) {
376 		aprint_error_dev(&sc->sc_dev, "could not allocate ATIM ring\n");
377 		goto fail2;
378 	}
379 
380 	error = rt2560_alloc_tx_ring(sc, &sc->prioq, RT2560_PRIO_RING_COUNT);
381 	if (error != 0) {
382 		aprint_error_dev(&sc->sc_dev, "could not allocate Prio ring\n");
383 		goto fail3;
384 	}
385 
386 	error = rt2560_alloc_tx_ring(sc, &sc->bcnq, RT2560_BEACON_RING_COUNT);
387 	if (error != 0) {
388 		aprint_error_dev(&sc->sc_dev, "could not allocate Beacon ring\n");
389 		goto fail4;
390 	}
391 
392 	error = rt2560_alloc_rx_ring(sc, &sc->rxq, RT2560_RX_RING_COUNT);
393 	if (error != 0) {
394 		aprint_error_dev(&sc->sc_dev, "could not allocate Rx ring\n");
395 		goto fail5;
396 	}
397 
398 	ifp->if_softc = sc;
399 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
400 	ifp->if_init = rt2560_init;
401 	ifp->if_stop = rt2560_stop;
402 	ifp->if_ioctl = rt2560_ioctl;
403 	ifp->if_start = rt2560_start;
404 	ifp->if_watchdog = rt2560_watchdog;
405 	IFQ_SET_READY(&ifp->if_snd);
406 	memcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
407 
408 	ic->ic_ifp = ifp;
409 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
410 	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
411 	ic->ic_state = IEEE80211_S_INIT;
412 
413 	/* set device capabilities */
414 	ic->ic_caps =
415 	    IEEE80211_C_IBSS |		/* IBSS mode supported */
416 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
417 	    IEEE80211_C_HOSTAP |	/* HostAp mode supported */
418 	    IEEE80211_C_TXPMGT |	/* tx power management */
419 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
420 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
421 	    IEEE80211_C_WPA;		/* 802.11i */
422 
423 	if (sc->rf_rev == RT2560_RF_5222) {
424 		/* set supported .11a rates */
425 		ic->ic_sup_rates[IEEE80211_MODE_11A] = rt2560_rateset_11a;
426 
427 		/* set supported .11a channels */
428 		for (i = 36; i <= 64; i += 4) {
429 			ic->ic_channels[i].ic_freq =
430 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
431 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
432 		}
433 		for (i = 100; i <= 140; i += 4) {
434 			ic->ic_channels[i].ic_freq =
435 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
436 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
437 		}
438 		for (i = 149; i <= 161; i += 4) {
439 			ic->ic_channels[i].ic_freq =
440 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
441 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
442 		}
443 	}
444 
445 	/* set supported .11b and .11g rates */
446 	ic->ic_sup_rates[IEEE80211_MODE_11B] = rt2560_rateset_11b;
447 	ic->ic_sup_rates[IEEE80211_MODE_11G] = rt2560_rateset_11g;
448 
449 	/* set supported .11b and .11g channels (1 through 14) */
450 	for (i = 1; i <= 14; i++) {
451 		ic->ic_channels[i].ic_freq =
452 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
453 		ic->ic_channels[i].ic_flags =
454 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
455 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
456 	}
457 
458 	if_attach(ifp);
459 	ieee80211_ifattach(ic);
460 	ic->ic_node_alloc = rt2560_node_alloc;
461 	ic->ic_updateslot = rt2560_update_slot;
462 	ic->ic_reset = rt2560_reset;
463 
464 	/* override state transition machine */
465 	sc->sc_newstate = ic->ic_newstate;
466 	ic->ic_newstate = rt2560_newstate;
467 	ieee80211_media_init(ic, rt2560_media_change, ieee80211_media_status);
468 
469 #if NBPFILTER > 0
470 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
471 	    sizeof (struct ieee80211_frame) + 64, &sc->sc_drvbpf);
472 #endif
473 
474 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
475 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
476 	sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2560_RX_RADIOTAP_PRESENT);
477 
478 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
479 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
480 	sc->sc_txtap.wt_ihdr.it_present = htole32(RT2560_TX_RADIOTAP_PRESENT);
481 
482 
483 	sc->dwelltime = 200;
484 
485 	ieee80211_announce(ic);
486 
487 	if (pmf_device_register(&sc->sc_dev, NULL, NULL))
488 		pmf_class_network_register(&sc->sc_dev, ifp);
489 	else
490 		aprint_error_dev(&sc->sc_dev,
491 		    "couldn't establish power handler\n");
492 
493 	return 0;
494 
495 fail5:	rt2560_free_tx_ring(sc, &sc->bcnq);
496 fail4:	rt2560_free_tx_ring(sc, &sc->prioq);
497 fail3:	rt2560_free_tx_ring(sc, &sc->atimq);
498 fail2:	rt2560_free_tx_ring(sc, &sc->txq);
499 fail1:
500 	return ENXIO;
501 }
502 
503 
504 int
505 rt2560_detach(void *xsc)
506 {
507 	struct rt2560_softc *sc = xsc;
508 	struct ifnet *ifp = &sc->sc_if;
509 
510 	callout_stop(&sc->scan_ch);
511 	callout_stop(&sc->rssadapt_ch);
512 
513 	pmf_device_deregister(&sc->sc_dev);
514 
515 	rt2560_stop(ifp, 1);
516 
517 	ieee80211_ifdetach(&sc->sc_ic);	/* free all nodes */
518 	if_detach(ifp);
519 
520 	rt2560_free_tx_ring(sc, &sc->txq);
521 	rt2560_free_tx_ring(sc, &sc->atimq);
522 	rt2560_free_tx_ring(sc, &sc->prioq);
523 	rt2560_free_tx_ring(sc, &sc->bcnq);
524 	rt2560_free_rx_ring(sc, &sc->rxq);
525 
526 	return 0;
527 }
528 
529 int
530 rt2560_alloc_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring,
531     int count)
532 {
533 	int i, nsegs, error;
534 
535 	ring->count = count;
536 	ring->queued = 0;
537 	ring->cur = ring->next = 0;
538 	ring->cur_encrypt = ring->next_encrypt = 0;
539 
540 	error = bus_dmamap_create(sc->sc_dmat, count * RT2560_TX_DESC_SIZE, 1,
541 	    count * RT2560_TX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map);
542 	if (error != 0) {
543 		aprint_error_dev(&sc->sc_dev, "could not create desc DMA map\n");
544 		goto fail;
545 	}
546 
547 	error = bus_dmamem_alloc(sc->sc_dmat, count * RT2560_TX_DESC_SIZE,
548 	    PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
549 	if (error != 0) {
550 		aprint_error_dev(&sc->sc_dev, "could not allocate DMA memory\n");
551 		goto fail;
552 	}
553 
554 	error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
555 	    count * RT2560_TX_DESC_SIZE, (void **)&ring->desc,
556 	    BUS_DMA_NOWAIT);
557 	if (error != 0) {
558 		aprint_error_dev(&sc->sc_dev, "could not map desc DMA memory\n");
559 		goto fail;
560 	}
561 
562 	error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
563 	    count * RT2560_TX_DESC_SIZE, NULL, BUS_DMA_NOWAIT);
564 	if (error != 0) {
565 		aprint_error_dev(&sc->sc_dev, "could not load desc DMA map\n");
566 		goto fail;
567 	}
568 
569 	memset(ring->desc, 0, count * RT2560_TX_DESC_SIZE);
570 	ring->physaddr = ring->map->dm_segs->ds_addr;
571 
572 	ring->data = malloc(count * sizeof (struct rt2560_tx_data), M_DEVBUF,
573 	    M_NOWAIT);
574 	if (ring->data == NULL) {
575 		aprint_error_dev(&sc->sc_dev, "could not allocate soft data\n");
576 		error = ENOMEM;
577 		goto fail;
578 	}
579 
580 	memset(ring->data, 0, count * sizeof (struct rt2560_tx_data));
581 	for (i = 0; i < count; i++) {
582 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
583 		    RT2560_MAX_SCATTER, MCLBYTES, 0, BUS_DMA_NOWAIT,
584 		    &ring->data[i].map);
585 		if (error != 0) {
586 			aprint_error_dev(&sc->sc_dev, "could not create DMA map\n");
587 			goto fail;
588 		}
589 	}
590 
591 	return 0;
592 
593 fail:	rt2560_free_tx_ring(sc, ring);
594 	return error;
595 }
596 
597 void
598 rt2560_reset_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring)
599 {
600 	struct rt2560_tx_desc *desc;
601 	struct rt2560_tx_data *data;
602 	int i;
603 
604 	for (i = 0; i < ring->count; i++) {
605 		desc = &ring->desc[i];
606 		data = &ring->data[i];
607 
608 		if (data->m != NULL) {
609 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
610 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
611 			bus_dmamap_unload(sc->sc_dmat, data->map);
612 			m_freem(data->m);
613 			data->m = NULL;
614 		}
615 
616 		if (data->ni != NULL) {
617 			ieee80211_free_node(data->ni);
618 			data->ni = NULL;
619 		}
620 
621 		desc->flags = 0;
622 	}
623 
624 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
625 	    BUS_DMASYNC_PREWRITE);
626 
627 	ring->queued = 0;
628 	ring->cur = ring->next = 0;
629 	ring->cur_encrypt = ring->next_encrypt = 0;
630 }
631 
632 void
633 rt2560_free_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring)
634 {
635 	struct rt2560_tx_data *data;
636 	int i;
637 
638 	if (ring->desc != NULL) {
639 		bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
640 		    ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
641 		bus_dmamap_unload(sc->sc_dmat, ring->map);
642 		bus_dmamem_unmap(sc->sc_dmat, (void *)ring->desc,
643 		    ring->count * RT2560_TX_DESC_SIZE);
644 		bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
645 	}
646 
647 	if (ring->data != NULL) {
648 		for (i = 0; i < ring->count; i++) {
649 			data = &ring->data[i];
650 
651 			if (data->m != NULL) {
652 				bus_dmamap_sync(sc->sc_dmat, data->map, 0,
653 				    data->map->dm_mapsize,
654 				    BUS_DMASYNC_POSTWRITE);
655 				bus_dmamap_unload(sc->sc_dmat, data->map);
656 				m_freem(data->m);
657 			}
658 
659 			if (data->ni != NULL)
660 				ieee80211_free_node(data->ni);
661 
662 
663 			if (data->map != NULL)
664 				bus_dmamap_destroy(sc->sc_dmat, data->map);
665 		}
666 		free(ring->data, M_DEVBUF);
667 	}
668 }
669 
670 int
671 rt2560_alloc_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring,
672     int count)
673 {
674 	struct rt2560_rx_desc *desc;
675 	struct rt2560_rx_data *data;
676 	int i, nsegs, error;
677 
678 	ring->count = count;
679 	ring->cur = ring->next = 0;
680 	ring->cur_decrypt = 0;
681 
682 	error = bus_dmamap_create(sc->sc_dmat, count * RT2560_RX_DESC_SIZE, 1,
683 	    count * RT2560_RX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map);
684 	if (error != 0) {
685 		aprint_error_dev(&sc->sc_dev, "could not create desc DMA map\n");
686 		goto fail;
687 	}
688 
689 	error = bus_dmamem_alloc(sc->sc_dmat, count * RT2560_RX_DESC_SIZE,
690 	    PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
691 	if (error != 0) {
692 		aprint_error_dev(&sc->sc_dev, "could not allocate DMA memory\n");
693 		goto fail;
694 	}
695 
696 	error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
697 	    count * RT2560_RX_DESC_SIZE, (void **)&ring->desc,
698 	    BUS_DMA_NOWAIT);
699 	if (error != 0) {
700 		aprint_error_dev(&sc->sc_dev, "could not map desc DMA memory\n");
701 		goto fail;
702 	}
703 
704 	error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
705 	    count * RT2560_RX_DESC_SIZE, NULL, BUS_DMA_NOWAIT);
706 	if (error != 0) {
707 		aprint_error_dev(&sc->sc_dev, "could not load desc DMA map\n");
708 		goto fail;
709 	}
710 
711 	memset(ring->desc, 0, count * RT2560_RX_DESC_SIZE);
712 	ring->physaddr = ring->map->dm_segs->ds_addr;
713 
714 	ring->data = malloc(count * sizeof (struct rt2560_rx_data), M_DEVBUF,
715 	    M_NOWAIT);
716 	if (ring->data == NULL) {
717 		aprint_error_dev(&sc->sc_dev, "could not allocate soft data\n");
718 		error = ENOMEM;
719 		goto fail;
720 	}
721 
722 	/*
723 	 * Pre-allocate Rx buffers and populate Rx ring.
724 	 */
725 	memset(ring->data, 0, count * sizeof (struct rt2560_rx_data));
726 	for (i = 0; i < count; i++) {
727 		desc = &sc->rxq.desc[i];
728 		data = &sc->rxq.data[i];
729 
730 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
731 		    0, BUS_DMA_NOWAIT, &data->map);
732 		if (error != 0) {
733 			aprint_error_dev(&sc->sc_dev, "could not create DMA map\n");
734 			goto fail;
735 		}
736 
737 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
738 		if (data->m == NULL) {
739 			aprint_error_dev(&sc->sc_dev, "could not allocate rx mbuf\n");
740 			error = ENOMEM;
741 			goto fail;
742 		}
743 
744 		MCLGET(data->m, M_DONTWAIT);
745 		if (!(data->m->m_flags & M_EXT)) {
746 			aprint_error_dev(&sc->sc_dev, "could not allocate rx mbuf cluster\n");
747 			error = ENOMEM;
748 			goto fail;
749 		}
750 
751 		error = bus_dmamap_load(sc->sc_dmat, data->map,
752 		    mtod(data->m, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
753 		if (error != 0) {
754 			aprint_error_dev(&sc->sc_dev, "could not load rx buf DMA map");
755 			goto fail;
756 		}
757 
758 		desc->flags = htole32(RT2560_RX_BUSY);
759 		desc->physaddr = htole32(data->map->dm_segs->ds_addr);
760 	}
761 
762 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
763 	    BUS_DMASYNC_PREWRITE);
764 
765 	return 0;
766 
767 fail:	rt2560_free_rx_ring(sc, ring);
768 	return error;
769 }
770 
771 void
772 rt2560_reset_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring)
773 {
774 	int i;
775 
776 	for (i = 0; i < ring->count; i++) {
777 		ring->desc[i].flags = htole32(RT2560_RX_BUSY);
778 		ring->data[i].drop = 0;
779 	}
780 
781 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
782 	    BUS_DMASYNC_PREWRITE);
783 
784 	ring->cur = ring->next = 0;
785 	ring->cur_decrypt = 0;
786 }
787 
788 void
789 rt2560_free_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring)
790 {
791 	struct rt2560_rx_data *data;
792 	int i;
793 
794 	if (ring->desc != NULL) {
795 		bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
796 		    ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
797 		bus_dmamap_unload(sc->sc_dmat, ring->map);
798 		bus_dmamem_unmap(sc->sc_dmat, (void *)ring->desc,
799 		    ring->count * RT2560_RX_DESC_SIZE);
800 		bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
801 	}
802 
803 	if (ring->data != NULL) {
804 		for (i = 0; i < ring->count; i++) {
805 			data = &ring->data[i];
806 
807 			if (data->m != NULL) {
808 				bus_dmamap_sync(sc->sc_dmat, data->map, 0,
809 				    data->map->dm_mapsize,
810 				    BUS_DMASYNC_POSTREAD);
811 				bus_dmamap_unload(sc->sc_dmat, data->map);
812 				m_freem(data->m);
813 			}
814 
815 			if (data->map != NULL)
816 				bus_dmamap_destroy(sc->sc_dmat, data->map);
817 		}
818 		free(ring->data, M_DEVBUF);
819 	}
820 }
821 
822 struct ieee80211_node *
823 rt2560_node_alloc(struct ieee80211_node_table *nt)
824 {
825 	struct rt2560_node *rn;
826 
827 	rn = malloc(sizeof (struct rt2560_node), M_80211_NODE,
828 	    M_NOWAIT | M_ZERO);
829 
830 	return (rn != NULL) ? &rn->ni : NULL;
831 }
832 
833 int
834 rt2560_media_change(struct ifnet *ifp)
835 {
836 	int error;
837 
838 	error = ieee80211_media_change(ifp);
839 	if (error != ENETRESET)
840 		return error;
841 
842 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
843 		rt2560_init(ifp);
844 
845 	return 0;
846 }
847 
848 /*
849  * This function is called periodically (every 200ms) during scanning to
850  * switch from one channel to another.
851  */
852 void
853 rt2560_next_scan(void *arg)
854 {
855 	struct rt2560_softc *sc = arg;
856 	struct ieee80211com *ic = &sc->sc_ic;
857 
858 	if (ic->ic_state == IEEE80211_S_SCAN)
859 		ieee80211_next_scan(ic);
860 }
861 
862 /*
863  * This function is called for each neighbor node.
864  */
865 void
866 rt2560_iter_func(void *arg, struct ieee80211_node *ni)
867 {
868 	struct rt2560_node *rn = (struct rt2560_node *)ni;
869 
870 	ieee80211_rssadapt_updatestats(&rn->rssadapt);
871 }
872 
873 /*
874  * This function is called periodically (every 100ms) in RUN state to update
875  * the rate adaptation statistics.
876  */
877 void
878 rt2560_update_rssadapt(void *arg)
879 {
880 	struct rt2560_softc *sc = arg;
881 	struct ieee80211com *ic = &sc->sc_ic;
882 
883 	ieee80211_iterate_nodes(&ic->ic_sta, rt2560_iter_func, arg);
884 
885 	callout_reset(&sc->rssadapt_ch, hz / 10, rt2560_update_rssadapt, sc);
886 }
887 
888 int
889 rt2560_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
890 {
891 	struct rt2560_softc *sc = ic->ic_ifp->if_softc;
892 	enum ieee80211_state ostate;
893 	struct ieee80211_node *ni;
894 	struct mbuf *m;
895 	int error = 0;
896 
897 	ostate = ic->ic_state;
898 	callout_stop(&sc->scan_ch);
899 
900 	switch (nstate) {
901 	case IEEE80211_S_INIT:
902 		callout_stop(&sc->rssadapt_ch);
903 
904 		if (ostate == IEEE80211_S_RUN) {
905 			/* abort TSF synchronization */
906 			RAL_WRITE(sc, RT2560_CSR14, 0);
907 
908 			/* turn association led off */
909 			rt2560_update_led(sc, 0, 0);
910 		}
911 		break;
912 
913 	case IEEE80211_S_SCAN:
914 		rt2560_set_chan(sc, ic->ic_curchan);
915 		callout_reset(&sc->scan_ch, (sc->dwelltime * hz) / 1000,
916 		    rt2560_next_scan, sc);
917 		break;
918 
919 	case IEEE80211_S_AUTH:
920 		rt2560_set_chan(sc, ic->ic_curchan);
921 		break;
922 
923 	case IEEE80211_S_ASSOC:
924 		rt2560_set_chan(sc, ic->ic_curchan);
925 		break;
926 
927 	case IEEE80211_S_RUN:
928 		rt2560_set_chan(sc, ic->ic_curchan);
929 
930 		ni = ic->ic_bss;
931 
932 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
933 			rt2560_update_plcp(sc);
934 			rt2560_set_basicrates(sc);
935 			rt2560_set_bssid(sc, ni->ni_bssid);
936 		}
937 
938 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
939 		    ic->ic_opmode == IEEE80211_M_IBSS) {
940 			m = ieee80211_beacon_alloc(ic, ni, &sc->sc_bo);
941 			if (m == NULL) {
942 				aprint_error_dev(&sc->sc_dev, "could not allocate beacon\n");
943 				error = ENOBUFS;
944 				break;
945 			}
946 
947 			ieee80211_ref_node(ni);
948 			error = rt2560_tx_bcn(sc, m, ni);
949 			if (error != 0)
950 				break;
951 		}
952 
953 		/* turn assocation led on */
954 		rt2560_update_led(sc, 1, 0);
955 
956 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
957 			callout_reset(&sc->rssadapt_ch, hz / 10,
958 			    rt2560_update_rssadapt, sc);
959 			rt2560_enable_tsf_sync(sc);
960 		}
961 		break;
962 	}
963 
964 	return (error != 0) ? error : sc->sc_newstate(ic, nstate, arg);
965 }
966 
967 /*
968  * Read 16 bits at address 'addr' from the serial EEPROM (either 93C46 or
969  * 93C66).
970  */
971 uint16_t
972 rt2560_eeprom_read(struct rt2560_softc *sc, uint8_t addr)
973 {
974 	uint32_t tmp;
975 	uint16_t val;
976 	int n;
977 
978 	/* clock C once before the first command */
979 	RT2560_EEPROM_CTL(sc, 0);
980 
981 	RT2560_EEPROM_CTL(sc, RT2560_S);
982 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
983 	RT2560_EEPROM_CTL(sc, RT2560_S);
984 
985 	/* write start bit (1) */
986 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D);
987 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C);
988 
989 	/* write READ opcode (10) */
990 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D);
991 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C);
992 	RT2560_EEPROM_CTL(sc, RT2560_S);
993 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
994 
995 	/* write address (A5-A0 or A7-A0) */
996 	n = (RAL_READ(sc, RT2560_CSR21) & RT2560_93C46) ? 5 : 7;
997 	for (; n >= 0; n--) {
998 		RT2560_EEPROM_CTL(sc, RT2560_S |
999 		    (((addr >> n) & 1) << RT2560_SHIFT_D));
1000 		RT2560_EEPROM_CTL(sc, RT2560_S |
1001 		    (((addr >> n) & 1) << RT2560_SHIFT_D) | RT2560_C);
1002 	}
1003 
1004 	RT2560_EEPROM_CTL(sc, RT2560_S);
1005 
1006 	/* read data Q15-Q0 */
1007 	val = 0;
1008 	for (n = 15; n >= 0; n--) {
1009 		RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
1010 		tmp = RAL_READ(sc, RT2560_CSR21);
1011 		val |= ((tmp & RT2560_Q) >> RT2560_SHIFT_Q) << n;
1012 		RT2560_EEPROM_CTL(sc, RT2560_S);
1013 	}
1014 
1015 	RT2560_EEPROM_CTL(sc, 0);
1016 
1017 	/* clear Chip Select and clock C */
1018 	RT2560_EEPROM_CTL(sc, RT2560_S);
1019 	RT2560_EEPROM_CTL(sc, 0);
1020 	RT2560_EEPROM_CTL(sc, RT2560_C);
1021 
1022 	return val;
1023 }
1024 
1025 /*
1026  * Some frames were processed by the hardware cipher engine and are ready for
1027  * transmission.
1028  */
1029 void
1030 rt2560_encryption_intr(struct rt2560_softc *sc)
1031 {
1032 	struct rt2560_tx_desc *desc;
1033 	int hw;
1034 
1035 	/* retrieve last descriptor index processed by cipher engine */
1036 	hw = (RAL_READ(sc, RT2560_SECCSR1) - sc->txq.physaddr) /
1037 	    RT2560_TX_DESC_SIZE;
1038 
1039 	for (; sc->txq.next_encrypt != hw;) {
1040 		desc = &sc->txq.desc[sc->txq.next_encrypt];
1041 
1042 		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
1043 		    sc->txq.next_encrypt * RT2560_TX_DESC_SIZE,
1044 		    RT2560_TX_DESC_SIZE, BUS_DMASYNC_POSTREAD);
1045 
1046 		if (le32toh(desc->flags) &
1047 		    (RT2560_TX_BUSY | RT2560_TX_CIPHER_BUSY))
1048 			break;
1049 
1050 		/* for TKIP, swap eiv field to fix a bug in ASIC */
1051 		if ((le32toh(desc->flags) & RT2560_TX_CIPHER_MASK) ==
1052 		    RT2560_TX_CIPHER_TKIP)
1053 			desc->eiv = bswap32(desc->eiv);
1054 
1055 		/* mark the frame ready for transmission */
1056 		desc->flags |= htole32(RT2560_TX_BUSY | RT2560_TX_VALID);
1057 
1058 		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
1059 		    sc->txq.next_encrypt * RT2560_TX_DESC_SIZE,
1060 		    RT2560_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
1061 
1062 		DPRINTFN(15, ("encryption done idx=%u\n",
1063 		    sc->txq.next_encrypt));
1064 
1065 		sc->txq.next_encrypt =
1066 		    (sc->txq.next_encrypt + 1) % RT2560_TX_RING_COUNT;
1067 	}
1068 
1069 	/* kick Tx */
1070 	RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_TX);
1071 }
1072 
1073 void
1074 rt2560_tx_intr(struct rt2560_softc *sc)
1075 {
1076 	struct ieee80211com *ic = &sc->sc_ic;
1077 	struct ifnet *ifp = ic->ic_ifp;
1078 	struct rt2560_tx_desc *desc;
1079 	struct rt2560_tx_data *data;
1080 	struct rt2560_node *rn;
1081 
1082 	for (;;) {
1083 		desc = &sc->txq.desc[sc->txq.next];
1084 		data = &sc->txq.data[sc->txq.next];
1085 
1086 		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
1087 		    sc->txq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1088 		    BUS_DMASYNC_POSTREAD);
1089 
1090 		if ((le32toh(desc->flags) & RT2560_TX_BUSY) ||
1091 		    (le32toh(desc->flags) & RT2560_TX_CIPHER_BUSY) ||
1092 		    !(le32toh(desc->flags) & RT2560_TX_VALID))
1093 			break;
1094 
1095 		rn = (struct rt2560_node *)data->ni;
1096 
1097 		switch (le32toh(desc->flags) & RT2560_TX_RESULT_MASK) {
1098 		case RT2560_TX_SUCCESS:
1099 			DPRINTFN(10, ("data frame sent successfully\n"));
1100 			if (data->id.id_node != NULL) {
1101 				ieee80211_rssadapt_raise_rate(ic,
1102 				    &rn->rssadapt, &data->id);
1103 			}
1104 			ifp->if_opackets++;
1105 			break;
1106 
1107 		case RT2560_TX_SUCCESS_RETRY:
1108 			DPRINTFN(9, ("data frame sent after %u retries\n",
1109 			    (le32toh(desc->flags) >> 5) & 0x7));
1110 			ifp->if_opackets++;
1111 			break;
1112 
1113 		case RT2560_TX_FAIL_RETRY:
1114 			DPRINTFN(9, ("sending data frame failed (too much "
1115 			    "retries)\n"));
1116 			if (data->id.id_node != NULL) {
1117 				ieee80211_rssadapt_lower_rate(ic, data->ni,
1118 				    &rn->rssadapt, &data->id);
1119 			}
1120 			ifp->if_oerrors++;
1121 			break;
1122 
1123 		case RT2560_TX_FAIL_INVALID:
1124 		case RT2560_TX_FAIL_OTHER:
1125 		default:
1126 			aprint_error_dev(&sc->sc_dev, "sending data frame failed 0x%08x\n",
1127 			    le32toh(desc->flags));
1128 			ifp->if_oerrors++;
1129 		}
1130 
1131 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1132 		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1133 		bus_dmamap_unload(sc->sc_dmat, data->map);
1134 		m_freem(data->m);
1135 		data->m = NULL;
1136 		ieee80211_free_node(data->ni);
1137 		data->ni = NULL;
1138 
1139 		/* descriptor is no longer valid */
1140 		desc->flags &= ~htole32(RT2560_TX_VALID);
1141 
1142 		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
1143 		    sc->txq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1144 		    BUS_DMASYNC_PREWRITE);
1145 
1146 		DPRINTFN(15, ("tx done idx=%u\n", sc->txq.next));
1147 
1148 		sc->txq.queued--;
1149 		sc->txq.next = (sc->txq.next + 1) % RT2560_TX_RING_COUNT;
1150 	}
1151 
1152 	sc->sc_tx_timer = 0;
1153 	ifp->if_flags &= ~IFF_OACTIVE;
1154 	rt2560_start(ifp);
1155 }
1156 
1157 void
1158 rt2560_prio_intr(struct rt2560_softc *sc)
1159 {
1160 	struct ieee80211com *ic = &sc->sc_ic;
1161 	struct ifnet *ifp = ic->ic_ifp;
1162 	struct rt2560_tx_desc *desc;
1163 	struct rt2560_tx_data *data;
1164 
1165 	for (;;) {
1166 		desc = &sc->prioq.desc[sc->prioq.next];
1167 		data = &sc->prioq.data[sc->prioq.next];
1168 
1169 		bus_dmamap_sync(sc->sc_dmat, sc->prioq.map,
1170 		    sc->prioq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1171 		    BUS_DMASYNC_POSTREAD);
1172 
1173 		if ((le32toh(desc->flags) & RT2560_TX_BUSY) ||
1174 		    !(le32toh(desc->flags) & RT2560_TX_VALID))
1175 			break;
1176 
1177 		switch (le32toh(desc->flags) & RT2560_TX_RESULT_MASK) {
1178 		case RT2560_TX_SUCCESS:
1179 			DPRINTFN(10, ("mgt frame sent successfully\n"));
1180 			break;
1181 
1182 		case RT2560_TX_SUCCESS_RETRY:
1183 			DPRINTFN(9, ("mgt frame sent after %u retries\n",
1184 			    (le32toh(desc->flags) >> 5) & 0x7));
1185 			break;
1186 
1187 		case RT2560_TX_FAIL_RETRY:
1188 			DPRINTFN(9, ("sending mgt frame failed (too much "
1189 			    "retries)\n"));
1190 			break;
1191 
1192 		case RT2560_TX_FAIL_INVALID:
1193 		case RT2560_TX_FAIL_OTHER:
1194 		default:
1195 			aprint_error_dev(&sc->sc_dev, "sending mgt frame failed 0x%08x\n",
1196 			    le32toh(desc->flags));
1197 		}
1198 
1199 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1200 		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1201 		bus_dmamap_unload(sc->sc_dmat, data->map);
1202 		m_freem(data->m);
1203 		data->m = NULL;
1204 		ieee80211_free_node(data->ni);
1205 		data->ni = NULL;
1206 
1207 		/* descriptor is no longer valid */
1208 		desc->flags &= ~htole32(RT2560_TX_VALID);
1209 
1210 		bus_dmamap_sync(sc->sc_dmat, sc->prioq.map,
1211 		    sc->prioq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1212 		    BUS_DMASYNC_PREWRITE);
1213 
1214 		DPRINTFN(15, ("prio done idx=%u\n", sc->prioq.next));
1215 
1216 		sc->prioq.queued--;
1217 		sc->prioq.next = (sc->prioq.next + 1) % RT2560_PRIO_RING_COUNT;
1218 	}
1219 
1220 	sc->sc_tx_timer = 0;
1221 	ifp->if_flags &= ~IFF_OACTIVE;
1222 	rt2560_start(ifp);
1223 }
1224 
1225 /*
1226  * Some frames were processed by the hardware cipher engine and are ready for
1227  * transmission to the IEEE802.11 layer.
1228  */
1229 void
1230 rt2560_decryption_intr(struct rt2560_softc *sc)
1231 {
1232 	struct ieee80211com *ic = &sc->sc_ic;
1233 	struct ifnet *ifp = ic->ic_ifp;
1234 	struct rt2560_rx_desc *desc;
1235 	struct rt2560_rx_data *data;
1236 	struct rt2560_node *rn;
1237 	struct ieee80211_frame *wh;
1238 	struct ieee80211_node *ni;
1239 	struct mbuf *mnew, *m;
1240 	int hw, error;
1241 
1242 	/* retrieve last decriptor index processed by cipher engine */
1243 	hw = (RAL_READ(sc, RT2560_SECCSR0) - sc->rxq.physaddr) /
1244 	    RT2560_RX_DESC_SIZE;
1245 
1246 	for (; sc->rxq.cur_decrypt != hw;) {
1247 		desc = &sc->rxq.desc[sc->rxq.cur_decrypt];
1248 		data = &sc->rxq.data[sc->rxq.cur_decrypt];
1249 
1250 		bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1251 		    sc->rxq.cur_decrypt * RT2560_TX_DESC_SIZE,
1252 		    RT2560_TX_DESC_SIZE, BUS_DMASYNC_POSTREAD);
1253 
1254 		if (le32toh(desc->flags) &
1255 		    (RT2560_RX_BUSY | RT2560_RX_CIPHER_BUSY))
1256 			break;
1257 
1258 		if (data->drop) {
1259 			ifp->if_ierrors++;
1260 			goto skip;
1261 		}
1262 
1263 		if ((le32toh(desc->flags) & RT2560_RX_CIPHER_MASK) != 0 &&
1264 		    (le32toh(desc->flags) & RT2560_RX_ICV_ERROR)) {
1265 			ifp->if_ierrors++;
1266 			goto skip;
1267 		}
1268 
1269 		/*
1270 		 * Try to allocate a new mbuf for this ring element and load it
1271 		 * before processing the current mbuf.  If the ring element
1272 		 * cannot be loaded, drop the received packet and reuse the old
1273 		 * mbuf.  In the unlikely case that the old mbuf can't be
1274 		 * reloaded either, explicitly panic.
1275 		 */
1276 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1277 		if (mnew == NULL) {
1278 			ifp->if_ierrors++;
1279 			goto skip;
1280 		}
1281 
1282 		MCLGET(mnew, M_DONTWAIT);
1283 		if (!(mnew->m_flags & M_EXT)) {
1284 			m_freem(mnew);
1285 			ifp->if_ierrors++;
1286 			goto skip;
1287 		}
1288 
1289 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1290 		    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1291 		bus_dmamap_unload(sc->sc_dmat, data->map);
1292 
1293 		error = bus_dmamap_load(sc->sc_dmat, data->map,
1294 		    mtod(mnew, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
1295 		if (error != 0) {
1296 			m_freem(mnew);
1297 
1298 			/* try to reload the old mbuf */
1299 			error = bus_dmamap_load(sc->sc_dmat, data->map,
1300 			    mtod(data->m, void *), MCLBYTES, NULL,
1301 			    BUS_DMA_NOWAIT);
1302 			if (error != 0) {
1303 				/* very unlikely that it will fail... */
1304 				panic("%s: could not load old rx mbuf",
1305 				    device_xname(&sc->sc_dev));
1306 			}
1307 			/* physical address may have changed */
1308 			desc->physaddr = htole32(data->map->dm_segs->ds_addr);
1309 			ifp->if_ierrors++;
1310 			goto skip;
1311 		}
1312 
1313 		/*
1314 		 * New mbuf successfully loaded, update Rx ring and continue
1315 		 * processing.
1316 		 */
1317 		m = data->m;
1318 		data->m = mnew;
1319 		desc->physaddr = htole32(data->map->dm_segs->ds_addr);
1320 
1321 		/* finalize mbuf */
1322 		m->m_pkthdr.rcvif = ifp;
1323 		m->m_pkthdr.len = m->m_len =
1324 		    (le32toh(desc->flags) >> 16) & 0xfff;
1325 
1326 #if NBPFILTER > 0
1327 		if (sc->sc_drvbpf != NULL) {
1328 			struct rt2560_rx_radiotap_header *tap = &sc->sc_rxtap;
1329 			uint32_t tsf_lo, tsf_hi;
1330 
1331 			/* get timestamp (low and high 32 bits) */
1332 			tsf_hi = RAL_READ(sc, RT2560_CSR17);
1333 			tsf_lo = RAL_READ(sc, RT2560_CSR16);
1334 
1335 			tap->wr_tsf =
1336 			    htole64(((uint64_t)tsf_hi << 32) | tsf_lo);
1337 			tap->wr_flags = 0;
1338 			tap->wr_rate = rt2560_rxrate(desc);
1339 			tap->wr_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
1340 			tap->wr_chan_flags =
1341 			    htole16(ic->ic_ibss_chan->ic_flags);
1342 			tap->wr_antenna = sc->rx_ant;
1343 			tap->wr_antsignal = desc->rssi;
1344 
1345 			bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m);
1346 		}
1347 #endif
1348 
1349 		wh = mtod(m, struct ieee80211_frame *);
1350 		ni = ieee80211_find_rxnode(ic,
1351 		    (struct ieee80211_frame_min *)wh);
1352 
1353 		/* send the frame to the 802.11 layer */
1354 		ieee80211_input(ic, m, ni, desc->rssi, 0);
1355 
1356 		/* give rssi to the rate adatation algorithm */
1357 		rn = (struct rt2560_node *)ni;
1358 		ieee80211_rssadapt_input(ic, ni, &rn->rssadapt, desc->rssi);
1359 
1360 		/* node is no longer needed */
1361 		ieee80211_free_node(ni);
1362 
1363 skip:		desc->flags = htole32(RT2560_RX_BUSY);
1364 
1365 		bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1366 		    sc->rxq.cur_decrypt * RT2560_TX_DESC_SIZE,
1367 		    RT2560_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
1368 
1369 		DPRINTFN(15, ("decryption done idx=%u\n", sc->rxq.cur_decrypt));
1370 
1371 		sc->rxq.cur_decrypt =
1372 		    (sc->rxq.cur_decrypt + 1) % RT2560_RX_RING_COUNT;
1373 	}
1374 
1375 	/*
1376 	 * In HostAP mode, ieee80211_input() will enqueue packets in if_snd
1377 	 * without calling if_start().
1378 	 */
1379 	if (!IFQ_IS_EMPTY(&ifp->if_snd) && !(ifp->if_flags & IFF_OACTIVE))
1380 		rt2560_start(ifp);
1381 }
1382 
1383 /*
1384  * Some frames were received. Pass them to the hardware cipher engine before
1385  * sending them to the 802.11 layer.
1386  */
1387 void
1388 rt2560_rx_intr(struct rt2560_softc *sc)
1389 {
1390 	struct rt2560_rx_desc *desc;
1391 	struct rt2560_rx_data *data;
1392 
1393 	for (;;) {
1394 		desc = &sc->rxq.desc[sc->rxq.cur];
1395 		data = &sc->rxq.data[sc->rxq.cur];
1396 
1397 		bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1398 		    sc->rxq.cur * RT2560_RX_DESC_SIZE, RT2560_RX_DESC_SIZE,
1399 		    BUS_DMASYNC_POSTREAD);
1400 
1401 		if (le32toh(desc->flags) &
1402 		    (RT2560_RX_BUSY | RT2560_RX_CIPHER_BUSY))
1403 			break;
1404 
1405 		data->drop = 0;
1406 
1407 		if (le32toh(desc->flags) &
1408 		    (RT2560_RX_PHY_ERROR | RT2560_RX_CRC_ERROR)) {
1409 			/*
1410 			 * This should not happen since we did not request
1411 			 * to receive those frames when we filled RXCSR0.
1412 			 */
1413 			DPRINTFN(5, ("PHY or CRC error flags 0x%08x\n",
1414 			    le32toh(desc->flags)));
1415 			data->drop = 1;
1416 		}
1417 
1418 		if (((le32toh(desc->flags) >> 16) & 0xfff) > MCLBYTES) {
1419 			DPRINTFN(5, ("bad length\n"));
1420 			data->drop = 1;
1421 		}
1422 
1423 		/* mark the frame for decryption */
1424 		desc->flags |= htole32(RT2560_RX_CIPHER_BUSY);
1425 
1426 		bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1427 		    sc->rxq.cur * RT2560_RX_DESC_SIZE, RT2560_RX_DESC_SIZE,
1428 		    BUS_DMASYNC_PREWRITE);
1429 
1430 		DPRINTFN(15, ("rx done idx=%u\n", sc->rxq.cur));
1431 
1432 		sc->rxq.cur = (sc->rxq.cur + 1) % RT2560_RX_RING_COUNT;
1433 	}
1434 
1435 	/* kick decrypt */
1436 	RAL_WRITE(sc, RT2560_SECCSR0, RT2560_KICK_DECRYPT);
1437 }
1438 
1439 /*
1440  * This function is called periodically in IBSS mode when a new beacon must be
1441  * sent out.
1442  */
1443 static void
1444 rt2560_beacon_expire(struct rt2560_softc *sc)
1445 {
1446 	struct ieee80211com *ic = &sc->sc_ic;
1447 	struct rt2560_tx_data *data;
1448 
1449 	if (ic->ic_opmode != IEEE80211_M_IBSS &&
1450 	    ic->ic_opmode != IEEE80211_M_HOSTAP)
1451 		return;
1452 
1453 	data = &sc->bcnq.data[sc->bcnq.next];
1454 
1455 	bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1456 	    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1457 	bus_dmamap_unload(sc->sc_dmat, data->map);
1458 
1459 	ieee80211_beacon_update(ic, data->ni, &sc->sc_bo, data->m, 1);
1460 
1461 #if NBPFILTER > 0
1462 	if (ic->ic_rawbpf != NULL)
1463 		bpf_mtap(ic->ic_rawbpf, data->m);
1464 #endif
1465 	rt2560_tx_bcn(sc, data->m, data->ni);
1466 
1467 	DPRINTFN(15, ("beacon expired\n"));
1468 
1469 	sc->bcnq.next = (sc->bcnq.next + 1) % RT2560_BEACON_RING_COUNT;
1470 }
1471 
1472 static void
1473 rt2560_wakeup_expire(struct rt2560_softc *sc)
1474 {
1475 	DPRINTFN(15, ("wakeup expired\n"));
1476 }
1477 
1478 int
1479 rt2560_intr(void *arg)
1480 {
1481 	struct rt2560_softc *sc = arg;
1482 	struct ifnet *ifp = &sc->sc_if;
1483 	uint32_t r;
1484 
1485 	if (!device_is_active(&sc->sc_dev))
1486 		return 0;
1487 
1488 	if ((r = RAL_READ(sc, RT2560_CSR7)) == 0)
1489 		return 0;       /* not for us */
1490 
1491 	/* disable interrupts */
1492 	RAL_WRITE(sc, RT2560_CSR8, 0xffffffff);
1493 
1494 	/* acknowledge interrupts */
1495 	RAL_WRITE(sc, RT2560_CSR7, r);
1496 
1497 	/* don't re-enable interrupts if we're shutting down */
1498 	if (!(ifp->if_flags & IFF_RUNNING))
1499 		return 0;
1500 
1501 	if (r & RT2560_BEACON_EXPIRE)
1502 		rt2560_beacon_expire(sc);
1503 
1504 	if (r & RT2560_WAKEUP_EXPIRE)
1505 		rt2560_wakeup_expire(sc);
1506 
1507 	if (r & RT2560_ENCRYPTION_DONE)
1508 		rt2560_encryption_intr(sc);
1509 
1510 	if (r & RT2560_TX_DONE)
1511 		rt2560_tx_intr(sc);
1512 
1513 	if (r & RT2560_PRIO_DONE)
1514 		rt2560_prio_intr(sc);
1515 
1516 	if (r & RT2560_DECRYPTION_DONE)
1517 		rt2560_decryption_intr(sc);
1518 
1519 	if (r & RT2560_RX_DONE)
1520 		rt2560_rx_intr(sc);
1521 
1522 	/* re-enable interrupts */
1523 	RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK);
1524 
1525 	return 1;
1526 }
1527 
1528 /* quickly determine if a given rate is CCK or OFDM */
1529 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1530 
1531 #define RAL_ACK_SIZE	14	/* 10 + 4(FCS) */
1532 #define RAL_CTS_SIZE	14	/* 10 + 4(FCS) */
1533 
1534 #define RAL_SIFS		10	/* us */
1535 
1536 #define RT2560_RXTX_TURNAROUND	10	/* us */
1537 
1538 /*
1539  * This function is only used by the Rx radiotap code. It returns the rate at
1540  * which a given frame was received.
1541  */
1542 #if NBPFILTER > 0
1543 static uint8_t
1544 rt2560_rxrate(struct rt2560_rx_desc *desc)
1545 {
1546 	if (le32toh(desc->flags) & RT2560_RX_OFDM) {
1547 		/* reverse function of rt2560_plcp_signal */
1548 		switch (desc->rate) {
1549 		case 0xb:	return 12;
1550 		case 0xf:	return 18;
1551 		case 0xa:	return 24;
1552 		case 0xe:	return 36;
1553 		case 0x9:	return 48;
1554 		case 0xd:	return 72;
1555 		case 0x8:	return 96;
1556 		case 0xc:	return 108;
1557 		}
1558 	} else {
1559 		if (desc->rate == 10)
1560 			return 2;
1561 		if (desc->rate == 20)
1562 			return 4;
1563 		if (desc->rate == 55)
1564 			return 11;
1565 		if (desc->rate == 110)
1566 			return 22;
1567 	}
1568 	return 2;	/* should not get there */
1569 }
1570 #endif
1571 
1572 /*
1573  * Return the expected ack rate for a frame transmitted at rate `rate'.
1574  * XXX: this should depend on the destination node basic rate set.
1575  */
1576 static int
1577 rt2560_ack_rate(struct ieee80211com *ic, int rate)
1578 {
1579 	switch (rate) {
1580 	/* CCK rates */
1581 	case 2:
1582 		return 2;
1583 	case 4:
1584 	case 11:
1585 	case 22:
1586 		return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
1587 
1588 	/* OFDM rates */
1589 	case 12:
1590 	case 18:
1591 		return 12;
1592 	case 24:
1593 	case 36:
1594 		return 24;
1595 	case 48:
1596 	case 72:
1597 	case 96:
1598 	case 108:
1599 		return 48;
1600 	}
1601 
1602 	/* default to 1Mbps */
1603 	return 2;
1604 }
1605 
1606 /*
1607  * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1608  * The function automatically determines the operating mode depending on the
1609  * given rate. `flags' indicates whether short preamble is in use or not.
1610  */
1611 static uint16_t
1612 rt2560_txtime(int len, int rate, uint32_t flags)
1613 {
1614 	uint16_t txtime;
1615 
1616 	if (RAL_RATE_IS_OFDM(rate)) {
1617 		/* IEEE Std 802.11a-1999, pp. 37 */
1618 		txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1619 		txtime = 16 + 4 + 4 * txtime + 6;
1620 	} else {
1621 		/* IEEE Std 802.11b-1999, pp. 28 */
1622 		txtime = (16 * len + rate - 1) / rate;
1623 		if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1624 			txtime +=  72 + 24;
1625 		else
1626 			txtime += 144 + 48;
1627 	}
1628 	return txtime;
1629 }
1630 
1631 static uint8_t
1632 rt2560_plcp_signal(int rate)
1633 {
1634 	switch (rate) {
1635 	/* CCK rates (returned values are device-dependent) */
1636 	case 2:		return 0x0;
1637 	case 4:		return 0x1;
1638 	case 11:	return 0x2;
1639 	case 22:	return 0x3;
1640 
1641 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1642 	case 12:	return 0xb;
1643 	case 18:	return 0xf;
1644 	case 24:	return 0xa;
1645 	case 36:	return 0xe;
1646 	case 48:	return 0x9;
1647 	case 72:	return 0xd;
1648 	case 96:	return 0x8;
1649 	case 108:	return 0xc;
1650 
1651 	/* unsupported rates (should not get there) */
1652 	default:	return 0xff;
1653 	}
1654 }
1655 
1656 static void
1657 rt2560_setup_tx_desc(struct rt2560_softc *sc, struct rt2560_tx_desc *desc,
1658     uint32_t flags, int len, int rate, int encrypt, bus_addr_t physaddr)
1659 {
1660 	struct ieee80211com *ic = &sc->sc_ic;
1661 	uint16_t plcp_length;
1662 	int remainder;
1663 
1664 	desc->flags = htole32(flags);
1665 	desc->flags |= htole32(len << 16);
1666 	desc->flags |= encrypt ? htole32(RT2560_TX_CIPHER_BUSY) :
1667 	    htole32(RT2560_TX_BUSY | RT2560_TX_VALID);
1668 
1669 	desc->physaddr = htole32(physaddr);
1670 	desc->wme = htole16(
1671 	    RT2560_AIFSN(2) |
1672 	    RT2560_LOGCWMIN(3) |
1673 	    RT2560_LOGCWMAX(8));
1674 
1675 	/* setup PLCP fields */
1676 	desc->plcp_signal  = rt2560_plcp_signal(rate);
1677 	desc->plcp_service = 4;
1678 
1679 	len += IEEE80211_CRC_LEN;
1680 	if (RAL_RATE_IS_OFDM(rate)) {
1681 		desc->flags |= htole32(RT2560_TX_OFDM);
1682 
1683 		plcp_length = len & 0xfff;
1684 		desc->plcp_length_hi = plcp_length >> 6;
1685 		desc->plcp_length_lo = plcp_length & 0x3f;
1686 	} else {
1687 		plcp_length = (16 * len + rate - 1) / rate;
1688 		if (rate == 22) {
1689 			remainder = (16 * len) % 22;
1690 			if (remainder != 0 && remainder < 7)
1691 				desc->plcp_service |= RT2560_PLCP_LENGEXT;
1692 		}
1693 		desc->plcp_length_hi = plcp_length >> 8;
1694 		desc->plcp_length_lo = plcp_length & 0xff;
1695 
1696 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1697 			desc->plcp_signal |= 0x08;
1698 	}
1699 }
1700 
1701 static int
1702 rt2560_tx_bcn(struct rt2560_softc *sc, struct mbuf *m0,
1703     struct ieee80211_node *ni)
1704 {
1705 	struct rt2560_tx_desc *desc;
1706 	struct rt2560_tx_data *data;
1707 	int rate, error;
1708 
1709 	desc = &sc->bcnq.desc[sc->bcnq.cur];
1710 	data = &sc->bcnq.data[sc->bcnq.cur];
1711 
1712 	rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1713 
1714 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1715 	    BUS_DMA_NOWAIT);
1716 	if (error != 0) {
1717 		aprint_error_dev(&sc->sc_dev, "could not map mbuf (error %d)\n",
1718 		    error);
1719 		m_freem(m0);
1720 		return error;
1721 	}
1722 
1723 	data->m = m0;
1724 	data->ni = ni;
1725 
1726 	rt2560_setup_tx_desc(sc, desc, RT2560_TX_IFS_NEWBACKOFF |
1727 	    RT2560_TX_TIMESTAMP, m0->m_pkthdr.len, rate, 0,
1728 	    data->map->dm_segs->ds_addr);
1729 
1730 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1731 	    BUS_DMASYNC_PREWRITE);
1732 	bus_dmamap_sync(sc->sc_dmat, sc->bcnq.map,
1733 	    sc->bcnq.cur * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1734 	    BUS_DMASYNC_PREWRITE);
1735 
1736 	return 0;
1737 }
1738 
1739 static int
1740 rt2560_tx_mgt(struct rt2560_softc *sc, struct mbuf *m0,
1741     struct ieee80211_node *ni)
1742 {
1743 	struct ieee80211com *ic = &sc->sc_ic;
1744 	struct rt2560_tx_desc *desc;
1745 	struct rt2560_tx_data *data;
1746 	struct ieee80211_frame *wh;
1747 	struct ieee80211_key *k;
1748 	uint16_t dur;
1749 	uint32_t flags = 0;
1750 	int rate, error;
1751 
1752 	desc = &sc->prioq.desc[sc->prioq.cur];
1753 	data = &sc->prioq.data[sc->prioq.cur];
1754 
1755 	rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1756 
1757 	wh = mtod(m0, struct ieee80211_frame *);
1758 
1759 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1760 		k = ieee80211_crypto_encap(ic, ni, m0);
1761 		if (k == NULL) {
1762 			m_freem(m0);
1763 			return ENOBUFS;
1764 		}
1765 
1766 		/* packet header may have moved, reset our local pointer */
1767 		wh = mtod(m0, struct ieee80211_frame *);
1768 	}
1769 
1770 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1771 	    BUS_DMA_NOWAIT);
1772 	if (error != 0) {
1773 		aprint_error_dev(&sc->sc_dev, "could not map mbuf (error %d)\n",
1774 		    error);
1775 		m_freem(m0);
1776 		return error;
1777 	}
1778 
1779 #if NBPFILTER > 0
1780 	if (sc->sc_drvbpf != NULL) {
1781 		struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
1782 
1783 		tap->wt_flags = 0;
1784 		tap->wt_rate = rate;
1785 		tap->wt_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
1786 		tap->wt_chan_flags = htole16(ic->ic_ibss_chan->ic_flags);
1787 		tap->wt_antenna = sc->tx_ant;
1788 
1789 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1790 	}
1791 #endif
1792 
1793 	data->m = m0;
1794 	data->ni = ni;
1795 
1796 	wh = mtod(m0, struct ieee80211_frame *);
1797 
1798 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1799 		flags |= RT2560_TX_ACK;
1800 
1801 		dur = rt2560_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) +
1802 		    RAL_SIFS;
1803 		*(uint16_t *)wh->i_dur = htole16(dur);
1804 
1805 		/* tell hardware to add timestamp for probe responses */
1806 		if ((wh->i_fc[0] &
1807 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1808 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1809 			flags |= RT2560_TX_TIMESTAMP;
1810 	}
1811 
1812 	rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 0,
1813 	    data->map->dm_segs->ds_addr);
1814 
1815 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1816 	    BUS_DMASYNC_PREWRITE);
1817 	bus_dmamap_sync(sc->sc_dmat, sc->prioq.map,
1818 	    sc->prioq.cur * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1819 	    BUS_DMASYNC_PREWRITE);
1820 
1821 	DPRINTFN(10, ("sending mgt frame len=%u idx=%u rate=%u\n",
1822 	    m0->m_pkthdr.len, sc->prioq.cur, rate));
1823 
1824 	/* kick prio */
1825 	sc->prioq.queued++;
1826 	sc->prioq.cur = (sc->prioq.cur + 1) % RT2560_PRIO_RING_COUNT;
1827 	RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_PRIO);
1828 
1829 	return 0;
1830 }
1831 
1832 /*
1833  * Build a RTS control frame.
1834  */
1835 static struct mbuf *
1836 rt2560_get_rts(struct rt2560_softc *sc, struct ieee80211_frame *wh,
1837     uint16_t dur)
1838 {
1839 	struct ieee80211_frame_rts *rts;
1840 	struct mbuf *m;
1841 
1842 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1843 	if (m == NULL) {
1844 		sc->sc_ic.ic_stats.is_tx_nobuf++;
1845 		aprint_error_dev(&sc->sc_dev, "could not allocate RTS frame\n");
1846 		return NULL;
1847 	}
1848 
1849 	rts = mtod(m, struct ieee80211_frame_rts *);
1850 
1851 	rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL |
1852 	    IEEE80211_FC0_SUBTYPE_RTS;
1853 	rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1854 	*(uint16_t *)rts->i_dur = htole16(dur);
1855 	IEEE80211_ADDR_COPY(rts->i_ra, wh->i_addr1);
1856 	IEEE80211_ADDR_COPY(rts->i_ta, wh->i_addr2);
1857 
1858 	m->m_pkthdr.len = m->m_len = sizeof (struct ieee80211_frame_rts);
1859 
1860 	return m;
1861 }
1862 
1863 static int
1864 rt2560_tx_data(struct rt2560_softc *sc, struct mbuf *m0,
1865     struct ieee80211_node *ni)
1866 {
1867 	struct ieee80211com *ic = &sc->sc_ic;
1868 	struct rt2560_tx_desc *desc;
1869 	struct rt2560_tx_data *data;
1870 	struct rt2560_node *rn;
1871 	struct ieee80211_rateset *rs;
1872 	struct ieee80211_frame *wh;
1873 	struct ieee80211_key *k;
1874 	struct mbuf *mnew;
1875 	uint16_t dur;
1876 	uint32_t flags = 0;
1877 	int rate, error;
1878 
1879 	wh = mtod(m0, struct ieee80211_frame *);
1880 
1881 	if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
1882 		rs = &ic->ic_sup_rates[ic->ic_curmode];
1883 		rate = rs->rs_rates[ic->ic_fixed_rate];
1884 	} else {
1885 		rs = &ni->ni_rates;
1886 		rn = (struct rt2560_node *)ni;
1887 		ni->ni_txrate = ieee80211_rssadapt_choose(&rn->rssadapt, rs,
1888 		    wh, m0->m_pkthdr.len, -1, NULL, 0);
1889 		rate = rs->rs_rates[ni->ni_txrate];
1890 	}
1891 	rate &= IEEE80211_RATE_VAL;
1892 
1893 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1894 		k = ieee80211_crypto_encap(ic, ni, m0);
1895 		if (k == NULL) {
1896 			m_freem(m0);
1897 			return ENOBUFS;
1898 		}
1899 
1900 		/* packet header may have moved, reset our local pointer */
1901 		wh = mtod(m0, struct ieee80211_frame *);
1902 	}
1903 
1904 	/*
1905 	 * IEEE Std 802.11-1999, pp 82: "A STA shall use an RTS/CTS exchange
1906 	 * for directed frames only when the length of the MPDU is greater
1907 	 * than the length threshold indicated by [...]" ic_rtsthreshold.
1908 	 */
1909 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1910 	    m0->m_pkthdr.len > ic->ic_rtsthreshold) {
1911 		struct mbuf *m;
1912 		int rtsrate, ackrate;
1913 
1914 		rtsrate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1915 		ackrate = rt2560_ack_rate(ic, rate);
1916 
1917 		dur = rt2560_txtime(m0->m_pkthdr.len + 4, rate, ic->ic_flags) +
1918 		      rt2560_txtime(RAL_CTS_SIZE, rtsrate, ic->ic_flags) +
1919 		      rt2560_txtime(RAL_ACK_SIZE, ackrate, ic->ic_flags) +
1920 		      3 * RAL_SIFS;
1921 
1922 		m = rt2560_get_rts(sc, wh, dur);
1923 
1924 		desc = &sc->txq.desc[sc->txq.cur_encrypt];
1925 		data = &sc->txq.data[sc->txq.cur_encrypt];
1926 
1927 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
1928 		    BUS_DMA_NOWAIT);
1929 		if (error != 0) {
1930 			aprint_error_dev(&sc->sc_dev, "could not map mbuf (error %d)\n",
1931 			    error);
1932 			m_freem(m);
1933 			m_freem(m0);
1934 			return error;
1935 		}
1936 
1937 		/* avoid multiple free() of the same node for each fragment */
1938 		ieee80211_ref_node(ni);
1939 
1940 		data->m = m;
1941 		data->ni = ni;
1942 
1943 		/* RTS frames are not taken into account for rssadapt */
1944 		data->id.id_node = NULL;
1945 
1946 		rt2560_setup_tx_desc(sc, desc, RT2560_TX_ACK |
1947 		    RT2560_TX_MORE_FRAG, m->m_pkthdr.len, rtsrate, 1,
1948 		    data->map->dm_segs->ds_addr);
1949 
1950 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1951 		    data->map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1952 		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
1953 		    sc->txq.cur_encrypt * RT2560_TX_DESC_SIZE,
1954 		    RT2560_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
1955 
1956 		sc->txq.queued++;
1957 		sc->txq.cur_encrypt =
1958 		    (sc->txq.cur_encrypt + 1) % RT2560_TX_RING_COUNT;
1959 
1960 		/*
1961 		 * IEEE Std 802.11-1999: when an RTS/CTS exchange is used, the
1962 		 * asynchronous data frame shall be transmitted after the CTS
1963 		 * frame and a SIFS period.
1964 		 */
1965 		flags |= RT2560_TX_LONG_RETRY | RT2560_TX_IFS_SIFS;
1966 	}
1967 
1968 	data = &sc->txq.data[sc->txq.cur_encrypt];
1969 	desc = &sc->txq.desc[sc->txq.cur_encrypt];
1970 
1971 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1972 	    BUS_DMA_NOWAIT);
1973 	if (error != 0 && error != EFBIG) {
1974 		aprint_error_dev(&sc->sc_dev, "could not map mbuf (error %d)\n",
1975 		    error);
1976 		m_freem(m0);
1977 		return error;
1978 	}
1979 	if (error != 0) {
1980 		/* too many fragments, linearize */
1981 
1982 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1983 		if (mnew == NULL) {
1984 			m_freem(m0);
1985 			return ENOMEM;
1986 		}
1987 
1988 		M_COPY_PKTHDR(mnew, m0);
1989 		if (m0->m_pkthdr.len > MHLEN) {
1990 			MCLGET(mnew, M_DONTWAIT);
1991 			if (!(mnew->m_flags & M_EXT)) {
1992 				m_freem(m0);
1993 				m_freem(mnew);
1994 				return ENOMEM;
1995 			}
1996 		}
1997 
1998 		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
1999 		m_freem(m0);
2000 		mnew->m_len = mnew->m_pkthdr.len;
2001 		m0 = mnew;
2002 
2003 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2004 		    BUS_DMA_NOWAIT);
2005 		if (error != 0) {
2006 			aprint_error_dev(&sc->sc_dev, "could not map mbuf (error %d)\n",
2007 			    error);
2008 			m_freem(m0);
2009 			return error;
2010 		}
2011 
2012 		/* packet header have moved, reset our local pointer */
2013 		wh = mtod(m0, struct ieee80211_frame *);
2014 	}
2015 
2016 #if NBPFILTER > 0
2017 	if (sc->sc_drvbpf != NULL) {
2018 		struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
2019 
2020 		tap->wt_flags = 0;
2021 		tap->wt_rate = rate;
2022 		tap->wt_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
2023 		tap->wt_chan_flags = htole16(ic->ic_ibss_chan->ic_flags);
2024 		tap->wt_antenna = sc->tx_ant;
2025 
2026 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
2027 	}
2028 #endif
2029 
2030 	data->m = m0;
2031 	data->ni = ni;
2032 
2033 	/* remember link conditions for rate adaptation algorithm */
2034 	if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
2035 		data->id.id_len = m0->m_pkthdr.len;
2036 		data->id.id_rateidx = ni->ni_txrate;
2037 		data->id.id_node = ni;
2038 		data->id.id_rssi = ni->ni_rssi;
2039 	} else
2040 		data->id.id_node = NULL;
2041 
2042 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2043 		flags |= RT2560_TX_ACK;
2044 
2045 		dur = rt2560_txtime(RAL_ACK_SIZE, rt2560_ack_rate(ic, rate),
2046 		    ic->ic_flags) + RAL_SIFS;
2047 		*(uint16_t *)wh->i_dur = htole16(dur);
2048 	}
2049 
2050 	rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 1,
2051 	    data->map->dm_segs->ds_addr);
2052 
2053 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2054 	    BUS_DMASYNC_PREWRITE);
2055 	bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
2056 	    sc->txq.cur_encrypt * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
2057 	    BUS_DMASYNC_PREWRITE);
2058 
2059 	DPRINTFN(10, ("sending data frame len=%u idx=%u rate=%u\n",
2060 	    m0->m_pkthdr.len, sc->txq.cur_encrypt, rate));
2061 
2062 	/* kick encrypt */
2063 	sc->txq.queued++;
2064 	sc->txq.cur_encrypt = (sc->txq.cur_encrypt + 1) % RT2560_TX_RING_COUNT;
2065 	RAL_WRITE(sc, RT2560_SECCSR1, RT2560_KICK_ENCRYPT);
2066 
2067 	return 0;
2068 }
2069 
2070 static void
2071 rt2560_start(struct ifnet *ifp)
2072 {
2073 	struct rt2560_softc *sc = ifp->if_softc;
2074 	struct ieee80211com *ic = &sc->sc_ic;
2075 	struct mbuf *m0;
2076 	struct ieee80211_node *ni;
2077 	struct ether_header *eh;
2078 
2079 	/*
2080 	 * net80211 may still try to send management frames even if the
2081 	 * IFF_RUNNING flag is not set...
2082 	 */
2083 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2084 		return;
2085 
2086 	for (;;) {
2087 		IF_POLL(&ic->ic_mgtq, m0);
2088 		if (m0 != NULL) {
2089 			if (sc->prioq.queued >= RT2560_PRIO_RING_COUNT) {
2090 				ifp->if_flags |= IFF_OACTIVE;
2091 				break;
2092 			}
2093 			IF_DEQUEUE(&ic->ic_mgtq, m0);
2094 			if (m0 == NULL)
2095 				break;
2096 
2097 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
2098 			m0->m_pkthdr.rcvif = NULL;
2099 #if NBPFILTER > 0
2100 			if (ic->ic_rawbpf != NULL)
2101 				bpf_mtap(ic->ic_rawbpf, m0);
2102 #endif
2103 			if (rt2560_tx_mgt(sc, m0, ni) != 0)
2104 				break;
2105 
2106 		} else {
2107 			if (ic->ic_state != IEEE80211_S_RUN)
2108 				break;
2109 			IFQ_DEQUEUE(&ifp->if_snd, m0);
2110 			if (m0 == NULL)
2111 				break;
2112 			if (sc->txq.queued >= RT2560_TX_RING_COUNT - 1) {
2113 				ifp->if_flags |= IFF_OACTIVE;
2114 				break;
2115 			}
2116 
2117 			if (m0->m_len < sizeof (struct ether_header) &&
2118 			    !(m0 = m_pullup(m0, sizeof (struct ether_header))))
2119                                 continue;
2120 
2121 			eh = mtod(m0, struct ether_header *);
2122 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2123 			if (ni == NULL) {
2124 				m_freem(m0);
2125 				continue;
2126 			}
2127 #if NBPFILTER > 0
2128 			if (ifp->if_bpf != NULL)
2129 				bpf_mtap(ifp->if_bpf, m0);
2130 #endif
2131 
2132 			m0 = ieee80211_encap(ic, m0, ni);
2133 			if (m0 == NULL) {
2134 				ieee80211_free_node(ni);
2135 				continue;
2136                         }
2137 
2138 #if NBPFILTER > 0
2139 			if (ic->ic_rawbpf != NULL)
2140 				bpf_mtap(ic->ic_rawbpf, m0);
2141 
2142 #endif
2143 			if (rt2560_tx_data(sc, m0, ni) != 0) {
2144 				ieee80211_free_node(ni);
2145 				ifp->if_oerrors++;
2146 				break;
2147 			}
2148 		}
2149 
2150 		sc->sc_tx_timer = 5;
2151 		ifp->if_timer = 1;
2152 	}
2153 }
2154 
2155 static void
2156 rt2560_watchdog(struct ifnet *ifp)
2157 {
2158 	struct rt2560_softc *sc = ifp->if_softc;
2159 
2160 	ifp->if_timer = 0;
2161 
2162 	if (sc->sc_tx_timer > 0) {
2163 		if (--sc->sc_tx_timer == 0) {
2164 			aprint_error_dev(&sc->sc_dev, "device timeout\n");
2165 			rt2560_init(ifp);
2166 			ifp->if_oerrors++;
2167 			return;
2168 		}
2169 		ifp->if_timer = 1;
2170 	}
2171 
2172 	ieee80211_watchdog(&sc->sc_ic);
2173 }
2174 
2175 /*
2176  * This function allows for fast channel switching in monitor mode (used by
2177  * net-mgmt/kismet). In IBSS mode, we must explicitly reset the interface to
2178  * generate a new beacon frame.
2179  */
2180 static int
2181 rt2560_reset(struct ifnet *ifp)
2182 {
2183 	struct rt2560_softc *sc = ifp->if_softc;
2184 	struct ieee80211com *ic = &sc->sc_ic;
2185 
2186 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
2187 		return ENETRESET;
2188 
2189 	rt2560_set_chan(sc, ic->ic_curchan);
2190 
2191 	return 0;
2192 }
2193 
2194 int
2195 rt2560_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2196 {
2197 	struct rt2560_softc *sc = ifp->if_softc;
2198 	struct ieee80211com *ic = &sc->sc_ic;
2199 	int s, error = 0;
2200 
2201 	s = splnet();
2202 
2203 	switch (cmd) {
2204 	case SIOCSIFFLAGS:
2205 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
2206 			break;
2207 		if (ifp->if_flags & IFF_UP) {
2208 			if (ifp->if_flags & IFF_RUNNING)
2209 				rt2560_update_promisc(sc);
2210 			else
2211 				rt2560_init(ifp);
2212 		} else {
2213 			if (ifp->if_flags & IFF_RUNNING)
2214 				rt2560_stop(ifp, 1);
2215 		}
2216 		break;
2217 
2218 	case SIOCADDMULTI:
2219 	case SIOCDELMULTI:
2220 		/* XXX no h/w multicast filter? --dyoung */
2221 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET)
2222 			error = 0;
2223 		break;
2224 
2225 	case SIOCS80211CHANNEL:
2226 		/*
2227 		 * This allows for fast channel switching in monitor mode
2228 		 * (used by kismet). In IBSS mode, we must explicitly reset
2229 		 * the interface to generate a new beacon frame.
2230 		 */
2231 		error = ieee80211_ioctl(ic, cmd, data);
2232 		if (error == ENETRESET &&
2233 		    ic->ic_opmode == IEEE80211_M_MONITOR) {
2234 			rt2560_set_chan(sc, ic->ic_ibss_chan);
2235 			error = 0;
2236 		}
2237 		break;
2238 
2239 	default:
2240 		error = ieee80211_ioctl(ic, cmd, data);
2241 	}
2242 
2243 	if (error == ENETRESET) {
2244 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
2245 		    (IFF_UP | IFF_RUNNING))
2246 			rt2560_init(ifp);
2247 		error = 0;
2248 	}
2249 
2250 	splx(s);
2251 
2252 	return error;
2253 }
2254 
2255 static void
2256 rt2560_bbp_write(struct rt2560_softc *sc, uint8_t reg, uint8_t val)
2257 {
2258 	uint32_t tmp;
2259 	int ntries;
2260 
2261 	for (ntries = 0; ntries < 100; ntries++) {
2262 		if (!(RAL_READ(sc, RT2560_BBPCSR) & RT2560_BBP_BUSY))
2263 			break;
2264 		DELAY(1);
2265 	}
2266 	if (ntries == 100) {
2267 		aprint_error_dev(&sc->sc_dev, "could not write to BBP\n");
2268 		return;
2269 	}
2270 
2271 	tmp = RT2560_BBP_WRITE | RT2560_BBP_BUSY | reg << 8 | val;
2272 	RAL_WRITE(sc, RT2560_BBPCSR, tmp);
2273 
2274 	DPRINTFN(15, ("BBP R%u <- 0x%02x\n", reg, val));
2275 }
2276 
2277 static uint8_t
2278 rt2560_bbp_read(struct rt2560_softc *sc, uint8_t reg)
2279 {
2280 	uint32_t val;
2281 	int ntries;
2282 
2283 	val = RT2560_BBP_BUSY | reg << 8;
2284 	RAL_WRITE(sc, RT2560_BBPCSR, val);
2285 
2286 	for (ntries = 0; ntries < 100; ntries++) {
2287 		val = RAL_READ(sc, RT2560_BBPCSR);
2288 		if (!(val & RT2560_BBP_BUSY))
2289 			return val & 0xff;
2290 		DELAY(1);
2291 	}
2292 
2293 	aprint_error_dev(&sc->sc_dev, "could not read from BBP\n");
2294 	return 0;
2295 }
2296 
2297 static void
2298 rt2560_rf_write(struct rt2560_softc *sc, uint8_t reg, uint32_t val)
2299 {
2300 	uint32_t tmp;
2301 	int ntries;
2302 
2303 	for (ntries = 0; ntries < 100; ntries++) {
2304 		if (!(RAL_READ(sc, RT2560_RFCSR) & RT2560_RF_BUSY))
2305 			break;
2306 		DELAY(1);
2307 	}
2308 	if (ntries == 100) {
2309 		aprint_error_dev(&sc->sc_dev, "could not write to RF\n");
2310 		return;
2311 	}
2312 
2313 	tmp = RT2560_RF_BUSY | RT2560_RF_20BIT | (val & 0xfffff) << 2 |
2314 	    (reg & 0x3);
2315 	RAL_WRITE(sc, RT2560_RFCSR, tmp);
2316 
2317 	/* remember last written value in sc */
2318 	sc->rf_regs[reg] = val;
2319 
2320 	DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff));
2321 }
2322 
2323 static void
2324 rt2560_set_chan(struct rt2560_softc *sc, struct ieee80211_channel *c)
2325 {
2326 	struct ieee80211com *ic = &sc->sc_ic;
2327 	uint8_t power, tmp;
2328 	u_int i, chan;
2329 
2330 	chan = ieee80211_chan2ieee(ic, c);
2331 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
2332 		return;
2333 
2334 	if (IEEE80211_IS_CHAN_2GHZ(c))
2335 		power = min(sc->txpow[chan - 1], 31);
2336 	else
2337 		power = 31;
2338 
2339 	DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power));
2340 
2341 	switch (sc->rf_rev) {
2342 	case RT2560_RF_2522:
2343 		rt2560_rf_write(sc, RT2560_RF1, 0x00814);
2344 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2522_r2[chan - 1]);
2345 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x00040);
2346 		break;
2347 
2348 	case RT2560_RF_2523:
2349 		rt2560_rf_write(sc, RT2560_RF1, 0x08804);
2350 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2523_r2[chan - 1]);
2351 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x38044);
2352 		rt2560_rf_write(sc, RT2560_RF4,
2353 		    (chan == 14) ? 0x00280 : 0x00286);
2354 		break;
2355 
2356 	case RT2560_RF_2524:
2357 		rt2560_rf_write(sc, RT2560_RF1, 0x0c808);
2358 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2524_r2[chan - 1]);
2359 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x00040);
2360 		rt2560_rf_write(sc, RT2560_RF4,
2361 		    (chan == 14) ? 0x00280 : 0x00286);
2362 		break;
2363 
2364 	case RT2560_RF_2525:
2365 		rt2560_rf_write(sc, RT2560_RF1, 0x08808);
2366 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2525_hi_r2[chan - 1]);
2367 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044);
2368 		rt2560_rf_write(sc, RT2560_RF4,
2369 		    (chan == 14) ? 0x00280 : 0x00286);
2370 
2371 		rt2560_rf_write(sc, RT2560_RF1, 0x08808);
2372 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2525_r2[chan - 1]);
2373 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044);
2374 		rt2560_rf_write(sc, RT2560_RF4,
2375 		    (chan == 14) ? 0x00280 : 0x00286);
2376 		break;
2377 
2378 	case RT2560_RF_2525E:
2379 		rt2560_rf_write(sc, RT2560_RF1, 0x08808);
2380 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2525e_r2[chan - 1]);
2381 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044);
2382 		rt2560_rf_write(sc, RT2560_RF4,
2383 		    (chan == 14) ? 0x00286 : 0x00282);
2384 		break;
2385 
2386 	case RT2560_RF_2526:
2387 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2526_hi_r2[chan - 1]);
2388 		rt2560_rf_write(sc, RT2560_RF4,
2389 		   (chan & 1) ? 0x00386 : 0x00381);
2390 		rt2560_rf_write(sc, RT2560_RF1, 0x08804);
2391 
2392 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2526_r2[chan - 1]);
2393 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044);
2394 		rt2560_rf_write(sc, RT2560_RF4,
2395 		    (chan & 1) ? 0x00386 : 0x00381);
2396 		break;
2397 
2398 	/* dual-band RF */
2399 	case RT2560_RF_5222:
2400 		for (i = 0; rt2560_rf5222[i].chan != chan; i++);
2401 
2402 		rt2560_rf_write(sc, RT2560_RF1, rt2560_rf5222[i].r1);
2403 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf5222[i].r2);
2404 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x00040);
2405 		rt2560_rf_write(sc, RT2560_RF4, rt2560_rf5222[i].r4);
2406 		break;
2407 	}
2408 
2409 	if (ic->ic_opmode != IEEE80211_M_MONITOR &&
2410 	    ic->ic_state != IEEE80211_S_SCAN) {
2411 		/* set Japan filter bit for channel 14 */
2412 		tmp = rt2560_bbp_read(sc, 70);
2413 
2414 		tmp &= ~RT2560_JAPAN_FILTER;
2415 		if (chan == 14)
2416 			tmp |= RT2560_JAPAN_FILTER;
2417 
2418 		rt2560_bbp_write(sc, 70, tmp);
2419 
2420 		DELAY(1000); /* RF needs a 1ms delay here */
2421 		rt2560_disable_rf_tune(sc);
2422 
2423 		/* clear CRC errors */
2424 		RAL_READ(sc, RT2560_CNT0);
2425 	}
2426 }
2427 
2428 /*
2429  * Disable RF auto-tuning.
2430  */
2431 static void
2432 rt2560_disable_rf_tune(struct rt2560_softc *sc)
2433 {
2434 	uint32_t tmp;
2435 
2436 	if (sc->rf_rev != RT2560_RF_2523) {
2437 		tmp = sc->rf_regs[RT2560_RF1] & ~RT2560_RF1_AUTOTUNE;
2438 		rt2560_rf_write(sc, RT2560_RF1, tmp);
2439 	}
2440 
2441 	tmp = sc->rf_regs[RT2560_RF3] & ~RT2560_RF3_AUTOTUNE;
2442 	rt2560_rf_write(sc, RT2560_RF3, tmp);
2443 
2444 	DPRINTFN(2, ("disabling RF autotune\n"));
2445 }
2446 
2447 /*
2448  * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
2449  * synchronization.
2450  */
2451 static void
2452 rt2560_enable_tsf_sync(struct rt2560_softc *sc)
2453 {
2454 	struct ieee80211com *ic = &sc->sc_ic;
2455 	uint16_t logcwmin, preload;
2456 	uint32_t tmp;
2457 
2458 	/* first, disable TSF synchronization */
2459 	RAL_WRITE(sc, RT2560_CSR14, 0);
2460 
2461 	tmp = 16 * ic->ic_bss->ni_intval;
2462 	RAL_WRITE(sc, RT2560_CSR12, tmp);
2463 
2464 	RAL_WRITE(sc, RT2560_CSR13, 0);
2465 
2466 	logcwmin = 5;
2467 	preload = (ic->ic_opmode == IEEE80211_M_STA) ? 384 : 1024;
2468 	tmp = logcwmin << 16 | preload;
2469 	RAL_WRITE(sc, RT2560_BCNOCSR, tmp);
2470 
2471 	/* finally, enable TSF synchronization */
2472 	tmp = RT2560_ENABLE_TSF | RT2560_ENABLE_TBCN;
2473 	if (ic->ic_opmode == IEEE80211_M_STA)
2474 		tmp |= RT2560_ENABLE_TSF_SYNC(1);
2475 	else
2476 		tmp |= RT2560_ENABLE_TSF_SYNC(2) |
2477 		       RT2560_ENABLE_BEACON_GENERATOR;
2478 	RAL_WRITE(sc, RT2560_CSR14, tmp);
2479 
2480 	DPRINTF(("enabling TSF synchronization\n"));
2481 }
2482 
2483 static void
2484 rt2560_update_plcp(struct rt2560_softc *sc)
2485 {
2486 	struct ieee80211com *ic = &sc->sc_ic;
2487 
2488 	/* no short preamble for 1Mbps */
2489 	RAL_WRITE(sc, RT2560_PLCP1MCSR, 0x00700400);
2490 
2491 	if (!(ic->ic_flags & IEEE80211_F_SHPREAMBLE)) {
2492 		/* values taken from the reference driver */
2493 		RAL_WRITE(sc, RT2560_PLCP2MCSR,   0x00380401);
2494 		RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x00150402);
2495 		RAL_WRITE(sc, RT2560_PLCP11MCSR,  0x000b8403);
2496 	} else {
2497 		/* same values as above or'ed 0x8 */
2498 		RAL_WRITE(sc, RT2560_PLCP2MCSR,   0x00380409);
2499 		RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x0015040a);
2500 		RAL_WRITE(sc, RT2560_PLCP11MCSR,  0x000b840b);
2501 	}
2502 
2503 	DPRINTF(("updating PLCP for %s preamble\n",
2504 	    (ic->ic_flags & IEEE80211_F_SHPREAMBLE) ? "short" : "long"));
2505 }
2506 
2507 /*
2508  * IEEE 802.11a uses short slot time. Refer to IEEE Std 802.11-1999 pp. 85 to
2509  * know how these values are computed.
2510  */
2511 static void
2512 rt2560_update_slot(struct ifnet *ifp)
2513 {
2514 	struct rt2560_softc *sc = ifp->if_softc;
2515 	struct ieee80211com *ic = &sc->sc_ic;
2516 	uint8_t slottime;
2517 	uint16_t sifs, pifs, difs, eifs;
2518 	uint32_t tmp;
2519 
2520 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
2521 
2522 	/* define the MAC slot boundaries */
2523 	sifs = RAL_SIFS - RT2560_RXTX_TURNAROUND;
2524 	pifs = sifs + slottime;
2525 	difs = sifs + 2 * slottime;
2526 	eifs = (ic->ic_curmode == IEEE80211_MODE_11B) ? 364 : 60;
2527 
2528 	tmp = RAL_READ(sc, RT2560_CSR11);
2529 	tmp = (tmp & ~0x1f00) | slottime << 8;
2530 	RAL_WRITE(sc, RT2560_CSR11, tmp);
2531 
2532 	tmp = pifs << 16 | sifs;
2533 	RAL_WRITE(sc, RT2560_CSR18, tmp);
2534 
2535 	tmp = eifs << 16 | difs;
2536 	RAL_WRITE(sc, RT2560_CSR19, tmp);
2537 
2538 	DPRINTF(("setting slottime to %uus\n", slottime));
2539 }
2540 
2541 static void
2542 rt2560_set_basicrates(struct rt2560_softc *sc)
2543 {
2544 	struct ieee80211com *ic = &sc->sc_ic;
2545 
2546 	/* update basic rate set */
2547 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
2548 		/* 11b basic rates: 1, 2Mbps */
2549 		RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x3);
2550 	} else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) {
2551 		/* 11a basic rates: 6, 12, 24Mbps */
2552 		RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x150);
2553 	} else {
2554 		/* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
2555 		RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x15f);
2556 	}
2557 }
2558 
2559 static void
2560 rt2560_update_led(struct rt2560_softc *sc, int led1, int led2)
2561 {
2562 	uint32_t tmp;
2563 
2564 	/* set ON period to 70ms and OFF period to 30ms */
2565 	tmp = led1 << 16 | led2 << 17 | 70 << 8 | 30;
2566 	RAL_WRITE(sc, RT2560_LEDCSR, tmp);
2567 }
2568 
2569 static void
2570 rt2560_set_bssid(struct rt2560_softc *sc, uint8_t *bssid)
2571 {
2572 	uint32_t tmp;
2573 
2574 	tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
2575 	RAL_WRITE(sc, RT2560_CSR5, tmp);
2576 
2577 	tmp = bssid[4] | bssid[5] << 8;
2578 	RAL_WRITE(sc, RT2560_CSR6, tmp);
2579 
2580 	DPRINTF(("setting BSSID to %s\n", ether_sprintf(bssid)));
2581 }
2582 
2583 static void
2584 rt2560_set_macaddr(struct rt2560_softc *sc, uint8_t *addr)
2585 {
2586 	uint32_t tmp;
2587 
2588 	tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
2589 	RAL_WRITE(sc, RT2560_CSR3, tmp);
2590 
2591 	tmp = addr[4] | addr[5] << 8;
2592 	RAL_WRITE(sc, RT2560_CSR4, tmp);
2593 
2594 	DPRINTF(("setting MAC address to %s\n", ether_sprintf(addr)));
2595 }
2596 
2597 static void
2598 rt2560_get_macaddr(struct rt2560_softc *sc, uint8_t *addr)
2599 {
2600 	uint32_t tmp;
2601 
2602 	tmp = RAL_READ(sc, RT2560_CSR3);
2603 	addr[0] = tmp & 0xff;
2604 	addr[1] = (tmp >>  8) & 0xff;
2605 	addr[2] = (tmp >> 16) & 0xff;
2606 	addr[3] = (tmp >> 24);
2607 
2608 	tmp = RAL_READ(sc, RT2560_CSR4);
2609 	addr[4] = tmp & 0xff;
2610 	addr[5] = (tmp >> 8) & 0xff;
2611 }
2612 
2613 static void
2614 rt2560_update_promisc(struct rt2560_softc *sc)
2615 {
2616 	struct ifnet *ifp = &sc->sc_if;
2617 	uint32_t tmp;
2618 
2619 	tmp = RAL_READ(sc, RT2560_RXCSR0);
2620 
2621 	tmp &= ~RT2560_DROP_NOT_TO_ME;
2622 	if (!(ifp->if_flags & IFF_PROMISC))
2623 		tmp |= RT2560_DROP_NOT_TO_ME;
2624 
2625 	RAL_WRITE(sc, RT2560_RXCSR0, tmp);
2626 
2627 	DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
2628 	    "entering" : "leaving"));
2629 }
2630 
2631 static void
2632 rt2560_set_txantenna(struct rt2560_softc *sc, int antenna)
2633 {
2634 	uint32_t tmp;
2635 	uint8_t tx;
2636 
2637 	tx = rt2560_bbp_read(sc, RT2560_BBP_TX) & ~RT2560_BBP_ANTMASK;
2638 	if (antenna == 1)
2639 		tx |= RT2560_BBP_ANTA;
2640 	else if (antenna == 2)
2641 		tx |= RT2560_BBP_ANTB;
2642 	else
2643 		tx |= RT2560_BBP_DIVERSITY;
2644 
2645 	/* need to force I/Q flip for RF 2525e, 2526 and 5222 */
2646 	if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526 ||
2647 	    sc->rf_rev == RT2560_RF_5222)
2648 		tx |= RT2560_BBP_FLIPIQ;
2649 
2650 	rt2560_bbp_write(sc, RT2560_BBP_TX, tx);
2651 
2652 	/* update values for CCK and OFDM in BBPCSR1 */
2653 	tmp = RAL_READ(sc, RT2560_BBPCSR1) & ~0x00070007;
2654 	tmp |= (tx & 0x7) << 16 | (tx & 0x7);
2655 	RAL_WRITE(sc, RT2560_BBPCSR1, tmp);
2656 }
2657 
2658 static void
2659 rt2560_set_rxantenna(struct rt2560_softc *sc, int antenna)
2660 {
2661 	uint8_t rx;
2662 
2663 	rx = rt2560_bbp_read(sc, RT2560_BBP_RX) & ~RT2560_BBP_ANTMASK;
2664 	if (antenna == 1)
2665 		rx |= RT2560_BBP_ANTA;
2666 	else if (antenna == 2)
2667 		rx |= RT2560_BBP_ANTB;
2668 	else
2669 		rx |= RT2560_BBP_DIVERSITY;
2670 
2671 	/* need to force no I/Q flip for RF 2525e and 2526 */
2672 	if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526)
2673 		rx &= ~RT2560_BBP_FLIPIQ;
2674 
2675 	rt2560_bbp_write(sc, RT2560_BBP_RX, rx);
2676 }
2677 
2678 static const char *
2679 rt2560_get_rf(int rev)
2680 {
2681 	switch (rev) {
2682 	case RT2560_RF_2522:	return "RT2522";
2683 	case RT2560_RF_2523:	return "RT2523";
2684 	case RT2560_RF_2524:	return "RT2524";
2685 	case RT2560_RF_2525:	return "RT2525";
2686 	case RT2560_RF_2525E:	return "RT2525e";
2687 	case RT2560_RF_2526:	return "RT2526";
2688 	case RT2560_RF_5222:	return "RT5222";
2689 	default:		return "unknown";
2690 	}
2691 }
2692 
2693 static void
2694 rt2560_read_eeprom(struct rt2560_softc *sc)
2695 {
2696 	uint16_t val;
2697 	int i;
2698 
2699 	val = rt2560_eeprom_read(sc, RT2560_EEPROM_CONFIG0);
2700 	sc->rf_rev =   (val >> 11) & 0x1f;
2701 	sc->hw_radio = (val >> 10) & 0x1;
2702 	sc->led_mode = (val >> 6)  & 0x7;
2703 	sc->rx_ant =   (val >> 4)  & 0x3;
2704 	sc->tx_ant =   (val >> 2)  & 0x3;
2705 	sc->nb_ant =   val & 0x3;
2706 
2707 	/* read default values for BBP registers */
2708 	for (i = 0; i < 16; i++) {
2709 		val = rt2560_eeprom_read(sc, RT2560_EEPROM_BBP_BASE + i);
2710 		sc->bbp_prom[i].reg = val >> 8;
2711 		sc->bbp_prom[i].val = val & 0xff;
2712 	}
2713 
2714 	/* read Tx power for all b/g channels */
2715 	for (i = 0; i < 14 / 2; i++) {
2716 		val = rt2560_eeprom_read(sc, RT2560_EEPROM_TXPOWER + i);
2717 		sc->txpow[i * 2] = val >> 8;
2718 		sc->txpow[i * 2 + 1] = val & 0xff;
2719 	}
2720 }
2721 
2722 static int
2723 rt2560_bbp_init(struct rt2560_softc *sc)
2724 {
2725 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
2726 	int i, ntries;
2727 
2728 	/* wait for BBP to be ready */
2729 	for (ntries = 0; ntries < 100; ntries++) {
2730 		if (rt2560_bbp_read(sc, RT2560_BBP_VERSION) != 0)
2731 			break;
2732 		DELAY(1);
2733 	}
2734 	if (ntries == 100) {
2735 		aprint_error_dev(&sc->sc_dev, "timeout waiting for BBP\n");
2736 		return EIO;
2737 	}
2738 
2739 	/* initialize BBP registers to default values */
2740 	for (i = 0; i < N(rt2560_def_bbp); i++) {
2741 		rt2560_bbp_write(sc, rt2560_def_bbp[i].reg,
2742 		    rt2560_def_bbp[i].val);
2743 	}
2744 #if 0
2745 	/* initialize BBP registers to values stored in EEPROM */
2746 	for (i = 0; i < 16; i++) {
2747 		if (sc->bbp_prom[i].reg == 0xff)
2748 			continue;
2749 		rt2560_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2750 	}
2751 #endif
2752 
2753 	return 0;
2754 #undef N
2755 }
2756 
2757 static int
2758 rt2560_init(struct ifnet *ifp)
2759 {
2760 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
2761 	struct rt2560_softc *sc = ifp->if_softc;
2762 	struct ieee80211com *ic = &sc->sc_ic;
2763 	uint32_t tmp;
2764 	int i;
2765 
2766 	/* for CardBus, power on the socket */
2767 	if (!(sc->sc_flags & RT2560_ENABLED)) {
2768 		if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
2769 			aprint_error_dev(&sc->sc_dev, "could not enable device\n");
2770 			return EIO;
2771 		}
2772 		sc->sc_flags |= RT2560_ENABLED;
2773 	}
2774 
2775 	rt2560_stop(ifp, 1);
2776 
2777 	/* setup tx rings */
2778 	tmp = RT2560_PRIO_RING_COUNT << 24 |
2779 	      RT2560_ATIM_RING_COUNT << 16 |
2780 	      RT2560_TX_RING_COUNT   <<  8 |
2781 	      RT2560_TX_DESC_SIZE;
2782 
2783 	/* rings _must_ be initialized in this _exact_ order! */
2784 	RAL_WRITE(sc, RT2560_TXCSR2, tmp);
2785 	RAL_WRITE(sc, RT2560_TXCSR3, sc->txq.physaddr);
2786 	RAL_WRITE(sc, RT2560_TXCSR5, sc->prioq.physaddr);
2787 	RAL_WRITE(sc, RT2560_TXCSR4, sc->atimq.physaddr);
2788 	RAL_WRITE(sc, RT2560_TXCSR6, sc->bcnq.physaddr);
2789 
2790 	/* setup rx ring */
2791 	tmp = RT2560_RX_RING_COUNT << 8 | RT2560_RX_DESC_SIZE;
2792 
2793 	RAL_WRITE(sc, RT2560_RXCSR1, tmp);
2794 	RAL_WRITE(sc, RT2560_RXCSR2, sc->rxq.physaddr);
2795 
2796 	/* initialize MAC registers to default values */
2797 	for (i = 0; i < N(rt2560_def_mac); i++)
2798 		RAL_WRITE(sc, rt2560_def_mac[i].reg, rt2560_def_mac[i].val);
2799 
2800 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2801 	rt2560_set_macaddr(sc, ic->ic_myaddr);
2802 
2803 	/* set basic rate set (will be updated later) */
2804 	RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x153);
2805 
2806 	rt2560_update_slot(ifp);
2807 	rt2560_update_plcp(sc);
2808 	rt2560_update_led(sc, 0, 0);
2809 
2810 	RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC);
2811 	RAL_WRITE(sc, RT2560_CSR1, RT2560_HOST_READY);
2812 
2813 	if (rt2560_bbp_init(sc) != 0) {
2814 		rt2560_stop(ifp, 1);
2815 		return EIO;
2816 	}
2817 
2818 	rt2560_set_txantenna(sc, 1);
2819 	rt2560_set_rxantenna(sc, 1);
2820 
2821 	/* set default BSS channel */
2822 	ic->ic_bss->ni_chan = ic->ic_ibss_chan;
2823 	rt2560_set_chan(sc, ic->ic_bss->ni_chan);
2824 
2825 	/* kick Rx */
2826 	tmp = RT2560_DROP_PHY_ERROR | RT2560_DROP_CRC_ERROR;
2827 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2828 		tmp |= RT2560_DROP_CTL | RT2560_DROP_VERSION_ERROR;
2829 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2830 			tmp |= RT2560_DROP_TODS;
2831 		if (!(ifp->if_flags & IFF_PROMISC))
2832 			tmp |= RT2560_DROP_NOT_TO_ME;
2833 	}
2834 	RAL_WRITE(sc, RT2560_RXCSR0, tmp);
2835 
2836 	/* clear old FCS and Rx FIFO errors */
2837 	RAL_READ(sc, RT2560_CNT0);
2838 	RAL_READ(sc, RT2560_CNT4);
2839 
2840 	/* clear any pending interrupts */
2841 	RAL_WRITE(sc, RT2560_CSR7, 0xffffffff);
2842 
2843 	/* enable interrupts */
2844 	RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK);
2845 
2846 	ifp->if_flags &= ~IFF_OACTIVE;
2847 	ifp->if_flags |= IFF_RUNNING;
2848 
2849 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2850 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2851 	else
2852 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2853 
2854 	return 0;
2855 #undef N
2856 }
2857 
2858 static void
2859 rt2560_stop(struct ifnet *ifp, int disable)
2860 {
2861 	struct rt2560_softc *sc = ifp->if_softc;
2862 	struct ieee80211com *ic = &sc->sc_ic;
2863 
2864 	sc->sc_tx_timer = 0;
2865 	ifp->if_timer = 0;
2866 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2867 
2868 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);	/* free all nodes */
2869 
2870 	/* abort Tx */
2871 	RAL_WRITE(sc, RT2560_TXCSR0, RT2560_ABORT_TX);
2872 
2873 	/* disable Rx */
2874 	RAL_WRITE(sc, RT2560_RXCSR0, RT2560_DISABLE_RX);
2875 
2876 	/* reset ASIC (and thus, BBP) */
2877 	RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC);
2878 	RAL_WRITE(sc, RT2560_CSR1, 0);
2879 
2880 	/* disable interrupts */
2881 	RAL_WRITE(sc, RT2560_CSR8, 0xffffffff);
2882 
2883 	/* clear any pending interrupt */
2884 	RAL_WRITE(sc, RT2560_CSR7, 0xffffffff);
2885 
2886 	/* reset Tx and Rx rings */
2887 	rt2560_reset_tx_ring(sc, &sc->txq);
2888 	rt2560_reset_tx_ring(sc, &sc->atimq);
2889 	rt2560_reset_tx_ring(sc, &sc->prioq);
2890 	rt2560_reset_tx_ring(sc, &sc->bcnq);
2891 	rt2560_reset_rx_ring(sc, &sc->rxq);
2892 
2893 }
2894