xref: /netbsd-src/sys/dev/ic/rt2560.c (revision 03dcb730d46d34d85c9f496c1f5a3a6a43f2b7b3)
1 /*	$NetBSD: rt2560.c,v 1.30 2017/05/23 02:19:14 ozaki-r Exp $	*/
2 /*	$OpenBSD: rt2560.c,v 1.15 2006/04/20 20:31:12 miod Exp $  */
3 /*	$FreeBSD: rt2560.c,v 1.3 2006/03/21 21:15:43 damien Exp $*/
4 
5 /*-
6  * Copyright (c) 2005, 2006
7  *	Damien Bergamini <damien.bergamini@free.fr>
8  *
9  * Permission to use, copy, modify, and distribute this software for any
10  * purpose with or without fee is hereby granted, provided that the above
11  * copyright notice and this permission notice appear in all copies.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20  */
21 
22 /*-
23  * Ralink Technology RT2560 chipset driver
24  * http://www.ralinktech.com/
25  */
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: rt2560.c,v 1.30 2017/05/23 02:19:14 ozaki-r Exp $");
28 
29 
30 #include <sys/param.h>
31 #include <sys/sockio.h>
32 #include <sys/mbuf.h>
33 #include <sys/kernel.h>
34 #include <sys/socket.h>
35 #include <sys/systm.h>
36 #include <sys/malloc.h>
37 #include <sys/callout.h>
38 #include <sys/conf.h>
39 #include <sys/device.h>
40 
41 #include <sys/bus.h>
42 #include <machine/endian.h>
43 #include <sys/intr.h>
44 
45 #include <net/bpf.h>
46 #include <net/if.h>
47 #include <net/if_arp.h>
48 #include <net/if_dl.h>
49 #include <net/if_media.h>
50 #include <net/if_types.h>
51 #include <net/if_ether.h>
52 
53 #include <netinet/in.h>
54 #include <netinet/in_systm.h>
55 #include <netinet/in_var.h>
56 #include <netinet/ip.h>
57 
58 #include <net80211/ieee80211_var.h>
59 #include <net80211/ieee80211_rssadapt.h>
60 #include <net80211/ieee80211_radiotap.h>
61 
62 #include <dev/ic/rt2560reg.h>
63 #include <dev/ic/rt2560var.h>
64 
65 #ifdef RAL_DEBUG
66 #define DPRINTF(x)	do { if (rt2560_debug > 0) printf x; } while (0)
67 #define DPRINTFN(n, x)	do { if (rt2560_debug >= (n)) printf x; } while (0)
68 int rt2560_debug = 0;
69 #else
70 #define DPRINTF(x)
71 #define DPRINTFN(n, x)
72 #endif
73 
74 static int	rt2560_alloc_tx_ring(struct rt2560_softc *,
75 		    struct rt2560_tx_ring *, int);
76 static void	rt2560_reset_tx_ring(struct rt2560_softc *,
77 		    struct rt2560_tx_ring *);
78 static void	rt2560_free_tx_ring(struct rt2560_softc *,
79 		    struct rt2560_tx_ring *);
80 static int	rt2560_alloc_rx_ring(struct rt2560_softc *,
81 		    struct rt2560_rx_ring *, int);
82 static void	rt2560_reset_rx_ring(struct rt2560_softc *,
83 		    struct rt2560_rx_ring *);
84 static void	rt2560_free_rx_ring(struct rt2560_softc *,
85 		    struct rt2560_rx_ring *);
86 static struct ieee80211_node *
87 		rt2560_node_alloc(struct ieee80211_node_table *);
88 static int	rt2560_media_change(struct ifnet *);
89 static void	rt2560_next_scan(void *);
90 static void	rt2560_iter_func(void *, struct ieee80211_node *);
91 static void	rt2560_update_rssadapt(void *);
92 static int	rt2560_newstate(struct ieee80211com *, enum ieee80211_state,
93     		    int);
94 static uint16_t	rt2560_eeprom_read(struct rt2560_softc *, uint8_t);
95 static void	rt2560_encryption_intr(struct rt2560_softc *);
96 static void	rt2560_tx_intr(struct rt2560_softc *);
97 static void	rt2560_prio_intr(struct rt2560_softc *);
98 static void	rt2560_decryption_intr(struct rt2560_softc *);
99 static void	rt2560_rx_intr(struct rt2560_softc *);
100 static void	rt2560_beacon_expire(struct rt2560_softc *);
101 static void	rt2560_wakeup_expire(struct rt2560_softc *);
102 static uint8_t	rt2560_rxrate(struct rt2560_rx_desc *);
103 static int	rt2560_ack_rate(struct ieee80211com *, int);
104 static uint16_t	rt2560_txtime(int, int, uint32_t);
105 static uint8_t	rt2560_plcp_signal(int);
106 static void	rt2560_setup_tx_desc(struct rt2560_softc *,
107 		    struct rt2560_tx_desc *, uint32_t, int, int, int,
108 		    bus_addr_t);
109 static int	rt2560_tx_bcn(struct rt2560_softc *, struct mbuf *,
110 		    struct ieee80211_node *);
111 static int	rt2560_tx_mgt(struct rt2560_softc *, struct mbuf *,
112 		    struct ieee80211_node *);
113 static struct mbuf *rt2560_get_rts(struct rt2560_softc *,
114 		    struct ieee80211_frame *, uint16_t);
115 static int	rt2560_tx_data(struct rt2560_softc *, struct mbuf *,
116 		    struct ieee80211_node *);
117 static void	rt2560_start(struct ifnet *);
118 static void	rt2560_watchdog(struct ifnet *);
119 static int	rt2560_reset(struct ifnet *);
120 static int	rt2560_ioctl(struct ifnet *, u_long, void *);
121 static void	rt2560_bbp_write(struct rt2560_softc *, uint8_t, uint8_t);
122 static uint8_t	rt2560_bbp_read(struct rt2560_softc *, uint8_t);
123 static void	rt2560_rf_write(struct rt2560_softc *, uint8_t, uint32_t);
124 static void	rt2560_set_chan(struct rt2560_softc *,
125 		    struct ieee80211_channel *);
126 static void	rt2560_disable_rf_tune(struct rt2560_softc *);
127 static void	rt2560_enable_tsf_sync(struct rt2560_softc *);
128 static void	rt2560_update_plcp(struct rt2560_softc *);
129 static void	rt2560_update_slot(struct ifnet *);
130 static void	rt2560_set_basicrates(struct rt2560_softc *);
131 static void	rt2560_update_led(struct rt2560_softc *, int, int);
132 static void	rt2560_set_bssid(struct rt2560_softc *, uint8_t *);
133 static void	rt2560_set_macaddr(struct rt2560_softc *, uint8_t *);
134 static void	rt2560_get_macaddr(struct rt2560_softc *, uint8_t *);
135 static void	rt2560_update_promisc(struct rt2560_softc *);
136 static void	rt2560_set_txantenna(struct rt2560_softc *, int);
137 static void	rt2560_set_rxantenna(struct rt2560_softc *, int);
138 static const char *rt2560_get_rf(int);
139 static void	rt2560_read_eeprom(struct rt2560_softc *);
140 static int	rt2560_bbp_init(struct rt2560_softc *);
141 static int	rt2560_init(struct ifnet *);
142 static void	rt2560_stop(struct ifnet *, int);
143 static void	rt2560_softintr(void *);
144 
145 /*
146  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
147  */
148 static const struct ieee80211_rateset rt2560_rateset_11a =
149 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
150 
151 static const struct ieee80211_rateset rt2560_rateset_11b =
152 	{ 4, { 2, 4, 11, 22 } };
153 
154 static const struct ieee80211_rateset rt2560_rateset_11g =
155 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
156 
157 /*
158  * Default values for MAC registers; values taken from the reference driver.
159  */
160 static const struct {
161 	uint32_t	reg;
162 	uint32_t	val;
163 } rt2560_def_mac[] = {
164 	{ RT2560_PSCSR0,      0x00020002 },
165 	{ RT2560_PSCSR1,      0x00000002 },
166 	{ RT2560_PSCSR2,      0x00020002 },
167 	{ RT2560_PSCSR3,      0x00000002 },
168 	{ RT2560_TIMECSR,     0x00003f21 },
169 	{ RT2560_CSR9,        0x00000780 },
170 	{ RT2560_CSR11,       0x07041483 },
171 	{ RT2560_CNT3,        0x00000000 },
172 	{ RT2560_TXCSR1,      0x07614562 },
173 	{ RT2560_ARSP_PLCP_0, 0x8c8d8b8a },
174 	{ RT2560_ACKPCTCSR,   0x7038140a },
175 	{ RT2560_ARTCSR1,     0x1d21252d },
176 	{ RT2560_ARTCSR2,     0x1919191d },
177 	{ RT2560_RXCSR0,      0xffffffff },
178 	{ RT2560_RXCSR3,      0xb3aab3af },
179 	{ RT2560_PCICSR,      0x000003b8 },
180 	{ RT2560_PWRCSR0,     0x3f3b3100 },
181 	{ RT2560_GPIOCSR,     0x0000ff00 },
182 	{ RT2560_TESTCSR,     0x000000f0 },
183 	{ RT2560_PWRCSR1,     0x000001ff },
184 	{ RT2560_MACCSR0,     0x00213223 },
185 	{ RT2560_MACCSR1,     0x00235518 },
186 	{ RT2560_RLPWCSR,     0x00000040 },
187 	{ RT2560_RALINKCSR,   0x9a009a11 },
188 	{ RT2560_CSR7,        0xffffffff },
189 	{ RT2560_BBPCSR1,     0x82188200 },
190 	{ RT2560_TXACKCSR0,   0x00000020 },
191 	{ RT2560_SECCSR3,     0x0000e78f }
192 };
193 
194 /*
195  * Default values for BBP registers; values taken from the reference driver.
196  */
197 static const struct {
198 	uint8_t	reg;
199 	uint8_t	val;
200 } rt2560_def_bbp[] = {
201 	{  3, 0x02 },
202 	{  4, 0x19 },
203 	{ 14, 0x1c },
204 	{ 15, 0x30 },
205 	{ 16, 0xac },
206 	{ 17, 0x48 },
207 	{ 18, 0x18 },
208 	{ 19, 0xff },
209 	{ 20, 0x1e },
210 	{ 21, 0x08 },
211 	{ 22, 0x08 },
212 	{ 23, 0x08 },
213 	{ 24, 0x80 },
214 	{ 25, 0x50 },
215 	{ 26, 0x08 },
216 	{ 27, 0x23 },
217 	{ 30, 0x10 },
218 	{ 31, 0x2b },
219 	{ 32, 0xb9 },
220 	{ 34, 0x12 },
221 	{ 35, 0x50 },
222 	{ 39, 0xc4 },
223 	{ 40, 0x02 },
224 	{ 41, 0x60 },
225 	{ 53, 0x10 },
226 	{ 54, 0x18 },
227 	{ 56, 0x08 },
228 	{ 57, 0x10 },
229 	{ 58, 0x08 },
230 	{ 61, 0x60 },
231 	{ 62, 0x10 },
232 	{ 75, 0xff }
233 };
234 
235 /*
236  * Default values for RF register R2 indexed by channel numbers; values taken
237  * from the reference driver.
238  */
239 static const uint32_t rt2560_rf2522_r2[] = {
240 	0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814,
241 	0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e
242 };
243 
244 static const uint32_t rt2560_rf2523_r2[] = {
245 	0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
246 	0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
247 };
248 
249 static const uint32_t rt2560_rf2524_r2[] = {
250 	0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
251 	0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
252 };
253 
254 static const uint32_t rt2560_rf2525_r2[] = {
255 	0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d,
256 	0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346
257 };
258 
259 static const uint32_t rt2560_rf2525_hi_r2[] = {
260 	0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345,
261 	0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e
262 };
263 
264 static const uint32_t rt2560_rf2525e_r2[] = {
265 	0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463,
266 	0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b
267 };
268 
269 static const uint32_t rt2560_rf2526_hi_r2[] = {
270 	0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d,
271 	0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241
272 };
273 
274 static const uint32_t rt2560_rf2526_r2[] = {
275 	0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229,
276 	0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d
277 };
278 
279 /*
280  * For dual-band RF, RF registers R1 and R4 also depend on channel number;
281  * values taken from the reference driver.
282  */
283 static const struct {
284 	uint8_t		chan;
285 	uint32_t	r1;
286 	uint32_t	r2;
287 	uint32_t	r4;
288 } rt2560_rf5222[] = {
289 	{   1, 0x08808, 0x0044d, 0x00282 },
290 	{   2, 0x08808, 0x0044e, 0x00282 },
291 	{   3, 0x08808, 0x0044f, 0x00282 },
292 	{   4, 0x08808, 0x00460, 0x00282 },
293 	{   5, 0x08808, 0x00461, 0x00282 },
294 	{   6, 0x08808, 0x00462, 0x00282 },
295 	{   7, 0x08808, 0x00463, 0x00282 },
296 	{   8, 0x08808, 0x00464, 0x00282 },
297 	{   9, 0x08808, 0x00465, 0x00282 },
298 	{  10, 0x08808, 0x00466, 0x00282 },
299 	{  11, 0x08808, 0x00467, 0x00282 },
300 	{  12, 0x08808, 0x00468, 0x00282 },
301 	{  13, 0x08808, 0x00469, 0x00282 },
302 	{  14, 0x08808, 0x0046b, 0x00286 },
303 
304 	{  36, 0x08804, 0x06225, 0x00287 },
305 	{  40, 0x08804, 0x06226, 0x00287 },
306 	{  44, 0x08804, 0x06227, 0x00287 },
307 	{  48, 0x08804, 0x06228, 0x00287 },
308 	{  52, 0x08804, 0x06229, 0x00287 },
309 	{  56, 0x08804, 0x0622a, 0x00287 },
310 	{  60, 0x08804, 0x0622b, 0x00287 },
311 	{  64, 0x08804, 0x0622c, 0x00287 },
312 
313 	{ 100, 0x08804, 0x02200, 0x00283 },
314 	{ 104, 0x08804, 0x02201, 0x00283 },
315 	{ 108, 0x08804, 0x02202, 0x00283 },
316 	{ 112, 0x08804, 0x02203, 0x00283 },
317 	{ 116, 0x08804, 0x02204, 0x00283 },
318 	{ 120, 0x08804, 0x02205, 0x00283 },
319 	{ 124, 0x08804, 0x02206, 0x00283 },
320 	{ 128, 0x08804, 0x02207, 0x00283 },
321 	{ 132, 0x08804, 0x02208, 0x00283 },
322 	{ 136, 0x08804, 0x02209, 0x00283 },
323 	{ 140, 0x08804, 0x0220a, 0x00283 },
324 
325 	{ 149, 0x08808, 0x02429, 0x00281 },
326 	{ 153, 0x08808, 0x0242b, 0x00281 },
327 	{ 157, 0x08808, 0x0242d, 0x00281 },
328 	{ 161, 0x08808, 0x0242f, 0x00281 }
329 };
330 
331 int
332 rt2560_attach(void *xsc, int id)
333 {
334 	struct rt2560_softc *sc = xsc;
335 	struct ieee80211com *ic = &sc->sc_ic;
336 	struct ifnet *ifp = &sc->sc_if;
337 	int error, i;
338 
339 	callout_init(&sc->scan_ch, 0);
340 	callout_init(&sc->rssadapt_ch, 0);
341 
342 	/* retrieve RT2560 rev. no */
343 	sc->asic_rev = RAL_READ(sc, RT2560_CSR0);
344 
345 	/* retrieve MAC address */
346 	rt2560_get_macaddr(sc, ic->ic_myaddr);
347 
348 	aprint_normal_dev(sc->sc_dev, "802.11 address %s\n",
349 	    ether_sprintf(ic->ic_myaddr));
350 
351 	/* retrieve RF rev. no and various other things from EEPROM */
352 	rt2560_read_eeprom(sc);
353 
354 	aprint_normal_dev(sc->sc_dev, "MAC/BBP RT2560 (rev 0x%02x), RF %s\n",
355 	    sc->asic_rev, rt2560_get_rf(sc->rf_rev));
356 
357 	sc->sc_soft_ih = softint_establish(SOFTINT_NET, rt2560_softintr, sc);
358 	if (sc->sc_soft_ih == NULL) {
359 		aprint_error_dev(sc->sc_dev, "could not establish softint\n)");
360 		goto fail0;
361 	}
362 
363 	/*
364 	 * Allocate Tx and Rx rings.
365 	 */
366 	error = rt2560_alloc_tx_ring(sc, &sc->txq, RT2560_TX_RING_COUNT);
367 	if (error != 0) {
368 		aprint_error_dev(sc->sc_dev, "could not allocate Tx ring\n)");
369 		goto fail1;
370 	}
371 
372 	error = rt2560_alloc_tx_ring(sc, &sc->atimq, RT2560_ATIM_RING_COUNT);
373 	if (error != 0) {
374 		aprint_error_dev(sc->sc_dev, "could not allocate ATIM ring\n");
375 		goto fail2;
376 	}
377 
378 	error = rt2560_alloc_tx_ring(sc, &sc->prioq, RT2560_PRIO_RING_COUNT);
379 	if (error != 0) {
380 		aprint_error_dev(sc->sc_dev, "could not allocate Prio ring\n");
381 		goto fail3;
382 	}
383 
384 	error = rt2560_alloc_tx_ring(sc, &sc->bcnq, RT2560_BEACON_RING_COUNT);
385 	if (error != 0) {
386 		aprint_error_dev(sc->sc_dev, "could not allocate Beacon ring\n");
387 		goto fail4;
388 	}
389 
390 	error = rt2560_alloc_rx_ring(sc, &sc->rxq, RT2560_RX_RING_COUNT);
391 	if (error != 0) {
392 		aprint_error_dev(sc->sc_dev, "could not allocate Rx ring\n");
393 		goto fail5;
394 	}
395 
396 	ifp->if_softc = sc;
397 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
398 	ifp->if_init = rt2560_init;
399 	ifp->if_stop = rt2560_stop;
400 	ifp->if_ioctl = rt2560_ioctl;
401 	ifp->if_start = rt2560_start;
402 	ifp->if_watchdog = rt2560_watchdog;
403 	IFQ_SET_READY(&ifp->if_snd);
404 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
405 
406 	ic->ic_ifp = ifp;
407 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
408 	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
409 	ic->ic_state = IEEE80211_S_INIT;
410 
411 	/* set device capabilities */
412 	ic->ic_caps =
413 	    IEEE80211_C_IBSS |		/* IBSS mode supported */
414 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
415 	    IEEE80211_C_HOSTAP |	/* HostAp mode supported */
416 	    IEEE80211_C_TXPMGT |	/* tx power management */
417 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
418 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
419 	    IEEE80211_C_WPA;		/* 802.11i */
420 
421 	if (sc->rf_rev == RT2560_RF_5222) {
422 		/* set supported .11a rates */
423 		ic->ic_sup_rates[IEEE80211_MODE_11A] = rt2560_rateset_11a;
424 
425 		/* set supported .11a channels */
426 		for (i = 36; i <= 64; i += 4) {
427 			ic->ic_channels[i].ic_freq =
428 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
429 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
430 		}
431 		for (i = 100; i <= 140; i += 4) {
432 			ic->ic_channels[i].ic_freq =
433 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
434 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
435 		}
436 		for (i = 149; i <= 161; i += 4) {
437 			ic->ic_channels[i].ic_freq =
438 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
439 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
440 		}
441 	}
442 
443 	/* set supported .11b and .11g rates */
444 	ic->ic_sup_rates[IEEE80211_MODE_11B] = rt2560_rateset_11b;
445 	ic->ic_sup_rates[IEEE80211_MODE_11G] = rt2560_rateset_11g;
446 
447 	/* set supported .11b and .11g channels (1 through 14) */
448 	for (i = 1; i <= 14; i++) {
449 		ic->ic_channels[i].ic_freq =
450 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
451 		ic->ic_channels[i].ic_flags =
452 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
453 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
454 	}
455 
456 	if_initialize(ifp);
457 	ieee80211_ifattach(ic);
458 	/* Use common softint-based if_input */
459 	ifp->if_percpuq = if_percpuq_create(ifp);
460 	if_register(ifp);
461 
462 	ic->ic_node_alloc = rt2560_node_alloc;
463 	ic->ic_updateslot = rt2560_update_slot;
464 	ic->ic_reset = rt2560_reset;
465 
466 	/* override state transition machine */
467 	sc->sc_newstate = ic->ic_newstate;
468 	ic->ic_newstate = rt2560_newstate;
469 	ieee80211_media_init(ic, rt2560_media_change, ieee80211_media_status);
470 
471 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
472 	    sizeof(struct ieee80211_frame) + 64, &sc->sc_drvbpf);
473 
474 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
475 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
476 	sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2560_RX_RADIOTAP_PRESENT);
477 
478 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
479 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
480 	sc->sc_txtap.wt_ihdr.it_present = htole32(RT2560_TX_RADIOTAP_PRESENT);
481 
482 
483 	sc->dwelltime = 200;
484 
485 	ieee80211_announce(ic);
486 
487 	if (pmf_device_register(sc->sc_dev, NULL, NULL))
488 		pmf_class_network_register(sc->sc_dev, ifp);
489 	else
490 		aprint_error_dev(sc->sc_dev,
491 		    "couldn't establish power handler\n");
492 
493 	return 0;
494 
495 fail5:	rt2560_free_tx_ring(sc, &sc->bcnq);
496 fail4:	rt2560_free_tx_ring(sc, &sc->prioq);
497 fail3:	rt2560_free_tx_ring(sc, &sc->atimq);
498 fail2:	rt2560_free_tx_ring(sc, &sc->txq);
499 fail1:	softint_disestablish(sc->sc_soft_ih);
500 	sc->sc_soft_ih = NULL;
501 fail0:	return ENXIO;
502 }
503 
504 
505 int
506 rt2560_detach(void *xsc)
507 {
508 	struct rt2560_softc *sc = xsc;
509 	struct ifnet *ifp = &sc->sc_if;
510 
511 	callout_stop(&sc->scan_ch);
512 	callout_stop(&sc->rssadapt_ch);
513 
514 	pmf_device_deregister(sc->sc_dev);
515 
516 	rt2560_stop(ifp, 1);
517 
518 	ieee80211_ifdetach(&sc->sc_ic);	/* free all nodes */
519 	if_detach(ifp);
520 
521 	rt2560_free_tx_ring(sc, &sc->txq);
522 	rt2560_free_tx_ring(sc, &sc->atimq);
523 	rt2560_free_tx_ring(sc, &sc->prioq);
524 	rt2560_free_tx_ring(sc, &sc->bcnq);
525 	rt2560_free_rx_ring(sc, &sc->rxq);
526 
527 	if (sc->sc_soft_ih != NULL) {
528 		softint_disestablish(sc->sc_soft_ih);
529 		sc->sc_soft_ih = NULL;
530 	}
531 
532 	return 0;
533 }
534 
535 int
536 rt2560_alloc_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring,
537     int count)
538 {
539 	int i, nsegs, error;
540 
541 	ring->count = count;
542 	ring->queued = 0;
543 	ring->cur = ring->next = 0;
544 	ring->cur_encrypt = ring->next_encrypt = 0;
545 
546 	error = bus_dmamap_create(sc->sc_dmat, count * RT2560_TX_DESC_SIZE, 1,
547 	    count * RT2560_TX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map);
548 	if (error != 0) {
549 		aprint_error_dev(sc->sc_dev, "could not create desc DMA map\n");
550 		goto fail;
551 	}
552 
553 	error = bus_dmamem_alloc(sc->sc_dmat, count * RT2560_TX_DESC_SIZE,
554 	    PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
555 	if (error != 0) {
556 		aprint_error_dev(sc->sc_dev, "could not allocate DMA memory\n");
557 		goto fail;
558 	}
559 
560 	error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
561 	    count * RT2560_TX_DESC_SIZE, (void **)&ring->desc,
562 	    BUS_DMA_NOWAIT);
563 	if (error != 0) {
564 		aprint_error_dev(sc->sc_dev, "could not map desc DMA memory\n");
565 		goto fail;
566 	}
567 
568 	error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
569 	    count * RT2560_TX_DESC_SIZE, NULL, BUS_DMA_NOWAIT);
570 	if (error != 0) {
571 		aprint_error_dev(sc->sc_dev, "could not load desc DMA map\n");
572 		goto fail;
573 	}
574 
575 	memset(ring->desc, 0, count * RT2560_TX_DESC_SIZE);
576 	ring->physaddr = ring->map->dm_segs->ds_addr;
577 
578 	ring->data = malloc(count * sizeof (struct rt2560_tx_data), M_DEVBUF,
579 	    M_NOWAIT);
580 	if (ring->data == NULL) {
581 		aprint_error_dev(sc->sc_dev, "could not allocate soft data\n");
582 		error = ENOMEM;
583 		goto fail;
584 	}
585 
586 	memset(ring->data, 0, count * sizeof (struct rt2560_tx_data));
587 	for (i = 0; i < count; i++) {
588 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
589 		    RT2560_MAX_SCATTER, MCLBYTES, 0, BUS_DMA_NOWAIT,
590 		    &ring->data[i].map);
591 		if (error != 0) {
592 			aprint_error_dev(sc->sc_dev, "could not create DMA map\n");
593 			goto fail;
594 		}
595 	}
596 
597 	return 0;
598 
599 fail:	rt2560_free_tx_ring(sc, ring);
600 	return error;
601 }
602 
603 void
604 rt2560_reset_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring)
605 {
606 	struct rt2560_tx_desc *desc;
607 	struct rt2560_tx_data *data;
608 	int i;
609 
610 	for (i = 0; i < ring->count; i++) {
611 		desc = &ring->desc[i];
612 		data = &ring->data[i];
613 
614 		if (data->m != NULL) {
615 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
616 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
617 			bus_dmamap_unload(sc->sc_dmat, data->map);
618 			m_freem(data->m);
619 			data->m = NULL;
620 		}
621 
622 		if (data->ni != NULL) {
623 			ieee80211_free_node(data->ni);
624 			data->ni = NULL;
625 		}
626 
627 		desc->flags = 0;
628 	}
629 
630 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
631 	    BUS_DMASYNC_PREWRITE);
632 
633 	ring->queued = 0;
634 	ring->cur = ring->next = 0;
635 	ring->cur_encrypt = ring->next_encrypt = 0;
636 }
637 
638 void
639 rt2560_free_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring)
640 {
641 	struct rt2560_tx_data *data;
642 	int i;
643 
644 	if (ring->desc != NULL) {
645 		bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
646 		    ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
647 		bus_dmamap_unload(sc->sc_dmat, ring->map);
648 		bus_dmamem_unmap(sc->sc_dmat, (void *)ring->desc,
649 		    ring->count * RT2560_TX_DESC_SIZE);
650 		bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
651 	}
652 
653 	if (ring->data != NULL) {
654 		for (i = 0; i < ring->count; i++) {
655 			data = &ring->data[i];
656 
657 			if (data->m != NULL) {
658 				bus_dmamap_sync(sc->sc_dmat, data->map, 0,
659 				    data->map->dm_mapsize,
660 				    BUS_DMASYNC_POSTWRITE);
661 				bus_dmamap_unload(sc->sc_dmat, data->map);
662 				m_freem(data->m);
663 			}
664 
665 			if (data->ni != NULL)
666 				ieee80211_free_node(data->ni);
667 
668 
669 			if (data->map != NULL)
670 				bus_dmamap_destroy(sc->sc_dmat, data->map);
671 		}
672 		free(ring->data, M_DEVBUF);
673 	}
674 }
675 
676 int
677 rt2560_alloc_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring,
678     int count)
679 {
680 	struct rt2560_rx_desc *desc;
681 	struct rt2560_rx_data *data;
682 	int i, nsegs, error;
683 
684 	ring->count = count;
685 	ring->cur = ring->next = 0;
686 	ring->cur_decrypt = 0;
687 
688 	error = bus_dmamap_create(sc->sc_dmat, count * RT2560_RX_DESC_SIZE, 1,
689 	    count * RT2560_RX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map);
690 	if (error != 0) {
691 		aprint_error_dev(sc->sc_dev, "could not create desc DMA map\n");
692 		goto fail;
693 	}
694 
695 	error = bus_dmamem_alloc(sc->sc_dmat, count * RT2560_RX_DESC_SIZE,
696 	    PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
697 	if (error != 0) {
698 		aprint_error_dev(sc->sc_dev, "could not allocate DMA memory\n");
699 		goto fail;
700 	}
701 
702 	error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
703 	    count * RT2560_RX_DESC_SIZE, (void **)&ring->desc,
704 	    BUS_DMA_NOWAIT);
705 	if (error != 0) {
706 		aprint_error_dev(sc->sc_dev, "could not map desc DMA memory\n");
707 		goto fail;
708 	}
709 
710 	error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
711 	    count * RT2560_RX_DESC_SIZE, NULL, BUS_DMA_NOWAIT);
712 	if (error != 0) {
713 		aprint_error_dev(sc->sc_dev, "could not load desc DMA map\n");
714 		goto fail;
715 	}
716 
717 	memset(ring->desc, 0, count * RT2560_RX_DESC_SIZE);
718 	ring->physaddr = ring->map->dm_segs->ds_addr;
719 
720 	ring->data = malloc(count * sizeof (struct rt2560_rx_data), M_DEVBUF,
721 	    M_NOWAIT);
722 	if (ring->data == NULL) {
723 		aprint_error_dev(sc->sc_dev, "could not allocate soft data\n");
724 		error = ENOMEM;
725 		goto fail;
726 	}
727 
728 	/*
729 	 * Pre-allocate Rx buffers and populate Rx ring.
730 	 */
731 	memset(ring->data, 0, count * sizeof (struct rt2560_rx_data));
732 	for (i = 0; i < count; i++) {
733 		desc = &sc->rxq.desc[i];
734 		data = &sc->rxq.data[i];
735 
736 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
737 		    0, BUS_DMA_NOWAIT, &data->map);
738 		if (error != 0) {
739 			aprint_error_dev(sc->sc_dev, "could not create DMA map\n");
740 			goto fail;
741 		}
742 
743 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
744 		if (data->m == NULL) {
745 			aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf\n");
746 			error = ENOMEM;
747 			goto fail;
748 		}
749 
750 		MCLGET(data->m, M_DONTWAIT);
751 		if (!(data->m->m_flags & M_EXT)) {
752 			aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf cluster\n");
753 			error = ENOMEM;
754 			goto fail;
755 		}
756 
757 		error = bus_dmamap_load(sc->sc_dmat, data->map,
758 		    mtod(data->m, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
759 		if (error != 0) {
760 			aprint_error_dev(sc->sc_dev, "could not load rx buf DMA map");
761 			goto fail;
762 		}
763 
764 		desc->flags = htole32(RT2560_RX_BUSY);
765 		desc->physaddr = htole32(data->map->dm_segs->ds_addr);
766 	}
767 
768 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
769 	    BUS_DMASYNC_PREWRITE);
770 
771 	return 0;
772 
773 fail:	rt2560_free_rx_ring(sc, ring);
774 	return error;
775 }
776 
777 void
778 rt2560_reset_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring)
779 {
780 	int i;
781 
782 	for (i = 0; i < ring->count; i++) {
783 		ring->desc[i].flags = htole32(RT2560_RX_BUSY);
784 		ring->data[i].drop = 0;
785 	}
786 
787 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
788 	    BUS_DMASYNC_PREWRITE);
789 
790 	ring->cur = ring->next = 0;
791 	ring->cur_decrypt = 0;
792 }
793 
794 void
795 rt2560_free_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring)
796 {
797 	struct rt2560_rx_data *data;
798 	int i;
799 
800 	if (ring->desc != NULL) {
801 		bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
802 		    ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
803 		bus_dmamap_unload(sc->sc_dmat, ring->map);
804 		bus_dmamem_unmap(sc->sc_dmat, (void *)ring->desc,
805 		    ring->count * RT2560_RX_DESC_SIZE);
806 		bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
807 	}
808 
809 	if (ring->data != NULL) {
810 		for (i = 0; i < ring->count; i++) {
811 			data = &ring->data[i];
812 
813 			if (data->m != NULL) {
814 				bus_dmamap_sync(sc->sc_dmat, data->map, 0,
815 				    data->map->dm_mapsize,
816 				    BUS_DMASYNC_POSTREAD);
817 				bus_dmamap_unload(sc->sc_dmat, data->map);
818 				m_freem(data->m);
819 			}
820 
821 			if (data->map != NULL)
822 				bus_dmamap_destroy(sc->sc_dmat, data->map);
823 		}
824 		free(ring->data, M_DEVBUF);
825 	}
826 }
827 
828 struct ieee80211_node *
829 rt2560_node_alloc(struct ieee80211_node_table *nt)
830 {
831 	struct rt2560_node *rn;
832 
833 	rn = malloc(sizeof (struct rt2560_node), M_80211_NODE,
834 	    M_NOWAIT | M_ZERO);
835 
836 	return (rn != NULL) ? &rn->ni : NULL;
837 }
838 
839 int
840 rt2560_media_change(struct ifnet *ifp)
841 {
842 	int error;
843 
844 	error = ieee80211_media_change(ifp);
845 	if (error != ENETRESET)
846 		return error;
847 
848 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
849 		rt2560_init(ifp);
850 
851 	return 0;
852 }
853 
854 /*
855  * This function is called periodically (every 200ms) during scanning to
856  * switch from one channel to another.
857  */
858 void
859 rt2560_next_scan(void *arg)
860 {
861 	struct rt2560_softc *sc = arg;
862 	struct ieee80211com *ic = &sc->sc_ic;
863 	int s;
864 
865 	s = splnet();
866 	if (ic->ic_state == IEEE80211_S_SCAN)
867 		ieee80211_next_scan(ic);
868 	splx(s);
869 }
870 
871 /*
872  * This function is called for each neighbor node.
873  */
874 void
875 rt2560_iter_func(void *arg, struct ieee80211_node *ni)
876 {
877 	struct rt2560_node *rn = (struct rt2560_node *)ni;
878 
879 	ieee80211_rssadapt_updatestats(&rn->rssadapt);
880 }
881 
882 /*
883  * This function is called periodically (every 100ms) in RUN state to update
884  * the rate adaptation statistics.
885  */
886 void
887 rt2560_update_rssadapt(void *arg)
888 {
889 	struct rt2560_softc *sc = arg;
890 	struct ieee80211com *ic = &sc->sc_ic;
891 	int s;
892 
893 	s = splnet();
894 	ieee80211_iterate_nodes(&ic->ic_sta, rt2560_iter_func, arg);
895 
896 	callout_reset(&sc->rssadapt_ch, hz / 10, rt2560_update_rssadapt, sc);
897 	splx(s);
898 }
899 
900 int
901 rt2560_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
902 {
903 	struct rt2560_softc *sc = ic->ic_ifp->if_softc;
904 	enum ieee80211_state ostate;
905 	struct ieee80211_node *ni;
906 	struct mbuf *m;
907 	int error = 0;
908 
909 	ostate = ic->ic_state;
910 	callout_stop(&sc->scan_ch);
911 
912 	switch (nstate) {
913 	case IEEE80211_S_INIT:
914 		callout_stop(&sc->rssadapt_ch);
915 
916 		if (ostate == IEEE80211_S_RUN) {
917 			/* abort TSF synchronization */
918 			RAL_WRITE(sc, RT2560_CSR14, 0);
919 
920 			/* turn association led off */
921 			rt2560_update_led(sc, 0, 0);
922 		}
923 		break;
924 
925 	case IEEE80211_S_SCAN:
926 		rt2560_set_chan(sc, ic->ic_curchan);
927 		callout_reset(&sc->scan_ch, (sc->dwelltime * hz) / 1000,
928 		    rt2560_next_scan, sc);
929 		break;
930 
931 	case IEEE80211_S_AUTH:
932 		rt2560_set_chan(sc, ic->ic_curchan);
933 		break;
934 
935 	case IEEE80211_S_ASSOC:
936 		rt2560_set_chan(sc, ic->ic_curchan);
937 		break;
938 
939 	case IEEE80211_S_RUN:
940 		rt2560_set_chan(sc, ic->ic_curchan);
941 
942 		ni = ic->ic_bss;
943 
944 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
945 			rt2560_update_plcp(sc);
946 			rt2560_set_basicrates(sc);
947 			rt2560_set_bssid(sc, ni->ni_bssid);
948 		}
949 
950 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
951 		    ic->ic_opmode == IEEE80211_M_IBSS) {
952 			m = ieee80211_beacon_alloc(ic, ni, &sc->sc_bo);
953 			if (m == NULL) {
954 				aprint_error_dev(sc->sc_dev, "could not allocate beacon\n");
955 				error = ENOBUFS;
956 				break;
957 			}
958 
959 			ieee80211_ref_node(ni);
960 			error = rt2560_tx_bcn(sc, m, ni);
961 			if (error != 0)
962 				break;
963 		}
964 
965 		/* turn assocation led on */
966 		rt2560_update_led(sc, 1, 0);
967 
968 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
969 			callout_reset(&sc->rssadapt_ch, hz / 10,
970 			    rt2560_update_rssadapt, sc);
971 			rt2560_enable_tsf_sync(sc);
972 		}
973 		break;
974 	}
975 
976 	return (error != 0) ? error : sc->sc_newstate(ic, nstate, arg);
977 }
978 
979 /*
980  * Read 16 bits at address 'addr' from the serial EEPROM (either 93C46 or
981  * 93C66).
982  */
983 uint16_t
984 rt2560_eeprom_read(struct rt2560_softc *sc, uint8_t addr)
985 {
986 	uint32_t tmp;
987 	uint16_t val;
988 	int n;
989 
990 	/* clock C once before the first command */
991 	RT2560_EEPROM_CTL(sc, 0);
992 
993 	RT2560_EEPROM_CTL(sc, RT2560_S);
994 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
995 	RT2560_EEPROM_CTL(sc, RT2560_S);
996 
997 	/* write start bit (1) */
998 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D);
999 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C);
1000 
1001 	/* write READ opcode (10) */
1002 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D);
1003 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C);
1004 	RT2560_EEPROM_CTL(sc, RT2560_S);
1005 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
1006 
1007 	/* write address (A5-A0 or A7-A0) */
1008 	n = (RAL_READ(sc, RT2560_CSR21) & RT2560_93C46) ? 5 : 7;
1009 	for (; n >= 0; n--) {
1010 		RT2560_EEPROM_CTL(sc, RT2560_S |
1011 		    (((addr >> n) & 1) << RT2560_SHIFT_D));
1012 		RT2560_EEPROM_CTL(sc, RT2560_S |
1013 		    (((addr >> n) & 1) << RT2560_SHIFT_D) | RT2560_C);
1014 	}
1015 
1016 	RT2560_EEPROM_CTL(sc, RT2560_S);
1017 
1018 	/* read data Q15-Q0 */
1019 	val = 0;
1020 	for (n = 15; n >= 0; n--) {
1021 		RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
1022 		tmp = RAL_READ(sc, RT2560_CSR21);
1023 		val |= ((tmp & RT2560_Q) >> RT2560_SHIFT_Q) << n;
1024 		RT2560_EEPROM_CTL(sc, RT2560_S);
1025 	}
1026 
1027 	RT2560_EEPROM_CTL(sc, 0);
1028 
1029 	/* clear Chip Select and clock C */
1030 	RT2560_EEPROM_CTL(sc, RT2560_S);
1031 	RT2560_EEPROM_CTL(sc, 0);
1032 	RT2560_EEPROM_CTL(sc, RT2560_C);
1033 
1034 	return val;
1035 }
1036 
1037 /*
1038  * Some frames were processed by the hardware cipher engine and are ready for
1039  * transmission.
1040  */
1041 void
1042 rt2560_encryption_intr(struct rt2560_softc *sc)
1043 {
1044 	struct rt2560_tx_desc *desc;
1045 	int hw;
1046 
1047 	/* retrieve last descriptor index processed by cipher engine */
1048 	hw = (RAL_READ(sc, RT2560_SECCSR1) - sc->txq.physaddr) /
1049 	    RT2560_TX_DESC_SIZE;
1050 
1051 	for (; sc->txq.next_encrypt != hw;) {
1052 		desc = &sc->txq.desc[sc->txq.next_encrypt];
1053 
1054 		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
1055 		    sc->txq.next_encrypt * RT2560_TX_DESC_SIZE,
1056 		    RT2560_TX_DESC_SIZE, BUS_DMASYNC_POSTREAD);
1057 
1058 		if (le32toh(desc->flags) &
1059 		    (RT2560_TX_BUSY | RT2560_TX_CIPHER_BUSY))
1060 			break;
1061 
1062 		/* for TKIP, swap eiv field to fix a bug in ASIC */
1063 		if ((le32toh(desc->flags) & RT2560_TX_CIPHER_MASK) ==
1064 		    RT2560_TX_CIPHER_TKIP)
1065 			desc->eiv = bswap32(desc->eiv);
1066 
1067 		/* mark the frame ready for transmission */
1068 		desc->flags |= htole32(RT2560_TX_BUSY | RT2560_TX_VALID);
1069 
1070 		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
1071 		    sc->txq.next_encrypt * RT2560_TX_DESC_SIZE,
1072 		    RT2560_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
1073 
1074 		DPRINTFN(15, ("encryption done idx=%u\n",
1075 		    sc->txq.next_encrypt));
1076 
1077 		sc->txq.next_encrypt =
1078 		    (sc->txq.next_encrypt + 1) % RT2560_TX_RING_COUNT;
1079 	}
1080 
1081 	/* kick Tx */
1082 	RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_TX);
1083 }
1084 
1085 void
1086 rt2560_tx_intr(struct rt2560_softc *sc)
1087 {
1088 	struct ieee80211com *ic = &sc->sc_ic;
1089 	struct ifnet *ifp = ic->ic_ifp;
1090 	struct rt2560_tx_desc *desc;
1091 	struct rt2560_tx_data *data;
1092 	struct rt2560_node *rn;
1093 	int s;
1094 
1095 	s = splnet();
1096 
1097 	for (;;) {
1098 		desc = &sc->txq.desc[sc->txq.next];
1099 		data = &sc->txq.data[sc->txq.next];
1100 
1101 		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
1102 		    sc->txq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1103 		    BUS_DMASYNC_POSTREAD);
1104 
1105 		if ((le32toh(desc->flags) & RT2560_TX_BUSY) ||
1106 		    (le32toh(desc->flags) & RT2560_TX_CIPHER_BUSY) ||
1107 		    !(le32toh(desc->flags) & RT2560_TX_VALID))
1108 			break;
1109 
1110 		rn = (struct rt2560_node *)data->ni;
1111 
1112 		switch (le32toh(desc->flags) & RT2560_TX_RESULT_MASK) {
1113 		case RT2560_TX_SUCCESS:
1114 			DPRINTFN(10, ("data frame sent successfully\n"));
1115 			if (data->id.id_node != NULL) {
1116 				ieee80211_rssadapt_raise_rate(ic,
1117 				    &rn->rssadapt, &data->id);
1118 			}
1119 			ifp->if_opackets++;
1120 			break;
1121 
1122 		case RT2560_TX_SUCCESS_RETRY:
1123 			DPRINTFN(9, ("data frame sent after %u retries\n",
1124 			    (le32toh(desc->flags) >> 5) & 0x7));
1125 			ifp->if_opackets++;
1126 			break;
1127 
1128 		case RT2560_TX_FAIL_RETRY:
1129 			DPRINTFN(9, ("sending data frame failed (too much "
1130 			    "retries)\n"));
1131 			if (data->id.id_node != NULL) {
1132 				ieee80211_rssadapt_lower_rate(ic, data->ni,
1133 				    &rn->rssadapt, &data->id);
1134 			}
1135 			ifp->if_oerrors++;
1136 			break;
1137 
1138 		case RT2560_TX_FAIL_INVALID:
1139 		case RT2560_TX_FAIL_OTHER:
1140 		default:
1141 			aprint_error_dev(sc->sc_dev,
1142 			    "sending data frame failed 0x%08x\n",
1143 			    le32toh(desc->flags));
1144 			ifp->if_oerrors++;
1145 		}
1146 
1147 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1148 		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1149 		bus_dmamap_unload(sc->sc_dmat, data->map);
1150 		m_freem(data->m);
1151 		data->m = NULL;
1152 		ieee80211_free_node(data->ni);
1153 		data->ni = NULL;
1154 
1155 		/* descriptor is no longer valid */
1156 		desc->flags &= ~htole32(RT2560_TX_VALID);
1157 
1158 		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
1159 		    sc->txq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1160 		    BUS_DMASYNC_PREWRITE);
1161 
1162 		DPRINTFN(15, ("tx done idx=%u\n", sc->txq.next));
1163 
1164 		sc->txq.queued--;
1165 		sc->txq.next = (sc->txq.next + 1) % RT2560_TX_RING_COUNT;
1166 	}
1167 
1168 	sc->sc_tx_timer = 0;
1169 	ifp->if_flags &= ~IFF_OACTIVE;
1170 	rt2560_start(ifp); /* in softint */
1171 
1172 	splx(s);
1173 }
1174 
1175 void
1176 rt2560_prio_intr(struct rt2560_softc *sc)
1177 {
1178 	struct ieee80211com *ic = &sc->sc_ic;
1179 	struct ifnet *ifp = ic->ic_ifp;
1180 	struct rt2560_tx_desc *desc;
1181 	struct rt2560_tx_data *data;
1182 	int s;
1183 
1184 	s = splnet();
1185 
1186 	for (;;) {
1187 		desc = &sc->prioq.desc[sc->prioq.next];
1188 		data = &sc->prioq.data[sc->prioq.next];
1189 
1190 		bus_dmamap_sync(sc->sc_dmat, sc->prioq.map,
1191 		    sc->prioq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1192 		    BUS_DMASYNC_POSTREAD);
1193 
1194 		if ((le32toh(desc->flags) & RT2560_TX_BUSY) ||
1195 		    !(le32toh(desc->flags) & RT2560_TX_VALID))
1196 			break;
1197 
1198 		switch (le32toh(desc->flags) & RT2560_TX_RESULT_MASK) {
1199 		case RT2560_TX_SUCCESS:
1200 			DPRINTFN(10, ("mgt frame sent successfully\n"));
1201 			break;
1202 
1203 		case RT2560_TX_SUCCESS_RETRY:
1204 			DPRINTFN(9, ("mgt frame sent after %u retries\n",
1205 			    (le32toh(desc->flags) >> 5) & 0x7));
1206 			break;
1207 
1208 		case RT2560_TX_FAIL_RETRY:
1209 			DPRINTFN(9, ("sending mgt frame failed (too much "
1210 			    "retries)\n"));
1211 			break;
1212 
1213 		case RT2560_TX_FAIL_INVALID:
1214 		case RT2560_TX_FAIL_OTHER:
1215 		default:
1216 			aprint_error_dev(sc->sc_dev, "sending mgt frame failed 0x%08x\n",
1217 			    le32toh(desc->flags));
1218 		}
1219 
1220 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1221 		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1222 		bus_dmamap_unload(sc->sc_dmat, data->map);
1223 		m_freem(data->m);
1224 		data->m = NULL;
1225 		ieee80211_free_node(data->ni);
1226 		data->ni = NULL;
1227 
1228 		/* descriptor is no longer valid */
1229 		desc->flags &= ~htole32(RT2560_TX_VALID);
1230 
1231 		bus_dmamap_sync(sc->sc_dmat, sc->prioq.map,
1232 		    sc->prioq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1233 		    BUS_DMASYNC_PREWRITE);
1234 
1235 		DPRINTFN(15, ("prio done idx=%u\n", sc->prioq.next));
1236 
1237 		sc->prioq.queued--;
1238 		sc->prioq.next = (sc->prioq.next + 1) % RT2560_PRIO_RING_COUNT;
1239 	}
1240 
1241 	sc->sc_tx_timer = 0;
1242 	ifp->if_flags &= ~IFF_OACTIVE;
1243 	rt2560_start(ifp); /* in softint */
1244 
1245 	splx(s);
1246 }
1247 
1248 /*
1249  * Some frames were processed by the hardware cipher engine and are ready for
1250  * transmission to the IEEE802.11 layer.
1251  */
1252 void
1253 rt2560_decryption_intr(struct rt2560_softc *sc)
1254 {
1255 	struct ieee80211com *ic = &sc->sc_ic;
1256 	struct ifnet *ifp = ic->ic_ifp;
1257 	struct rt2560_rx_desc *desc;
1258 	struct rt2560_rx_data *data;
1259 	struct rt2560_node *rn;
1260 	struct ieee80211_frame *wh;
1261 	struct ieee80211_node *ni;
1262 	struct mbuf *mnew, *m;
1263 	int hw, error, s;
1264 
1265 	/* retrieve last decriptor index processed by cipher engine */
1266 	hw = (RAL_READ(sc, RT2560_SECCSR0) - sc->rxq.physaddr) /
1267 	    RT2560_RX_DESC_SIZE;
1268 
1269 	for (; sc->rxq.cur_decrypt != hw;) {
1270 		desc = &sc->rxq.desc[sc->rxq.cur_decrypt];
1271 		data = &sc->rxq.data[sc->rxq.cur_decrypt];
1272 
1273 		bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1274 		    sc->rxq.cur_decrypt * RT2560_TX_DESC_SIZE,
1275 		    RT2560_TX_DESC_SIZE, BUS_DMASYNC_POSTREAD);
1276 
1277 		if (le32toh(desc->flags) &
1278 		    (RT2560_RX_BUSY | RT2560_RX_CIPHER_BUSY))
1279 			break;
1280 
1281 		if (data->drop) {
1282 			ifp->if_ierrors++;
1283 			goto skip;
1284 		}
1285 
1286 		if ((le32toh(desc->flags) & RT2560_RX_CIPHER_MASK) != 0 &&
1287 		    (le32toh(desc->flags) & RT2560_RX_ICV_ERROR)) {
1288 			ifp->if_ierrors++;
1289 			goto skip;
1290 		}
1291 
1292 		/*
1293 		 * Try to allocate a new mbuf for this ring element and load it
1294 		 * before processing the current mbuf.  If the ring element
1295 		 * cannot be loaded, drop the received packet and reuse the old
1296 		 * mbuf.  In the unlikely case that the old mbuf can't be
1297 		 * reloaded either, explicitly panic.
1298 		 */
1299 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1300 		if (mnew == NULL) {
1301 			ifp->if_ierrors++;
1302 			goto skip;
1303 		}
1304 
1305 		MCLGET(mnew, M_DONTWAIT);
1306 		if (!(mnew->m_flags & M_EXT)) {
1307 			m_freem(mnew);
1308 			ifp->if_ierrors++;
1309 			goto skip;
1310 		}
1311 
1312 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1313 		    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1314 		bus_dmamap_unload(sc->sc_dmat, data->map);
1315 
1316 		error = bus_dmamap_load(sc->sc_dmat, data->map,
1317 		    mtod(mnew, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
1318 		if (error != 0) {
1319 			m_freem(mnew);
1320 
1321 			/* try to reload the old mbuf */
1322 			error = bus_dmamap_load(sc->sc_dmat, data->map,
1323 			    mtod(data->m, void *), MCLBYTES, NULL,
1324 			    BUS_DMA_NOWAIT);
1325 			if (error != 0) {
1326 				/* very unlikely that it will fail... */
1327 				panic("%s: could not load old rx mbuf",
1328 				    device_xname(sc->sc_dev));
1329 			}
1330 			/* physical address may have changed */
1331 			desc->physaddr = htole32(data->map->dm_segs->ds_addr);
1332 			ifp->if_ierrors++;
1333 			goto skip;
1334 		}
1335 
1336 		/*
1337 		 * New mbuf successfully loaded, update Rx ring and continue
1338 		 * processing.
1339 		 */
1340 		m = data->m;
1341 		data->m = mnew;
1342 		desc->physaddr = htole32(data->map->dm_segs->ds_addr);
1343 
1344 		/* finalize mbuf */
1345 		m_set_rcvif(m, ifp);
1346 		m->m_pkthdr.len = m->m_len =
1347 		    (le32toh(desc->flags) >> 16) & 0xfff;
1348 
1349 		s = splnet();
1350 
1351 		if (sc->sc_drvbpf != NULL) {
1352 			struct rt2560_rx_radiotap_header *tap = &sc->sc_rxtap;
1353 			uint32_t tsf_lo, tsf_hi;
1354 
1355 			/* get timestamp (low and high 32 bits) */
1356 			tsf_hi = RAL_READ(sc, RT2560_CSR17);
1357 			tsf_lo = RAL_READ(sc, RT2560_CSR16);
1358 
1359 			tap->wr_tsf =
1360 			    htole64(((uint64_t)tsf_hi << 32) | tsf_lo);
1361 			tap->wr_flags = 0;
1362 			tap->wr_rate = rt2560_rxrate(desc);
1363 			tap->wr_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
1364 			tap->wr_chan_flags =
1365 			    htole16(ic->ic_ibss_chan->ic_flags);
1366 			tap->wr_antenna = sc->rx_ant;
1367 			tap->wr_antsignal = desc->rssi;
1368 
1369 			bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m);
1370 		}
1371 
1372 		wh = mtod(m, struct ieee80211_frame *);
1373 		ni = ieee80211_find_rxnode(ic,
1374 		    (struct ieee80211_frame_min *)wh);
1375 
1376 		/* send the frame to the 802.11 layer */
1377 		ieee80211_input(ic, m, ni, desc->rssi, 0);
1378 
1379 		/* give rssi to the rate adatation algorithm */
1380 		rn = (struct rt2560_node *)ni;
1381 		ieee80211_rssadapt_input(ic, ni, &rn->rssadapt, desc->rssi);
1382 
1383 		/* node is no longer needed */
1384 		ieee80211_free_node(ni);
1385 
1386 		splx(s);
1387 
1388 skip:		desc->flags = htole32(RT2560_RX_BUSY);
1389 
1390 		bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1391 		    sc->rxq.cur_decrypt * RT2560_TX_DESC_SIZE,
1392 		    RT2560_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
1393 
1394 		DPRINTFN(15, ("decryption done idx=%u\n", sc->rxq.cur_decrypt));
1395 
1396 		sc->rxq.cur_decrypt =
1397 		    (sc->rxq.cur_decrypt + 1) % RT2560_RX_RING_COUNT;
1398 	}
1399 
1400 	/*
1401 	 * In HostAP mode, ieee80211_input() will enqueue packets in if_snd
1402 	 * without calling if_start().
1403 	 */
1404 	s = splnet();
1405 	if (!IFQ_IS_EMPTY(&ifp->if_snd) && !(ifp->if_flags & IFF_OACTIVE))
1406 		rt2560_start(ifp);
1407 	splx(s);
1408 }
1409 
1410 /*
1411  * Some frames were received. Pass them to the hardware cipher engine before
1412  * sending them to the 802.11 layer.
1413  */
1414 void
1415 rt2560_rx_intr(struct rt2560_softc *sc)
1416 {
1417 	struct rt2560_rx_desc *desc;
1418 	struct rt2560_rx_data *data;
1419 
1420 	for (;;) {
1421 		desc = &sc->rxq.desc[sc->rxq.cur];
1422 		data = &sc->rxq.data[sc->rxq.cur];
1423 
1424 		bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1425 		    sc->rxq.cur * RT2560_RX_DESC_SIZE, RT2560_RX_DESC_SIZE,
1426 		    BUS_DMASYNC_POSTREAD);
1427 
1428 		if (le32toh(desc->flags) &
1429 		    (RT2560_RX_BUSY | RT2560_RX_CIPHER_BUSY))
1430 			break;
1431 
1432 		data->drop = 0;
1433 
1434 		if (le32toh(desc->flags) &
1435 		    (RT2560_RX_PHY_ERROR | RT2560_RX_CRC_ERROR)) {
1436 			/*
1437 			 * This should not happen since we did not request
1438 			 * to receive those frames when we filled RXCSR0.
1439 			 */
1440 			DPRINTFN(5, ("PHY or CRC error flags 0x%08x\n",
1441 			    le32toh(desc->flags)));
1442 			data->drop = 1;
1443 		}
1444 
1445 		if (((le32toh(desc->flags) >> 16) & 0xfff) > MCLBYTES) {
1446 			DPRINTFN(5, ("bad length\n"));
1447 			data->drop = 1;
1448 		}
1449 
1450 		/* mark the frame for decryption */
1451 		desc->flags |= htole32(RT2560_RX_CIPHER_BUSY);
1452 
1453 		bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1454 		    sc->rxq.cur * RT2560_RX_DESC_SIZE, RT2560_RX_DESC_SIZE,
1455 		    BUS_DMASYNC_PREWRITE);
1456 
1457 		DPRINTFN(15, ("rx done idx=%u\n", sc->rxq.cur));
1458 
1459 		sc->rxq.cur = (sc->rxq.cur + 1) % RT2560_RX_RING_COUNT;
1460 	}
1461 
1462 	/* kick decrypt */
1463 	RAL_WRITE(sc, RT2560_SECCSR0, RT2560_KICK_DECRYPT);
1464 }
1465 
1466 /*
1467  * This function is called periodically in IBSS mode when a new beacon must be
1468  * sent out.
1469  */
1470 static void
1471 rt2560_beacon_expire(struct rt2560_softc *sc)
1472 {
1473 	struct ieee80211com *ic = &sc->sc_ic;
1474 	struct rt2560_tx_data *data;
1475 
1476 	if (ic->ic_opmode != IEEE80211_M_IBSS &&
1477 	    ic->ic_opmode != IEEE80211_M_HOSTAP)
1478 		return;
1479 
1480 	data = &sc->bcnq.data[sc->bcnq.next];
1481 
1482 	bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1483 	    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1484 	bus_dmamap_unload(sc->sc_dmat, data->map);
1485 
1486 	ieee80211_beacon_update(ic, data->ni, &sc->sc_bo, data->m, 1);
1487 
1488 	bpf_mtap3(ic->ic_rawbpf, data->m);
1489 	rt2560_tx_bcn(sc, data->m, data->ni);
1490 
1491 	DPRINTFN(15, ("beacon expired\n"));
1492 
1493 	sc->bcnq.next = (sc->bcnq.next + 1) % RT2560_BEACON_RING_COUNT;
1494 }
1495 
1496 static void
1497 rt2560_wakeup_expire(struct rt2560_softc *sc)
1498 {
1499 	DPRINTFN(15, ("wakeup expired\n"));
1500 }
1501 
1502 int
1503 rt2560_intr(void *arg)
1504 {
1505 	struct rt2560_softc *sc = arg;
1506 	struct ifnet *ifp = &sc->sc_if;
1507 	uint32_t r;
1508 
1509 	if (!device_is_active(sc->sc_dev))
1510 		return 0;
1511 
1512 	if ((r = RAL_READ(sc, RT2560_CSR7)) == 0)
1513 		return 0;       /* not for us */
1514 
1515 	/* disable interrupts */
1516 	RAL_WRITE(sc, RT2560_CSR8, 0xffffffff);
1517 
1518 	/* don't re-enable interrupts if we're shutting down */
1519 	if (!(ifp->if_flags & IFF_RUNNING))
1520 		return 0;
1521 
1522 	softint_schedule(sc->sc_soft_ih);
1523 	return 1;
1524 }
1525 
1526 static void
1527 rt2560_softintr(void *arg)
1528 {
1529 	struct rt2560_softc *sc = arg;
1530 	struct ifnet *ifp = &sc->sc_if;
1531 	uint32_t r;
1532 
1533 	if (!device_is_active(sc->sc_dev) || !(ifp->if_flags & IFF_RUNNING))
1534 		return;
1535 
1536 	if ((r = RAL_READ(sc, RT2560_CSR7)) == 0)
1537 		goto out;
1538 
1539 	/* acknowledge interrupts */
1540 	RAL_WRITE(sc, RT2560_CSR7, r);
1541 
1542 	if (r & RT2560_BEACON_EXPIRE)
1543 		rt2560_beacon_expire(sc);
1544 
1545 	if (r & RT2560_WAKEUP_EXPIRE)
1546 		rt2560_wakeup_expire(sc);
1547 
1548 	if (r & RT2560_ENCRYPTION_DONE)
1549 		rt2560_encryption_intr(sc);
1550 
1551 	if (r & RT2560_TX_DONE)
1552 		rt2560_tx_intr(sc);
1553 
1554 	if (r & RT2560_PRIO_DONE)
1555 		rt2560_prio_intr(sc);
1556 
1557 	if (r & RT2560_DECRYPTION_DONE)
1558 		rt2560_decryption_intr(sc);
1559 
1560 	if (r & RT2560_RX_DONE)
1561 		rt2560_rx_intr(sc);
1562 
1563 out:
1564 	/* re-enable interrupts */
1565 	RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK);
1566 }
1567 
1568 /* quickly determine if a given rate is CCK or OFDM */
1569 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1570 
1571 #define RAL_ACK_SIZE	14	/* 10 + 4(FCS) */
1572 #define RAL_CTS_SIZE	14	/* 10 + 4(FCS) */
1573 
1574 #define RAL_SIFS		10	/* us */
1575 
1576 #define RT2560_RXTX_TURNAROUND	10	/* us */
1577 
1578 /*
1579  * This function is only used by the Rx radiotap code. It returns the rate at
1580  * which a given frame was received.
1581  */
1582 static uint8_t
1583 rt2560_rxrate(struct rt2560_rx_desc *desc)
1584 {
1585 	if (le32toh(desc->flags) & RT2560_RX_OFDM) {
1586 		/* reverse function of rt2560_plcp_signal */
1587 		switch (desc->rate) {
1588 		case 0xb:	return 12;
1589 		case 0xf:	return 18;
1590 		case 0xa:	return 24;
1591 		case 0xe:	return 36;
1592 		case 0x9:	return 48;
1593 		case 0xd:	return 72;
1594 		case 0x8:	return 96;
1595 		case 0xc:	return 108;
1596 		}
1597 	} else {
1598 		if (desc->rate == 10)
1599 			return 2;
1600 		if (desc->rate == 20)
1601 			return 4;
1602 		if (desc->rate == 55)
1603 			return 11;
1604 		if (desc->rate == 110)
1605 			return 22;
1606 	}
1607 	return 2;	/* should not get there */
1608 }
1609 
1610 /*
1611  * Return the expected ack rate for a frame transmitted at rate `rate'.
1612  * XXX: this should depend on the destination node basic rate set.
1613  */
1614 static int
1615 rt2560_ack_rate(struct ieee80211com *ic, int rate)
1616 {
1617 	switch (rate) {
1618 	/* CCK rates */
1619 	case 2:
1620 		return 2;
1621 	case 4:
1622 	case 11:
1623 	case 22:
1624 		return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
1625 
1626 	/* OFDM rates */
1627 	case 12:
1628 	case 18:
1629 		return 12;
1630 	case 24:
1631 	case 36:
1632 		return 24;
1633 	case 48:
1634 	case 72:
1635 	case 96:
1636 	case 108:
1637 		return 48;
1638 	}
1639 
1640 	/* default to 1Mbps */
1641 	return 2;
1642 }
1643 
1644 /*
1645  * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1646  * The function automatically determines the operating mode depending on the
1647  * given rate. `flags' indicates whether short preamble is in use or not.
1648  */
1649 static uint16_t
1650 rt2560_txtime(int len, int rate, uint32_t flags)
1651 {
1652 	uint16_t txtime;
1653 
1654 	if (RAL_RATE_IS_OFDM(rate)) {
1655 		/* IEEE Std 802.11a-1999, pp. 37 */
1656 		txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1657 		txtime = 16 + 4 + 4 * txtime + 6;
1658 	} else {
1659 		/* IEEE Std 802.11b-1999, pp. 28 */
1660 		txtime = (16 * len + rate - 1) / rate;
1661 		if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1662 			txtime +=  72 + 24;
1663 		else
1664 			txtime += 144 + 48;
1665 	}
1666 	return txtime;
1667 }
1668 
1669 static uint8_t
1670 rt2560_plcp_signal(int rate)
1671 {
1672 	switch (rate) {
1673 	/* CCK rates (returned values are device-dependent) */
1674 	case 2:		return 0x0;
1675 	case 4:		return 0x1;
1676 	case 11:	return 0x2;
1677 	case 22:	return 0x3;
1678 
1679 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1680 	case 12:	return 0xb;
1681 	case 18:	return 0xf;
1682 	case 24:	return 0xa;
1683 	case 36:	return 0xe;
1684 	case 48:	return 0x9;
1685 	case 72:	return 0xd;
1686 	case 96:	return 0x8;
1687 	case 108:	return 0xc;
1688 
1689 	/* unsupported rates (should not get there) */
1690 	default:	return 0xff;
1691 	}
1692 }
1693 
1694 static void
1695 rt2560_setup_tx_desc(struct rt2560_softc *sc, struct rt2560_tx_desc *desc,
1696     uint32_t flags, int len, int rate, int encrypt, bus_addr_t physaddr)
1697 {
1698 	struct ieee80211com *ic = &sc->sc_ic;
1699 	uint16_t plcp_length;
1700 	int remainder;
1701 
1702 	desc->flags = htole32(flags);
1703 	desc->flags |= htole32(len << 16);
1704 	desc->flags |= encrypt ? htole32(RT2560_TX_CIPHER_BUSY) :
1705 	    htole32(RT2560_TX_BUSY | RT2560_TX_VALID);
1706 
1707 	desc->physaddr = htole32(physaddr);
1708 	desc->wme = htole16(
1709 	    RT2560_AIFSN(2) |
1710 	    RT2560_LOGCWMIN(3) |
1711 	    RT2560_LOGCWMAX(8));
1712 
1713 	/* setup PLCP fields */
1714 	desc->plcp_signal  = rt2560_plcp_signal(rate);
1715 	desc->plcp_service = 4;
1716 
1717 	len += IEEE80211_CRC_LEN;
1718 	if (RAL_RATE_IS_OFDM(rate)) {
1719 		desc->flags |= htole32(RT2560_TX_OFDM);
1720 
1721 		plcp_length = len & 0xfff;
1722 		desc->plcp_length_hi = plcp_length >> 6;
1723 		desc->plcp_length_lo = plcp_length & 0x3f;
1724 	} else {
1725 		plcp_length = (16 * len + rate - 1) / rate;
1726 		if (rate == 22) {
1727 			remainder = (16 * len) % 22;
1728 			if (remainder != 0 && remainder < 7)
1729 				desc->plcp_service |= RT2560_PLCP_LENGEXT;
1730 		}
1731 		desc->plcp_length_hi = plcp_length >> 8;
1732 		desc->plcp_length_lo = plcp_length & 0xff;
1733 
1734 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1735 			desc->plcp_signal |= 0x08;
1736 	}
1737 }
1738 
1739 static int
1740 rt2560_tx_bcn(struct rt2560_softc *sc, struct mbuf *m0,
1741     struct ieee80211_node *ni)
1742 {
1743 	struct rt2560_tx_desc *desc;
1744 	struct rt2560_tx_data *data;
1745 	int rate, error;
1746 
1747 	desc = &sc->bcnq.desc[sc->bcnq.cur];
1748 	data = &sc->bcnq.data[sc->bcnq.cur];
1749 
1750 	rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1751 
1752 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1753 	    BUS_DMA_NOWAIT);
1754 	if (error != 0) {
1755 		aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
1756 		    error);
1757 		m_freem(m0);
1758 		return error;
1759 	}
1760 
1761 	data->m = m0;
1762 	data->ni = ni;
1763 
1764 	rt2560_setup_tx_desc(sc, desc, RT2560_TX_IFS_NEWBACKOFF |
1765 	    RT2560_TX_TIMESTAMP, m0->m_pkthdr.len, rate, 0,
1766 	    data->map->dm_segs->ds_addr);
1767 
1768 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1769 	    BUS_DMASYNC_PREWRITE);
1770 	bus_dmamap_sync(sc->sc_dmat, sc->bcnq.map,
1771 	    sc->bcnq.cur * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1772 	    BUS_DMASYNC_PREWRITE);
1773 
1774 	return 0;
1775 }
1776 
1777 static int
1778 rt2560_tx_mgt(struct rt2560_softc *sc, struct mbuf *m0,
1779     struct ieee80211_node *ni)
1780 {
1781 	struct ieee80211com *ic = &sc->sc_ic;
1782 	struct rt2560_tx_desc *desc;
1783 	struct rt2560_tx_data *data;
1784 	struct ieee80211_frame *wh;
1785 	struct ieee80211_key *k;
1786 	uint16_t dur;
1787 	uint32_t flags = 0;
1788 	int rate, error;
1789 
1790 	desc = &sc->prioq.desc[sc->prioq.cur];
1791 	data = &sc->prioq.data[sc->prioq.cur];
1792 
1793 	rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1794 
1795 	wh = mtod(m0, struct ieee80211_frame *);
1796 
1797 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1798 		k = ieee80211_crypto_encap(ic, ni, m0);
1799 		if (k == NULL) {
1800 			m_freem(m0);
1801 			return ENOBUFS;
1802 		}
1803 
1804 		/* packet header may have moved, reset our local pointer */
1805 		wh = mtod(m0, struct ieee80211_frame *);
1806 	}
1807 
1808 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1809 	    BUS_DMA_NOWAIT);
1810 	if (error != 0) {
1811 		aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
1812 		    error);
1813 		m_freem(m0);
1814 		return error;
1815 	}
1816 
1817 	if (sc->sc_drvbpf != NULL) {
1818 		struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
1819 
1820 		tap->wt_flags = 0;
1821 		tap->wt_rate = rate;
1822 		tap->wt_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
1823 		tap->wt_chan_flags = htole16(ic->ic_ibss_chan->ic_flags);
1824 		tap->wt_antenna = sc->tx_ant;
1825 
1826 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1827 	}
1828 
1829 	data->m = m0;
1830 	data->ni = ni;
1831 
1832 	wh = mtod(m0, struct ieee80211_frame *);
1833 
1834 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1835 		flags |= RT2560_TX_ACK;
1836 
1837 		dur = rt2560_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) +
1838 		    RAL_SIFS;
1839 		*(uint16_t *)wh->i_dur = htole16(dur);
1840 
1841 		/* tell hardware to add timestamp for probe responses */
1842 		if ((wh->i_fc[0] &
1843 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1844 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1845 			flags |= RT2560_TX_TIMESTAMP;
1846 	}
1847 
1848 	rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 0,
1849 	    data->map->dm_segs->ds_addr);
1850 
1851 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1852 	    BUS_DMASYNC_PREWRITE);
1853 	bus_dmamap_sync(sc->sc_dmat, sc->prioq.map,
1854 	    sc->prioq.cur * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1855 	    BUS_DMASYNC_PREWRITE);
1856 
1857 	DPRINTFN(10, ("sending mgt frame len=%u idx=%u rate=%u\n",
1858 	    m0->m_pkthdr.len, sc->prioq.cur, rate));
1859 
1860 	/* kick prio */
1861 	sc->prioq.queued++;
1862 	sc->prioq.cur = (sc->prioq.cur + 1) % RT2560_PRIO_RING_COUNT;
1863 	RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_PRIO);
1864 
1865 	return 0;
1866 }
1867 
1868 /*
1869  * Build a RTS control frame.
1870  */
1871 static struct mbuf *
1872 rt2560_get_rts(struct rt2560_softc *sc, struct ieee80211_frame *wh,
1873     uint16_t dur)
1874 {
1875 	struct ieee80211_frame_rts *rts;
1876 	struct mbuf *m;
1877 
1878 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1879 	if (m == NULL) {
1880 		sc->sc_ic.ic_stats.is_tx_nobuf++;
1881 		aprint_error_dev(sc->sc_dev, "could not allocate RTS frame\n");
1882 		return NULL;
1883 	}
1884 
1885 	rts = mtod(m, struct ieee80211_frame_rts *);
1886 
1887 	rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL |
1888 	    IEEE80211_FC0_SUBTYPE_RTS;
1889 	rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1890 	*(uint16_t *)rts->i_dur = htole16(dur);
1891 	IEEE80211_ADDR_COPY(rts->i_ra, wh->i_addr1);
1892 	IEEE80211_ADDR_COPY(rts->i_ta, wh->i_addr2);
1893 
1894 	m->m_pkthdr.len = m->m_len = sizeof (struct ieee80211_frame_rts);
1895 
1896 	return m;
1897 }
1898 
1899 static int
1900 rt2560_tx_data(struct rt2560_softc *sc, struct mbuf *m0,
1901     struct ieee80211_node *ni)
1902 {
1903 	struct ieee80211com *ic = &sc->sc_ic;
1904 	struct rt2560_tx_desc *desc;
1905 	struct rt2560_tx_data *data;
1906 	struct rt2560_node *rn;
1907 	struct ieee80211_rateset *rs;
1908 	struct ieee80211_frame *wh;
1909 	struct ieee80211_key *k;
1910 	struct mbuf *mnew;
1911 	uint16_t dur;
1912 	uint32_t flags = 0;
1913 	int rate, error;
1914 
1915 	wh = mtod(m0, struct ieee80211_frame *);
1916 
1917 	if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
1918 		rs = &ic->ic_sup_rates[ic->ic_curmode];
1919 		rate = rs->rs_rates[ic->ic_fixed_rate];
1920 	} else {
1921 		rs = &ni->ni_rates;
1922 		rn = (struct rt2560_node *)ni;
1923 		ni->ni_txrate = ieee80211_rssadapt_choose(&rn->rssadapt, rs,
1924 		    wh, m0->m_pkthdr.len, -1, NULL, 0);
1925 		rate = rs->rs_rates[ni->ni_txrate];
1926 	}
1927 	rate &= IEEE80211_RATE_VAL;
1928 
1929 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1930 		k = ieee80211_crypto_encap(ic, ni, m0);
1931 		if (k == NULL) {
1932 			m_freem(m0);
1933 			return ENOBUFS;
1934 		}
1935 
1936 		/* packet header may have moved, reset our local pointer */
1937 		wh = mtod(m0, struct ieee80211_frame *);
1938 	}
1939 
1940 	/*
1941 	 * IEEE Std 802.11-1999, pp 82: "A STA shall use an RTS/CTS exchange
1942 	 * for directed frames only when the length of the MPDU is greater
1943 	 * than the length threshold indicated by [...]" ic_rtsthreshold.
1944 	 */
1945 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1946 	    m0->m_pkthdr.len > ic->ic_rtsthreshold) {
1947 		struct mbuf *m;
1948 		int rtsrate, ackrate;
1949 
1950 		rtsrate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1951 		ackrate = rt2560_ack_rate(ic, rate);
1952 
1953 		dur = rt2560_txtime(m0->m_pkthdr.len + 4, rate, ic->ic_flags) +
1954 		      rt2560_txtime(RAL_CTS_SIZE, rtsrate, ic->ic_flags) +
1955 		      rt2560_txtime(RAL_ACK_SIZE, ackrate, ic->ic_flags) +
1956 		      3 * RAL_SIFS;
1957 
1958 		m = rt2560_get_rts(sc, wh, dur);
1959 
1960 		desc = &sc->txq.desc[sc->txq.cur_encrypt];
1961 		data = &sc->txq.data[sc->txq.cur_encrypt];
1962 
1963 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
1964 		    BUS_DMA_NOWAIT);
1965 		if (error != 0) {
1966 			aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
1967 			    error);
1968 			m_freem(m);
1969 			m_freem(m0);
1970 			return error;
1971 		}
1972 
1973 		/* avoid multiple free() of the same node for each fragment */
1974 		ieee80211_ref_node(ni);
1975 
1976 		data->m = m;
1977 		data->ni = ni;
1978 
1979 		/* RTS frames are not taken into account for rssadapt */
1980 		data->id.id_node = NULL;
1981 
1982 		rt2560_setup_tx_desc(sc, desc, RT2560_TX_ACK |
1983 		    RT2560_TX_MORE_FRAG, m->m_pkthdr.len, rtsrate, 1,
1984 		    data->map->dm_segs->ds_addr);
1985 
1986 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1987 		    data->map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1988 		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
1989 		    sc->txq.cur_encrypt * RT2560_TX_DESC_SIZE,
1990 		    RT2560_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
1991 
1992 		sc->txq.queued++;
1993 		sc->txq.cur_encrypt =
1994 		    (sc->txq.cur_encrypt + 1) % RT2560_TX_RING_COUNT;
1995 
1996 		/*
1997 		 * IEEE Std 802.11-1999: when an RTS/CTS exchange is used, the
1998 		 * asynchronous data frame shall be transmitted after the CTS
1999 		 * frame and a SIFS period.
2000 		 */
2001 		flags |= RT2560_TX_LONG_RETRY | RT2560_TX_IFS_SIFS;
2002 	}
2003 
2004 	data = &sc->txq.data[sc->txq.cur_encrypt];
2005 	desc = &sc->txq.desc[sc->txq.cur_encrypt];
2006 
2007 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2008 	    BUS_DMA_NOWAIT);
2009 	if (error != 0 && error != EFBIG) {
2010 		aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
2011 		    error);
2012 		m_freem(m0);
2013 		return error;
2014 	}
2015 	if (error != 0) {
2016 		/* too many fragments, linearize */
2017 
2018 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
2019 		if (mnew == NULL) {
2020 			m_freem(m0);
2021 			return ENOMEM;
2022 		}
2023 
2024 		M_COPY_PKTHDR(mnew, m0);
2025 		if (m0->m_pkthdr.len > MHLEN) {
2026 			MCLGET(mnew, M_DONTWAIT);
2027 			if (!(mnew->m_flags & M_EXT)) {
2028 				m_freem(m0);
2029 				m_freem(mnew);
2030 				return ENOMEM;
2031 			}
2032 		}
2033 
2034 		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
2035 		m_freem(m0);
2036 		mnew->m_len = mnew->m_pkthdr.len;
2037 		m0 = mnew;
2038 
2039 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2040 		    BUS_DMA_NOWAIT);
2041 		if (error != 0) {
2042 			aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
2043 			    error);
2044 			m_freem(m0);
2045 			return error;
2046 		}
2047 
2048 		/* packet header have moved, reset our local pointer */
2049 		wh = mtod(m0, struct ieee80211_frame *);
2050 	}
2051 
2052 	if (sc->sc_drvbpf != NULL) {
2053 		struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
2054 
2055 		tap->wt_flags = 0;
2056 		tap->wt_rate = rate;
2057 		tap->wt_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
2058 		tap->wt_chan_flags = htole16(ic->ic_ibss_chan->ic_flags);
2059 		tap->wt_antenna = sc->tx_ant;
2060 
2061 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
2062 	}
2063 
2064 	data->m = m0;
2065 	data->ni = ni;
2066 
2067 	/* remember link conditions for rate adaptation algorithm */
2068 	if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
2069 		data->id.id_len = m0->m_pkthdr.len;
2070 		data->id.id_rateidx = ni->ni_txrate;
2071 		data->id.id_node = ni;
2072 		data->id.id_rssi = ni->ni_rssi;
2073 	} else
2074 		data->id.id_node = NULL;
2075 
2076 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2077 		flags |= RT2560_TX_ACK;
2078 
2079 		dur = rt2560_txtime(RAL_ACK_SIZE, rt2560_ack_rate(ic, rate),
2080 		    ic->ic_flags) + RAL_SIFS;
2081 		*(uint16_t *)wh->i_dur = htole16(dur);
2082 	}
2083 
2084 	rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 1,
2085 	    data->map->dm_segs->ds_addr);
2086 
2087 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2088 	    BUS_DMASYNC_PREWRITE);
2089 	bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
2090 	    sc->txq.cur_encrypt * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
2091 	    BUS_DMASYNC_PREWRITE);
2092 
2093 	DPRINTFN(10, ("sending data frame len=%u idx=%u rate=%u\n",
2094 	    m0->m_pkthdr.len, sc->txq.cur_encrypt, rate));
2095 
2096 	/* kick encrypt */
2097 	sc->txq.queued++;
2098 	sc->txq.cur_encrypt = (sc->txq.cur_encrypt + 1) % RT2560_TX_RING_COUNT;
2099 	RAL_WRITE(sc, RT2560_SECCSR1, RT2560_KICK_ENCRYPT);
2100 
2101 	return 0;
2102 }
2103 
2104 static void
2105 rt2560_start(struct ifnet *ifp)
2106 {
2107 	struct rt2560_softc *sc = ifp->if_softc;
2108 	struct ieee80211com *ic = &sc->sc_ic;
2109 	struct mbuf *m0;
2110 	struct ieee80211_node *ni;
2111 	struct ether_header *eh;
2112 
2113 	/*
2114 	 * net80211 may still try to send management frames even if the
2115 	 * IFF_RUNNING flag is not set...
2116 	 */
2117 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2118 		return;
2119 
2120 	for (;;) {
2121 		IF_POLL(&ic->ic_mgtq, m0);
2122 		if (m0 != NULL) {
2123 			if (sc->prioq.queued >= RT2560_PRIO_RING_COUNT) {
2124 				ifp->if_flags |= IFF_OACTIVE;
2125 				break;
2126 			}
2127 			IF_DEQUEUE(&ic->ic_mgtq, m0);
2128 			if (m0 == NULL)
2129 				break;
2130 
2131 			ni = M_GETCTX(m0, struct ieee80211_node *);
2132 			M_CLEARCTX(m0);
2133 			bpf_mtap3(ic->ic_rawbpf, m0);
2134 			if (rt2560_tx_mgt(sc, m0, ni) != 0)
2135 				break;
2136 
2137 		} else {
2138 			if (ic->ic_state != IEEE80211_S_RUN)
2139 				break;
2140 			IFQ_DEQUEUE(&ifp->if_snd, m0);
2141 			if (m0 == NULL)
2142 				break;
2143 			if (sc->txq.queued >= RT2560_TX_RING_COUNT - 1) {
2144 				ifp->if_flags |= IFF_OACTIVE;
2145 				break;
2146 			}
2147 
2148 			if (m0->m_len < sizeof (struct ether_header) &&
2149 			    !(m0 = m_pullup(m0, sizeof (struct ether_header))))
2150                                 continue;
2151 
2152 			eh = mtod(m0, struct ether_header *);
2153 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2154 			if (ni == NULL) {
2155 				m_freem(m0);
2156 				continue;
2157 			}
2158 			bpf_mtap(ifp, m0);
2159 
2160 			m0 = ieee80211_encap(ic, m0, ni);
2161 			if (m0 == NULL) {
2162 				ieee80211_free_node(ni);
2163 				continue;
2164                         }
2165 
2166 			bpf_mtap3(ic->ic_rawbpf, m0);
2167 
2168 			if (rt2560_tx_data(sc, m0, ni) != 0) {
2169 				ieee80211_free_node(ni);
2170 				ifp->if_oerrors++;
2171 				break;
2172 			}
2173 		}
2174 
2175 		sc->sc_tx_timer = 5;
2176 		ifp->if_timer = 1;
2177 	}
2178 }
2179 
2180 static void
2181 rt2560_watchdog(struct ifnet *ifp)
2182 {
2183 	struct rt2560_softc *sc = ifp->if_softc;
2184 
2185 	ifp->if_timer = 0;
2186 
2187 	if (sc->sc_tx_timer > 0) {
2188 		if (--sc->sc_tx_timer == 0) {
2189 			aprint_error_dev(sc->sc_dev, "device timeout\n");
2190 			rt2560_init(ifp);
2191 			ifp->if_oerrors++;
2192 			return;
2193 		}
2194 		ifp->if_timer = 1;
2195 	}
2196 
2197 	ieee80211_watchdog(&sc->sc_ic);
2198 }
2199 
2200 /*
2201  * This function allows for fast channel switching in monitor mode (used by
2202  * net-mgmt/kismet). In IBSS mode, we must explicitly reset the interface to
2203  * generate a new beacon frame.
2204  */
2205 static int
2206 rt2560_reset(struct ifnet *ifp)
2207 {
2208 	struct rt2560_softc *sc = ifp->if_softc;
2209 	struct ieee80211com *ic = &sc->sc_ic;
2210 
2211 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
2212 		return ENETRESET;
2213 
2214 	rt2560_set_chan(sc, ic->ic_curchan);
2215 
2216 	return 0;
2217 }
2218 
2219 int
2220 rt2560_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2221 {
2222 	struct rt2560_softc *sc = ifp->if_softc;
2223 	struct ieee80211com *ic = &sc->sc_ic;
2224 	int s, error = 0;
2225 
2226 	s = splnet();
2227 
2228 	switch (cmd) {
2229 	case SIOCSIFFLAGS:
2230 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
2231 			break;
2232 		if (ifp->if_flags & IFF_UP) {
2233 			if (ifp->if_flags & IFF_RUNNING)
2234 				rt2560_update_promisc(sc);
2235 			else
2236 				rt2560_init(ifp);
2237 		} else {
2238 			if (ifp->if_flags & IFF_RUNNING)
2239 				rt2560_stop(ifp, 1);
2240 		}
2241 		break;
2242 
2243 	case SIOCADDMULTI:
2244 	case SIOCDELMULTI:
2245 		/* XXX no h/w multicast filter? --dyoung */
2246 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET)
2247 			error = 0;
2248 		break;
2249 
2250 	case SIOCS80211CHANNEL:
2251 		/*
2252 		 * This allows for fast channel switching in monitor mode
2253 		 * (used by kismet). In IBSS mode, we must explicitly reset
2254 		 * the interface to generate a new beacon frame.
2255 		 */
2256 		error = ieee80211_ioctl(ic, cmd, data);
2257 		if (error == ENETRESET &&
2258 		    ic->ic_opmode == IEEE80211_M_MONITOR) {
2259 			rt2560_set_chan(sc, ic->ic_ibss_chan);
2260 			error = 0;
2261 		}
2262 		break;
2263 
2264 	default:
2265 		error = ieee80211_ioctl(ic, cmd, data);
2266 	}
2267 
2268 	if (error == ENETRESET) {
2269 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
2270 		    (IFF_UP | IFF_RUNNING))
2271 			rt2560_init(ifp);
2272 		error = 0;
2273 	}
2274 
2275 	splx(s);
2276 
2277 	return error;
2278 }
2279 
2280 static void
2281 rt2560_bbp_write(struct rt2560_softc *sc, uint8_t reg, uint8_t val)
2282 {
2283 	uint32_t tmp;
2284 	int ntries;
2285 
2286 	for (ntries = 0; ntries < 100; ntries++) {
2287 		if (!(RAL_READ(sc, RT2560_BBPCSR) & RT2560_BBP_BUSY))
2288 			break;
2289 		DELAY(1);
2290 	}
2291 	if (ntries == 100) {
2292 		aprint_error_dev(sc->sc_dev, "could not write to BBP\n");
2293 		return;
2294 	}
2295 
2296 	tmp = RT2560_BBP_WRITE | RT2560_BBP_BUSY | reg << 8 | val;
2297 	RAL_WRITE(sc, RT2560_BBPCSR, tmp);
2298 
2299 	DPRINTFN(15, ("BBP R%u <- 0x%02x\n", reg, val));
2300 }
2301 
2302 static uint8_t
2303 rt2560_bbp_read(struct rt2560_softc *sc, uint8_t reg)
2304 {
2305 	uint32_t val;
2306 	int ntries;
2307 
2308 	val = RT2560_BBP_BUSY | reg << 8;
2309 	RAL_WRITE(sc, RT2560_BBPCSR, val);
2310 
2311 	for (ntries = 0; ntries < 100; ntries++) {
2312 		val = RAL_READ(sc, RT2560_BBPCSR);
2313 		if (!(val & RT2560_BBP_BUSY))
2314 			return val & 0xff;
2315 		DELAY(1);
2316 	}
2317 
2318 	aprint_error_dev(sc->sc_dev, "could not read from BBP\n");
2319 	return 0;
2320 }
2321 
2322 static void
2323 rt2560_rf_write(struct rt2560_softc *sc, uint8_t reg, uint32_t val)
2324 {
2325 	uint32_t tmp;
2326 	int ntries;
2327 
2328 	for (ntries = 0; ntries < 100; ntries++) {
2329 		if (!(RAL_READ(sc, RT2560_RFCSR) & RT2560_RF_BUSY))
2330 			break;
2331 		DELAY(1);
2332 	}
2333 	if (ntries == 100) {
2334 		aprint_error_dev(sc->sc_dev, "could not write to RF\n");
2335 		return;
2336 	}
2337 
2338 	tmp = RT2560_RF_BUSY | RT2560_RF_20BIT | (val & 0xfffff) << 2 |
2339 	    (reg & 0x3);
2340 	RAL_WRITE(sc, RT2560_RFCSR, tmp);
2341 
2342 	/* remember last written value in sc */
2343 	sc->rf_regs[reg] = val;
2344 
2345 	DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff));
2346 }
2347 
2348 static void
2349 rt2560_set_chan(struct rt2560_softc *sc, struct ieee80211_channel *c)
2350 {
2351 	struct ieee80211com *ic = &sc->sc_ic;
2352 	uint8_t power, tmp;
2353 	u_int i, chan;
2354 
2355 	chan = ieee80211_chan2ieee(ic, c);
2356 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
2357 		return;
2358 
2359 	if (IEEE80211_IS_CHAN_2GHZ(c))
2360 		power = min(sc->txpow[chan - 1], 31);
2361 	else
2362 		power = 31;
2363 
2364 	DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power));
2365 
2366 	switch (sc->rf_rev) {
2367 	case RT2560_RF_2522:
2368 		rt2560_rf_write(sc, RT2560_RF1, 0x00814);
2369 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2522_r2[chan - 1]);
2370 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x00040);
2371 		break;
2372 
2373 	case RT2560_RF_2523:
2374 		rt2560_rf_write(sc, RT2560_RF1, 0x08804);
2375 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2523_r2[chan - 1]);
2376 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x38044);
2377 		rt2560_rf_write(sc, RT2560_RF4,
2378 		    (chan == 14) ? 0x00280 : 0x00286);
2379 		break;
2380 
2381 	case RT2560_RF_2524:
2382 		rt2560_rf_write(sc, RT2560_RF1, 0x0c808);
2383 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2524_r2[chan - 1]);
2384 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x00040);
2385 		rt2560_rf_write(sc, RT2560_RF4,
2386 		    (chan == 14) ? 0x00280 : 0x00286);
2387 		break;
2388 
2389 	case RT2560_RF_2525:
2390 		rt2560_rf_write(sc, RT2560_RF1, 0x08808);
2391 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2525_hi_r2[chan - 1]);
2392 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044);
2393 		rt2560_rf_write(sc, RT2560_RF4,
2394 		    (chan == 14) ? 0x00280 : 0x00286);
2395 
2396 		rt2560_rf_write(sc, RT2560_RF1, 0x08808);
2397 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2525_r2[chan - 1]);
2398 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044);
2399 		rt2560_rf_write(sc, RT2560_RF4,
2400 		    (chan == 14) ? 0x00280 : 0x00286);
2401 		break;
2402 
2403 	case RT2560_RF_2525E:
2404 		rt2560_rf_write(sc, RT2560_RF1, 0x08808);
2405 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2525e_r2[chan - 1]);
2406 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044);
2407 		rt2560_rf_write(sc, RT2560_RF4,
2408 		    (chan == 14) ? 0x00286 : 0x00282);
2409 		break;
2410 
2411 	case RT2560_RF_2526:
2412 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2526_hi_r2[chan - 1]);
2413 		rt2560_rf_write(sc, RT2560_RF4,
2414 		   (chan & 1) ? 0x00386 : 0x00381);
2415 		rt2560_rf_write(sc, RT2560_RF1, 0x08804);
2416 
2417 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2526_r2[chan - 1]);
2418 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044);
2419 		rt2560_rf_write(sc, RT2560_RF4,
2420 		    (chan & 1) ? 0x00386 : 0x00381);
2421 		break;
2422 
2423 	/* dual-band RF */
2424 	case RT2560_RF_5222:
2425 		for (i = 0; rt2560_rf5222[i].chan != chan; i++);
2426 
2427 		rt2560_rf_write(sc, RT2560_RF1, rt2560_rf5222[i].r1);
2428 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf5222[i].r2);
2429 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x00040);
2430 		rt2560_rf_write(sc, RT2560_RF4, rt2560_rf5222[i].r4);
2431 		break;
2432 	}
2433 
2434 	if (ic->ic_opmode != IEEE80211_M_MONITOR &&
2435 	    ic->ic_state != IEEE80211_S_SCAN) {
2436 		/* set Japan filter bit for channel 14 */
2437 		tmp = rt2560_bbp_read(sc, 70);
2438 
2439 		tmp &= ~RT2560_JAPAN_FILTER;
2440 		if (chan == 14)
2441 			tmp |= RT2560_JAPAN_FILTER;
2442 
2443 		rt2560_bbp_write(sc, 70, tmp);
2444 
2445 		DELAY(1000); /* RF needs a 1ms delay here */
2446 		rt2560_disable_rf_tune(sc);
2447 
2448 		/* clear CRC errors */
2449 		RAL_READ(sc, RT2560_CNT0);
2450 	}
2451 }
2452 
2453 /*
2454  * Disable RF auto-tuning.
2455  */
2456 static void
2457 rt2560_disable_rf_tune(struct rt2560_softc *sc)
2458 {
2459 	uint32_t tmp;
2460 
2461 	if (sc->rf_rev != RT2560_RF_2523) {
2462 		tmp = sc->rf_regs[RT2560_RF1] & ~RT2560_RF1_AUTOTUNE;
2463 		rt2560_rf_write(sc, RT2560_RF1, tmp);
2464 	}
2465 
2466 	tmp = sc->rf_regs[RT2560_RF3] & ~RT2560_RF3_AUTOTUNE;
2467 	rt2560_rf_write(sc, RT2560_RF3, tmp);
2468 
2469 	DPRINTFN(2, ("disabling RF autotune\n"));
2470 }
2471 
2472 /*
2473  * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
2474  * synchronization.
2475  */
2476 static void
2477 rt2560_enable_tsf_sync(struct rt2560_softc *sc)
2478 {
2479 	struct ieee80211com *ic = &sc->sc_ic;
2480 	uint16_t logcwmin, preload;
2481 	uint32_t tmp;
2482 
2483 	/* first, disable TSF synchronization */
2484 	RAL_WRITE(sc, RT2560_CSR14, 0);
2485 
2486 	tmp = 16 * ic->ic_bss->ni_intval;
2487 	RAL_WRITE(sc, RT2560_CSR12, tmp);
2488 
2489 	RAL_WRITE(sc, RT2560_CSR13, 0);
2490 
2491 	logcwmin = 5;
2492 	preload = (ic->ic_opmode == IEEE80211_M_STA) ? 384 : 1024;
2493 	tmp = logcwmin << 16 | preload;
2494 	RAL_WRITE(sc, RT2560_BCNOCSR, tmp);
2495 
2496 	/* finally, enable TSF synchronization */
2497 	tmp = RT2560_ENABLE_TSF | RT2560_ENABLE_TBCN;
2498 	if (ic->ic_opmode == IEEE80211_M_STA)
2499 		tmp |= RT2560_ENABLE_TSF_SYNC(1);
2500 	else
2501 		tmp |= RT2560_ENABLE_TSF_SYNC(2) |
2502 		       RT2560_ENABLE_BEACON_GENERATOR;
2503 	RAL_WRITE(sc, RT2560_CSR14, tmp);
2504 
2505 	DPRINTF(("enabling TSF synchronization\n"));
2506 }
2507 
2508 static void
2509 rt2560_update_plcp(struct rt2560_softc *sc)
2510 {
2511 	struct ieee80211com *ic = &sc->sc_ic;
2512 
2513 	/* no short preamble for 1Mbps */
2514 	RAL_WRITE(sc, RT2560_PLCP1MCSR, 0x00700400);
2515 
2516 	if (!(ic->ic_flags & IEEE80211_F_SHPREAMBLE)) {
2517 		/* values taken from the reference driver */
2518 		RAL_WRITE(sc, RT2560_PLCP2MCSR,   0x00380401);
2519 		RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x00150402);
2520 		RAL_WRITE(sc, RT2560_PLCP11MCSR,  0x000b8403);
2521 	} else {
2522 		/* same values as above or'ed 0x8 */
2523 		RAL_WRITE(sc, RT2560_PLCP2MCSR,   0x00380409);
2524 		RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x0015040a);
2525 		RAL_WRITE(sc, RT2560_PLCP11MCSR,  0x000b840b);
2526 	}
2527 
2528 	DPRINTF(("updating PLCP for %s preamble\n",
2529 	    (ic->ic_flags & IEEE80211_F_SHPREAMBLE) ? "short" : "long"));
2530 }
2531 
2532 /*
2533  * IEEE 802.11a uses short slot time. Refer to IEEE Std 802.11-1999 pp. 85 to
2534  * know how these values are computed.
2535  */
2536 static void
2537 rt2560_update_slot(struct ifnet *ifp)
2538 {
2539 	struct rt2560_softc *sc = ifp->if_softc;
2540 	struct ieee80211com *ic = &sc->sc_ic;
2541 	uint8_t slottime;
2542 	uint16_t sifs, pifs, difs, eifs;
2543 	uint32_t tmp;
2544 
2545 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
2546 
2547 	/* define the MAC slot boundaries */
2548 	sifs = RAL_SIFS - RT2560_RXTX_TURNAROUND;
2549 	pifs = sifs + slottime;
2550 	difs = sifs + 2 * slottime;
2551 	eifs = (ic->ic_curmode == IEEE80211_MODE_11B) ? 364 : 60;
2552 
2553 	tmp = RAL_READ(sc, RT2560_CSR11);
2554 	tmp = (tmp & ~0x1f00) | slottime << 8;
2555 	RAL_WRITE(sc, RT2560_CSR11, tmp);
2556 
2557 	tmp = pifs << 16 | sifs;
2558 	RAL_WRITE(sc, RT2560_CSR18, tmp);
2559 
2560 	tmp = eifs << 16 | difs;
2561 	RAL_WRITE(sc, RT2560_CSR19, tmp);
2562 
2563 	DPRINTF(("setting slottime to %uus\n", slottime));
2564 }
2565 
2566 static void
2567 rt2560_set_basicrates(struct rt2560_softc *sc)
2568 {
2569 	struct ieee80211com *ic = &sc->sc_ic;
2570 
2571 	/* update basic rate set */
2572 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
2573 		/* 11b basic rates: 1, 2Mbps */
2574 		RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x3);
2575 	} else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) {
2576 		/* 11a basic rates: 6, 12, 24Mbps */
2577 		RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x150);
2578 	} else {
2579 		/* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
2580 		RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x15f);
2581 	}
2582 }
2583 
2584 static void
2585 rt2560_update_led(struct rt2560_softc *sc, int led1, int led2)
2586 {
2587 	uint32_t tmp;
2588 
2589 	/* set ON period to 70ms and OFF period to 30ms */
2590 	tmp = led1 << 16 | led2 << 17 | 70 << 8 | 30;
2591 	RAL_WRITE(sc, RT2560_LEDCSR, tmp);
2592 }
2593 
2594 static void
2595 rt2560_set_bssid(struct rt2560_softc *sc, uint8_t *bssid)
2596 {
2597 	uint32_t tmp;
2598 
2599 	tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
2600 	RAL_WRITE(sc, RT2560_CSR5, tmp);
2601 
2602 	tmp = bssid[4] | bssid[5] << 8;
2603 	RAL_WRITE(sc, RT2560_CSR6, tmp);
2604 
2605 	DPRINTF(("setting BSSID to %s\n", ether_sprintf(bssid)));
2606 }
2607 
2608 static void
2609 rt2560_set_macaddr(struct rt2560_softc *sc, uint8_t *addr)
2610 {
2611 	uint32_t tmp;
2612 
2613 	tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
2614 	RAL_WRITE(sc, RT2560_CSR3, tmp);
2615 
2616 	tmp = addr[4] | addr[5] << 8;
2617 	RAL_WRITE(sc, RT2560_CSR4, tmp);
2618 
2619 	DPRINTF(("setting MAC address to %s\n", ether_sprintf(addr)));
2620 }
2621 
2622 static void
2623 rt2560_get_macaddr(struct rt2560_softc *sc, uint8_t *addr)
2624 {
2625 	uint32_t tmp;
2626 
2627 	tmp = RAL_READ(sc, RT2560_CSR3);
2628 	addr[0] = tmp & 0xff;
2629 	addr[1] = (tmp >>  8) & 0xff;
2630 	addr[2] = (tmp >> 16) & 0xff;
2631 	addr[3] = (tmp >> 24);
2632 
2633 	tmp = RAL_READ(sc, RT2560_CSR4);
2634 	addr[4] = tmp & 0xff;
2635 	addr[5] = (tmp >> 8) & 0xff;
2636 }
2637 
2638 static void
2639 rt2560_update_promisc(struct rt2560_softc *sc)
2640 {
2641 	struct ifnet *ifp = &sc->sc_if;
2642 	uint32_t tmp;
2643 
2644 	tmp = RAL_READ(sc, RT2560_RXCSR0);
2645 
2646 	tmp &= ~RT2560_DROP_NOT_TO_ME;
2647 	if (!(ifp->if_flags & IFF_PROMISC))
2648 		tmp |= RT2560_DROP_NOT_TO_ME;
2649 
2650 	RAL_WRITE(sc, RT2560_RXCSR0, tmp);
2651 
2652 	DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
2653 	    "entering" : "leaving"));
2654 }
2655 
2656 static void
2657 rt2560_set_txantenna(struct rt2560_softc *sc, int antenna)
2658 {
2659 	uint32_t tmp;
2660 	uint8_t tx;
2661 
2662 	tx = rt2560_bbp_read(sc, RT2560_BBP_TX) & ~RT2560_BBP_ANTMASK;
2663 	if (antenna == 1)
2664 		tx |= RT2560_BBP_ANTA;
2665 	else if (antenna == 2)
2666 		tx |= RT2560_BBP_ANTB;
2667 	else
2668 		tx |= RT2560_BBP_DIVERSITY;
2669 
2670 	/* need to force I/Q flip for RF 2525e, 2526 and 5222 */
2671 	if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526 ||
2672 	    sc->rf_rev == RT2560_RF_5222)
2673 		tx |= RT2560_BBP_FLIPIQ;
2674 
2675 	rt2560_bbp_write(sc, RT2560_BBP_TX, tx);
2676 
2677 	/* update values for CCK and OFDM in BBPCSR1 */
2678 	tmp = RAL_READ(sc, RT2560_BBPCSR1) & ~0x00070007;
2679 	tmp |= (tx & 0x7) << 16 | (tx & 0x7);
2680 	RAL_WRITE(sc, RT2560_BBPCSR1, tmp);
2681 }
2682 
2683 static void
2684 rt2560_set_rxantenna(struct rt2560_softc *sc, int antenna)
2685 {
2686 	uint8_t rx;
2687 
2688 	rx = rt2560_bbp_read(sc, RT2560_BBP_RX) & ~RT2560_BBP_ANTMASK;
2689 	if (antenna == 1)
2690 		rx |= RT2560_BBP_ANTA;
2691 	else if (antenna == 2)
2692 		rx |= RT2560_BBP_ANTB;
2693 	else
2694 		rx |= RT2560_BBP_DIVERSITY;
2695 
2696 	/* need to force no I/Q flip for RF 2525e and 2526 */
2697 	if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526)
2698 		rx &= ~RT2560_BBP_FLIPIQ;
2699 
2700 	rt2560_bbp_write(sc, RT2560_BBP_RX, rx);
2701 }
2702 
2703 static const char *
2704 rt2560_get_rf(int rev)
2705 {
2706 	switch (rev) {
2707 	case RT2560_RF_2522:	return "RT2522";
2708 	case RT2560_RF_2523:	return "RT2523";
2709 	case RT2560_RF_2524:	return "RT2524";
2710 	case RT2560_RF_2525:	return "RT2525";
2711 	case RT2560_RF_2525E:	return "RT2525e";
2712 	case RT2560_RF_2526:	return "RT2526";
2713 	case RT2560_RF_5222:	return "RT5222";
2714 	default:		return "unknown";
2715 	}
2716 }
2717 
2718 static void
2719 rt2560_read_eeprom(struct rt2560_softc *sc)
2720 {
2721 	uint16_t val;
2722 	int i;
2723 
2724 	val = rt2560_eeprom_read(sc, RT2560_EEPROM_CONFIG0);
2725 	sc->rf_rev =   (val >> 11) & 0x1f;
2726 	sc->hw_radio = (val >> 10) & 0x1;
2727 	sc->led_mode = (val >> 6)  & 0x7;
2728 	sc->rx_ant =   (val >> 4)  & 0x3;
2729 	sc->tx_ant =   (val >> 2)  & 0x3;
2730 	sc->nb_ant =   val & 0x3;
2731 
2732 	/* read default values for BBP registers */
2733 	for (i = 0; i < 16; i++) {
2734 		val = rt2560_eeprom_read(sc, RT2560_EEPROM_BBP_BASE + i);
2735 		sc->bbp_prom[i].reg = val >> 8;
2736 		sc->bbp_prom[i].val = val & 0xff;
2737 	}
2738 
2739 	/* read Tx power for all b/g channels */
2740 	for (i = 0; i < 14 / 2; i++) {
2741 		val = rt2560_eeprom_read(sc, RT2560_EEPROM_TXPOWER + i);
2742 		sc->txpow[i * 2] = val >> 8;
2743 		sc->txpow[i * 2 + 1] = val & 0xff;
2744 	}
2745 }
2746 
2747 static int
2748 rt2560_bbp_init(struct rt2560_softc *sc)
2749 {
2750 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
2751 	int i, ntries;
2752 
2753 	/* wait for BBP to be ready */
2754 	for (ntries = 0; ntries < 100; ntries++) {
2755 		if (rt2560_bbp_read(sc, RT2560_BBP_VERSION) != 0)
2756 			break;
2757 		DELAY(1);
2758 	}
2759 	if (ntries == 100) {
2760 		aprint_error_dev(sc->sc_dev, "timeout waiting for BBP\n");
2761 		return EIO;
2762 	}
2763 
2764 	/* initialize BBP registers to default values */
2765 	for (i = 0; i < N(rt2560_def_bbp); i++) {
2766 		rt2560_bbp_write(sc, rt2560_def_bbp[i].reg,
2767 		    rt2560_def_bbp[i].val);
2768 	}
2769 #if 0
2770 	/* initialize BBP registers to values stored in EEPROM */
2771 	for (i = 0; i < 16; i++) {
2772 		if (sc->bbp_prom[i].reg == 0xff)
2773 			continue;
2774 		rt2560_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2775 	}
2776 #endif
2777 
2778 	return 0;
2779 #undef N
2780 }
2781 
2782 static int
2783 rt2560_init(struct ifnet *ifp)
2784 {
2785 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
2786 	struct rt2560_softc *sc = ifp->if_softc;
2787 	struct ieee80211com *ic = &sc->sc_ic;
2788 	uint32_t tmp;
2789 	int i;
2790 
2791 	/* for CardBus, power on the socket */
2792 	if (!(sc->sc_flags & RT2560_ENABLED)) {
2793 		if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
2794 			aprint_error_dev(sc->sc_dev, "could not enable device\n");
2795 			return EIO;
2796 		}
2797 		sc->sc_flags |= RT2560_ENABLED;
2798 	}
2799 
2800 	rt2560_stop(ifp, 1);
2801 
2802 	/* setup tx rings */
2803 	tmp = RT2560_PRIO_RING_COUNT << 24 |
2804 	      RT2560_ATIM_RING_COUNT << 16 |
2805 	      RT2560_TX_RING_COUNT   <<  8 |
2806 	      RT2560_TX_DESC_SIZE;
2807 
2808 	/* rings _must_ be initialized in this _exact_ order! */
2809 	RAL_WRITE(sc, RT2560_TXCSR2, tmp);
2810 	RAL_WRITE(sc, RT2560_TXCSR3, sc->txq.physaddr);
2811 	RAL_WRITE(sc, RT2560_TXCSR5, sc->prioq.physaddr);
2812 	RAL_WRITE(sc, RT2560_TXCSR4, sc->atimq.physaddr);
2813 	RAL_WRITE(sc, RT2560_TXCSR6, sc->bcnq.physaddr);
2814 
2815 	/* setup rx ring */
2816 	tmp = RT2560_RX_RING_COUNT << 8 | RT2560_RX_DESC_SIZE;
2817 
2818 	RAL_WRITE(sc, RT2560_RXCSR1, tmp);
2819 	RAL_WRITE(sc, RT2560_RXCSR2, sc->rxq.physaddr);
2820 
2821 	/* initialize MAC registers to default values */
2822 	for (i = 0; i < N(rt2560_def_mac); i++)
2823 		RAL_WRITE(sc, rt2560_def_mac[i].reg, rt2560_def_mac[i].val);
2824 
2825 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2826 	rt2560_set_macaddr(sc, ic->ic_myaddr);
2827 
2828 	/* set basic rate set (will be updated later) */
2829 	RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x153);
2830 
2831 	rt2560_update_slot(ifp);
2832 	rt2560_update_plcp(sc);
2833 	rt2560_update_led(sc, 0, 0);
2834 
2835 	RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC);
2836 	RAL_WRITE(sc, RT2560_CSR1, RT2560_HOST_READY);
2837 
2838 	if (rt2560_bbp_init(sc) != 0) {
2839 		rt2560_stop(ifp, 1);
2840 		return EIO;
2841 	}
2842 
2843 	rt2560_set_txantenna(sc, 1);
2844 	rt2560_set_rxantenna(sc, 1);
2845 
2846 	/* set default BSS channel */
2847 	ic->ic_bss->ni_chan = ic->ic_ibss_chan;
2848 	rt2560_set_chan(sc, ic->ic_bss->ni_chan);
2849 
2850 	/* kick Rx */
2851 	tmp = RT2560_DROP_PHY_ERROR | RT2560_DROP_CRC_ERROR;
2852 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2853 		tmp |= RT2560_DROP_CTL | RT2560_DROP_VERSION_ERROR;
2854 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2855 			tmp |= RT2560_DROP_TODS;
2856 		if (!(ifp->if_flags & IFF_PROMISC))
2857 			tmp |= RT2560_DROP_NOT_TO_ME;
2858 	}
2859 	RAL_WRITE(sc, RT2560_RXCSR0, tmp);
2860 
2861 	/* clear old FCS and Rx FIFO errors */
2862 	RAL_READ(sc, RT2560_CNT0);
2863 	RAL_READ(sc, RT2560_CNT4);
2864 
2865 	/* clear any pending interrupts */
2866 	RAL_WRITE(sc, RT2560_CSR7, 0xffffffff);
2867 
2868 	/* enable interrupts */
2869 	RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK);
2870 
2871 	ifp->if_flags &= ~IFF_OACTIVE;
2872 	ifp->if_flags |= IFF_RUNNING;
2873 
2874 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2875 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2876 	else
2877 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2878 
2879 	return 0;
2880 #undef N
2881 }
2882 
2883 static void
2884 rt2560_stop(struct ifnet *ifp, int disable)
2885 {
2886 	struct rt2560_softc *sc = ifp->if_softc;
2887 	struct ieee80211com *ic = &sc->sc_ic;
2888 
2889 	sc->sc_tx_timer = 0;
2890 	ifp->if_timer = 0;
2891 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2892 
2893 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);	/* free all nodes */
2894 
2895 	/* abort Tx */
2896 	RAL_WRITE(sc, RT2560_TXCSR0, RT2560_ABORT_TX);
2897 
2898 	/* disable Rx */
2899 	RAL_WRITE(sc, RT2560_RXCSR0, RT2560_DISABLE_RX);
2900 
2901 	/* reset ASIC (and thus, BBP) */
2902 	RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC);
2903 	RAL_WRITE(sc, RT2560_CSR1, 0);
2904 
2905 	/* disable interrupts */
2906 	RAL_WRITE(sc, RT2560_CSR8, 0xffffffff);
2907 
2908 	/* clear any pending interrupt */
2909 	RAL_WRITE(sc, RT2560_CSR7, 0xffffffff);
2910 
2911 	/* reset Tx and Rx rings */
2912 	rt2560_reset_tx_ring(sc, &sc->txq);
2913 	rt2560_reset_tx_ring(sc, &sc->atimq);
2914 	rt2560_reset_tx_ring(sc, &sc->prioq);
2915 	rt2560_reset_tx_ring(sc, &sc->bcnq);
2916 	rt2560_reset_rx_ring(sc, &sc->rxq);
2917 }
2918